
A Framework for Reasoning about
ERLANG Code

Lars-Åke Fredlund

A Dissertation submitted to

the Royal Institute of Technology

in partial fulfillment of the requirements for

the Degree of Doctor of Philosophy

August 2001

Department of Microelectronics

and Information Technology

The Royal Institute of Technology

KTH Electrum 229

SE-16440 Kista, Sweden

TRITA-IT AVH 01:04

ISSN 1403-5286

ISRN KTH/IT/AVH-01/04--SE

Swedish Institute

of Computer Science

Box 1263

SE-164 29 Kista, Sweden

SICS Dissertation Series 29

ISSN 1101-1335

ISRN SICS-D--29--SE

Dissertation for the Degree of Doctor of Philosophy

presented at the Royal Institute of Technology in 2001.

ABSTRACT

Fredlund, L.-Å. 2001: A Framework for Reasoning about ERLANG Code. TRITA-IT AVH

01:04, Department of Microelectronics and Information Technology, Stockholm. ISSN 1403-

5286.

We present a framework for formal reasoning about the behaviour of software written in ERLANG,

a functional programming language with prominent support for process based concurrency, mes-

sage passing communication and distribution. The framework contains the following key ingre-

dients: a specification language based on the µ-calculus and first-order predicate logic, a hier-

archical small-step structural operational semantics of ERLANG, a judgement format allowing

parametrised behavioural assertions, and a Gentzen style proof system for proving validity of

such assertions. The proof system supports property decomposition through a cut rule and han-

dles program recursion through well-founded induction. An implementation is available in the

form of a proof assistant tool for checking the correctness of proof steps. The tool offers sup-

port for automatic proof discovery through higher–level rules tailored to ERLANG. As illustrated

in several case studies this framework provides the expressive power required by the open and

dynamic nature of distributed systems.

Lars-Åke Fredlund, Department of Microelectronics and Information Technology,

Royal Institute of Technology, KTH Electrum 229, SE-16440 Kista, Sweden,

E-mail: fred@sics.se

Acknowledgements

A thesis represents work conducted during a significant period of time – in my case

far too long. As a result many people have helped and inspired me over the years,

unfortunately too many to mention all by name.

First of all I would like to thank my advisor, Professor Joachim Parrow, who has

always provided insightful comments and support, and most importantly has never

given up on me.

To my second advisor, Professor Mads Dam, I would also like to extend my warm

thanks. Apart from his role as advisor he is also the manager of the group at the

Swedish Institute of Computer Science (SICS) where I work, and the chief source of

ideas for the whole body of work documented in the thesis. A warm thanks is due also

to Dr. Dilian Gurov, my colleague at SICS, who is the co-author of many of the papers

this thesis is based on, and with whom many of the issues reported here have been

resolved during long discussions.

The effort on the verification of Erlang programs, which this thesis is part of, has

taken place within the ErlVer project which has received funding from the ASTEC

(Advanced Software Technology) competence center and the Computer Science Labo-

ratory of Ericsson. A number of colleagues, including the ones mentioned above, have

made significant contributions to the project: Gennady Chugunov has designed and im-

plemented the graphical user interface of the proof assistant, and has contributed many

improvements to the tool itself. Dr. Thomas Arts at Ericsson has been a constant source

of constructive ideas and improvements, and has provided much assistance in bridging

the gap between academia and industry. Dr. Thomas Noll, now at RWTH Aachen, has

been the co-author of several papers. Clara Benac Earle used an early version of the

tool, and contributed many suggestions for improvements.

Further, I would like to recognise the important role Professor Bengt Jonsson has

had throughout my studies. Together with Joachim Parrow he convinced me to begin

my graduate studies, co-authored a number of early papers, and even after leaving SICS

for Uppsala University he has always been a source of inspiration.

I would also like to mention a number of colleagues from the “early days” at SICS,

with whom I collaborated on various projects: Patrik Ernberg, Hans Hansson, Fredrik

Orava and Björn Victor. Later on Jan Cederquist, Pablo Giambiagi, Andrés Martinelli,

and Babak Sadighi, and others, have contributed to making SICS a great place to work.

Much of the credit for this atmosphere belongs also to Marianne Rosenqvist, without

whom the place would have been so much duller. Thanks are due also to Christoph

Sprenger and Vicki Carleson at SICS, and Jan Nyström from Uppsala University, for

their help in proof reading parts of the thesis. A visit to CWI in Amsterdam organised

by Frits Vaandrager provided my first exposure to theorem proving tools, and resulted

in a paper co-authored with Jan Friso Groote and Henri Korver.

Heartfelt thanks goes out to my family for all the warmth and support they have

provided over the years: to my father Åke and mother Greta, to my brothers Arne and

Gunnar with their families: Anne, Kasper, Magnus, Meit, Andreas, Sofie.

Lastly, I would also like to acknowledge the contribution from the friends who have

prompted me – in truth far too often – to sometimes step back from work in order to

relax and to find joy and happiness in life.

I owe you all very much.

Contents

Abstract ii

Acknowledgements v

1 Introduction 1

1.1 Formal Reasoning about Open Distributed Systems 3

1.1.1 Open Distributed Systems and ERLANG 3

1.1.2 The Specification Language 6

1.1.3 The Proof System . 7

1.1.4 The Proof Assistant . 10

1.2 Overview of the Thesis . 11

1.3 Contributions . 12

1.4 Personal Contributions . 13

2 Foundations 15

2.1 Terms and Sorts . 15

2.2 Syntax of the Logic . 17

2.3 Semantics . 21

2.4 Logic Conventions . 24

2.4.1 Modalities . 25

2.4.2 Formula definitions . 25

2.4.3 Lifting of Abstractions . 25

2.4.4 Formula Macros . 26

2.4.5 Parametric Actions . 26

2.4.6 Weak Modalities . 27

3 A Formal Semantics of ERLANG 29

3.1 An ERLANG Subset . 29

3.1.1 ERLANG Syntax . 30

3.1.2 Values . 31

3.1.3 Expressions, Variables, Patterns and Matches 31

3.1.4 Functions . 32

3.1.5 Built-in Functions . 32

vii

viii Contents

3.1.6 Guards . 33

3.1.7 Processes, Messages, Mailboxes and Links 33

3.1.8 Systems . 34

3.1.9 Intuitive Semantics . 34

3.1.10 Built-in Functions with Side Effects 34

3.1.11 Built-in Functions without Side Effects 35

3.1.12 Shorthands . 36

3.1.13 Throw and Exit Functions 38

3.1.14 A Comparison with other ERLANG Versions 39

3.2 A Formal Semantics of ERLANG . 42

3.2.1 Preliminaries . 42

3.2.2 Dynamic Semantics . 46

3.2.3 Dynamic Semantics of Expressions 47

3.2.4 Bisimilarity for Expressions 56

3.2.5 Dynamic Semantics of Systems 60

3.2.6 Bisimilarity for Systems . 71

3.2.7 Language Extension: Function Values 73

4 A Proof System for Reasoning about ERLANG Code 75

4.1 Proof Rules for Classical First-Order Logic 76

4.2 Pre-Proofs . 79

4.3 Derived Proof Rules . 80

4.3.1 A Cut Rule for Terms . 80

4.3.2 Proof Rules for Modalities 82

4.4 Inductive and Coinductive Reasoning 83

4.5 Proof of Recursive Formulas . 85

4.5.1 Fixed Point Rules . 85

4.5.2 Discharge: Some Intuition 88

4.5.3 The Global Discharge Condition 90

4.5.4 Fixed Point Induction via Local Proof Rules 98

4.6 Embedding ERLANG into the Proof System 101

4.6.1 Embedding Expressions and Values 101

4.6.2 Embedding the Transition Relations 106

4.6.3 Expression Properties . 109

4.6.4 System Properties . 110

4.6.5 Deriving Convenient Operational Semantics Rules 112

4.6.6 A More Convenient Theory of Matching 114

5 An Implementation of the Proof System 117

5.1 Terms, Variables, Formulas and Proofs 118

5.2 Rules, Tactics, Tacticals and Proof Scripts 119

5.3 User Interfaces and Commands . 121

5.4 Fixed Point Rules and Checking the Discharge Condition 121

5.5 The Embedding of ERLANG . 123

5.5.1 Tactics for Deriving Transitions 124

Contents ix

5.6 Evaluation of the Proof Assistant . 125

5.7 A Session with the Proof Assistant 125

6 Examples 131

6.1 Patterns of Compositional Reasoning in our Framework 131

6.2 A Simple Example Using Induction 133

6.3 The Quicksort Example . 135

6.3.1 A Proof Sketch . 136

6.4 A Purchasing Agent . 143

6.4.1 Implementation as an Erlang Program 143

6.4.2 Property Specification . 145

6.4.3 Verification . 147

6.4.4 Conclusions . 152

6.5 Verifying an Active Data Structure 154

6.5.1 Active Data Structures . 154

6.5.2 An Implementation of a Persistent Set 154

6.5.3 The Set Erlang Module . 155

6.5.4 A Persistent Set Property . 157

6.5.5 A Proof Sketch . 158

6.5.6 A Discussion of the Proof 162

6.6 Formal Verification of a Leader Election Protocol

in Process Algebra . 164

6.6.1 Specification and correctness of the protocol 164

6.6.2 A proof of the protocol . 167

6.6.3 Conclusion . 181

6.6.4 An overview of the proof theory for µCRL 182

6.6.5 Data types . 185

6.7 Proof of Leader Election Protocols in ERLANG 191

6.7.1 Describing the Protocols in ERLANG 191

6.7.2 Setting up the Network Topology 191

6.7.3 Defining the Network Functions 192

6.7.4 Common Formulas . 193

6.7.5 Main Correctness Property 193

6.7.6 Proof Structure . 194

7 Related Work 199

7.1 Formal Semantics for Concurrent Programming

Languages . 199

7.2 Logics and Proof Systems for Reasoning about Concurrent Systems . 201

7.3 Embedding Semantics of Concurrent Languages in Theorem Proving

Tools . 203

7.4 Semantics and Analysis Techniques for ERLANG 205

x Contents

8 Conclusion 207

8.1 Summary . 207

8.2 Impact . 208

8.3 Future Work . 209

References 210

List of Tables

2.1 Formula Abbreviations . 19

2.2 Type Checking of Formulas . 20

2.3 The Denotation of Formulas . 22

3.1 ERLANG syntax . 30

3.2 Built-in Functions . 33

3.3 Free Variables in Expressions, Guards and Matches 43

3.4 Variables in Patterns . 44

3.5 Substitution in Expressions, Guards and Matches 45

3.6 Reduction Contexts . 48

3.7 Normal expression evaluation . 50

3.8 Exception handling . 50

3.9 Exceptional expression evaluation 51

3.10 Evaluation of built-in functions (example) 51

3.11 Exceptional evaluation of built-in functions (examples) 51

3.12 Computation of Guard Expressions 52

3.13 Process rules for expression evaluation 63

3.14 Process rules for evaluation of process functions 64

3.15 Process rules for external input . 65

3.16 Process rules for handling exit notifications 66

3.17 Process rules for terminated processes 67

3.18 Process communication (symmetrical rules omitted) 68

4.1 Standard Proof Rules . 78

4.2 Rules for Terms of Freely Generated Sorts 79

4.3 Derived Proof Rules . 81

4.4 Least Fixed Point Proof Rules . 86

4.5 Derived Greatest Fixed Point Proof Rules 87

4.6 Predicates for Determining Membership among ERLANG Values . . . 102

4.7 Basic Proof Rules for Reasoning about ERLANG Queues 105

4.8 Derived Rules for Parallel Composition and Input 113

4.9 Derived Rules for ‖ [α] . 114

4.10 Derived Rules for ‖ 〈α〉 (symmetrical rules omitted) 115

xi

xii List of Tables

5.1 List Reversal and List Concatenation in EVT 126

6.1 The axioms of ACP in µCRL. 183

6.2 Axioms of Standard Concurrency (SC). 183

6.3 Axioms for abstraction. 184

6.4 Axioms for summation. 184

6.5 Axioms for the conditional construct and Bool. 185

6.6 Some τ -laws. 185

List of Figures

4.1 Derivation of the TERMCUT rule . 81

4.2 A Symbolic Pre-Proof Tree . 93

4.3 The Embedding of ERLANG Expressions 104

4.4 Subtypes of an ERLANG Expression 104

4.5 Expression Transition Relation Embedded in the Proof System 107

4.6 The Derivation of Proof Rule ‖ 〈?〉 113

4.7 The Derivation of Proof Rule ‖ ?1 113

5.1 The Graphical User Interface of EVT 122

5.2 Proof of the append lemma . 129

6.1 Reversal and Append Predicates . 133

6.2 The Quick Sort Algorithm in ERLANG 135

6.3 Sortedness and Permutation Predicates 136

6.4 Definition of length and isNat Predicates 138

6.5 The Definition of the split Predicate 139

6.6 Source Code for Agent Example . 144

6.7 The system configuration: (above) before, and (below) after spawning

the purchasing agent . 145

6.8 Erlang components of initial proof states 161

xiii

xiv List of Figures

Chapter 1

Introduction

The production of software that functions correctly remains a truly challenging task

even after at least fifty years of development in the fields of computer science and

software engineering. Software projects routinely go astray, running up huge costs in

terms of money and time spent and opportunity lost. The obvious question is,

Are there methods that can significantly improve the process of software

development?

The field of research that is known as formal methods has resulted in a collection

of techniques to make the meaning of software artifacts mathematically and logically

precise. There are for instance techniques which, from a usually informally worded

design document, extract in mathematical logic the formal requirements that the docu-

ment expresses. Often, but far from always, these formalised descriptions are analysed,

sometimes with the assistance of computer support, to determine in advance any bad

consequences of their deployment. An example could be checking that the specification

of a safety-critical subsystem for railway traffic signalling never permits multiple trains

to enter the same piece of track at the same time. In the end, though, what matters is

not an idealised design specification but the properties of the software the programmers

have actually implemented. In this thesis we consider the task of reasoning formally,

using computer support, about computer programs written in the ERLANG program-

ming language. This language is used at the Ericsson corporation to program a range

of demanding distributed applications. However, the scope of our results clearly extend

beyond this particular programming language.

Advocates of formal methods have for a long time liked to draw an analogy be-

tween software development and bridge construction. In the beginning of time, they

say, bridges used to collapse, because there was no systematic knowledge how to con-

struct them. Now that there is a proper engineering discipline of bridge building and

maintenance, they simply do not fail anymore 1. Thus our task as software engineers is

1Although there are by now many counter examples to this claim, e.g., the collapse of the river Douro

bridge in Portugal, the stability problems of the Millennium bridge in London, or for that matter the safety

concerns and cost overruns that have plagued the current “Tranebergsbron” bridge project here in Stockholm.

1

2 Chapter 1. Introduction

to go ahead and systematise an engineering discipline of programming.

And so there has been, since the 1960’s at least, a strong computer science pro-

gramme with this goal. Many brilliant people have spent tremendous efforts in further-

ing the field of program reasoning, in order to actually prove logically that programs

work before they are put in use. Regrettably this programme has had little direct im-

pact on software engineering, although there exist a number of successful applications;

see Clarke and Wing [CW96] for an overview of the field. One cause for this lack

of impact, which lies in the general area of research that this thesis addresses, is that

checking whether a piece of software enjoys certain properties is fundamentally hard.

In my opinion it remains far more difficult to prove that a program possesses certain de-

sirable characteristics than to develop a program that with a high probability has these

characteristics.

A second reason for the lack of impact is that the market accepts minor failures in

software products like web browsers or word processors. It seems far more important

to be able to quickly add new features to a product, or to develop a correction for a

blatant software bug, than to reduce the number of defects to close to zero at the time

of software release.

Many of the advocates of formal methods have also overestimated the maturity of

the average software development project when calculating where the application of

formal methods can provide the most benefit. For instance, to analyse specifications

rather than programs is a risky activity since, as evidenced in countless large projects,

after a short time any specification is unlikely to correctly reflect the implementation

because of the prohibitive cost of revising it as the implementation constantly changes.

Still there is every reason not to lose faith in formal methods. We believe that trends

in software engineering such as the increased reliance on software building blocks

(components) will contribute to a renaissance. Given a formal model of a set of building

blocks, and the ways in which these blocks can be composed, it should be possible to

significantly decrease the effort required to verify an application. In addition there will

always remain the systems where the cost of failure is simply too high not to warrant

a very careful analysis. This can be due to the risk of loss of life (typically in the

health, transport or power sectors), or when the potential for monetary gain motivates

systematic attacks on security schemes and implementations. Similarly the fear of

failing to fulfil contracts requiring some quality of service, or indirect monetary loss

due to soiled corporate reputation, has motivated companies to submit complex designs

like telecommunication switches or processor chips for formal analysis.

Now it is finally time to consider the thesis – what is its contribution?

To summarise, for a few years now the members of the formal design techniques

group at the Swedish Institute of Computer Science have been building a framework

for conducting formal arguments about programs written in the ERLANG [AVWW96]

programming language.

The framework consists of four parts. First, a formal semantics for ERLANG has

been developed: the behaviour of each language construct is described formally by

indicating how the state of a program changes due to the execution of the language

constructs, and what effects on the environment this has.

1.1 Formal Reasoning about Open Distributed Systems 3

Next we have developed a logic for specifying the behaviour of a program. The

specification logic captures some desirable properties of programs, such as the ques-

tion whether a given program will always terminate its execution. The claim that an

ERLANG program s has the property expressed by a formula φ of the specification

logic is represented as the statement s : φ.

The third part of the framework, the proof system, consists of a small set of rules

that permit us to formally prove such statements. The claim s : φ above is represented

in the proof system in the sequent Γ ⊢ s : φ, with the intuitive meaning that if all the

assumptions in Γ (a sequence of statements about variables in s or φ) are true, then

the claim s : φ can be derived in the proof system. Most of the proof rules are rather

simple. Consider for instance a slightly simplified rule for introducing a conjunction:

∧R

Γ ⊢ φ1 Γ ⊢ φ2

Γ ⊢ φ1 ∧ φ2

The way we typically read this rule in this thesis is bottom-up: to prove that the as-

sumptions in Γ imply the formula φ1 ∧ φ2 it suffices to show separately that Γ implies

φ1 and to show that Γ implies φ2. The most complicated rules of the proof system

result, as is typically the case, from the treatment of recursive program behaviour.

The proof system together with the operational semantics for ERLANG have been

implemented in a software tool, a so called proof assistant. The tool helps us to check

that proof steps are applied correctly, and can in many situations suggest a suitable

proof rule that will make progress in the task of finding a proof. Reasoning on the level

of the rule for conjunction above quickly becomes very tedious. To counter this, the

tool offers a number of high-level proof rules that can collapse such tiny proof steps

into larger proof steps.

Finally, though not part of the framework per se, but an important indication of its

usefulness, we present a number of case studies that demonstrate the verification of

properties of ERLANG programs.

1.1 Formal Reasoning about Open Distributed Systems

Here the foundation for each of the parts of the framework from the fields of soft-

ware engineering or computer science is considered briefly; an extended discussion on

related work is included in Chapter 7.

1.1.1 Open Distributed Systems and ERLANG

A central feature of open distributed systems as opposed to concurrent systems in gen-

eral is their reliance on modularity. Large-scale open distributed systems, for instance

in telecommunication applications, must accommodate complex functionality such as

dynamic addition of new components, modification of interconnection structure, and

replacement of existing components without affecting overall system behaviour ad-

versely. To this effect it is important that component interfaces are clearly defined, and

4 Chapter 1. Introduction

that systems can be put together relying only on component behaviour along these in-

terfaces. That is, behaviour specification, and hence verification, needs to be parametric

on subcomponents.

The programming platform considered in the thesis, i.e., ERLANG/OTP [Tor97] is

a good representative of a class of concurrent languages that have adequate support

for programming distributed applications; a second prominent member is Java together

with its supporting libraries.

The basis of such a platform are the building blocks for concurrent behaviour, e.g.,

processes and threads, or a notion of concurrent objects. Such concurrent entities

must be able to coordinate their activities; popular mechanisms for achieving this are

semaphores, shared memory, remote method calls, or asynchronous message passing.

Frequently a platform provides support for implicitly or explicitly grouping concur-

rently executing entities into more complex structures such as process groups, rings

of processes or hypercubes. Further, in a distributed computing environment failures

do happen, and applications with demands on constant availability need to take such

failures into account. As a consequence, a good platform provides adequate support for

detecting faults and the means to implement graceful recovery procedures. Like large

software systems in general, open distributed systems are usually built from libraries

of software components.

Although we focus exclusively on ERLANG in this thesis the majority of the results,

excluding the language specific parts of the formal semantics, translate directly into

results for other comparable platforms.

ERLANG

The ERLANG language was developed at Ericsson’s Computer Science Laboratory dur-

ing the 1980’s [Arm97], and is at its core a conventional functional programming lan-

guage, extended with a notion of processes and primitives for message passing.

Compared with other functional programming languages ERLANG lacks a few fea-

tures often considered essential. There is for example no static type system – programs

can fail at runtime due to trivial typing mistakes, though several type systems have been

proposed [MW97, Lin96]. A second example is the lack of a proper lambda abstrac-

tion construct in early versions of ERLANG, function abstraction was by name only.

However, later releases of ERLANG implementations have corrected this omission.

On the other hand, the language provides benefits seldom found in competing lan-

guages such as support for distribution, error recovery and hot code upgrade. In ad-

dition there are a number of high-quality libraries and tools available which provide

support for many aspects of developing and maintaining large telecommunications ap-

plications such as a number of software patterns for programming client-server appli-

cations, a CORBA object request broker (ORB), a distributed database manager, and

so on.

The language has been applied in a number of large development projects at Eric-

sson, with a generally very successful outcome. Experiences from the development of

a state-of-the-art high-speed ATM switch [BR98] indicate that compared to an imple-

mentation in C or C++, the code size for an equivalent ERLANG implementation is at

1.1 Formal Reasoning about Open Distributed Systems 5

least four times smaller [Wig01]. In addition, the number of errors is smaller with at

least a factor of four. An overview of the development, use, and promotion of ERLANG

inside Ericsson can be found in Däcker [Däc00].

From the point of view of proving properties about programs the ERLANG language

contains features that pose problems for many verification methods based on explicitly

enumerating all the states of the program under study. Problematic features include

potentially unbounded data structures, processes that can be spawned at any moment,

and that communicate with each other over potentially unbounded message queues.

Semantics of Open Distributed Systems

To reason in a formal fashion about the behaviour of an open distributed system a

formal semantics of the design language in which the system is described is needed.

This can be done in different styles, depending on the intended style of reasoning, see

Chapter 7 for an overview. Our methodology is mainly tailored to operational seman-

tics. Operational semantics are usually presented by transition rules involving labelled

transitions between structured states [Plo81]. A natural approach to handling the dif-

ferent conceptual layers of entities in a complex language is to organise the semantics

hierarchically using different sets of transition labels at each layer, and extending at

each layer the structure of the state with new components as needed.

This hierarchical approach to operational semantics is adopted in our formalisation

of ERLANG. There are two levels, one for evaluation of functional expressions and

another for formalising the concurrency and communication aspects of the language.

The evaluation of a functional expression is defined in a transition relation that does not

depend on the state of the process that executes the expression. On the expression level

of the semantics the main concerns are to regulate subexpression evaluation ordering

(eager, left-to-right evaluation of subexpression) and pattern matching (ERLANG has

a somewhat unusual binding strategy; see Chapter 3 for details). As an example, the

transition pid!v
pid!v
−−−−→ v is enabled from any send expression pid!v such that the

first and second arguments of the send operator “!” have been evaluated to a process

identifier pid and a value v respectively. The resulting expression is the value v, and

the side effect of its computation, the sending of the value v to the process with process

identifier pid, is represented by the expression action pid!v on top of the arrow.

On the second level of the operational semantics concurrency aspects of the lan-

guage such as process spawning and process communication are defined in a transition

relation on ERLANG systems. Roughly, a system is a set of processes, where each

process is a triple containing an expression being evaluated, a process identifier, and

a message queue. However, borrowing from process algebra, we introduce a special

parallel composition operator in the language instead of reasoning about sets of pro-

cesses. While communication in ERLANG is asynchronous the operational semantics

implements a synchronous communication scheme. Asynchronicity is recovered from

the observation that a process can never block any input to the queue. A further con-

cern on the level of systems is the assignment of process identifiers to processes, and

the knowledge of these identifiers among other processes. In a sense a pid fills the

6 Chapter 1. Introduction

same role as a name in the π-calculus: unless a process is explicitly told about a name

(pid) it should not know it or be able to retrieve it. However, because ERLANG is a

real programming language with real implementation trade-offs there actually exists a

built-in function that returns all the process identifiers in use. In this thesis therefore

the only guarantee is that unique pids are assigned to processes.

Unusually for a programming language, if not for an operating system, ERLANG

provides an explicit mechanism for recovering from abnormal process termination via

the notion of bidirectional links between processes, over which process termination

messages are sent. In the system semantics these links are modelled to permit reasoning

about error recovery procedures.

The semantics developed for ERLANG is small step: even minute details in the

computation of a functional expression or a system are considered as evaluation steps,

and consecutive steps are not collapsed. The reason for this is that the treatment of

side effects in such a semantics is particularly easy, whereas the drawback is that the

state space in a verification can grow dramatically. Although not properly covered

in this thesis, the solution is to factor out reasoning about side-effect free (e.g., non-

communicating) ERLANG expressions and to treat them on the level of the proof system

using the standard machinery of post- and pre-conditions [GC00].

1.1.2 The Specification Language

Reasoning about complex systems requires compositional reasoning, i.e., the capability

to reduce arguments about the behaviour of a compound entity to arguments about the

behaviours of its parts. To support compositional reasoning about ERLANG, a specifi-

cation language should capture the labelled transitions at each layer of the transitional

semantics. Further, since the behaviour of programs crucially depend on computations

over data, the specification language has to be powerful enough to permit the definition

of general predicates over various data domains.

As a result of these concerns our specification language is, on the syntactic and

superficial level, a mix of two traditions: many-sorted first-order logic for describing

data, and the modal µ-calculus[Par70, Koz83] for describing program behaviour. In

their respective domains these logics have proved very successful, and there is a wealth

of knowledge on how to code various correctness properties. However on a deeper level

the foundation for our specification language is simply many-sorted first-order logic

with equality, and with explicit fixed-point operators (the greatest fixed point νX.φ
and the least fixed point µX.φ). In this logic all aspects of semantics and specifications

are represented.

The transition relations s
α
−→ s′ representing the semantics of ERLANG are encoded

as recursive predicates (using the least fixed-point operator) taking two program terms

and an action as parameters, all encoded in the underlying term language of the logic.

The box and diamond modalities of the µ-calculus are embedded by referring to the

transition relations, with the meaning that a structured state s satisfies formula 〈α〉Φ

if there is an α-derivative of s (i.e. a state s′ such that s
α
−→ s′ is a valid transition)

satisfying Φ, while s satisfies [α]Φ if all α-derivatives of s satisfy Φ. An alternative to

1.1 Formal Reasoning about Open Distributed Systems 7

this treatment which is explored in the proof assistant tool for reasons of efficiency, is

to simply postulate program transitions as axiom proof rules.

Having access to the full power of first-order logic with equality in the specification

language, also for conducting arguments about program terms, makes it possible to

define correctness properties that consider both the actions of a program and the states

encountered in a computation. For instance a number of useful state predicates are

easily coded to characterise structured states.

Recursive program behaviour is described through use of fixed point operators.

Roughly speaking, least fixed-point formulas µX.φ express eventuality properties,

while greatest fixed-point formulas νX.φ express invariant properties. Nesting of fixed

points allows complicated reactivity and fairness properties.

Some care is needed in implementing language specific reasoning principles. For

instance, although the ERLANG system composed of two processes p1 ‖ p2 and the

ERLANG system p2 ‖ p1 (both p1 and p2 are processes) have exactly the same set

of future behaviours there are formulas in the logic that can tell the systems apart by

considering their syntactic shape.

1.1.3 The Proof System

Verifying correctness properties of open distributed systems written in ERLANG re-

quires reasoning about their interface behaviour relativised by assumptions about cer-

tain system parameters. Technically, this is achieved by using a Gentzen–style proof

system, allowing free parameters to occur within the proof judgments. The judgments

are of the form Γ ⊢ ∆ where Γ and ∆ are sequences of assertions. A judgment is

deemed valid if, for any interpretation of the free variables, some assertion in ∆ is

valid whenever all assertions in Γ are valid. Parameters are simply variables ranging

over specific types of entities, such as messages, functions, or processes. For example,

the proof judgement X : Ψ ⊢ p(X) : Φ states that object p has property Φ provided

the parameter X of p satisfies property Ψ.

Apart from the treatment of recursion the proof system represents a rather standard

account of first-order logic. Below the two key properties, compositionality and the

treatment of recursive behaviour, are explained in further detail.

Compositionality

Suppose we want to show that r : φ where r has a component q, i.e., r = p{q/X}
where X is a parameter of p. The proof of r : φ can then be split into two parts by

introducing an assumption ψ on q, and proving separately that q : ψ and that if we may

assume X : ψ then p : φ follows. Technically we achieve this through a term-cut proof

rule of the shape:

Γ ⊢ q :Ψ, ∆ Γ, X :Ψ ⊢ p :Φ, ∆
Γ ⊢ p{q/X} :Φ, ∆

Technically this rule is derivable from a standard cut-rule, motivating the slo-

gan “Compositionality through cut introduction” as we argue, in contrast to Simp-

8 Chapter 1. Introduction

son [Sim95], that it is precisely the introduction, and not elimination of cuts from

proofs, that allow compositional reasonings.

The term-cut proof rule can be used to introduce compositional reasoning on dif-

ferent levels of ERLANG programs. Consider for instance the function level. Let the

predicate e : eval(v) mean that the expression e can evaluate to the value v without

causing side effects. A useful compositional proof rule derived from two applications

of the term-cut rule permits the replacement of the two parts of a cons cell with the

values they compute to.

Γ ⊢ e1 : eval(v1),∆

Γ ⊢ e2 : eval(v2),∆

Γ ⊢ [v1|v2] : eval(v),∆

Γ ⊢ [e1|e2] : eval(v),∆

On the process level the decomposition of a parallel composition is frequently essential

to treat process spawning. The decomposition step can be accomplished with another

derived variant of the term-cut rule (parallel composition cut):

Γ ⊢ s1 : ψ1,∆

Γ ⊢ s2 : ψ2,∆

Γ, X : ψ1, Y : ψ2 ⊢ X ‖ Y : φ,∆

Γ ⊢ s1 ‖ s2 : φ,∆

where the proof obligation to establish that the system s1 ‖ s2 satisfies φ is replaced

by the obligations to establish that s1 satisfy ψ1, and s2 satisfy ψ2 respectively, and

that any systems X and Y that satisfy ψ1 and ψ2 satisfy φ when they are composed.

The essential difficulty when applying such a proof rule is to come up with good for-

mulas ψ1 and ψ2 that suffice to establish φ. We will see quite a few examples of such

reasoning in Chapter 6.

Since the box and diamond modalities of the logic are derived constructs, im-

plemented in terms of the transition relations, there is no need to include them on

the basic level of the proof system rules for treating combinations of program con-

struct and modalities, in contrast to many other approaches to compositional verifi-

cation [Sti85, Win90, ASW94]. For instance the rule below for input under parallel

composition, on the system level of the semantics, is derivable:

Γ, S1 : φ1 ⊢ S1 ‖ s2 : φ,∆

Γ, s1 : 〈pid?v〉φ1 ⊢ s1 ‖ s2 : 〈pid?v〉φ,∆

The rule expresses that if a component system in a parallel composition can take an

input step, then so can the parallel composition.

Recursion

The means of arguing about recursive program behaviour in the proof system is, tech-

nically, through a scheme for well-founded induction on ordinals.

1.1 Formal Reasoning about Open Distributed Systems 9

Before considering the details of the scheme itself, let us examine a few instances of

recursive program behaviour and typical correctness properties. Clearly any invocation

of the ERLANG function loop below will never terminate

loop() -> loop().

On the other hand, the function isProperList below always terminates since

ERLANG has no circular lists.

isProperList([]) -> true;

isProperList([Head|Tail]) -> isProperList(Tail).

We can capture their respective behaviours with the fixed point formula

φ ≡ νX.〈τ〉X

expressing non-terminating behaviour and

ψ ≡ µX.[τ]X

expressing terminating behaviour. Here τ is the expression computation step action.

Intuitively the first property expresses that the possibility to perform a computation

step is always true. The second property expresses that any program can only take a

finite number of consecutive computation steps.

Suppose we set out to prove ⊢ loop() : φ, after deriving one computation step,

the original proof goal is again encountered. It is clear that these proof steps can be

repeated indefinitely. A number of conditions for ensuring safe termination of proofs

at this point, since a greatest fixed point has been unfolded, have been proposed: a con-

stant scheme in Stirling and Walker [SW91] and a tagging scheme in Winskel [Win91].

In this thesis, and earlier in Dam et al. [DFG98b], an explicit fixed point induction

scheme is used for handling a greatest fixed point on the right-hand side of the turn-

stile. First, the fixed point is approximated; we commit to proving the formula for an

unknown ordinal in the new proof state

⊢ loop() : φκ

where φκ means approximating φ κ times. Unfolding the approximated fixed point

gives rise to a new ordinal variable κ′ and an inequation κ′ < κ on the left-hand side.

Then, eventually, the proof state

κ′ < κ ⊢ loop() : φκ′

is reached. Thus ⊢ loop() : φκ is proved if κ′ < κ ⊢ loop() : φκ′

can be.

Clearly these proof steps can be repeated an infinite number of times, causing the chain

of decreasing ordinals begun by the inequation κ′ < κ to also grow infinitely long.

However, since there exists no such infinite decreasing chain of ordinals, eventually

the sequent

Γ ⊢ loop() : φ0

10 Chapter 1. Introduction

must be reached, and this sequent is trivially true because φ0 is true for any greatest

fixed point formula φ.

The proof structure indicated above corresponds to a co-inductive proof

scheme [MT91], which is generally needed when reasoning about entities of a non-

well-founded nature such as non-terminating processes or infinite streams.

In Andersen [And94] least fixed points are handled through an infinitary rule that

moves part of the reasoning outside the proof system itself. In this thesis, however, the

dual nature of greatest and least fixed points is explored leading to a rule for handling a

least fixed to the left of the turnstile that is completely analogous to the rule for dealing

with greatest fixed points to the right. Consider the example with isProperList

above, and the proof goal

⊢ isProperList(L) : ψ

where L is a proper list. The obvious reason why any application of the function will

terminate is that its argument list will decrease in structural complexity, motivating

structural induction as the obvious proof technique. In our proof system the struc-

tural induction argument is mimicked by making explicit the structure of a proper list

through the introduction of a parametric least fixed point definition as an assumption

γ ≡ µX. (λL. (L = []) ∨ (∃H,T.L = [H|T] ∧ (X T)))

which expresses that a proper list is either empty or it consists of a head and tail, and

the tail is itself a proper list. Furthermore, due to the use of the least fixed point, there

can be only a finite number of tail cells. The new proof goal becomes

(γ L) ⊢ isProperList(L) : ψ

After approximating γ, and unfolding γ and ψ, eventually the proof goal

κ′ < κ,
(
γκ′

T
)
⊢ isProperList(T) : ψ

is reached. The same reasoning that motivated discharge of the greatest fixed point to

the right of the turnstile is valid here also. Clearly the chain of decreasing ordinals will

grow only until γ0 T ′ for some tail T ′ is reached. But since the ordinal 0 decorates a

least-fixed point it cannot be valid, and thus the assumption is wrong, and the sequent

has been proved. This proof structure corresponds to an inductive proof scheme. Com-

plications arise in these proof schemes because of conflicting fixed points; details are

elaborated in Section 4.5.3.

1.1.4 The Proof Assistant

The proof assistant tool called the “ERLANG verification tool”, abbreviated EVT, im-

plements the first-order specification logic, embeds ERLANG syntax and semantics into

the first-order logic component, and provides a core set of proof rules. The underlying

proof structure is a graph; to implement the fixed point induction rule it is necessary to

remember the history of proof nodes in a proof.

1.2 Overview of the Thesis 11

The proof assistant implements a number of standard features of other proof as-

sistants, more information can be found in the documentation of COQ [DFH+93],

PVS [ORR+96] or Isabelle [Pau94]: lemmas, a subsumption rule, tactics and tacticals

implemented in Standard ML for high-level proof rules. A number of such high-level

rules are available; one example is a set of tactics for deriving the next states from a

transition relation.

An experimental graphical user interface is available that implements a number of

useful features such as the ability to suggest the next proof rule to try. Proof graphs can

be visualized using the DaVinci graph editor [FW94].

1.2 Overview of the Thesis

Chapter 2 defines the specification logic that is used to formalise correctness properties

of ERLANG programs and to encode the operational semantics of ERLANG. Chapter 3

starts with an informal overview of the ERLANG language. Then a formal semantics

for ERLANG is developed, and a number of results about the semantics are established.

The following chapter represents the core of the framework, presenting the formal

proof rules that are used to reason about ERLANG code, and proving that these rules

represent sound reasoning principles. In addition the chapter covers the embedding of

the ERLANG semantics into the proof system. Next, in the short Chapter 5, the proof as-

sistant tool for reasoning about ERLANG code is described. To evaluate the framework

a number of case studies are reported in Chapter 6; these range from small examples

mainly intended to illustrate the framework such as the verification of a quicksort al-

gorithm to more ambitious studies such as the compositional verification of a typical

client-server application. Chapter 7 contains a short survey of related approaches. Fi-

nally, the results are summarised in Chapter 8, which also contains a discussion on a

number of topics remaining for future investigation.

Parts of this thesis are based on material from earlier articles. These are, in chrono-

logical order of writing:

• Paper 1: Formal verification of a leader election protocol in process algebra by

Lars-Åke Fredlund, Jan Friso Groote and Henri Korver in Theoretical Computer

Science, volume 177(2), 1995.

This paper describes the verification of a leader election protocol in the process

algebra µCRL, using equational reasoning. The proof has not been formalised in

a theorem proving tool, although support exists in the COQ proof assistant tool

for formalising such proofs. This paper has been included in the thesis mainly to

serve as a comparison with a related effort in our framework.

• Paper 2: Towards Parametric Verification of Open Distributed Systems by Mads

Dam, Lars-Åke Fredlund and Dilian Gurov in Compositionality: The Significant

Difference, LNCS 1536, Springer Verlag 1998.

This is the first paper that accurately describes our approach to the verification

of ERLANG code, and the underlying proof system.

12 Chapter 1. Introduction

• Paper 3: System Description: Verification of Distributed ERLANG Programs by

Thomas Arts, Mads Dam, Lars-Åke Fredlund and Dilian Gurov in Proceedings

of CADE’98 published in LNAI 1421, Springer Verlag 1998.

This is a short paper that describes a previous version of the proof assistant tool.

• Paper 4: A Framework for Formal Reasoning about Open Distributed Systems

by Lars-Åke Fredlund and Dilian Gurov in Proceedings of ASIAN’99 published

in LNCS 1742, Springer Verlag 1998.

This report is, in a sense, a broad overview of the framework effort. The set

example studied in Section 6.5 was first covered in this paper.

• Paper 5: A Tool for Verifying Software Written in ERLANG by Thomas Arts,

Gennady Chugunov, Mads Dam, Lars-Åke Fredlund, Dilian Gurov and Thomas

Noll submitted to the journal on Software Tools for Technology Transfer (STTT),

2000.

This paper describes the current version of the proof assistant tool.

1.3 Contributions

The contributions of the overall approach documented in the thesis can be summarised

as follows.

The development of an operational semantics for a complex concurrent functional

programming language which cleanly separates the concerns of function evaluation

from issues of concurrency and communication represents a non-trivial achievement.

Further the design of a rich program logic for describing the behaviours and data part

of ERLANG code, on detailed levels, is a contribution to work on program logics.

The development of the proof system is crucial. Although it follows in the tradition

of earlier works the fixed point rules are considerably simplified, leading to a natural

statement of least fixed point arguments. Modal proof rules refer to the transition re-

lation, which provide the sole source of defining the meaning of language constructs.

This separation of concerns is shown to lead to a natural treatment of compositional

reasoning using standard proof rules. The combination of compositional reasoning

with a co-inductive proof scheme solves the problem of reasoning about possibly un-

bounded process spawning. Although the result is not surprising, the resulting proof

arguments are compact and clean.

A further achievement is the design and implementation of a prototype proof assis-

tant tool for the verification of non-trivial ERLANG code.

The set of non-trivial examples covered in the thesis illustrate the applicability of

the framework to ERLANG code of varying nature in a uniform and general manner: in

verification of classical functional programs, where the majority of reasoning is about

data, and in the verification of dynamic and partially open process networks of different

shapes, where the ability to perform compositional reasoning is crucial.

1.4 Personal Contributions 13

In summary, we have taken a real programming language and developed an intu-

itive operational semantics together with a specification language and a proof system.

Further the whole framework has been embedded in a proof assistant tool, and am-

ple support has been provided for higher-level reasoning about ERLANG programs,

something not previously achieved for concurrent programming languages. The final

argument is demonstrated by the case studies: it really is possible to use the framework

for reasoning about industrially relevant code.

1.4 Personal Contributions

Since much of the work reported in this thesis is part of a collaboration between re-

searchers primarily located at the Swedish Institute of Computer, a clarification of my

role in the effort is needed.

Below each chapter will be considered in turn, starting with the specification logic

(Chapter 2). The logic has been developed jointly by Mads Dam, Dilian Gurov and me

during the course of a number of papers. However, only in this thesis is the break with

the modal µ-calculus made explicit via the encoding of modalities in an underlying

logic.

In formulating the present ERLANG semantics, and in embedding the language

theory in our proof system and proof assistant, I have been largely responsible. Earlier

semantic accounts were jointly developed with Mads Dam and Dilian Gurov.

The handling of fixed points in the proof system is due to ideas originally put for-

ward by Mads Dam and later refined the paper [DFG98b] by Mads Dam, Dilian Gurov

and me. Contributions in that paper include significant simplifications of the conditions

for the discharge rule, and an improved proof, all achieved together with Dilian Gurov.

Other parts of the proof system were jointly developed. For instance, the correspon-

dence between modalities and transition relations due to an idea by Simpson [Sim95],

was first implemented for ERLANG in the EVT proof assistant, and later described for

CCS [DG00a]. In the present thesis the condition under which discharge is sound has

been made more explicit, these improvements are solely due to me.

The present EVT proof assistant was jointly developed by Dilian Gurov and me,

except for the graphical user interface which is due to Gennady Chugunov.

In each of the case studies reported in the thesis I have played a major part: the

billing agent reported in Section 6.4 (single contributor), the study on leader election

protocols in ERLANG reported in Section 6.7 (single contributor), leader election in

µCRL reported in Section 6.6 (shared work between co-authors), as well as numerous

smaller studies such as the Quick Sort example and the Set example (both shared with

different co-authors).

14 Chapter 1. Introduction

Chapter 2

Foundations

This chapter defines the specification logic in which properties of ERLANG programs

are formalised. Inspired by the modal µ-calculus [Par70, Koz83], it is a first-order

logic with equality where the usual modalities [α]φ and 〈α〉φ of Hennessy-Milner

Logic [HM80] are encoded. Explicit greatest and least fixed point operators permit the

definition of recursive predicates. Most of the material presented here is well known

from other works [Koz83, Sti92] so the presentation will be brief.

As a basis the standard machinery from set theory is imported, with standard nota-

tion. For instance, let P(S) denote the power set of a set S.

2.1 Terms and Sorts

To begin we recall the usual machinery of many-sorted signatures, sorts, and terms.

Definition 1 (Signatures). A signature Σ is a pair (S, F) consisting of

• A non-empty set S of sort names

• A set of function symbols F disjoint from S where each f ∈ F has a domain type

S∗ × S.

Function symbols with they domain type s, for some sort s, will be referred to as

constants. Given a signature Σ with a function symbol f of domain type s1 × . . . ×
sn × s, let domain(f) denote s1 × . . .× sn and let range(f) denote s.

Definition 2 (Terms). Let Σ be a signature (S, F), and let X be an S-indexed family

of sets Xs such that each set contains a countably infinite number of variables of sort

s ∈ S, disjoint from functions and sorts in Σ. The set T (Σ, X)s of all terms of sort

s ∈ S over Σ and X is inductively defined:

• Xs ⊆ T (Σ, X)s

• For all function symbols f of sort s1, . . . , sn, s and all terms t1, . . . , tn such that

for all 1 ≤ i ≤ n, ti ∈ T (Σ, X)si
, then f(t1, . . . , tn) ∈ T (Σ, X)s.

15

16 Chapter 2. Foundations

In the following we will use the expressions “sorts” and “types” interchangeably.

Conventions In the thesis a number of equality symbols will occur. Functions will

be defined using definitional equality
∆
= . Syntactical equality of terms will be denoted

with “≡”, whereas the semantical notion of equality, on the level of the proof system we

develop, will be denoted with “=”. The basic conventions about how various symbols

are depicted are:

• Concrete names of sorts are written in sans serif and will always start with a

lowercase letter, e.g., nat.

• Variables of a given sort will be written in italics, and have an initial uppercase

letter, e.g., N .

• Meta-variables, e.g., the symbol n in the statement “for all natural numbers n”

over a given sort are written in italics and commence with a lowercase letter,

unless the meta-variable ranges only over variables of a particular sort. In the

latter case the meta-variable will have an initial uppercase letter. An example

of the variable convention is illustrated by the statement “let V range over the

ERLANG variables”.

Definition 3 (Free Variables). The set of free variables fv(t) in a term t is defined

inductively:

• if t ∈ Xs for some sort s then fv(t)
∆
= {t}

• if t ≡ f(t1, . . . , tn) then fv(t)
∆
= fv(t1) ∪ . . . ∪ fv(tn)

A closed term has no free variables.

A Notation for Signatures As a large number of sorts will be used to provide a

meaning to ERLANG constructs, a clean and compact syntax is needed to represent

signatures. Henceforth a signature will usually be written in in a more stylised format,

which will be introduced through simple examples. A signature Σ can be depicted by

listing its sorts, and for each sort s show the functions that have the sort as range. The

concrete format is demonstrated by an example. A sort named s such that the functions

f1, . . . , fk are the only functions with s as range, is depicted together with its functions

as shown below:

type s
∆
= f1 of s11, . . . , s1n | . . . | fn of sk1, . . . , skn

In case the domain of a function is empty then the keyword of can be omitted. A

concrete example is represented by the natural numbers:

type nat
∆
= 0 | +1 of nat

We permit terms of well-known sorts such as the natural numbers to be written in

an infix syntax. For instance, the successor of the natural number 0 can be written 0+1.

2.2 Syntax of the Logic 17

Next the notion of a sort consisting of lists of elements, and tuples, are supported

through encodings. The sort name slist, with functions []s and [|]s corresponding to

the empty list and a cons cell, refer to the sort

type slist
∆
= []s | [|]s of s, slist

A tuple sort s1 × . . .× sn refers to a sort:

type ss1×...×sn

∆
= cs1×...×sn

As a convention the empty list, for a sort s, will usually be written simply [], and a

cons cell [|]s(t1, t2) as [t1|t2]. A tuple constructor cs1×s2
will typically be written

〈t1, t2〉 unless the notation is ambiguous.

Predefined Sorts In the following we presuppose a number of sorts. These are the

natural number data type nat from above, and a sort int
∆
= int of nat, nat which is

intended to represent the integers such that an integer is represented by the difference

between its natural number components. Further assume a sort atom which contains

a countable number of functions of zero arity corresponding to symbols built from

characters, e.g., “a”, “b”, “abc”.

2.2 Syntax of the Logic

Assume a set of predicate variables and let U, V range over these. Further assume a set

of variables ranging over ordinals, let κ range over these variables. Let β range over

the ordinals 0, 1, . . . , ω, ω + 1, . . . , ω + ω,
In defining the syntax of formulas let the meta variables φ, ψ range over the formu-

las, t range over the terms, X,Y over the term variables, s range over the sort names.

To indicate that a meta variable X ranges over terms or variables of a sort s a subscript

notation Xnat will be used.

Types of Formulas The formulas in the logic are considered to have types. Let prop

be a set containing having two elements, {tt} and the empty set {}. The formula types,

ranged over by sφ, are then the least set satisfying the construction rules:

• prop is a formula type

• if s is a sort and sφ is a formula type, then s→ sφ is a formula type.

A formula of type s→ sφ for some sort s and formula type sφ will be referred to as

an abstraction. The arity of a formula type is defined in the obvious way: arity(prop) =
0 and arity(s→ sφ) = 1 + arity(sφ).

Definition 4. The formulas of the logic considered in this text are defined recursively

as the least set satisfying the syntactic construction rules below:

18 Chapter 2. Foundations

• if t1 and t2 are terms then t1 = t2 is a formula

• if φ1 and φ2 are formulas then φ1 ∨ φ2 is a formula

• if φ is a formula then ¬φ is a formula

• if φ is a formula, X is a term variable and s is a sort name then ∃X : s.φ and

λX : s.φ are formulas

• if φ is a formula and t is a term then φ t is a formula

• if φ is a formula, U is a predicate variable and β is an ordinal then µU : sφ.φ
and the approximated least fixed point (µU : sφ.φ)β are formulas

• A predicate variable U is a formula

All the constructs are standard. Types are added to the fixed point construct to

clarify the denotational semantics of formulas. The binding powers of the connectives

is, from stronger to weaker, negation, disjunction, quantification and the least fixed

point. That is, the least fixed point operator extend as far to the right as possible in a

formula. As usual parentheses will be used to limit the scope of an operator.

Definition 5. An occurrence of a predicate variable is positive if it occurs in the scope

of an even number of negation symbols.

In the standard manner a fixed point formula µU : sφ.φ can be formed only when

all occurrences of U in φ are positive, to ensure that the semantics of φ is monotone in

U so that a fixed point of the corresponding function exists.

Let tφ range over both the terms and the formulas, and let Xφ range over both the

term variables and the predicate variables. We assume standard substitution function

where a term t′ replaces all occurrences of a variable X in t denoted by t{t′/X}.

Further we assume the standard capture avoiding substitution ψ{tφ/Xφ} of a term (or

formula) tφ for a term variable (predicate variable) Xφ, in a formula φ.

Table 2.1 defines a number of formula shorthands. Note for instance that the great-

est fixed point operator is defined in terms of the least fixed point operator. Note also

that assertions t : φ simply abbreviate applications in our logic. A sequence of lambda

abstractions or quantifications X1 : s, . . . , Xn : s all over the same sort s can be ab-

breviated X1, . . . , Xn : s. Frequently the type of a fixed point will be omitted, e.g.,

µU : sφ.ψ will normally be written as µU : ψ.

The binding power of the additional operators are the expected ones, i.e., conjunc-

tion (∧) has the same precedence as disjunction (∨) and implication binds weaker than

both but stronger than the quantifiers ∃ and ∀. The assertion t : φ is the operator with

the weakest binding power.

