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S-54128 Skövde, SWEDEN

Final Year Project in Computer Science, Spring 2004.
Supervisor: Henrik Grimm



A framework for rapid development of dynamic binary translators
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Abstract

Binary recompilation and translation play an important role in computer systems today.
It is used by systems such as Java and .NET, and system emulators like VMWare and
VirtualPC. A dynamic binary translator have several things in common with a regular
compiler but as they usually have to translate code in real-time several constraints have
to be made, especially when it comes to making code optimisations.

Designing a dynamic recompiler is a complex process that involves repetitive tasks.
Translation tables have to be constructed for the source architecture which contains the
data necessary to translate each instruction into binary code that can be executed on
the target architecture. This report presents a method that allows a developer to specify
how the source and target architectures work using a set of scripting languages. The
purpose of these languages is to relocate the repetitive tasks to computer software,
so that they do not have to be performed manually by programmers. At the end of the
report a simple benchmark is used to evaluate the performance of a basic IA32 emulator
running on a PowerPC target that have been implemented using the system described
here. The results of the benchmark is compared to the results of running the same
benchmark on other, existing, emulators in order to show that the system presented
here can compete with the existing methods used today.

Several ongoing research projects are looking into ways of designing binary
translators. Most of these projects focus on ways of optimising code in real-time and
how to solve the problems related to binary translation, such as handling self-modifying
code.
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5.3 Fanà - a virtual instruction set . . . . . . . . . . . . . . . . . . . . . 15

5.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Bricoleur - the source definition language . . . . . . . . . . . . . . . 17

5.4.1 Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Target mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.5.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Results & analysis 21
6.1 Performance benchmark . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Expressiveness of scripting languages . . . . . . . . . . . . . . . . . 25

7 Related work 26

8 Conclusion 27
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

8.2.1 Flags . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.2.2 Hot-spot optimiser . . . . . . . . . . . . . . . . . . . . . . . 28
8.2.3 Persistent translation cache . . . . . . . . . . . . . . . . . . . 28
8.2.4 Support for defining memory management . . . . . . . . . . 28
8.2.5 Catching common system calls . . . . . . . . . . . . . . . . . 28
8.2.6 Self-modifying code . . . . . . . . . . . . . . . . . . . . . . 28
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1 INTRODUCTION

1 Introduction

The world of desktop computers is today dominated by one actor, Microsoft, and
their platform Windows. Even though their expected market share is over 90% on
the desktop, alternatives such as GNU/Linux and Apple’s MacOS X are slowly starting
to gain ground (Dalrymple 2003, Gulker 2003). The server market has already seen
an explosion of GNU/Linux based servers as both pricing and availability of good
software gives the competitors a tough challenge (Jaques 2003). As the alternative
operating systems are becoming more popular the possibility of choosing an alternative
hardware platform increases. Microsoft Windows exclusively runs on Intel hardware,
except for a small excursion into the realm of some alternative hardware platforms
made with Windows NT 4. MacOS X runs on PowerPC hardware and GNU/Linux
is supported on numerous architectures, including the Intel IA32 and IA64 as well
as the Motorola PowerPC. IA32 stands for “Intel Architecture 32” which has 32-bit
long registers and IA64, also known as Itanium, has 64-bit long registers (IA-32 Intel
Architecture Software Developer’s Manual 2001a).

Since Microsoft Windows is the most widespread desktop operating system, it is
only natural that it has the largest number of supported commercial applications. In
order to ease user transition to other platforms, a number of applications are being
developed that make it possible to run Windows applications on other platforms and
architectures. Some open-source solutions include Darwine, which intend to run
applications for Microsoft Windows on MacOS X (White 2004), and QEMU, which
is a new project that emulates a number of different processors (Bellard 2004). There
is also an open-source emulator targeted at system developers with a built-in debugger
and support for instrumentation. This emulator is called Bochs and is currently the
most compatible of the three (Lawton 2004). With the exception of Darwine all of the
above mentioned applications have in common that they have been designed to run on
a number of different architectures. Because of this, they include only a minimal set
of architecture-specific optimisations and none of them are PowerPC-specific. This,
of course, has a large negative impact on emulation speed since very few assumptions
about the host system can be made.

There is also a number of commercial emulators in existence. Virtual PC is
available for Apple MacOS and Microsoft Windows (Virtual PC 2004). Simics is an
emulator similar to Bochs in functionality as it is also intended as a tool for system
developers, with the difference being that it can emulate several architectures and not
just IA32 (Magnusson 2004). There is also an emulator, known as VMWare, which
only emulates the system hardware and not the CPU (VMWare 2004), i.e., instructions
get passed to the real CPU in the computer instead of being emulated. This has several
advantages, one being that there is no need to develop a CPU emulation core. Another
advantage is that bugs and undocumented features will be handled correctly, not to
forget the fact that instructions are executed at a one-to-one ratio. VMWare only runs
on IA32 which is the biggest disadvantage of this kind of emulation. It exists for
both Microsoft Windows and GNU/Linux. Two benchmarks were recently conducted
comparing the performance of VMWare to Virtual PC running Microsoft Windows
98SE and Microsoft Windows XP (Pietro 2004a, Pietro 2004b). The test results
acquired during the first benchmark show that integer and floating-point calculations
run at about 90% of the native system’s speed. As for memory addressing, VMWare
is almost as fast as the host, since it is using the host memory directly, whereas Virtual
PC is utilising about 60% of the host’s capacity. The second benchmark performed by
Pietro (2004a) shows a significant increase in memory addressing performance over
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1 INTRODUCTION

VMWare by Virtual PC when using Microsoft Windows XP. Recent versions of Virtual
PC are bundled with Windows XP which seems to indicate that it has been optimised
for running this operating system.

This report describe a set of scripting languages that are intended to aid the
development of JIT-compiling emulators. JIT stands for just-in-time and refers to the
method of deferring translation of binary code until it is about to be executed. A simple
IA32 emulator for PowerPC is developed using these scripting languages, and the
performance of this emulator is evaluated and compared to some of the existing IA32
emulators. Other emulators for other systems can be developed using these languages
as well, but this is not evaluated in this report.

The DAISY project by IBM use a similar approach to constructing emulators as the
one described in this report (Ebcioglu & Altman 1996). They have chosen to use VLIW
as an intermediate representation. VLIW is an abbreviation for “Very Long Instruction
Word”, which is a low-level specification architecture, similar to the microcode system
used internally by Intel’s processors, that can be used to construct new machine-code
instructions not present in the original design (Pountain 2003). DAISY supports run-
time translation of VLIW into a native instruction set in case the target architecture does
not support VLIW. One problem with the VLIW approach is that since the specification
language is on a lower level than assembly language it has a higher complexity level.
Another problem is that the run-time translation approach used by DAISY when not
running on VLIW hardware adds overhead to the emulator which reduces performance.
The primary focus of the DAISY project is to build a system that will run on top of a
processor. All applications including the operating system will run on DAISY. This
report will present a method better suited to run as a user-level application of which
the focus is on the hardware specification language. Several problems coexist between
DAISY and this project, such as how to handle self-modifying code.

LLVM (Low Level Virtual Machine) is a research project that has created a compiler
framework which produces binaries that are executed inside a virtual machine, which
is similar to emulation in the sense that the virtual machine is an “invented” hardware
which the binaries are executed on (Lattner & Adve 2004). This project has engineered
a virtual instruction-set architecture (see section 5.2) that is designed to make it easier
to optimise during run-time. Although LLVM and this project has separate goals, some
of the techniques presented by the LLVM project are used here. LLVM define a set of
virtual instructions known as LLVA of which a subset have been adopted here. The
main reason for choosing LLVA is that it has already been tested on several hardware
architectures by the LLVM project, these include Intel IA32 and Sun Sparc which
represent the two most common classes of processors, CISC and RISC (these concepts
are described in section 5.1).
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2 Background

The purpose of this chapter is to introduce the reader to a number of important concepts
used throughout the report.

2.1 Emulation

The purpose of emulation is to enable someone to run applications on another platform
than it was initially designed for. The use most commonly associated with emulation is
to make it possible to play computer games from game consoles on a standard desktop
computer. In an industrial setting, emulation might be used to test out an embedded
system without running it on the actual hardware. This has the advantage of giving the
developer the possibility to stop the emulation at any given time and inspect the current
system state at a low level, right down to the processor status registers. Another well
known example of emulation, even though it is usually not thought of as such, is the
execution of Java or .NET byte-code. Java and .NET are both based on instruction sets
that have been developed to be general enough that they can easily be emulated on any
given system. This is what is known as byte-code as opposed to binary code which
only runs on the specific hardware it was intended for. The runtime system emulates
this invented instruction set when executing a Java or .NET byte-code file.

