
A Framework for Querying Graph-Based Business Process
Models

Sherif Sakr
School of Computer Science and Engineering

University of New South Wales
Sydney, Australia

ssakr@cse.unsw.edu.au

Ahmed Awad
Hasso-Plattner-Institute
University of Potsdam
Potsdam, Germany

ahmed.awad@hpi.uni-potsdam.de

ABSTRACT
We present a framework for querying and reusing graph-based busi-
ness process models. The framework is based on a new visual query
language for business processes called BPMN-Q. The language ad-
dresses processes definitions and extends the standard BPMN vi-
sual notations for modeling business processes for its concrete syn-
tax. BPMN-Q is used to query process models by matching a pro-
cess model graph to a query graph. Moreover, the reusing frame-
work is enhanced with a semantic query expander component. This
component provides the users with the flexibility to get not only
the perfectly matched process models to their queries but also the
models with high similarity. The query engine of the framework is
built on top of traditional RDBMS. A novel decomposition-based
and selectivity-aware relational processing mechanism is employed
to achieve an efficient and scalable performance for graph-based
BPMN-Q queries.

Categories and Subject Descriptors
H.2 [Database Management]: Query languages; H.1.m [Information
Systems]: Value of information; D.2.8 [Software Engineering]:
Software libraries

General Terms
Management - Standardization - Verification

Keywords
Querying Business Process - BPMN- Process Models

1. INTRODUCTION
To understand, communicate upon, or reengineer working pro-

cedures, companies document their daily routines in the form of
business process models. Business process modeling is a complex,
time consuming and error prone task. Model design requires deter-
mining the activities that need to be performed, ordering of their ex-
ecution, handling exceptional cases that might occur, etc. In many
cases, variants of process models need to be created in response to
special business situations. For instance, there could several insur-
ance claim handling process. One process is designed for people
with special working environment conditions, another for people
over seventy years, etc. With the rapid growth in the number of
process models developed by different process designers, providing
business process designers with a framework for reusing previously

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

designed business process models and for making the best use of
them is of great practical value. Therefore, in order to simplify and
improve the business process modeling task, process models need
to be highly reusable, favoring process flexibility and minimizing
designs made from scratch. Moreover, reusing can effectively in-
crease the quality and the maturity of the newly developed process
models. Reusing of process models implies the need for querying
a process repository to find a suitable previous work that can be the
base for a new design. Hence, the need for an intuitive, easy-to-use
and expressive query language of process models is very important.

Recently, BPMN has been considered as the defacto standard
for process modeling. The BPMN-Q query language is a visual
language to query repositories of process models which extends
BPMN notations with very few additional constructs to serve its
querying purpose [1, 3]. BPMN-Q allows expressing structural
queries and specifies proceedings of determining whether a given
process model is structurally similar to a query. The expressive
power of BPMN-Q allows the construction of more complex queries
that are more than just a path lookup. In principle, a BPMN-Q
query is considered to be a graph which is going to be matched
with process graph(s).

Graph data structures have been widely used to model many
complex structured and schemaless data such as: XML documents,
social networks, chemical compounds and business process mod-
els. Relational database management systems (RDBMSs) have re-
peatedly been shown to be highly efficient and scalable in hosting
types of data which have formerly not been anticipated to live in-
side relational databases such as complex objects, spatio-temporal
data and XML data. In addition, RDBMSs have shown their ability
to handle vast amounts of data very efficiently using their powerful
indexing mechanisms. In this work we utilize the powerful features
of the relational infrastructure to implement efficient mechanisms
for processing graph-based business process queries.

The goal of this demonstration is to present a novel, efficient
and scalable framework to support business process designers to
achieve an effective modeling task by querying and reusing existing
process models. In particular, we summarize the main strengths of
our demonstrated system as follows:

1. The framework is based on a novel, intuitive and visual query
language for business process models, BPMN-Q. It allows
users to define their business process models and their queries
using a very similar set of notations.