2.2 Syntax of the Logic 19

t1 6= t2
∆
= ¬ (t1 = t2)

true
∆
= φ ∨ ¬φ (for some formula φ of type prop)

false
∆
= ¬true

φ1 ∧ φ2
∆
= ¬ (¬φ1 ∨ ¬φ2)

φ1 ⇒ φ2
∆
= ¬φ1 ∨ φ2

∀X : s.φ
∆
= ¬∃X : s.¬φ

νU : sφ.φ
∆
= ¬µU : sφ.¬(φ{¬X/X})

t : φ
∆
= φ t

λX1 : s1, . . . , Xn : sn.φ
∆
= λX1 : s1.λXn : sn.φ

∃X1 : s1, . . . , Xn : sn.φ
∆
= ∃X1 : s1.∃Xn : sn.φ

Table 2.1: Formula Abbreviations

Well-typed Formulas Not all formulas that can be constructed using Definition 4

will be considered in the thesis. In the following attention is restricted to the “well-

typed” formulas. These are the formulas ψ that can be provided with a formula type

sφ, sorts for free value variables LV , and formula types for predicate variables RV ,

such that the proof judgement RV,LV ⊢ ψ : sφ is provable using the type checking

rules in Definition 6. Concretely RV maps free predicate variables in ψ to formula

types and LV maps free term variables in ψ to sorts. Adding a mapping X 7→ s, or

replacing an old mapping, in LV (or RV) is denoted with LV [X 7→ s].

Definition 6. A formula ψ conforms to a type sφ if RV,LV ⊢ ψ : sφ is provable using

the type checking rules in Table 2.2 for some predicate and term variable mappings

RV and LV .

Note that the type checking rules refer to the type checking rules of terms, which

are assumed. Further note that since term variables already have types, the mapping

LV is not required. In fact the type of any formula is unique. However here we already

anticipate the introduction of subtyping through type membership predicates in the

logic. Often, when they have no effect, the mappings RV and LV will not be written

out.

As formulas can trivially conform to different types only if these types have the

same arity (if LV ⊢ ψ : sφ1 and LV ⊢ ψ : sφ2 then arity(sφ1) = arity(sφ2)), we

will in the following refer to the arity of a formula ψ as arity(ψ).

Example 1 (Formulas and Type Checking). The type checking rules are illustrated in

20 Chapter 2. Foundations

LV ⊢ t1 : s LV ⊢ t2 : s

RV,LV ⊢ t1 = t2 : prop

RV,LV ⊢ ψ1 : prop RV,LV ⊢ ψ2 : prop

RV,LV ⊢ ψ1 ∨ ψ2 : prop

RV,LV ⊢ ψ : prop

RV,LV ⊢ ¬ψ : prop

RV,LV [X 7→ s] ⊢ ψ : prop

RV,LV ⊢ ∃X : s.ψ : prop

RV,LV [X 7→ s] ⊢ ψ : sφ

RV,LV ⊢ λX : s.ψ : s→ sφ

RV,LV ⊢ ψ : s→ sφ LV ⊢ t : s

RV,LV ⊢ ψ t : sφ

RV [U 7→ sφ], LV ⊢ ψ : sφ

RV,LV ⊢ µU : sφ.ψ : sφ

–

RV [U 7→ sφ], LV ⊢ U : sφ

Table 2.2: Type Checking of Formulas

2.3 Semantics 21

a small example by proving the type judgement:

−
[X 7→ nat] ⊢ X : nat

−
[X 7→ nat] ⊢ X : nat

[X 7→ nat] ⊢ X = X : prop

⊢ λX : nat.X = X : nat → prop ⊢ 0 : nat

⊢ (λX : nat.X = X) 0 : prop

2.3 Semantics

The semantics of a formula is defined as an element of the set prop if the formula is

not an abstraction, and otherwise as a curried function that when all arguments are sup-

plied, returns an element of the set prop. An ordering (⊑) is defined on the denotations:

Definition 7. If B1, B2 ∈ prop let B1 ⊑ B2 denote B1 ⊆ B2. If f1, f2 ∈ [s→ sφ]
(f1, f2 are functions with domain s and range sφ) let f1 ⊑ f2 denote the condition

that for any element t ∈ s the inclusion f1 t ⊑ f2 t holds. If F ⊆ [s→ sφ] then define

the upper (⊔) and lower bounds (⊓) of the set F as:

⊔F
∆
= λX : s.

⊔
f∈F f X

⊓F
∆
= λX : s.

d
f∈F f X

Definition 8 (Semantics of Formulas, Valuations). The semantics of formulas is de-

fined in Table 2.3, relative to a valuation ρ mapping predicate and term variables to

appropriate values.

The syntax ρ[φ/U] expresses a new valuation that coincides with ρ except that the

predicate variable U is mapped to φ. Ordinal variables and term variables can be anal-

ogously remapped. As the intended model in this thesis is countable the quantification

over ordinals in the fixed point definition clause can be restricted to countable ordinals.

To ensure that Definition 8 is meaningful a few observations are required.

Lemma 1. The semantics of the logic constructs is monotone with respect to a predi-

cate variable U and the valuation ρ.

Proof. The proof is simple. We consider below the case for disjunction and negation.

Consider first the operators =, ∨ and ∃, application and abstraction which are all

easily handled by induction over the structure of the formula. Examine for instance

the case ‖φ1 ∨ φ2 ‖ρ. From the induction hypothesis we know that (for i ∈ {1, 2})

‖φi ‖ρ ⊂ ‖φi ‖ρ′ where ρ(U) ⊏ ρ′(U) and otherwise the valuations are identical. But

clearly then ‖φ1 ∨ φ2 ‖ρ′ ⊐ ‖φ1 ∨ φ2 ‖ρ.

For negation the previously given condition that any fixed point variable U may

only occur under an even number of negations (positively), is sufficient to ensure mono-

tonicity.

22 Chapter 2. Foundations

‖ t1 = t2 ‖ρ
∆
= if t1ρ = t2ρ then {tt} else ∅

‖φ1 ∨ φ2 ‖ρ
∆
= ‖φ1 ‖ρ ∪ ‖φ2 ‖ρ

‖¬φ‖ρ
∆
= {tt} − ‖φ‖ρ

‖∃Y : s.φ‖ρ
∆
=

⋃
v∈s

(
‖φ‖ρ[v/Y]

)

‖λY : s.φ‖ρ
∆
= λX : s.‖φ‖ρ[X/Y]

‖φ t‖ρ
∆
= ‖φ‖ρ ‖ t‖ρ

‖µU : sφ.φ‖ρ
∆
=

⋃
β ‖(µU : sφ.φ)

κ ‖ρ[β/κ], β any ordinal

‖(µU : sφ.φ)
κ ‖ρ

∆
=

λX1 : s1.λXn : sn.∅

if ρ[κ] = 0 and sφ = s1 → . . . → sn → prop

‖φ‖
ρ[‖(µU : sφ.φ)

κ ‖ρ[β/κ]/U]

if ρ[κ] = β + 1

⋃
β

{
‖(µU : sφ.φ)

κ ‖ρ[β/κ] | β < ρ[κ]
}

if ρ[κ] is a limit ordinal

‖U ‖ρ
∆
= ρ(U)

Table 2.3: The Denotation of Formulas

2.3 Semantics 23

Since the semantics of fixed point definitions is monotone, and since the functions

of a certain arity forms a complete lattice, then according to Tarski’s fixed point theo-

rem [Tar55] the least fixed point µV : sφ‖φ‖ρ[V/U] must exists, as well as a greatest

fixed point.

Theorem 1. ‖µU : sφ.φ‖ρ is the least fixed point of the operator λU : sφ.‖φ‖ρ and

‖µU : sφ.φ‖ρ =
d{

S | ‖φ‖ρ[S/X] ⊑ S
}

‖νU : sφ.φ‖ρ =
⊔{

S | S ⊑ ‖φ‖ρ[S/X]

}

Proof. Follows also from Knaster-Tarski’s fixed point theorem.

Proposition 1. Suppose that β ≤ β′, then

‖(µU : sφ.φ)β ‖ρ ⊑ ‖(µU : sφ.φ)β′

‖ρ

and

‖(νU : sφ.φ)β′

‖ρ ⊑ ‖(νU : sφ.φ)β ‖ρ

Proof. Follows by well-founded induction.

Definition 9. The closure ordinal κ of an operator λU : sφ.‖φ‖ρ is the least ordinal

κ such that

‖(µU : sφ.φ)
κ ‖ρ = ‖(µU : sφ.φ)

κ+1 ‖ρ

Now that the meaning of a formula is clear, it is time to extend the notion of types

with subtyping.

Definition 10. The subtype s of a type s′, given by an abstraction φ of formula type

s′ → prop consists of the closed terms t ∈ T (Σ, X)s′ such that under any valuation ρ,

‖φ t‖ρ 6= ∅. This is written s′
∆
= {t : s | φ t}.

We require that any such subtype set is non-empty to ensure soundness of the proof

system introduced in Chapter 4.

Example 2 (Formula Example: The Even Natural Numbers). To exemplify the fixed

point formula notation a few well-known properties of the natural numbers are formu-

lated in the logic. As before a type nat is assumed with zero 0 and successor constructor

+1.

The type of the even natural numbers can easily be expressed:

µU : sφ.λN : nat.N = 0 ∨ ∃N ′ : nat.N = N ′ + 2 ∧ U N ′

where N ′ + 2 abbreviates (N ′ + 1) + 1. In the following we let ψ abbreviate λN :
nat.N = 0 ∨ ∃N ′ : nat.N = N ′ + 2 ∧ U N ′.

24 Chapter 2. Foundations

To illustrate the semantics we prove, in an informal fashion, that the denotation of

the above fixed point is a function from the natural numbers to prop such that only the

even natural numbers are not mapped to the empty set.

‖µU : sφ.ψ‖ρ =
⋃

β

‖(µU : sφ.ψ)
κ ‖ρ[β/κ]

If β = 0 then by definition

‖(µU : sφ.ψ)
κ ‖ρ[0/κ] = λN : nat.∅

If β = n+ 1 for some natural number n > 0 and

‖(µU : sφ.ψ)
κ ‖nat

ρ[n/κ] = f ′

where f ′ is a total function from the natural numbers to the booleans then

‖(µU : sφ.ψ)
κ ‖nat

ρ[n+1/κ]

= λN : nat.

(if X = 0 then {tt} else ∅)

∪
⋃

N ′∈nat
((if N = N ′ + 2 then {tt} else ∅) ∩ f ′ N ′)

Thus if n = 1 then the denotation is λN : nat.if N = 0 then {tt} else ∅. If n = 2 then

the denotation is λN : nat.if N = 0 or N = 2 then {tt} else ∅. For the case n = n′+1
the denotation is a function that maps all even natural numbers up to (n− 1) ∗ 2 to the

set {tt}. For the first limit ordinal ω, the denotation is

⋃

n∈nat

{
‖(µU : sφ.µU : sφ.ψ)

κ ‖ρ[n/κ] | n < β
}

which is the function that maps every even natural number to the set {tt}. In addition,

the denotation for every ordinal β′ > ω is identical, so here ω is the closure ordinal.

Example 3 (Summation of Two Natural Numbers). The definition of summation of

two natural numbers is a bit more tedious:

µU.λX : nat.λY : nat.λZ : nat.

X = 0 ∧ Z = Y

∨ ∃X ′ : nat.∃Z ′ : nat.X = X ′ + 1 ∧ U X ′ Y Z ′ ∧ Z = Z ′ + 1

2.4 Logic Conventions

Next a number of notational niceties will be added to the logic.

2.4 Logic Conventions 25

2.4.1 Modalities

The usual necessity (“box”) and possibility (“diamond”) modalities of Hennessy-

Milner logic [HM80] are in our proof system derived. They abbreviate a formula re-

ferring to some transition fixed point predicate → such that the type of the predicate

is s→ s′ → s→ prop for some sorts s and s′. Examples of such predicates are given

in Section 4.6. As usual applications of the transition predicate to its three arguments

t, α, t′ will be written in the format t
α
−→ t′.

[α]φ
∆
= λX : s.∀X ′ : s.X

α
−→ X ′ ⇒ φ X ′

〈α〉φ
∆
= λX : s.∃X ′ : s.X

α
−→ X ′ ∧ φ X ′

It is required that the “action” α is in the closed terms of the sort s′. The binding power

of these modalities are stronger than disjunction but weaker than negation.

2.4.2 Formula definitions

The syntax for formulas is, as we have found during case studies, not very intuitive for

a person exposed to them for the first time. To counter this a number of abbreviations

are introduced below. First, formulas may be named, as in the definition name
∆
=φ,

and referred to later with their names. In addition the following abbreviations are

recognised:

• A definition on the form n : sφ ⇐ ψ, later referrable to by n, abbreviates the

formula µU : sφ.ψ{U/n}, where U is assumed to be free in ψ and ψ{N/n}
replaces n with U in ψ.

• A definition on the form n : sφ ⇒ ψ, later referrable to by n, abbreviates the

formula νU : sφ.ψ{U/n}. Thus the direction of the arrow, µ or ν, signifies a

least or a greatest fixed point.

• Any definition on the form n : sφ. ⇐ λX1 : s1, . . . , Xn : sn.ψ such that the

outermost operator in ψ is not a lambda abstraction, is considered to abbreviate

the formula n : s1 → . . . sn → sφ. ⇐ λX1 : s1, . . . , Xn : snψ (and vice versa

for the least fixed point). That is, abstracted variables may be omitted from the

type of a fixed point operator.

If the construct name names a fixed point formula ν.φ (or µ.φ) let nameκ refer to the

above fixed point approximated with κ. Further note that the order of listing such fixed

point definitions is relevant to determine nesting.

2.4.3 Lifting of Abstractions

Unfortunately the introduction of the modalities gives rise to rather ugly looking

formulas. For example, the classical looking formula 〈α〉true does not typecheck

since ⊢ true : s → prop is not provable for any sort s. Such a formula must

26 Chapter 2. Foundations

instead be written 〈α〉 (λX : s.true). Similarly [α] (〈α〉true ∧ 〈α〉〈α〉false) becomes

[α]λX : s. ((〈α〉λX : s.true) X ∧ (〈α〉〈α〉λX : s.false) X). To counter such ugli-

ness we permit abstractions to be silently lifted, or introduced, so that the syntax 〈α〉φ
and [α]φ abbreviates 〈α〉lift(φ) and [α]lift(φ) respectively, where lift is defined:

lift(t1 = t2) = λX : s.t1 = t2

lift(ψ1 ∨ ψ2) = λX : s.lift(ψ1) X ∨ lift(ψ2) X

lift(¬ψ) = λX : s.¬(lift(ψ) X)

lift(∃X ′ : S′.ψ) = λX : s.∃X ′ : S′.lift(ψ) X

lift(ψ) = ψ for all other formulas ψ

X is assumed to be fresh in ψ,ψ1, ψ2, t, t1, t2.

2.4.4 Formula Macros

Although the restriction to first-order will remain, in the concrete syntax formula ab-

stractions and formula parameters are permitted via a simple macro facility. The macro

mechanism is illustrated in a prototypical definition of always such that the predicate

holds if its formula argument φ holds in every reachable state. The types erlangSystem

and erlangSysAction are defined in Chapter 3.

always [φ]
∆
=

νX : erlangSystem → prop.

(∀A : erlangSysAction.[A]X) ∧ φ

Assuming this definition the formula t : always [〈α〉true] expresses the statement that

the term t has an transition labelled by α enabled in every reachable state.

2.4.5 Parametric Actions

A common extension to the modal µ-calculus is to to permit sets of actions in the

modalities, e.g., 〈K〉φ and [K]φ where K is a set of actions.

In our logic this extension can be modelled as follows. Let K be either a fi-

nite enumeration of actions {α1, . . . , αn} or the complement of a finite enumeration

\{α1, . . . , αn}. The mapping from the extended syntax, with action sets, to the core

logic is as follows:

〈{α1, . . . , αn}〉φ
∆
= 〈α1〉φ ∨ . . . ∨ 〈αn〉φ

〈\{α1, . . . , αn}〉φ
∆
= ∃α. ((α 6= α1 ∧ . . . ∧ α 6= αn) ∧ 〈α〉φ)

[{α1, . . . , αn}]φ
∆
= [α1]φ ∨ . . . ∨ [αn]φ

[\{α1, . . . , αn}]φ
∆
= ∀α. ((α 6= α1 ∧ . . . ∧ α 6= αn) ⇒ [α]φ)

2.4 Logic Conventions 27

2.4.6 Weak Modalities

The weak modalities abstract away from the exact number of internal actions (actions

that are, in some sense, not visible to observers of the program) necessary or possible,

are well-known from Hennessy-Milner logic. Below it is assumed that a particular

action τ represents all the internal actions. The weak modalities are then definable as:

〈〈 〉〉φ
∆
= µX. (〈τ〉X ∨ φ)

[[]]φ
∆
= νX. ([τ]X ∧ φ)

〈〈α〉〉φ
∆
= 〈〈 〉〉〈α〉〈〈 〉〉φ α 6= τ

[[α]]φ
∆
= [[]][α][[]]φ α 6= τ

For example, “〈〈α〉〉φ”, where α 6= τ , intuitively expresses that eventually the action

α becomes possible within a finite number of steps.

28 Chapter 2. Foundations

Chapter 3

A Formal Semantics of ERLANG

In this chapter a small step operational semantics for the ERLANG programming lan-

guage is developed. The point of this effort is to provide a semantics that is useful for

reasoning about non-trivial ERLANG programs, or classes of ERLANG programs, by

means of a proof system, and supported in a proof assistant tool. The aim is not to

create an authoritative definition of the ERLANG language – the language is to a very

large degree defined by its implementations.

First, the syntax of the ERLANG version considered in this thesis is defined in Sec-

tion 3.1, and the intuitive meaning of its constructs is explained. Then, in Section 3.2,

a formal semantics for the dynamic behaviour of ERLANG constructs is developed. In

Section 4.6 an embedding of the semantics in a proof system is considered.

3.1 An ERLANG Subset

This section introduces the variant of the ERLANG language for which a formal seman-

tics is presented in Section 3.2.

The differences between the formalised fragment, which henceforth will formally

be referred to as ERLANG–F, and more standard versions, e.g., ERLANG 4.7, will be

enumerated in Section 3.1.14. In this thesis future references to ERLANG will refer to

ERLANG–F, unless otherwise indicated. With “regular ERLANG” we will refer collec-

tively to existing implementations of ERLANG variants excluding the “Core Erlang”

initiative [CGJ+00].

The embedding of the syntax and semantics of the language in a proof assistant tool

is discussed in Section 4.6. In this chapter we will assume a concrete such syntactic

representation (a set of types) of ERLANG constructs (expressions, processes, vari-

ables, etc.), and will assume the existence of predicates to check membership of these

constructs in subtypes. These types and predicates are defined formally in Section 4.6.

29

30 Chapter 3. A Formal Semantics of ERLANG

sign ::= + | -
digit ::= 0 | . . . | 9

uppercase ::= A | . . . | Z
lowercase ::= a | . . . | z
digitletter ::= digit | uppercase | lowercase | _ | @

number ::= [sign] digit+

unquotedatom ::= lowercase digitletter∗

quotedatom ::= ’(inputcharacter | escape)+’

atom ::= unquotedatom | quotedatom

var ::= uppercase digitletter∗

expression (e) ::= bv | [e1|e2] | {e1,...,en} n > 0
| var

| e(e1, . . .,en) n ≥ 0
| case e of m end

| exiting e

| try e catch m end

| receive m [after e -> e ′] end

| e1!e2

basicvalue (bv) ::= atom | number | pid | [] | {}
value (v) ::= bv | [v1|v2] | {v1,...,vn} n > 0

pattern (p) ::= bv | var | [p1|p2] | {p1,...,pn} n > 0
match (m) ::= p1 when g1 -> e1; · · · ;pn when g1 -> en n > 0
guard (g) ::= ge1, . . .,gen n > 0

Table 3.1: ERLANG syntax

3.1.1 ERLANG Syntax

Backus-Naur Form (BNF) will normally be used to indicate syntactic sets. Apart from

the standard constructs, the construct [f1 . . . fn] in a production will be used to indi-

cate that f1 . . . fn is an optional part of the production. Further repeated patterns will

be expressed with a dot notation, e.g., {e1, . . . , en} expresses a non-zero number of

(ERLANG) expressions separated by comma symbols and enclosed in braces. Let e+

and e∗ indicate a nonzero, and an arbitrary, number of expressions respectively.

The Erlang constructs are summarised in the BNF grammar found in Table 3.1.

In the definition of the syntax of the ERLANG constructs the tokens (e.g., 1, 2, . . . ,

9) are written in a typewriter font. Meta variables, ranging over some syntactic do-

main, are written in italics with optional indices (e.g., e and v1). In the production for

quotedatom the valid input characters inputchars (e.g., including all digits and upper

and lower case letters) and the characters escapes (e.g., \n for the line feed character)

3.1 An ERLANG Subset 31

escape are referred to; their concrete representation is defined in, for example, Bark-

lund et al. [BV99].

In the following the notation op(e1, . . . , en) (and analogously for values v and

patterns p) will be used to represent, schematically, the set expressions (or values, or

patterns) that can be constructed using the basic value constructors or cons [·|·] and

tupling {· · · }, with the subterms e1, . . . , en.

3.1.2 Values

The ERLANG Values, formally a subtype of the ERLANG expressions introduced in the

next section, ranged over by v ∈ erlangValue, are either basic or compound.

Basic Values The basic values of ERLANG, recognised by the nonterminal basic-

value, consists of the atoms ranged over by a ∈ erlangAtom, integers ranged over by

i ∈ erlangInt, the process identifiers ranged over by pid ∈ erlangPid (fresh ones which

are created using the built-in function spawn), the nil constant [] and the empty tu-

ple {}.

The unquoted atoms, which always start with a lower case letter (e.g., thesis),

are recognised by unquotedatom. The quoted atoms may begin with any character,

e.g. ’Thesis’, and are recognised by quotedatom. The integer numbers consist of a

sequence of digits (number) optionally preceded by a sign. The boolean subtype of the

atoms consists of the atoms true and false, and is ranged over by b ∈ erlangBool.

To recognise subtypes of the basic values the predicates isErlangAtom, isErlangInt,

isErlangPid and isErlangBoolean are assumed.

Compound Values The compound values are the non-empty tuples and conses

([v1|v2]). A list, an element of the erlangProperList subtype of the values, is either

the nil constant, or a sequence of conses such that the second value (v2) in any cons is it-

self a list. The syntax [v1,. . .,vn] is a shorthand for the list [v1|. . .|[vn|[]]. . .].

3.1.3 Expressions, Variables, Patterns and Matches

The ERLANG expressions, recognised by the nonterminal expression, are ranged over

by e ∈ erlangExpression.

Variables are recognised by the nonterminal var, and we let V ∈ erlangVar range

over them. Any occurrence of an anonymous variable in a pattern is considered a

shorthand for a fresh variable (a variable not occuring elsewhere in the pattern, or in

the enclosing expression). For instance,

case test(2) of {_,_} -> true; _ -> false end

is a shorthand for the expression

case test(2) of {X1,X2} -> true; X3 -> false end

32 Chapter 3. A Formal Semantics of ERLANG

The ERLANG patterns p ∈ erlangPattern, constructed as values but where vari-

ables may occur as place holders, are recognised by the pattern nonterminal and matches

m ∈ erlangMatch. A match is a sequences of clauses and recognised by match.

A clause is a triple consisting of a pattern, guard, and an expression. In the fol-

lowing a clause p -> e without guard will be understood to abbreviates the clause

p when true -> e with the trivially true guard true. Further syntactic restrictions

concerning guards will be explained in Section 3.1.6.

3.1.4 Functions

Expressions are interpreted relative to an environment of function definitions

a(p11, . . .,p1n) when g1 -> e1;

· · ·

a(pk1, . . .,pkn) when gk -> ek.

where the number of defining clauses is greater than zero (k > 0), whereas the number

of function arguments in any clause may be zero (for any i, in ≥ 0). Alternatively a

function definition can be written as a
∆
=m , where the match m is:

{p11, . . .,p1n} when g1 -> e1;

· · ·

{pk1, . . .,pkn} when gk -> ek

It is required that any variable occurring in the guard (gi) or body (ei) part of a clause

must also occur, and thus be bound, in the corresponding pattern. This condition can

be formalised as the formula fv(gk) ∪ fv(ek) ⊆
⋃

i fv(pki), where the fv function (see

Page 43) returns the free variables in expressions and patterns.

3.1.5 Built-in Functions

In addition to the explicitly defined functions a number of built-in functions are avail-

able. For instance the hd and tl functions decompose lists, the spawn function

spawns new processes, and the throw and exit functions are used to terminate the

execution of a process. The built-in functions of ERLANG–F are enumerated in Ta-

ble 3.2.

In regular ERLANG terminology a number of these built-in functions are considered

to be operators. That is, that the application of an operator to its arguments (operands)

should be written in infix notation, e.g., 1+2. Here we do not differentiate between op-

erators and other built-in functions, but still permit, when there is no risk for confusion,

application of functions considered operators in regular ERLANG to be written using

infix notation.

In the following we let f range over the subset of atoms that name an explicitly

defined ERLANG function (Section 3.1.4) or a built-in function (Section 3.1.5).

3.1 An ERLANG Subset 33

Relational Operators >, <, =:=, =/=, =<, >=, ==, /=

Logical Operators and, not, or, xor

Arithmetic Operators +, -, *, / div, rem, bsl, bsr, band, bnot,

bor, bxor

Type Recognisers integer, pid, atom, list, tuple,

constant, number

Destructors hd, tl, element

Miscellaneous ++, --, abs, setelement, size, length

Side Effects self, spawn, spawn link, unlink,

exit, throw, process flag

Table 3.2: Built-in Functions

3.1.6 Guards

Guards, ranged over by g ∈ erlangGuard, and recognised by guard in Table 3.1, are

sequences of guard expressions (ge) that compute boolean conditions. Each guard

expression may contain only function applications of certain well-behaved functions

that are known to compute without relying on side effects - except possibly by raising

exceptions - and such that the execution of each function application takes a bounded

amount of time. The exact definition of what constitutes a side effects is found in

Section 3.1.10.

More stringently, the top level expression of a guard expression ge is either the

application of a relational operator,e.g. >, a logical operator, e.g. and, or a type recog-

niser, e.g. pid, to proper guard expression arguments. A proper guard expression

argument is either a value, or the application of a function listed in Table 3.2, omit-

ting the functions noted under Side Effects, e.g. spawn, to proper guard expression

arguments.

3.1.7 Processes, Messages, Mailboxes and Links

An ERLANG process is a container for expression evaluation which is named by its

unique process identifier (pid). Communication is always binary, with one process

sending a message to a second process identified by its process identifier. Messages

sent to a process are put in its mailbox, also known as a queue. Informally a mailbox

is a sequence of values ordered by their arrival time. Mailboxes can store any number

of messages. In the following q ranges over such sequences of ERLANG values.

Interestingly, processes can be linked together in order to detect and recover from

abnormal process termination. Such process links are always bidirectional but the treat-

ment of process termination notifications may differ between the two parties.

34 Chapter 3. A Formal Semantics of ERLANG

3.1.8 Systems

An ERLANG system is simply a collection of ERLANG processes.

3.1.9 Intuitive Semantics

The intuitive behaviour of the ERLANG expressions, in the context of a process with a

pid pid and a queue q, is explained below.

An ERLANG expression either completes normally, returning a value as the result

of its computation, or an exception is raised. Exceptions are caused by program errors

such as typing violations or they are invoked explicitly in an exiting expression.

• To evaluate a cons [e1|e2] evaluate first e1 and then e2. To evaluate a tuple

{e1,...,en} the subexpressions e1 to en are evaluated in left-to-right order.

• e(e1,...,en) is function application. First e is evaluated, yielding a value.

Then the parameter list e1,. . . ,en is evaluated in left-to-right order, and the func-

tion value is applied to the resulting list of argument values.

• case e of p1 when g1 -> e1; · · · ;pn when g1 -> en end is evaluated by

first evaluating e to a value v , then matching v against patterns pi, and checking

whether the optional guard expressions gi evaluate to true. If several clauses

match the first one (in left-to-right order) is chosen.

• The expression exiting e interrupts normal processing by raising an exception

with the value that e computes to.

• In the evaluation of try e catch m end first the expression e is evaluated. If

this evaluation completes normally in a value v , then the whole try expression

completes normally with that value. If an exception is raised during evaluation

of e then the value of the exception is matched against the patterns in m , as if

the expression case v of m end was executed.

• e1!e2 is sending: e1 is evaluated to a pid pid′, then e2 to a value v , then v is

sent to the process corresponding to pid′, resulting in v as the value of the send

expression.

• receivem after e1 -> e2 end first computes the timeout value e1, and then

inspects the process mailbox q and retrieves the first element in q that matches

any pattern of m . Once such an element v has been found, it is matched sequen-

tially against the patterns in m . Alternatively, if the timeout deadline e1 is met

first, evaluation proceeds with the expression e2.

3.1.10 Built-in Functions with Side Effects

Intuitively a side effect is any act by an expression that depends on, or alters, the process

state in which the expression executes. A call to the self function, for instance, is

considered a side effect since the result of the call depends on the process context of the

3.1 An ERLANG Subset 35

expression. In the section on formal semantics the side effect notion will be formally

defined. Below the list of built-in functions with side effects are enumerated.

• self() returns the process identifier of the process in which the expression ex-

ecutes.

• spawn(f , v) creates a new process, with a unique pid and an initially empty

mailbox, executing the function f with argument list in v . The process identifier

of the newly spawned process is returned.

• link(pid) creates a bidirectional link between the process executing the func-

tion call and the process referenced through the process identifier pid, and pid

is returned. Such a link is used to notify a process when its linked process has

terminated its execution.

• unlink(pid) deletes a bidirectional link between the process executing the

function call and the process referenced through the process identifier pid. The

process identifier pid is returned.

• spawn link(f , v) has the same effect as executing link(spawn(f, v)), ex-

cept that it is atomic with respect to actions by other processes.

• process flag(v1, v2), when v1 is the atom trap exit and v2 is a boolean,

modifies the handling of notification of process termination to linked processes,

as made precise in the formal semantics. Intuitively, if a process terminates

abnormally then any linked processes will also terminate abnormally. A call to

process flag by a linked process modifies this behaviour so that instead a

message indicating termination is stored in the mailbox of the linked process.

• exit(v) terminates the execution of the process executing the function call,

by raising an exception, unless the exception is handled in a surrounding try

expression.

• kill(pid, v) terminates the execution of the process pid with the reason for

termination specified by v .

3.1.11 Built-in Functions without Side Effects

The rest of the built-in functions in Table 3.2 have no side effects. Informally, the binary

operators listed under Relational Operators compare their arguments under varying

relations. For instance, =:= is exact equality, =/= is exact inequality, == and /= coin-

cide with =:= and =/=. The latter relations coerce their arguments; since floats is not

included in ERLANG–F they coincide with the exact relations. The ERLANG values are

totally ordered, e.g., a call to < with value arguments will always return either true

or false as a result. The ordering is, in ascending order: numbers, atoms, process

identifiers, tuples and conses. Conses are ordered pointwise by elements. Tuples are

ordered by size, and then pointwise by elements.

36 Chapter 3. A Formal Semantics of ERLANG

The Logical Operators operate on booleans and are, of course, strict (both argu-

ments are always evaluated). The Arithmetic Operators are standard. The operators

bsl, bsr, band, bnot, bor and bxor are binary, and perform bitwise operations

on their integer arguments.

The hd and tl are standard cons destructors, whereas element(v1, v2) returns

the element numbered v1 of the tuple v2. Tuple elements are numbered starting from

1. ++ and -- are list append and subtractions. size returns the lenght of a tuple, and

length the length of a list. Finally setelement(v1, v2, v3) updates the v1 member

of the tuple v2 with the value v3, and returns the result.

3.1.12 Shorthands

A number of language constructs are defined below in terms of other ERLANG con-

structs, thus not requiring a separate account in the operational semantics. A mapping

‖e ‖ of an expression e in extended ERLANG syntax to the core language is given

below.

• A sequence of expressions (a body) enclosed within begin and end keywords

– begin e1, . . .,en end (n > 0) – abbreviates a nested case statement:

‖begin e end‖
∆
= ‖e ‖

‖begin p = e,e2,. . .,en end‖
∆
=

case e of p -> ‖begin e2,. . .,en end‖ end

‖begin e1,e2,. . .,en end‖
∆
=

case e1 of -> ‖begin e2,. . .,en end‖ end

if e is not an assignment p=e ′

Following regular ERLANG the enclosing begin end pair around bodies can

be omitted in unambiguous contexts, e.g., in matches.

• The expression try e end is translated into try ‖e ‖ catch V -> V end

where V is a fresh variable, i.e., a variable that does not otherwise occur in the

context of the try construct. Similarly, the expression catch e is translated

into the expression

try ‖e‖

catch

{’THROW’,V } -> V ;

{’EXIT’,V } -> {’EXIT’,V }

end

• The expression

if g1 -> e1; · · · ; gn -> en end

3.1 An ERLANG Subset 37

is a sequential choice construct from regular ERLANG such that the evaluation

proceeds with the first expression ei for which the corresponding guard gi eval-

uates to true, and is translated into

case true of

when g1 -> ‖e1 ‖;

...

when gn -> ‖en ‖;

->exiting {’EXIT’,if clause}

end

• The expression

cond e1 -> e1
′; · · · ; en -> en

′ end

is a generalisation of the if construct in STANDARD ERLANG. Rather than

allowing only guards to select conditional branches, as in the if statement, ar-

bitrary expressions are permitted. The construct is translated into the expression

case ‖e1 ‖ of

true -> ‖e1
′ ‖;

false ->

...

case ‖en ‖ of

true -> ‖en
′ ‖;

false -> exiting {’EXIT’,cond clause};

-> exiting {’EXIT’,badbool}

end;

...

-> exiting {’EXIT’,badbool}

end

• The sequential functional assignment let expression is borrowed from conven-

tional functional programming languages:

let p1=e1, · · ·, pn=en in e end

is translated to

case ‖e1 ‖ of p1 -> . . . case ‖en ‖ of pn -> ‖e‖ end . . . end

38 Chapter 3. A Formal Semantics of ERLANG

3.1.13 Throw and Exit Functions

The throw and exit/1 functions are normally assumed to be built-in functions.

Here, in contrast, these functions are considered to be explicitly defined using the new

exiting expression, and the new built-in function kill.

throw(V) -> exiting {’THROW’,V}.

exit(V) -> exiting {’EXIT’,V};

exit(P,V) -> kill(P,V).

Example 4 (RPC). Below we sketch a simple RPC service in ERLANG.

server() ->

receive

{req, F, Pid} -> spawn(exec, [F,Pid]), server()

end.

exec(F,Pid) -> Pid!F().

ERLANG variables always have an initial upper-case character (F and Pid) while

atoms begin with a lower-case character (req, server and spawn). The server

function is continuously prepared to receive tuples containing the name of a function

F and a process identifier Pid. It then spawns a new process evaluating the exec

function, which simply invokes the received function F and sends any result to the

process addressed by the process identifier Pid.

Since ERLANG is an untyped language a possible outcome of sending a wrongly

typed message to the server process is that the newly spawned process will terminate

due to a runtime error. In ERLANG the treatment of process termination is included in

the language itself. For instance, the server process can elect to also be terminated ab-

normally whenever one of its spawned processes terminates abnormally by modifying

the line

{req, F, Pid} -> spawn(exec, [F,Pid]), server()

to read instead

{req, F, Pid} -> spawn_link(exec, [F,Pid]), server()

Instead of being terminated, the server process can choose to receive a message in

its mailbox, indicating the termination of the linked process, using the process flag

built-in function. As an example, the revised server process below attempts to restart

processes that terminated abnormally a fixed number (NumRestarts) of times:

server(NumRestarts) ->

process_flag(trap_exit,true),

server([],NumRestarts);

server(Clients,NumRestarts) ->

3.1 An ERLANG Subset 39

receive

{req,F,AnswerPid} ->

server

([startClient(F,AnswerPid,NumRestarts)|Clients],

NumRestarts);

{’EXIT’,Pid,Status} ->

{{F,AnswerPid,RestartCount},NewClients} =

getClient(Pid,Clients,[]),

if

Status =/= normal, RestartCount > 0 ->

server

([startClient(F,AnswerPid,RestartCount-1)|

NewClients], NumRestarts);

true ->

server(NewClients,NumRestarts)

end

end.

startClient(F,AnswerPid,NumRestarts) ->

{spawn_link(exec,[F,AnswerPid]),

{F,AnswerPid,NumRestarts}}.

getClient(Pid, [{Pid,Record}|Rest], Others) ->

{Record, Rest++Others};

getClient(Pid, [Client|Rest], Others) ->

getClient(Pid, Rest, [Client|Others]).

Note above that the getClient function does not address the case when its second

argument is the empty list []. This is not necessarily considered a case of bad pro-

gramming practice in the ERLANG community. Rather than viewing program errors

causing abnormal process termination as something disastrous, the attitude is that pro-

cess termination does occur, for various reasons, and what is important is that there ex-

ists mechanisms (process linking) to recover gracefully from such situations. In larger

software projects utilising ERLANG a typical application structure is to build so called

supervision trees where a process on one level is responsible for supervising its child

processes, possibly restarting them if they terminate abnormally. In this way failures

ripple through the supervisor structure, restarting processes along the way, until some

higher-level process is able to recover from the error condition.

3.1.14 A Comparison with other ERLANG Versions

The major differences between current ERLANG implementations and the fragment

formalised in the thesis (ERLANG–F) are summarised in this section.

Care is taken to point out the limitations and deviations compared to more stan-

dard ERLANG versions. In particular we will frequently refer to ERLANG 4.7 and the

40 Chapter 3. A Formal Semantics of ERLANG

proposed STANDARD ERLANG version, since good natural language specification ex-

ists for both variants [Bar98, BV99]. A notable initiative to create an intermediate

representation (between source code and intermediate code in compilers) of ERLANG,

named “Core Erlang”, is reported in [CGJ+00].

Modules Modules are not present in ERLANG–F. That is, a flat function name space

is assumed. Module names cannot be specified in function calls, and built-in

functions such as e.g. spawn do not accept a module parameter.

Nodes There are no nodes. That is, the distribution aspect of ERLANG, where pro-

cesses are mapped onto nodes, is missing. On the other hand the semantics

makes no guarantees about timely and deterministic arrivals of messages.

Real-Time There is no concept of real time in the semantics. Although the after

clause in the receive construct is supported its semantics is non-standard, a

timeout can be triggered non-deterministically at any time.

Assignments The semantics of assignments is non-standard: assignments have no ef-

fect outside the scope of the subexpression in which they occur, with one signif-

icant exception. The body p = e, e1, . . . , en is considered to abbreviate a case

expression case e of p -> e1, . . . , en end, thus permitting analysis of the

large body of ERLANG code where the only out-of-scope effect of assignments

are towards the tail of the body wherein the assignment occurs.

Fixed Evaluation Ordering In agreement with STANDARD ERLANG but in contrast

to ERLANG 4.7 the formal semantics prescribes a left-to-right evaluation order-

ing of subexpressions. For example, arguments in function calls and tuple mem-

bers are always evaluated in left-to-right order.

Values Missing ERLANG value constructors compared to ERLANG 4.7 are the floats,

refs, binaries and ports. Anonymous functions, constructed using the fun ex-

pression (similar to a lambda expression in mainstream functional program-

ming), is considered an extension to the semantics and is discussed in Sec-

tion 3.2.7.

Compound data values not covered in the thesis but present in regular ERLANG

are the characters, records and strings, although handling these data types in the

formal semantics would likely present little difficulty.

Expressions Nonstandard expressions include the try and exiting expressions.

try is fetched from the STANDARD ERLANG proposal. The exiting ex-

pression is new, and has been introduced to simplify the semantic treatment of

the exit and throw functions. Missing compared to regular ERLANG is the

catch expression; however its behaviour can largely be emulated using the try

expression. Also not covered in the thesis is the list comprehension expression.

Functions Contrary to regular ERLANG a function is in this thesis not considered to

have a fixed arity. This choice is, we believe, natural since function application

3.1 An ERLANG Subset 41

can then be defined in terms of matching (analogously to the semantics of the

catch expression). As a consequence of this we have for instance renamed the

regular ERLANG function exit/2 as kill in ERLANG–F.

Some of the functions listed as built-in in Table 3.2 are not considered true built-

in functions in Erlang version 4.7 but are permitted only inside guards. These

are the type recognisers which include, for instance, atom and integer. In

ERLANG–F there is no class of built-in functions only permitted in guards.

Finally of course the selection of built-in functions is rather arbitrary.

Guard Functions Missing compared with regular ERLANG is mainly the node built-

in functions and the built-in function self which is excluded to simplify the

semantic account of guards. The reason for the omission is that the semantics

distinguishes between the functions which do not depend on the process con-

text in which they compute, and the functions that depend, in some way, on the

process context, like self.

Process State In the treatment of processes much of the internal state (static and

dynamic properties) of a regular ERLANG processes has not been included in

ERLANG–F. For instance:

• There are no process dictionaries associated with processes.

• A process does not have a process group leader; and processes are not

grouped into process groups.

• Processes cannot be registered with a name, communication with a process

is possible only when its process identifier is known.

In addition there are numerous minor syntactical differences. These include, for

instance, the names of exceptions raised. For example, due to a change in function

application semantics a non-standard exception is raised when a function is applied to

parameters that do not match.

The chief reason for sacrificing exact compatibility in this thesis with current ERLANG

implementations is to reduce the number of language constructs that need special treat-

ment in the semantics. This reduction is crucially important when, as is the case in this

work, the end goal is to use the semantics for analysis.

Our ambition, although not realised yet, is to develop a translator capable of trans-

forming a substantial body of ERLANG programs into programs conforming to our

variant. Already there are example of such ERLANG to ERLANG translators that are

useful in our verification studies. For instance, the HiPE ERLANG compiler [JPS00]

contains a stage where the constructs in the full ERLANG language are translated into

Core Erlang, for instance transforming records and operations on records into tuples

and operations on tuples. In another work Arts and Benac Earle [AB01] transform

ERLANG programs containing calls to higher-order functions such as map into spe-

cialised first-order functions.

42 Chapter 3. A Formal Semantics of ERLANG

3.2 A Formal Semantics of ERLANG

In this section an operational semantics for the fragment of ERLANG introduced in

the preceding section is developed. The main contribution of the semantics is that a

clean account of a relatively complex language is achieved. It addresses topics like

error-recovery, which has often been considered outside the scope of programming

languages and in the realm of operating systems. As a result our semantics has become

hierarchical; at one level regulating classical function evaluation, while another level

focuses on interprocess concerns.

The resulting semantics clearly exposes the interfaces between these different lev-

els. In particular it avoids speaking about contexts (of an evaluating expression, or

a process) but rather attaches meanings to objects (expressions, processes) indepen-

dently of the context in which they occur. This approach to a semantics is undoubtedly

coloured by the proof system view: there open systems are considered with variables

ranging over expressions and processes, whose behaviour is only partially known. In

addition we believe that such a “context-free” approach to a programming language

semantics naturally lends itself to possibilities for compositional reasoning.

The basic computing entities in the language are processes, supporting asynchronous

message passing. Processes are addressed through their unique process identifiers.

These identifiers can be communicated and so like in the π-calculus [MPW92] com-

munication capabilities can migrate from one process to another. Additionally function

names are first-class data objects which can also be freely communicated. However,

compared to names in the π-calculus process identifiers are not very abstract objects. It

is for instance possible for processes to obtain process identifiers not communicated to

them, using a built-in function (not covered in the formal semantics here) that returns

the process identifiers in use. However, clearly the overwhelming majority of ERLANG

programs do not employ such “dirty tricks” and we could choose to present an op-

erational semantics for the class of well-behaved programs that, like the π-calculus

semantics, carefully track how the knowledge of process identifiers migrate in a sys-

tem via the introduction of a restriction operator. In this thesis, however, a semantics

is presented where the only requirements placed on process identifier creation is that

process identifiers of distinct processes are different.

3.2.1 Preliminaries

First the notions of free variables, variables that occur in patterns, and substitution in

ERLANG is considered in consecutive definitions.

Definition 11. The function fv (e), which calculates the free ERLANG variables of an

expression, a guard, or a match, is defined in Table 3.3.

Definition 12. The function pv(t) which computes the set of ERLANG variables that

occur in patterns in t is defined using fv in Table 3.4.

Next the concept of substitution of values for variables is defined. The syntax ṽ is

used to denote a vector of terms, here ERLANG values.

3.2 A Formal Semantics of ERLANG 43

fv(op(e1, . . . , en))
∆
=

⋃
1≤i≤n

fv(ei)

fv(V)
∆
= {V }

fv(e(e1, . . . , en))
∆
= fv(e) ∪

⋃
1≤i≤n

fv(ei)

fv(case e of m end)
∆
= fv(e) ∪ fv(m)

fv(exiting e)
∆
= fv(e)

fv(try e catch m end)
∆
= fv(e) ∪ fv(m)

fv(receive m after e -> e ′ end)
∆
= fv(e) ∪ fv(e ′) ∪ fv(m)

fv(e1!e2)
∆
= fv(e1) ∪ fv(e2)

fv(ge1, . . . , gen)
∆
=

⋃
1≤i≤n

fv(gei)

fv

p1 when g1 -> e1;

. . .

pn when gn -> en

 ∆

=
⋃

1≤i≤n

(fv(ei) ∪ fv(gi)) \ fv(pi)

Table 3.3: Free Variables in Expressions, Guards and Matches

44 Chapter 3. A Formal Semantics of ERLANG

pv(op(e1, . . . , en))
∆
=

⋃
1≤i≤n

pv(ei)

pv(V)
∆
= ∅

pv(e(e1, . . . , en))
∆
= pv(e) ∪

⋃
1≤i≤n

pv(ei)

pv(case e of m end)
∆
= pv(e) ∪ pv(m)

pv(exiting e)
∆
= pv(e)

pv(try e catch m end)
∆
= pv(e) ∪ pv(m)

pv(receive m after e -> e ′ end)
∆
= pv(e) ∪ pv(e ′) ∪ pv(m)

pv(e1!e2)
∆
= pv(e1) ∪ pv(e2)

pv(ge1, . . . , gen)
∆
=

⋃
1≤i≤n

pv(gei)

pv

p1 when g1 -> e1;

. . .

pn when gn -> en

 ∆

=
⋃

1≤i≤n

(pv(ei) ∪ pv(gi)) ∪ fv(pi)

Table 3.4: Variables in Patterns

3.2 A Formal Semantics of ERLANG 45

op(e1, . . . , en){ṽ/Ṽ }
∆
= op(e1{ṽ/Ṽ }, . . . , en{ṽ/Ṽ })

V {ṽ/Ṽ }
∆
= vi if V = Vi for some i otherwise V

e(e1, . . . , en){ṽ/Ṽ }
∆
= e{ṽ/Ṽ }(e1{ṽ/Ṽ }, . . . , en{ṽ/Ṽ })

case e of m end{ṽ/Ṽ }
∆
= case e{ṽ/Ṽ } ofm{ṽ/Ṽ } end

exiting e{ṽ/Ṽ }
∆
= exiting (e{ṽ/Ṽ })

try e catch m end{ṽ/Ṽ }
∆
= try e{ṽ/Ṽ } catchm{ṽ/Ṽ } end

receive

m

after e -> e ′

end

 [ṽ/Ṽ]

∆
=

receive

m{ṽ/Ṽ }

after e{ṽ/Ṽ }-> e ′{ṽ/Ṽ }

end

e1!e2{ṽ/Ṽ }
∆
= e1{ṽ/Ṽ }!e2{ṽ/Ṽ }

ge1, . . . , gen{ṽ/Ṽ }
∆
= ge1{ṽ/Ṽ }, . . . , gen{ṽ/Ṽ }

p1 when g1 -> e1;

. . .

pn when gn -> en

 [ṽ/Ṽ]

∆
=

p1{ṽ/Ṽ } when g1{ṽ/Ṽ }-> e1{ṽ/Ṽ }

; . . . ;

pn{ṽ/Ṽ } when gn{ṽ/Ṽ }-> en{ṽ/Ṽ }

Table 3.5: Substitution in Expressions, Guards and Matches

Definition 13. The substitution function {ṽ/Ṽ }, which replaces the ERLANG variables

in the vector Ṽ with the ERLANG values in ṽ in an expression, a guard or a match, is

defined in Table 3.5. It is required that the arities of ṽ and Ṽ coincide, and that no

variable occurs more than once in Ṽ .

Note that {ṽ/Ṽ } is a homomorphism. For a concrete vector of values v1, . . . , vn

and variables V1, . . . , Vn the notation e[v1/V1, . . . , vn/Vn] will be used. Further, let

the simultaneous substitution of expressions e1, . . . , en for variables V1, . . . , Vn in e
be denoted by e[e1/V1, . . . , en/Vn].

Note that the definition of substitution is slightly nonstandard from the perspective

of functional programming practise, but it is faithful to ERLANG. Since ERLANG lacks

proper binding operators a substitution can never be cancelled by a binding operator.

Consider for instance the ERLANG expression

case 2 of

X -> case 3 of X -> X end

end

46 Chapter 3. A Formal Semantics of ERLANG

The execution of this code fragment will invariably terminate with an exception

(badmatch) since the evaluation of the outermost case expression will bind the

variable X also in the inner case expression. An exception to this binding strategy is

represented by the fun expression. This is treated in Section 3.2.7. Second, no checks

are necessary in the substitution function to prevent variable capture. The exception is

again the fun expression.

Function Spaces Next we enumerate, but do not provide explicit definitions of,

recogniser predicates for different categories of functions. In this thesis the sets of

atoms defined by predicates isProcFun, isDefined and isExprFun are distinct.

• The predicate isDefined recognises atoms naming explicitly defined functions,

such as throw and exit.

• The predicate isBIF recognises atoms corresponding to names of functions which

are considered built-in. These are the atoms naming functions in Table 3.2 except

throw and exit.

• The predicate isExprFun recognises atoms corresponding to built-in functions

which neither depends on, nor modifies, the process state of an expression. These

are the atoms naming functions in Table 3.2 that are not listed under the heading

side effects.

• The predicate isGuardFun recognises the atoms naming a subset of the built-

in functions which are permitted to occur in a guard expression. In this thesis

isExprFun and isGuardFun are the same.

• The predicate isProcFun recognises atoms corresponding to functions that de-

pend on the process state, enumerated under side effects in Table 3.2.

Queues The semantic rules for communication, both in the expression and system

semantics, makes reference to a queue like data structure which is defined below.

Definition 14. An ERLANG queue, ranged over by q ∈ erlangQueue, is a finite se-

quence of values v1 · v2 · . . . · vn, where “ǫ” is the empty sequence and “·” is concate-

nation.

3.2.2 Dynamic Semantics

The ERLANG semantics is given as a small-step structural operational semantics [Plo81],

in the form of transition rules between structured states.

The semantics matches closely the hierarchic structure of an ERLANG system.

First, in Section 3.2.3, the ERLANG expressions are provided with a semantics that

does not require any notion of processes. Then the behaviours of ERLANG systems

is explored in Section 3.2.5, separated into two cases: (i) a single process constrain-

ing the behaviours of an ERLANG expression, and (ii) the parallel composition of two

ERLANG systems into a single one.

3.2 A Formal Semantics of ERLANG 47

To keep the presentation readable we will take some liberties with notation. For

instance, we use the same transition relation symbol for both ERLANG expression

transitions and ERLANG system transitions. In addition the τ action denotes both the

ERLANG expression computation step, and the silent action of an ERLANG system.

A transition rule will be written on the format

t1
α1−→ t1

′ . . . tn
αn−−→ tn

′ (φ1 t11
. . . t1k

) . . . (φm tm1
. . . tmk

)

t
α
−→ t′

where each φi is a formula of the underlying logic defined in Chapter 2 that does not

refer to any transition relation. As described earlier in Section 3.1.4 an environment of

function definitions is assumed such that f
∆
=m means that f defines a function with

body m in that environment.