The difference between simulating a system and emulating it is defined by
Fayzullin (2000) as follows:

“Emulation is an attempt to imitate the internal design of a device.
Simulation is an attempt to imitate functions of a device. For example, a
program imitating the Pacman arcade hardware and running real Pacman
ROM on it is an emulator. A Pacman game written for your computer but
using graphics similar to the real arcade is a simulator.”

ROM stands for Read-Only Memory, and, in the case of emulators, a ROM is
usually a memory dump of code that has been burnt into an integrated circuit during
manufacturing. Video games sold on cartridges are stored this way.

Four methods of emulation are identified by Sharp (2001). These are described
here, divided into three groups.

2.1.1 Interpretive

An interpretive emulator reads one instruction at a time from the binary to be emulated
and translates it into something that can be run natively. This is the most widely used
technique because it is the most simple method to implement. However, it provides the
slowest emulation speed. This is how Bochs works (Lawton 2004).

2.1.2 Threaded code

Instead of interpreting instructions one by one and calling procedures to handle each
instruction separately, a method known as threaded code can be used. A block of
instructions to be emulated is reconstructed in memory by a block of function pointers
to procedures emulating each individual instruction. Each translated block may be
kept in a cache, so that the second time it is executed it does not have to be translated
over again. Sharp (2001) identifies one problem when using threaded code in a system
emulator which is that there is no convenient way to handle self-modifying code. If
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this case is to be handled, an emulator based on threaded code would also need a fall-
back to one of the other methods presented here. Threaded code is used by QEMU
(Bellard 2004).

2.1.3 Recompiling

There are two forms of recompilation used, one is dynamic and the other is static.
Dynamic recompilation is also referred to as just-in-time (JIT) compilation. It
recompiles the instructions of the emulated system into instructions that can be
executed by the native system in real-time. This makes it possible to apply low-level
optimisations to blocks of code while the system is running. A JIT-compiler only
compiles a block of code the first time it is executed and stores the compiled block
in memory. Subsequent calls to an already compiled block of code use the compiled
block from memory instead of recompiling it again (Austin & Pawlan 1999).

Static recompilation works like dynamic recompilation but instead of doing the
compilation during runtime the binary to be emulated is converted only once, before
being executed. Emulation of this kind is used by compilers that generate native binary
code from Java byte-code for instance. This technique is less common among system
emulators as it would be a very complex operation to statically compile an entire
operating system and the applications to be run on it.

Java has a standard for how to open windows and draw graphics etc, as where
an entire hardware system usually only provides a low-level interface to the graphics
hardware and leaves the rest to the operating system. However, if the emulator is
limited to running applications from just one operating system, such as Microsoft
Windows, it would be possible to use static recompilation provided that calls to the
Windows API are translated into calls for the native platform API.

Recompilation is the most complicated method of emulation to implement as
it does not just require knowledge of the system to be emulated but also in-depth
knowledge of the host system. The advantage is that it can run emulated binaries
much faster than an interpretive or threaded code emulator would. Virtual PC is using
dynamic recompilation (Virtual PC 2004).

2.2 Trampolines

Trampolines are needed when compiling a block of code which is meant to be
executable. A small block of initialisation instructions, known as a prologue, and
finalisation instructions, known as an epilogue, have to be added to the block. There
are a couple of things that need to be handled by the trampoline and they vary between
different platforms. There is however one thing they all have in common and that
is setting up a local stack space. The main purpose of the stack in the dynamically
compiled blocks of code is to act as a kind of swap-space for local registers, for
instance, when using registers as temporary variables (Sanseri 2000, Aho, Sethi &
Ullman 1986). The trampoline also controls passing data to and from generated code
blocks by function arguments and return values.

The name trampoline comes from the fact that it is used as a kind of springboard
by the emulator in order to jump to a block of recompiled code. This can be done
in a number of ways. When implementing an emulator in C, one convenient way
of handling it is to set up a function pointer and have it point to whatever block
that is to be executed next. By using a function pointer the C-compiler, when
compiling the emulator, will add the instructions necessary for storing and restoring all
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registers during a jump. If this is not done the emulator will most likely stop working
when returning from the trampoline call unless the trampoline handles this as well
(Sanseri 2000, Sharp 2001).

2.3 Address translation

In modern computer systems it is rare to find a system which only runs one process at a
time. Usually the notion of several processes running simultaneously exist, commonly
referred to as multitasking. When more than one process is running, the question of
security arises. A buggy process might unintentionally try to access regions of memory
which does not belong to it, or a malicious process might try to modify the behaviour
of another process. To protect processes from each other the concept of virtual memory
was invented. Virtual memory provides an abstraction for the processes executing on
the CPU (Tanenbaum 2001).

Address translation is the term used to describe the method of providing the link
between physical and virtual memory. These memory translations are carried out by
the memory management unit, MMU, which is usually part of the processor or provided
as a separate hardware circuit in the system.

2.4 Runtime optimisations

One method for doing runtime optimisations, which is also used by standard
compilers, is peephole optimisation. Peephole optimisation provide simple low-level
optimisations which are usually architecture-specific. It is implemented as a sliding
window that analyses small blocks of assembler instructions looking for possible
modifications to optimise the block.

Fischer & LeBlanc (1991) mentions elimination of multiplications by 1 and
additions of 0, or replacing a sequence of instructions by a single instruction with
the same effect as possible peephole optimisations. They state that a common
implementation of a peephole optimiser is carried out by providing a hashed table of
common patterns and their respective optimisations. Since the number of patterns is
very large it is important that only common patterns are identified and stored to reduce
the cost in time of the algorithm.

An interesting project is LLVM (2004), the Low Level Virtual Machine. LLVM
optimises applications during compile-time, link-time, run-time, and in idle time
between runs. A low-level RISC-like instruction set has been developed and
applications that want to make use of LLVM must be compiled with a modified
version of GCC (the GNU C-compiler) that can generate machine-code based on this
instruction set. This means that applications must be specifically compiled to use
LLVM and they cannot be run standalone. It is, however, possible to recompile LLVM-
binaries into native binaries. Lattner & Adve (2004) outlines how this system works.

2.5 SIMD - Single Instruction, Multiple Data

SIMD is a method used to process multiple data entries in one operation. It is
commonly used to carry out simple arithmetic or logical operations on vectors of data
points; such as adding four floating point values to four other floating point values (IA-
32 Intel Architecture Software Developer’s Manual 2001b). Multimedia applications
or scientific calculations provide the most frequent use of these kinds of instructions.
As good vectorisation of data requires good planning and in-depth knowledge to be
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implemented into software, it is only used in a handful of applications, even though it
can provide a considerable increase in performance.

SIMD instructions were first used in the 1970’s in vector supercomputers. In
1994, Hewlett-Packard introduced SIMD to the general-purpose CPU market by
implementing the MAX instruction set into its PA-RISC processor. Today it is found
in processors such as the Motorola PowerPC, Intel IA32, and Sun Sparc to name a few
(Espasa, Valero & Smith 1998, Wikipedia 2004).
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3 Problem description

The importance of being able to efficiently execute binary code from other architectures
is identified by Altman, Kaeli & Sheffer (2000). They state that an important factor
when introducing a new platform is to aid existing software developers on other
platforms to port their software to the new platform. Many developers find this
task difficult and time consuming. By providing emulation, existing software can be
run without modification. This eliminates the fear of loosing an investment for the
developer if the platform fails as it will still be running on its initial target platform.

Another important aspect of having an efficient emulator is because of its use in
byte-code based software platforms such as Java and .NET. Having a method that
can easily be re-adapted to run different kinds of binary- or byte-code efficiently
on different architectures will make it easier to write efficient emulators and virtual
machines (i.e., for Java). This, in turn, is valuable to researchers experimenting
with this kind of technology, for instance when working on new ways of optimising
existing binary translators. The reason being that focus is shifted away from the actual
implementation of the CPU-core as it is generated from the scripts, and therefore it is
easier to modify the entire system by either changing the script or by modifying the
parser so that it can generate the code that is needed, such as symbols for a debugger.