2. The framework is enhanced with a semantic query expansion
component which employs an ontological dimension in the
query matching process and tackles the problem of applying
different terminologies when modeling processes. Ontology
construction does not assume a priori semantic tagging or
semantic description of process models.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1297



@Variable
//X X //* S J

(a) (b) (c) (d) (e) (f) (g)

Figure 1: BPMN-Q Elements.

3. To achieve an efficient and scalable performance, the SQL-
backend query processor makes use of the robust indexing in-
frastructure available by RDBMS and uses a novel decomposition-
based and selectivity-aware translation mechanism of BPMN-
Q graph-based queries into efficient SQL scripts.

4. The framework architecture is designed in a very flexible
front-end/back-end fashion. On the front-end, it uses BPMN
for modeling business processes, BPMN-Q for querying busi-
ness processes and standard SQL relational processor as its
back-end. However, the framework can be easily adapted to
other modeling notations such as: EPCs, UML ADs.

2. BPMN-Q: A VISUAL QUERY LANGUAGE
FOR BUSINESS PROCESSES

BPMN-Q [1] is a visual language that uses the BPMN notations
as its concrete syntax. It is used to query business process models
by matching a process model graph to a query graph. BPMN-Q ex-
tends the set of notations of BPMN with seven new elements. Some
of these elements are flow objects, the others are for connectivity to
serve its querying purpose. These elements are shown in Figure 1
and are described as follows:
(a) Variable Node: it resembles an activity but is distinguished by

the @ sign in the beginning of the label. It is used to indicate
unknown activities in a query.

(b) Generic: this indicates an unknown node in a process. It could
evaluate to any node type.

(c) Generic Split: refers to any type of split gateways.
(d) Generic Join: refers to any type of join gateways.
(e) Negative Sequence Flow: states that two nodes A and B are

not directly related by sequence flow.
(f) Path: states that there must be a path from A to B. A query

usually returns all paths.
(g) Negative Path: states that there is not any path between two

nodes A and B.
A BPMN-Q query is represented as a business process diagram
(graph) that might contain additional query elements that will be
substituted with BPMN elements during its processing. The result
of such a graphical query is given by a sub-graph of the original
process model. Figure 2 is a simplified loan handling process using
BPMN notations. An example query and its match are shown in
Figure 3. When matching a process graph (Figure 2) to the query
in Figure 3(a), the result of the path edge is the sub-graph of the
matching process in which the two nodes along with nodes in be-
tween are contained (Figure 3(b)).

An interesting usage scenario of BPMN-Q is to find similarities
between process models on both structural and semantical basis [3].
For example, a query with a path from activity “Receive purchase
request” to activity “Archive request” would be created by a busi-
ness designer to lookup situations of handling purchase requests.
For the basic query processor of BPMN-Q, it looks for process
models having activity labels strictly matching those in the query.
Thus, process models having activities on the form “Get purchase
order”, “Process purchase request”, etc., will not be inspected by
the query processor, though they are semantically relevant to the
query. To overcome this limitation, the basic query processor was
extended by a semantic expansion layer [3]. In that layer, informa-

Customer applies for 

real-estate credit

Credit Rating

[rejected]

Check credit rating

Credit Rating

[accepted]

Check real-estate 

construction 

document

Check land register 

record

Const. Doc.

[invalid]

Const. Doc

[valid]

Record

[absent]

Record

[present]

Prepare contract

Reject application

All OK

Offer loan protection 

insurance

Offer residence 

insurance

Figure 2: Sample Banking Process Model (in BPMN Notation)

Customer applies for 

real-estate credit
Reject application//

(a) Sample BPMN-Q Query with Path edge

Customer applies for 

real-estate credit

Check credit rating

Check real-estate 

construction 

document

Check land register 

record
Reject application

(b) Match of the Query

Figure 3: A Sample BPMN-Q Path Query and its Match

tion retrieval techniques are employed to analyze labels of activities
in process models from a semantical point of view.