3.2.3 Dynamic Semantics of Expressions

Definition 15. The expression actions, ranged over by α ∈ erlangExprAction, are:

α ::= τ computation step

| pid!v output

| exiting(v) exception

| read(q, v) reading from queue

| test(q) checking queue contents

| f(v1, . . . , vn) ❀ v built-in function call

Informally an internal send action written pid!v represents the act of sending a mes-

sage v to the process with process identifier pid. The action exiting(reason) represents

an exception, which unless handled in a try expression will result in the termination of

the process. The action read(q, v) indicates that an ERLANG expression is capable of

performing a reduction under the condition that the queue q ·v is a prefix of the message

queue (of the process in which the expression executes). Intuitively the combination of

both q and v in the action expresses that v can be read under the condition that q is a

prefix indicating that no pattern in the match can match any value in q. If q were to be

omitted from the action too little information would be available at the process level to

be able to deduce for a given queue whether v could actually be read. Similarly, the

action test(q) indicates a capability of performing a reduction under the condition that

the incoming message queue is q. Finally, the action f(v1, . . . , vn) ❀ v represents a

call of a built-in function f , with arguments v1, . . . , vn, somehow dependent upon the

process state, and returning a result v . As an example, a call to the built-in function

self() which returns the process identifier of the process in which the call is made,

causes as we soon shall see an infinite number of actions of the pattern self() ❀ v,

for any value v. The point is that in the second level of the semantics, regulating tran-

sitions of ERLANG systems, only the actions with the correct value v will give rise to a

transition.

48 Chapter 3. A Formal Semantics of ERLANG

r[·] ::= ·

| op(. . . , vk−1, r[·], ek+1, . . .) k > 0

| r[·](e1, . . . , en)

| v(. . . , vk−1, r[·], ek+1, . . .) k > 0

| case r[·] of m end

| receive m after r[·]-> e ′ end

| r[·]!e | v!r[·]

Table 3.6: Reduction Contexts

Reduction Contexts The rules for expression evaluation will be given only for

the case when all parameters of an expression construct have been fully evaluated.

For defining the subexpression evaluation ordering, from left to right, reduction con-

texts [FFKD87] are used to schematically derive a set of transition rules.

Definition 16. A reduction context r[·] is an ERLANG expression with a “hole” in it,

generated by the grammar in Table 3.6.

The result of placing e in (the hole of) a context r[·] is denoted r[e]. Intuitively

a reduction context identifies a subexpression position in an expression such that if a

subexpression is put in the position, and it can perform an action α, then the whole

expression can perform the same action leaving the expression structure intact. Note

that the try statement is absent from the definition of a reduction context since the

expression structure can change due to the actions of a subexpression (rule try2).

Definition 17 (Context Rules). The set of context operational rules is the smallest set

of transition rules generated from the reduction context grammar and the meta-rule

context
e

α
−→ e ′

r[e]
α
−→ r[e ′]

r[·] 6= ·

For instance, in addition to the basic rules send0 found in Table 3.7 and send1 in

Table 3.9 two additional rules can be derived from the above meta-rule:

send2
e1

α
−→ e1

′

e1!e2
α
−→ e1

′!e2

send3
e

α
−→ e ′

v !e
α
−→ v !e ′

Note the implicit condition in the rule send3 which requires the first argument in the

send expression to have become a value v before the second argument can be evaluated.

Definition 18 (Immediate Subexpressions). Let the set of immediate subexpressions of

an expression be defined in the obvious way over the structure of the ERLANG con-

structs in Table 3.1.

3.2 A Formal Semantics of ERLANG 49

For instance a send expression e1!e2 has the immediate subexpressions e1 and e2.

Definition 19 (Expression Transition Relation). The expression transition relation,

→: erlangExpression × erlangExprAction × erlangExpression, written e1
α
−→ e2

when 〈e1, α, e2〉 ∈→, is the least relation satisfying the transition rules in Ta-

bles 3.7,3.8,3.9,3.10, 3.11 and Definition 17.

To express that a transition labelled by an action α exists from a term t the notation

t
α
−→ will be used, and to express that a term t has any transition regardless of its action

and target state the notation t −→ is used.

Table 3.7 defines the semantics of most expression constructs when subexpressions

are fully evaluated and evaluation proceeds normally, Table 3.8 defines the rules for

exception processing, Table 3.9 present rules for error cases for normal expression

constructs, and Tables 3.10 and 3.11 give rules for normal, and exceptional evaluation

of built-in functions. Finally Definition 17 regulates the order in which subexpressions

are evaluated.

Semantics of Matching

In the case and receive expressions values are matched against patterns possibly

containing variables. In the formal treatment of these expressions a number of aux-

iliary functions and predicates are defined, and a transition relation is defined for the

evaluation of guards, built on top of the expression transition relation.

Definition 20. The guard transition relation, −→g : erlangGuard×erlangGuard, written

g1 −→g gn, is the least relation satisfying the rules in Table 3.12.

Note that guard computations are given a natural semantics, i.e., any number of

internal steps are combined into a single guard transition step. This presents no diffi-

culties since a guard is a sequence of expressions, all of which are guaranteed to even-

tually evaluate to booleans, or raise an exception, since they are built from applications

of well-behaved built-in functions.

The predicate matches v (p when g -> e) determines when an ERLANG value v

matches a case alternative:

Definition 21.

matches v (p when g -> e)
∆
=∃Ṽ .

(
v = p{Ṽ /f̃v(p)} ∧ g{Ṽ /f̃v(p)} −→g true

)

In other words, a case alternative matches a value if we can find a substitution of

values for the variables in the pattern such that the pattern and value becomes identical,

and the guard evaluates to true. The notation in the definition is not precise; we let f̃v(p)
represent a vector of variables in ascending order, based on their names, consisting

exactly of the variables that are in the set fv(p).

The matches predicate is extended to queues (mailboxes) in the obvious way:

50 Chapter 3. A Formal Semantics of ERLANG

case0
∃I.((result v mI e) ∧ ∀J.J < I ⇒ ¬(matches v mJ))

case v of m end
τ
−→ e

fun0
f

∆
=m case {v1, . . . , vn} of m end

α
−→ e ′

f(v1, . . . , vn)
α
−→ e ′

fun1

isProcFun f

f(v1, . . . , vn)
f(v1,...,vn)❀{result,v}
−−−−−−−−−−−−−−−−−→ v

fun2

isProcFun f

f(v1, . . . , vn)
f(v1,...,vn)❀{error,v}
−−−−−−−−−−−−−−−−→ exiting {’EXIT’,v}

receive

∀I.¬(qmatches q mI)
∃I. ((result v mI e ′) ∧ ∀J.J < I ⇒ ¬(matches v mJ))

receive m [after i-> e] end
read(q,v)
−−−−−−→ e ′

timeout
∀I.¬(qmatches q mI)

receive m after i-> e end
test(q)
−−−−→ e

send0
pid!v

pid!v
−−−→ v

Table 3.7: Normal expression evaluation

exiting0
exiting v

exiting(v)
−−−−−−−→ v

try0
try v catch m end

τ
−→ v

try2
e

exiting(v)
−−−−−−−→ e ′ case v of m end

α
−→ e ′′

try e catch m
α
−→ e ′′

try3
e

α
−→ e ′ ¬∃V : erlangValue.α = exiting(V)

try e catch m end
α
−→ try e ′ catch m end

Table 3.8: Exception handling

3.2 A Formal Semantics of ERLANG 51

case1

∀I.¬(matches v mI)

case v of m end
exiting(case clause)
−−−−−−−−−−−−−−−−−→ bottom

fun3

¬(isProcFun v) ∧ ¬(isDefined v) ∧ ¬(isBIF v)

v(v1, . . . , vn)
exiting(badfun)
−−−−−−−−−−−−→ bottom

send1

¬(isErlangPid v)

v !v ′ exiting(badarg)
−−−−−−−−−−−−→ bottom

receive1

¬(isErlangInt v)

receive m after v -> e end
exiting(badarg)
−−−−−−−−−−−−→ bottom

Table 3.9: Exceptional expression evaluation

tl0
tlERLANG v1 v2

tl(v1)
τ
−→ v2

Table 3.10: Evaluation of built-in functions (example)

tl1
n 6= 1

tl(v1, . . . , vn)
exiting(cond clause)
−−−−−−−−−−−−−−−−−→ bottom

link0

n 6= 1

link(v1, . . . , vn)
exiting(cond clause)
−−−−−−−−−−−−−−−−−→ bottom

tl2
¬∃H,T : erlangValue.v = [H|T]

tl(v)
exiting(badarg)
−−−−−−−−−−−−→ bottom

link1

¬(isErlangPid v)

link(v)
exiting(badarg)
−−−−−−−−−−−−→ bottom

Table 3.11: Exceptional evaluation of built-in functions (examples)

52 Chapter 3. A Formal Semantics of ERLANG

g0
ge

τ
−→ v

ge −→g v
g1

ge
exiting(v)
−−−−−−−→ ge′

ge −→g false
g2

ge
τ
−→ ge′ ge′ −→g v

ge −→g v

g3
ge −→g false

ge, ge1, . . . , gen −→g false
g4

ge −→g true ge1, . . . , gen −→g v
ge, ge1, . . . , gen −→g v

Table 3.12: Computation of Guard Expressions

Definition 22.

qmatches q (p when g -> e)
∆
=

∃V,Q1, Q2.q = Q1 · V ·Q2 ∧ matches V (p when g -> e)

The result predicate includes a test of equality against the resulting expression:

Definition 23.

result v (p when g -> e) e ′ ∆
=

∃Ṽ .
(
v = p{Ṽ /f̃v(p)} ∧ g{Ṽ /f̃v(p)} −→g true ∧ e ′ = e{Ṽ /f̃v(p)}

)

Some results about these definitions are needed before proceeding:

Lemma 2. If result v m e then matches v m.

Proof. Immediate from the definitions of result and matches.

Lemma 3. If result v m e ′ and result v m e ′′ then e ′ = e ′′.

Proof. Since the arguments e ′ and e ′′ are uniquely determined by the substitution func-

tion and the expression (possibly containing variables) e in m , this reduces to the ques-

tion whether the ERLANG value vector Ṽ is uniquely determined, i.e.,

∃Ṽ .∃Ṽ ′.Ṽ 6= Ṽ ′ ∧ p[Ṽ /f̃v(p)] = p[Ṽ ′/f̃v(p)] ∧

g{Ṽ /f̃v(p)} −→g true ∧ g{Ṽ ′/f̃v(p)} −→g true

The notation Ṽ 6= Ṽ ′ expresses inequality, for some index i, of values Vi and V ′
i .

First note that all values in Ṽ (and Ṽ ′) are relevant, since the arities of Ṽ and f̃v(p)

coincide. Thus, if Ṽ ′ 6= Ṽ ′′ then there must trivially be two value subexpressions

v1 and v2 in p[Ṽ /f̃v(p)] and p[Ṽ ′/f̃v(p)] such that v1 6= v2. Now all the ERLANG

compound pattern constructors considered in this thesis, i.e., the conses and tuples,

are freely generated, and thus also p[Ṽ /f̃v(p)] 6= p[Ṽ ′/f̃v(p)]. We have derived a

contradiction.

3.2 A Formal Semantics of ERLANG 53

Definition 24 (Closed Expression). A closed expression e is an expression e such that

fv(e) = ∅.

Let closedErlangExpression range over the subtype of expressions that contains all

closed expressions.

Definition 25 (Labelled Transition System of Closed Expressions). Define the labelled

transition system of the closed ERLANG expressions as the tuple

〈closedErlangExpression, erlangExprAction,→〉

where → is the transition relation of Definition 19.

Discussion of Semantic Rules

To illustrate the expression semantics rules we will explain a few rules in more detail.

First, the receive rule on Page 50 is considered. A transition from receive m end

labelled by the action read(q, v) to the expression e ′ is enabled whenever we can find

an index I in m (recall that m is a sequence of clauses p1 → when g1 e1; · · · ; pn →
when gn en) such that pattern I matches v , the guard expression gI evaluates to

true, and eI is equal (under substitution of variables) to e ′. Moreover, there is neither

an earlier pattern in m that satisfies this condition nor is there any value in q which

matches any pattern in m in this manner.

Note that in general there will be an infinite number of queues q and values v

that satisfy this condition. Thus the transition semantics of an expression containing

a receive statement is infinitely branching. Any difficulties caused by this are ad-

dressed in the proof system in a completely standard manner through use of quantifiers.

Similarly the fun1 rule expresses a function call to a function having side effects,

or depending upon the process state. Two examples of such functions are spawn and

self. Since the return value v of such a function is not defined by the expression

level, the rule holds for any choice of return value. In the process level semantics the

choice of a return value will be constrained, for each function with side effects.

The rules in Table 3.9 regulate which exceptions are raised for standard expression

constructs. The choice of a target expression in these rules is arbitrary since it will

never be accessed; for clarity the atom bottom is chosen.

The single rule tl0 in Table 3.10, which returns the tail part of a list, is meant to

illustrate a whole class of rules that provide the linkage between the ERLANG built-in

functions that do not depend upon side-effects and their logical characterisation. It is

assumed that such functions are reducible, via one internal step, to a ground value,

or that they raise an exception because of calling convention errors. The error case is

represented by the rules tl1 and tl2 in Table 3.11. The definition of the tlERLANG predicate

is found on Page 108. Note that calling convention errors are handled in Table 3.11 also

for so called process state dependent functions like link.

It is required that each predicate which characterise a built-in function in the logic,

e.g. tlERLANG v1 v2 in the rule tl0, defines a function on is last argument (v2).

Next some results about the ERLANG expression level transition relations will be

established.

54 Chapter 3. A Formal Semantics of ERLANG

Lemma 4. For no ERLANG value v does there exist an action α and expression e such

that v
α
−→ e.

Proof. Via induction over the structure of values, all cases are obvious. The inductive

argument is required to treat the tuple and the cons operators.

Proposition 2 (Expression Derivations are Finite). For each expression e there is a

finite bound on the depth of inferences from e.

Proof. The only real complication here is the interplay between the guard transition

relation and the expression transition relation.

First consider the (expression) transitions of a guard expression ge. Clearly, due

to syntactic restrictions, a guard expression does not contain a guard. We proceed by

structural induction on ge. As base cases we have the values, from which no transitions

are derivable, and the application of a built-in function such that all its arguments have

been evaluated. Then, either the transition can be derived from Table 3.10 or Table 3.11,

and the result is a value or an exception, and no longer derivations can be derived.

Consider the induction cases, either there is a data constructor (tuples or lists), or there

is a function application, and the reduction context meta-rule is applied, and the proper

subexpressions have a bound on inferences depth. But then clearly the meta-rule has a

similar bound.

Consider then the case of a guard, and the guard transition relation. The problem-

atic case is g2. We have to establish that the “complexity” of e ′ is less than e . We prove,

again by induction over the structure of a guard expression ge, that there is a bound on

the depth of guard derivations. Again the base cases are the values and application of

a built-in function, which are handled by rules g0 and g1 and are trivial. Consider a

reduction context, where by the induction hypothesis all proper subexpression have a

bounded guard derivation. If the guard derivation of any such subexpression ends in an

exception the proof is done. If all derivations yield a value, then either the result is a

function application of a built-in function or a value, and both cases are trivial.

Finally consider the case of an arbitrary expression e , and prove that there is a finite

bound by induction over the structure of expressions. So assume all proper subexpres-

sions have finitely bounded derivations. The only non-trivial cases (the context rules

again are easy to discharge due to the induction hypothesis) are the rules fun0 and

try2. For an expression case v of m end the only possibly applicable rules are case0

or case1 which have expression transition premises. They do have guard transition

premises, but since we showed above that these have bounded derivations the result

follows.

Next it is established that if an instance of the schematic context reduction rule is

applicable (Definition 17) then no other semantics rule is applicable, and vice versa.

Lemma 5. If there exists a proper subexpression e ′ of an expression e such that e =
r[e ′] and e ′ −→ then there is no transition rule in Tables 3.7,3.8,3.9,3.10,3.11 such that

e → is derivable. Vice versa, if any rule in the above tables can derive e → then there

exists no proper subexpression e ′ of e such that e = r[e ′] and e ′ →.

3.2 A Formal Semantics of ERLANG 55

Proof. Recall that Lemma 4 proves that a value has no transitions. We prove the lemma

by considering the reduction contexts of an arbitrary expression. Suppose e is a non-

empty list or tuple. Clearly no rule in any of the tables is applicable. Suppose e is a

function application. The only rules applicable in the tables trigger when all subex-

pression are values. However, none of these subexpression can then have a transition.

The proofs for the case, receive and send constructs are identical.

Next it is established that transitions under reduction contexts, at the same expres-

sion level, are deterministic.

Lemma 6. Suppose an expression e has at least two distinct immediate subexpressions

e1 and e2, and that there exists two reduction contexts r[·] and r′[·] which replace the

subexpressions with holes. Then either e1 or e2 must be a value, and as a result at most

one of the statements e1 −→ or e2 −→ are derivable.

Proof. That at least one of the two immediate subexpressions is a value follows directly

from the definition of the set of reduction contexts. That a value has no transitions

follows from Lemma 4.

Proposition 3 (Determinacy of Expressions). If e
α
−→ e ′ and e

α
−→ e ′′ then e ′ = e ′′.

Proof. By induction on the length of the derivation of a transition. We will assume that

computations of guards are deterministic. So consider an arbitrary expression e and its

derivations. From Lemma 5 it follows that if the schematic context rule is applicable

any other rule is not, and vice versa. So consider first the schematic context rule. Since

there is only one active subexpression, due to Lemma 6, the result follows after one

step due to the induction hypothesis.

So consider any expression without an “active” reduction context. Here we have to

show that the rules in Tables 3.7,3.8,3.9,3.10 and 3.11 are mutually exclusive. A case

analysis follows, we discuss a few noteworthy examples below.

We consider first the case of transition rules for send, i.e., send0 and send1 below.

Clearly if e = pid!v for some process identifier pid then the premise ¬(isErlangPid pid)
is not provable, and vice versa.

For case expressions there are again two applicable rules, case0 and case1. How-

ever, here it is less clear that even the rule case0 is deterministic. There are two issues.

First, is the least index I , corresponding to a particular match clause uniquely deter-

mined, and second, does the predicate result define a function in its last argument e . To

show that I is uniquely determined suppose there is an index J < I which also satisfies

the conditions. Then result v mI e, but from Lemma 2 it follows that matches v mI , so

the premises for index I are not satisfied, a contradiction. The same argument applies

to simultaneous derivability of both case0 and case1. For the second issue, Lemma 3

proves that the expression results of matching are uniquely determined.

Next is the case of the receive expression. Suppose that

receive ...end
read(q,v)
−−−−−−→ e ′

56 Chapter 3. A Formal Semantics of ERLANG

and

receive ...end
read(q,v)
−−−−−−→ e ′′

and e ′ 6= e ′′. Since, as commented on above, result defines a function in its last

argument (Lemma 3) there must be two clauses mk and ml, k < l such that (i)

result v mk e ′ (for mk) and (ii) result v mk e ′′ (for ml). But then the premise

for the clause ml includes the premise ¬matches v mk. So appeal again to Lemma 2,

which establishes matches v mk.

Further, predicates describing the effect of built-in functions, are required to be

of function shape: the predicate arguments but the last one determine a unique last

argument.

For the treatment of built-in functions with side effects, causing actions
f(v1,...,vn)❀v
−−−−−−−−−→, note that the presence of the return value v in the action is crucial to

achieve determinacy.

A stronger result than Proposition 3 is also provable.

Proposition 4. If e
α
−→ e ′ and e

α′

−→ e ′′ and e ′ 6= e ′′ then α 6= α′ and either the

actions α and α′ are both queue reads (read) or queue tests (test), or both are calls of

built-in process state functions (❀).

Proof. An easy induction over the length of a derivation.

3.2.4 Bisimilarity for Expressions

We develop a theory of substitutability for ERLANG, in this section focusing on the

expressions. That is we answer the question when an expression e can replace an

expression e ′ without any noticeable differences. Considering the answer in terms of

the program logic developed in the thesis, it is clear that the logic is very sensitive,

permitting syntactical analysis of terms. Thus one answer is that there are always

formulas φ that can tell two syntactically different expressions e1 and e2 apart, i.e.,

e ∈ ‖φ‖ while e ′ 6∈ ‖φ‖. However, if attention is restricted to, say, the logic fragment

of modalities and operators on modalities then a much richer notion of substitutability

results.

In the following a natural notion of bisimilarity is presented, based on the actions

of ERLANG expressions. Since transitions are deterministic with respect to actions, the

notions of bisimulation equivalence and trace equivalence coincide.

Definition 26. A binary relation S is an expression bisimulation if (e1, e2) ∈ S implies,

for all expression actions α,

• Whenever e1
α
−→ e1

′ then, for some e2
′, e2

α
−→ e2

′, and (e1
′, e2

′) ∈ S, and vice

versa.

• Whenever e1 is an ERLANG value then e1 = e2, and vice versa.

3.2 A Formal Semantics of ERLANG 57

Definition 27. The expressions e1 and e2 are expression bisimilar, written e1
·
∼ee2, if

(e1, e2) ∈ S for some expression bisimulation S.

Next a congruence relation is constructed from the bisimulation relation.

Definition 28 (Expression Contexts). An expression context C[·] is an expression with

a hole indicated by · replacing an arbitrary proper subexpression.

Note that
·
∼, from Definition 27, is not a congruence, for the trivial reason that vari-

ables are not properly treated. Consider for instance the expressions X and Y. Clearly

if these expressions are put in the context case 1,2 of X,Y -> · end (where ·
denotes the hole) the results are not expression bisimilar. Such effects are well-known

from semantical accounts of other languages such as the π-calculus.

There are also some non-standard complications, due to the peculiar binding con-

ventions of ERLANG. Consider for instance the expressions case 1 of X -> X

end and case 1 of Y -> Y end which are trivially expression bisimilar. How-

ever, when put into the context case 1,2 of X,Y -> · end the resulting ex-

pressions are not bisimilar, since the surrounding case expression will bind also the

inner variables.

First we define what is meant by a congruence relation, based at first on the very

fine notion of variable observability.

Definition 29. A relation
r
∼ (over pairs of ERLANG expressions) is considered a con-

gruence if for any two terms e, e ′ such that e
r
∼e ′, and for any expression context C[·],

either one of the expressions C[e] or C[e ′] are not syntactically valid, or C[e]
r
∼C[e ′].

The conditions in the above definition are in place to prevent, for example, placing

arbitrary expressions into guard positions.

We have a choice here, to proceed with this notion, and define a very fine con-

gruence that will be sensitive to variable names due to the lack of a proper binding

operator as shown above. An alternative is to relax the notion of a congruence relation

to consider only substitutability into contexts that do not bind variables that are bound

also in e and e ′. Here the second option is chosen.

First a variant of the congruence notion is defined.

Definition 30. A relation
r
∼ (over pairs of ERLANG expressions) is considered an ex-

pression congruence if for any two terms e, e ′ such that e
r
∼e ′, and for any expression

context C[·] for which the three conditions (i) the expressions C[e] and C[e ′] are syn-

tactically valid, (ii) (pv(e) ∪ pv(e ′)) ∩ pv(C[·]) = ∅, and (iii) (fv(e) ∪ fv(e ′)) ∩

(fv(C[e]) ∪ fv(C[e ′])) = ∅ hold, then C[e]
r
∼C[e ′].

Recall that the set pv(e) consists of the variables that occur in a pattern in e , and

was defined in Table 3.4 on Page 3.4. The extra conditions guarantee that (ii) no vari-

ables that occur in patterns in e or e ′ are bound by the context in which they are

substituted, and (iii) that the context provides an interpretation for all free variables of

e and e ′. Now a suitable congruence instance can be defined.

58 Chapter 3. A Formal Semantics of ERLANG

Definition 31. The expressions e1 and e2, are expression congruent, written e ∼c

e ′, if for all substitutions [ṽ/ ˜(fv(e) ∪ fv(e ′))] assigning ERLANG values to the free

variables of the expressions, e[ṽ/ ˜(fv(e) ∪ fv(e ′))]
·
∼ee

′[ṽ/ ˜(fv(e) ∪ fv(e ′))].

Proposition 5. ∼c is an expression congruence.

Proof. Assume an arbitrary expression context C[·], and two expressions e ,e ′, accord-

ing to the characterisation of expression congruence. We will exhibit an expression

bisimulation S which contains (C[e1], C[e2]). The proof idea is to trace the evolution

of e1 and e2 through a bisimulation up to the point when the expressions e1 and e2

(under some substitution) must be reduced.

Assume that the free variables of e1 and e2 are named X1, . . . , Xn. Consider any

value assigning substitution ρ defined over the free variables of e and e ′. From the

definition of expression congruence it follows that there exists a bisimulation Sρ such

that (e, e ′) ∈ Sρ. Denote with Se,e′ the bisimulation that is the union of all such

bisimulations (over ρ), and add it to S.

Consider next any set S′ such that

(C[{Z,X1, . . . , Xn}], C[{Z,X1, . . . , Xn}]) ∈ S′

where Z is a variable that does not occur in C[·], e or e ′, and where (e ′′, e ′′) ∈ S′ if

and only if C[{Z,X1, . . . , Xn}] −→
∗ e ′′, where e1 −→∗ e2 if e1 = e2 or there exists

an expression e3 and an action α3 such that e1
α3−→ e3 and e3 −→∗ e2. Clearly S′ is an

expression bisimulation.

Now construct the set S from S′ by replacing a pair (e ′′, e ′′) ∈ S′, where a

sub term {Z, e1, . . . , en} occurs in e ′′ in a non-reduction context position with the

pair (el, er) in S such that all occurrences of the subterm above is replaced with

e[e1/X1, . . . , en/Xn] = ea in el and with e ′[e1/X1, . . . , en/Xn] = eb in er.

We the following lemmata about about expression evaluation and expression con-

texts are easily established: if an expression C[e1] has a transition labelled by α to an

expression e ′′, and e1 is a tuple containing an ERLANG variable Z in the first tuple

position and which does not occur in the expression context C[·], then

• There is at most one expression context r′[[·]] and expression e1
′ which contains

the variable Z such that e ′′ = r′[[e1
′]]. This follows easily by induction over the

transition relation since a non-value subexpression is never duplicated, and the

expression transition relation is deterministic.

• The variable Z is not found in r′[[·]]. Again this is established by a trivial in-

duction showing that a non-value tuple is never decomposed by any transition

rule.

• For any expression e , the transition C[e]
α
−→ r′[[e′]] is derivable, where e′ is e

except some free variables in e may have become bound.

This observation means that we can uniquely trace the original tuple with the vari-

able Z, and that any other expression e can replace the tuple but have no effect (this

3.2 A Formal Semantics of ERLANG 59

follows from determinacy of the transition relation). So clearly S is also a bisimulation

up to the point where the tuple occurs in a redex position (if it does not we are done!).

So consider the pair with the tuple in the redex position and perform the same

substitution as above, resulting two terms ea and eb occurring once as subterms in el

and er. If either ea or eb are values then we are done, since they must be equal. This

follows because there is a substitution ρ (defined by the tuple above) such that ea = eρ
and eb = e ′ρ but then (ea, eb) ∈ Se,e′ ⊆ S. Now if ea is a value then eb must be a

value too, and vice versa.

If ea and eb are equivalent to el and er, i.e., they occur at the top of the expressions,

then there can be no variables free in either term. This fact follows from the original

condition that no variables in e1 or e2 are free in the original expression context. But

then again (ea, eb) ∈ Se,e′ ⊆ S. So we are done.

The alternative is that ea and eb occur in a position such that the meta-rule context

is applicable, or else under a context try · catch . . .end, such that the rules try2 or

try3 is the only applicable ones.

We consider the context case, the case for try is analogous. There must exist

a reduction context r[ea] = el and r[eb] = el (since ea and eb are not values). Here

simply generate the set S′′′ containing all pairs (r[e3], r[e4]) such that (e3, e4) ∈ Sel,er
.

Due to the definition of the context rule the same transitions will be derivable. Finally

if there is a value e ′
3 such that e3 −→∗ e ′

3 then (due to the bisimulation construction)

also e4 −→∗ e ′
3. So finally add the pair (r[e ′

3], r[e
′
3]) to S and all its derivatives; we have

found the required bisimulation.

To conclude, we have exhibited a bisimulation relation S relating the initial expres-

sions C[e1] and C[e2], and have thus proved that ∼c is an expression congruence.

Example 5. Consider the ERLANG function loop() -> loop(), and the expres-

sion {3, loop(), 1}. Clearly, ({3, loop(), 1},loop()) is an expression

bisimulation. Since no variables occur in loop() then, for any expression context

C[·], it holds that C[{3, loop(), 1}] ∼c C[loop()].

Next we would like to characterise a subset of the formulas of the logic such that

two expressions satisfy exactly the same formulas if and only if they are expression

congruent. For a value-free language such a restriction to a fragment of the logic poses

few problems; it is the sublogic with modalities and without equality. In our case,

however, in defining the formula fragment it is necessary to carefully trace the program

terms to ensure that no tests for equality on them takes place. Of course a formula

must nevertheless be allowed to test whether a program term has evaluated to a value.

It should also be realised that expression congruence is too strong to motivate many

useful equational laws, in particular since computation is deterministic. A more useful

congruence would result from considering the weak actions, i.e., such that multiple

internal computation steps are collapsed. The exploration of these issues is left for

future work.

60 Chapter 3. A Formal Semantics of ERLANG

3.2.5 Dynamic Semantics of Systems

Here the notion of processes that encapsulate the ERLANG expressions, and the systems

that are collections of processes, are formalised.

The ERLANG processes, ranged over by p ∈ erlangProcess, are either live or dead.

Process that are not live are not wholly inert; they will eventually inform linked pro-

cesses about their termination and in addition they will respond to received link signals.

The reason to introduce dead processes in the semantics is to be able to reason about

the semantics of process linking.

Definition 32. A live ERLANG process (erlangLiveProcess ⊂ erlangProcess) is a quin-

tuple : erlangExpression × erlangPid × erlangQueue × P(erlangPid) × erlangBool,

written 〈e, pid, q, pl, b〉, such that

• e is an ERLANG expression,

• pid is the process identifier of the process,

• q is a message queue,

• pl is a set of process identifiers (a set of links with other processes),

• b is an ERLANG boolean determining how process exit notifications are handled.

Definition 33. A terminated ERLANG process (erlangDeadProcess ⊂ erlangProcess)

is a tuple : erlangPid × P(erlangPid × erlangValue), written 〈pid, plm〉, where

• pid is the process identifier of the process,

• plm is a set of tuples combining process identifiers with a notification value that

should be sent to the corresponding process.

Definition 34. An ERLANG system is either a singleton process or a composition of

systems s1 and s2 written as s1 ‖ s2.

Informally, a system is a multiset of ERLANG processes. The semantics of the “‖”

construct guarantees that viewed as an operator it is commutative and associative (see

Proposition 15).

For clarity, and when there is no risk for confusion, the linked processes param-

eter and the boolean flag parameter will sometimes be omitted from the state of live

ERLANG processes, e.g., they are written on the format 〈e, pid, q〉.

Definition 35. Let the function pids(s) return the set of process identifiers belonging to

processes in the system s. Further let a system be well-formed if its process identifiers

are unique, i.e., a process identifier belongs to at most one process.

In the following we assume the well-formedness predicate which is represented by

wf in the logic.

Definition 36. Let the proper ERLANG systems, of type erlangSystem , be the well-

formed ERLANG systems: {s ∈ erlangSystem′ | wf s}.

3.2 A Formal Semantics of ERLANG 61

Henceforth let s range over only the well-formed ERLANG systems, and from know

on the notion of a system will refer to a well-formed one only. Hence a system is from

now intuitively a set rather than a multiset.

A signal is an item of information transmitted between a sending ERLANG process and

a receiving ERLANG process.

Definition 37. The signals, ranged over by sig ∈ erlangSignal, are:

sig ::= message(v) message

| link(pid) linking with process

| unlink(pid) unlinking process

| exited(pid, v) passive termination signal

| exit(pid, v) active termination signal

An ordinary message v transmitted to another process corresponds to the signal

message(v). As a convention this signal will normally be written simply v . For link-

ing to and unlinking another process the signals link(pid) and unlink(pid) are used. A

signal exited(pid, v) indicates the termination of pid for reason v . Finally the signal

exit(pid, v) indicates that the process pid requests the termination of the receiving pro-

cess for reason v . If v is kill then termination of the receiving process cannot be

prevented.

A system action, committed by a system, is either a silent action, an output action

or an input action.

Definition 38. The system actions, ranged over by α ∈ erlangSysAction, are:

α ::= τ silent action

| pid!sig output action

| pid?sig input action

Definition 39. The system transition relation, →: erlangSystem × erlangSysAction ×
erlangSystem, written s1

α
−→ s2, is the least relation satisfying the rules in Tables 3.13,

3.14, 3.15, 3.16, 3.17 and 3.18.

In Tables 3.13, 3.14, 3.15 and 3.16 the role of the process operator proc as an

abstraction mechanism for expressions is explored. Table 3.17 presents rules for termi-

nated processes whereas Table 3.18 describes the semantics of the parallel composition

operator ‖.

Discussion of Semantic Rules

To illustrate the system semantics rules we will explain the first three rules in Ta-

ble 3.13. Consider first the rule silent. If the expression e has a transition e
τ
−→ e ′

(a computation step) then the process 〈e, pid, q, pl, b〉 has a transition labelled by the

silent action τ to the process 〈e ′, pid, q, pl, b〉. Next let us consider the rules output0

62 Chapter 3. A Formal Semantics of ERLANG

and output1. If the expression e can perform a send action pid′!v then either the value

is to be sent to a remote process (if pid′ 6= pid) and so an action pid′!message(v) with a

signal message(v) parameter occurs. Alternatively, if pid′ = pid the value v is simply

appended to the queue of the process q · v.

Next consider the read rule on Page 63. A computation step transition from

〈e, pid, q1 · v · q2, pl, b〉 is enabled to the target process 〈e ′, pid, q1 · q2, pl, b〉 whenever

the process mailbox (queue) can be split into three parts q1 · v · q2, and the expression

transition receive e
read(q1,v)
−−−−−−−→ e ′ is derivable. Thus the rules read and receive together

ensure the intuitive semantics of the receive construct.

One of several rules handling termination of a process is termination, which triggers

when an expression has been evaluated to a ground value v . Then the process changes

state, and prepares to send termination messages (informing that the reason for process

termination was normal) to linked processes.

Next the handling of functions that depend upon the process state is considered in

Table 3.14 (see Page 35 for intuition). Considering rule self, for instance, it is enabled

for an action self() ❀ pid in the context of a process with process identifier pid. The

handling of the built-in function trap exit addresses only a small part of its normal

functionality, namely the modification of process termination reception semantics.

The handling of process spawning on the process level is specified by the rules

spawn0 and spawn1 in Table 3.14. The rules essentially states that any choice of a new

process identifier is acceptable as long as it does not coincide with the process iden-

tifier of the spawning process, to preserve uniqueness of process identifiers. The rule

interleave0 will further constrain the choice of a new process identifier, in the context

of additional processes. Thus, in a hierarchical and context-free way, we ensure that

the uniqueness of process identifiers are preserved in contrast with the global condition

“pid fresh” found in some other operational semantics.

The input rules are given in Table 3.15, and are straightforward. Note that for live

processes, input of any signal is always enabled.

The handling of reception of a process termination notification as defined in Ta-

ble 3.16 is rather intricate, mimicking the real ERLANG implementations.

Processes are linked, bidirectionally, upon sending and reception of link signals

(rules link and linking). Linked process may receive notification signals, indicating that

one of the processes they are linked to is no longer alive, modelled in this semantics by

the arrival of the exited signal.

The handling of the signal depends on a number of parameters (Table 3.16), no-

tably the last parameter b (an ERLANG boolean) of the process state, modifiable by

the process flag built-in function (rules trap exit), which determines whether exit

notification are delivered to the message queue of the linked process.

• If the linked process completed normally (v = normal) and the trap exit

flag has not been set (b = false), or if the process mentioned in the signal is no

longer linked (pid′ 6∈ pl), the process state is not modified (rule exited0). Note

that there is an implicit choice of either checking pid′ 6∈ pl here or not (since

there can be a race between unlinking a process, and receiving a notification

3.2 A Formal Semantics of ERLANG 63

silent
e

τ
−→ e ′

〈e, pid, q, pl, b〉
τ
−→ 〈e ′, pid, q, pl, b〉

output0
e

pid′
!v

−−−−→ e′ pid′ 6= pid

〈e, pid, q, pl, b〉
pid′

!message(v)
−−−−−−−−−−−→ 〈e′, pid, q, pl, b〉

output1
e

pid!v
−−−→ e′

〈e, pid, q, pl, b〉
τ
−→ 〈e′, pid, q · v, pl, b〉

read e
read(q1,v)
−−−−−−−→ e ′

〈e, pid, q1 · v · q2, pl, b〉
τ
−→ 〈e ′, pid, q1 · q2, pl, b〉

test e
test(q)
−−−−→ e ′

〈e, pid, q, pl, b〉
τ
−→ 〈e ′, pid, q, pl, b〉

termination
〈v, pid, q, pl, b〉

τ
−→ 〈pid, {〈Pid,normal〉 | Pid ∈ pl}〉

exiting e
exiting({’EXIT’,v})
−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
τ
−→ 〈pid, {〈Pid, v〉 | Pid ∈ pl}〉

nocatch

e
exiting(v)
−−−−−−−→ e ′

¬∃V : erlangValue.v = {’EXIT’, V }

〈e, pid, q, pl, b〉
τ
−→ 〈pid, {〈Pid,nocatch〉 | Pid ∈ pl}〉

Table 3.13: Process rules for expression evaluation

64 Chapter 3. A Formal Semantics of ERLANG

self
e
self()❀{result,pid}
−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
τ
−→ 〈e ′, pid, q, pl, b〉

link
e
link(pid′

)❀{result,true}
−−−−−−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
pid′

!link(pid)
−−−−−−−−−→ 〈e ′, pid, q, pl, b〉

unlink
e
unlink(pid′

)❀{result,true}
−−−−−−−−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
pid′

!unlink(pid)
−−−−−−−−−−−→ 〈e ′, pid, q, pl, b〉

kill
e
kill(pid′

,v)❀{result,true}
−−−−−−−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
pid′

!exit(pid,v)
−−−−−−−−−−→ 〈e ′, pid, q, pl, b〉

trap exit
e
process flag(trap exit,b′)❀{result,b}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
τ
−→ 〈e ′, pid, q, pl, b′〉

spawn0

pid′ 6= pid

e
spawn(f,[v1,...,vn])❀{result,pid′

}
−−−−−−−−−−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
τ
−→ 〈e ′, pid, q, pl, b〉 ‖

〈
f(v1, . . . , vn), pid′, ǫ, ∅, false

〉

spawn1

pid′ 6= pid

e
spawn link(f,[v1,...,vn])❀{result,pid′

}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ e ′

〈e, pid, q, pl, b〉
τ
−→
〈
e ′, pid, q, pl ∪ {pid′}, b

〉
‖
〈
f(v1, . . . , vn), pid′, ǫ, {pid}, false

〉

Table 3.14: Process rules for evaluation of process functions

3.2 A Formal Semantics of ERLANG 65

input
〈e, pid, q, pl, b〉

pid?message(v)
−−−−−−−−−−−→ 〈e, pid, q · v, pl, b〉

linking
〈e, pid, q, pl, b〉

pid?link(pid′
)

−−−−−−−−−−→
〈
e, pid, q, pl ∪ {pid′}, b

〉

unlinking
〈e, pid, q, pl, b〉

pid?unlink(pid′
)

−−−−−−−−−−−→
〈
e, pid, q, pl \ {pid′}, b

〉

Table 3.15: Process rules for external input

of its completion). We follow Barklund’s text [Bar98, BV99] in additionally

checking the linked condition.

• Otherwise (rule exited1) the linked process may have requested that process ter-

mination notifications should be put in its mailbox (b = true).

• Otherwise, if process completed abnormally, and the linked process has taken

no special action, then the linked process is also terminated abnormally (rule

exited2) with the same reason v .

Exit notifications can also be sent actively with the built-in function kill (in real

ERLANG with exit/2). In the semantics such active notification are modelled with

the signal exit. The semantic treatment (in Table 3.16) is analogous to the linked

case, except that (i) there is no check that the process invoking kill was linked, and

(ii) the reason kill causes unconditional process termination (rule kill3) which is

broadcast to linked process as the reason killed.

Lemma 7. For any system (of one process) 〈e, q, pid, pl, b〉, and for all values v and

process identifiers pid′, there exists a system s such that

〈e, q, pid, pl, b〉
pid?exited(pid′

,v)
−−−−−−−−−−−−→ s

and

〈e, q, pid, pl, b〉
pid?exit(pid′

,v)
−−−−−−−−−−−→ s

Proof. We have to prove that the disjunction of the preconditions of the transition rules

exit0, exit1 and exit2 (the exited signal case) is a tautology (and analogous for the exit

signal).

The exited case:

(v = normal ∧ b = false) ∨ pid′ 6∈ pl

∨ b = true ∧ pid′ ∈ pl

∨ v 6= normal ∧ b = false ∧ pid′ ∈ pl

66 Chapter 3. A Formal Semantics of ERLANG

exited0

(v = normal ∧ b = false) ∨ pid′ 6∈ pl

〈e, pid, q, pl, b〉
pid?exited(pid′

,v)
−−−−−−−−−−−−→ 〈e, pid, q, pl, b〉

exited1

b = true ∧ pid′ ∈ pl

〈e, pid, q, pl, b〉
pid?exited(pid′

,v)
−−−−−−−−−−−−→

〈
e, pid, q · {’EXIT’, pid′, v}, pl, b

〉

exited2

v 6= normal ∧ b = false ∧ pid′ ∈ pl

〈e, pid, q, pl, b〉
pid?exited(pid′

,v)
−−−−−−−−−−−−→ 〈pid, {〈Pid, v〉 | Pid ∈ pl}〉

kill0
v = normal ∧ b = false

〈e, pid, q, pl, b〉
pid?exit(pid′

,v)
−−−−−−−−−−−→ 〈e, pid, q, pl, b〉

kill1
v 6= kill ∧ b = true

〈e, pid, q, pl, b〉
pid?exit(pid′

,v)
−−−−−−−−−−−→

〈
e, pid, q · {’EXIT’, pid′, v}, pl, b

〉

kill2
v 6= kill ∧ v 6= normal ∧ b = false

〈e, pid, q, pl, b〉
pid?exit(pid′

,v)
−−−−−−−−−−−→ 〈pid, {〈Pid, v〉 | Pid ∈ pl}〉

kill3
v = kill

〈e, pid, q, pl, b〉
pid?exit(pid′

,v)
−−−−−−−−−−−→ 〈pid, {〈Pid,killed〉 | Pid ∈ pl}〉

Table 3.16: Process rules for handling exit notifications

is trivially a tautology (assuming b ∈ {true,false}).

The exit case:

v = normal ∧ b = false

∨ v 6= kill ∧ b = true

∨ v 6= kill ∧ v 6= normal ∧ b = false

∨ v = kill

is also a tautology.

Lemma 8. For any system (of one process) 〈e, q, pid, pl, b〉, and for all values v and

process identifiers pid′, and all systems s, at most one of the transition rules exited0,

exited1 and exited2 (and analogously at most one of the rules exit0, exit1, exit2, exit3
are applicable).

Proof. Trivially the preconditions of each of the transition rules are mutually exclusive.

3.2 A Formal Semantics of ERLANG 67

tlink
plm′ = plm ∪ {〈pid′,noproc〉}

〈pid, plm〉
pid?link(pid′

)
−−−−−−−−−−→ 〈pid, plm′〉

tinput
¬∃Pid′ : erlangPid.s = link(Pid′)

〈pid, plm〉
pid?s
−−−−→ 〈pid, plm〉

tnotify
〈pid′, v〉 ∈ plm

〈pid, plm〉
pid′

!exited(pid,v)
−−−−−−−−−−−−→

〈
pid, plm \ {〈pid′, v〉}

〉

Table 3.17: Process rules for terminated processes

Table 3.17 defines the signal input rules of terminated ERLANG processes. Note for

instance the rule tlink. If a link request arrives at a terminated process then it will reply,

eventually, with the termination notification noproc. The rule tnotify controls how

termination notifications are sent. They are sent, as all other signals, through binary

message passing, and notifications are sent out unordered.

Finally consider Table 3.18 which presents the rules for the parallel composition

operator. The rules interleave1, interleave2 and interleave3 also come in symmetric

variants, where the left system performs a transition step. As usual this is an interleav-

ing operator, except for the communication rule com either the left or the right system

can perform a transition step, but not both.

As described in the standard ERLANG textbook [AVWW96], any ERLANG imple-

mentation must satisfy the following scheduling criteria:

• The scheduling algorithm must be fair, that is, any process which can be run will

be run, if possible in the same order as they became runnable.

• No process will be allowed to block the machine for a long time. A process is al-

lowed to run for a short period of time, called a time slice, before it is rescheduled

to allow another runnable process to run.

The second criterion relates to real-time performance, which is not modelled by our se-

mantics. The first criterion, however, does restrict the permissible execution sequences.

Consider for instance the system 〈loop(), q, pid, pl, b〉 ‖
〈
pid′′!0, q′, pid′, pl′, b′

〉
, ex-

ecuting the function loop() -> loop(). Clearly the execution sequence which

only performs actions from the left process is not permitted by the criteria. Our seman-

tics, however, permits such a sequence. The approach taken in this thesis, and indeed

in our previous work [DFG98b], is to encode such fairness assumptions as part of the

specification of correctness properties in the logic.

In the rule for process output interleave1, the condition pids(s1)
′ ∩ pids(s2) = ∅

ensures that any new processes in s1
′ are assigned unique process identifiers. Second

the condition pid 6∈ pids(s2) in the rule interleave2 permits outputs only to processes

not in the same system, much as the rule output0 does for the case of a singleton

process.

68 Chapter 3. A Formal Semantics of ERLANG

com s1
pid!s
−−−→ s1

′ s2
pid?s
−−−−→ s2

′

s1 ‖ s2
τ
−→ s1

′ ‖ s2
′

interleave1
s1

τ
−→ s1

′ pids(s1
′) ∩ pids(s2) = ∅

s1 ‖ s2
τ
−→ s1

′ ‖ s2

interleave2
s1

pid?s
−−−−→ s1

′

s1 ‖ s2
pid?s
−−−−→ s1

′ ‖ s2

interleave3
s1

pid!s
−−−→ s1

′ pid 6∈ pids(s2)

s1 ‖ s2
pid!s
−−−→ s1

′ ‖ s2

Table 3.18: Process communication (symmetrical rules omitted)

It may come as a surprise that the semantics for an asynchronous message passing

language uses a process algebra communication scheme in the rule com. There are

two points to be made: as explained earlier we want to obtain a context free account

of processes, and thus prescribing an input action is completely natural, in particular

considering the timeout clause in the receive which makes the arrival time of mes-

sages crucially important. Second, as Theorem 10 shows, input actions are always

enabled, and we thus regain the asynchronous nature of communication found in regu-

lar ERLANG.

In the semantics messages are never lost. The semantics communication (rule com)

is such that if two consecutive messages m1 and m2 are sent by process p1 to process

p2 then message m1 will always arrive before message m2.

Note that terminated processes are not silent, and can be queried by sending link

signals to them. A terminated process will respond to such signals by issuing an exit

noproc reply.

Next some results about the ERLANG systems and the ERLANG system transition

relation will be summarised.

Proposition 6 (System Derivations are Finite). For each system s there is a finite bound

on the depth of inferences of a transition from s.

Proof. By induction on the structure of the ERLANG systems. In the base case, the

singleton process, there are no rules with a system transition as a premise, and from

Proposition 2 the result immediately follows. Consider the parallel compositions of two

systems s1 and s2, with bounded derivations. But then clearly the parallel compositions

have only bounded derivations as well.

Proposition 7 (Well-Formed Systems Are Invariantly Well-Formed). For any well-

formed system s, if s
α
−→ s′ for some s′, then s′ is also well-formed.

3.2 A Formal Semantics of ERLANG 69

Proof. The proposition will be proved using induction on the size of derivations. Con-

sider all the system rules. No base case rule (the singleton process rules) changes a

process identifier so only the rules introducing new processes needs to be considered.

In the rules spawn0 and spawn1 the condition that pid 6= pid′ clearly suffices. For the

rule interleave1 we know by assumption that s1 ‖ s2 is well-formed. From the defi-

nition of well-formedness follows that pids(s1) ∩ pids(s2) = ∅ and wf s1 and wf s2.

From the induction hypothesis it follows that wf s1
′, and the transition condition is

pids(s1
′) ∩ pids(s2) = ∅ but then wf s1

′ ‖ s2 follows. For the rules com, interleave2

and interleave3 it suffices to first establish the easy lemma, not proved here, that for all

s′, pid, v, if s
pid?v
−−−−→ s′ or s

pid!v
−−−→ s′ then wf s′ and pids(s) = pids(s′).

Proposition 8 (Process Determinacy). For any process p, and systems s, s′, if p
α
−→ s

and p
α
−→ s′ then sρ = s′ρ where ρ is a substitution that renames process identifiers.

Proof. A case analysis on the proof rules of the singleton processes and actions. Con-

sider first a live process p. Recall the lemmas 3, and 4, which states that expression

transitions are deterministic with respect to the same actions, and that only queue or

process-state function call actions give rise to multiple expression level transitions. For

the output action there is only one process rule output0 applicable, which is derived

from an expression rule.

For the input case we need to establish that input rules input, linking, unlinking,

exitedi and exiti are all mutually exclusive. The only complications are exited2 and

exited3, but here the boolean parameter separates the cases. Similarly the exiti rules

are all mutually exclusive.

For the silent step case we have to consider only actions “of the same kind”, because

of Proposition 4, since the expression level transition semantics is deterministic with

respect to other action types, and the process level rules for deriving silent transitions

all have premises that are mutually exclusive with respect to any action.

Both the queue and the process state transition rules clearly give rise to an infinite

number of actions, leading to different expression states. For the process state action,

for all rules other than spawn0 and spawn1, clearly the resulting expression is uniquely

determined by the process function name. For the case of transitions due to spawn the

results are identical up to a renaming of the process identifier of the newly spawned

process (and thus the substitution ρ in the proposition above).

Next we consider the queue case. Suppose both the action read(q1, v1) and an

action read(q2, v2) is derivable leading to different expressions e1 and e2. From the

determinacy of the expression transition relation we get that q1 6= q2 or v1 6= v2.

But clearly both are true, so q2 must be a proper prefix of q1, i.e., ∃q2
′′ such that

q1 = q2 ·v2 ·q2
′′ or vice versa if q1 is a proper prefix of q2, but this case is symmetrical.

Now consider expression transition rule receive, which must have derived the transi-

tion labelled read(q2, v2). A premise for its derivation is result v2 mI e ′ for some

clause mI and expression e ′. Further, since an expression action labelled read(q1, v1)
was also derivable we have the premise (also from the definition of the receive rule)

∀I.¬(qmatches q mI), and thus specifically (from the definition of qmatches) it fol-

lows that ¬matches v2 mI . But from Lemma 2 follows that matches v2 mI , which

70 Chapter 3. A Formal Semantics of ERLANG

leads to a contradiction.