3.1 Aim and objectives

The aim of this paper is to evaluate a method for providing an efficient and portable
emulator for binary code by using a set of scripting languages. In order to accomplish
this task (i) the scripting languages that are used to define how the source architecture
can be mapped to the target architecture are designed. This consists of a source
definition language, called Bricoleur, a virtual instruction set, Fanà, and a target
definition language. A basic emulator architecture is defined, which can be used
together with the designed languages in order to produce a working CPU emulator.
(ii) A simple IA32 emulator for PowerPC is developed using the scripting languages,
and a small subset of the proposed emulator architecture. (iii) The performance of this
emulator is measured and compared to other, existing, emulators using a benchmark
in an effort to show that the system proposed in this report can provide competitive
performance. Due to the limitations of the benchmark used the results might not reflect
the performance of a complete emulator, as only the throughput of basic instruction is
measured. Another limitation of this system is that it does not handle virtual memory,
paging of memory, and memory protection. These features are required in order to
emulate modern processors accurately.

3.2 Requirements

List of the two most important requirements along with compliance criteria.

1. CPU-core performance
The CPU-core produced from the output of the scripts must perform better
(execute code faster) than a CPU-core using only an interpretive- or threaded
code-based core. It is however not required to outperform a CPU-core written
totally from scratch that has been hard-coded for one specific source and target
platform.
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2. Expressiveness of scripting languages
The scripting languages must be expressive enough so that all source and target
architectures can be described by them. Yet, they must be simple enough so that
the amount of work required to write a script for a source and target platform
does not exceed the amount of work it would take to hard-code the solution from
scratch for a specific source and target. This requirement is difficult to verify
without a complete system implementation, and because of that, is not validated
in this report.

It must be possible to map every source instruction to a set of target instructions
without losing any of the effects the source instruction would have if run on the
native hardware. As is shown in section 6 this requirement is not met by the
system proposed here.

8
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4 Architecture

Proposed here is an architecture which intends to reduce the complexity of creating a
JIT-compiler for emulators or virtual machines. One of the problems when creating a
JIT-compiler is that they are difficult to port to other platforms since the implementation
depends on being able to create binary code for the target platform. In order to reduce
this problem, a virtual instruction set architecture is used to separate the source and
target code in a way that is platform independent. When creating a dynamically
recompiling emulator, large tables of data which describes how to decode and translate
binary code has to be written. These tables make up the largest portion of what is known
as the CPU translation core, or CPU-core for short. To avoid having to do repetitive
work when designing these tables, scripting languages are defined which are used to
provide enough information about the source and target architecture that a computer
program can generate these tables automatically.

In order to achieve this, the system proposed by this report consists of a target
definition language which is used to define how the target architecture behaves, as well
as a source definition language with the purpose of defining the emulated system. The
target is the system for which the CPU-core should generate binary code and the source
system is the one that is to be emulated. The idea is to be able to combine the source
definition of an architecture with a target definition of another architecture in order to
produce the CPU-core for an emulator.

The process described is not intended to create a complete emulator, only a CPU-
core which can then be used to build an emulator. Therefore the system as described
here is not designed to run as fast as possible, but rather to present a method that can be
adapted by someone who is familiar with the C programming language and assembler.
Projects such as DAISY use complex definition languages that are not well documented
publicly, and therefore require the user to study the project source code in order to be
able to use it.

Sharp (2001) lists the following advantages of using an intermediate language (he
refers to it as intermediate code). Advantages that do not apply to the design chosen
for this project have been left out.

• The native code generator can be re-targeted to support other target platforms
without affecting the implementation of the source architecture.

• Complex instructions that consists of multiple steps (or stages) can be
decomposed into a set of simpler, virtual, instructions.

• It is easier to implement optimisations based on the intermediate code since it
breaks down complex instructions into smaller units and therefore can provide
more meta-data than the original instruction.

He also mentions that debugging is easier which also applies for this project, although
in a different sense since he makes the assumption that the system will always use
IA32 as the target architecture. Because of the intermediate language, a debugger that
is portable across supported target architectures can be constructed since errors can
be mapped to the V-ISA, and are therefore not dependent on the target architecture
implementation.
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4.1 A basic JIT-based emulator architecture

The design proposed here is based on the designs described by Sharp (2001) and Traut
(1997).

A basic dynamically compiling emulator consists of four components. The first
component in the pipeline is the dispatcher. The purpose of the dispatcher is to dispatch
emulator execution to the appropriate handler. Handlers may include the instruction
decoder, a trap or interrupt handler, or an emulator for a specific hardware in the
emulated (source) system other than the CPU.

The second component is the compiler which is called by the dispatcher whenever
it reaches an execution point which has not yet been compiled. The compiler parses
the block of source binary code that is to be executed and compiles it into target binary
code. The process involved in this step is further elaborated on in section 4.2.

A translation cache is used to store blocks after they have been compiled.
Succeeding calls made to an already compiled block of code are simply rerouted to
the translation cache, thereby bypassing the compiler. Each block carries a counter,
which is keeping track of the number of calls made to that block. When the number
of calls exceeds a predetermined threshold an optimiser is invoked on the code which
will try to make it run faster. The reason why not all code that is compiled is optimised
is because of the principle of locality, which states that only about 10% of the code is
executed more than once (Tanenbaum 2001, Sharp 2001).

The downside to using a translation cache is that if the application being executed
modifies its own code the emulator have to somehow detect the modification and
invalidate that block in the cache. Detecting modifications of already compiled code is
a complex problem not covered in this report.

The last component in this emulator architecture is the optimiser. The purpose
of the optimiser is to make decisions based on predetermined rules that define how
target instructions can be reordered or pruned in order to increase execution speed.
For instance, the IA32 only require one instruction to load a 32-bit value into a
register whereas the PowerPC requires two instructions. The compiler always tries
to find the most exact mapping between the source and target in order to maintain
emulation precision, and will therefore use 32-bit load instructions whenever the source
architecture does. A simple peephole optimiser can be constructed that replaces the 32-
bit load instructions on the PowerPC with their 16-bit equivalents.

Figure 1 is an activity diagram depicting the process beginning with looking up the
next address in the program counter and ending in executing a block of code. Only the
architecture-independent parts of the dispatchers work are shown in this diagram.

4.2 The translation process

One of the tasks that is to be taken care of during translation is to extract instruction
arguments from the source binary code. In the translation table depicted in figure 2, the
type called “instruction argument” specifies the kind of argument and how many bits it
consists of. Arguments are dependent on the source architecture and are created when
parsing a Bricoleur script, see section 5.4. One pre-defined argument class exists, that is
the “ARG IMMEDIATE” type, which indicates that an immediate data value follows.

When translating a block of binary code a decision has to be made about when to
stop translating. The constructed block can not be too short since then the compiler
will have to be called more often and emulation might be slow. The same thing will
happen if the block is too long, since time also need to be spent emulating peripheral
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Figure 1: Activity diagram showing the emulation process related to the CPU-core. It
starts with the dispatcher fetching the next address to be executed. If the block of code
located at that address has not yet been compiled the compiler is invoked, otherwise the
code is loaded from the translation cache, and executed. If the compiler was invoked it
will translate the source instructions to native binary code and store it in the translation
cache. If the code block has been executed from the cache a certain amount of times
the optimiser is invoked on it. After the block of code is ready to be executed the
dispatcher transfers control to it, and when execution is done the process is repeated
for the next address. 11
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hardware present in the source architecture, such as a graphics controller, network card
etc. The emulated graphics hardware, for instance, has to be processed at least every
frame in order to appear smooth.

Cmelik & Keppel (1994) identifies a number of breakpoints. These are
instructions that transfer control outside the current block, software traps, and memory
synchronisation instructions. Sharp (2001) mentions that a small forward branch
outside the current block might be part of a loop and therefore should be included
in the translated block to avoid performance loss. The break condition has to be stored
and returned to the dispatcher so that it knows what to do next. If there is no obvious
break-point in the binary block that is being translated, the size of the translation cache
sets the upper bound of how many instructions to translate.

4.2.1 Translation table

An important component in an emulator is the CPU-core. The purpose of the CPU-
core is to decompose a block of binary code in the source architecture’s format, and to
emulate their functionality as accurately as possible.

One way of implementing a CPU-core in a dynamically recompiling system is to
provide a table indexed on the source opcodes, where each entry holds the information
necessary in order to emulate that specific instruction on the target system, such as the
binary translation to the target platform and how to read possible arguments. This is
known as a translation table. An example of a translation table is depicted in figure 2,
which is the table structure that have been devised for the emulator used to evaluate the
method described in this report.

Figure 2: Example of a translation from source to target instruction set using a
translation table. Source opcodes are used as the primary key of table entries. Each
entry holds information about the opcodes arguments, and how to parse them, as well
as a virtual method (assemble) which, when called, will produce the target opcodes.