The semantic expansion is light weight as it derives the semantic
similarity without any prerequisite annotation of activities done by
a human. Rather, a vector space model [10] with knowledge of
WordNet1 ontology is used on the words in the labels of activities
to derive the similarity. With this expansion, models as discussed
above are now relevant to the query. Of course, such an expansion
adds to the complexity of the query processing. To control this
complexity, the user is asked to determine a search threshold that
controls the search depth and thus the time taken to process queries.

3. FRAMEWORK ARCHITECTURE
The framework of our implementation of querying and reusing

business process models is designed in using very flexible front-
end/back-end architecture. In the back-end, the repository of the
business process graph models are stored and indexed in the RDBMS
using a fixed relational scheme. In this repository we can store
business process models defined using BPMN notations or models
which are defined using any other notations (BPEL, EPC or UML)
after applying the required transformations [12]. In the front-end,
querying the business process repository is achieved through the
use of a visual editor for the BPMN-Q query language. In the mid-
dle, the relational query processor evaluates the BPMN-Q queries
and their semantic expansion (if required) over the relational scheme
of the business process repository. This design allows us to easily
port the implementation to any RDBMS or any visual BPMN-Q
query editor. Figure 4 shows the framework architecture with the
following main components:

1http://wordnet.princeton.edu/

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1298



Model 
Editor

Semantic Query 
Expander

SQL-Based
Query Processor

RDBMS

SQL ScriptQuery Results
Updates

BPMN-Q
Query Editor

BPMN- Q Query

Semantically 
expanded queries 

Result Process ModelsBusiness Process 
Designers

Relational Business 
Process Repository

EPCXLANGBPEL

Translation Middleware

………. UML 
ADs

Figure 4: A framework architecture.

• Translation Middleware: translates business process defi-
nitions from specific languages syntax to the repository’s in-
ternal representation. This Middleware facilitates the ability
to unify the query interface against different process defini-
tion languages.

• Repository: is a central relational database that stores an ab-
stract uniform representation of the enterprise process mod-
els. Conceptually, business process models are represented
by graph data structures where events, activities and gate-
ways are represented by graph nodes and the sequence flow
between any two nodes is represented by an edge. On the
physical level, we use a fixed-mapping storage scheme to
map these graph data structure into a tabular relational repre-
sentation. More details of the relational schema of the busi-
ness process repository will be discussed in Section 4.

• Query Editor: is a visual web-based editor where the users
can compose their queries using the BPMN-Q notations. The
task of the query editor ends with the passing of the com-
posed BPMN-Q query graph to the semantic query expander
component before being shipped into the back-end SQL-based
query processor.

• Semantic Query Expander: This component is responsible
for employing an ontological dimension in the query match-
ing process. It analyzes the labels of activities in process
models from a semantical point of view and derives a list of
semantically similar activities. In this way, the query pro-
cessor is able to retrieve not only the exact matching process
models but also the relevant process models.

• Query Processor: receives the BPMN-Q query graphs, trans-
lates them into SQL scripts which are then shipped into the
backend RDBMs. The resulting process models are then re-
ceived, verified and the relevant models are then passed to
the Model Editor component for displaying purposes. More
details of this component will be discussed in Section 4.

• Model Editor: displays the results returned by the query
processor. Results can be changed by the user and then stored
back in the repository, or can be reissued as new queries.

4. SQL-BASED EVALUATION FOR GRAPH-
BASED QUERIES OF BPMN-Q

Retrieving related graphs matching a query graph from a large
graph database is a key performance issue in any graph-based ap-
plication. It is apparent that the performance of any of these appli-
cations is directly dependent on the efficiency of the graph index-
ing and query processing mechanisms. The query processing of
BPMN-Q queries goes beyond the traditional sub-graph query pro-
cessing in two ways. First, it does not treat all nodes of the graph

repository or graph query in the same way. Each node has its own
type and characteristics. Second, the connections (edges) between
the nodes of the subgraph query are not always simple or direct
connections that can be evaluated using the intuitive retrieval mech-
anisms. However, these query edges can represent more complex
and recursive types of connections (paths, negative paths and neg-
ative connections) between the nodes of the business process graph
models. Therefore, efficient filtering and verification techniques
need to be employed to deal with these extra challenges posed by
the semantics of the query constructs of BPMN-Q.