The cases of both a read action read(q1, v) and a test action test(q) are analogous

and not shown.

Finally the transition rules of the terminated processes, trivially satisfy the condi-

tions.

The condition above on the substitution can naturally be sharpened to take place

only under the silent transitions and only require a substitution of variables that do not

occur in p.

Next we establish an important result guaranteeing that if input of any signal is

enabled then all signals can be input.

Proposition 9 (Input Enabledness-1). If a system s
pid?sig
−−−−−→ s′ for some pid, signal

sig and system s′ then for any signal sig′ there is a system s′′ such that s
pid?sig′

−−−−−→ s′′.

Proof. By induction on the length of derivations. Only the input base cases are non-

trivial.

For live processes, for signals which are not exit notifications or exit requests, the

result is trivial since the rules have no conditions. Next we have to check that the

rules exiti and killi cover all such signals, and possible process states, which has been

established in Lemma 7.

It remains to consider the terminated process rules, which are trivially enabled for

all input values.

Next it is proved that if a process identifier belongs to a process in a system, then

that process can input any signal. This property is a requirement for regaining asyn-

chronous communication from the synchronous scheme used by the com rule.

Proposition 10 (Input Enabledness-2). For all process identifiers pid and systems s, if

pid ∈ pids(s) then for all signals sig there exists a system s’ such that s
pid?sig
−−−−−→ s′.

Proof. We will show that the transition s
pid?0
−−−−→ s′ is enabled for some s′. It then

follows from Proposition 9 that for any signal sig there is a system s′′ such that

s
pid?sig
−−−−−→ s′′.

The proof strategy is induction on the structure of the system s. If s is a singleton

process then the process identifier of s must be pid. But then, trivially, either the rule

input (for live processes) or the rule tinput (for terminated processes) is applicable.

Consider instead a parallel composition s = s1 ‖ s2. From the definition of pids(s)
either (or both, since well-formedness is not taken into account) pid ∈ pids(s1) or

pid ∈ pids(s2). Apply the induction hypothesis and the rule interleave2 to derive the

input transition.

The relation between process identifiers and input transitions is obvious.

3.2 A Formal Semantics of ERLANG 71

Proposition 11. pid ∈ pids(s) if and only if there exists a signal sig and system s′

such that s
pid?sig
−−−−−→ s′.

Proof. An easy induction over the length of derivations.

Let s −→∗ s′ mean that there exists a sequence of coupled transitions from the

system s and ending in s′, in the obvious manner.

Proposition 12 (Input Invariance). If a system s has a transition labelled by
pid?sig
−−−−−→

for some pid and signal sig then for any derivative s′ such that s −→∗ s′ there exists a

system s′′ and signal sig′ such that s
pid?sig′

−−−−−→ s′′.

Proof. This observations follows from the observation that the process identifiers of a

system increase monotonically over derivations (not proven here, but an easy induction

over the length of a derivation), and Proposition 10.

Proposition 13 (Input Determinacy). For any systems s, s′, s′′, process identifier pid

and signal sig if s
pid?sig
−−−−−→ s′ and s

pid?sig
−−−−−→ s′′ then s′ = s′′.

Proof. By induction on the length of derivations. For singleton processes this follows

from Proposition 8. So consider the case of a parallel composition s1 ‖ s2. Assume

s
pid?sig
−−−−−→ s′ and s

pid?sig
−−−−−→ s′′. From the assumption on well-formedness and Propo-

sition 11 it follows that either s1 or s2 must be responsible for both transitions. But

then the induction hypothesis is applicable.

3.2.6 Bisimilarity for Systems

Here the notion of bisimilarity is extended to the systems.

Definition 40. A binary relation S is a system bisimulation if (s1, s2) ∈ S implies, for

all actions a,

• Whenever s1
α
−→ s1

′ then, for some s2
′, s2

α
−→ s2

′, and (s1
′, s2

′) ∈ S, and vice

versa.

Definition 41. The systems s1 and s2 are system bisimilar, written s1∼ss2, if (s1, s2) ∈
S for some system bisimulation S.

System bisimilarity is a very strong equivalence relation, and not very practically

useful. For instance, two systems cannot be bisimilar if they have differently named

processes, since input actions (giving away the process name) are always enabled.

Proposition 14. ∼s is a congruence.

72 Chapter 3. A Formal Semantics of ERLANG

Proof. We have to consider only the case of a parallel composition, so assume s1 ∼s

s2, and prove that for any system s3, s1 ‖ s3 ∼s s2 ‖ s3 (and vice versa for the

right-hand side of the parallel composition but this case will be omitted).

We claim that S = {(s1 ‖ s3, s2 ‖ s3) | s1 ∼s s2} is a system bisimulation,

which would establish the needed result. So consider the transitions of s1 ‖ s3
α
−→ s.

Crucially first note that s1 ∼s s2 implies that pids(s1) = pids(s2), since if not, then

some input steps cannot be matched.

1. s1
pid?v
−−−−→ s1

′, and s = s1
′ ‖ s3. But then we also have s2

pid?v
−−−−→ s2

′,

for some s2
′, and s1

′ ∼s s2
′. But then also s2 ‖ s3

pid?v
−−−−→ s2

′ ‖ s3, and

(s1
′ ‖ s3, s2

′ ‖ s3) ∈ S.

2. s1
pid!v
−−−→ s1

′, and s = s1
′ ‖ s3. But then we also have s2

pid!v
−−−→ s2

′,

for some s2
′, and s1

′ ∼s s2
′. But then also s2 ‖ s3

pid!v
−−−→ s2

′ ‖ s3, and

(s1
′ ‖ s3, s2

′ ‖ s3) ∈ S.

3. s1
pid!v
−−−→ s1

′, and s = s1
′ ‖ s3, and s3

τ
−→ s3

′. But then we also have s2
pid!v
−−−→

s2
′, for some s2

′, and s1
′ ∼s s2

′, and s3
pid?v
−−−−→ s3

′ But then also s2 ‖ s3
τ
−→

s2
′ ‖ s3

′, and (s1
′ ‖ s3

′, s2
′ ‖ s3

′) ∈ S.

4. s1
τ
−→ s1

′, and s = s1
′ ‖ s3. But then we also have s2

τ
−→ s2

′, for some s2
′, and

s1
′ ∼s s2

′. Since pids(s1) = pids(s2) (from s1
′ ∼s s2

′) and wf s1
′ ‖ s3 then

obviously wf s2
′ ‖ s3, and thus s2 ‖ s3

τ
−→ s2

′ ‖ s3, and (s1
′ ‖ s3, s2

′ ‖ s3) ∈
S.

The case of s3 performing a step is analogous and not shown here.

First a much expected fact about the parallel composition is provable.

Proposition 15 (Parallel Composition is Associative and Commutative). For any three

systems s1, s2 and s3 it holds that s1 ‖ s2∼ss2 ‖ s1 and s1 ‖ (s2 ‖ s3)∼s(s1 ‖ s2) ‖
s3.

Proof. The proof is standard, we show that

• The set {(s1 ‖ s2, s2 ‖ s1)} which contains all pairs of systems s1 and s2, is a

system bisimulation.

• The set {(s1 ‖ (s2 ‖ s3), (s1 ‖ s2) ‖ s3)} which contains all triples of systems

s1, s2 and s3 is a system bisimulation.

We consider the case for commutativity. Suppose s1 ‖ s2
α
−→ s′. This is either be-

cause one of the components performs a single step, or there is a communication.

We consider one alternative below. Suppose s1
α
−→ s1

′ and s′ ≡ s1 ‖ s2 but then

s2 ‖ s1
α
−→ s2 ‖ s1

′ under the same symmetric conditions for the derivation on the left-

hand side of the parallel composition, and the resulting pair is in the bisimulation.

3.2 A Formal Semantics of ERLANG 73

Even though the notion of bisimilarity is very strong we can still prove some prac-

tically useful facts about it. For instance, bisimilar expressions produce bisimilar sys-

tems:

Proposition 16. Whenever e1∼ee2 then for all pid, q, pl, b it holds that

〈e1, pid, q, pl, b〉∼s 〈e2, pid, q, pl, b〉.

Proof. We claim that

{(〈e1, pid, q, pl, b〉 , 〈e2, pid, q, pl, b〉) | e1 ∼c e2}⋃

{(〈e1, pid, q, pl, b〉 ‖ s, 〈e2, pid, q, pl, b〉 ‖ s) | e1 ∼c e2}

is a system bisimulation.

We will consider actions by e, the case for e′ is completely symmetrical. Consider

any transition step by the expression e. Clearly the action is mimicked by e′ and since

the rest of the process state is identical, then the resulting systems must be identical (up

to the derivatives of e and e′). Suppose e has finished its evaluation yielding a value

v. Well, then so must also e′ (since they are bisimilar) with an equivalent value. So

consider a system action not involving an expression action. Clearly, since the process

states are identical, and since no rule examines e (except to determine if the expression

has finished its computation), the resulting systems are identical.

3.2.7 Language Extension: Function Values

Regular ERLANG, since version 4.4, supports a form of lambda expression to permit

the definition of anonymous functions that can be treated as values. In this section

we describe the modifications of the semantics required in order to support function

values.

• A function value is constructed using the syntax fun m end where, as usual, m

is a match (a sequence of clauses - pattern, guard and expression triples). The

syntax fun a/i, available in regular ERLANG, where a is an atom used to refer

to a named function, and i is an arity, is not supported in this semantics. The

predicate isFunctionValue is assumed to recognise the function values. Syntac-

tically it is expected that the function value occur in a context that binds all the

free variables in the match (fv(m)), which is ensured by restrictions on function

definitions.

• The built-in function function is assumed, which recognises function values,

and is permitted in guards. Further, the set of tuple values and function values

are considered distinct, i.e., a function value is not represented using a tuple

(in contrast with regular ERLANG), thus the built-in function tuple will return

false when applied to a function value.

• To reflect the fact that an anonymous function represents a value, the definition

of the Erlang Values erlangValue is considered to be extended with the function

values.

74 Chapter 3. A Formal Semantics of ERLANG

• In the operational semantics one new rule funv is added, and an existing rule

fun3 is modified:

funv
case {v1, . . . , vn} of m end

τ
−→ e ′

fun m end(v1, . . . , vn)
τ
−→ e ′

fun3

¬(isProcFun v) ∧ ¬(isDefined v)

∧ ¬(isFunctionValue v) ∧ ¬(isBIF v)

v(v1, . . . , vn)
exiting(badfun)
−−−−−−−−−−−−→ bottom

• The fv function that computes free variables is extended to the case of function

values: fv(fun m end) = fv(m).

• Crucially the substitution function has to be extended, to take into account bind-

ing of variables in Function Values. The implementations of regular ERLANG

ensure that variables occurring in the pattern of a clause in the function head are

fresh (are not bound by surrounding matches), whereas variables occurring in

the function expressions but not patterns must be bound by surrounding matches.

Consider the function definition

f(X,Y,Pid) -> Pid!(fun X -> {X,Y} end).

If, say, f is called f(1, 2,Pid), where Pid is a valid process identifier, then the

value fun X -> {X,2} end will be sent to Pid.

To achieve this formally, first define a function rs(ṽ, Ṽ , Ṽp, e) (restrict-subst-

itution) that constructs new sequences ṽ ′ and Ṽ ′ from ṽ and Ṽ such that Vi ∈

Ṽ ′ and vi ∈ ṽ ′ if Vi 6∈ Ṽp, and then applies the resulting substitution to e as

e{ṽ ′/Ṽ ′}.

The extension of the substitution function to Function Values then becomes

function p1 when g1 -> e1; . . . ; pn when gn -> en end{ṽ/Ṽ }

= function

p1 when rs(ṽ, Ṽ , fv(p1), g1)-> rs(ṽ, Ṽ , fv(p1), e1)

; . . . ;

pn when rs(ṽ, Ṽ , fv(p1), gn)-> rs(ṽ, Ṽ , fv(p1), en)

end

Chapter 4

A Proof System for Reasoning

about ERLANG Code

The proof system for reasoning about ERLANG code is of Gentzen-type [Gen69] and

sequent based. Sequents are of the shape Γ ⊢ ∆ where Γ and ∆ are finite multisets of

formulas. The multisets will sometimes be referred to as sequences when the distinc-

tion is not relevant. The formulas in Γ will often be referred to as the left-hand side,

or the assumptions, and ∆ will be referred to as the right-hand side. In this chapter

we give the formal semantics of sequents, present the rules of the proof system, and

establish their soundness.

In the following we consider only formulas that contain no free predicate variables

and which satisfy the type rules of Chapter 2. That is, for a formula φ it is required

that, assuming a mapping LV of the free term variables in φ to types, the type checking

condition LV ⊢ φ : prop holds. Recall from Chapter 2 that a valuation maps term

variables and predicate variables to appropriate values, i.e., values of some sort or

function abstractions.

Definition 42 (Sequents and Valuations).

• A valuation ρ respects a type interpretation LV if ρ maps term variables in LV
to values of the type specified in LV .

• A sequent is an expression of the shape Γ ⊢ ∆ where Γ and ∆ are (possibly

empty) multisets of formulas written φ1, . . . , φn and ψ1, . . . , ψm such that there

exists a type interpretation LV so that for each φi and ψi the formula type check-

ing conditions LV ⊢ φi : prop and LV ⊢ ψi : prop are derivable.

• A valuation ρ is said to validate a formula φ when ‖φ‖ρ 6= ∅.

• The sequent Γ ⊢ ∆, with an implicit type interpretation LV , is valid, written

Γ |= ∆, if for all valuations ρ that respectLV the following holds: if all formulas

in Γ are validated by ρ, then some formula in ∆ is validated by ρ.

75

76 Chapter 4. A Proof System for Reasoning about ERLANG Code

• Let fv(Γ ⊢ ∆) denote the free variables of the sequent Γ ⊢ ∆, i.e., fv(φ1)∪ . . .∪
fv(φn) ∪ fv(ψ1) ∪ . . . ∪ fv(ψm).

Further extend the notion of a substitution applied to a formula to multisets of

formulas Γ with the syntax Γ{t/X}, when v is a term and X is a variable.

Next the notion of a proof rule is formalised.

Definition 43. A proof rule is a triple consisting of a conclusion sequent Γ ⊢ ∆,

a possibly empty finite set of sequents {Γ1 ⊢ ∆1, . . . ,Γn ⊢ ∆n} representing the

premises, and a symbol representing the name of the rule.

Henceforth proof rules will always be displayed graphically on the format

NAME

Γ1 ⊢ ∆1, . . . ,Γn ⊢ ∆n

Γ ⊢ ∆

where NAME is the unique name of the rule. If a proof rule has no premises it will be

referred to as an axiom proof rule. Consider as an example the rule for introducing

disjunctions on the left hand side:

∨L

Γ, φ1 ⊢ ∆ Γ, φ2 ⊢ ∆

Γ, φ1 ∨ φ2 ⊢ ∆

The symbols Γ and ∆ in the proof rule range over any, possibly empty, multiset of

formulas. Formally the rule ∨L here is a schematic way to define a collection of proof

rules, each obtained by instantiating Γ, φ1, φ2 and ∆. In the following we will slightly

abuse terminology and simply refer to such schemas as proof rules.

The intuition for the notion of a proof rule is that, whenever all the premisses of

a rule are valid then so must the conclusion be. In this thesis most reasoning starts

with the conclusion; we prove a formula by finding a proof rule that yields a set of

premisses sufficient to establish its validity. In other words, typically proof rules are

read bottom-up: we match the proof goal we have with the conclusion of a proof rule

and derive a set of new goals which must be proved in turn.

The notation “X fresh”, whereX is a term variable, will be used in rules to describe

the classical side condition that any variable X may be chosen as long as it does not

occur free in the conclusion sequent Γ ⊢ ∆. However, in this thesis, a further restriction

is placed on the choice of a fresh ordinal variable κwhich must be chosen globally fresh

in the proof tree. That is, there may not be any other proof node in which κ occurs free.

This additional condition simplifies the treatment of ordinal induction in Section 4.4.

4.1 Proof Rules for Classical First-Order Logic

In this section the proof rules that do not involve fixed point reasoning are presented.

These proof rules can be separated into four categories, and are defined in Tables 4.1

and 4.2. The majority of the rules are standard from accounts of Gentzen–style proof

systems.

4.1 Proof Rules for Classical First-Order Logic 77

• The structural rules govern the introduction and elimination of formulas. For ex-

ample, the proof rule ID allows discharging a goal whenever an identical formula

occurs on both sides of the turnstile.

• The logical rules introduce the logical connectives to the left and to the right of

the turnstile. One example is the proof rule ∨L which governs the introduction of

a disjunction on the left hand side.

• The equality rules account for equational reasoning. The proof rules state that

equality is reflexive, symmetric and transitive, and that it is a congruence.

• The equality rules for terms of freely generated sorts With a sort of freely-

generated terms we mean a sort where no equalities are postulated between syn-

tactically different terms. An example of a freely generated sort is the lists. Two

lists are equal only if their head elements are equal, and their tails are equal. An

example of a sort that is not freely generated is the queues with the empty queue

ǫ since the equality q · ǫ = q holds where · is the concatenation constructor. As

indicated additional proof rules admit structural decomposition of of terms of

such sorts.

Consider the proof rule CINEQL as an example. Suppose an assumption states that

two terms are equivalent, and that these terms are of freely generated sorts. Moreover,

the assumption states that the terms have different head constructors. Clearly this is

contradictory. That is, there can be no valuation that validates the assumption, and so

the sequent is trivially valid.

Theorem 2 (Local Soundness). Each of the rules in Table 4.1 and Table 4.2 is sound,

i.e. the conclusion is a valid sequent whenever all premises are so and all side condi-

tions hold.

Proof. Here we prove the soundness of only a few rules; the proofs of the remaining

rules are either standard or similar to these.

∃L: Assume that the premise Γ, φ{X ′/X} ⊢ ∆ is valid, that X ′ is fresh, and that ρ
validates the assumptions in Γ,∃X : S.φ. That ρ validates ∃X : S.φ means that⋃

v∈S

(
‖φ‖ρ[v/X]

)
6= ∅, i.e., there is an element v ∈ S, such that ‖φ‖ρ[v/X] 6=

∅. Consider the valuation ρ[v/X ′], clearly it must validate Γ, φ{X ′/X} since

X ′ does not occur in Γ. But then ∆ must be valid under ρ[v/X ′], and since X ′

does not occur in ∆, the formulas in ∆ must also be valid under ρ.

∃R: Assume that the premise Γ ⊢ φ{t/X},∆ is valid, that t ∈ S, and that ρ validates

the assumptions in Γ. Hence it follows that ρ validates either φ{t/X} or one

of the formulas in ∆. Assume that none of the formulas in ∆ are validated,

but φ{t/X} is validated, since otherwise the proof immediately succeeds. The

semantics of ∃X : S.φ under ρ is
⋃

v∈S

(
‖φ‖ρ[v/X]

)
6= ∅. By choosing t for

v, we can extract the term ‖φ‖ρ[t/X] which is identical to ‖φ{t/X}‖ρ which is

78 Chapter 4. A Proof System for Reasoning about ERLANG Code

Structural Rules

ID

–

Γ, φ ⊢ φ,∆

WL

Γ ⊢ ∆

Γ, φ ⊢ ∆
WR

Γ ⊢ ∆

Γ ⊢ φ,∆

CUT

Γ ⊢ φ,∆ Γ, φ ⊢ ∆

Γ ⊢ ∆

Logical Rules

¬L

Γ ⊢ ∆, φ

Γ,¬φ ⊢ ∆
¬R

Γ, φ ⊢ ∆

Γ ⊢ ¬φ,∆

∨L

Γ, φ1 ⊢ ∆ Γ, φ2 ⊢ ∆

Γ, φ1 ∨ φ2 ⊢ ∆
∨R

Γ ⊢ φ1, φ2,∆

Γ ⊢ φ1 ∨ φ2,∆

∃L

Γ, φ{X ′/X} ⊢ ∆

Γ,∃X : S.φ ⊢ ∆
X ′ fresh ∃R

Γ ⊢ φ{t′/X},∆

Γ ⊢ ∃X : S.φ,∆
t′ ∈ S

APPLYL

Γ, φ{t′/X} ⊢ ∆

Γ, (λX : S.φ) t′ ⊢ ∆
APPLYR

Γ ⊢ φ{t′/X},∆

Γ ⊢ (λX : S.φ) t′,∆

Equality Rules

REFL

–

Γ ⊢ t = t,∆

SYMML

Γ, t2 = t1 ⊢ ∆

Γ, t1 = t2 ⊢ ∆
SYMMR

Γ ⊢ t2 = t1,∆

Γ ⊢ t1 = t2,∆

TRANSL

Γ, t1 = t3 ⊢ ∆

Γ, t1 = t2, t2 = t3 ⊢ ∆
TRANSR

Γ ⊢ t1 = t3,∆

Γ ⊢ t1 = t2, t2 = t3,∆

SUBST

Γ{t2/X} ⊢ ∆{t2/X}

Γ{t1/X}, t1 = t2 ⊢ ∆{t1/X}

Table 4.1: Standard Proof Rules

4.2 Pre-Proofs 79

CEQL

Γ, t1 = t1
′, . . . , tn = tn

′ ⊢ ∆

Γ, op(t1, . . . , tn) = op(t1
′, . . . , tn

′) ⊢ ∆

CEQR

Γ ⊢ t1 = t1
′,∆ · · · Γ ⊢ tn = tn

′,∆

Γ ⊢ op(t1, . . . , tn) = op(t1
′, . . . , tn

′),∆

CINEQL

–

Γ, op(t1, . . . , ti) = op′(t1
′, . . . , tj

′) ⊢ ∆
op 6= op′

Table 4.2: Rules for Terms of Freely Generated Sorts

known to be nonempty since φ{t/X} is valid under ρ. So ∃X : S.φ must be

valid under ρ.

APPLYR: Assume that the premise of the rule is valid. Consider an arbitrary valuation

ρ that validates all assumptions in Γ, and at least one formula in φ{t′/T},∆.

We will show that ρ validates also the consequence of the rule. Assume further

that ρ does not validate any formula in ∆ (otherwise trivially ρ validates the

consequence also), so it must validate φ{t′/T}. Since ‖λY : S.φ‖ρ = λX :
S.‖φ‖ρ[X/Y] then ‖(λY : S.φ)t′ ‖ρ = ‖φ‖ρ[t′/Y] = ‖φ{t′/Y }‖ρ, which is

exactly the assumption that ρ validates φ{t′/T}, and thus ρ validates also the

consequence.

4.2 Pre-Proofs

Here some terminology concerning proofs, such as the notion of a substitution instance

of a rule, and the notion of a pre-proof, is formalised.

Definition 44. A substitution instance of a proof rule R of the shape

R

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

is a tree containing one root node with n direct descendants. The tree is labelled by

sequents

Γ1
′ ⊢ ∆1

′ . . . Γn
′ ⊢ ∆n

′

Γ′ ⊢ ∆′

such that there exists a substitution ρ such that Γρ = Γ′ and for all 1 ≤ i ≤ n the

multiset equalities Γiρ = Γi
′ and ∆iρ = ∆i

′ hold.

Definition 45. A pre-proof, or proof tree, is a finite rooted tree such that all nodes

of the tree are labelled by sequents, and which respects the local rules of the proof

80 Chapter 4. A Proof System for Reasoning about ERLANG Code

system in the sense that if a proof tree node π is labelled by a sequent δ and its children

π1, . . . , πn are labelled by δ1, . . . , δn then the subtree

δ1 · · · δn

δ

is a substitution instance of some proof rule.

Let π range over pre-proof nodes and T range over pre-proofs. Let sequent(π)
refer to the sequent label of a node π. Further, let children(π) refer to the possibly

empty set of children of π and the parent of a node π (if it has a parent) with parent(π).
A proof is intuitively a pre-proof such that all the leaf nodes are axioms, i.e. dis-

charged due to proof rules such as ID or REFL, or they are instances of ancestor nodes in

the proof structure, and such that the global discharge condition holds. The notion of a

proof will be formally defined in Section 4.5.3.

As a convention the name of a proof rule will often be displayed on the right hand

side of a proof node to indicate that the subtree rooted in the node is a substitution

instance of the proof rule.

4.3 Derived Proof Rules

The derived proof rules in Table 4.3 will be used heavily, and are easily proven from

the abbreviations and proof rules introduced so far. By “proven” we understand the fact

that there exists a proof schema (a tree-like structure of proof rules) which can be ap-

plied to any instance of the conclusion in a derived proof rule, and through application

of the proof rules in the proof schema derive its premisses.

For a trivial example consider the proof schema below which derives the proof

rule ∧L.

Γ, φ1, φ2 ⊢ ∆

Γ ⊢ ¬φ1,¬φ2,∆
¬R,¬R

Γ ⊢ ¬φ1 ∨ ¬φ2,∆
∨R

Γ,¬ (¬φ1 ∨ ¬φ2) ⊢ ∆
¬L

Γ, φ1 ∧ φ2 ⊢ ∆
abbrev.

4.3.1 A Cut Rule for Terms

In Dam [Dam95] a rule named CUT for CCS terms was introduced to enable compo-

sitional reasoning. Similarly Dam et al. [DFG98b] uses a PROCESSCUT rule to similar

effect in the treatment of parallel compositions in ERLANG. As Figure 4.1 shows an

analogous rule TERMCUT is derivable using the classical CUT rule in our proof system.

TERMCUT

Γ ⊢ t′ : ψ,∆ Γ, X : ψ ⊢ t : φ,∆

Γ ⊢ t{t′/X} : φ,∆
X fresh

4.3 Derived Proof Rules 81

FALSEL

–

Γ, false ⊢ ∆
TRUER

–

Γ ⊢ true,∆

CL

Γ, φ, φ ⊢ ∆

Γ, φ ⊢ ∆
CR

Γ ⊢ φ, φ,∆

Γ ⊢ φ,∆

∧L

Γ, φ1, φ2 ⊢ ∆

Γ, φ1 ∧ φ2 ⊢ ∆
∧R

Γ ⊢ φ1,∆ Γ ⊢ φ2,∆

Γ ⊢ φ1 ∧ φ2,∆

∀L

Γ, φ{t/X} ⊢ ∆

Γ,∀X : S.φ ⊢ ∆
t′ ∈ S ∀R

Γ ⊢ φ{X ′/X},∆

Γ ⊢ ∀X : S.φ,∆
X ′ fresh

⇒ L

Γ ⊢ φ1,∆ Γ, φ2 ⊢ ∆

Γ, φ1 ⇒ φ2 ⊢ ∆
⇒ R

Γ, φ1 ⊢ φ2,∆

Γ ⊢ ∆, φ1 ⇒ φ2

Table 4.3: Derived Proof Rules

π :
Γ, X : ψ ⊢ t : φ,∆

Γ ⊢ X : ψ ⇒ t : φ,∆
⇒ R

Γ ⊢ ∀X. (X : ψ ⇒ t : φ) ,∆
∀R

−
Γ, t{t′/X} : φ ⊢ t{t′/X} : φ,∆

ID
Γ ⊢ t′ : ψ,∆

Γ ⊢ t{t′/X} : φ, t′ : ψ,∆
WR

Γ, t′ : ψ ⇒ t{t′/X} : φ ⊢ t{t′/X} : φ,∆
⇒ L

Γ,∀X. (X : ψ ⇒ t : φ) ⊢ t{t′/X} : φ,∆
∀L

π

Γ ⊢ t{t′/X} : φ,∆
CUT

Figure 4.1: Derivation of the TERMCUT rule

82 Chapter 4. A Proof System for Reasoning about ERLANG Code

Intuitively the proof rule expresses that if we can prove that (i) the property ψ holds

of the subterm t′ of t, and (ii) t satisfies φ when the subterm t′ has been replaced by

any term satisfying ψ, then we are allowed to conclude that the term t satisfies φ.

4.3.2 Proof Rules for Modalities

Convenient proof rules for modalities can easily be obtained, similar to the rules of

Simpson [Sim95]. Recall that the modalities abbreviate the following formulas:

〈α〉φ
∆
= λX : S.∃X ′ : S.X

α
−→ X ′ ∧ φ X ′

[α]φ
∆
= λX : S.∀X ′ : S.X

α
−→ X ′ ⇒ φ X ′

These abbreviation yield the following set of derived proof rules:

〈α〉
R

Γ ⊢ ∃X ′ : S.t
α
−→ X ′ ∧X ′ : φ,∆

Γ ⊢ t : 〈α〉φ,∆
〈α〉

L

Γ, t
α
−→ X ′, X ′ : φ ⊢ ∆

Γ, t : 〈α〉φ ⊢ ∆
X ′ fresh

[α]
L

Γ,∀X ′.t
α
−→ X ′ ⇒ X ′ : φ ⊢ ∆

Γ, t : [α]φ ⊢ ∆
[α]

R

Γ, t
α
−→ X ′ ⊢ X ′ : φ,∆

Γ ⊢ t : [α]φ,∆
X ′ fresh

Consider as an example the derivation of the proof rule 〈α〉
L
:

Γ, t
α
−→ X ′, X ′ : φ ⊢ ∆

Γ,∃X ′ : S.t
α
−→ X ′ ∧X ′ : φ ⊢ ∆

∃L,∧L

Γ, t : λX : S.∃X ′ : S.X
α
−→ X ′ ∧X ′ : φ ⊢ ∆

APPLYR

Γ, t : 〈α〉φ ⊢ ∆
abbrev.

As a further example the following monotonicity rules, well-known rules from stan-

dard Gentzen-type accounts of modal logic, are derivable.

MON1
Γ, S : φ, S : φ1, . . . , S : φm ⊢ S : ψ1, . . . , S : ψn,∆

Γ, s : 〈α〉φ, s : [α]φ1, . . . , s : [α]φm ⊢ s : 〈α〉ψ1, . . . , s : 〈α〉ψn,∆
S fresh

MON2
Γ, S : φ1, . . . , S : φm ⊢ S : ψ, S : ψ1, . . . , S : ψn,∆

Γ, s : [α]φ1, . . . , s : [α]φm ⊢ s : [α]ψ, s : 〈α〉ψ1, . . . , s : 〈α〉ψn,∆
S fresh

The derivation of rule MON1, for instance, proceeds by applying 〈α〉
L

obtaining a new

target state S, and then reducing the other formulas using 〈α〉
R

and [α]
L
, introducing

the resulting existential and universal quantifiers using S as witness. Intuitively the

rule expresses an obligation to prove that there are a set of program actions labelled

by α in the program state s which are such that there are target states of these actions

which satisfy ψ1, . . . , ψn. We are allowed to assume that s has a transition labelled by

α which leads to a state satisfying φ, and further that any transition from s labelled by

α leads to states satisfying the formulas φ1, . . . , φm. A sufficient assumption is then

that such states also satisfy ψ1, . . . , ψn.

4.4 Inductive and Coinductive Reasoning 83

4.4 Inductive and Coinductive Reasoning

To handle recursively defined formulas a mechanism is needed for successfully termi-

nating recursive proof construction. We discuss the ideas on the basis of two informal

examples, where the embedding of ERLANG formalised in Section 4.6 is assumed.

Example 6 (Coinduction). Consider the following Erlang function:

loop(Out,V) -> Out!V, loop(Out,V).

which outputs a constant stream of values V along Out. One property of the program

is that it can always eventually output some value along Out:

spec : erlangExpression → prop ⇒

λOut : erlangPid.

∃V : erlangValue.〈〈Out !V 〉〉true

∧ [τ]spec Out

∧ ∀P : erlangPid, V : erlangValue.[P !V]spec Out

where erlangExpression denotes the type of ERLANG expressions and erlangPid de-

notes the type of ERLANG process identifiers (these notions are formalised in Sec-

tion 4.6). Further, 〈〈α〉〉φ is the weak modality introduced on Page 27.

The goal sequent takes the shape

⊢ loop(Out, V) : spec Out (4.1)

where the type of V is assumed to be the ERLANG values (erlangValue).

The first proof step is to unfold the formula definition, and split the conjunction.

This results in the three proof goals

⊢ loop(Out, V) : ∃V : erlangValue.〈〈Out!V 〉〉true (4.2)

⊢ loop(Out, V) : [τ]spec Out (4.3)

⊢ loop(Out, V) : ∃P : erlangPid, V : erlangValue.[P !V]spec Out (4.4)

Proving 4.2 is straightforward using the local proof rules and fixed point unfolding.

Goal 4.4 is trivially true since no output transition is enabled according to the semantics

of ERLANG. Continuing with goal 4.3 one transition is taken, and the formula is again

unfolded, resulting in the new goals:

⊢ Out!V , loop(Out, V) : ∃V : erlangValue.〈〈Out!V 〉〉true (4.5)

⊢ Out!V , loop(Out, V) : [τ]spec Out (4.6)

⊢ Out!V , loop(Out, V) : ∃P : erlangPid, V : erlangValue.[P !V]spec Out
(4.7)

The first goal is again straightforward. The second goal is trivially true since there are

no internal transitions. Continuing with goal 4.7, following one transition step results

in the goal

⊢ loop(Out, V) : spec Out (4.8)

84 Chapter 4. A Proof System for Reasoning about ERLANG Code

Continuing the proof construction beyond 4.8 is clearly futile: the sequent is iden-

tical to the original sequent 4.1. We would like to discharge the goal 4.8 at this point,

assuming that this is a sound proof step. For goal 4.8 the soundness of eliminating it

is not hard to see: the fixed point spec can only appear at its unique position in the

sequent 4.8 because it did so in the sequent 4.1. We can say that spec is regenerated

along the path from 4.1 to 4.8. Moreover, spec is a greatest fixed point formula. It turns

out that the sequent 4.8 can be discharged for these reasons. In general, however, fixed

point unfoldings can be hard to analyse as is seen in examples 8 and 9 in Section 4.5.2.

The basic intuition is that sequents Γ ⊢ ∆ can be discharged for one of two reasons:

1. Coinductively, because a member of ∆ is regenerated through a greatest fixed

point formula, as seen in example 6.

2. Inductively, because a member of Γ is regenerated through a least fixed point

formula.

Intuitively the assumption of a least fixed point property can be used to determine a

kind of progress measure ensuring that loops of certain sorts must eventually be exited.

This significantly increases the utility of the proof system, permitting, for instance, a

scheme similar to structural induction on datatypes.

Example 7 (Induction). Consider the following function:

last([Hd|Tl],Out) -> Out!Hd, last(Tl,Out);

last(Tl,Out) -> Tl.

which returns the tail of the last cons cell of its list parameter, and outputs all other ele-

ments of the list along Out. The function last has the property that it will eventually

terminate, in the sense of the following property:

terminates : erlangExpression → prop ⇐

[τ]terminates ∧ ∀P : erlangP id, V : erlangValue.[P !V]terminates

This is a least fixed point, and must be satisfied without requiring the fixed point to be

further unfolded after a finite number of program steps. Hence it can be satisfied only

for programs that eventually reach a state in which no internal or output transition is

enabled.

The goal sequent is

properList L ⊢ last(L,Out) : terminates (4.9)

where the list recognition predicate properList is defined as

properList ⇐

λL : erlangValue.

((L = []) ∨ (∃H,T : erlangValue.L = [H|T] ∧ properList T))

4.5 Proof of Recursive Formulas 85

The least fixed point appearing in the definition of properList will be crucial for dis-

charge later in the proof. By unfolding the definition of properList (essentially per-

forming a case analysis on the list L using properList), unfolding the definition of

terminates and performing a computation step the result is the two goals:

⊢ [] : terminates (4.10)

properList T ⊢ Out!H , last(T ,Out) : terminates (4.11)

The first goal is clearly provable, since the expression [] has no transitions. To prove

goal 4.11 unfold the definition of terminates, resulting in two goals:

properList T ⊢ Out!H , last(T ,Out) : [τ]terminates (4.12)

properList T ⊢ Out!H , last(T ,Out) :

∃P : erlangPid, V : erlangValue.[P !V]terminates
(4.13)

Goal 4.12 is trivially true (there are no internal transitions). Proceeding with goal 4.13

a computation step is taken resulting in the goal

properList T ⊢ last(T ,Out) : terminates (4.14)

This sequent is an instance of the initial goal sequent 4.9. Moreover, it was obtained

by regenerating the least fixed point formula properList on the left. This provides the

progress measure required to discharge 4.14.

Finitary data types in general can be specified using least fixed point formulas.

This allows for termination or eventuality properties of programs to be proven along

the lines of Example 7. In a similar way we can handle program properties that depend

on inductive properties of message queues.

4.5 Proof of Recursive Formulas

The approach we use to handle fixed points is essentially well-founded induction.

When some fixed points are unfolded, notably least fixed points to the left of the turn-

stile, and greatest fixed points to the right of the turnstile, it is possible to pin down

suitable approximation ordinals providing, for least fixed points, a progress measure

toward satisfaction and, for greatest fixed points, a progress measure toward refuta-

tion. We introduce explicit ordinal variables which are maintained, and suitably decre-

mented, as proofs are conducted. This provides a simple method for dealing with a

variety of complications such as alternation of fixed points.

4.5.1 Fixed Point Rules

In general, soundness of fixed point induction relies on the well-known iterative char-

acterisation where least and greatest fixed points are computed as limits of their ordinal

approximations.

86 Chapter 4. A Proof System for Reasoning about ERLANG Code

APPRXL

Γ, ((µU : sφ.φ)κ) t1 . . . tn ⊢ ∆

Γ, (µU : sφ.φ) t1 . . . tn ⊢ ∆
κ fresh

UNF1L

Γ, (φ{µU : sφ.φ/U}) t1 . . . tn ⊢ ∆

Γ, (µU : sφ.φ) t1 . . . tn ⊢ ∆

UNF1R

Γ ⊢ (φ{µU : sφ.φ/U}) t1 . . . tn,∆

Γ ⊢ (µU : sφ.φ) t1 . . . tn,∆

UNF2L

Γ, (φ{(µU : sφ.φ)κ′

/U}) t1 . . . tn, κ
′ < κ ⊢ ∆

Γ, ((µU : sφ.φ)κ) t1 . . . tn ⊢ ∆
κ′ fresh

UNF3R

Γ ⊢ κ′ < κ,∆

Γ ⊢ (φ{(µU : sφ.φ)κ′

/U}) t1 . . . tn,∆

Γ ⊢ ((µU : sφ.φ)κ) t1 . . . tn,∆

Table 4.4: Least Fixed Point Proof Rules

The main rules to reason locally about fixed point formulas are the unfolding rules

in Table 4.4. These come in four flavours, according to whether the fixed point abstrac-

tion concerned has already been approximated or not, and to the nature and position

of the fixed point relative to the turnstile. Note that since the greatest fixed point is a

derived operator, the proof rules involving this operator are derived and not part of the

base set of local proof rules but shown instead in Table 4.5. Let σ range over ν and µ,

and κ range over the ordinals. The models considered in the thesis will be countable

and thus it suffices to consider countable ordinals.

Normally we would expect only least fixed point formula abstractions to appear

in approximated form to the left of the turnstile (and dually for greatest fixed points).

However, ordinal variables can “migrate” from one side of the turnstile to the other

through application of the CUT rule. Consider for instance the following application of

the TERMCUT rule:

Γ ⊢ s2 : (νU : sφ.φ)κ Γ, S : (νU : sφ.φ)κ ⊢ s1 : (νU : sφ.φ)κ

Γ ⊢ s1{s2/S} : (νU : sφ.φ)κ TERMCUT

In addition to the rules above the identity rules reflecting the monotonicity proper-

ties of ordinal approximations are included in the proof system:

IDMON1

Γ ⊢ κ ≤ κ′,∆

Γ, (µU : sφ.φ)κ t1 . . . tn ⊢ (µU : sφ.φ)κ′

t1 . . . tn,∆

IDMON2

Γ ⊢ κ′ ≤ κ,∆

Γ, (νU : sφ.φ)κ t1 . . . tn ⊢ (νU : sφ.φ)κ′

t1 . . . tn,∆

4.5 Proof of Recursive Formulas 87

APPRXR

Γ ⊢ ((νU : sφ.φ)κ) t1 . . . tn,∆

Γ ⊢ (νU : sφ.φ) t1 . . . tn,∆
κ fresh

UNF1νL

Γ, (φ{νU : sφ.φ/U}) t1 . . . tn ⊢ ∆

Γ, (νU : sφ.φ) t1 . . . tn ⊢ ∆

UNF1νR

Γ ⊢ (φ{νU : sφ.φ/U}) t1 . . . tn,∆

Γ ⊢ (νU : sφ.φ) t1 . . . tn,∆

UNF2R

Γ, κ′ < κ ⊢ (φ{(νU : sφ.φ)κ′

/U}) t1 . . . tn,∆

Γ ⊢ ((νU : sφ.φ)κ) t1 . . . tn,∆
κ′ fresh

UNF3L

Γ ⊢ κ′ < κ,∆

Γ, (φ{(νU : sφ.φ)κ′

/U}) t1 . . . tn ⊢ ∆

Γ, ((νU : sφ.φ)κ) t1 . . . tn ⊢ ∆

Table 4.5: Derived Greatest Fixed Point Proof Rules

The rule ORDTRANS expresses transitivity of < over ordinals which is necessary to

reason about well-orderings.

ORDTRANS
Γ, κ < κ′, κ′ < κ′′, κ < κ′′ ⊢ ∆

Γ, κ < κ′, κ′ < κ′′ ⊢ ∆

Theorem 3. The rules APPRXL, UNF1L, UNF1R, UNF2L, IDMON1, IDMON2 and ORDTRANS are

sound.

Proof.

APPRXL: For APPRXL assume Γ, ((µU : sφ.φ)κ) t1 . . . tn ⊢ ∆ is valid, and that κ
is fresh. Assume further that Γ and (µU : sφ.φ) t1 . . . tn holds, up to some

valuation ρ. Since the semantics is monotone with respect to application, i.e.,

‖φ t‖ρ
∆
= ‖φ‖ρ ‖ t‖ρ, we can focus on the fixed points only. That the unap-

proximated fixed point is valid means that
⋃

β ‖(µU : sφ.φ)
κ ‖ρ[β/κ] 6= ∅. So

there is some ordinal β such that the semantics of the fixed point approximated

with β is non-empty. But then the valuation ρ[β/κ] that maps κ to β must vali-

date also the premise (since κ is fresh), and thus ∆ too. But since κ is fresh then

∆ must be valid under ρ too, completing the case.

UNF1L,UNFR1R: The soundness of these rules follows directly from the fact that µZ.φ is

a parametrised fixed point of φ.

UNF2L: Assume that

Γ, φ{(νU : sφ.φ)κ1/U} t1 . . . tn, κ1 < κ ⊢ ∆

88 Chapter 4. A Proof System for Reasoning about ERLANG Code

is valid, and that κ1 is fresh. Assume furthermore that a valuation ρ is given,

such that Γ and (νU.φ)κ t1 . . . tn are valid under it. Either α is 0, or α =
α1 + 1, or α is a limit ordinal. The first case is contradictory. For the second

case we get the κ1 we are looking for directly as α1, and some assertion in ∆
is established as desired. For the third case we find some α1

′ < α such that

φ{(νU : sφ.φ)α1
′

/U} t1 . . . tn is true. We can assume that α′
1 is a successor

ordinal. But then the previous subcase applies, and we are done.

UNF3R: Assume that

Γ ⊢ κ′ < κ,∆ and Γ ⊢ (φ{(µU : sφ.φ)κ′

/U}) t1 . . . tn,∆

are valid. Assume that Γ is valid under a valuation ρ, we have to show that one

of the formulas in (µU : sφ.φ)κ,∆ is valid under ρ. So suppose no formula in

∆ is valid. Let α be the ordinal that κ is mapped to by ρ. Suppose α = 0, this is

a contradiction. If α = α′ +1 then since (φ{(µU : sφ.φ)α′

/U}) t1 . . . tn must

be valid under ρ the result follows trivially. If α is a limit ordinal and α′′ < α
then (φ{(µU : sφ.φ)α′′+1/U}) t1 . . . tn is valid so (µU : sφ.φ)α′′

t1 . . . tn
must be too, and the result follows by monotonicity of fixed points.

IDMON1, IDMON2, ORDTRANS: Trivial given Proposition 1, and ordinal arithmetic.

The following text will sometimes refer to the operation of “decreasing an ordi-

nal” κ decorating some fixed point formula (σX.φ)κ. By decreasing the ordinal κ we

understand the introduction of a fresh ordinal κ′ in an assumption κ′ < κ, and the

replacement of κ with κ′ in the fixed point formula, typically by unfolding it yielding

the new formula φ{(σX.φ)κ′

/X} (as in the rule UNF2L).

4.5.2 Discharge: Some Intuition

The fundamental problem in arriving at a sound, yet powerful, rule of discharge, is

to control the way different fixed points may interfere with each other as proofs are

conducted. We illustrate the problem by two examples.

Example 8. Consider the proof goal

S : U1 ⊢ S : U3 (4.15)

using the abbreviations:

U1 = νZ1.µZ2.[τ]Z1 ∧ ∀P, V.[P !V]Z2

U2 = µZ2.[τ]U1 ∧ ∀P, V.[P !V]Z2

U3 = µZ3.νZ4.[τ]Z4 ∧ ∀P, V.[P !V]Z3

U4 = νZ4.[τ]Z4 ∧ ∀P, V.[P !V]U3

4.5 Proof of Recursive Formulas 89

The assumption states that any infinite sequence of internal or send transitions can only

contain a finite number of consecutive send transitions, while the assertion states that

any infinite sequence of internal or send transitions can only contain a finite number of

send transitions. Thus 4.15 is false.

We start by refining 4.15 to the subgoal

S : Uκ2

2 ⊢ S : Uκ4

4 (4.16)

using the rules UNF1L, UNF1R, APPRXL and APPRXR. Continuing a few steps further (by

unfolding the fixed point formulas and treating the conjunctions on the left and on the

right) we obtain the two subgoals

S : [τ]U1, S : ∀P, V.[P !V]U
κ′
2

2 , κ′2 < κ2, κ
′
4 < κ4 ⊢ S : [τ]U

κ′
4

4 (4.17)

S : [τ]U1, S : ∀P, V.[P !V]U
κ′
2

2 , κ′2 < κ2, κ
′
4 < κ4 ⊢ S : ∀P, V.[P !V]U3 (4.18)

Subgoal 4.17 is refined via rule MON2 to

S′ : U1, S : ∀P, V.[P !V]U
κ′
2

2 , κ′2 < κ2, κ
′
4 < κ4 ⊢ S′ : U

κ′
4

4 (4.19)

and after unfolding U1 using UNF1L we arrive at

S′ : U2, S : ∀P, V.[P !V]U
κ′
2

2 , κ′2 < κ2, κ
′
4 < κ4 ⊢ S′ : U

κ′
4

4 (4.20)

which one might expect to be able to discharge against 4.16 by coinduction in κ4.

Similarly when we refine 4.18 to

S : [τ]U1, S
′ : U

κ′
2

2 , κ′2 < κ2, κ
′
4 < κ4 ⊢ S′ : U4 (4.21)

we would expect to be able to discharge against 4.16 inductively in κ2. This does not

work, however, since the derivation of 4.20 from 4.16 fails to preserve the induction

variable κ2 needed for 4.21, and vice versa, κ4 is not preserved along the path from 4.16

to 4.21. Therefore, the infinite proof structure resulting from an infinite repetition of the

above steps contains paths in which neither of the two variables is actually decreased

infinitely many times, and preserved when not decreased. Hence the attempted ordinal

induction fails. It would still have been sound to discharge if at least one of the two

ordinal variables had been preserved in the corresponding other branch; then there

would have been no such paths.

Example 9. Consider the (reversed) proof goal

S : U3 ⊢ S : U1 (4.22)

with the almost identical abbreviations, except for U2 and U4:

U1 = νZ1.µZ2.[τ]Z1 ∧ ∀P, V.[P !V]Z2

U2 = µZ2.[τ]U
κ′
3

1 ∧ ∀P, V.[P !V]Z2

U3 = µZ3.νZ4.[τ]Z4 ∧ ∀P, V.[P !V]Z3

U4 = νZ4.[τ]Z4 ∧ ∀P, V.[P !V]U
κ′
1

3

90 Chapter 4. A Proof System for Reasoning about ERLANG Code

The goal states that if all infinite sequences of internal or send transitions of a pro-

cess can only contain a finite number of send transitions, then these infinite sequences

of internal or send transitions can only contain finite sequences of consecutive send

transitions. This goal is obviously valid.

First we apply rules APPRXL, APPRXR, UNF2L and UNF2R to reduce 4.22 to the subgoal

S : U4, κ
′
1 < κ1, κ

′
3 < κ3 ⊢ S : U2 (4.23)

Continuing in much the same way as in the preceding example we arrive at the two

subgoals

S′ : U4, S : ∀P, V.[P !V]U
κ′
1

3 , κ′1 < κ1, κ
′
3 < κ3 ⊢ S′ : U

κ′
3

1 (4.24)

S : [τ]U4, S
′ : U

κ′
1

3 , κ′1 < κ1, κ
′
3 < κ3 ⊢ S′ : U2 (4.25)

These subgoals are refined, using UNF2R and UNF2L respectively, to

S′ : U4, S : ∀P, V.[P !V]U
κ′
1

3 , κ′1 < κ1, κ
′
3 < κ3, κ

′′
3 < κ′3

⊢ S′ : µZ2.[τ]U
κ′′
3

1 ∧ ∀P, V.[P !V]Z2 (4.26)

S : [τ]U4, S
′ : νZ4.[τ]Z4 ∧ ∀P, V.[P !V]U

κ′′
1

3 , κ′1 < κ1, κ
′
3 < κ3, κ

′′
1 < κ′1

⊢ S′ : U2 (4.27)

These sequents can be discharged against 4.23 coinductively in κ3, and inductively

in κ1, respectively. In contrast with the previous example, here every ordinal vari-

able which is used for induction (or coinduction) in one of the two leaves is preserved

throughout the path to the other leaf.

In the following section we shall make the discharge condition formally precise.

4.5.3 The Global Discharge Condition

The global discharge condition implements a scheme for fixed point induction via well-

founded induction on ordinals. The scheme is a global one, defined as a condition on

an otherwise finished proof tree such that all its open goals can be discharged at once,

thus completing the proof. The condition requires that each open goal is an instance of

an ancestor proof node, and that for each pair of ancestor and open goal some ordinal

has decreased along the path from the ancestor to the open proof goal. The condition

is complicated by the observation that paths between such pairs of ancestors and proof

goals can cross (as evidenced in example 8), and it is therefore necessary to consider

the ordinal variables that are preserved along each path.

Definition 46 (Proof Path). A path from a proof node π to a proof node π′ in a pre

proof (Definition 45) is a sequence of proof nodes π1, . . . , πn such that π1 ≡ π, πn ≡
π′ or π1 ≡ π′, πn ≡ π, and such that for each pair of consecutive nodes πi, πi+1,

parent(πi+1) = πi (πi is the ancestor node of πi+1).

4.5 Proof of Recursive Formulas 91

Let path(π, π′) refer to the unique path from node π to π′ (if it exists), and let Π
range over the sets of proof nodes.