Each entry in the table stores information about the instruction at that entry. This

12
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includes a string containing the name of the source instruction, which is useful for
debugging purposes. The number of arguments and an array of “instruction argument”
type store meta-data on the instruction arguments, so that the emulator knows how to
parse these from the binary code. Every entry has a virtual method called “assemble”
which is called to emit the target platform instructions used to emulate the specific
instructions. This method requires a pointer to the current position in the instruction
cache to where it should write its data. Any parsed arguments must also be sent to
assemble. An example of the assemble method for the IA32 instruction “add register,
immediate” can be found in section 5.5. This process is detailed in section 4.2, and
a sample implementation in C++ of the various data-types needed to construct the
translation table is depicted in table 3.

/* Argument type */
typedef enum arg e {

ARG NONE, /* No argument */
ARG IMMEDIATE, /* Immediate value */
ARG EXTERN, /* External function call */

} arg t;

/* Argument meta-data */
typedef struct inst arg s {

uint8 t len; /* Argument size in bits */ 10
arg t type; /* Argument type */
/* The Argument data */
union {

int32 t imm32;
int16 t imm16;
int8 t imm8;

};
/* If type == ARG EXTERN use the appropriate function */
union {

void (*func8)(int8 t); 20
void (*func16)(int16 t);
void (*func32)(int32 t);

};
} inst arg t;

/* Translation table entry type */
typedef struct entry s {

const char *mnemonic; /* Source instruction mnemonic */
uint8 t num args; /* Number of arguments */
inst arg t *args; /* Array of pointers to argument data */ 30

} entry t;

/* Translation table type */
typedef map<uint32 t, entry t *> ttable t;

Figure 3: Example of the data-types required to construct a translation table in C++.

By placing the table into an array, source instructions can be identified in constant
time. The intention is to be able to construct a block of instructions that can be executed
on the target platform as quickly as possible.

13



5 CPU-CORE GENERATION

5 CPU-core generation

In order to make it easier to create a portable CPU-core, a script language has been
created. The language is divided into three parts. Bricoleur is the language whose
purpose is to define how the source architecture is designed. Each instruction defined in
Bricoleur contains a functional description made in the language called Fanà. The third
part is the target mapping language which maps Fanà instructions to native instructions
of the target architecture.

The CPU-core is constructed from a Bricoleur script and a target mapping by the
process presented in figure 4.

Figure 4: Activity diagram of the process by which a CPU-core is generated from
a Bricoleur script and a target architecture mapping script. Source and target scripts
can be parsed independently of each other after which they are combined in order to
produce a translation table, which can be used by an emulator.

5.1 Microprocessor architecture types

While developing these scripting languages both CISC and RISC architectures were
evaluated. Each instruction on CISC architectures consists of one or several byte
blocks that identify the instruction, followed by none or several byte blocks for
each instruction argument (SY6500/MCS6500 Microcomputer Family Programming
Manual 1976, IA-32 Intel Architecture Software Developer’s Manual 2001c, Wikipedia
2004). The binary value that makes up the instruction is known as an opcode. RISC
architectures on the other hand have a constant opcode size regardless of the number
of arguments, normally four bytes in length. The instruction is identified by a constant
number of bits starting from the most significant bit of the instruction. Arguments
are placed in bit-fields that are encoded into the four byte opcode. For this reason
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it is not possible to load immediate values that are 32-bits or larger using only
one instruction, which is possible on CISC architectures (MIPS32 Architecture For
Programmers 2003, Programming Environments Manual for 32-Bit Implementations
of the PowerPC Architecture 2001, Wikipedia 2004).

5.2 Virtual instruction set architecture

A virtual instruction set architecture, or V-ISA, defines a set of low-level instructions
that are not used by any existing hardware design. These instructions are typically
similar to the assembler instructions found in todays microprocessors. Both Java and
Microsoft’s .NET define their own V-ISAs and when an application is compiled for
one of these systems it is translated into the machine code that the respective V-ISA
has defined (Adve, Lattner, Brukman, Shukla & Gaeke 2003).

The low level virtual machine project, LLVM, has defined a V-ISA called LLVA
(Lattner 2004). The purpose of LLVM is to provide an architecture specifically designed
for optimisation. LLVM is a compiler framework that compile high-level languages into
LLVA instructions. LLVA is designed with the intention of being executable on any
modern architecture, and it has been tested on Intel IA32 and Sun Sparc. The project
has also taken into account the difficulties of handling exceptions and self-modifying
code and has drawn from the experience accumulated by other projects conducted in
the area (Lattner & Adve 2004, Adve et al. 2003).

Here we use a subset of the instruction set defined by LLVA as the glue between the
source and target definitions. This works as an abstraction layer in order to increase
portability by reducing the number of mappings that have to be written. If a new target
platform is to be added, the developer would only have to create mappings between
the target platform’s instruction set and the virtual instruction set, otherwise every
instruction of every source definition would have to modified to accommodate the new
platform. This reduces the number of required mappings from n∗ (n−1) to 2n (where
n equals the number of target platforms).

The downside to using an architecturally impartial virtual instruction set is that
it does not accommodate for making optimisations to the target code based on the
source architecture. Finding a close mapping from the source to target architecture
instruction set for complex instructions become more difficult. For instance, when
SIMD instructions are broken into virtual instructions that do not contain vector
instructions it is difficult to map these back into vector instructions on the target side.

5.3 Fanà - a virtual instruction set

The Sufis call this state fanà, the annihilation of the individual
selfhood. In fanà the characteristics of the little self dissolve so that the
big Self can show through.
- Nachmanovitch (1990, p. 52)

Fanà is a a virtual instruction set created as part of this project. It acts as an
intermediate code to make it easier to add new target architectures to the system
by specifying a common interface between the source and target definitions. Fanà
is a stripped down version of LLVA (see section 5.2). Since LLVA is designed to
be generated by compiling high-level languages like C and C++ it contains some
constructs that are not useful when generating code from binary machine language.
One example is the “vaarg” instruction which is used for handling variadic procedure
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arguments. LLVA is designed to be easy to optimise and therefore makes a good
candidate as a V-ISA for this project. Since LLVA have all the necessary functions,
have been tested on both CISC and RISC architectures, and is similar to IA32
instructions which is the most widely used desktop architecture at this time, and
is therefore easy to learn for the majority of computer programmers, other virtual
instruction sets have not been evaluated for this system.

Fanà is a RISC-like language based on a small set of instructions. The context-free
grammar for Fanà can be found in section A.1. Another option would have been to use
a CISC-like language based on a large number of instructions. The advantage of having
a large number of instructions is that complex instructions, such as the FCOS (cosine)
instruction on IA32, are easier to map between the source and target if they both have
a compatible implementation. On the negative side is the fact that it is difficult to
predefine what instructions to include in the language. One solution would be to allow
arbitrary introduction of new instructions but this method would make it difficult to
construct a good optimiser. Leone & Lee (1994) is using instruction block templates
to speed up code generation in their project. Templates could be introduced into Fanà
as well to define complex instructions, and at the same time allow the target definition
to provide a direct mapping from a template to a single native instruction that produce
the same state, if one exists.

5.3.1 Description

The type specifiers available in Fanà are defined by the Bricoleur script to which
the current script belong. There are however three predefined types that are always
available. They are, float, which is a 32-bit floating point type, double, which is a
64-bit floating point type, and label which is used to set a label at the destination of a
branch instruction.

Instructions are carried out from right to left, which means that when an instruction
has a target argument it is always the one furthest to the left. For instance, “store uint32
* register reg3, reg5” would store the contents of reg5 at the memory location stored in
reg3. The first argument of the store instruction must be of pointer type. “sub uint32
reg0, reg1, reg2” should be read as reg0 = reg1− reg2.

“shl” and “shr” shifts the second argument the number of bits specified by the third
argument either left or right, zeros are placed in the new positions. “rol” and “ror”
works like shl and shr except that the bits are wrapped and no zeros are added.

Branch operations are either relative or absolute. An absolute branch is of pointer
type and cannot be negative, unlike the relative branch. “goto” is an unconditional
branch which is always carried out, but there are also a number of conditional
branches. A conditional branch is dependent on the conditional flags set automatically
by a previously executed instruction or by implicitly using “cmp” before the branch
instruction. “gotolt” branches if the first argument of the comparison is less than the
second, “gotolte” on less than or equal, “gotoeq” on equal, “gotogte” on greater than
or equal, and “gotogt” on greater than.