The business process repository uses a fixed-mapping storage
scheme to store the graph structures of the process models. This
relational storage scheme is described as follow:

BPModel(ModelID,ModelName,ModelDescription).
BPElements(ModelID,ElementID,ElementName,ElementType).
BPSequenceFlows(ModelID,SElementID,DElementID).

An obvious aspect in the SQL-based evaluation of BPMN-Q graph-
based queries is the huge cost which may result from the large num-
ber of join operations which are required to be performed between
the encoding relations. To overcome this problem, we exploit an
observation from previous works which is that the size of the in-
termediate results dramatically affect the overall evaluation perfor-
mance of SQL scripts [7, 6, 11]. Hence, we use an effective and ef-
ficient pruning strategy to filter out as many as possible of the false
positives graphs that are guaranteed to not exist in the final results
first before passing the candidate result set to an optional verifica-
tion process. Therefore, we keep statistical information about the
less frequently existing nodes and edges in the graph database in the
form of simple Markov Tables. In our context, we are only inter-
ested in label and edge information with low frequency. Hence, we
summarize these Markov tables by deleting high-frequency tuples
up to a certain defined threshold, freq. This statistical information
is then used to influence the decision of relational query optimizers
by selectivity annotations of the translated query predicates to make
the right decision regarding selecting the most efficient join order
and the cheapest execution plan Moreover, we carefully exploit the
fact that the number of distinct vertices and edges labels are usually
far less than the number of vertices and edges respectively. There-
fore, we try to achieve the maximum performance improvement for
our relation execution plans by utilizing the powerful partitioned B-
trees indexing mechanism of the relational databases to reduce the
access costs of the secondary storage to the minimum [5].

BPMN-Q queries with large number of elements and sequence
flow cannot be evaluated with one-step SQL evaluation or view-
based mechanisms. They generate SQL queries that are too long
and too complex and can not be executed by the back-end RDBMS.
Therefore, we use a decomposition mechanism to divide this large
and complex SQL translation query into a sequence of intermedi-
ate queries before evaluating the final results [9]. However, apply-
ing this decomposition mechanism blindly may lead to inefficient
execution plans with very large, non-required and expensive inter-
mediate results. Therefore, we reuse our statistical summaries to
perform an effective selectivity-aware decomposition process.

Depending on the BPMN-Q query structure, the set of result-
ing process models may contain too few (sometimes empty) or too
many result instances (could be the whole repository for very sim-
ple generic queries). Both cases are not helpful, useful or practical
for the process designers. On the case of the too few results, the sys-
tem tries to automatically find semantically similar process models
using the semantic query expander component. The decision that
the result set is small or not is based on a user defined threshold
parameter. On the case of the too many results, it is unpractical to
overwhelm the user with a very large set of process models. There-

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1299



Figure 5: Screenshot of BPMN-Q query editor.

fore, in order to effectively deal with this situation and improve the
query response time we apply two main techniques: 1) We use a
user defined parameter to specify the maximum size of the query
result set. The system uses this parameter to stop verifying the fil-
tered process models when the specified maximum limit is reached.
2) The system divides the set of resulting process models into a
number of chunks. Each chunk consists of N models where N is a
user-defined parameter. To improve the systems response time, the
system starts to return the results back to the users after determining
the first positively verified N models.

5. DEMONSTRATION
The demo will show that the business process modeling task can

be very interactive and efficient using intuitive, easy-to-use and ex-
pressive query language and efficient subgraph query processing
techniques. Moreover, we will demonstrate that our framework
can improve the quality and the maturity of the process model-
ing task by reusing the higher level business knowledge which are
previously developed by business experts. The framework will
be demonstrated using a very large real-world dataset collected
from the online business process modeling repository, ORYX2. The
dataset of business process model covers many application domains.
The query engine of our demonstrated system is built on top of the
IBM DB2 RDBMS as the database-backend. Sample BPMN-Q
queries will be ready to run, but users can visually edit and design
their own ad-hoc queries using web-based visual query editor as
well (see Figure 5 for a snapshot3). The BPMN-Q queries will be
evaluated by the relational query processor to retrieve, filter and
verify the structurally matching process models and their semanti-
cally related models. The end users will be able to view and update
the resulting process models through the Model Editor component.
We will also demonstrate how our framework can provide effective
solutions for many important use cases such as:

• Compliance checking: Compliance rules originate from dif-
ferent sources and are changing over time. The constantly
changing nature of rules (e.g. due to changes in policies)
calls for the checking of business processes each time a rule
is added or changed. In case of manual auditing, a consid-
erable amount of time is consumed in identifying the set of

2http://oryx-project.org/backend/poem/repository
3Please visit http://bpmnq.sourceforge.net/ for live demo

process models affected by each rule that may lead to the
failure to meet the deadline for declaring compliance. Auto-
mated approaches for compliance checking can be achieved
by expressing the checking rules as queries using a visual
query language [2].

• Detecting anomalies: Even structurally sound process mod-
els can suffer from anomalies. For instance, an activity may
have a precondition to read a data object in a specific state.
If that data object does not reach the required state during
execution of the process, the process will stall in deadlock at
that point. Querying mechanisms can provide a remedy to
this dilemma, as it allows the formulation of queries that find
common model anomalies [4].

• Discovery of frequent process patterns/anti-patterns: Mod-
ularization has been always a principle of good software de-
sign. It helps to localize the effect of software updates and
control redundancy. Querying techniques can be used to
query the definition of process models and extract the fre-
quent patterns. These discovered frequent patterns can be
then moved to sub processes and replace their occurrences
by calls to these sub processes. In addition the discovery of
anti-patterns is very important to facilitate the ability to con-
trol the occurrence of unwanted process behavior [8].

Besides the framework demonstration, we will discuss about the
design choices that we have made on defining the constructs of the
query language, the indexing and query processing techniques. In
addition, performance evaluation on the quality of similarity search
of process models with respect to user studies and on search effi-
ciency over a comprehensive dataset will be exhibited.

Acknowledgments
The authors would like to thank Prof. Athman Bouguettaya for his
valuable comments on this work.

6. REFERENCES
[1] A. Awad. BPMN-Q: A language to query business processes.

In EMISA, 2007.
[2] A. Awad, G. Decker, and M. Weske. Efficient Compliance

Checking Using BPMN-Q and Temporal Logic. In BPM,
2008.

[3] A. Awad, A. Polyvyanyy, and M. Weske. Semantic querying
of business process models. In EDOC, 2008.

[4] A. Awad and F. Puhlmann. Structural Detection of
Deadlocks in Business Process Models. In BIS, 2008.

[5] G. Graefe. Sorting And Indexing With Partitioned B-Trees.
In CIDR, 2003.

[6] T. Grust, M. Mayr, J. Rittinger, S. Sakr, and J. Teubner. A
SQL:1999 Code Generator for the Pathfinder XQuery
Compiler. In SIGMOD, 2007.

[7] T. Grust, S. Sakr, and J. Teubner. XQuery on SQL Hosts. In
VLDB, 2004.

[8] R. Laue and A. Awad. Visualization of business process
modeling anti patterns. In VFfP, 2009.

[9] S. Sakr. GraphREL: A decomposition-based and
selectivity-aware relational framework for processing
sub-graph queries. In DASFAA, 2009.

[10] G. Salton, A. Wong, and C. S. Yang. A Vector Space Model
for Automatic Indexing. Commun. ACM, 18(11), 1975.

[11] J. Teubner, T. Grust, S. Maneth, and S. Sakr. Dependable
Cardinality Forecats for XQuery. In VLDB, 2008.

[12] Matthias Weidlich, Gero Decker, Alexander Großkopf, and
Mathias Weske. BPEL to BPMN: The myth of a
straight-forward mapping. In OTM, 2008.

WWW 2010 • Demo April 26-30 • Raleigh • NC • USA

1300