Definition 47 (Ordinal Variable Preservation and Progress). Given two proof nodes πC

and πD such that sequent(πC) = ΓC ⊢ ∆C and sequent(πD) = ΓD ⊢ ∆D in a proof

tree T , and a substitution ρ,

• the ordinal variable κ ∈ fv(πC) progresses under ρ if ΓD ⊢ κρ < κ by applica-

tion of the proof rules ORDTRANS and ID

• the ordinal variable κ ∈ fv(πC) is preserved by ρ if ΓD ⊢ κρ ≤ κ by application

of the proof rules ORDTRANS and ID

• progressing(πD, πC , ρ)
∆
= {κ : κ ∈ fv(πC) ∧ κ progresses under ρ}

• preserved(πD, πC , ρ)
∆
= {κ : κ ∈ fv(πC) ∧ κ is preserved by ρ}

Recall that the proof rules that introduce ordinal variables (in Chapter 4 and par-

ticularly Section 4.5) require that fresh ordinal variables, from the application of CUT,

APPRXL, APPRXR, UNF2L, etc., do not coincide with ordinal variables occurring elsewhere

in the proof tree.

Definition 48 (Substitution Instance). A proof node πD such that sequent(πD) =
ΓD ⊢ ∆D is a substitution instance of a proof node πC such that sequent(πC) =
ΓC ⊢ ∆C under the substitution ρ if

• For each γi ∈ ΓC , γiρ ∈ ΓD

• For each δi ∈ ∆C , δiρ ∈ ∆D

In other words, the substitution ρ maps each assumption in ΓC to a corresponding

assumption in ΓD (and vice versa for ∆C and ∆D).

Note that the above formalisation is a rather syntactic characterisation of condi-

tions for preservation, progress and substitution instances. An alternative would be to

remove the restriction to derivability under ORDTRANS and ID. Then, however, the ordi-

nal variable κ is not guaranteed to occur in the sequent ΓD ⊢ ∆D (perhaps ΓD ⊢ is

valid). Another variation is to replace the clause stating inclusion of assumptions

For each γi ∈ ΓC , γiρ ∈ ΓD

by a statement of derivability

For each γi ∈ ΓC , it holds that ΓD ⊢ γiρ,∆D

Lemma 9. Suppose that πD is a substitution instance of πC and the ordinal variable

κ progresses (or is preserved) under ρ from πC to πD, then κ must occur syntactically

in both πC and πD and hence also occur in every node between πC and πD.

92 Chapter 4. A Proof System for Reasoning about ERLANG Code

Proof. Consider for instance preservation, i.e., ΓD ⊢ κρ ≤ κ. The proof that κ ∈
fv(πD) is by a completely trivial induction on the length of this derivation. The final

step must be an application of the ID proof rule. But then κ must be present in a for-

mula in ΓD. Since the two rules ID and ORDTRANS never remove any formula from the

left-hand side, and do not introduce any new free variables, the result immediately fol-

lows. Since the proof rules by construction are prohibited from re-introducing ordinal

variables it follows that κ is present in all the nodes of the path.

Definition 49 (Proof Structure). A proof structure is a pair consisting of a pre-proof T
and a set of pairs 〈πD, πC〉, one for each open proof goal πD in T , such that πC is a

proper ancestor node of πD in T and πD is a substitution instance of πC under some

substitution. Let such an open proof goal be referred to as a discharge node, and its

ancestor node as a companion node.

Henceforth, we let T range over the proof structures (as well as the pre-proofs).

Further, given a proof structure T and an open proof goal πD, let companion(πD)
refer to its unique companion node πC .

Definition 50 (Runs over a Proof Structure). A run over a proof structure is a sequence

of proof nodes starting in the root node of the proof structure (the pre-proof) such that:

(i) for each immediate successor π′ of a proof node π of the run, either parent(π′) = π,

or π is a discharge node and π′ is its companion (companion(π) = π′); (ii) any final

node in the run was proved through the application of an axiom proof rule (a proof rule

without premisses, e.g., ID).

As a consequence of the definition every finite run has as its last node an axiom

rule.

Definition 51 (Discharge Nodes in Runs). Let runs(T) denote the set of runs over

a proof structure T , and let discharges(T) denote the set of discharge nodes in T .

Further, let discharges(r) for a run segment r ∈ runs(T) denote the following set of

proof nodes: {π | π is a discharge node and π ∈ r}.

The following definitions capture the sequence of proof nodes that can repeat in-

definitely in run over a proof structure.

Definition 52 (Repeating Run Segment). A repeating run segment over a proof struc-

ture T is a segment π1, π2, . . . , πn of a run over T such that π1 is a discharge node,

π1 ≡ πn, and such that each discharge node occurs at most once in the segment

π2, . . . , πn. Denote with loops(T) the set of repeating run segments over a proof struc-

ture T .

Clearly, since there are a finite number of discharge nodes in T the set loops(T)
must be finite too.

Definition 53 (infpaths). Define the set of loop paths over a proof structure T , denoted

with infpaths(T), as the set

{discharges(s) | s ∈ loops(T)}

4.5 Proof of Recursive Formulas 93

�� ���� ��

���� ���� �� //

��

�� ��
�� ��Bgg

�� ���� �� //

��

�� ��
�� ��Cgg

�� ��
�� ��A

LL

Figure 4.2: A Symbolic Pre-Proof Tree

Lemma 10. For each element Π ∈ infpaths(T) there is a run r over T such that the

set of discharge nodes that occur infinitely often in r is Π. Vice versa, for any run

r over T the set Π of discharge nodes that occur infinitely often in r is a member of

infpaths(T).

Proof. Obvious from the definition of infpaths(T).

The set infpaths(T) is finite for any proof structure T , and can easily be computed

from the proof structure.

Consider the symbolic proof structure T depicted in Figure 4.2. Discharge nodes

are labelled by A, B and C respectively and the paths to their respective companion

nodes are indicated with dotted arrows. Now

infpaths(T) = {{A,B,C}, {A,C}, {A,B}, {A}, {B}, {C}}

Note that the set {B,C} is missing since the paths from companion nodes to discharge

nodes B and C do not intersect.

Next, for a proof structure T and a subset of its discharge nodes 〈πD1
, . . . , πDn

〉
and substitutions 〈ρ1, . . . , ρn〉 such that each πDi

is a substitution instance of

companion(πDi
) under ρi, the sets of preserved ordinal variables and progressing ones

are defined:

Definition 54 (Progress and Preservation for Discharge Sets). The two functions preserved

and progressing are defined below:

preserved(〈πD1
, . . . , πDn

〉, 〈ρ1, . . . , ρn〉)
∆
=⋂

1≤i≤n preserved(πDi
, companion(πDi

), ρi)

progressing(〈πD1
, . . . , πDn

〉, 〈ρ1, . . . , ρn〉)
∆
=⋃

1≤i≤n progressing(πDi
, companion(πDi

), ρi) ∩

preserved(〈πD1
, . . . , πDn

〉, 〈ρ1, . . . , ρn〉)

94 Chapter 4. A Proof System for Reasoning about ERLANG Code

In other words, κ ∈ preserved(〈πD1
, . . . , πDn

〉, 〈ρ1, . . . , ρn〉) if κ is preserved for

each discharge node, companion node, and substitution triple. An ordinal κ progresses,

i.e., κ ∈ progressing(〈πD1
, . . . , πDn

〉, 〈ρ1, . . . , ρn〉) if there is at least one discharge

node, companion node and substitution triple where it progresses, and it is preserved

everywhere.

Finally we are ready to state the global discharge condition that checks whether all

open proof goals can be discharged:

Definition 55 (Global Discharge Condition). Consider a proof structure T with a pos-

sibly empty set of discharges {πD1
, . . . , πDn

}. The discharge condition on T is true,

if, for each element {π1, . . . , πj} ∈ infpaths(T), there exists a corresponding set of

substitutions {ρ1, . . . , ρj} such that

• each πi is a substitution instance of companion(πi) under ρi,

• progressing(〈π1, . . . , πj〉, 〈ρ1, . . . , ρj〉) 6= ∅

Next the notion of a proof is finalised.

Definition 56 (Proof). A proof is a proof structure on which the global discharge con-

dition holds.

Before the whole proof system can be proved sound, a lemma on the validation

properties of proof rules is required.

Lemma 11. Consider any substitution instance of a proof rule with premisses

Γ1 ⊢ ∆1 . . . Γn ⊢ ∆n

Γ ⊢ ∆

Suppose a substitution ρ invalidates Γ ⊢ ∆, i.e., each γi ∈ Γ is valid under ρ while

no δi ∈ ∆ is valid. Then there exists a sequent Γj ⊢ ∆j among the premisses, and

a substitution ρ′ which coincides with ρ on any variable that occurs in the conclusion

and which invalidates Γj ⊢ ∆j .

Proof. We consider the proof rules.

WL,WR: Trivial.

CUT: Suppose there is no extension (a substitution that coincides with ρ on variables

also in the conclusion) ρ′ of ρ such that φ is valid, then choose any such exten-

sion ρ′′. Trivially Γ ⊢ φ,∆ is not valid under ρ′′. Suppose instead there is an

extension ρ′′ validating φ, then clearly no formula in ∆ is validated by ρ′′, since

ρ′′ is an extension of ρ.

¬L,¬R,∨L,∨R: Trivial.

∃L: That ρ validates ∃X : S.φ, means that due to its semantics
⋃

v∈S

(
‖φ‖ρ[v/X]

)
,

there must exist a term v ∈ S such that φ{v/X} is valid under ρ. Let φ′ be

φ[v/X ′], clearly φ′ validates φ{X ′/X} whereas since X ′ is fresh, ∆ is not

validated by φ′.

4.5 Proof of Recursive Formulas 95

∃R: That ρ does not validate ∃X : S.φ means, according to the semantics of the quan-

tification construct, that there can be no term t ∈ S such that φ{t′/X} is vali-

dated by ρ.

APPLYL,APPLYR: A trivial conclusion from the semantics of the application construct.

SYMML, SYMMR, TRANSL, TRANS A trivial conclusion from the semantical properties of

equality.

SUBST It suffices to consider the effect of substitution on an another equality, i.e., on

the right hand side suppose that t3{t1/X} = t4{t1/X} is invalid under ρ, and

t1 = t2 is valid under ρ but t3{t2/X} = t4{t2/X} is valid under ρ. For this

explicit equality the observation that equality is a congruence suffices to establish

that the latter equality cannot be valid under ρ.

CEQL, CEQR Trivial.

APPRXLL: Any ρ′ can be chosen which corresponds to ρ except for the fresh variable κ,

and which is such that ((µU : sφ.φ)κ) t1 . . . tn is valid, clearly such an ordinal

must exists.

UNF1L,UNF3L: The original substitution ρ can be used to invalidate the single new premise,

due to the semantics of the least fixed point constructor.

UNF2L: Choose as ρ′ any valuation that coincides with ρ and which assigns the fresh

ordinal variable κ′ an ordinal value less than κρ and which is such that (φ{(µU :
sφ.φ)κ′

/U}) t1 . . . tn is valid. Such a value must exist, since otherwise due to

the semantics of the least fixed point construct, ((µU : sφ.φ)κ) t1 . . . tn could

not be valid.

IDMON1: Choose ρ as the new valuation; the result follows trivially, i.e., κ < κ′ must be

invalid since otherwise (µU : sφ.φ)κ′

t1 . . . tn,∆ must be valid (the denotation

of the left hand side fixed point would be included in its denotation).

ORDTRANS: A trivial consequence of ordinal arithmetic.

The following lemma constructs what is to be used as a “rejection path” in the

proof of soundness. The idea is to equip a run, starting in an invalid sequent, with

a valuation that almost everywhere preserves the values of ordinal variables, except

possibly at discharge nodes. However, as is established in the soundness proof itself, in

a sufficiently small fragment of the run the coupled valuation will ensure that at least

one ordinal variable will be infinitely often decreased, and never increased.

Lemma 12 (Existence of a Rejection Path). Suppose that a proof structure T is rooted

in a sequent Γ ⊢ ∆, and has a non-empty set of discharge nodes. Further assume

that each each discharge node πD1
, . . . , πDn

is a substitution instance of its compan-

ion node companion(πD1
), . . . , companion(πDn

) under a given set of substitutions

96 Chapter 4. A Proof System for Reasoning about ERLANG Code

ρ1, . . . , ρn. Suppose further that the sequent Γ ⊢ ∆ is invalid, i.e., there exists a valu-

ation ρ that validates all the assumptions in Γ but does not validate any formula in ∆.

Then there exists an infinite sequence of pairs 〈π, ρ〉 of a proof node π and a valuation

ρ such that each sequent labelling a proof node is invalidated by the coupled valuation,

and such that the proof nodes of the sequence forms a run over the proof structure.

Proof. The proof will be by construction. We will trace a path through the proof struc-

ture finding pairs 〈π, ρ〉 of a proof node and a substitution that invalidates the sequent

labelling the paired node, starting with the pair 〈π0, ρ0〉 chosen such that Γ ⊢ ∆ labels

π0 and ρ0 is any substitution that invalidates the sequent. Given a pair 〈πi, ρi〉 such

that Γi ⊢ ∆i labels πi, the next pair is chosen according to the following scheme.

Suppose that the proof rule that labels π is an axiom then from the soundness of the

proof rules immediately a contradiction results (ρi cannot invalidate the sequent). Con-

sider instead an application of any other proof rule yielding a number of premises

Γi1 ⊢ ∆i1 ,. . . , Γin
⊢ ∆in

. Since ρi invalidates Γi ⊢ ∆i then again by soundness

some Γij
⊢ ∆ij

must be invalidated by some ρij
also. Choose a substitution ρij

which

conforms to Lemma 11, i.e., all ordinal variables (and other variables too) preserve

their values. Let the next pair be 〈πij
, ρij

〉, where πij
labels Γij

⊢ ∆ij
. Suppose

instead the proof node πi labelled by Γi ⊢ ∆i and is a discharge node. Then the proof

structure contains a companion node companion(πi) and the lemma provides a sub-

stitution ρc such that the discharge node is a substitution instance of the companion

node under ρc. Let the next pair be 〈companion(πi), ρcρi〉. Clearly ρcρi invalidates

companion(πi) ≡ Γc ⊢ ∆c since for every γi ∈ Γc it holds that γiρc ∈ Γi and must

thus be validated by ρi; similarly for every δi ∈ ∆c it holds δiρc ∈ ∆i which must thus

be invalidated by ρi.

Theorem 4 (Soundness of the Proof System). Any sequent Γ ⊢ ∆, for which there

exists a proof that is rooted in the sequent is valid.

Proof. The existence of a proof of Γ ⊢ ∆ means that there is a proof structure T
labelled by Γ ⊢ ∆ on which the global discharge condition holds.

Assume that a sequent Γ ⊢ ∆ is invalid, then by Lemma 12 there exists an infinite

sequence of pairs of a proof node (forming a proof run) and a valuation that invali-

dates its paired proof node. Given the constructed “invalidation” run we will extract

an ordinal that decreases infinitely often which is impossible, thus contradicting the

assumption that the initial node π in the path was not validated by ρ.

First choose a infinite suffix of the sequence such that any discharge node that

occurs along it occurs infinitely often, and such that the first node of the segment is

either a discharge or a companion node. This is trivial, since if a discharge node π
occurs only finitely often in the run we can simply choose a suffix of the run which

begins after the last occurrence of π. Let πD1
, . . . , πDn

be the discharge nodes that

occur infinitely often in the run suffix, which according to Lemma 10 is a member of

infpaths(T).
It follows, due to the definition of the global discharge condition, that there exists

substitutions ρ1, . . . , ρn such that each discharge node πDi
is an substitution instance of

4.5 Proof of Recursive Formulas 97

its companion node companion(πDi
) under the substitution ρi, and most importantly

there exists an ordinal variable κ such that κ ∈ progressing(〈π1, . . . , πj〉, 〈ρ1, . . . , ρj〉).
From the definition of the progressing (and preserved) condition (see Definition 47

and Definition 54) it is clear that κ must occur syntactically in every discharge node

among {π1, . . . , πn} = discharges(r) ∈ infpaths(T), and the associated companion

nodes. Lemma 9 further establishes that κ must occur in every node in the run segment

rs, since the segment is characterised by its discharge nodes.

We will now establish that the coupled valuation of the run segment forces the

ordinal variable κ to be infinitely often decreased, and never increased.

Consider first the application of a proof rule. Clearly the variable κ is present both

in the conclusion and all the premisses of the rule. In the construction of the rejection

path (Lemma 12) the constructed path explicitly preserved the values of all variables

from one valuation to the following, and thus also the value of κ.

Suppose instead that the current node on the path is a discharge node πDi
with

a valuation ρ′, i.e., 〈πDi
, ρ′〉. The following node on the constructed path was

〈companion(πDi
), ρiρ

′〉. Suppose further that the discharge node πDi
is such that

the ordinal variable κ progresses, i.e., κ ∈ progress(πDi
, companion(πDi

, ρi)).
There must be at least one such progress occurrence in a discharge node due to the

global discharge condition. That κ progresses means, per Definition 47, that ΓDi
⊢

κρi < κ, is derivable using (sound) proof rules. Since ρ′ validates ΓDi
this means

that κρiρ
′ < κρ′. Hence the value of κ, under the valuation ρiρ

′ in the following path

element, must be strictly less than the value of κ under ρ′. Since the discharge node

πDi
is encountered infinitely often, this means that the ordinal variable κ decreases

infinitely often under its coupled valuation.

Suppose instead that κ does not progress but rather is preserved at the discharge

node πDi
. Note that κ must trivially either be preserved or progress due to the assump-

tion that it progresses in the sense of the discharge condition for the set of discharge

nodes πD1
, . . . , πDn

. Preservation means, per Definition 47, that ΓDi
⊢ κρi ≤ κ, is

derivable using (sound) proof rules. Since ρ′ validates ΓDi
this means that κρiρ

′ ≤
κρ′. Hence the value of κ, under the valuation ρiρ

′ in the following path element,

must be equal or less than the value of κ under ρ′. That is, the valuation of the ordinal

variable κ never increases.

Since there is no chain of infinitely decreasing ordinals we have derived a contra-

diction, and thus the original assumption that ρ invalidates Γ ⊢ ∆ must have been

false.

For clarity we have chosen to present the global discharge condition as a final

check on an otherwise finished proof in this section. However, in the implementation

(see Chapter 5 for details) the checking of the condition is separated into a local part

(find a candidate instance for a potential discharge node, and compute its candidate

substitutions) which is applicable even when non-dischargeable proof goals remain,

and a global part (check whether local discharges interfere) which can be applied it-

eratively to an increasing number of discharge node and companion node pairs. It

should be noted that compared to the existing implementation this formalisation ex-

plicitly strengthens the requirement on choosing new ordinal variables, and relaxes the

98 Chapter 4. A Proof System for Reasoning about ERLANG Code

requirement that among every pair of “related discharges” some ordinal must progress.

4.5.4 Fixed Point Induction via Local Proof Rules

This section introduces an explicit, local, fixed point induction scheme in the proof

system and motivates its soundness.

The chief reason for adding the global discharge condition to the proof system,

rather than a local proof rule equivalent, is to permit the lazy discovery of fixed point

induction schemes. That is, using the global condition there is at least conceptually no

need to commit to a particular induction scheme before all non-induction cases have

been handled.

However, there is clearly also merit in giving an account of fixed point reasoning

using local proof rules. One consideration is ease of embedding into standard proof

assistants. The global discharge condition necessitates checking a condition global

to a proof tree which is difficult to express in most proof assistants, if the notion of

a proof tree exists at all. Furthermore the soundness of local induction schemes can

be more readily established. For these reasons, and to properly motivate the global

discharge condition we here give examples of alternative local proof rules for fixed

point induction with similar expressive power. We show that the application of these

rules, in concrete instances, can be mimicked using the global discharge condition.

In the other direction we would like to demonstrate that any proof, using the global

discharge condition, can be coded using local proof rules, thus providing an alternative

proof of the soundness of the whole proof system. However, this part is left for future

work.

Some proviso: only closed fixed point formulas (σX.φ)Ṽ are considered, i.e., such

that fv(φ) = ∅. Note that formulas not in this shape can easily be put in this form by

abstracting free variables and extending the argument vector Ṽ . Further note that in this

section an extension of the logic is assumed which permits quantification over ordinals.

The construct ∀κ′.κ′ < κ⇒ (νX.φ)κ′

, with the valuation ρ, has the obvious semantics
⋂

β

{
‖(νU : sφ.φ)

κ ‖ρ[β/κ] | β < ρ[κ]
}

. In the following rules are provided both for

unfolding greatest and least fixed points, where as usual, the greatest fixed point rules

are derived.

Fixed Point Induction Schemes

FPR

Γ,∀κ′.κ′ < κ⇒ (νX.φ)κ′

Ṽ ⊢ (νX.φ)κṼ ,∆

Γ ⊢ (νX.φ)Ṽ ,∆
κ fresh

FPL

Γ, (µX.φ)κṼ , ∀κ′.κ′ < κ⇒ ¬(µX.φ)κ′

Ṽ ⊢ ∆

Γ, (µX.φ)Ṽ ⊢ ∆
κ fresh

Theorem 5. The rules FPR and FPL are sound.

4.5 Proof of Recursive Formulas 99

Proof. Consider FPR as an example. The proof will be by contradiction, i.e., assume

that

∀κ′.κ′ < κ⇒ (νX.φ)κ′

Ṽ ⊢ (νX.φ)κṼ ,∆

is validated by all substitutions, and that there exists some substitution ρ which in-

validates Γ ⊢ (νX.φ)Ṽ ,∆. We will construct a substitution ρ′ which invalidates

also the premise. Since (νX.φ)Ṽ is not valid there exists an ordinal κρ such that

(νX.φ)κρ(Ṽ ρ) is not valid. Further assume that there exists no κ′ < κρ for which

(νX.φ)κ′

(Ṽ ρ) is not valid. If there exists such an ordinal, less than κρ, than invalidates

the formula, select it and repeat the search procedure. Since (νX.φ)0(Ṽ ρ) is trivially

valid this procedure will terminate successfully with an ordinal κ′′. Now we will show

that ρ[κ′′/κ] invalidates also the premise. Trivially all formulas in Γ are valid (since

κ is fresh and the conclusion not valid) and similarly all formulas in ∆ are not valid.

From the construction of κ′′ follows that ∀κ′.κ′ < κρ[κ′′/κ] ⇒ (νX.φ)κ′

Ṽ ρ[κ′′/κ]

is valid also. But by construction (νX.φ)κρ[κ′′/κ]Ṽ ρ[κ′′/κ] is invalid, and thus the

premise is invalid.

Example 10. Consider the function definition loop() -> loop()., and the goal

⊢ loop() : νX : erlangExpression → prop.(〈τ〉true ∧ [τ]X)

This sequent can be proved using FPR without instances of the DISCHARGE rule.

Unfortunately the rules FPR and FPL are too weak to motivate the discharge con-

dition, in particular the values in the argument vector Ṽ need to be relativised with

respect to Γ and ∆. A more practical set of fixed point induction rules are, assum-

ing that X̃ are the free variables in Γ, ∆, Ṽ , and omitting κ which is assumed fresh,

(X̃ =
(
fv(Γ) ∪ fv(∆) ∪ fv(Ṽ)

)
\ {κ}):

FPRR

Γ,∀X̃.
(∧

Γ ⇒
∨

∆ ∨
(
∀κ′.κ′ < κ⇒ (νX.φ)κ′

Ṽ
))

⊢ (νX.φ)κṼ ,∆

Γ ⊢ (νX.φ)Ṽ ,∆

FPRL

Γ,∀X̃.
(∧

Γ ⇒
∨

∆ ∨
(
∀κ′.κ′ < κ⇒ ¬(µX.φ)κ′

Ṽ
))

, (µX.φ)κṼ ⊢ ∆

Γ, (µX.φ)Ṽ ⊢ ∆

Theorem 6. The rules FPRR and FPRL are sound.

Proof. We consider the soundness proof of FPRR. The proof will be by contradiction.

We assume that the premise is valid (is validated by all substitutions), that there is

a substitution ρ that invalidates the conclusion, and from this fact construct a substi-

tution ρ′ that also invalidates the premise, thus arriving at a contradiction. That ρ
invalidates the conclusion implies that it invalidates (νX.φ)Ṽ , i.e., there is a κρ such

that (νX.φ)κρṼ ρ is not valid. Consider all the ordinals κ′ less than κρ, and all sub-

stitutions ρ′′ mapping free variables in Γ, ∆, Ṽ to values. If there is a substitution

100 Chapter 4. A Proof System for Reasoning about ERLANG Code

ρ′′ and an ordinal κ′ < κρ such that
∧

Γρ′′ ⇒
∨

∆ρ′′ ∨ (νX.φ)κ′

Ṽ ρ′′ is not valid,

select that ordinal and repeat the search procedure, remembering the candidate “fail-

ure” ordinal κ′ and substitution ρ′′. Since trivially, for any valuation ρ′′′, the above

condition is satisfied by (νX.φ)0Ṽ ρ′′′ eventually the search will terminate with a suit-

able κ′ and a substitution ρ′′ such that (νX.φ)κ′

Ṽ ρ′′ is not valid. Consider now the

substitution ρ′′[κ′/κ], we will show that it invalidates the premise. From the con-

struction of κ′,ρ′′ follows that Γ is validated by ρ′′ and ∆ is not. But again from the

construction of κ′,ρ′′ follows immediately that for all substitutions ρ′′, the assumption∧
Γ ⇒

∨
∆ ∨

(
∀κ′.κ′ < κ⇒ (νX.φ)κ′

Ṽ
)

is valid, and thus the whole premise is

not valid under ρ′′[κ′/κ] and so we have arrived at a contradiction.

Example 11. Consider a typical natural number induction scheme (N is assumed to

be a variable ranging over the natural numbers, and for simplicity it is assumed that φ
contains no free variables):

...
⊢ φ 0

...
φ N ⊢ φ N + 1

⊢ φ N

Such a scheme can easily be mimicked using the FPRL proof rule. A recursive

characterisation of the natural numbers is assumed:

isNat
∆
=µX.λN : nat.N = 0 ∨ ∃N ′ : nat.N = N ′ + 1 ∧ isNat N ′

The above proof scheme can then be derived as follows:

...
⊢ φ 0

...

φ N ′ ⊢ φ N ′ + 1

−
κ′<κ ⊢ κ′<κ

−

isNatκ′

N ′ ⊢ isNatκ′

N ′

κ′<κ⇒ ¬isNatκ′

N ′, κ′<κ, isNatκ′

N ′ ⊢ φ N ′+1

∀N.
(
φ N ∨

(
∀κ′.κ′<κ⇒ ¬isNatκ′

N
))

, κ′<κ, isNatκ′

N ′ ⊢ φ N ′+1

∀N.
(
φ N ∨

(
∀κ′.κ′<κ⇒ ¬isNatκ′

N
))

, isNatκ N ⊢ φ N

isNat N ⊢ φ N

Example 12. The following example illustrates a typical proof using the rule of in-

duction, and a corresponding proof using the explicit fixed point induction proof rules.

A recursive characterisations of the natural numbers and the even natural numbers is

assumed:

isEven
∆
=µX.λN : nat.N = 0 ∨ ∃N ′ : nat.N = N ′ + 2 ∧ isEven N ′

The following (abbreviated) derivation uses the discharge condition to eliminate

4.6 Embedding ERLANG into the Proof System 101

remaining goals:

...
⊢ isNat 0

−

isEvenκ′

N ′, κ′ < κ ⊢ isNat N ′
DISCHARGE

isEvenκ′

N ′, κ′ < κ ⊢ isNat N ′ + 1

isEvenκ′

N ′, κ′ < κ ⊢ isNat N ′ + 2

isEvenκ N ⊢ isNat N
isEven N ⊢ isNat N

APPRXR

Using fixed point induction an alternative derivation results:

...
. . . ⊢ isNat 0

−
. . . , isNat N ′ ⊢ isNat N ′

−

. . . , isEvenκ′

N ′ ⊢ isEvenκ′

N ′, . . .

κ′ < κ, isEvenκ′

N ′, isNat N ′ ∨ ∀κ′.κ′ < κ⇒

¬isEvenκ′

N ′ ⊢ isNat N ′

κ′ < κ, isEvenκ′

N ′,∀N. . . . ⊢ isNat N ′

κ′ < κ, isEvenκ′

N ′,∀N. . . . ⊢ isNat N ′ + 1

κ′ < κ, isEvenκ′

N ′,∀N. . . . ⊢ isNat N ′ + 2

isEvenκ N, ∀N.isNat N ∨ ∀κ′.κ′ < κ⇒ ¬isEvenκ′

N ⊢ isNat N

isEven N ⊢ isNat N
FPRL

4.6 Embedding ERLANG into the Proof System

This section sketches the embedding of the ERLANG dialect considered in this thesis

into the underlying many-sorted first-order logic. Summarised briefly, the approach is

to encode ERLANG language constructs as terms of the underlying logic, the transi-

tion relations as fixed point definitions, and to derive convenient proof rules from the

transition relation.

The approach to the embedding of ERLANG, and the ERLANG semantics in the

proof system, is similar to earlier treatments of CCS [Nes93] and the π-calculus [Mel94]

in HOL [Ge93] although this thesis addresses a more complex language. Other more

recent examples include the embedding of Java source and bytecode in various theorem

provers such as Isabelle and COQ [vdBHJP00, Hui00, NvOP00, BDJ+01].

4.6.1 Embedding Expressions and Values

In Figure 4.3 a data type corresponding to the ERLANG expression is given. The recur-

sive definition presupposes the int, nat and atom sorts. The embedding is a deep one,

in the respect that the ERLANG variables are represented as constant terms, constructed

by the erl expr var constructor rather than represented as variables of the proof system.

The deep embedding naturally requires us to define the notion of ERLANG substitution

102 Chapter 4. A Proof System for Reasoning about ERLANG Code

isErlangValue ⇐

λE : erlangExpression.

∃I : int.E = erl expr int(I)

∨ ∃N : nat.E = erl expr pid(N)

∨ ∃A : atom.E = erl expr atom(A)

∨ E = erl expr nil

∨ ∃E1, E2 : erlangExpression.

E = erl expr cons(E1, E2) ∧ isErlangValue E1 ∧ isErlangValue E2

∨ ∃El : erlangExpression list.

E = erl expr tuple(El) ∧ isErlangValues El

isErlangValues ⇐

λEl : erlangExpression list.

El = []

∨ ∃E : erlangValue, El
′ : erlangValue list.

El = [E|El
′] ∧ isErlangValue E ∧ isErlangValues El

′

Table 4.6: Predicates for Determining Membership among ERLANG Values

independent of the notion of substitution in the proof system. Further note that process

identifiers are represented as natural numbers.

An ERLANG match erlangMatch is a list of clauses erlangClause list. An ERLANG

clause is defined by

type erlangClause
∆
=

erl clause of erlangPattern, erlangExpression, erlangGuard

such that erlangPattern is a subtype of erlangExpression which omits all non-data con-

structor expressions, e.g., the send and case expressions. The erlangGuard data type

is a sequence of ERLANG expressions erlangExpression, where the permissible func-

tions are enumerated.

The ERLANG values is a subtype of the patterns, which omits the ERLANG vari-

ables in addition to all non-data constructors. The ERLANG values erlangValue
∆
= {t :

erlangPattern | isErlangValue t} are characterised by the two fixed point definitions

in Table 4.6.

A number of further subtypes, the ERLANG atoms, integers, process identifiers and

booleans (the atoms true and false) are provided with obvious definitions and type

names as erlangAtom, erlangInt, erlangPid and erlangBool as subtypes of the values

through recogniser predicates with names isErlangAtom, isErlangInt, etc., definitions

omitted. Trivially the subtype erlangValue defined by the isErlangValue predicate is

4.6 Embedding ERLANG into the Proof System 103

non-empty (consider for instance the empty list). Similarly all the other data predicates

define non-empty subtypes of the ERLANG expressions. Finally the subtype of proper

lists (values which are either the empty list [] or a cons cell such that the tail is a

proper list) is recognised by the predicate

properList ⇐

λL : erlangValue.L = [] ∨ ∃H,T : erlangValue.L = [H|T] ∧ properList T

Expression Actions To embed the ERLANG expression actions a type erlangExprAction

is defined:

type erlangExprAction =

erl eact tau

| erl eact out of erlangValue, erlangValue

| erl eact exiting of erlangValue

| erl eact read of erlangQueue, erlangValue

| erl eact testq of erlangQueue

| erl eact predef of erlangValue, erlangValue list, erlangValue

ERLANG Queues The ERLANG Queues are sequences of values, built using the

empty sequence constructor, the value constructor, and sequencing:

type erlangQueue =

erl queue epsilon

| erl queue val of erlangValue

| erl queue append of erlangQueue, erlangQueue

The ERLANG queues are not freely generated and as a result a number of additional

proof rules in Table 4.7 are provided to reason about queue equality. In these rules

the underlying term representation is not used to display queues, rather they are shown

using the intuitive constructors such as concatenation and the empty sequence ǫ. To

make the rules clearer we indicate the queue containing one value t as 〈t〉. Note that

the proof rulesQ2L
andQ1L

transform queue equations involving singleton values (built

from the operation erl queue val) into term equations.

Theorem 7. Queue proof rules Q0L
, Q1L

, Q1R
, Q2L

, Q2R
, Q3L

, Q3R
, Q4R L

, Q4R R
,

Q4L L
, Q4L R

, are sound, if ǫ is interpreted as the the empty sequence and · is interpreted

as concatenation of value sequences.

Proof. Follows directly from the theory of sequences.

On Page 119 proof rules (or more correctly, tactics) are provided for reasoning

about queue equality on a more convenient level.

104 Chapter 4. A Proof System for Reasoning about ERLANG Code

type erlangExpression =

erl expr int of int

| erl expr pid of nat

| erl expr atom of atom

| erl expr var of atom

| erl expr nil

| erl expr cons of erlangExpression, erlangExpression

| erl expr tuple of erlangExpression list

| erl expr application of erlangExpression, erlangExpression list

| erl expr case of erlangExpression, erlangMatch

| erl expr exiting of erlangExpression

| erl expr try of erlangExpression list, erlangMatch

| erl expr receive of erlangMatch

| erl expr timeout of erlangMatch, erlangExpression

| erl expr send of erlangExpression, erlangExpression

Figure 4.3: The Embedding of ERLANG Expressions

�� ��

�� ��Expression

���� ��
�� ��Pattern

���� ��
�� ��Value

��xxppppppppppp

$$JJ
JJ

JJ
JJ

JJ

))SSSSSSSSSSSSSSSSS

�� ��

�� ��ProperList
�� ��
�� ��Atom

��

�� ��
�� ��Pid

�� ��
�� ��Int

�� ��
�� ��Boolean

Figure 4.4: Subtypes of an ERLANG Expression

4.6 Embedding ERLANG into the Proof System 105

Q0L
Γ, t′ = ǫ ⊢ ∆

Q1L

Γ, q1 = ǫ, q2 = ǫ ⊢ ∆

Γ, q1 · q2 = ǫ ⊢ ∆
Q1R

Γ ⊢ q1 = ǫ,∆ Γ ⊢ q2 = ǫ,∆

Γ ⊢ q1 · q2 = ǫ,∆

Q2L

Γ, t1 = t2 ⊢ ∆

Γ, 〈t1〉 = 〈t2〉 ⊢ ∆
Q2R

Γ ⊢ t1 = t2,∆

Γ ⊢ 〈t1〉 = 〈t2〉,∆

Q3L

Γ, q11 = q21 ·Q, q22 = Q · q12 ⊢ ∆

Γ, q12 = Q · q22, q21 = q11 ·Q ⊢ ∆

Γ, q11 · q12 = q21 · q22 ⊢ ∆

Q fresh

Q3R

Γ ⊢
∃Q : erlangQueue.q11 = q21 ·Q ∧ q22 = Q · q12,

∃Q : erlangQueue.q12 = Q · q22 ∧ q21 = q11 ·Q
,∆

Γ ⊢ q11 · q12 = q21 · q22,∆

Q4R L

Γ, q = q ⊢ ∆

Γ, q · ǫ = q′ ⊢ ∆
Q4R R

Γ ⊢ q = q′,∆

Γ ⊢ q · ǫ = q′,∆

Q4L L

Γ, q = q′ ⊢ ∆

Γ, ǫ · q = q′ ⊢ ∆
Q4L R

Γ ⊢ q = q′,∆

Γ ⊢ ǫ · q = q′,∆

Table 4.7: Basic Proof Rules for Reasoning about ERLANG Queues

106 Chapter 4. A Proof System for Reasoning about ERLANG Code

Processes and Systems Next the embedding of the processes and systems is consid-

ered. An ERLANG process is either alive or dead:

type erlangProcess =

erl alive of erlangExpression, erlangPid, erlangQueue,

erlangPid list, erlangBool

| erl dead of erlangValue, erlangPid list, erlangPid list

ERLANG systems are defined below:

type erlangSystem =

erl proc of erlangProcess

| erl par of erlangSystem, erlangSystem

The types of ERLANG signals and system actions are given below for completeness:

type erlangSignal =

erl message of erlangValue

| erl link of erlangPid

| erl unlink of erlangPid

| erl exited of erlangPid, erlangValue

| erl exit of erlangPid, erlangValue

type erlangSysAction =

erl sact tau

| erl sact in of erlangPid, erlangValue

| erl sact out of erlangPid, erlangValue

4.6.2 Embedding the Transition Relations

The transition relations of the ERLANG expressions and systems are embedded in the

proof system as fixed point definitions. An example excerpt, for the case of a send

expression, of the definition of the ERLANG expression transition relation →e, is shown

in Figure 4.5.

These four cases represents the encoding of transition rules send2, send3, send0

and send1 respectively. In the definition of the expression predicate the notion of a

context is not formalised, instead the derived transition rules (e.g., send2 and send3)

are directly asserted.

For by now obvious reasons, and when no ambiguities can arise, normal ERLANG

syntax rather than the underlying term representation will be used when displaying

formulas with embedded ERLANG constructs. Similarly, the formula →e e α e′ will

normally be written e
α
−→ e′.

4.6 Embedding ERLANG into the Proof System 107

→e ⇐

λE : erlangExpression, A : erlangExprAction, E′ : erlangExpression.

∃E1, E2, E1
′ : erlangExpression.

E=erl expr send(E1, E2)∧ →e E1 A E1
′ ∧ E′=erl expr send(E1

′, E2)

∨ ∃V1 : erlangValue, E2, E1
′ : erlangExpression.

E=erl expr send(V1, E2)∧ →e E2 A E2
′ ∧ E′=erl expr send(V1, E2

′)

∨ ∃Pid1 : erlangPid, V2 : erlangExpression.

E=erl expr send(Pid1, V2) ∧A=erl eact out(Pid1, V2) ∧ E
′=V2

∨ ∃V1 : erlangPid, V2 : erlangExpression.

E=erl expr send(V1, V2) ∧ ¬isErlangPid V1∧

A=erl eact exiting(erl expr atom(“badarg”))∧

E′=erl expr atom(“bottom”)

...

Figure 4.5: Expression Transition Relation Embedded in the Proof System

The case of matching values or queues against patterns will be illustrated using

the example of the timeout rule on Page 50. The encoding refers to a fair number

of additional definitions. First, the predicate nth selects an ERLANG clause from a

sequence of clauses:

nth ⇐

λN :nat,M :erlangMatch, C :erlangClause.

N=0 ∧ ∃M ′ :erlangMatch, C ′ :erlangClause.M = [C ′|M ′] ∧ C = C ′

∨ ∃N ′ :nat.N = N ′ + 1 ∧

∃C ′ :erlangClause,M ′ :erlangMatch.M = [C ′|M ′] ∧ nth N ′ M ′ C

In addition an encoding of the predicate qmatches introduced on Page 52 is assumed,

requiring in turn the definition of predicates characterising the free variables of a pattern

and substitution defined over expressions and sequences of expressions. With this, here

assumed, machinery in place the clause defining the timeout rule becomes, utilising the

new convention of writing in ERLANG syntax:

∃M : erlangMatch, I : erlangInt, Q : erlangQueue.

E = receiveM after I -> E′ end ∧A = test(Q) ∧

¬ (∃N : nat, C : erlangClause.nth N M C ∧ qmatches Q C)

The final examples of the encoding of the ERLANG expression transition relation

demonstrates the handling of built-in functions. Here another clause of the coding

108 Chapter 4. A Proof System for Reasoning about ERLANG Code

of the expression transition relation (see Figure 4.5) shows the transitions of the tail

function tl:

∃L : erlangValue list.E = tl(L) ∧

∃V : erlangValue.L = [V] ∧A = τ ∧ tlERLANG V E′

∨ ∃V : erlangValue.L = [V] ∧

A = exiting(badarg) ∧

(¬∃V1, V2 : erlangValue.V = [V1|V2]) ∧ E′ = bottom

∨ ¬∃V : erlangValue.L = [V] ∧

A = exiting(cond clause) ∧ E′ = bottom

Note the reference to the tlERLANG predicate which characterises the result of applying

the function to a proper argument. It is defined as follows

tlERLANG

∆
=λV, V ′ : erlangValue.∃H : erlangValue.V = [H|V ′]

The transition relations for evaluation of guards, →g , and systems, →s, is embed-

ded in a similar fashion. Note however, that the guard transition relation →g refers to a

limited transition relation of the expressions (which in turn does not refer to the guard

transition relation), to ensure the condition of positivity of predicate variables (since

the guard transition occurs under a negation), to ensure monotonicity of its semantics.

Example 13. To illustrate the encoding of the semantics a simple property about the

proof system and definitions will be investigated, namely whether the sequent

isErlangValue E,E
τ
−→ E′ ⊢

is provable. In other words, does the assumption that an ERLANG value can perform a

transition lead to a contradiction.

To show this first approximate the isErlangValue predicate (using the rule APPROXL):

isErlangValueκE,E
τ
−→ E′ ⊢ (4.28)

The proof will proceed, essentially, by structural induction over the structure of the

ERLANG values. Another example of this type of reasoning can be found in Sec-

tion 6.2. First unfold the value definition using UNF2LL, and then eliminate the disjunc-

tions with ∨L. We consider two resulting proof goals, a base case and a goal where an

inductive argument is necessary; the proofs of other goals are analogous.

∃I : int.E = erl expr int(I), E
τ
−→ E′ ⊢ (4.29)

∃E1, E2 : erlangExpression.E = [E1|E2]∧

isErlangValueκ′

E1 ∧ isErlangValueκ′

E2, E
τ
−→ E′ ⊢

(4.30)

4.6 Embedding ERLANG into the Proof System 109

The proof proceeds by eliminating the existential quantifiers (∃L), eliminating the con-

junctions, and applying the SUBST rule, resulting in goals:

erl expr int(I)
τ
−→ E′ ⊢ (4.31)

κ′ < κ, isErlangValueκ′

E1, isErlangValueκ′

E2,[E1|E2]
τ
−→ E′ ⊢

(4.32)

The proof of goal 4.31 proceeds with unfolding the transition relation predicate, and

eliminating the disjunctions. A large number of cases results, all of which are trivially

provable since every clause starts with an equality that is trivially false because no

expression E matches erl expr int(I). Consider instead goal 4.32. Again unfold the

definition of the transition predicate and proceed as for the previous goal. There are

two goals that are not trivially provable:

κ′ < κ, isErlangValueκ′

E1, isErlangValueκ′

E2, E1
τ
−→ E1

′, E′ = [E1
′
|E2] ⊢

(4.33)

κ′ < κ, isErlangValueκ′

E1, isErlangValueκ′

E2, E2
τ
−→ E2

′, E′ = [E1|E2
′
] ⊢

(4.34)

Now both these goals can be discharged against goal 4.28 since, intuitively, there exists

a substitution from variables in goal 4.28 to terms in goal 4.33, for example, such that

all assertions in goal 4.28 can be found in goal 4.33. Secondly a least fixed point

definition has been unfolded to the left, and an ordinal has been decreased (κ′ < κ is

provable). Thus both goals can be solved with the DISCHARGE rule, and thus the claim

holds.

4.6.3 Expression Properties

In this section a number of key properties of expressions, and expression evaluation,

is defined formally in the underlying logic by referring to the expression transition

relation.

Definition 57. An ERLANG expression E has finished its computation and represents

an ERLANG value v ∈ erlangValue, if the predicate assertion E : the term v is prov-

able, where the term
∆
=λV : erlangValue.V

From the semantics of formulas it is clear that E : the term v if and only if E = v.

A proof rule THE TERM is derivable:

Γ{v/E} ⊢ ∆{v/E}

Γ, E : the term v ⊢ ∆

In this thesis any action but the computation step or an exception is considered a

“side effect”.

110 Chapter 4. A Proof System for Reasoning about ERLANG Code

Definition 58. An expression e is side-effect free, if it satisfies the predicate sef (side-

effect free):

sef ⇒

∀A : erlangExprAction.

[A] ((A = τ ∧ sef) ∨ (∃V : erlangValue.A = exiting(V) ∧ sef))

In other words an expression is side effect free if it never performs any action but

computational steps or exceptions.

For completeness an analogue definition is provided for the case when no excep-

tions are raised:

Definition 59. An expression e is functional, if it satisfies the predicate functional:

functional ⇒ ∀A : erlangExprAction.[A] (A = τ ∧ functional)

Definition 60. An expression e terminates, if it satisfies the predicate terminates:

terminates ⇐ ∀A : erlangExprAction.[A]terminates

Definition 61. An expression e strongly normalises to a value v, if it satisfies the pred-

icate normalizes(v):

normalizes ⇐

λV : erlangValue.∀A : erlangExprAction.

[A](normalizes V) ∧ (∃A : erlangExprAction.〈A〉true ∨ the term V)

Naturally these predicates can be combined to express, for instance, the property

that an expression normalises without side-effects or raising an exception, to a value v:

functional ∧ (normalizes v)

but instead a more direct, but provably equal definition, is usually preferred:

fnormalizes ⇐

λV : erlangValue.(
∀A : erlangExprAction.[A] (A = τ ∧ (fnormalizes V))

∧ 〈τ〉true ∨ the term V

)

4.6.4 System Properties

In this section a number of key properties of systems, and system evaluation, is defined

formally in the underlying logic. First, a system analogue to the the term v property, is

defined inductively over the structure of systems:

4.6 Embedding ERLANG into the Proof System 111

Definition 62.

sthe term ⇐

λPid : erlangPid, V : erlangValue, S : erlangSystem.

∃Q : erlangQueue, P l : erlangPid list, B : erlangBool.

S = 〈V,Pid, Q, P l, B〉

∨ ∃S1, S2 : erlangSystem.

S = S1 ‖ S2 ∧ (S1 : sthe term Pid V ∨ S2 : sthe term Pid V)

The property holds of a process, with process identifier Pid, if it has terminated its

computation with the value V . A queue analogue is:

Definition 63.

sthe queue⇐

λPid : erlangPid, Q : erlangQueue, S : erlangSystem.

∃V : erlangValue, P l : erlangPid list, B : erlangBool.

S = 〈V,Pid, Q, P l, B〉

∨ ∃S1, S2 : erlangSystem.

S = S1 ‖ S2 ∧ (S1 : sthe queuePid Q ∨ S2 : sthe queuePid Q)

Frequently there is a need to specify that a process identifier belongs, or does not

belong, to a process in a system. Clearly, a direct syntactical characterisation of this

property, similar to the definition of sthe term above is possible:

pid in sys ⇐

λP : erlangPid.S : erlangSystem.

∃E : erlangExpression, Q : erlangQueue.P l : erlangPid list, B : erlangBool.

S = 〈E,Pid, Q, P l, B〉

∨ ∃S1, S2 : erlangSystem.

S = S1 ‖ S2 ∧ (S1 : pid in sys Pid ∨ S2 : pid in sys Pid)

However, a more indirect characterisation is also possible, let us call these predicates

local and foreign:

local : erlangPid → erlangSystem → prop
∆
=

λP : erlangPid.λS : erlangSystem.S : ∃V : erlangValue.〈P?V 〉true

foreign : erlangPid → erlangSystem → prop
∆
=

λP : erlangPid.λS : erlangSystem.∀V : erlangValue.[P?V]false

112 Chapter 4. A Proof System for Reasoning about ERLANG Code

Given these definitions, the following sequents are valid:

s : pid in sys ⊢ s : local

s : local ⊢ s : pid in sys

s : foreign ⊢ s : ¬pid in sys

s : ¬foreign ⊢ s : pid in sys

4.6.5 Deriving Convenient Operational Semantics Rules

Previous efforts in the development of a proof system for reasoning about ERLANG

code [DF98, DFG98b] did not directly encode the operational semantics rules in the

proof system. Rather, various types of proof rules for syntactical constructs and modal-

ities were given, such as the rule ‖ 〈?〉 below.

‖ 〈?〉
Γ, S : φ ⊢ S ‖ s2 : ψ,∆

Γ, s1 : 〈pid?v〉φ ⊢ s1 ‖ s2 : 〈pid?v〉ψ,∆

We claim that the present approach of directly encoding the semantics is much more

natural, and permits additional theorems about the semantics to be stated and proved,

and generally leads to less mistakes in the encoding process. The previous basic proof

rules are now instead derivable, except in cases where the semantics has changed, e.g.,

notably for internal actions due to process spawning.

For transition formulas s
α
−→ s′ rules can be derived that trigger on the syntactic

shape of the systems s and the action α (similar rules can of course be derived for

the expression case). These rules are highly useful when reasoning primarily about

formulas involving modalities. As a first example, the case of expression contexts is

considered.

Example 14 (Deriving Rules for Redexes). To establish that reduction contexts in the

semantics truly define the redexes of an expression, we can derive a proof rule like the

one below

CONTEXT[α]
Γ, E : φ ⊢ r[E] : ψ,∆

Γ, e : [α]φ ⊢ r[e] : [α]ψ,∆

permitting us to focus solely on the actions of the redex to compute actions of the whole

expression. Similarly a rule for 〈α〉 can be established:

CONTEXT〈α〉
Γ, E : φ ⊢ r[E] : ψ,∆

Γ, e : 〈α〉φ ⊢ r[e] : 〈α〉ψ,∆

Example 15 (Rules for Parallel Composition and Modalities). For the case of a parallel

composition, and an input action, the two rules ‖ ?
L

and ‖ ?
R

depicted in Table 4.8 are

derivable.

As a further example, the proof rule ‖ 〈?〉 given above, originally from [DFG98b],

is now derivable, as seen in Figure 4.6. The example uses the derived proof rule ‖ ?1
R

in Table 4.7 for reasoning about the parallel composition.