It is possible to declare temporary variables in a block of Fanà if that is necessary
to express the source architecture instruction. Temporary variables should be declared
as late as possible to make it easier for a dynamic register allocator to decide when
to swap a register to the stack (if it has to). Temporaries are translated into calls to
the register allocation system and therefore they are not mapped by the target mapping
language to any target specific declarations.
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Example of a loop that iterates 100 times, written in Fanà:

/* Store the value 100 in r1 */
mov sint32 gpu.r1, 100;
/* Set a branch label */
label loop;
/* Subtract 1 from r1 */
sub sint32 gpu.r1, gpu.r1, 1;
/* Compare r1 to 0 */
cmp gpu.r1, 0;
/* If comparison resulted in r1 being greater than 0,
* branch to label loop */
gotogt label loop;

5.4 Bricoleur - the source definition language

There is a French word, bricolage, which means making do with the
material at hand: a bricoleur is a kind of jack-of-all-trades or handyman
who can fix anything.
- Nachmanovitch (1990, p. 86).

Bricoleur is the source architecture definition language. The purpose of Bricoleur
is to describe the source CPU-architecture so that a CPU-core can be automatically
generated in C-code by combining the Bricoleur definition with a target definition.
The only things the developer has to manually add are handlers for software interrupts
and memory management, in case the system requires more than linear memory access.
The context-free grammar can be found in section A.2.

5.4.1 Details

A Bricoleur script can consist of up to four different sections. The first section
is the “flags” section where CPU-flags are defined. After that follows the “types”
section where new type-specifiers can be defined. All registers available in the source
architecture are defined in the “registers” section. The fourth and last section is the
“opcodes” section where instructions are defined. The contents of each section are
enclosed by braces like in the C programming language (“{”, “}”).

The “flags” section contains a list of identifiers which represent a 1-bit flag, such
as an arithmetic overflow. Each flag is separated by a semicolon. Flags can be used by
instructions to register certain conditions or to carry out conditional operations. The
flag section has to be defined first in a bricoleur script.

The “types” section has to come before the opcode definitions so that type-names
can be evaluated by the parser. A new type is defined by first giving it an identifier
followed by the size in bits and an optional “signed” keyword, which indicates that
the type is signed instead of unsigned (the default). Every new type declaration must
end with a semicolon. Types that are declared in this section can only be used to
describe integer values. For that reason the predefined types “float” and “double” exist,
float is a 32-bit floating point value, and double is a 64-bit floating point value (which
corresponds to the float and double in Fanà). In order to be able to handle complex
argument types that cannot be defined using bricoleur, such as the IA32 ModR/M
argument (see section C.1.1), it is also possible to call an external C-function. These
kinds of argument types are defined by using the keyword “extern” followed by the
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name of the external function and argument type. The argument is extracted from the
binary data and passed to the specified function as a single argument.

After the type specifier the registers available on the source platform are defined in
the “registers” section. First of all a group-name has to be defined after which a block
enclosed by braces contains the register definitions. A register is defined by entering
its name followed by a type specifier. If the register can be divided into sub registers it
is possible to start a new block with braces and define any sub registers, an example of
this is available in section B.1. Every register definition has to be ended by a semicolon.
Registers are referenced either by their group name or by “<group>.<register>”.

The final and required section is the “opcodes” section where the source
architecture instructions are defined. A new instruction is defined by simply entering
the name of the instruction followed by a new section. Within this section each new
opcode is defined by entering the keyword “op” followed by either a constant or a
ranged constant. A ranged constant is on the form “(value, bitsize)” where value is
the actual opcode value and bitsize is the number of bits it occupies of the opcode
field. If the opcode has arguments, the definition is followed by yet another section
where each argument type is defined using either a type specifier or another ranged
constant. If an argument is not parsed from the binary code it is prepended by the
keyword “implied”. An example of an implied argument can be found in section
B.1. Each opcode definition inside an instruction section must have the same number
of arguments. If different versions of the same opcode exist that have a different
number of arguments a new instruction block must be created, therefore it is possible
to have multiple instruction blocks that are identified by the same instruction name.
The opcode definitions are followed by an optional flags definition which is a list of
flags which are modified by the operation. An appropriate method to properly handle
condition-flags have not been found, and consequently, it is currently not possible to
emulate code which contains instructions which depend on condition-flags. The final
section is the “func”-block which is a list of Fanà instructions that define how the
instruction is to be emulated. Arguments are accessible as “%<number>”, where
<number> is the position of the argument in the definition list, starting with 1.

The language permits defining the same instruction multiple times. The reason
behind this design is that there exists architectures which allow the same instruction
to have a different number of arguments depending on what the programmer want to
achieve. The Fanà definition depends on the fact that every opcode definition within
that instruction-block have the same number of arguments. For this reason it would not
be possible to define all versions of an instruction which allows a varying number of
arguments inside one instruction definition.

Example of a simple CPU-architecture consisting of two 8-bit registers and an add
instruction:

types {
uint8 8; /* unsigned 8-bit type */

}

registers {
gpu {

/* registers A and B are of uint8 type */
A uint8;
B uint8;

}

18



5.5 Target mapping 5 CPU-CORE GENERATION

}

opcodes {
add {
/* Opcode 1 means that the add is carried out on the A register
* Opcode 2 means the B register */

op 0x1 { implied register gpu.A, uint8 };
op 0x2 { implied register gpu.B, uint8 };
func {

/* Add the first argument to the second and
* store the result in the first argument */

add uint8 %1, %1, %2;
};

}
}

5.5 Target mapping

The target mapping from Fanà is constructed using a definition language that resembles
Bricoleur but which is much simpler in design. Section A.3 holds the context-sensitive
grammar of the target mapping language. Types and registers are defined the same way
as in Bricoleur (see section 5.4), but there are no global “flags” or “opcodes” sections.
The target mapping contains a new section called “translators” where Fanà instructions
are mapped to small sections of code that translate them into native binary code.

5.5.1 Usage

In the “translators” section instructions are defined by starting a new section identified
by the Fanà instruction name. The instruction section contains a nested list of
instruction arguments followed by a code block. The code-block should contain C-
code which generate the necessary target binary code to emulate the instruction. The
instruction pointer is accessed as “p” and arguments are accessed the same way as in
Fanà, using %<number>. Each block is then translated into C-functions which are
called by the emulator’s compiler to generate the target binary code to emulate each
instruction. An example of such a C-function can be found in figure 5. Each code
block can contain an optional flags section which define which flags are modified.
These flags must conform to the naming scheme defined by the source architecture
bricoleur script.

Example of what the translation mapping for the result presented in figure 5 looks
like (GENOP3 and EMIT32 are specific to PowerPC code generation and are explained
in section B.2):

types {
sint32 32 signed; /* 32-bit signed type */

}

translators {
add {

register gpu {
sint32 {
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EMIT32(p, GENOP3(ADDIS, %1, %1, (int16_t) (%2 >> 16)));
EMIT32(p, GENOP3(ADDI, %1, %1, (int16_t) (imm & 0xffff)));

}
}

}
}

inline uint8 t *emit add r i32(uint8 t *p, ppc gpr t reg, int32 t imm) { emit add r i32
/* add the higher 16 bits of the immediate value to reg */
EMIT32(p, GENOP3(ADDIS, reg, reg, (int16 t) (imm >> 16)));
/* add the lower 16 bits of the immediate value to reg */
EMIT32(p, GENOP3(ADDI, reg, reg, (int16 t) (imm & 0xffff)));

/**
* Set the AF, SF and PF flags, the remaining flags can be
* mapped to existing PowerPC flags set by addis/addi.
*/ 10

p = emit mov r i32(p, gpr r11, imm);
p = emit set af(p, reg, gpr r11);
p = emit set sf(p, reg, 32);
p = emit set pf(p, reg);

/* Return the next available address in the code block */
return p;

}

Figure 5: The assemble method of the IA32 instruction “add register, immediate” for
PowerPC. The 32-bit immediate value has to be broken into two 16-bit parts since
RISC architectures do not support 32-bit immediate values. The handling of flags have
been added manually after code generation.
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6 Results & analysis

A benchmark is created in order to analyse emulation performance. The benchmark
consists of a function that calculates prime numbers. The reason this benchmark
have been chosen is that it will only measure pure instruction throughput as it is a
mathematical function that does not require to store or retrieve information from an
external source, and therefore will not use functionality that is currently unsupported
such as memory management. This section will also show why the second requirement
is not met by the system published in this report.

6.1 Performance benchmark

This benchmark consists of a very simple algorithm for finding all prime numbers
between 3 and n (in this case n = 10,000). This algorithm is simple to implement and
requires enough processing power to make it measurable. There is also no need for
memory access because it is a brute force algorithm which does not use information
about already found primes.

C-code of algorithm:

for (i = 3; i < 10000; i++) {
prime = 1;
for (j = 2; j < i; j++) {

if (!(i % j)) {
prime = 0;

}
}

}

When compiled with GCC, optimised for minimum size (to make it easier to
implement the emulator as it does not require support for as many instructions), it
translates into the instructions described in table 1. Code related to condition flags is
listed in table 2. On the PowerPC, register r20 is statically mapped to EAX on the
IA32, r22 to EDX, r24 to ESP, and r25 to EBP. Branches in the PowerPC code are
relative, but in the IA32 code the absolute address has been used in this example to
make it easier to see what the destination of the jump is.

21



6.1 Performance benchmark 6 RESULTS & ANALYSIS

Table 1: IA32 to Fanà to PowerPC instruction mapping for the
benchmark

Address IA32 Fanà PowerPC
0x1 mov edx, 0x3 mov sint32 register gpu.edx, 0x3 lis r22, 0x0

ori r22, r22, 0x3
0x6 mov ebp, esp mov sint32 register gpu.ebp, register

gpu.esp
or r25, r24, r24

0x8 mov eax, 0x2 mov sint32 register gpu.eax, 0x2 lis r20, 0x0
ori r20, r20, 0x2

0xd cmp eax, edx cmp gpu.eax, gpu.edx subfco. r22, r20
Test and set parity flag
Test and set adjust flag
Test and set sign flag

0xf jge 0x16 gotogte 0x16 bge 12
0x11 inc eax add sint32 gpu.eax, gpu.eax, 1 li r11, 1

addco. r20, r20, r11
Test and set parity flag
Test and set adjust flag
Test and set sign flag

0x12 cmp eax, edx cmp gpu.eax, gpu.edx subfco. r22, r20
Test and set parity flag
Test and set adjust flag
Test and set sign flag

0x14 jl 0x11 gotolt 0x11 blt -12
0x16 inc edx add sint32 gpu.edx, gpu.edx, 1 li r11, 1

addco. r22, r22, r11
Test and set parity flag
Test and set adjust flag
Test and set sign flag

0x17 cmp edx, 0x270f cmp edx, 0x270f lis r11, 0x0
ori r11, r11, 0x270f
subfco. r11, r22
Test and set parity flag
Test and set adjust flag
Test and set sign flag

0x1d jle 0x8 gotolte 0x8 ble -48
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Table 2: PowerPC functions that test and set various bits in the IA32
EFLAGS register, the result is stored in r19. x86 pf table is an external
table of constants.

Function PowerPC Instructions
Test and set parity flag li r11, 0xff

and r12, <destination register>, r11
li r11, <x86 pf table>
lbz r11, <destination register>, r11
cror cr1, cr0, cr0
cmpw r11, 0
beq 12
ori r19, r19, 0x4
b 12
lis r11, 0xfffffffb
and r19, r19, r11
cror cr0, cr1, cr1

Test and set adjust flag xor r11, <destination register>, <source register>
li r12, 0x10
cror cr1, cr0, cr0
cmpw r12, 0
beq 12
ori r19, r19, 0x10
b 12
lis r11, 0xffffffef
and r19, r19, r11
cror cr0, cr1, cr1

Test and set sign flag li r11, 8
subfic r11, r11, <bit length>
neg r11, r11
sraw r11, <destination register>, r11
li r12, 0x80
cror cr1, cr0, cr0
cmpw r12, 0
beq 12
ori r19, r19, 0x80
b 12
lis r11, 0xffffff7f
and r19, r19, r11
cror cr0, cr1, cr1

The algorithm has been placed inside a loop on the IA32 which executes it 100
times. On a Pentium 3/933MHz the algorithm executes in about 28.0 seconds. In the
emulator the native code is constructed by parsing the source (IA32) binary code after
which it is executed once. This process is repeated 90 times, and every tenth time (plus
the first run) it is executed twice instead of once, achieving a total of 100 runs. This
design is used to compensate for the principle of locality (see section 4.1). The result
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from running the test on a 1GHz PowerPC 7447 (also known as a G4) is about 14.5
seconds of total duration of execution. The generated PowerPC-instructions are not
optimised in any way.

Applying a simple peephole-optimisation to the code which replaces 32-bit register
load operations with 16-bit loads resulted in a four second reduction in execution speed
on the PowerPC. When further optimising the code by removing unnecessary CPU-
flags it runs more than twice as fast. Both these optimisations were made manually
since an automatic optimiser have not been implemented.

Using QEMU, which is an emulator using threaded code (see section 2.1.2), on the
same PowerPC as mentioned above, the duration of execution is approximately 162.0
seconds. While on Bochs, which is an emulator using an interpretive CPU-core (see
section 2.1.1), the result is 2880.0 seconds.

The results presented in table 3 show that the system presented in this report can
compete with existing open source emulators. A more complex benchmark containing
more complicated instructions would probably result in better test accuracy. The
amount of code required to emulate each instruction should be relative among the
different emulators since they should all present the same result after execution, so it is
likely that the result of such a benchmark will not be all that different. If the benchmark
was carried out on a complete system emulator that is able to handle memory protection
and SIMD instructions the results would likely be different, but those kind of functions
are not handled by the system presented in this report.

The second result presented in table 3, labelled “Bricoleur and Fanà”, is a modified
version of the auto-generated code that contains instructions for testing and updating
source architecture condition flags. The current implementation does not fully support
handling condition flags but the benchmark would not compare well to existing systems
that handle these flags. Since an optimiser would be able to remove these flags, as they
are not used by the code in the benchmark, the results of running the system without
the flags is also presented.

It is shown by the results that pure instruction execution is several times faster
compared to the existing, benchmarked, software solutions in this simple case. Further
testing of a more complete emulator, using a more complex algorithm as a benchmark,
is necessary in order to establish that this system performs better than other emulators
in the general case.

Table 3: Results of execution timing by running the benchmark in
different environments. In all cases, except the native run, the emulator
was executed on a 1GHz PowerPC 7447. The Unix command “time”
was used to measure the duration of execution.

Environment Duration (s)
Pentium 3/933MHz (Native) 21.6
PowerPC 7447/1GHz (Native) 15.1
Our emulator 32.9
Our emulator (no flags) 14.5
QEMU 0.5.5 162.0
Bochs 2.1.1 2880.0
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6.2 Expressiveness of scripting languages

As stated in section 3.2 the scripting languages must be expressive enough so that all
source and target architectures can be described. Several instructions have been tested
throughout the duration of this project and one IA32 instruction have been identified
which can not be implemented by using Fanà, and therefore this requirement is not
met by the system proposed here. The instruction that breaks the requirement is “rep”
which is used to repeat a specified instruction a specific amount of times. Using the
implementation of Bricoleur and Fanà as described here does not allow branching
between different instruction definitions, only inside a Fanà block, and it is therefore
not possible to properly define these kind of instructions.
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7 Related work

Two projects that use similar methods to the one described in this report have been
identified during this undertaking. The first is Syn68k by ARDI which is a commercial
project. Not much is known about the internals of Syn68k except the details published
by Hostetter (1995). The project uses a Lisp-like definition language and supports
generating either a dynamically recompiling CPU-core for IA32 or an interpretive core
for other architectures. Bricoleur is using a C-like syntax since C is more popular
than Lisp among programming languages, and the intention is to make this system
accessible to as many users as possible (BV 2004). Syn68k have been used in the
creation of their Macintosh emulator, Executor.

The second project is DAISY by IBM (Ebcioglu & Altman 1996). The main
purpose of DAISY is to develop a binary translator that can run code on VLIW-capable
processors. It is also possible to attach a second back-end that translates VLIW-
instructions to native code for non-VLIW systems. When running on a VLIW system
this emulator will probably perform better since it is optimised for translation directly
to VLIW, but if using a translator back-end it is likely to run slower than the system
presented in this report since the translation from VLIW to native code is performed
real-time, whereas translation from Fanà to native code is performed off-line.
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8 Conclusion

In this section the conclusions drawn from the experience gained throughout the
duration of this project will be presented.

8.1 Summary

System emulation have several uses both in commercial and non-commercial settings.
A system emulator can be used to be able to run older software when making a
transition to a newer system that isn’t backwards compatible. Another use is to be able
to run software that only exists for another platform than the one currently being used,
for example, Windows applications on GNU/Linux. However, building a fast emulator
can be a daunting process that involves many repetitive tasks which can result in a time
consuming, and costly, venture to take on.

In order to remedy this problem a system using three scripting languages, that can
be parsed by a computer program in order to generate larger portions of code that
otherwise would have to be manually created, are presented and evaluated in this report.
These are

1. Bricoleur, which is used to describe the source architecture. Bricoleur have been
developed from scratch during this project.