4.6 Embedding ERLANG into the Proof System 113

‖ ?
L

Γ, s1
pid?v
−−−−→ S, s′ = S ‖ s2 ⊢ ∆ Γ, s2

pid?v
−−−−→ S, s′ = s1 ‖ S ⊢ ∆

Γ, s1 ‖ s2
pid?v
−−−−→ s′ ⊢ ∆

‖ ?
R

Γ ⊢

∃S : erlangSystem.s1
pid?v
−−−−→ S ∧ s′ = S ‖ s2,

∃S : erlangSystem.s2
pid?v
−−−−→ S ∧ s′ = s1 ‖ S,

∆

Γ ⊢ s1 ‖ s2
pid?v
−−−−→ s′,∆

Table 4.8: Derived Rules for Parallel Composition and Input

Γ, s1
pid?v
−−−−→ S ⊢ s1 ‖ s2

pid?v
−−−−→ S ‖ s2,∆

Γ, s1
pid?v
−−−−→ S ⊢ s1 ‖ s2

pid?v
−−−−→ S ‖ s2,∆

‖ ?1
R

Γ′ ⊢ s1 ‖ s2
pid?v
−−−−→ S ‖ s2,∆

WL Γ, S : φ ⊢ S ‖ s2 : ψ,∆

Γ′ ⊢ S ‖ s2 : ψ,∆
WR

Γ′ ⊢ ∃S.s1 ‖ s2
pid?v
−−−−→ S ∧ S : ψ,∆

∃R,∧R

Γ, s1
pid?v
−−−−→ S, S : φ ⊢ s1 ‖ s2 : 〈pid?v〉ψ,∆

〈〉
R

Γ, s1 : 〈pid?v〉φ ⊢ s1 ‖ s2 : 〈pid?v〉ψ,∆
〈〉

L

Figure 4.6: The Derivation of Proof Rule ‖ 〈?〉

Γ, s1
pid?v
−−−−→ s′1 ⊢ s1

pid?v
−−−−→ s′1,∆

ID

Γ, s1
pid?v
−−−−→ s′1 ⊢ s′1 ‖ s2 = s′1 ‖ s2,∆

REFL

Γ, s1
pid?v
−−−−→ s′1 ⊢ s1

pid?v
−−−−→ s′1 ∧ s

′
1 ‖ s2 = s′1 ‖ s2,∆

∧R

Γ, s1
pid?v
−−−−→ s′1 ⊢ s1 ‖ s2

pid?v
−−−−→ s′1 ‖ s2,∆

‖ ?
R
,WR,∃R

Figure 4.7: The Derivation of Proof Rule ‖ ?1

114 Chapter 4. A Proof System for Reasoning about ERLANG Code

‖ [?]

Γ, S1 : φ1 ⊢ S1 ‖ s2 : φ,∆

Γ, S2 : φ2 ⊢ s1 ‖ S2 : φ,∆

Γ, s1 : [pid?v]φ1, s2 : [pid?v]φ2 ⊢ s1 ‖ s2 : [pid?v]φ,∆

‖ [!]

Γ, S1 : φ1, pid 6∈ pids(s2) ⊢ S1 ‖ s2 : φ,∆

Γ, S2 : φ2, pid 6∈ pids(s1) ⊢ s1 ‖ S2 : φ,∆

Γ, s1 : [pid!v]φ1, s2 : [pid!v]φ2 ⊢ s1 ‖ s2 : [pid!v]φ,∆

‖ [τ]

Γ, S1 : φ1, S2 : φ4 ⊢ S1 ‖ S2 : φ,∆

Γ, S1 : φ3, S2 : φ2 ⊢ S1 ‖ S2 : φ,∆

Γ, S1 : φ5, pids(S1) ∩ pids(s2) = ∅ ⊢ s1 ‖ S2 : φ,∆

Γ, S2 : φ6, pids(s1) ∩ pids(S2) = ∅ ⊢ s1 ‖ S2 : φ,∆

Γ,

s1 : ∀P, V.[pid!v]φ1,

s2 : ∀P, V.[pid!v]φ2,

s1 : ∀P, V.[pid?v]φ3,

s2 : ∀P, V.[pid?v]φ4,

s1 : [τ]φ5, s2 : [τ]φ6

⊢ s1 ‖ s2 : [τ]φ,∆

Table 4.9: Derived Rules for ‖ [α]

The treatment of parallel compositions is crucial in proofs; frequently we decom-

pose proofs by abstracting the parts of a parallel composition. For this reason we pro-

vide here example proof rules for the necessity modality in Table 4.9 and the possibility

modality in Table 4.10.

Note for instance the problematical rule ‖ 〈τ〉1, which contains the proof obligation

pids(S1)∩ pids(s2) = ∅ which guards against process spawning by the left process s1.

Actually some liberties are taken with notation in this example. Since the logic does

not admit non-constructor functions, the side condition is not representable in the proof

system,. An alternative characterisation is the following claim:

∀Pid : erlangPid.

(S1 : 〈Pid?0〉true ⇒ S2 : [Pid?0]false)

∧ (S2 : 〈Pid?0〉true ⇒ S1 : [Pid?0]false)

4.6.6 A More Convenient Theory of Matching

The operation of matching a value against a sequence of patterns, or a queue of values

against such a sequence, is a basic operation of ERLANG. Matching takes place during

every function application, in every case statement, and in every receive statement.

As such it is crucial that the handling of this operation is convenient in the proof system.

4.6 Embedding ERLANG into the Proof System 115

‖ 〈?〉
Γ, S1 : φ1 ⊢ S1 ‖ s2 : φ,∆

Γ, s1 : 〈pid?v〉φ1 ⊢ s1 ‖ s2 : 〈pid?v〉φ,∆

‖ 〈!〉
Γ, S1 : φ1 ⊢ S1 ‖ s2 : φ,∆

Γ, s1 : 〈pid!v〉φ1, pid 6∈ pids(s2) ⊢ s1 ‖ s2 : 〈pid!v〉φ,∆

‖ 〈!〉1
Γ, S1 : φ1, S2 : φ2 ⊢ S1 ‖ S2 : φ,∆

Γ, s1 : 〈pid!v〉φ1, s2 : 〈pid?v〉φ2 ⊢ s1 ‖ s2 : 〈τ〉φ,∆

‖ 〈τ〉1

Γ, S1 : φ1 ⊢ S1 ‖ s2 : φ,∆

Γ, S1 : φ1 ⊢ pids(S1) ∩ pids(s2) = ∅,∆

Γ, s1 : 〈τ〉φ1 ⊢ s1 ‖ s2 : 〈τ〉φ,∆

Table 4.10: Derived Rules for ‖ 〈α〉 (symmetrical rules omitted)

Here, instead of referring to the definition of matches an alternative and more direct

characterisation is given for some special cases, as proof rules available in the proof

system.

First, derived operational semantics rules, and corresponding derived proof rules,

for case0k, receivek, and timeoutk are provided, for the case when all the clauses in a

match (a sequence of clauses) are enumerated, and the parameter k refers to clause k.

Then the definitions of quantification over clauses can be replaced with enumeration.

We show below the new rule for case0k:

case0k

result(v, pk when gk -> ek, ek)

¬matches(v, p1 when g1 -> e1)

...

¬matches(v, pk−1 when gk−1 -> ek−1)

case v of p1 when g1 -> e1; . . . ; pn when gk -> en end −→ e

Further, in the case when a pattern p does not contain any (proof system) variables

that range over the ERLANG variables, for example if the pattern contains only vari-

ables ranging over the ERLANG values, then the free ERLANG variables of the pattern

can be computed. For this situation, four convenient proof rules are derivable (below

116 Chapter 4. A Proof System for Reasoning about ERLANG Code

only the right-hand side rules are given):

MATCHES0R

Γ ⊢ ∃Ṽ ′ : erlangValue.

(
v = p[Ṽ ′/Ṽ]

∧ g[Ṽ ′/Ṽ] −→g true

)
,∆

Γ ⊢ matches(v, p when g -> e),∆

RESULT0R

Γ ⊢ ∃Ṽ ′ : erlangValue.

v = p[Ṽ ′/Ṽ]

∧ g[Ṽ ′/Ṽ] −→g true

∧ e[Ṽ ′/Ṽ] = e′

 ,∆

Γ ⊢ result(v, p when g -> e, e′),∆

In these rules the side condition fv(p) = Ṽ where Ṽ are the ERLANG variables is

assumed. Further the operation of substituting proof system variables Ṽ ′ for ERLANG

variables Ṽ (or, put differently, substituting variables for terms) in an expression e
is denoted with e[Ṽ ′/Ṽ]. Note that the substitution operation is well-defined only

because there are no (proof system) variables in p ranging over patterns.

Next, proof rules for the decomposition of queues under the qmatches predicate are

given, here only for the left-hand side:

QUEUE1L

Γ,¬ (q = ǫ) ⊢ ∆

Γ, qmatches(q, erl expr var(a) when true-> e) ⊢ ∆

QUEUE2L Γ, qmatches(ǫ, p when g -> e) ⊢ ∆

QUEUE3L

Γ, qmatches(q1, p when g -> e) ⊢ ∆

Γ, qmatches(q2, p when g -> e) ⊢ ∆

Γ, qmatches(q1 · q2, p when g -> e) ⊢ ∆

QUEUE4L

Γ,matches(v, p when g -> e) ⊢ ∆

Γ, qmatches(v, p when g -> e) ⊢ ∆

Note the restrictive condition in QUEUE1L corresponding to the case when a queue is

matched against a variable, which should always succeed unless the queue is empty.

Chapter 5

An Implementation of the Proof

System

The proof system described in Chapter 4 has been implemented in a proof assistant tool,

or proof checker, named the “ERLANG verification tool”, abbreviated EVT. It has been

tailored to the underlying proof system; rather than working with a set of open goals,

the underlying data structure is an acyclic proof graph, to make it possible to check

the side conditions of the global discharge condition. The main reason for developing

a new tool is our desire to experiment with different implementation strategies for the

discharge condition and with the underlying proof graph representation. Moreover

most existing theorem provers are rather inflexible in that they offer a set of predefined

induction schemes, from which the user has to choose one at the outset of the proof.

This contrasts with our ambition to discover induction schemes through a lazy search

procedure in the course of the proof.

Two notable versions of the proof assistant exists. The first release was reported

in [ADFG98] and was an experimental prototype tailored especially to the verifica-

tion of ERLANG code. An example verification conducted with this tool is reported

in [AD99]. The second and current tool release is more general, permitting the em-

bedding of theories for other languages. Apart from the support for ERLANG, an ex-

perimental embedding of a variant of the value-passing Calculus of Communicating

Systems [Mil89] (CCS for short) exists.

The current tool is, like the HOL [Ge93] and Isabelle [Pau94] theorem provers

written in the Standard ML [MTH97] programming language. The Standard ML top

level is used to provide a command line interface for interacting with the tool. In

addition there is also a graphical user interface programmed in Java, and support for

proof graph visualisation using the daVinci graphical visualisation system [FW94].

Further information about the EVT tool, including a reference manual documenting

its commands and proof rules, and the possibility to download the tool, is available on

the web page http://www.sics.se/fdt/VeriCode/evt.html.

117

118 Chapter 5. An Implementation of the Proof System

5.1 Terms, Variables, Formulas and Proofs

As its basis the tool implements the many-sorted first order logic described in Chap-

ter 2. Among the minor differences between EVT and the presentation in this thesis is

the introduction in the tool of additional logical constructs in the core logic, e.g., truth,

falsity, and conjunction are basic rather than derived constructs.

Recursively defined types can be defined and equipped with type specific parsers

and pretty printers to enable reading and printing of terms and formulas in native for-

mats. The presence of subtyping in the underlying theory can, as usual, introduce proof

obligations during parsing of terms and formulas. Consider for instance the predicate

definition

isTrue
∆
=λX : erlangBool.X = true

which checks whether its ERLANG boolean argument is equal to the atom true. With

this definition the proof goal Γ ⊢ V : isTrue does not typecheck if V is of type

erlangValue. However, the assumptions in Γ may contain enough information to de-

duce that V is in fact an ERLANG boolean. If this cannot be established automatically,

the tool will generate the proof obligation Γ ⊢ V : isErlangBool where isErlangBool

is the predicate that distinguishes the booleans from other ERLANG values.

For types considered to be freely-generated such as the type of the natural numbers

recursive predicates can be generated automatically that permit structural induction

style arguments about elements of the type.

Sequents are ordered sequences of formulas. These may contain free variables,

which are of two kinds: parameters which are generated by rules such as ∃L and meta-

variables, the result of postponing the choice of a witness in a proof rule such as ∃R

defined in Table 4.1 on Page 78. To ensure that assignments to meta-variables are sound

a simple scheme based on associating indices to variables from Sahlin et al. [SFH92],

is used. Bound variables are represented using de Bruijn indices, to permit check-

ing equality of formulas quickly up to α-conversion. This is important for obtaining

efficient implementations of the discharge rule.

From an EVT user’s point of view, proving a property of an Erlang program in-

volves “backward”, i.e., goal-directed construction of a proof graph. Each proof node

in the graph is either a leaf node, meaning that it either represents an open goal or that

the sequent was solved by the application of an axiom proof rule without premises,

or it is a parent node that has been reduced by applying the proof rule and such that

its children nodes correspond to the premises of the rule. The implementation of the

global discharge condition defined in Section 4.5.3 is split into different parts. One

local check, in this chapter referred to as an application of the discharge rule, is repre-

sented in the proof graph by a directed arc from the discharged node to its companion

node. Arcs in the proof tree are labelled by the proof rule that caused the arc to appear.

Open proof goals may also be copydischarged, or subsumed in more standard ter-

minology, when instances of the goal can be found elsewhere in the proof graph. How-

ever, there are two restrictions. First, no open proof goal can be copydischarged against

an ancestor proof node. Second an acyclicity condition is enforced to prevent cyclic

copydischarges, for example such that node N is copydischarged against node M which

5.2 Rules, Tactics, Tacticals and Proof Scripts 119

is in turn copydischarged against node N.

The application of a proof rule can be cancelled, resulting potentially in non-local

cancellation effects on the proof tree when e.g. the companion node of a copydischarge

node is cancelled, naturally also causing the copydischarge to fail. Another such prob-

lematic case is when a meta-variable is assigned, and cancelled in a proof branch, but

where the meta-variable is also present in a second branch. In such a situation both the

assignment and the cancellation may also affect the proof steps in the second branch.

To implement a sound cancellation scheme in spite of these difficulties a global order-

ing of sequents is introduced, based on the absolute order in which proof nodes were

introduced by application of rules.

A node in a proof graph can also be discharged due to a lemma, or proof, that

exists in a different proof tree. In the terminology of EVT these will be called “lem-

madischarges”. To prohibit mutual dependencies between lemmas a test for cyclic

dependencies is performed.

A complete proof is then, in the tool, a collection of proof graphs such that all

proof nodes have been discharged due to an axiom rule, or because it is subsumed by

another proof node, or because of a lemma proved elsewhere, or because the node can

be discharged to a fixed point argument involving the global discharge condition.

5.2 Rules, Tactics, Tacticals and Proof Scripts

The basic proof rules of the proof assistant are enumerated in Chapter 4 and are im-

plemented in the tool as tactics, which are functions in the Standard ML (SML) sense

from a sequent representing the current goal (the conclusion) to a pair consisting of a

list of goals (the premises of the rule) and a list of assignments to meta-variables caused

by the tactic. Thus, if the SML type of sequents is seq and meta-variables are of type

var and terms are represented by the type term then the type of a tactic is

type tactic =

seq -> (seq list * (var * term) list)

Most rules trigger on a particular assertion position in a sequent, and thus requires

a positive natural number argument to determine where in the sequent the rule should

applied. For instance, the tactic implementing the proof rule ∨R has the signatures

or r: int -> tactic.

Similar to other proof assistants like Isabelle [Pau94] and HOL [Ge93] EVT pro-

vides tactic combinators, or tacticals, which give the possibility to derive new sound

tactics from basic tactics. Examples of such tacticals, with their signatures, are

t_skip:

tactic

t_pretactic:

(seq -> ’a option) -> (’a -> tactic) -> tactic

t_compose:

tactic -> tactic -> tactic

120 Chapter 5. An Implementation of the Proof System

t_bool:

(seq -> bool) -> tactic -> tactic -> tactic

t_fix:

’a -> (’a -> (’a -> tactic) -> tactic) -> tactic

Informally their behaviour is the following: The tactical t skip succeeds returning

simply its sequent argument, and causing no assignments. The tactical t pretactic

permits analysis of its sequent argument in a safe way. Its first argument is a predicate

that checks some condition on the current sequent and returns some value if the test

succeeds, and the value NONE otherwise. If the test succeeds the tactic provided in the

second argument to t pretactic is applied to the return value of the predicate. The

tactical t compose t1 t2 applies the tactic t1 to the current sequent, and then ap-

plies in t2 to the resulting sequents. In the alternative construct t orelse t1 t2

first tactic t1 is applied. If this fails, then tactic t2 is applied instead. The t bool

tactical accepts as its first argument a function that performs a test on the current se-

quent. If the test succeeds evaluation proceeds with t1, otherwise with tactic t2.

Finally t fix can be used to write recursive tactics. Its first argument is an arbitrary

initialisation value and its second argument is a function, which should implement the

body of the tactic, and which accepts an arbitrary parameter and a “continuation” tactic

as arguments.

The above tactics essentially perform depth-first traversal and reduction of the proof

graph being built.

Example 16. Consider a simple example. First we define a new tactical, recurse down

that accepts one tactic argument and applies it to all the argument positions on the right

hand side of a sequent, starting from the greatest position. Some explanation of the

code is in order. The resulting tactical, of type (int -> tactic) -> tactic,

has the following first behaviour. First the number of assertions on the right-hand side

in seq is calculated by the code fragment List.length(Sequent.get rhs seq).

The t fix tactical loops until, as evidenced by the recursive call to continuation

with a decreased position parameter, until the position parameter becomes zero. At

every decreasing position the tactic argument, or more properly the abstraction from a

position (int) to a tactic tac, is applied to the current position.

fun recurse_down tac =

t_pretactic

(fn seq => SOME(List.length(Sequent.get_rhs seq)))

(fn pos =>

t_fix pos

(fn position => fn continuation =>

t_bool

(fn seq => pos>0)

(t_compose

(t_orelse (tac pos) t_skip)

(continuation (pos-1)))

t_skip));

5.3 User Interfaces and Commands 121

We can use the new tactical to, for instance, deriving a new tactic for applying the

the disjunction introduction rule ∨R, or as it is named in the tool, or r, everywhere on

the right hand side of a sequent. The application recurse down or r yields such a

tactic.

5.3 User Interfaces and Commands

The standard user interface to the proof assistant is the conventional command line

interface of Standard ML of New Jersey to which a number of commands for interact-

ing with the proof assistant have been added. Conceptually the user interface defines

proof notions such as “which is the current proof graph” and “which is the current

proof node”. The commands of the proof assistant operate on proof graphs, possibly

causing side effects. For instance, there are commands to start a new proof, to define

a lemma, to navigate proof graphs, to navigate the hierarchy of proof graphs, to grow

or possibly complete a proof graph by applying a tactic to its current sequent resulting

in new proof goals, and to cancel a previous command. Further the local check of the

global discharge condition, and discharging due to subsumption, are implemented as

commands rather than tactics since they cause side effects to the graph structure.

An alternative to combining tactics using tacticals is to directly use the Standard

ML programming language facilities to define functions that execute commands. This,

however, has the disadvantage that all intermediate proof nodes are stored in the proof

graph. In contrast, using tactical combinators, intermediate proof nodes used in the

computation of the effects of a tactic are never stored in the proof graph.

A second, graphical, user interface is also available. This user interface consists

of two parts: the first is programmed in Java and provides additional user assistance

through the implementation of modern theorem prover features [BT98] such as “proof–

by–pointing” (to suggest, based on the proof context, the next proof rule to apply), a

more structured database of lemmata, proof recording and playback, etc. A screen shot

of a proof session using the graphical user interface is shown in Figure 5.1. The second

component of the graphical user interface is used to visualise and navigate through

the proof graph, and is implemented by interfacing with the daVinci [FW94] graph

visualisation system. Experiences with the graphical interface indicate that the initial

training period required to become familiar with the tool is considerably shortened.

5.4 Fixed Point Rules and Checking the Discharge Con-

dition

Of particular interest is the implementation of the global discharge condition which

is the foundation for inductive and co-inductive reasoning. To summarise the formal

treatment in Section 4.5.3 the goal is to check whether a proof node (the discharge

node) can be discharged since it is an instance of an ancestor node (the companion

node), and since appropriate fixed points have been unfolded.

122 Chapter 5. An Implementation of the Proof System

Figure 5.1: The Graphical User Interface of EVT

5.5 The Embedding of ERLANG 123

In fact the global discharge condition is implemented in an incremental fashion:

there is no requirement that all discharges be considered at the same time, thereby

freeing the user of the nearly impossible task of directly devising a complex inductive

argument over a set of ordinal variables. Instead individual discharge node and com-

panion node pairs are incrementally added to the proof graph, and the local conditions

under which the partial discharge was successful are recorded in the graph. When a new

discharge is added to the proof graph, the set of related discharges are re–computed,

to check whether a progressing measure can still be found. Henceforth we will refer

to the process of adding a new discharge and companion node to the global discharge

condition through this iterative procedure as an application of the discharge rule.

As a further refinement to the basic fixed point scheme the implementation employs

a tagging mechanism [Win91] such that the state vector under which a fixed point is

unfolded is recorded in the unfolded fixed point. For example in the proof rule UNF1L

(Defined on Page 86) the arguments t1 . . . tn are recorded together with the fixed point.

Then, in a proof search, a fixed point is typically unfolded only when the current state

vector is not an instance of an earlier (recorded) one.

The point of employing a tagging scheme is two-fold: first automatic proof search

can be efficiently guided by the tags by providing hints when to stop unfolding a fixed

point and in the discovery of an induction scheme. Second the scheme can also be used

to improve the diagnostic result from an unsuccessful application of the local discharge

rule:

• Is there an earlier proof state with a “control state” of which the current state is

an instance? Suppose there is no such state in the fixed point tag, then likely the

decision to discharge here is incorrect and proof search should continue.

• Is the current proof state an instance of an earlier one? If not, perhaps an addi-

tional argument about data is required.

• Does some ordinal decrease? Otherwise perhaps an inductive argument is miss-

ing from earlier proof steps.

• Can a progress ordinal variable be found, or do the derivations of discharge nodes

from companion nodes interfere with each other? If this is the case then there is

risk that the whole induction argument has to be reconsidered.

5.5 The Embedding of ERLANG

ERLANG program constructs are encoded in EVT in the manner described in Sec-

tion 4.6, albeit with some minor differences.

EVT contains a definition of the transition relations as recursive predicates accord-

ing to the principles discussed in Section 4.6.2. In addition, to improve the speed with

which new transitions are computed, a set of low-level proof rules have been provided

for inferring transitions t
α
−→ t′ that trigger on the syntactic shape of an ERLANG ex-

pression t or ERLANG system t. Examples of such rules are, for the system transition

case, found in Figure 4.8 on Page 113.

124 Chapter 5. An Implementation of the Proof System

5.5.1 Tactics for Deriving Transitions

Suppose we are faced with a typical proof goal, Γ ⊢ s : [α]φ, which requires us to find

all the α derivatives of the system state s and check whether they satisfy the property

φ. To find manually all the τ derivatives of a complex state s by applying the the

operational semantics step-by-step results in quite lengthy derivations.

As an alternative EVT offers four high-level tactics, diasem l, diasem r,

boxsem l and boxsem r, for reasoning about combinations of program terms and

modalities. For example, the diasem r and boxsem r tactics tries to achieve the

result of the rules 〈α〉r and [α]r below. In these schematic rules it is assumed that the

set of α derivatives of t are enumerated by the states t1, . . . , tn.

〈α〉r
Γ ⊢ t1 : φ, . . . , tn : φ,∆

Γ ⊢ s : 〈α〉φ,∆

[α]r
Γ ⊢ t1 : φ,∆ . . . Γ ⊢ tn : φ,∆

Γ ⊢ s : [α]φ,∆

A measure of the complexity of the implementation of these two tactics is in order.

In a sense they are both quite general problem solving tactics. However, they have

domain specific knowledge about the ERLANG programming language such as knowl-

edge of the rules in Figure 4.7 on Page 105 for reducing queue equations. It should

be realised that the task these tactics attempt to automate is much harder than simply

deriving the next program state given a concrete program. Often the program s below

contains variables governed by a set of assumptions Γ:

Γ ⊢ s : [α]φ

The assumptions may for instance contain information that two symbolic process iden-

tifiers are not equivalent, that a proof system variable is of a certain type, and even

that a symbolic component of the program state satisfies some abstract behavioural

description.

The boxsem r tactic is rather simplistic. First a derived rule like [α]
R

on Page 82

is applied yielding a goal Γ, t : t
α
−→ T ′ ⊢ T ′ : φ,∆. Then a simplification tactic is

applied to the new transition assumption, and recursively to all freshly generated proof

goals and new assumptions until no new proof goals are generated and all assumption

positions have been considered. The simplification tactic essentially attempts to apply

sequentially a set of tactics, until one succeeds. These are the low-level transition tac-

tics, equational rewriting tactics, conjunction splitting tactics, introduction of universal

quantifiers, etc.

The implementation of the diasem r tactic is more involved. After a few reduc-

tion steps typically formulas of the following shape are encountered on the right-hand

side of the resulting sequent:

∃V1 : S1. . . .∃Vn : Sn.
(
t1

α1−→ t1′ ∧ . . . tj
αn−−→ tj′ ∧ φ1 ∧ . . . ∧ φk

)

where a formula φi does not contain instances of transition predicates. The difficulty

here is knowing how many copies of the above formula that are required due to the

presence of the existential quantifiers.

5.6 Evaluation of the Proof Assistant 125

5.6 Evaluation of the Proof Assistant

A number of small to medium sized examples have been completed in the tool, some

of which are reported in this thesis in Chapter 6. Apart from the purchasing agent

study, the most challenging verification attempted with the proof assistant concerns a

protocol for protocol for distributed query evaluation in distributed database lookup

manager [AD99], which was verified using an earlier version of the tool.

Experiences of using the theorem prover are mixed. Correctness properties can be

modelled, without major difficulties, in the program logic. The specification of proper-

ties that require fairness assumptions requires, as is often the case in approaches based

on the modal µ-calculus, the embedding of fairness assumptions in the correctness

properties themselves. Similarly assumptions about the privacy of process identifiers

due to process spawning must normally be encoded in correctness properties since the

treatment of privacy is rather weak in the present operational semantics.

With some effort proof arguments can be conducted at a reasonably high-level.

Recent verification attempts have been automated to a large extent. These include

the verification of a skeletal concurrent server program [FGN+], a set of tactics for

discovering programs that may cause runtime exceptions demonstrated at the 2000

Erlang User Conference, and recent work on the verification of a mutual exclusion

protocol using model checking techniques (unpublished work by me). A conclusion

of this work is that a substantial effort is required in building up a theory (formulas,

lemmas, tactics, etc.) for the problem domain. Thus answering the question of how

long a typical verification takes, and what is the effort, is rather difficult. If the program

to be addressed fits a behavioural pattern previously encountered then verification can

be quick. On the other hand, if new theory has to be developed, as can be the case for

a program that internally employs some intricate data structure, then verification is a

larger undertaking.

Some concrete figures about the current implementation are in order. EVT com-

prises about 15000 lines of Standard ML code, excluding the graphical user interface

programmed in Java. The core tool was developed intensively over a period of 2 years

(1998-1999) by Dilian Gurov and myself. After this mostly incremental changes have

been made such as adding high-level tactics or providing support for reasoning about

side-effect free code.

5.7 A Session with the Proof Assistant

This section demonstrates the interaction with EVT by considering a small example

fetched from Section 6.2. The motivation for the proof will explained later, and a

reader may want to look at Section 6.2 first. Here we will concentrate on the steps

involved in realising the proof in EVT.

We shall not fully explain the meaning or even the syntax of the commands used

to interact with EVT; rather this section provides an impression of how a session can

proceed.

The proof challenge of the example is to show that list reversal, as expressed in

126 Chapter 5. An Implementation of the Proof System

/* List append */

append:

erlangProperList -> erlangProperList ->

erlangProperList -> prop <=

\U:erlangProperList.\V:erlangProperList.

\W:erlangProperList.

(((U=[]) /\ (V=W)) \/

(exists X: erlangValue.

exists U_prime: erlangProperList.

exists W_prime: erlangProperList.

((U=[X | U_prime]) /\

(W=[X | W_prime]) /\

(append U_prime V W_prime))))

end;

/* List reversal */

rev:

erlangProperList -> erlangProperList -> prop <=

\U:erlangProperList. \V:erlangProperList.

((U=[] /\ V=[]) \/

(exists Hd:erlangValue.

exists Tl:erlangProperList. U=[Hd|Tl] /\

(exists W:erlangProperList.

(append W [Hd] V) /\ (rev Tl W))))

end

Table 5.1: List Reversal and List Concatenation in EVT

the specification logic, is a reversible operation. That is, if we apply the list reversal

predicate to a list L yielding a result L′, then using the same predicate L′ can be

reversed into L. The predicates expressing list reversal rev and list concatenation

append are presented using the syntax of EVT in Table 5.7.

The proof session presented here is conducted using the command-line interface

rather than the graphical user interface. Input that a user provides to the tool will be

written in a bold typewriter font, and responses will be written in a normal typewriter

font.

To begin the proof session EVT is started and a number of auxiliary tactics are read

in from a file support.sml, and the list reversal and concatenation properties are

read from a file apprev.pde.

5.7 A Session with the Proof Assistant 127

> cevt

Erlang Verification Tool, command line interface,

version 00 Cervantes, by SICS/VeriCode.

Standard ML of New Jersey, Version 110.0.6,

October 31, 1999

val it = true : bool

- use "support.sml";

...

- read formula defs "apprev.pde";

...

The most important tactics defined are reduce r and reduce l for performing

obvious reduction steps such as equational reasoning.

The main proof challenge can be stated:

- prove "declare L:erlangProperList,M:erlangProperList

in rev L M |- rev M L";

The proof will involve induction over the definition of rev. We commence by

approximating the left-hand side definition and then unfold it and simplify the result

by applying the reduce l tactic using the by command. As a result there are two

remaining goals:

- by(approx r 1); to goal 1;

- by(reduce l 1); print goals(); to goal 1;

Goal #1: {1} X 1<X 0 |- {1} rev [] []

Goal #2: {1} append W [Hd] M, {2} rev(X 1) Tl W,

{3} X 1<X 0 |- {1} rev M [Hd|Tl]

We can see that a fresh ordinal variable has been introduced in both proof goals

which is assumed to be less than the ordinal introduced by the approximation opera-

tion; this is represented by the assumption X 1<X 0. The inequality results from the

unfolding of the definition of rev on the left-hand side. Note also the ordinal variable

X 1 that annotates the second assumption in the second goal.

The first goal is trivially solved by the reduce r tactic. To proceed with the

second goal we note that it is an instance of the (approximated) original goal if only

the formula rev W Tl occurred on the right hand side; we introduce it using the cut

tactic:
- by(cut "rev W Tl"); print goals(); to goal 2;

Goal #1: {1} append W [Hd] M, {2} rev(X 1) Tl W,

{3} X 1<X 0, {4} rev W Tl |- {1} rev M [Hd|Tl]

Goal #2: {1} append W [Hd] M, {2} rev(X 1) Tl W,

{3} X 1<X 0 |- {1} rev M [Hd|Tl], {2} rev W Tl

Now the second goal is an instance of the first approximated proof node so we

discharge this goal.

- discharge1();

...

Discharge succeeded.

One goal remains. By inspecting this goal a few interesting facts become obvious.

128 Chapter 5. An Implementation of the Proof System

Figure 5.2: Proof of the append lemma

Clearly W is equal to M except that M has Hd at its tail. Second W is the reverse of Tl.

But then M must indeed be the reverse of [Hd|Tl], we establish this in a separate

lemma:
- prove lemma "appendrev" "declare M:erlangProperList,

W:erlangProperList, Hd:erlangValue, Tl:erlangProperList

in rev W Tl, append W [Hd] M |- rev M [Hd|Tl]";

...

The proof nodes of this lemma are indicated in Figure 5.7, which was automatically

generated from a proof using the daVinci graph editor. The proof contains five leafs,

one eliminated due to the application of discharge with respect to the second proof

node, and the rest eliminated through local proof reasoning.

Now, it only remains to invoke the new lemma and check whether the proof is

finished:
- lemmadischarge1 "appendrev";

Lemmadischarge succeeded.

- is finished();

val it = true : bool

Chapter 6

Examples

This chapter contains applications of the framework to examples of varying nature and

complexity. The examples cover a wide range of applications and properties: from

classical functional algorithms to security properties of involved process communica-

tion structures. The conclusion of these studies is that the framework can cope rather

uniformly with all of these properties.

The first example in Section 6.2 demonstrates a simple proof of a property of a

recursive data predicate, and shows how standard inductive proofs can be recast in our

framework. The first code example in Section 6.3 considers side-effect free ERLANG

programs using an implementation of the classical Quicksort algorithm in ERLANG.

The example illustrates, in a simple setting, the interplay between code verification

and data verification in the proof system.

After these minor examples two distributed applications or protocols are examined

in detail in the Sections 6.4 and 6.5. These examples all have in common the fact

that spawning of new processes is essential. In the first example a bag like structure of

processes is built, while in the second example a list of processes is built. An alternative

approach to the whole framework is considered in Section 6.6, where a leader election

protocol for a ring network topology is verified in the framework of µCRL. Since the

theory of µCRL has been embedded in the COQ theorem prover this presents a realistic

alternative.

These proofs will by necessity be conducted on a relatively high level, since treating

every minor proof rule would obscure interesting proof details. In particular the use of

high-level tactics for handling the operational semantics, such as the ones discussed in

Section 5.5.1, is crucial.

6.1 Patterns of Compositional Reasoning in our Frame-

work

Here we will briefly summarise the role of compositional reasoning in our framework:

how proofs reduce arguments about systems to arguments about their components. The

129

130 Chapter 6. Examples

topic will be further demonstrated in the case studies that follow this section. A cru-

cial decision is what kind of assumptions components make about the environment in

which they operate. In the assumption-guarantee paradigm a component is typically

characterised by (i) assumption on the environment, and (ii) a guarantee of service to

the environment provided the assumptions are met. A classical problem in such decom-

position schemes is how to handle recursive system structures: what if a component A

depends on the component B which in turn depends on A?

In our case, the use of an assumption-guarantee paradigm is implicit in the formulas

used to cut out the components of a composite term (usually the processes of a parallel

composition). Consider for instance the verification of the billing agent in Section 6.4.

A typical instance of an assumption-guarantee pair is the statement: “The purchasing

agent communicates the credit card number to no process except the payment clearing

center, unless some other process first sends it the number”. This is represented by the

formula notransto Payment PCC given the definition

notransto : erlangSystem → prop ⇒

λC : erlangValue,PCC : erlangPid.

[τ] notransto C PCC

∧ ∀P : erlangPid, V ′ : erlangValue.

[P?V ′] (contains V ′ C ∨ notransto C PCC)

∧ ∀P : erlangPid, V ′ : erlangValue.

[P !V ′] ((P = PCC ∨ ¬contains V ′ A) ∧ notransto C PCC)

For the resource agent this assumption-guarantee pair a corresponding assumption-

guarantee is made: “The resource manager does not communicate the credit card num-

ber, unless some other process first sends it the card number.”

If the system under study were closed, these two assumptions would suffice to

establish the fact that the credit card number would not be communicated (except to

the payment clearing center). Since the system is open, the assumption that the credit

card number is not received again is instead transferred to the formula to prove of the

open system itself, and will decorate the input modalities.

Note also that the apparent circular reasoning (the purchasing agent relies on the

resource manager which relies on the purchasing agent. . .) presents no difficulties in

contrast with many other schemes for assumption-guarantee pairs. The key here is

that the approach is semantics-based; it may be that assumptions and guarantees do

not match, in which case little can be derived about the joint actions of two processes,

but certainly no unsound conclusions can be drawn. Furthermore compared with syn-

chronous schemes the asynchronous message passing scheme of ERLANG prevents

circular reasoning. There is no way for a process to prevent messages from being sent

to it.

6.2 A Simple Example Using Induction 131

rev ⇐

λL,L′ : erlangProperList.

L = [] ∧ L′ = []

∨ ∃H,T : erlangProperList.L = [H|T]∧

∃L′′ : erlangProperList.append L′′ [H] L′ ∧ rev T L′′

append ⇐

λL1, L2, L3 : erlangProperList.

L1 = [] ∧ L3 = L2

∨ ∃V : erlangValue, L4, L5 : erlangProperList.

L1 = [V | L4] ∧ append L4 L2 L5 ∧ L3 = [V | L5]

Figure 6.1: Reversal and Append Predicates

6.2 A Simple Example Using Induction

This short section studies a simple predicate (fixed point definition) expressing reversal

of ERLANG lists, and contains a proof that list reversal is indeed a reversible operation.

The proof serves to illustrate, chiefly, how common inductive arguments can be recast

in our framework while also providing a few additional predicate definition examples.

The ERLANG lists are normally understood as a sequence of “cons” cells

[H1|...[Hn|Tn]...], but without any guarantee that the tail Tn of the last cons

cell is the empty list []. In this example proper ERLANG lists are assumed, which are

the lists where the tail is the empty list, and which are are characterised by the predicate

properList below:

properList ⇐

λL : erlangValue.L = [] ∨ ∃H,T : erlangValue.L = [H|T] ∧ properList T

The subtype erlangProperList denotes the subtype of the ERLANG values which are

proper lists (that satisfies the properList predicate).

In Figure 6.1 the list reversal predicate (rev) is defined, together with a list append

predicate (append) referred to in its definition.

The initial proof statement (goal) is

rev L L′ ⊢ rev L′ L (6.1)

where L and L′ are both proper ERLANG lists.

To prove such a proof statement normally involves referring to a structural induc-

132 Chapter 6. Examples

tion proof scheme, analysing the list L:

....
rev [] L′ ⇒ rev L′ []

[rev T L′′ ⇒ rev L′′ T]
....

rev [H|T] L′ ⇒ rev L′ [H|T]

rev L L′ ⇒ rev L′ L

In our proof system such a scheme is mimicked by approximating and unfolding the

rev predicate to the left, and introducing an analogue to the induction hypothesis to

the left via a combination of CUT and DISCHARGE proof rules. An abstract sketch of the

proof is:

....
⊢ rev [] []

−
Γ ⊢ rev L′′ T,∆

DISCHARGE

....
Γ, rev L′′ T ⊢ ∆

append L′′ [H] L′, revκ′

T L′′, κ′ < κ ⊢ rev L′ [H|T]
CUT

revκ L L′ ⊢ rev L′ L
UNFOLDL,...

rev L L′ ⊢ rev L′ L
APPROXL

The application of the DISCHARGE rule succeeds since there is a substitution [L′′/L′, T/L]
such that all assertions in the goal revκ L L′ ⊢ rev L′ L can be found under the substi-

tution in the goal append L′′ [H] L′, revκ′

T L′′, κ′ < κ ⊢ rev L′′ T, rev L′ [H|T].

In addition a least fixed point definition rev to the left which was approximated with κ
is now found approximated with κ′ and the inequality κ′ < κ is provable.

The proof of the goal append L′′ [H] L′, revκ′

T L′′, κ′ < κ, rev L′′ T ⊢
rev L′ [H|T] follows immediately from the lemma (not proven here)

rev L L′, append L [H] L”⊢ rev L′′ [H|L′].

6.3 The Quicksort Example 133

quick_sort([]) -> [];

quick_sort([Pivot|Rest]) ->

{S, B} = split(Pivot, Rest),

append(quick_sort(S), [Pivot|quick_sort(B)]).

split(Pivot, L) -> split1(Pivot, L, [], []).

split1(Pivot, [], S, B) -> {S, B};

split1(Pivot, [H|T], S, B) ->

if

H < Pivot -> split1(Pivot, T, [H|S], B);

H >= Pivot -> split1(Pivot, T, S, [H|B])

end.

append([H|L1],L2) -> [H|append(L1,L2)];

append([], L) -> L.

Figure 6.2: The Quick Sort Algorithm in ERLANG

6.3 The Quicksort Example

As a first gentle introduction to the verification of ERLANG code a side-effect free

implementation of the classical Quicksort algorithm is considered. The example illus-

trates a number of key aspects of the proof system:

• Code (an implementation) is verified, not algorithms. Naturally a large part of

the proof effort is required in establishing a link between the implementation and

the logical characterisation of the algorithm.

• Proofs are compositional in the sense that key properties are proved of functions

used in the main algorithm, which are later reusable.

This section reports on a joint verification effort with Gennady Chugunov which was

partially reported in a seminar at the Nordic Workshop on Program Correctness in

Autumn 1999.

The code for the implementation of the Quicksort algorithm is found in Figure 6.2.

There are no major surprises. For clarity we choose to include an implementation of

the append function rather than relying on the built-in function ++.

The correctness properties of the example are the classical ones:

• Partial correctness: If a call to the quick sort function with an argument

list L terminates it will return a sorted version of the list.

• Termination: Any call to the quick sort function terminates.

As a refinement of the termination condition the proof will additionally show that,

under the assumption that the argument to the quick sort function is well-formed

134 Chapter 6. Examples

sorted ⇐

λL : erlangProperList.

L = []

∨ ∃H1 : erlangValue, T1 : erlangProperList.

L = [H1 | T1]

∧

T1 = []

∨ ∃H2 : erlangValue, T2 : erlangProperList.

T1 = [H2 | T2] ∧ ≤ERLANG H1 H2 ∧ sorted T1

permutation ⇐

λL1, L2 : erlangProperList.

(L1 = [] ∧ L2 = [])

∨ ∃H : erlangValue, T1, L21, L22, L23 : erlangProperList.

L = [H | T1] ∧ append L21 [H | L22] L2∧

permutation T1 L23 ∧ append L21 L22 L23

Figure 6.3: Sortedness and Permutation Predicates

(a proper list), the function call will terminate normally (not in an exception) and will

produce no side-effects.

The formalisation of these correctness properties is relatively straightforward. For

expressing proper termination the fnormalizes predicate on Page 110 is used. Secondly

a returned listL′ should (1) be a permutation of the original permutation L L′ (contain-

ing the same elements) and (2) be a sorted list sorted L. These properties are expressed

in the program logic in Figure 6.3, together with a predicate append L1 L2 L3 char-

acterising the result of applying the append function. The definitions of these pred-

icates are certainly not canonical, several alternatives are possible. In the definitions

note the occurrence of declarations such as T : erlangProperList, where as in the pre-

vious section erlangProperList denotes the subtype of the ERLANG values (exact defi-

nition omitted), such that the tail part of a cons cell is again of type erlangProperList,

rather than an arbitrary value as may be the case in ERLANG. This restriction of the

value domain results in cleaner proofs since, for example, otherwise applications of the

quick sort function could raise exceptions, due to runtime typing errors.

6.3.1 A Proof Sketch

The proof sketch that follows will be kept informal since the main point of this example

is to illustrate the interplay between program and data reasoning. For instance, the

proof of goals solely relating to data will usually not be given.

6.3 The Quicksort Example 135

The initial proof goal is

⊢ quick sort(L) :

∃L′ : erlangProperList.fnormalizes L′ ∧ sorted L′ ∧ permutation L L′ (6.2)

where L is of type erlangProperList. The predicate fnormalizes V was introduced

on Page 110 for expressing strong normalisation of an expression to a value V . Proof

goal 6.2 expresses that any call to quick sortwith a list parameter Lmust terminate

with a resulting list L′ which is sorted and a permutation of the original list. The proof

proceeds by two applications of CUT, resulting in three goals:

⊢ ∃L′ : erlangProperList.sorted L′ ∧ permutation L L′ (6.3)

⊢ ∃N : nat.length L N ∧ isNat N (6.4)

∃N : nat.length L N ∧ isNat N,

∃L′ : erlangProperList.sorted L′ ∧ permutation L L′ ⊢

quick sort(L) : ∃L′ : erlangProperList.

fnormalizes L′ ∧ sorted L′ ∧ permutation L L′

(6.5)

The predicate length L N (shown in Figure 6.4) expresses that the length of the list L is

the natural number N , and isNat characterises the natural numbers. Goals 6.3 and 6.4,

henceforth referred to as Lemmas Q1 and Q2, which express mostly trivial facts about

predicates will not be proved here.

The proof proceeds by eliminating the existential quantifiers in goal 6.5 to the left

and right (using rules ∃L,∃R), splitting conjunctions to the left and right (using rules

∧L,∧R), eliminating resulting trivial facts (using rule ID), and approximating the least

fixed point predicate isNat using rule APPROXL, resulting in the sequent:

length L N, isNatκ N, sorted L′, permutation L L′ ⊢

quick sort(L) : fnormalizes L′
(6.6)

The basis for claiming termination of the algorithm will be that a sequent with a

recursive call to quick sort(L′′) is encountered, such that the length of L′′ is less

than L. For the DISCHARGE rule to apply the second sequent must contain assumptions

length L′′ N ′ and isNatκ
′

N ′ such that κ′ < κ.

After unfolding the definition of length in goal 6.6 the result is two new goals (after

splitting the disjunction in length and unfolding isNat):

sorted L′, permutation([], L′) ⊢

quick sort([]) : fnormalizes L′ (6.7)

isNatκ
′

N ′, κ′ < κ, length L′′ N ′, sorted L′, permutation [V | L′′] L′ ⊢

quick sort([V | L′′]) : fnormalizes L′
(6.8)

The assumptions in goal 6.8 will henceforth be referred to as Γ. Goal 6.7

is easily handled since permutation [] L′ requires that L′ = [] and then

136 Chapter 6. Examples

length ⇐

λL : erlangProperList, N : nat.

L = [] ∧N = 0

∨ ∃V : erlangValue, L′ : erlangProperList, N ′ : nat.

L = [V | L′] ∧N = N ′ + 1 ∧ length L′ N ′

isNat ⇐

λN : nat.N = 0 ∨ ∃N ′ : nat.N = N ′ + 1 ∧ isNat N ′

Figure 6.4: Definition of length and isNat Predicates

quick sort([]) : fnormalizes [] is provable by a model checking tactic. For goal 6.8

we proceed by unfolding the definition of fnormalizes and applying the quick sort

function to its argument resulting in1

Γ ⊢ {S,B} = split(V ,L′′), ... : fnormalizes L′ (6.9)

At this point the subexpression split(V ,L′′) is analysed separately with the help

of the TERMCUT proof rule, showing that it satisfies its specification

Γ ⊢ split(V ,L′′) :

∃S,B : erlangProperList.fnormalizes {S,B} ∧ split V L′′ S B
(6.10)

where split V L′′ S B specifies that the list L′′ is split into the two parts S and B
by the pivot V such that S are all the elements less than V and B are the elements

greater or equal to V (definition in Figure 6.5). The proof of goal 6.10 is omitted

from this presentation, for reasons of space. The second new proof goal becomes (after

eliminating the existential quantifier and the conjunction of the new assumption):

Γ, X : fnormalizes {S′, B′}, split V L′′ S′ B′ ⊢

{S,B} = X, ... : fnormalizes L′ (6.11)

Proceeding with goal 6.11 we start by approximating and unfolding the left-hand side

assumption X : fnormalizes({S′, B′}). There are two cases, either X represents a

value {S′, B′} since the corresponding computation has terminated (goal 6.13), or

there is a computation step X
τ
−→ X ′ for some X ′. If there is a computation step

then the result is, after unfolding fnormalizes on the right-hand side:

Γ, κ′ < κ, X ′ : fnormalizesκ′

{S′, B′}, split V L′′ S′ B′ ⊢

{S,B} = X ′, ... : fnormalizes L′
(6.12)

1recall that an assignment X = V , . . . is an abbreviation of case V of X -> . . . end

6.3 The Quicksort Example 137

split ⇐

λV : erlangValue, L, S,B : erlangProperList.

L = [] ∧ S = [] ∧B = []

∨ ∃H : erlangValue, T : erlangProperList.L = [H|T] ∧

<ERLANG H P∧

∃S′ : erlangProperList.

append S′ [H] S ∧ split V T S′ B

∨

≥ERLANG H P∧

∃B′ : erlangProperList.

append B′ [H] B ∧ split V T S B′

Figure 6.5: The Definition of the split Predicate

Since the goal 6.12 is an instance of goal 6.11 and since a least fixed point has been

unfolded to the left, this goal can be discharged. The termination case

Γ, κ′ < κ, X : the term {S′, B′}, split V L′′ S′ B′ ⊢

{S,B} = X, ... : fnormalizes L′ (6.13)

becomes after applying the derived proof rule THE TERM, and weakening out the ordinal

inequation,

Γ, split V L′′ S′ B′ ⊢ {S,B} = {S′, B′}, ... : fnormalizes L′ (6.14)

This level of reasoning is unfortunately very tedious, it is at this point that the decision

to adopt a small-step operational semantics comes back to haunt us. To recover some

of the convenience of a natural semantics derived proof rules are used. For instance,

the EVAL rule below is derivable (assuming e does not occur in Γ or ∆) as seen in

Example 17 below, and can be used to immediately obtain goal 6.14 from goal 6.11.

EVAL

Γ ⊢ r[v1] : fnormalizes v2,∆

Γ, e : fnormalizes v1 ⊢ r[e] : fnormalizes v2,∆

where as in Definition 16 on Page 48, r[e] represents an ERLANG expression with the

subexpression e in a computation enabled position. In Gurov and Chugunov [GC00]

the side-effect free fragment of ERLANG is studied in further detail. Note in particular

that the above definition depends crucially on the fact that e occurs in a reduction

context, due to the peculiar variable binding conventions of ERLANG (compare the

definition of expression congruences on Page 30).

Example 17 (Derivation of EVAL proof rule). By approximating the definition of fnormalizes

on the left-hand side of the initial proof goal, the goal below is reached

Γ, e : fnormalizesκ v1 ⊢ r[e] : fnormalizes v2,∆ (6.15)

138 Chapter 6. Examples

First the left-hand side definition of fnormalizes is unfolded, and conjunctions and

disjunctions are split, yielding two goals:

Γ, e : ∀A : erlangExprAction.[A]
(
A = τ ∧ (fnormalizesκ′

v1)
)
,

κ′ < κ, e : 〈τ〉true ⊢ r[e] : fnormalizes v2,∆
(6.16)

Γ, e : ∀A : erlangExprAction.[A]
(
A = τ ∧ (fnormalizesκ′

v1)
)
,

κ′ < κ, e : the term v1 ⊢ r[e] : fnormalizes v2,∆
(6.17)

By applying the THE TERM proof rule to goal 6.17, and weakening out the first assump-

tion we immediately get the desired premise:

Γ ⊢ r[v1] : fnormalizes v2,∆ (6.18)

Continuing with goal 6.16 the right-hand side assertion is unfolded, conjunctions and

disjunctions are split, and the right-hand side assertion on the term v2 is weakened out,

producing two goals:

Γ, e : ∀A : erlangExprAction.[A]
(
A = τ ∧ (fnormalizesκ′

v1)
)
,

κ′ < κ, e : 〈τ〉true ⊢

r[e] : ∀A : erlangExprAction.[A] (A = τ ∧ (fnormalizes v2)) ,∆

(6.19)

Γ, e : ∀A : erlangExprAction.[A]
(
A = τ ∧ (fnormalizesκ′

v1)
)
,

κ′ < κ, e : 〈τ〉true ⊢

r[e] : 〈τ〉true,∆

(6.20)

Goal 6.20 is solvable using proof rule CONTEXT〈〉 defined on Page 112 and REFL

(recall that true abbreviates an equality). For dealing with goal 6.19 first the universal

quantifiers are stripped, then the rule CONTEXT[] is applied. After some additional

simple reasoning the goal below is reached

Γ, e : fnormalizesκ′

v1, κ
′ < κ ⊢ r[e] : fnormalizes v2,∆ (6.21)

which can be discharged against goal 6.15.