2. Fanà, which is a virtual instruction-set architecture that describe how to translate
source instructions. Fanà is based on the LLVA V-ISA presented by Adve et al.
(2003), but with some modifications to adapt it to this system.

3. A target mapping language that maps Fanà instructions to code generators for the
target platform. It resembles Bricoleur and have been developed from scratch as
well.

Parts of the system have been implemented in order to test it using a simple
benchmark. The implementation is not presented in this report as it is not relevant to the
system that is described. The scripting languages only provide a partial solution to the
problem as some parts such as condition flags and memory management is not fully
covered by the solution. The benchmark has been modified to take these limitations
into account in order to maintain comparability to other emulators.

As shown by the benchmark this system provide better results when emulating parts
of an IA32 microprocessor on a PowerPC compared to existing open source emulators.
However, in order to show that it performs better in all contexts a system that provides
a more complete emulator will have to be implemented so that an algorithm of a higher
complexity can be evaluated. Under the conditions used here the system fulfils the first
requirement listed in section 3.2.

The second requirement that have been defined is that it should be possible to define
all kinds of source and target architectures using the scripting languages presented here.
Section 6 show that this requirement is not met since source instructions that have to
make branches outside their local Fanà definition can not be defined using the scripting
languages defined in this report.

8.2 Future work

Topics that provide interesting research areas related to the work presented in this report
is described in this section.
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8.2.1 Flags

Condition flags are not handled at all by the current implementation. A possible
implementation would be to add blocks of Fanà to the flags-section of Bricoleur in
order to define how each flag is set.

One way it could be handled is to in-line the code to update the flag registers in the
Fanà definition for each source instruction. As shown in section 6 a lot can be gained
by having an optimiser remove unnecessary flags and therefore it must be possible to
give hints to the optimiser so that it knows how to remove the in-lined code for each
flag when possible.

8.2.2 Hot-spot optimiser

Since there is no point in optimising a block if it will take longer time to optimise
and execute it than to run it unoptimised the hot-spot optimiser can decide what level
of optimisation to apply based on the number of times it has been accessed by the
emulated system.

8.2.3 Persistent translation cache

Blocks of code that are accessed often can use its access counter as a sort of priority
measurement in order to keep a small cache of translated and optimised code on stable
storage. That way blocks that are often accessed and have been highly optimised
survive between emulation runs.

8.2.4 Support for defining memory management

Since memory management is part of many CPUs (see section 2.3) it would be
beneficial if it could be defined in the scripting language as well since it might need
access to certain CPU registers and state changes.

8.2.5 Catching common system calls

Some common system calls, such as the ones found in the standard C library (i.e.,
memcpy, strcpy etc), could be caught by the emulator and executed using native code.
As some of these operations tend to be heavily optimised in modern operating systems
it would run faster using the native code rather than using translated code.

8.2.6 Self-modifying code

The system proposed in this paper does not handle self-modifying code (SMC). Klaiber
(2000) talks about the system used in the Crusoe microprocessor to handle this. The
Crusoe, however, is using a hardware-based solution which would not work as a
software-only implementation. LLVM supports a constrained form of SMC done
using LLVA and only applies to future executions of the code block, not to the current
execution. Neither of these solutions will work in an emulator.

8.2.7 Fanà templates

Introduce support for templates into Fanà as described in section 5.3. Templates will
make it easier to support a closer mapping of complex instructions, such as vector
instructions, between the source and target system.
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A Context-free grammars in Backus-Naur form

A.1 Fanà

Fanà is a virtual instruction-set architecture.

〈fana〉→ ‘{’ 〈instruction list〉 ‘}’

〈instruction list〉→ 〈instruction〉 ‘;’
| 〈instruction list〉 〈instruction〉 ‘;’

〈instruction〉→ 〈declaration〉
| 〈nop〉
| 〈set clr〉
| 〈double〉
| 〈triplet〉
| 〈compare〉
| 〈branch〉

〈argument〉→ 〈register〉
| 〈flag〉
| 〈type specifier〉 〈variable〉
| 〈constant〉

〈nop〉→ ‘nop’

〈set clr〉→ ‘set’ 〈flag〉
| ‘clr’ 〈flag〉

〈double〉→ 〈double ops〉 〈type specifier〉 〈argument〉 ‘,’ 〈argument〉
〈triplet〉→ 〈triplet ops〉 〈type specifier〉 〈argument〉 ‘,’ 〈argument〉 ‘,’ 〈argument〉
〈double ops〉→ ‘load’

| ‘store’
| ‘mov’

〈triplet ops〉→ 〈arithmetic〉
| 〈bitwise〉

〈arithmetic〉→ ‘add’
| ‘sub’
| ‘mul’
| ‘div’
| ‘rem’

〈bitwise〉→ ‘and’
| ‘or’
| ‘xor’
| ‘shl’
| ‘shr’
| ‘rol’
| ‘ror’

〈compare〉→ ‘cmp’ 〈argument〉 ‘,’ 〈argument〉
〈branch〉→ 〈branch op〉 〈type specifier〉 〈register〉

| 〈branch op〉 〈type specifier〉 〈variable〉
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| 〈branch op〉 ‘label’ 〈identifier〉
〈branch op〉→ ‘goto’

| ‘gotolt’
| ‘gotolte’
| ‘gotoeq’
| ‘gotogte’
| ‘gotogt’

〈type specifier〉→ 〈identifier〉 [ 〈pointer〉 ]

〈declaration〉→ 〈identifier〉 〈identifier〉
〈variable〉→ ‘%’

〈register〉→ ‘register’ 〈identifier〉
〈flag〉→ ‘flag’ 〈identifier〉
〈pointer〉→ ‘∗’

〈constant〉→ 〈int〉
| 〈hex〉
| 〈oct〉

〈identifier〉→ 〈letter〉 | 〈letter〉 〈digit〉

A.2 Bricoleur

Bricoleur is the source architecture definition language.

〈bricoleur〉→ [ 〈type definitions〉 ] 〈opcode definitions〉
〈type definitions〉→ ‘types’ ‘{’ [ 〈type definition list〉 ] ‘}’

〈opcode definitions〉→ ‘opcodes’ ‘{’ 〈opcodes list〉 ‘}’

〈func block〉→ ‘func’ 〈fanà〉 ‘;’

〈instruction block〉→ 〈op list〉 [ 〈flags list〉 ] 〈func block〉
〈op block〉→ ‘{’ [ 〈argument list〉 ] ‘}’

〈argument list〉→ 〈argument〉
| 〈argument list〉 ‘,’ 〈argument〉

〈flags list〉→ ‘flags’ ‘{’ [ 〈identifier list〉 ] ‘}’ ‘;’

〈identifier list〉→ 〈identifier〉
| 〈identifier list〉 ‘,’ 〈identifier〉

〈op list〉→ 〈op definition〉
| 〈op list〉 〈op definition〉

〈opcodes list〉→ 〈instruction definition〉
| 〈opcodes list〉 〈instruction definition〉

〈type definition list〉→ 〈type definition〉
| 〈type definition list〉 〈type definition〉

〈type definition〉→ 〈identifier〉 〈constant〉 [ ‘signed’ ] ‘;’

〈op definition〉→ ‘op’ 〈constant〉 [ 〈op block〉 ] ‘;’
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〈instruction definition〉→ 〈identifier〉 ‘{’ 〈instruction block〉 ‘}’

〈argument〉→ [ ‘implied’ ] 〈argument type〉
〈argument type〉→ 〈register〉

| 〈flag〉
| 〈type specifier〉
| 〈constant〉

〈type specifier〉→ 〈identifier〉 [ pointer ]

〈register〉→ ‘register’ 〈identifier〉
〈flag〉→ ‘flag’ 〈identifier〉
〈pointer〉→ ‘∗’

〈constant〉→ 〈int〉
| 〈hex〉
| 〈oct〉
| ‘(’ 〈constant〉 ‘,’ 〈constant〉 ‘)’

〈identifier〉→ 〈letter〉 | 〈letter〉 〈digit〉

A.3 Target mapping

The target mapping is used to define how Fanà instructions map to instructions that can
be executed natively on the target architecture.