Continuing with goal 6.14 of the quick sort example by unfolding fnormalizes, and

performing the assignment, results in the proof goal

Γ, split V L′′ S′ B′ ⊢

append(quick sort(S′), [V |quick sort(B′)]) : fnormalizes L′

(6.22)

where Γ′ = Γ, split V L′′ S′ B′. Here the proof rules CUT, ∃L and then EVAL, is applied

6.3 The Quicksort Example 139

twice on the calls to quick sort resulting in the goals

Γ′ ⊢ quick sort(S′) :

∃L : erlangProperList.fnormalizes L ∧ sorted L ∧ permutation S′ L
(6.23)

Γ′ ⊢ quick sort(B′) :

∃L : erlangProperList.fnormalizes L ∧ sorted L ∧ permutation B′ L
(6.24)

Γ′, permutation [V | L′′] L′,

split V L′′ S′ B′,

sorted S′′, permutation S′ S′′, sorted B′′, permutation B′ B′′ ⊢

append(S′′, [V |B′′]) : fnormalizes L′

(6.25)

Goals 6.23 and 6.24 represents, in a sense, the induction hypothesis. As an example

(they are symmetrical) goal 6.23 is handled. First, from lemmas Q1 and Q2 follows,

analogously to the treatment of goal 6.6:

Γ′, length S N ′′, isNat N ′′, sorted S′′, permutation S′ S′′ ⊢

quick sort(S) : fnormalizes S′′
(6.26)

Using the DISCHARGE proof rule it is permissible to terminate such a proof branch if a

number of conditions can be satisfied:

• A substitution can be found from the assertions in an earlier goal to goal 6.26,

such that all assertions are covered.

• A least fixed point has unfolded on the left hand side along the path from the

original goal to the present goal.

Clearly the candidate discharge goal is 6.6. Unfortunately there is a complication, in

that the assumption isNatκ N cannot be mapped to any assumption in 6.26. The only

approximated formula is isNatκ
′

N ′ in Γ butN must clearly be mapped toN ′′ instead.

So after application of CUT the new proof obligation is

Γ′, length(S′′, N ′′), isNat N ′′, sorted S′′, permutation S′ S′′ ⊢

isNatκ
′

(N ′′)
(6.27)

This goal is proven using two new lemmas, Q3 and Q4. Lemma Q3 is an observa-

tion about the length of lists returned by the split function, and about permutations:

length L N, split V L S B, permutation S S′ ⊢

∃N ′ : nat.length S′ N ′ ∧N ′ ≤nat N

Lemma Q4 states a basic fact about natural numbers and ordinal approximations:

isNatκ N,N ′ ≤nat N ⊢ isNatκ N ′

140 Chapter 6. Examples

Given these lemmas and the assumptions in Γ′ goal 6.29 can be proved. The dis-

charge case remains, in goal 6.28:

Γ′, length S N ′′, isNat N ′′, sorted S′′, permutation S′ S′′, isNatκ
′

N ′′ ⊢

quick sort(S) : fnormalizes S′′
(6.28)

which now can be immediately discharged against goal 6.6.

It remains to prove goal 6.25. Here again a CUT and EVAL combination is applied

resulting in the goals

Γ′ ⊢ append(S′′,[V |B′′]) :

∃L : erlangProperList.fnormalizes L ∧ append S′′ [V |B′′] L3

(6.29)

Γ′, sorted S′′, permutation S′ S′′, sorted B′′, permutation B′ B′′,

append S′′ [V |B′′] L3 ⊢

L3 : fnormalizes L′

(6.30)

The proof of goal 6.29 is omitted from this presentation. To solve goal 6.30 first the

definition of fnormalizes is unfolded, and then the rule THE TERM is applied resulting in

a goal

isNatκ
′

N ′, κ′ < κ, length L′′ N ′, sorted L′,

permutation [V | L′′] L′, split V L′′ S′ B′,

sorted S′′, permutation S′ S′′, sorted B′′, permutation B′ B′′,

append S′′ [V |B′′] L3 ⊢ L′ = L3

(6.31)

The exact steps needed to establish L′ = L3 will not be discussed here. Intuitively,

however, from the definition of split follows that append S′ [V |B′] L4, for any list

L4 must be a permutation of the original list [V |L′′]. Since the permutation property

is, naturally, preserved by permutation then also L3 from append S′′ [V |B′′] L3

must be a permutation of the original list. Similarly split V L′′ S′ B′ ensures that

the pivot V lies between S′ and B′. Now since S′′ (and B′′) is a sorted permutation

of S′ (and B′′) then it follows that the list L3 must also be sorted. Finally, from the

Lemma Q5

⊢ ∀L1, L2, L3 : erlangProperList.

permutation L1 L2 ∧ permutation L1 L3∧

sorted L2 ∧ sorted L3 ⇒ L2 = L3

follows that the lists L′ and L3 must be identical.

6.4 A Purchasing Agent 141

6.4 A Purchasing Agent

This example illustrates how typical client-server and agent applications can be veri-

fied. The key proof techniques used in the study is proof decomposition. When a new

process is spawned it is abstracted by means of a formula characterising its behaviour,

and it is shown that the abstraction, together with an abstraction of the spawning pro-

cess, satisfies the original formula.

The example is based on the following scenario: a user wants repeated access to a

resource and in return offers to pay for the service, e.g., using a credit card. A request

is therefore sent to the manager of the resource which responds by creating a new agent

process to act as an intermediary between the user, the resource, and a clearing centre

for the user’s payment. We view this scenario as quite typical of many security-critical

agent applications.

The user is clearly taking a risk by exposing its confidential data (credit card num-

ber) to the resource manager and the purchasing agent. One of these parties might

violate the trust put in them e.g. by charging for services not provided, or by pass-

ing information that should be kept confidential to third parties. Equally the resource

manager need to trust the purchasing agent (and to some minor extent the user).

The system considered is open, there are no arbitrary limits placed on the number of

processes involved, or the number of service requests received, to facilitate verification.

We show how the above scenario can be modelled in Erlang and how critical prop-

erties can be expressed in the program logic, and outline a proof of the desirable prop-

erty of the purchasing agent that the number of charging requests to the payment clear-

ing centre do not exceed the number of requests by the user for the resource.

Finally a remark to the reader is in order. This example was originally stated and

verified using a previous version of the ERLANG verification tool, with a different

syntax for ERLANG, and a different syntax for the logic than the one presently used.

6.4.1 Implementation as an Erlang Program

The function rm in Figure 6.6 implements the resource management scheme. The pa-

rameters to the function are a resource list, the process identifier of a trusted payment

clearing centre (e.g., the credit card company), and a well-known identification of it-

self RMname. The resource manager implements a map from public to private resource

“names” to prevent unauthorised access to resources; given a public name Pu, a func-

tion lookup(Pu, ResList) is used to extract the corresponding private name Pr.

The resource manager, after receiving a contract offer (identifying the credit card num-

ber), searches the resource list for the requested resource. If the resource is found, a

purchasing agent is spawned to mediate between the user, the payment clearing centre

(pcc) and the resource, and the name (i.e. pid) of the purchasing agent is made known

to the user. Figure 6.7 shows the system configuration before and after the creation of

the purchasing agent.

The purchasing agent coordinates accesses to the resource with charging requests to

the payment clearing centre. Upon receiving a request for the resource {use,UserPid},

it attempts to acquire the resource, and if this succeeds (resulting in a response Value

142 Chapter 6. Examples

rm(ResList,PayAgency,RMname) ->

receive

{contract,{Pu,Payment},From} ->

case lookup(Pu,ResList) of

{ok,Pr} ->

From!{contract_ok,

spawn(agent,

[Pr,PayAgency,

RMname,Payment])};

nok ->

From!contract_nok

end

end,

rm(ResList,PayAgency,RMname).

agent(Res,PayAgency,RMname,Payment) ->

receive

{use,From} ->

Res!{acquire,self()},

receive

{acquire_ok,Value} ->

PayAgency!{trans,

{Payment,RMname},

self()},

receive

{trans_ok,{Payment,RMname}} ->

From!{use_ok,Value};

{trans_nok,{Payment,RMname}} ->

From!use_nok

end;

acquire_nok -> From!use_nok

end

end,

agent(Res,PayAgency,RMname,Payment).

Figure 6.6: Source Code for Agent Example

6.4 A Purchasing Agent 143

�� ��
�� ��resource manager

contract okwwooooooooooo

�� ��
�� ��user

contract

77ooooooooooo �� ��
�� ��resource

�� ��

�� ��clearing centre

�� ��
�� ��resource manager

�� ��
�� ��user

use //�� ��

�� ��billing agent
use ok

oo acquire //

trans��

�� ��
�� ��resource

acquire ok

oo

�� ��

�� ��clearing centre

trans ok

OO

Figure 6.7: The system configuration: (above) before, and (below) after spawning the

purchasing agent

offering access to the resource), it attempts to charge for the resource, transferring

money from the credit card to the resource manager RMname. If the payment is suc-

cessful finally the response from resource is sent back to the user.

6.4.2 Property Specification

Some desired properties of the purchasing agent system are discussed and formalised

in the logic.

Disallowing Non-Approved Charging

The first correctness requirement considered forbids non-approved charging of the

users credit card by requiring that the number of payment requests to the payment

clearing centre should be less than or equal to the number of requests by the user for

the resource. The size of the payment is not modelled in this verification.

144 Chapter 6. Examples

safe : erlangSystem → prop ⇒

λAg ,PCC : erlangPid,Payment , N : nat.

[τ](safe Ag PCC Payment N)

∧ ∀P : erlangPid, V : erlangValue.[P?V]

(isuse P V Ag) ∧ (safe Ag PCC Payment N+1)

∨ ¬(isuse P V Ag) ∧ (safe Ag PCC Payment N)

∨ contains V Payment

∧ ∀P : erlangPid, V : erlangValue.[P !V]

(istrans P V PCC Payment)∧

∃N ′ : nat.N=N ′+1 ∧ (safe Ag PCC Payment N ′)

∨ ¬(istrans P V PCC Payment)∧(safe Ag PCC Payment N)

The predicates isuse and istrans recognise resource requests and money transfers:

isuse
∆
=

λP : erlangPid, V : erlangValue,Ag : erlangPid.

P =Ag ∧ ∃Pid : erlangPid.V ={use,Pid}

istrans
∆
=

λP : erlangPid, V : erlangValue,PCC : erlangPid,Payment : nat.

P =PCC

∧ ∃Pid : erlangPid,Acc : nat.

V ={trans, {Payment ,Acc},Pid}

The predicate contains v v′ is defined via structural induction over an Erlang value

(or queue) v and holds if v′ is a component of v (such as v being a tuple v = {v1, v2}
and either v = v′ or contains v1 v

′ or contains v2 v
′). We omit the easy definition.

So, a purchasing agent with pid Ag , pid of a payment clearing centre PCC ,

and credit card number Payment is defined to be safe if the difference N be-

tween the number of requests for using the resource (messages of type {use, P id}
received in the process mailbox) and the number of attempts for transfers from

the credit card (messages of type {trans, {Payment ,Acc}, pid} sent to PCC)

is always non-negative. Since this difference is initially equal to zero, we expect

agent(ResPid ,PCC ,RMname,Payment) to satisfy safe Ag PCC Payment 0.

Note in the definition of safe that if a new request is received with the same credit

card number Payment is received (clause contains V Payment), then the property is

trivially true. This clause represents the simplifying assumption that no concurrent re-

source requests with the same credit card number is ever made to the resource manager.

6.4 A Purchasing Agent 145

Expected Service is Received

Other interesting properties are that the user receives the proper answer upon a suc-

cessful resource request. These sorts of properties are not hard to formalise in a style

similar to the first example.

Preventing Abuse by a Third Party

The payment scheme presented here depends crucially on the non-communication of

private names. For instance, even if we can prove that a resource manager or purchas-

ing agent does not make illegal withdrawals nothing stops the resource manager from

communicating the credit card number to a third party, which can then use the credit

card number in non-approved ways.

Thus we need to prove that the system communicates neither the user credit card

number nor the agent process identifier. An example of such a property specification,

e.g. that the system does not communicate the user credit card number, is specified by

the formula notrans Payment given the definition below.

notrans : erlangSystem → prop ⇒

λV : erlangValue.

[τ] notrans V

∧ ∀P : erlangPid, V ′ : erlangValue.[P?V ′] (contains V ′ V ∨ notrans V)

∧ ∀P : erlangPid, V ′ : erlangValue.[P !V ′] (¬contains V ′ V ∧ notrans V)

6.4.3 Verification

Here we will demonstrate that the resource manager satisfies the safe specification. The

proof will be kept informal. For instance we will write out neither ordinal variables nor

the linear ordering on fixed point formula abstractions, since they can easily be added

to the proof. Adding ordinal annotations to the proof and taking them into account

present no real difficulty since the fixed point definitions in the example are flat, i.e.,

they never refer to other fixed point definitions.

For simplicity it is assumed that the manager knows of only one resource, with

public name Pu and private Pr. The corresponding list [{Pu, Pr}] is referred to as RL,

and RP denotes the process identifier of the resource manager process.

Since the definition of safe is parametrised on a purchasing agent and a credit card

number the formula must be preceded by an initialisation phase (notice the use of the

weak modality [[α]] introduced on Page 27):

∀PubRes,Payment : nat,UserPid ,Agent : erlangPid.

[RP ?{contract , {PubRes,Payment},UserPid}]

[[UserPid !{contract ok,Agent}]]

(safe Agent PCC Payment 0)

146 Chapter 6. Examples

So we set out to prove the following sequent:

Γ ⊢ 〈rm(RL,PCC ,RMname), RP , ǫ〉

: ∀PubRes,Payment ,UserPid ,Agent.

[RP ?{contract, {PubRes,Payment},UserPid}] . . . (6.32)

The necessary inequations on process identifiers (e.g.,RP 6= Pr) are collected in Γ. By

application of simple proof steps, as realised in the tool by a “model checking” tactic

which is programmed to stop as soon as a proof sequent with safe as the main formula

is seen, a number of essentially identical proof states results. A typical such state is

Γ′ ⊢ 〈rm(RL,PCC ,RMname), RP , ǫ〉

|| 〈agent(Pr,PCC ,RMname,Payment), PP , ǫ〉

: (safe PP PCC Payment 0) (6.33)

where Γ′ is Γ extended with the fact that PP is a fresh process identifier. The other

proof states correspond to different program points, relating to the number of ways

how the weak modality [[UserPid !{contract ok,Agent}]]φ can be resolved. Such

proof states become, after a few program execution steps, instances of the goal 6.33

and can thus be discharged against it.

Goal 6.33 is a critical proof state, where we must come up with properties of the

resource manager and the purchasing agent, that are sufficiently strong to prove that

their parallel composition satisfies the safe property. The alternative would be to sim-

ply continue with a model checking like tactic, clearly this would not be successful

since the capacity for process spawning remains possible.

In general such a decomposition proof step may be very difficult, but here the

choice is relatively simple, and equally important, to a large extent independent of

the actual programs being verified:

• The purchasing agent satisfies the safe property, i.e.,

safe PP PCC Payment 0

• The purchasing agent communicates the credit card number to no process except

the payment clearing center, unless some other process first sends it the num-

ber, which is represented by the formula notransto Payment PCC given the

definition

notransto : erlangSystem → prop ⇒

λC : erlangValue,PCC : erlangPid.

[τ] notransto C PCC

∧ ∀P : erlangPid, V ′ : erlangValue.

[P?V ′] (contains V ′ C ∨ notransto C PCC)

∧ ∀P : erlangPid, V ′ : erlangValue.

[P !V ′] ((P = PCC ∨ ¬contains V ′ A) ∧ notransto C PCC)

6.4 A Purchasing Agent 147

• The resource manager does not communicate the credit card number, unless

some other process first sends it the card number. This property can be for-

mulated as notrans Payment given the definition of notrans on Page 147.

• The resource manager does not send a tuple containing the atom use in the first

position (a usage request to a purchasing agent), which is described by nouse

below:

nouse : erlangSystem → prop ⇒

[τ] nouse

∧ ∀P : erlangPid, V ′ : erlangValue.[P?V ′]nouse

∧ ∀P : erlangPid, V ′ : erlangValue.

[P !V ′] (¬∃V ′ : erlangValue.V = {use, V ′} ∧ nouse)

• The resource manager cannot receive messages sent to the clearing centre pro-

cess, nor can it receive messages sent to the purchasing agent. This is described

by the properties norecv PCC and norecv PP given

norecv : erlangSystem → prop ⇒

λP ′ : erlangPid.

[τ] norecv P ′

∧ ∀P : erlangPid, V ′ : erlangValue.[P?V ′](¬P = P ′ ∧ norecv P ′)

∧ ∀P : erlangPid, V ′ : erlangValue.[P !V ′]norecv P ′

Essentially these conditions guarantee that charges to the credit card are the result of

user requests, rather than incorrectly programmed or malicious purchasing agents or

resource managers that exchange information with each other.

This specification is a result of an iterative approach where first an initial sketch of

such a decomposition property was attempted, and shown to be too weak (the compo-

sition of the properties is not sufficient to prove the desired property) or less frequently

too strong (the decomposition property is not provable of the decomposed processes).

After strengthening the property a second attempt at proof was attempted, and so on,

until finally (i) both the individual processes satisfy the cut properties, and (ii) the cut

properties together ensure the desired end property safe. In this proof exposition, how-

ever, only the end result of the proof process is shown.

Before decomposing the program the proof sequent is first generalised, by proving

the property ¬contains PQ Payment about the resource manager and the agent input

queues, and by showing that the number of resource requests in the agent queue (cur-

rently zero) is less than or equal to the last parameter of safe property (the number of

permitted charge requests, currently also zero). The result of applying the TERMCUTL

rule twice, after generalising the proof goals in this manner, is then the following proof

148 Chapter 6. Examples

obligations:

Γ′,¬contains PQ Payment , countuse PQ M,M ≤nat N ⊢

〈agent(Pr,PCC ,RMname,Payment), PP , PQ〉

: safe PP PCC Payment N ∧ notransto Payment PCC

(6.34)

Γ′,¬contains RQ Payment ⊢

〈rm(RL,PCC ,RMname), RP , RQ〉

: notrans Payment ∧ nouse ∧ norecv PCC ∧ norecv PP

(6.35)

Γ′, S1 : safe PP PCC Payment N,S1 : notransto Payment PCC ,

S2 : notrans Payment , S2 : nouse, S2 : norecv PCC , S2 : norecv PP

⊢ S1||S2 : safe PP PCC Payment N

(6.36)

To prove the leftmost conjunct in the goal (6.34) it is necessary to show

that the number of valid usage requests in the input queue (the parameter M in

countuse PQ M) is always less than or equal to the number of transfer requests that

are possible (the parameterN). This proof involves well-known techniques for proving

correctness of sequential programs. Similarly the proof that the billing agent satisfies

notransto Payment PCC is rather straightforward (both proofs omitted).

Instead we focus on the leftmost conjunct of (6.35), i.e., that the resource manager

process satisfies notrans Payment as long as no element in its input queue contains

Payment . The proofs of the other conjuncts follow the same pattern so details are

omitted from here. To prove (6.35) first unfold the definition of notrans and split the

conjunctions. There are three cases to consider: an input step, an output step or an

internal step. In the case of an input step [V ?V ′] one possibility is that the property

holds trivially (if contains V ′ Payment). Otherwise the resulting proof state is

Γ′,¬contains RQ Payment ,¬contains V ′ Payment ⊢

〈rm(RL,PCC ,RMname), RP , RQ · V ′〉 : notrans Payment
(6.37)

which can be rewritten into (by referring to the definition of contains)

Γ′,¬contains RQ · V ′ Payment ⊢

〈rm(RL,PCC ,RMname), RP , RQ · V ′〉 : notrans Payment
(6.38)

which can be discharged against the leftmost conjunct of (6.35). For the output step it is

clear that the resource manager process cannot perform such a step so that proof branch

is trivially true. Thus only the internal step remains, and such a step must correspond

to a function application of rm(RL,PCC ,RMname). The resulting proof state is:

Γ′,¬contains RQ Payment ⊢

〈receive . . .end, RP , RQ〉 : notrans Payment (6.39)

6.4 A Purchasing Agent 149

By repeating the above steps, i.e., handling input, output and internal steps eventually

a new process is spawned:

Γ′′,¬contains RQ
′ Payment ⊢〈

UserPid !{contract ok, B′
p}, rm(RL,PCC ,RMname) . . . , RP , RQ

′
〉

‖
〈
agent(Pr,PCC ,RMname,Payment ′), PP

′, ǫ
〉

: notrans Payment

(6.40)

where Γ′′ is Γ′ together with inequations involving the fresh process identifier PP
′, and

the fact that Payment ′ 6= Payment (since this is guaranteed by the input clause, or

rather, if Payment is input an alternative proof strategy is used). This goal is handled

by applying TERMCUTL to the parallel composition using notrans Payment as the cut

formula both to the left and to the right process. The resulting goals are:

Γ′′,¬contains RQ
′ Payment ⊢〈

UserPid !{contract ok, PP
′}, rm(RL,PCC ,RMname) . . . , RP , RQ

′
〉

: notrans Payment

(6.41)

Γ′′ ⊢
〈
agent(Pr,PCC ,RMname,Payment ′), PP

′, ǫ
〉

: notrans Payment

(6.42)

Γ′′, S3 : notrans Payment , S4 : notrans Payment ⊢

S3 ‖ S4 : notrans Payment
(6.43)

Goal (6.42) is easy to prove, since no new processes are created (proof sketch omitted).

For the handling of goal (6.41) several arguments about data are needed. For example,

the property ¬contains {contract ok B′
p},Payment must be established, since

this is the value the resource manager will send as a confirmation. This property clearly

holds since P ′
P is a fresh pid. The resulting goal, after a simple step where the resulting

sequence is reduced, becomes

Γ′′,¬contains RQ
′ Payment ⊢

〈
rm(RL,PCC ,RMname), RP , RQ

′
〉

: notrans Payment

(6.44)

This goal can be discharged against the leftmost conjunct of (6.35).

Now only the two goals 6.36 and 6.43 that deal with compositional reasoning re-

main. These types of goals are handled in a uniform and regular way, by applying the

derived proof rules for parallel composition, e.g., ‖ [!]1, found on Page 114, and by

discharging against previously seen goals. In the checked proof this compositional rea-

soning, modulo a few lemmas involving data reasoning, was achieved using a general

tactic. For completeness here we instead examine a few manual steps in the proof of

goal 6.43; the proof of goal 6.36 is similar.

150 Chapter 6. Examples

First the right-hand side notrans formula is approximated (using rule APPRXR) pro-

ducing the goal

Γ′′, S3 : notrans Payment , S4 : notrans Payment ⊢

S3 ‖ S4 : notransκ Payment
(6.45)

Then a contraction rule is applied to the left-hand side assumptions about notrans ,

after which all instances of the notrans formula are unfolded, and applications are

split. This results in three goals

Γ‖ ⊢ S3 ‖ S4 : [τ]notransκ′

Payment (6.46)

Γ‖ ⊢ S3 ‖ S4 : ∀P, V.[P?V]
(
contains V Payment ∨ notransκ′

Payment
)

(6.47)

Γ‖ ⊢ S3 ‖ S4 : ∀P, V.[P !V]
(
¬contains V Payment ∧ notransκ′

Payment
)

(6.48)

where Γ‖ is

Γ′′, κ′ < κ,

S3 : notransPayment , S3 : [τ]notrans Payment , S3 : ∀ . . . , S3 : ∀ . . . ,

S4 : notrans Payment , S4 : [τ]notrans Payment , S4 : ∀ . . . , S4 : ∀ . . .

To solve goals 6.46, 6.47 and 6.48 the proof rules ‖ [τ], ‖ [?] and ‖ [!] are applied

respectively. For the output case the result are the new goals (after application of the

weakening rule WL)

Γ′′, κ′ < κ, S3
′ : notrans Payment , S4 : notrans Payment ⊢

S′
3 ‖ S4 : notransκ′

Payment
(6.49)

Γ′′, κ′ < κ, S4
′ : notrans Payment , S3 : notrans Payment ⊢

S3 ‖ S4
′ : notransκ′

Payment
(6.50)

¬contains V Payment ⊢ ¬contains V Payment (6.51)

¬contains V Payment ⊢ ¬contains V Payment (6.52)

Clearly goals 6.51 and 6.52 are true. For goals 6.49 and 6.50 note that a substitution

can be found from goal 6.45, and that a greatest fixed point has been unfolded to the

right, resulting in an ordinal inequation being provable. Thus, for both these goals it

is safe to discharge at this point. The internal step and the input step cases are treated

similarly.

6.4.4 Conclusions

Several important lessons were learned in the proof of the purchasing agent example.

One problem seen in practise is that proofs tend to grow large. Without support for

6.4 A Purchasing Agent 151

reducing duplication of proof nodes the proof example outlined for the purchasing

agent has 105–106 proof tree nodes. Just by avoiding proof node duplication this figure

can be brought down substantially, for the purchasing agent example by roughly a

factor of 15. But in fact few steps in the proof convey information which is interesting.

These are:

1. Points where a process cut need to be applied, to initiate induction in system

state structure.

2. Points where some other symbolic or inductive argument needs to be done, to

handle e.g. induction in the message queue structure.

3. Choice points to which we may want to return later, for backtracking. For in-

stance, these can be application of rules like ∃R where we commit to a particular

witness.

4. Points which we expect to want to discharge against in the future.

One can easily envisage other proof elaboration steps being automated, and eliminated

from view, perhaps using a selection of problem-dependent proof tactics. However,

some explicit support for managing proof node histories would then be essential for

efficiency.

152 Chapter 6. Examples

6.5 Verifying an Active Data Structure

This example focuses on the abstraction of protocols and services through a functional

interface, and illustrates how to reason modularly about functions with side effects. It

also shows how the gap between expression and system level reasoning in the proof

system can be bridged. Part of the proof sketched in this example has been checked

using a recent version of the ERLANG verification tool.

Further, the example illustrates the module concept of ERLANG, for which no for-

mal semantics has been given in the thesis, but which is likely to be examined in the

future. The example further illustrates typical patterns of reasoning using ERLANG

queues, and how their semantics affect proof arguments.

6.5.1 Active Data Structures

Active data structures, i.e., collections of processes that by coordinating their activities

mimic in a concurrent way some data structure, are frequently used in telecommuni-

cation software. In a previous study [AD99] a protocol for responding to database

queries, directed to the distributed database manager Mnesia, was verified. Internally

the protocol built up a ring like structure of connected processes in order to answer

queries efficiently. In the current example we examine a scheme for a set implemen-

tation inspired by a set-as-process example of Hoare [Hoa85]. Here the active data

structure is a linked list.

6.5.2 An Implementation of a Persistent Set

As an abstract mathematical notion, a set is simply a collection of objects (taken out of

an universe of objects), characterised by the membership relation “∈”: if s is an object

and S is a set, then the statement s ∈ S is either true or false. Computer scientists

have also another view of sets, namely as mutable objects: a set, when manipulated by

adding or removing elements, still keeps its “identity”, e.g. through an identifier.

The objects to be manipulated can be distributed in space, and if the objects them-

selves are large, it is conceivable, that we might want each object to be maintained by

a separate process. A further reason for implementing a set as an active data structure

is to permit concurrent access to multiple elements.

An implementation of a set, without the possibility to remove elements, by means

of a collection of interacting processes is given below in Section 6.5.3, where a module

persistent_set_adt is defined. The module construct of ERLANG provides a

name (here persistent set adt for a collection of functions, and prohibits di-

rect access to functions not listed in an export clause. Functions exported from a

module are now accessible only by providing also the module name in function calls.

In the present formalisation of ERLANG the module and export keywords are without

observable behaviour. A module referring to them can be parsed, but they keywords

themself are not interpreted by the proof assistant tool. In the following, to conform

with the ERLANG dialect considered in the thesis, the spawn function call in the func-

tion mk empty has been modified to omit the first argument.

6.5 Verifying an Active Data Structure 153

Internally the persistent set adtmodule implements two functions - one for

maintaining single elements, and one for the empty set. A set is identified by an Erlang

process identifier. When creating a new set, it initially consists of a single process

executing the empty_set function; it is the process identifier of this process by which

the set is to be identified. When an element is added, a new process is spawned to store

the element if it is not already present in the set. Internally, when a new element is

added to a set, it is “pushed downwards” through the list of processes representing

set elements, until it reaches the emptyset process, which spawns another emptyset

process, and becomes itself a process maintaining the new element. So, as a result, a

set is implemented as a unidirectional linked collection of processes referenced by a

process identifier.

To encapsulate the set against improper use, we provide a controlled interface to the

set module, consisting of a function for set creation mk_empty, testing for member-

ship is_member, addition of elements add_element, etc. The set creation func-

tion, for example, spawns a process executing the empty_set function, and returns

the process identifier of the newly spawned process. This process identifier has then to

be provided as an argument to all the other interface functions. The implementation of

the two set functions and the interface prevents the user of the set module from having

to notice that sets are internally represented by processes, and moreover prevents direct

access to any other process identifiers created internal to the linked list of processes.

Any process, given knowledge of the process identifier of a persistent set, can

choose to circumvent the interface functions and directly communicate (through mes-

sage passing) with the set process. As we shall see in the proof such “protocol abuse”

can lead to program errors.

6.5.3 The Set Erlang Module

-module(persistent_set_adt).

-export([mk_empty/0, is_empty/1, is_member/2,

add_element/2, empty_set/0]).

empty_set() ->

receive

{is_empty, Client} when pid(Client) ->

Client ! {is_empty, true},

empty_set();

{is_member, Element, Client} when pid(Client) ->

Client ! {is_member, Element, false},

empty_set();

{add_element, Element}->

set (Element, mk_empty())

end.

154 Chapter 6. Examples

set(Element, Set) ->

receive

{is_empty, Client} when pid(Client) ->

Client ! {is_empty, false},

set(Element, Set);

{is_member, SomeElement, Client} when pid(Client) ->

if

SomeElement == Element ->

Client ! {is_member, SomeElement, true},

set(Element, Set);

SomeElement /= Element ->

Set ! {is_member, SomeElement, Client},

set(Element, Set)

end;

{add_element, SomeElement} ->

if

SomeElement == Element ->

set(Element, Set);

SomeElement /= Element ->

Set ! {add_element, SomeElement},

set(Element, Set)

end

end.

%% MODULE INTERFACE FUNCTIONS

mk_empty() ->

spawn(persistent_set_adt, empty_set, []).

is_empty(Set) ->

Set ! {is_empty, self()},

receive

{is_empty, Value} -> Value

end.

is_member(Element, Set) ->

Set ! {is_member, Element, self()},

receive

{is_member, Element, Value} -> Value

end.

add_element(Element, Set) ->

Set ! {add_element, Element}.

6.5 Verifying an Active Data Structure 155

6.5.4 A Persistent Set Property

To check the correctness of a persistent set implementation, we have to specify those

properties of sets which we consider paramount for correct behaviour. Ideally, one

would like such a specification to be complete, i.e. a system should satisfy the spec-

ification exactly when it implements such a set. This goes beyond the scope of this

thesis.

One crucial property of persistent sets is naturally that they retain any element

added to them. For simplicity, we will here prove a simpler property, that once any

element has been added to such a set the set will forever be non-empty. The main

predicates are:

ag non empty ⇒

λSetPid : erlangPid, SetSys : erlangSystem.(
SetSys : non empty SetPid

∧ SetSys : ∀A : erlangSysAction.[A]ag non empty SetP id

)

persistently non empty ⇒

λSetPid : erlangPid, SetSys : erlangSystem.

SetSys : non empty SetPid ∧ SetSys : ag non empty SetPid

∨

SetSys : empty SetPid

∧ SetSys : ∀A : erlangSysAction.

[A]persistently non empty SetP id

Intuitively the persistently non empty predicate expresses an automaton that, when

applied to a process identifier SetPid and an Erlang system SetSys representing a

set, checks that empty SetPid remains true until non empty SetPid becomes true,

after which non empty SetPid must remain continuously true forever (definition

ag non empty). Note that this is, in some respect, a challenging property since it con-

tains both a safety part (non-empty sets never claim to be empty) and a liveness part (all

sets eventually answer queries whether they are empty).

In a lemma we show that no Erlang system can at the same time satisfy both empty

and non empty, thus increasing our confidence in the above formula:

∀S : erlangSystem.¬ (S : empty SetPid) ∨ ¬ (S : non empty SetPid)

We advocate an observational approach to specification, through invocation of the in-

terface functions, as evidenced in the definition of the empty predicate:

empty
∆
=

λSetPid : erlangPid, SetSys : erlangSystem.∀Pid : erlangPid.

¬(Pid = SetP id) ⇒

〈is empty(SetPid),Pid, ǫ〉 ‖ SetSys : (evaluates to Pid true)

156 Chapter 6. Examples

The empty predicate expresses that 〈is empty(SetPid),Pid, ǫ〉, an observer process,

will eventually (in a finite number of steps) – the liveness part of the property – termi-

nate with the value true, if executing concurrently with the observed set SetSys. The

definition of nonempty is analogous:

nonempty
∆
=

λSetPid : erlangPid, SetSys : erlangSystem.∀Pid : erlangPid.

¬(Pid = SetP id) ⇒

〈is empty(SetPid),Pid, ǫ〉 ‖ SetSys : (evaluates to Pid false)

The definition of evaluates to predicate below

evaluates to : erlangSystem → prop ⇐

λPid : erlangPid.λValue : erlangValue.

(sthe termPidValue) ∨ (〈τ〉true ∧ [τ](evaluates to Pid Value))

expresses that within a finite number of steps the process with process identifier Pid

will always evaluate to Value . The definition of the sthe term predicate can be found

on Page 111.

6.5.5 A Proof Sketch

The main proof obligation is then

⊢ 〈empty set(), P, ǫ〉 : persistently non empty P

That is, the Erlang system 〈empty set(), P, ǫ〉, corresponding to an initially empty

set, satisfies the persistently non empty P property. In fact a slightly stronger property

will be proved, and where the persistently non empty fixed point has been approxi-

mated:

¬(add in queue Q) ⊢ 〈empty set(), P,Q〉 : persistently non emptyκP (6.53)

where the ¬(add in queue Q) assumption expresses that the queue Q does not contain

a request to add an element to the queue:

add in queue ⇐

λQ : erlangQueue.(
∃V : erlangValue.Q = {add element, V }

∨ ∃V : erlangValue, Q′ : erlangQueue.add in queue Q′ ∧Q = V ·Q′

)

This proof goal is reduced by unfolding the definition of the persistently non empty

predicate, choosing to show that the set process will signal that it is empty when

6.5 Verifying an Active Data Structure 157

queried, and performing a few other trivial proof steps. There are two resulting proof

goals:

κ′ < κ,¬(add in queue Q) ⊢ 〈empty set(), P,Q〉 : empty P (6.54)

κ′ < κ,¬(add in queue Q) ⊢ 〈empty set(), P,Q〉 :

∀A : erlangSysAction.[A]persistently non emptyκ′

P
(6.55)

Goal 6.54 reduces to (after unfolding empty and rewriting):

κ′ < κ,¬(add in queue Q),¬P = P ′ ⊢

〈is empty(P), P ′, ǫ〉 ‖ 〈empty set(), P,Q〉 :

evaluates to P ′ true

(6.56)

That is, an observer process calling the interface routine is empty with the set pro-

cess identifier P as argument will eventually (in a finite number of steps) evaluate to

the value true (meaning that the set is considered empty). Here the proof strategy

is to symbolically “execute” the two processes together with the formula, and observe

that in all possible future states the observer process terminates with true as the re-

sult. Note however that the assumption ¬(add in queue Q) is crucial due to the Erlang

semantics of queue handling. If the queue Q contains an add element message the

observer process will instead return false as a result, since its is empty message

would be stored after the add element message in the queue and thus be serviced

only after an element was added to the set.

The second proof goal 6.55 is reduced by eliminating the universal quantifier, and

computing the next state under all possible types of actions. Since the process is unable

to perform an output action there are two resulting goals, one which corresponds to the

input of a message V (note the resulting queue Q · V) and the second a computation

step (applying the empty set function).

κ′ < κ,¬(add in queue Q) ⊢

〈empty set(), P,Q · V 〉 : persistently non emptyκ′

P
(6.57)

κ′ < κ,¬(add in queue Q) ⊢

〈receive . . . , P,Q〉 : persistently non emptyκ′

P
(6.58)

Proceeding with goal 6.58 either the first message to be read from the queue is

is empty or is member (the possibility of an add element message can be dis-

carded due to the queue assumption). Handling these two new goals presents no ma-

jor difficulties. Goal 6.57 is reduced by analysing the value of V . If it is not an

add element message then we can easily extend the assumption about the non-

emptiness of Q:

κ′ < κ,¬(add in queue Q · V) ⊢

〈empty set(), P,Q · V 〉 : persistently non emptyκ′

P
(6.59)

158 Chapter 6. Examples

Goal 6.59 is clearly an instance of goal 6.53, i.e., we can find a substitution of variables

that when applied to the original goal will result in the current proof goal (the identity

substitution except that it maps the queue Q to the queue Q · V). Since we have at the

same time unfolded a greatest fixed point on the right hand side of the turnstile (the

definition of persistently non empty) we are allowed to discharge the current proof

goal at this point. If, on the other hand, V is an add element message the next goal

becomes:

κ′ < κ, add in queue Q · V ⊢

〈empty set(), P,Q · V 〉 : persistently non emptyκ′

P
(6.60)

At this point we cannot discharge the proof goal, since there is no substitution from

the original proof goal to the current one. Instead we repeat the steps of the proof of

goal 6.53 but taking care to show non empty P instead of empty P . Also, we cannot

discard the possibility of receiving an add element message adding an element V ′

to the list and the resulting goal is (after weakening out the assumptions):

⊢ 〈set(V ′,mk empty(...)), P,Q′〉 : ag non empty P (6.61)

By repeating the above pattern of reasoning with regards to goal 6.61 we eventually

reach the proof state:

¬P = P ′ ⊢ 〈set(V ′, P ′), P,Q′′〉 ‖ 〈empty set(), P ′, ǫ〉 : ag non empty P
(6.62)

The ERLANG components of the proof states of the proof, up to the point of the

spawning off of the new process, are illustrated in Figure 6.8.

At this point we have reached a critical point in the proof where some manual

decision is required. Clearly we can repeat the above proof steps forever, never being

able to discharge all proof goals, due to the possibility of spawning new processes.

Instead we apply the TERMCUT proof rule, to abstract the freshly spawned processes

with a formula ψ ending up with two new proof goals:

¬P = P ′ ⊢ 〈empty set, P ′, ǫ〉 : ψ P P ′ (6.63)

¬P = P ′, X : ψ P P ′ ⊢ 〈set(V ′, P ′), P,Q′′〉 ‖ X : ag non empty P (6.64)

How should we choose ψ? The cut formula must be expressive enough to charac-

terise the 〈empty set, P ′, ǫ〉 process, in the context of the second process and for the

purpose of proving the formula ag non empty P . Here it turns out that the following

6.5 Verifying an Active Data Structure 159

〈receive . . . end, P, Q2〉

❄

V = {add element, . . .}

✾

V = {is empty, P ′′}

P’’!{is empty,false}

③

V = {is member, . . . , P ′′}

P’’!{is member,...,false}
✲ ✛

˙

set(V ′, mk empty()), P, Q3
¸

〈Client!{is empty, true}, . . . , P, Q3〉
˙

Client!{is member, V ′, false}, . . . , P, Q3
¸

❄
˙

set(V ′, spawn(. . .)), P, Q4
¸

❄
˙

set(V ′, P ′), P, Q5
¸

‖
˙

empty set(), P ′, ǫ
¸

Figure 6.8: Erlang components of initial proof states

formula definitions are sufficient:

ψ : erlangSystem → prop ⇒

λP, P ′ : erlangPid.

∀P : erlangPid, V : erlangValue.[P?V](¬(is empty V) ⇒ ψ P P ′)

∧ ∀P : erlangPid,∀V : erlangValue.[P !V]¬(is empty V)

∧ converges P P ′ ∧ foreign P ∧ local P ′

converges : erlangSystem → prop ⇐

λP, P ′ : erlangPid.

ψ P P ′

∧ [τ]converges P P ′

∧ ∀P ′′ : erlangPid, V : erlangValue.[P ′′!V]converges P P ′′

is empty : erlangValue → prop =

λV : erlangValue.∃P : erlangValue.V = {is empty, P}

Intuitively ψ expresses:

• Whenever a new message is received, and it is not an is empty message then

ψ continues to hold.

• An is empty reply is never issued.

160 Chapter 6. Examples

• The predicated system can only perform a finite number number of internal and

output steps (definition of converges omitted).

• Process identifier P is foreign (does not belong to any process in the predicated

system) and process identifier P ′ is local, characterised by the definitions on

Page 111.

The proof of goal 6.63 is straightforward up to reaching the goal:

¬P ′ = P ′′ ⊢ 〈set(V ′, P ′′), P ′, Q′′′〉 ‖ 〈empty set, P ′′, ǫ〉 : ψ P P ′ (6.65)

Here we once again apply the term-cut rule to obtain the following goals:

¬P ′ = P ′′ ⊢ 〈empty set, P ′′, ǫ〉 : ψ P ′ P ′′ (6.66)

Y : ψ P ′ P ′′ ⊢ 〈set(V ′, P ′′), P ′, Q′′′〉 ‖ Y : ψ P P ′ (6.67)

Goal 6.66 can be discharged immediately due to the fact that it is an instance of

goal 6.63. Goal 6.67 involves symbolically executing the 〈set(V ′, P ′′), P ′, Q′′′〉 pro-

cess together with the (abstracted) process variable Y , thus generating their combined

proof state space. Since both these systems generate finite proof state spaces this con-

struction will eventually terminate. The proof of goal 6.64 is highly similar to the proof

of goal 6.67 above, but is omitted from the presentation.

6.5.6 A Discussion of the Proof

The proof itself represented a serious challenge in several respects:

• The modelled system is an open one in which at any time additional set elements

can be added outside of the control of the set implementation itself. The state

space of the set implementation is clearly not finite state: both the number of

processes and the size of message queues can potentially grow without bound.

• The queue semantics of Erlang has some curious effects with regards to an ob-

server interacting with the set implementation. It is for instance not sufficient

to consider only the program states of the set process to determine whether an

observer will recognise a set to be empty or not; also the contents of the input

message queue of the set process has to be taken into account.

Although the correctness of the program may at first glance appear obvious, a closer

inspection of the source code through the process of proving the implementation correct

revealed a number of problems.

For instance, in an earlier version of the set module the guards pid(Client)

in the empty set and set functions were missing. These guards serve to ensure

that any received is empty or is member message must contain a valid process

identifier. Should these guards be removed a set process will terminate due to a runtime

(typing) error if, say, a message {is empty, 21} is sent to it.

In most languages adding such guards would not be needed since usage of the in-

terface functions should ensure that these kinds of “typing errors” can never take place.

6.5 Verifying an Active Data Structure 161

In Erlang, in contrast, it is perfectly possible to circumvent the interface functions and

communicate directly with the set implementation.

162 Chapter 6. Examples

6.6 Formal Verification of a Leader Election Protocol

in Process Algebra

The language µCRL (micro Common Representation Language) [GP90] has been de-

fined as a combination of process algebra and (equational) data types to describe and

verify distributed systems. It is a very precisely defined language provided with a log-

ical proof system [GP94]. It is primarily intended to verify statements of the form

Condition → Specification = Implementation.

This language and proof system has been applied to verify a number of data transfer and

distributed scheduling protocols of considerable complexity [BG93, GK93, GvdP93,

Kor94]. It incorporates several old and new techniques [BG94, BG93]. Due to the

logical nature of the proof system proofs can be verified by computer. Some sizable

examples of proofs verified using the proof checker Coq [CH88] are reported in [GP94,

KS94].

In this section we show its applicability on Dolev, Klawe and Rodeh’s leader elec-

tion or extrema finding protocol [DKR82] that has been designed for a network with

a unidirectional ring topology. At the same time, Peterson published a nearly identi-

cal version of this protocol [Pet82]. This protocol is efficient, O(n log n), and highly

parallel. As far as we know this is the first leader election protocol verified in a pro-

cess algebraic style. In [BKKM95, BKKM96] a number of leader election protocols

for carrier sense networks have been specified and some (informal) proof sketches are

given in modal logic.

In Section 6.6.1 we specify Dolev, Klawe and Rodeh’s leader election protocol

formally in µCRL. The protocol is proven correct in Section 6.6.2 using a detailed

argument. Section 6.6.4 summarises the proof theory for µCRL, and Section 6.6.5

defines the data types used in the specification and proof of the protocol.

Acknowledgements. We thank Frits Vaandrager for pointing out this protocol to us.

Also Marco Pouw is thanked for his suggestions for improvement.

6.6.1 Specification and correctness of the protocol

We assume n processes in a ring topology, connected by unbounded queues. A process

can only send messages in a clockwise manner. Initially, each process has a unique

identifier ident (in the following assumed to be a natural number). The task of an

algorithm for solving the leader election problem is then to make sure that eventually

exactly one process will become the leader.

In Dolev, Klawe and Rodeh’s algorithm [DKR82] each process in the ring carries

out the following task:

Active:

d:= ident

do forever

send(d)

Specification and correctness of the protocol 163

receive(e)

if d=e then stop /* Process is the leader */

send(e)

receive(f)

if e > max(d , f) then d:=e else goto Relay

end

Relay:

do forever

receive(d)

send(d)

end

The intuition behind the protocol is as follows. In each round the number of electable

processes decreases, if there are more than two active processes around. During each

round every active process, i.e., a process in state Active, receives two different values.

If the first value is larger than the second value and its own value, then it stays active.

In this case its anti-clockwise neighbour will become a relay process. So, from every

set of active neighbours, one will die in every round. Furthermore, the maximal value

among the identifiers will never be lost in the ring network, it will traverse the ring in

messages, or be stored in a variable in a process, until only one active process remains.

If only one active process is left, i.e., not in state Relay, then the leader-in-spe sends its

own value of d to itself, and then halts.

As the attentive reader may have noticed, there is a simpler way to elect a leader.

For example, it would be sufficient for a process to receive just one value, i.e., the value

(e) of its direct neighbour. In this case, only two values instead of three values have

to be compared (e > d instead of e > max(d, f)). However, this approach is not so

efficient as one may need 2n2 + 2n actions before a leader is selected. The protocol

described earlier is faster. It is bounded by 2n log n + 2n actions because in every

round at least one process becomes inactive.2 For an explanation of these complexity

bounds one is referred to [DKR82].

Below we formalise the processes and their configuration in the ring as described

above in µCRL.

act leader

r, s : Nat × Nat

proc Active(i:Nat , d:Nat , n:Nat) =
s(i, d)

∑
e:Nat

r(i−n1, e) (leader δ ⊳ eq(d, e) ⊲ s(i, e)∑
f :Nat

(r(i−n1, f) Active(i, e, n) ⊳ e > max(d, f) ⊲ Relay(i, n)))

Relay(i:Nat , n:Nat) =
∑

d:Nat
r(i−n1, d) s(i, d) Relay(i, n)

Here a process in the imperative description with value ident for d corresponds to

Active(i, ident, n). Intuitively the µCRL process first sends the value of the variable d
to the next process in the ring (s(i, d)) via a queue, which is described below. Then it

2By log n, we mean log
2

n.

164 Chapter 6. Examples

reads a new value e from the queue connected to the preceding process in the ring by

an action r(i−n1, e). The notation −n stands for subtraction modulo n. Consequently,

it executes a then-if-else test denoted by ⊳ ⊲ . If the variables d and e are equal,

expressed by eq(d, e), then the process declares itself leader by executing the action

leader. Otherwise the value of e is sent (s(i, e)) and a value f is read (r(i−n1, f)).
Now, if e is larger than both d and f the process repeats itself with e replacing d.

Otherwise, the process becomes a relay process (denoted by Relay(i, n)). The leader

action has been introduced in the µCRL specification of the protocol for verification

purposes; it makes visible the fact that exactly one leader is elected.

The δ process after the leader action in the Active process is not essential. We have

inserted it for technical reasons and more details on this issue are given at the end of

this section.

In order to prove the correctness of the protocol we must be precise about the

behaviour of the queues that connect the processes. We assume that the queues have

infinite size and deliver data in a strict first in first out fashion without duplication or

loss. In the queue process data is stored in a data queue q. Note that the behaviour of

the queue process is straightforward; it reads data via r(i, d) at process i and delivers

it via s(i+n 1) at process i+n 1 (+n is addition modulo n). Below, toe(q) denotes the

first element that was inserted in data queue q.

proc Q(i:Nat , n:Nat , q:Queue) =∑
d:Nat

r(i, d)Q(i, n, in(d, q))+
s(i+n 1, toe(q))Q(i, n, untoe(q)) ⊳ not empty(q) ⊲ δ

It remains to connect all processes together. First we state that send actions s
communicate with receive actions r. Then, using the processes Spec′ and Spec we

combine the processes with the queues, and assign a unique number to them. The

process Spec(n) represents a ring network of n processes interconnected by queues.

The injective function id : Nat → Nat maps natural numbers to process identifiers,

for convenience also represented as natural numbers. The process identifiers are related

by the total ordering ≤ . The abbreviation max will be used to denote the maximal

identifier, with respect to the ordering ≤ and the number of processes n, of the set

{id(x) : 0≤x≤n− 1}.

func id : Nat → Nat

act c : Nat × Nat

commr|s = c
proc Spec′(m:Nat ,n:Nat) =

(Active(m− 1, id(m− 1), n) ‖ Q(m− 1, n, q0) ‖ Spec′(m − 1 ,n))
⊳m > 0 ⊲ δ

Spec(n:Nat) = τ{c}∂{r ,s}(Spec′(n,n))

Since the protocol is supposed to select exactly one leader after some internal ne-

gotiation we formulate correctness by the following formula, where ‘=’ is to be inter-

preted as ‘behaves the same’:

A proof of the protocol 165

Theorem 6.6.1. For all n : Nat

n > 0 → Spec(n) = τ leader δ

The theorem says that in a ring with at least one process exactly one leader will be

elected after some internal activity.

In the specification of the Active process given above, we have inserted a δ process

after the leader action. We introduced this δ for technical convenience in our verifica-

tion. However, omitting δ does not effect the behaviour of the leader protocol, Spec,

as a whole. In fact, if we leave out this δ the whole system Spec still deadlocks after

performing a leader action as stated in Theorem 6.6.1. The reason for this is that Spec

can only terminate if all processes in the system terminate. In particular, the Relay pro-

cesses can not terminate and evolve in a deadlock situation when a leader is selected.

So, even if the process that performs the leader action terminates successfully (which

is not the case here), the full system will still end up in a deadlock.

As experience shows the correctness reasoning above is too imprecise to serve as a

proof of correctness of the protocol. Many, often rather detailed arguments, are omit-

ted. Actually, the protocol does not have to adhere to the rather synchronous execution

suggested by the word ‘rounds’, but is highly parallel. One can even argue that given

the large number of rather ‘wild’ executions of the protocol, the above description

makes little sense. Therefore, we provide in the next sections a completely formalised

proof, where we are only interested in establishing correctness of the protocol and not

in proving its efficiency.

6.6.2 A proof of the protocol

The proof strategy for proving the correctness theorem consists of a number of distinct

steps. First in Section 6.6.2 we define a linear representation of the specification in

which the usage of the parallel composition operator in the original specification is

replaced by a tabular data structure encoding the states of processes in the network,

and actions with guards that check the contents of the data structure. The linearised

specification is proven equivalent to the original specification in Lemma 6.6.4. Then,

in Section 6.6.2, we define a (focus) condition on the tabular data structure such that if

the condition holds then no internal computation is any longer possible in the protocol,

i.e., no τ -steps can be made [BG93]. The focus condition is used in Lemma 6.6.11, in

Section 9, to separate the proof that the linear specification can be proven equivalent

to a simple process into two parts. Lemma 6.6.11 together with Lemma 6.6.4 then

immediately proves the correctness theorem of the protocol, i.e., Theorem 6.6.1. The

proof of Lemma 6.6.11 makes use of the Concrete Invariant Corollary (see [BG94]),

i.e., a number of invariance properties are defined (in Section 6.6.2) on the tabular data

structure such that regardless which execution step the linear specification performs,

the properties remain true after the step if they were true before the execution of the

step. These invariants are used to prove the equality between the linear specification

and the simple process in Lemma 6.6.11. In order to make use of the Concrete Invariant

166 Chapter 6. Examples

Corollary we have to show that the linear specification can only perform finitely many

consecutive τ -steps. This is proven in Section 9.