〈variable〉→ ‘%’ 〈digit〉
〈pointer〉→ ‘∗’

〈type specifier〉→ ( ‘float’ | ‘double’ | 〈identifier〉 ) [ 〈pointer〉 ]

〈argument〉→ ‘register’ 〈identifier〉 [ ‘.’ 〈identifier〉 ]
| ‘flag’ [ 〈identifier〉 ]
| 〈type specifier〉

〈code definition〉→ [ 〈flags definition〉 ] 〈C source code with in-lined 〈variable〉s〉
〈flags definition〉→ ‘flags’ ‘{’ 〈identifier list〉 ‘}’ ‘;’

〈type definition list〉→ 〈identifier〉 〈constant int〉 [ ‘signed’ ] ‘;’
| [ 〈type definition list〉 ]

〈register definition list〉→ 〈identifier〉 〈type specifier〉 [ ‘{’ [ 〈register definition list〉 ]
‘}’ ] ‘;’

| [ 〈register definition list〉 ]

〈instruction definition list〉→ 〈instruction definition〉
| 〈instruction definition list〉

〈register definition group〉→ 〈identifier〉 ‘{’ 〈register definition list〉 ‘}’
| [ 〈register definition group〉 ]

〈type definitions〉→ ‘types’ ‘{’ [ 〈type definition list〉 ] ‘}’

〈register definitions〉→ ‘registers’ ‘{’ [ 〈register definition group〉 ] ‘}’

〈instruction definition〉→ 〈argument〉 ‘{’ ( 〈instruction definition list〉 | 〈code
definition〉 ) ‘}’
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〈instruction〉→ 〈identifier〉 ‘{’ 〈instruction definition〉 ‘}’

〈translator list〉→ 〈instruction〉
| 〈translator list〉

〈translators〉→ ‘types’ ‘{’ [ 〈type definition list〉 ] ‘}’
| ‘registers’ ‘{’ [ 〈register definition group〉 ] ‘}’ | ‘translators’ ‘{’

〈translator list〉 ‘}’

iv



B SCRIPTS

B Scripts

This section contains several Bricoleur and Fanà sample scripts.

B.1 Example of Bricoleur scripts

Example of Bricoleur code emulating parts of a Motorola 6502 microprocessor:

/* These are the available flags for M6502 */
flags {

C; /* Carry */
Z; /* Zero */
I; /* Interrupt Disable */
D; /* Decimal Mode */
B; /* Break Command */
V; /* Overflow */
N; /* Negative */

}

/* These are types we will be using */
types {

uint8 8; /* unsigned 8-bit type */
uint16 16; /* unsigned 16-bit type */

}

/* The registers available in the M6502 */
registers {

/* General purpose registers (integer) */
gpu {

A uint8; /* register A is of uint8 type */
X uint8; /* register X is of uint8 type */
Y uint8; /* register Y us if uint8 type */

}
}

/* ADC (add with carry) opcode definition for M6502 */
opcodes {

/* Add to accumulator with carry using pointer fetched from a table */
adc {

op 0x61 { uint8, implied register gpu.X };
op 0x71 { uint8, implied register gpu.Y };
flags { C, Z, V, N };
func {

uint16 * addr;
add uint16 addr, %1, %2;
load register gpu.A, addr;

};
}

}

Example of Bricoleur code emulating parts of a PowerPC microprocessor:
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flags {
LT; /* Less Than */
GT; /* Greater Than */
EQ; /* Equal */
SO; /* Summary Overflow */
CA; /* Carry */
OV; /* Overflow */

}

types {
/* Name of type followed by size in bits */
reg 5; /* 5-bit unsigned type */
uint32 32; /* 32-bit unsigned type */

}

registers {
gpu {

r0 uint32;
r1 uint32;
r2 uint32;
r3 uint32;
r4 uint32;
r5 uint32;
r6 uint32;
r7 uint32;
r8 uint32;
r9 uint32;
r10 uint32;
r11 uint32;
r12 uint32;
r13 uint32;
r14 uint32;
r15 uint32;
r16 uint32;
r17 uint32;
r18 uint32;
r19 uint32;
r20 uint32;
r21 uint32;
r22 uint32;
r23 uint32;
r24 uint32;
r25 uint32;
r26 uint32;
r27 uint32;
r28 uint32;
r29 uint32;
r30 uint32;
r31 uint32;

}
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}

opcodes {
/* Add to accumulator with carry updating CR0 register */
addc. {

/**
* Opcode is identified by the integer value 31 stored in the first
* 6 bits. Then there is the rD, rA, and rB arguments which are five
* bits in length each. Followed by a single 0-bit, the value 10
* stored by nine bits, and finally 1.
* 6 + 5 + 5 + 5 + 1 + 9 + 1 = 32 bits
*/

op (31, 6) { (register gpu, 5), (register gpu, 5), (register gpu, 5),
(0, 1), (10, 9), (1, 1) };

flags { CA, LT, GT, EQ, SO };
func { add uint32 %1, %2, %3; };

}
}

The 32-bit general purpose registers of the IA32 can be broken down into one 16-
bit registers which can be further broken down into two 8-bit registers. This is what the
definition looks like.

types {
/* Name of type followed by size in bits */
uint32 32; /* 32-bit unsigned type */
uint16 16; /* 16-bit unsigned type */
uint8 8; /* 8-bit unsigned type */

}

registers {
gpu {

eax uint32 {
ax uint16 {

ah uint8;
al uint8;

}
}
ecx uint32 {

cx uint16 {
ch uint8;
cl uint8;

}
}
edx uint32 {

dx uint16 {
dh uint8;
dl uint8;

}
}
ebx uint32 {
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bx uint16 {
bh uint8;
bl uint8;

}
}

}
}

B.2 Example of translation mapping

Example mapping of Fanà instruction “mov” to PowerPC binary code generators.

/**
* These macros are not part of the translation mapping. They are used to
* construct the binary code for PowerPC instructions and are provided here
* to make it easier to understand how the mapping works.
*/

/* Store the 32-bit value x in pointer p and increase the pointer */
#define EMIT32(p, x) \

*((uint32_t *) (p)) = (uint32_t) (x); \
(p) += 4

/* Mask and shift the specified operand */
#define GEN_OPER(oper, val) \

(((val) & ppc_operands[(oper)].mask) << ppc_operands[(oper)].shift)

/* Generate the opcode for operation op using two arguments */
#define GENOP2(op, oper1, oper2) \

(ppc_opcodes[(op)].opcode | \
GEN_OPER(ppc_opcodes[(op)].operands[0], (oper1)) | \
GEN_OPER(ppc_opcodes[(op)].operands[1], (oper2)))

/* Generate the opcode for operation op using three arguments */
#define GENOP3(op, oper1, oper2, oper3) \

(ppc_opcodes[(op)].opcode | \
GEN_OPER(ppc_opcodes[(op)].operands[0], (oper1)) | \
GEN_OPER(ppc_opcodes[(op)].operands[1], (oper2)) | \
GEN_OPER(ppc_opcodes[(op)].operands[2], (oper3)))

types {
uint32 32; /* 32-bit unsigned type */

}

registers {
gpu {

r0 uint32;
r1 uint32;
r2 uint32;
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r3 uint32;
r4 uint32;
r5 uint32;
r6 uint32;
r7 uint32;
r8 uint32;
r9 uint32;
r10 uint32;
r11 uint32;
r12 uint32;
r13 uint32;
r14 uint32;
r15 uint32;
r16 uint32;
r17 uint32;
r18 uint32;
r19 uint32;
r20 uint32;
r21 uint32;
r22 uint32;
r23 uint32;
r24 uint32;
r25 uint32;
r26 uint32;
r27 uint32;
r28 uint32;
r29 uint32;
r30 uint32;
r31 uint32;

}
}

/* This is the actual translation mapping */
translators {

mov {
register gpu {

sint32 {
EMIT32(p, GENOP3(LIS, %1, (%2 >> 16)));
EMIT32(p, GENOP3(ORI, %1, %1, (%2 & 0xff)));

}

sint16 {
EMIT32(p, GENOP2(LI, %1, %2));

}

register {
EMIT32(p, GENOP3(ORA, %1, %2, %2));

}
}

}
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}

EMIT32 writes a new 32-bit instruction to the instruction pointer and then updates
it to the next empty instruction slot. GENOPx are macros that create binary code for the
PowerPC based on a table of instruction encodings, which has also been hand-coded
and is not part of the project design.

x



C ARCHITECTURE-SPECIFIC INFORMATION

C Architecture-specific information

C.1 IA32

C.1.1 ModR/M

Some IA32 instructions use the ModR/M argument style which is a look-up table
that identifies different addressing modes and registers. There is one table for 16-bit
arguments and another for 32-bit arguments.

Figures 6 and 7 are taken from IA-32 Intel Architecture Software Developer’s
Manual (2001c, pp. 2.5–2.7).

Figure 6: 16-bit ModR/M table
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Figure 7: 32-bit ModR/M table
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