Linearisation

As a first step the leader election protocol is described as a µCRL process in a state

based style, as this is far more convenient for proving purposes. The state based style

very much resembles the Unity format [Bru95, CM88] or the I/O automata format

[LT89]. Following [Bru95] we call this format the Unity format or a process specifi-

cation in Unity style. Inspection of the processes Active and Relay indicates that there

are 7 different major states between the actions. The states in Active are numbered

0,1,2,3,6 and those in Relay get numbers 4 and 5. The processes Active and Relay can

then be restated as follows:

proc Act(i:Nat , d:Nat , e:Nat , n:Nat , s:Nat) =
s(i, d)Act(i, d, e, n, 1) ⊳ eq(s, 0) ⊲ δ+∑

e:Nat
r(i−n1, e)Act(i, d, e, n, 2) ⊳ eq(s, 1) ⊲ δ+

leader Act(i, d, e, n, 6) ⊳ eq(d, e) and eq(s, 2) ⊲ δ+
s(i, e)Act(i, d, e, n, 3) ⊳ not eq(d, e) and eq(s, 2) ⊲ δ+∑

f :Nat
r(i−n1, f)Act(i, e, e, n, 0) ⊳ e > max(d, f) and eq(s, 3) ⊲ δ+∑

f :Nat
r(i−n1, f)Act(i, d, e, n, 4) ⊳ e < max(d, f) and eq(s, 3) ⊲ δ+∑

d:Nat
r(i−n1, d)Act(i, d, e, n, 5) ⊳ eq(s, 4) ⊲ δ+

s(i, d)Act(i, d, e, n, 4) ⊳ eq(s, 5) ⊲ δ

Lemma 6.6.2. For all i, d, e, n, we have:

Active(i, d, n) = Act(i, d, e, n, 0)

Relay(i, n) = Act(i, d, e, n, 4)

Proof. The proof of this lemma is straightforward, using the Recursive Specification

Principle (RSP), but note that it uses a (p⊳c⊲q) = a p⊳c⊲a q as well as the distributivity

of Σ over +. ✷

We now put the processes and queues in parallel. As we work towards the Unity style,

we must encode the states of the individual processes in a data structure. For this we

take a table (or indexed queue) with an entry for each process i. This entry contains

values for the variables d, e, s and the contents of the queue in which process i is

putting its data. Furthermore, it contains a variable of type Bool, which plays a role in

the proof. The data structure has the name Table and is defined in Section 6.6.5.

We put the processes and queues together in three stages. First we put all processes

together, using ΠAct and XAct below. Then we put all queues together, via ΠQ and

XQ. Finally, we combineXAct andXQ obtaining the processX which is a description

in Unity style of the leader election protocol.

proc Spec(B:Table, n:Nat) = τ{c}∂{r,s}(ΠAct(B,n)‖ΠQ(B,n))
ΠAct(B:Table, n:Nat) =

A proof of the protocol 167

δ⊳empty(B)⊲
(Act(hdi(B), getd(hdi(B), B), gete(hdi(B), B), n, gets(hdi(B), B))
‖ΠAct(tl(B), n))

ΠQ(B:Table, n:Nat) =
δ⊳empty(B)⊲(Q(hdi(B), n, getq(hdi(B), B))‖ΠQ(tl(B), n))

XAct(B:Table, n:Nat) =∑
j:Nat

s(j, getd(j, B))XAct(upds(1, j, B), n)

⊳eq(gets(j, B), 0) and test(j, B)⊲δ+∑
j:Nat

∑
e:Nat

r(j−n1, e)XAct(upde(e, j, upds(2, j, B)), n)

⊳eq(gets(j, B), 1) and test(j, B)⊲δ+∑
j:Nat

leaderXAct(upds(6, j, B), n)

⊳eq(getd(j, B), gete(j, B)) and eq(gets(j, B), 2) and test(j, B)⊲δ+∑
j:Nat

s(j, gete(j, B))XAct(upds(3, j, B), n)

⊳not eq(getd(j, B), gete(j, B)) and
eq(gets(j, B), 2) and test(j, B)⊲δ+∑

f :Nat

∑
j:Nat

r(j−n1, f)XAct(updd(gete(j, B), j, upds(0, j, B)), n)

⊳gete(j, B) > max(getd(j, B), f) and
eq(gets(j, B), 3) and test(j, B)⊲δ+∑

f :Nat

∑
j:Nat

r(j−n1, f)XAct(upds(4, j, B), n)

⊳gete(j, B) ≤max(getd(j, B), f) and
eq(gets(j, B), 3) and test(j, B)⊲δ+∑

d:Nat

∑
j:Nat

r(j−n1, d)XAct(updd(d, j, upds(5, j, B)), n)

⊳eq(gets(j, B), 4) and test(j, B)⊲δ+∑
j:Nat

s(j, getd(j, B))XAct(upds(4, j, B), n)

⊳eq(gets(j, B), 5) and test(j, B)⊲δ

XQ(B:Table, n:Nat) =∑
d:Nat

∑
j:Nat

r(j, d)XQ(inq(d, j, B), n)⊳test(j, B)⊲δ+∑
j:Nat

s(j +n 1, toe(j, B))XQ(untoe(j, B), n)

⊳not empty(j, B) and test(j, B)⊲δ

The leader election protocol in Unity form is given below and will be the core pro-

cess of the proof. Note that in many cases verification of a protocol only starts after

the process below has been written down. In the description of X most details of the

description are directly reflected in corresponding behaviour of the constituents XAct

and XQ. However, there is one difference. It appears that in the protocol two kinds of

messages travel around, active and passive ones. The active messages contain numbers

that may replace the current value of the d-variable of its receiver. The passive mes-

sages are not essential for the correctness of the protocol, but only used to improve its

speed. For the correctness of the protocol it is important to know that the maximum

identifier is always somewhere in an active position and that no identifier occurs in

more than one active position. In order to distinguish active from passive messages,

we have added a boolean b to each message in the queues, where if b = t the message

is active, and if b = f the message is passive. When processes become Relays then

168 Chapter 6. Examples

they also act as a queue. Therefore, we have also added a boolean b to the process

parameters, to indicate the status of the message that a process in state 5 is holding.

The equation below is referred to by (I) in the remainder of the proof.

proc X(B:Table, n:Nat) =∑
j:Nat

τ X(upds(1, j, inq(getd(j, B), t, j, B)), n)

⊳eq(gets(j, B), 0) and j < n⊲δ+∑
j:Nat

τ X(untoe(j−n1, upde(toe(j−n1, B), j, upds(2, j, B))), n)

⊳eq(gets(j, B), 1) and not empty(j−n1, B) and j < n⊲δ+∑
j:Nat

leaderX(upds(6, j, B), n)

⊳eq(gets(j, B), 2) and eq(getd(j, B), gete(j, B)) and j < n⊲δ+∑
j:Nat

τ X(upds(3, j, inq(gete(j, B), f, j, B)), n)

⊳eq(gets(j, B), 2) and not eq(getd(j, B), gete(j, B)) and j < n⊲δ+∑
j:Nat

τ X(untoe(j−n1, updd(gete(j, B), j, upds(0, j, B))), n)

⊳gete(j, B) > max(getd(j, B), toe(j−n1, B)) and eq(gets(j, B), 3) and
not empty(j−n1, B) and j < n⊲δ+∑

j:Nat
τ X(untoe(j−n1, upds(4, j, updb(toeb(j−n1, B), j, B))), n)

⊳gete(j, B) ≤ max(getd(j, B), toe(j−n1, B)) and eq(gets(j, B), 3) and
not empty(j−n1, B) and j < n⊲δ+∑

j:Nat
τ X(untoe(j−n1, updd(toe(j−n1, B), j, upds(5, j, updb(toeb

(j−n1, B), j, B)))), n)
⊳eq(gets(j, B), 4) and not empty(j−n1, B) and j < n⊲δ+∑

j:Nat
τ X(inq(getd(j, B), getb(j, B), j, upds(4, j, B)), n)

⊳eq(gets(j, B), 5) and j < n⊲δ

Definition 6.6.3. The function init : Nat ⊲htarrowTable, which is used for denoting

the initial state of the protocol, is defined as follows:

init(n) = if (eq(n, 0), t0, in(n− 1, id(n− 1), 0, 0, f, q0, init(n− 1))).

See also Section 6.6.5.

Lemma 6.6.4. For all B : Table and m,n : Nat

1. UniqueIndex (B) → ΠAct(B,n) = XAct(B,n),

2. UniqueIndex (B) → ΠQ(B,n) = XQ(B,n),

3. UniqueIndex (B) ∧ test(j, B) = j < n→ Spec(B,n) = X(B,n),

4. Spec′(m,n) = ΠAct(init(m), n)‖ΠQ(init(m), n),

5. Spec(n) = Spec(init(n),n),

6. Spec(n) = X(init(n), n).

Proof.

A proof of the protocol 169

1. A standard expansion using induction on B (cf. [KS94]).

2. Again a straightforward expansion.

3. Spec(B,n) = τ{c}∂{r,s}(ΠAct(B,n) ‖ ΠQ(B,n)) = τ{c}∂{r,s}(XAct(B,n) ‖
XQ(B,n)). Now expand XAct(B,n) ‖ XQ(B,n) and apply hiding. The equa-

tions obtained in this way match those of X(B,n), except that ‘j < n’ is re-

placed by ‘test(j, B)’ or ‘test(j, B) and test(j−n1, B)’. As X is convergent

(proven in Lemma 6.6.8) it follows with the Concrete Invariant Corollary [BG94]

that Spec(B,n) and X(B,n) are equal. The invariant ‘test(j, B) = j < n’ is

used and easy to show true.

4. By induction on m, using associativity and commutativity of the merge.

5. Directly from the previous case, i.e. Lemma 6.6.4.4.

6. Directly using cases 3 and 5.

✷

Notation

In the sequel we will for certain property formulas φ(j) write

∀j<nφ(j) for φ′(0, n) and ∀i<j<nφ(j) for φ′(i+ 1, n)

and

∃j<nφ(j) for φ′′(0, n) and ∃i<j<nφ(j) for φ′′(i+ 1, n)

where φ′(j, n) and φ′′(j, n) are defined by:

φ′(j, n) = if (j ≥ n, t, φ(j) and φ′(j + 1, n)),

φ′′(j, n) = if (j ≥ n, f, φ(j) or φ′′(j + 1, n)).

Summation over an arithmetic expression γ(j) can be written
∑

j<nγ(j) for γ′(0, n)

where

γ′(j, n) = if (j ≥ n, 0, γ(j) + γ′(j + 1, n)).

Note that if we can prove that

(j < n and φ(j)) → ψ(j),

then we can also show that

∀j<nφ(j) → ∀j<nψ(j) and

∃j<nφ(j) → ∃j<nψ(j).

Also note that
not (∀j<nφ(j)) = ∃j<nnot φ(j) and

not (∃j<nφ(j)) = ∀j<nnot φ(j)

170 Chapter 6. Examples

Focus Condition

The focus condition FC : Table × Nat → Bool indicates at which points the leader

election protocol cannot do τ -steps. This means it can either do nothing, or do a leader

action. The focus condition is constructed in a straightforward fashion by collecting

the conditions for the τ -steps in process X.

FC(B,n) =

∀j<n not eq(gets(j, B), 0) and

(not eq(gets(j, B), 1) or empty(j−n1, B)) and

(not eq(gets(j, B), 2) or eq(getd(j, B), gete(j, B))) and

(not eq(gets(j, B), 3) or empty(j−n1, B)) and

(not eq(gets(j, B), 4) or empty(j−n1, B)) and

not eq(gets(j, B), 5)

Some invariants of X

In this section we state four invariants (Inv1, . . . , Inv4) of the processX(B,n) that are

used in Section 9 to prove the correctness of the protocol. We prove that the predicates

below are indeed invariance properties in a traditional manner. First we show that they

hold in the initial state of the protocol, i.e., for invariant Invi we show Invi(init(n), n).
Then for each protocol step (there are eight such steps in the linearised process X) we

show that if both the precondition of the step holds and the predicate holds in the state

before the protocol step, then the predicate holds also in the state that is the result of

performing the step. For example, to prove that Inv2 is an invariance property we need

to establish that the first step in X preserves the property, i.e., that

eq(gets(j, B), 0) and j < n and Inv2(B,n) →

Inv2(upds(1, j, inq(getd(j, B), t, j, B)), n)

where B is a tabular data structure. This entails proving a large number of rather trivial

lemmas, such as:

qsizes(upds(1, j, B), n) = qsizes(B,n)

We omit here the rather long and tedious details of these proofs. In order to establish

that Inv3 and Inv4 are indeed invariants we first have to prove additional statements on

the behaviour of the protocol, i.e., Inv5, Inv7, Inv6, Inv8 and Inv9 in Sections 4 to 8

respectively.

Acceptable states Each process is in one of the states 0, . . . , 6:

Inv1(B,n) = ∀j<n0 ≤ gets(j, B) ≤ 6

A proof of the protocol 171

Bound on the number of messages in queues Invariant Inv2 expresses the property

that the number of processes in state 1 or 3 is equal to the number of processes in state

5 plus the number of messages in message channels.

Inv2(B,n) =
eq(nproc(B, 1, n) + nproc(B, 3, n), nproc(B, 5, n) + qsizes(B,n))

where

nproc(B, s, n) =
∑

j<n if (eq(gets(j, B), s), 1, 0)

qsizes(B,n) =
∑

j<n size(getq(j, B))

Termination of one process implies termination of all processes Invariant Inv3
expresses that if a process is in state 6, then all processes are either in state 4 or state 6.

It is provable using invariant Inv9.

Inv3(B,n) = (∃j<neq(gets(j, B), 6)) →
∀j<neq(gets(j, B), 4) or eq(gets(j, B), 6)

Max is preserved In the initial state, init(n), the maximal identifier in the ring is

equal to max. Invariant Inv4 expresses that this value can not be lost. The invariants

Inv5, Inv7, Inv6 are needed to establish Inv4.

Inv4(B,n) = ∃j<nActiveNode(max, j, B) or ActiveChan(max, getq(j, B))

where

ActiveNode(k, j, B) =
(eq(gets(j, B), 0) and eq(getd(j, B), k)) or
((eq(gets(j, B), 2) or eq(gets(j, B), 3) or eq(gets(j, B), 6)) and
eq(gete(j, B), k)) or
(eq(gets(j, B), 5) and getb(j, B) and eq(getd(j, B), k))

ActiveChan(k, q) = if (empty(q), f,
(hdb(q) and eq(k, hd(q))) or ActiveChan(k, tl(q)))

An identifier has not been lost if it can in the future be received by another process and

replace the value of the d variable of that process. Identifiers can be stored either in a

variable (ActiveNode) or in a channel (ActiveChan).

Trivial facts Inv5 formulates two trivial protocol properties, that all identifiers are

less than n (less than or equal to the maximal identifier max), and that the values of

variables d and e differ when a process is in state 3.

Inv5(B,n) =
∀j<nBoundedq(getq(j, B), n) and

getd(j, B) < n and gete(j, B) < n and

if (eq(gets(j, B), 3),not eq(getd(j, B), gete(j, B)), t)

172 Chapter 6. Examples

where

Boundedq(q, n) = if (empty(q), t, hd(q) < n and Boundedq(tl(q), n))

Active and passive messages The invariant Inv6 characterises the relation between

neighbour processes and channel contents.

Inv6(B,n) = ∀j<nAlt(j, B, n)

where

Alt(j, B, n) =
if (eq(gets(j, B), 0) or
eq(gets(j, B), 3) or
(eq(gets(j, B), 4) and not getb(j, B)) or
(eq(gets(j, B), 5) and getb(j, B)),
secondary(getq(j, B), j, B, n),
primary(getq(j, B), j, B, n))

primary(q, j, B, n) =
if (empty(q),
eq(gets(j +n 1, B), 2) or eq(gets(j +n 1, B), 3) or eq(gets(j +n 1, B), 6) or
((eq(gets(j +n 1, B), 4) or eq(gets(j +n 1, B), 5)) and getb(j +n 1, B)),
hdb(q) and secondary(tl(q), j, B, n))

secondary(q, j, B, n) =
if (empty(q),
eq(gets(j +n 1, B), 0) or eq(gets(j +n 1, B), 1) or
((eq(gets(j +n 1, B), 4) or eq(gets(j +n 1, B), 5)) and not getb(j +n 1, B)),
not hdb(q) and primary(tl(q), j, B, n))

This rather complex looking invariant captures the protocol property that there are two

kinds of messages sent: active messages which are received by the following process as

values on the e variable and which can subsequently replace the d value of the process.

The passive messages are received as values on the f variables (state 3) and will not

replace the original d value of the process.

The Alt property guarantees that an active message can never be received as a pas-

sive message (or vice versa), i.e., neighbour processes and channels are always kept

synchronised by the protocol. Inv6 is needed to establish the invariants Inv8 and Inv4,

to guarantee that identifiers are neither duplicated nor lost.

In order to prove Inv6 the following two lemmas are useful. Lemma61 allows to

prove that secondary(getq(j, B), j, B) implies secondary(getq(j, B
′), j, B), assuming

that the channels getq(j, B) and getq(j, B
′) are identical.

A proof of the protocol 173

Lemma61(B,B′, n) =
∀j<neq(getq(j, B), getq(j, B

′))→
(secondary(getq(j, B), j, B, n)→secondary(getq(j, B

′), j, B′, n)) ↔
(even(size(getq(j, B)))→(secondary(q0, j, B, n)→secondary(q0, j, B

′, n)))
and
(not(even(size(getq(j, B)))))→(primary(q0, j, B, n)→primary(q0, j, B

′, n))))

Similarly, Lemma62 is convenient for proving that the transition from state 3 to state 4

preserves the invariant:

Lemma62(B,n) =
∀j<n(Alt(j, B, n) and not empty(j, B) and secondary(getq(j, B), j, B, n) and
eq(gets(j +n 1, B), 3) → not toeb(j, B))

Consecutive identifiers are distinct Inv7 guarantees that when an identifier in an

active position follows an identifier in a passive position, the identifiers are distinct.

This invariant depends on Inv5 and Inv6.

Inv7(B,n) = ∀j<nCons(j, B, n)

where

Cons(j, B, n) =
Consq(getq(j, B), j, B, n) and
if (eq(gets(j, B), 5) and not getb(j, B),

Neqq(getd(j, B), getq(j, B), j, B, n),
if (eq(gets(j, B), 1) or eq(gets(j, B), 2),Eqq(getd(j, B), getq(j,B), j,B, n), t))

Consq(q, j, B, n) =
if (empty(q), t,Consq(tl(q), j, B, n) and if (hdb(q), t, Neqq(hd(q), tl(q), j, B, n)))

Neq(k, j, B, n) =
((eq(gets(j, B), 2) or eq(gets(j, B), 3)) and not eq(gete(j, B), k)) or
(eq(gets(j, B), 4) and Neqq(k, getq(j, B, n), j, B, n)) or
(eq(gets(j, B), 5) and getb(j, B) and not eq(getd(j, B), k))

Neqq(k, q, j, B, n) =
if (empty(q),Neq(k, j +n 1, B, n), hdb(q) and not eq(hd(q), k))

Eq(k, j, B, n) =
((eq(gets(j, B), 2) or eq(gets(j, B), 3)) and eq(gete(j, B), k)) or
(eq(gets(j, B), 4) and Eqq(k, getq(j, B, n), j, B, n)) or
(eq(gets(j, B), 5) and getb(j, B) and eq(getd(j, B), k))

Eqq(k, q, j, B, n) = if (empty(q),Eq(k, j +n 1, B, n), hdb(q) and eq(hd(q), k))

174 Chapter 6. Examples

Uniqueness of identifiers Inv8 expresses the fact that identifiers can occur in at most

one active position in the ring of processes. It is provable with the help of Inv6.

Inv8(B,n) = ∀k<nCount(B, k, n) ≤ 1

where

Count(B, k, n) =∑
j<n if (ActiveNode(k, j, B), 1, 0)

+
∑

j<n ActiveChanOcc(k, getq(j, B))

ActiveChanOcc(k, q) =
if (empty(q), 0, if (hdb(q) and eq(k, hd(q)), 1, 0) + ActiveChanOcc(k, tl(q)))

Intuitively, the definition of Count counts the number of times an identifier occurs in

an active position, i.e., in a position such that the identifier can be transmitted and

received by another process and later replace the d value of that process. An identi-

fier in an active position can either occur in a variable (ActiveNode) or in a channel

(ActiveChanOcc).

Identifier travel creates relay processes Inv9 points out that if two processes con-

tain the same identifier (k) then the processes in between are guaranteed to be in state

4 and the connecting channels all empty. It is provable using Inv8.

Inv9(B,n) =
∀k<n∀i<n(eq(gets(i, B), 1) or eq(gets(i, B), 2)) and eq(getd(i, B), k) →
(∀j<neq(gets(j, B), 0) → not eq(getd(j, B), k)) and
(∀j<nActiveNode(k, j, B) → empty(i, B) and EmptyNodes(i, j, n,B)) and
(∀j<nActiveChan(k, getq(j, B)) →

eq(hd(j, B), k) and hdb(j, B) and
if (eq(i, j), t, eq(gets(j, B), 4) and empty(i, B)andEmptyNodes(i, j, n,B)))

where

EmptyNode(j, B) = eq(gets(j, B), 4) and empty(j, B)
EmptyNodes(i, j, n,B) =

if (i < j,∀i<l<jEmptyNode(l, B),
(∀l<jEmptyNode(l, B)) and (∀i<l<nEmptyNode(l, B)))

Convergence of the protocol

In this section we prove that the linear process X is convergent, i.e., that we can find a

decreasing measure on the data parameter over the τ -steps in the X process operator.

This result implies that all sequences of τ -steps are finite, which is a necessary con-

dition for applying the Concrete Invariant Corollary. We prove that the function Meas

defined below is a decreasing measure, and thus proving convergence.

A proof of the protocol 175

Meas(B,n) =∑
j<n[if (eq(gets(j, B), 0), (n− getd(j, B) + 2) 6n3,

if (eq(gets(j, B), 1 or eq(gets(j, B), 2), (1 + n− getd(j, B)) 6n3 + 3n3,
if (eq(gets(j, B), 3), (1 + n− getd(j, B)) 6n3, 0))))]+∑

j<n

∑
k<size(getq(j,B)) Term(j, B, k)+∑

j<n if (eq(gets(j, B), 5), 1 + Term(j +n 1, B, size(getq(j, B))), 0).

Term(j, B, st) =
if ([eq(st, 1) and (eq(gets(j, B), 0) or eq(gets(j, B), 1))] or

[eq(st, 0) and gets(j, B) ≤ 3],
1,
2 + Term(j +n 1, B, size(getq(j, B)) + st+
if (eq(gets(j, B), 5), 1, 0) − if (eq(gets(j, B), 1, 3), 1, 0)).

We have a sequence of theorems that are useful to show that Meas(B,n) shows that all

τ -sequences in X are finite.

Lemma 6.6.5. If n > 0, 0 ≤ j, k < n and

st<
∑k

i=j [if (eq(gets(i, B), 1) or eq(gets(i, B), 3), 1, 0)−if (eq(gets(i, B), 5), 1, 0)−

size(getq(i−n1, B))] + size(getq(j−n1, B)).

then

1. Term(j, B, st) ≤ 2(k−nj) + 1.

2. If gets(j, B) = 5 and B′ = inq(d, b, j, upds(4, j, B)) then Term(i, B′, st) =
Term(i, B, st).

3. If gets(j, B) = 4, B′ = untoe(j−n1, upds(5, j, B)) then Term(i, B′, st) ≤
Term(i, B, st+ if (eq(i, j), 1, 0)).

Proof. All statements are proven by induction on (k−nj). ✷

Corollary 6.6.6.

1. For n > 0 and 0 ≤ k < n we find Term(k,B, st) < 2n provided st <
size(getq(k,B)).

2. If gets(j, B) = 5, B′ = inq(d, b, j, upds(4, j, B)) and st < size(getq(i, B))
then

Term(i, B′, st) ≤ Term(i, B, st).

3. If gets(j, B) = 4, st < size(getq(i, B)), i 6= j,B′ = untoe(j−n1, upds(5, j, B))
then

Term(i, B′, st) ≤ Term(i, B, st).

176 Chapter 6. Examples

Proof. Respectively, instantiate case 1 of Lemma 6.6.5 with j = k +n 1; case 1 with

k = l−n1 and j = l +n 1; case 2 with j = k +n 1 and at last case 3 with j = k +n 1.

✷

Lemma 6.6.7.

gets(j, B) = 0 → Meas(upds(1, j, B), n) + 3n3 ≤ Meas(B,n)

gets(j, B) = 1 → Meas(upds(2, j, B), n) = Meas(B,n)

gets(j, B) = 2 → Meas(upds(3, j, B), n) + 3n3 ≤ Meas(B,n)

gets(j, B) = 3 → Meas(upds(0, j, B), n) ≤ Meas(B,n)

gets(j, B) = 3 → Meas(upds(4, j, B), n) < Meas(B,n)

gets(j, B) = 0 → Meas(inq(getd(j, B), b, j, B), n) < Meas(T, n) + 3n3

gets(j, B) = 2 → Meas(inq(gete(j, B), b, j, B), n) < Meas(B,n) + 3n3

gets(j, T) = 1 → Meas(untoe(j−n1, B), n) < Meas(B,n)

gets(j, B) = 3 → Meas(untoe(j−n1, B), n) < Meas(B,n)

gets(j, B) = 4 → Meas(upds(5, j, B), n) < Meas(B,n)

gets(j, B) = 5 → Meas(upds(4, j, B), n) < Meas(B,n)

gets(j, B) = 4 → Meas(inq(getd(j, B), b, j, B), n) < Meas(B,n)

gets(j, B) = 5 → Meas(untoe(j−n1, B), n) < Meas(B,n)

Theorem 6.6.8. X is convergent.

Proof. This follows as with the help of Lemma 6.6.7 it is straightforward to see that

Meas(B,n) is a decreasing measure. ✷

Remark 6.6.9. The measure Meas is certainly not optimal. It suggest that the algorithm

requires about 6n4(n + 2) actions to select a leader. This is a very rough measure;

looking at the far sharper bound in [DKR82] suggests that the bound can actually be

improved to 4n log2 n+ 2n actions. However, we did not try this yet.

Final calculations

We now prove the following crucial lemma that links the leader action to X . But first

we provide an auxiliary function that expresses that no process j < n is in state 6.

Definition 6.6.10.

nonsix(B,n) = ∀j<nnot eq(gets(j, B), 6).

Lemma 6.6.11. The invariants Inv1(B,n), . . . , Inv4(B,n) imply:

X(B,n) =

(leader δ ⊳ nonsix(B,n) ⊲ δ) ⊳ FC(B,n) ⊲ τ (leader δ ⊳ nonsix(B,n) ⊲ δ).

A proof of the protocol 177

Proof. We show assuming the invariants Inv1(B,n), . . . , Inv4(B,n) that

λB:Table, n:Nat .(leader δ⊳nonsix(B,n)⊲δ)⊳FC(B,n)⊲τ (leader δ⊳nonsix(B,n)⊲δ)

is a solution for X in (I). As (I) is convergent, the lemma follows from the Concrete

Invariant Corollary (see [BG94]). First suppose FC(B,n) holds. This means that we

must show that

leader δ ⊳ nonsix(B,n) ⊲ δ =∑
j:Nat

leader (leader δ ⊳ nonsix(upds(6, j, B)) ⊲ δ)

⊳eq(gets(j, B), 2) and eq(getd(j, B), gete(j, B)) and j < n ⊲ δ.

(6.68)

Note that it follows from FC(B,n) that the other summands of (I) may be omitted.

As nonsix(upds(6, j, B)) = f, equation (6.68) reduces to:

leader δ ⊳ nonsix(B,n) ⊲ δ =∑
j:Nat

leader δ ⊳ eq(gets(j, B), 2) and eq(getd(j, B), gete(j, B)) and j < n ⊲ δ.
(6.69)

Now assume nonsix(B,n). From FC(B,n) and Inv1(B,n) is follows that

∀j<n1 ≤ gets(j, B) ≤ 4. (6.70)

First we show that ∃j<neq(gets(j, B), 2) and eq(getd(j, B), gete(j, B)). Now sup-

pose

∃j<neq(gets(j, B), 1) or eq(gets(j, B), 3).

Hence, using Inv2(B,n) and nproc(B, 1, n)+nproc(B, 3, n) > 0 and (6.70), it follows

that qsizes(B,n) > 0. Hence, ∃j<nsize(j−n1, B) > 0. Hence, using the focus

condition and Inv1(B,n):

∃j<neq(gets(j, B), 2) and eq(getd(j, B), gete(j, B)).

Now suppose

not ∃j<neq(gets(j, B), 1) or eq(gets(j, B), 3).

Hence, using (6.70) it follows that

∀j<neq(gets(j, B), 2) or eq(gets(j, B), 4). (6.71)

Now assume

∀j<neq(gets(j, B), 4).

But this contradicts Inv4(B,n) in conjunction with Inv2(B,n). Hence, using (6.71) it

follows that

∃j<neq(gets(j, B), 2).

From this and FC(B,n) it follows that

∃j<neq(gets(j, B), 2) and eq(getd(j, B), gete(j, B)).

178 Chapter 6. Examples

Hence, using SUM3 the right-hand side of (6.69) has a summand

leader δ. (6.72)

But using some straightforward calculations (6.72) has the right-hand side of (6.69) as

a summand. Hence, if nonsix(B,n) then (6.69) is equivalent to

leader δ = leader δ

which is clearly a tautology. Now assume not nonsix(B,n). Hence,

∃j≤neq(gets(j, B), 6). Using Inv3(B,n) it follows that

∀j<neq(gets(j, B), 4) or eq(gets(j, B), 6).

Hence (6.69) reduces to

δ = δ

which is clearly true. Now suppose the focus condition does not hold, i.e.,

not FC(B,n). We find (where we use that n > 0 and Milner’s second τ -law (T2)):

τ (leader δ ⊳ nonsix(B,n) ⊲ δ) =∑
j:Nat

τ (leader δ ⊳ nonsix(B,n) ⊲ δ) ⊳ j < n ⊲ δ+
∑

j:Nat
leader δ

⊳nonsix(B,n) and eq(gets(j, B), 2) and

eq(getd(j, B), gete(j, B)) and j<n ⊲ δ

(6.73)

Now note that it follows from Inv3(B,n) that if ∃j<neq(gets(j, B), 2), then

nonsix(B,n). So, (6.73) reduces to:

∑
j:Nat

τ(leaderδ⊳nonsix(B,n)andj<n⊲δ)+∑
j:Nat

leaderδ⊳eq(gets(j, B), 2)andeq(getd(j, B), gete(j, B))andj<n⊲δ =

(
∑

j:Nat
τ (leaderδ⊳nonsix(B,n)andj<n⊲δ)⊳not FC(B,n)⊲δ)+∑

j:Nat
leaderδ⊳eq(gets(j, B), 2) and eq(getd(j, B), gete(j, B))andj<n⊲δ =∑

j:Nat
τ (leaderδ

⊳nonsix(upds(1, j, inq(getd(j, B), j, B)), n)⊲δ)⊳eq(gets(j, B), 0)andj<n⊲δ+∑
j:Nat

τ (leaderδ⊳nonsix(untoe(j−n1, upde(toe(j−n1, B), j, upds(2, j, B))), n)⊲δ)

⊳eq(gets(j, B), 1)and not empty(j−n1, B) and j<n⊲δ+∑
j:Nat

leader (leaderδ⊳nonsix(upds(6, j, B), n)⊲δ)

⊳eq(gets(j, B), 2)andeq(getd(j, B), gete(j, B))andj<n⊲δ+∑
j:Nat

τ (leaderδ⊳nonsix(upds(3, j, in(gete(j, B), j, B)), n)⊲δ)

⊳eq(gets(j, B), 2)and not eq(getd(j, B), gete(j, B))andj<n⊲δ+∑
j:Nat

(τ (leaderδ⊳nonsix(untoe(j−n1, updd(gete(j, B), j, upds(0, j, B))), n)⊲δ)

⊳gete(j, B) > max(getd(j, B), toe(j−n1, B))⊲
τ (leaderδ⊳nonsix(untoe(j−n1, upds(4, j, B)), n)⊲δ))

⊳eq(gets(j, B), 3)and not empty(j−n1, B)andj<n⊲δ+∑
j:Nat

τ (leaderδ⊳nonsix(untoe(j−n1, updd(toe(j−n1, B), j, upds(5, j, B))), n)⊲δ)

Conclusion 179

⊳eq(gets(j, B), 4)and not empty(j−n1, B)andj<n⊲δ+∑
j:Nat

τ (leaderδ⊳nonsix(inq(getd(j, B), j, upds(4, j, B)), n)⊲δ)

⊳eq(gets(j, B), 5)andj<n⊲δ

Because FC (B,n) = f, nearly all the summands given above are equal to δ. ✷

Proving Theorem 6.6.1 Finally we are ready to prove that the main theorem of the

paper holds, i.e.,

n > 0 → Spec(n) = τ leader δ

Proof. Using Lemma 6.6.4 we know

Spec(n) = X (init(n),n).

From Lemma 6.6.11 it then follows that

Spec(n) =

(leader δ ⊳ nonsix(init(n), n) ⊲ δ)

⊳FC(init(n), n)⊲

τ (leader δ ⊳ nonsix(init(n), n) ⊲ δ).

However, FC(init(n), n) is not true if n > 0 while nonsix(init(n), n) is true. Therefore

n > 0 → Spec(n) = τ leader δ

is true. ✷

6.6.3 Conclusion

We have outlined a formal proof of the correctness of the leader election or extrema

finding protocol of Dolev, Klawe and Rodeh in µCRL. The proof is now ready to be

proof checked conform [BBG93, GvdP93, KS94, Sel94, WWN99].

It is shown that process algebra, in particular µCRL, is suited to prove correctness

of non-trivial protocols. A drawback of the current verification is that it is rather com-

plex and lengthy. A possible lead towards improvement is given by Frits Vaandrager in

[Vaa93], where by using the notion of confluency (see e.g. [Mil80]) one only needs to

consider one trace to establish correctness. Currently we are formalising this notion in

[GS95]. We expect that using this idea our proof can be simplified significantly.

180 Chapter 6. Examples

6.6.4 An overview of the proof theory for µCRL

We provide here a very short account of the axioms that have been used. We also give

the Concrete Invariant Corollary for referencing purposes.

All the process algebra axioms used to prove the leader election protocol can be

found in Table 6.1–6.6. We do not explain the axioms (see [BW90, BG94, GP94]) but

only include them to give an exact and complete overview of the axioms that we used.

Actually, the renaming axioms are superfluous, but have been included for complete-

ness.

Besides the axioms we have used the Concrete Invariant Corollary [BG94] that

says that if two processes p and q can be shown a solution of a well-founded recursive

specification using an invariant, then p and q are equal, for all starting states where the

invariant holds. It is convenient to use linear process operators, which are functions

that transform a parameterised process into another parameterised process. If such an

operator is well-founded, it has a unique solution, and henceforth defines a process.

Note that if a linear process operator is applied to a process name, it becomes a process

in Unity format.

Definition 6.6.12. A linear process operator Ψ is an expression of the form

λp:D→P.λd:D.Σi∈IΣei:Di
ci(fi(d, ei))·p(gi(d, ei)) ⊳ bi(d, ei) ⊲ δ+

Σi∈I′Σei:D′
i
c′i(f

′
i(d, ei)) ⊳ b

′
i(d, ei) ⊲ δ

for some finite index sets I, I ′, actions ci, c
′
i, data typesDi, D

′
i, Dci

andDc′
i
, functions

fi : D→Di→Dci
, gi : D→Di→D, bi : D→D′

i→Bool, f ′i : D→D′
i→Dc′

i
, b′i :

D→D′
i→Bool.

Definition 6.6.13. A linear process operator (LPO) Ψ written in the form above is

called convergent iff there is a well-founded ordering < on D such that gi(d, ei) < d
for all d ∈ D, i ∈ I and ei ∈ Di with ci = τ and bi(d, ei).

Corollary 6.6.14 (Concrete Invariant Corollary). Assume

Φ = λp:D→P.λd:D.Σj∈JΣej :Dj
cj(fj(d, ej))·p(gj(d, ej)) ⊳ bj(d, ej) ⊲ δ+

Σj∈J′Σej :D′
j
c′j(f

′
j(d, ej)) ⊳ b

′
j(d, ej) ⊲ δ

is a LPO. If for some predicate I : D→Bool

λpd.Φpd ⊳ I(d) ⊲ δ is convergent, and

I(d) ∧ bj(d, ej) → I(gj(d, ej)) for all j ∈ J, d ∈ D and ej ∈ Dj ,

i.e. I is an invariant of Φ, and for some q : D→P, q′ : D→P we have

I(d) → q(d) = Φqd,

I(d) → q′(d) = Φq′d,

then

I(d) → q(d) = q′(d).

An overview of the proof theory for µCRL 181

A1 x+ y = y + x CF n(t)|m(t)

A2 x+ (y + z) = (x+ y) + z

A3 x+ x = x =

{
γ(n,m)(t) if γ(n,m) ↓

δ otherwise
A4 (x+ y) · z = x · z + y · z

A5 (x · y) · z = x · (y · z)

A6 x+ δ = x

A7 δ · x = δ CD1 δ|x = δ

CD2 x|δ = δ

CM1 x ‖ y = x ‖ y + y ‖ x+ x|y CT1 τ|x = δ

CM2 a ‖ x = a · x CT2 x|τ = δ

CM3 a · x ‖ y = a · (x ‖ y)

CM4 (x+ y) ‖ z = x ‖ z + y ‖ z DD ∂H(δ) = δ

CM5 a · x|b = (a|b) · x DT ∂H(τ) = τ

CM6 a|b · x = (a|b) · x D1 ∂H(n(t)) = n(t) if n /∈ H

CM7 a · x|b · y = (a|b) · (x ‖ y) D2 ∂H(n(t)) = δ if n ∈ H

CM8 (x+ y)|z = x|z + y|z D3 ∂H(x+ y) = ∂H(x) + ∂H(y)

CM9 x|(y + z) = x|y + x|z D4 ∂H(x · y) = ∂H(x) · ∂H(y)

Table 6.1: The axioms of ACP in µCRL.

(x ‖ y) ‖ z = x ‖ (y ‖ z) (x|y)|z = x|(y|z)

x ‖ δ = xδ x|(ay ‖ z) = (x|ay) ‖ z

x|y = y|x x|(y|z) = δ Handshaking

Table 6.2: Axioms of Standard Concurrency (SC).

182 Chapter 6. Examples

TID τI(δ) = δ

TIT τI(τ) = τ

TI1 τI(n(t)) = n(t) if n /∈ I

TI2 τI(n(t)) = τ if n ∈ I

TI3 τI(x+ y) = τI(x) + τI(y)

TI4 τI(x · y) = τI(x) · τI(y)

Table 6.3: Axioms for abstraction.

SUM1
∑

d:D(p) = p if d not free in p

SUM2
∑

d:D(p) =
∑

e:D(p[e/d]) if e not free in p

SUM3
∑

d:D(p) =
∑

d:D(p) + p

SUM4
∑

d:D(p1 + p2) =
∑

d:D(p1) +
∑

d:D(p2)

SUM5
∑

d:D(p1 · p2) =
∑

d:D(p1) · p2 if d not free in p2

SUM6
∑

d:D(p1 ‖ p2) =
∑

d:D(p1) ‖ p2 if d not free in p2

SUM7
∑

d:D(p1|p2) =
∑

d:D(p1)|p2 if d not free in p2

SUM8
∑

d:D(∂H(p)) = ∂H(
∑

d:D(p))

SUM9
∑

d:D(τI(p)) = τI(
∑

d:D(p))

D

SUM11
p1 = p2∑

d:D(p1) =
∑

d:D(p2)

provided d not free in

the assumptions of D

Table 6.4: Axioms for summation.

Data types 183

COND1 x ⊳ t ⊲ y = x

COND2 x ⊳ f ⊲ y = y

BOOL1 ¬(t = f)

BOOL2 ¬(b = t) → b = f

Table 6.5: Axioms for the conditional construct and Bool.

B1 x τ = x

B2 τ x = τ x+ x

Table 6.6: Some τ -laws.

6.6.5 Data types

Booleans

sort Bool

cons t, f :→ Bool

func not : Bool → Bool

and , or , eq : Bool × Bool → Bool

if : Bool × Bool × Bool → Bool

var b, b′ : Bool

rew not t = f

not f = t

t and b = b
f and b = f

t or b = t

f or b = b
eq(t, t) = t

eq(f, f) = t

eq(t, f) = f

eq(f, t) = f

if (t, b, b′) = b
if (f, b, b′) = b′

Natural numbers

sort Nat

cons 0 :→ Nat

S : Nat → Nat

184 Chapter 6. Examples

func 1, 2, 3, 4, 5, 6 :→ Nat

P : Nat → Nat

even : Nat → Bool

+,−, ∗,max : Nat × Nat → Nat

eq, ≥ , ≤ , < , > : Nat × Nat → Bool

if : Bool × Nat × Nat → Nat

var n,m : Nat

rew 1 = S(0)
2 = S(1)
3 = S(2)
4 = S(3)
5 = S(4)
6 = S(5)
P (0) = 0
P (S(n)) = n
even(0) = t

even(S(0)) = f

even(S(S(n))) = even(n)
n+ 0 = n
n+ S(m) = S(n+m)
n− 0 = n
n− S(m) = P (n−m)
n ∗ 0 = 0
n ∗ S(m) = n+ n ∗m
max(n,m) = if (n ≥ m,n,m)
eq(0, 0) = t

eq(0, S(n)) = f

eq(S(n), 0) = f

eq(S(n), S(m)) = eq(n,m)
n ≥ 0 = t

0 ≥ S(n) = f

n ≥ S(m) = n ≥ m
n ≤ m = m ≥ n
n > m = n ≥ S(m)
n < m = S(n) ≤ m
if (t, n,m) = n
if (f, n,m) = m

Modulo arithmetic

func mod : Nat × Nat → Nat

+,− : Nat × Nat × Nat → Nat

var k,m, n : Nat

rew mmod 0 = m
mmod S(n) = if (m ≥ S(n),m− S(n)mod S(n),m)

Data types 185

k +n m = k +mmod n
k−nm = if (kmod n ≥ mmod n, kmod n−mmod n, n−mmod n− kmod n)

Queues

We use two kind of queues which are subtlely different. The first is of sort Queue with

the usual operations. The second is of sort Queueb which is similar to Queue except

that a boolean is added for technical purposes. The specification of Queueb is given

below. We do not present the data type Queue here because it can be considered as

a simple instance of Queueb as follows: omit the functions hdb, toeb and remove all

boolean arguments. For example, in : Nat ×Bool×Queueb → Queueb corresponds

with in : Nat × Queue → Queue.

sort Queueb

cons q0 :→ Queueb

in : Nat × Bool × Queueb → Queueb

func rem : Nat × Queueb → Queueb

tl, untoe : Queueb → Queueb

con : Queueb × Queueb → Queueb

hd, toe : Queueb → Nat

hdb : Queueb → Bool

toeb : Queueb → Bool

eq : Queueb × Queueb → Bool

empty : Queueb → Bool

test : Nat × Queueb → Bool

size : Queueb → Nat

if : Bool × Queueb × Queueb → Queueb

var d, e : Nat

b, c : Bool

q, r : Queueb

rew rem(d, q0) = q0

rem(d, in(e, b, q)) = if (eq(d, e), q, in(e, b, rem(d, q)))
tl(q0) = q0

tl(in(d, b, q)) = q
untoe(q0) = q0

untoe(in(d, b, q0)) = q0

untoe(in(d, b, in(e, c, q))) = in(d, b, untoe(in(e, c, q)))
con(q0, q) = q
con(in(d, b, q), r) = in(d, b, con(q, r))
hd(q0) = 0
hd(in(d, b, q)) = d
hdb(q0) = f

hdb(in(d, b, q)) = b
toe(q0) = 0

186 Chapter 6. Examples

toe(in(d, b, q0)) = d
toe(in(d, b, in(e, c, q))) = toe(in(e, c, q))
toeb(q0) = f

toeb(in(d, b, q0)) = b
toeb(in(d, b, in(e, c, q))) = toeb(in(e, c, q))
eq(q0, q0) = t

eq(q0, in(d, b, q)) = f

eq(in(d, b, q), q0) = f

eq(in(d, b, q), in(e, c, r)) = eq(d, e) and eq(b, c) and eq(q, r)
empty(q) = eq(size(q), 0)
test(d, q0) = f

test(d, in(e, b, q)) = eq(d, e) or test(d, q)
size(q0) = 0
size(in(d, b, q)) = S(size(q))
if (t, q, r) = q
if (f, q, r) = r

Protocol states

sort Table

cons t0 :→ Table

in : Nat × Nat × Nat × Nat × Bool × Queueb × Table → Table

func init : Nat → Table

getd, gete, gets : Nat × Table → Nat

getb : Nat × Table → Bool

getq : Nat × Table → Queueb

updd, upde, upds : Nat × Nat × Table → Table

updb : Bool × Nat × Table → Table

updq : Queueb × Nat × Table → Table

test : Nat × Table → Bool

inq : Nat × Bool × Nat × Table → Table

hd : Nat × Table → Nat

hdb : Nat × Table → Bool

hdi : Table → Nat

toe : Nat × Table → Nat

toeb : Nat × Table → Bool

untoe : Nat × Table → Table

empty : Nat × Table → Bool

tl : Table → Table

rem : Nat × Table → Table

UniqueIndex : Table → Bool

empty : Table → Bool

if : Bool × Table × Table → Table

var d, e, s, v, i, j, n : Nat

B,B′ : Table

Data types 187

b, b′ : Bool

q, q′ : Queueb

rew init(n) = if (eq(n, 0), t0, in(n− 1, id(n− 1), 0, 0, f, q0, init(n− 1)))
getd(i, t0) = 0
getd(i, in(j, d, e, s, b, q, B)) = if (eq(i, j), d, getd(i, B))
gete(i, t0) = 0
gete(i, in(j, d, e, s, b, q, B)) = if (eq(i, j), e, gete(i, B))
gets(i, t0) = 0
gets(i, in(j, d, e, s, b, q, B)) = if (eq(i, j), s, gets(i, B))
getb(i, t0) = f

getb(i, in(j, d, e, s, b, q, B)) = if (eq(i, j), b, getb(i, B))
getq(i, t0) = q0

getq(i, in(j, d, e, s, b, q, B)) = if (eq(i, j), q, getq(i, B))
updd(v, i, t0) = in(i, v, 0, 0, f, q0, t0)
updd(v, i, in(j, d, e, s, b, q, B)) =

if (eq(i, j), in(j, v, e, s, b, q, B), in(j, d, e, s, b, q, updd(v, i, B)))
upde(v, i, t0) = in(i, 0, v, 0, f, q0, t0)
upde(v, i, in(j, d, e, s, b, q, B)) =

if (eq(i, j), in(j, d, v, s, b, q, B), in(j, d, e, s, b, q, upde(v, i, B)))
upds(s, i, t0) = in(i, 0, 0, s, f, q0, t0)
upds(v, i, in(j, d, e, s, b, q, B)) =

if (eq(i, j), in(j, d, e, v, b, q, B), in(j, d, e, s, b, q, upds(v, i, B)))
updb(b

′, i, t0) = in(i, 0, 0, 0, b′, q0, t0)
updb(b

′, i, in(j, d, e, s, b, q, B)) =
if (eq(i, j), in(j, d, e, s, b′, q, B), in(j, d, e, s, b, q, updb(b

′, i, B)))
updq(q

′, i, t0) = in(i, 0, 0, 0, f, q′, t0)
updq(q

′, i, in(j, d, e, s, b, q, B)) =
if (eq(i, j), in(j, d, e, s, b, q′, B), in(j, d, e, s, b, q, updq(q

′, i, B)))
test(i, t0) = f

test(i, in(j, d, e, s, b, q, B)) = eq(i, j) or test(i, B)
untoe(i, B) = updq(untoe(getq(i, B)), i, B)
hd(i, B) = hd(getq(i, B))
hdb(i, B) = hdb(getq(i, B))
hdi(t0) = 0
hdi(in(j, d, e, s, b, q, B)) = j
toe(i, B) = toe(getq(i, B))
toeb(i, B) = toeb(getq(i, B))
untoe(i, B) = updq(untoe(getq(i, B)), i, B)
empty(i, B) = empty(getq(i, B))
tl(t0) = t0
tl(in(j, d, e, s, b, q, B)) = B
rem(i, t0) = t0
rem(i, in(j, d, e, s, b, q, B)) = if (eq(i, j), B, in(j, d, e, s, b, q, rem(i, B)))
UniqueIndex (t0) = t

UniqueIndex (in(j, d, e, s, b, q, B)) = not test(j, B) and UniqueIndex (B)

188 Chapter 6. Examples

empty(t0) = t

empty(in(j, d, e, s, b, q, B)) = f

if (t, B,B′) = B
if (f, B,B′) = B′

6.7 Proof of Leader Election Protocols in ERLANG 189

6.7 Proof of Leader Election Protocols in ERLANG

This section continues the study of leader election protocols commenced with the

µCRL based verification of Dolev, Klawe and Rodeh’s leader election protocol in Sec-

tion 6.6 and reports some preliminary conclusions. Here, in contrast, a class of these

protocols, again for a unidirectional ring topology, is specified in ERLANG and logic.

We focus on the leader election algorithms again since they are a rather good bench-

mark of the ERLANG proof system, as the proofs involve reasoning about process

spawning and ring structures of a bounded, but unknown, size. In addition these al-

gorithm appear simple, but often possess surprisingly complex behaviour.

While the verification of the leader election protocol has not been fully completed

we report on preliminary results, as the proof method is interesting.

6.7.1 Describing the Protocols in ERLANG

A few key differences between ERLANG and µCRL affect the specification of the pro-

tocols.

First, communication in ERLANG is asynchronous, with potentially unbounded

channels, matching the assumptions made by the class of leader election protocols

modelled here. Second, for communication in ERLANG a knowledge of the receiving

process process identifier (pid) is necessary, whereas in µCRL communication is more

abstract, taking place via synchronisation of actions decoupled from any notion of pro-

cesses. In practise the process identifier based communication discipline of ERLANG

makes it slightly harder to set up a ring communication structure.

Each node in the network is assumed to execute the same function, accepting three

initial parameters: Out – the process identifier of the following process in the unidi-

rectional network, Leader – the process identifier for the process to which a leader

election announcement will be made, and D – a value representing the identity of the

node. In the ERLANG formalisation the process identifier of the process executing the

node function will be reused as its initial identity (D).

6.7.2 Setting up the Network Topology

The setting up of a ring like structure is provided by the ERLANG function r, shown

below.

r(Fun,[Hd|Rst],Leader) ->

Pnew = spawn(d,[Fun,Leader,Hd]),

r1(Fun,Rst,Leader,Pnew,Pnew).

r1(Fun,[],Leader,Pstop,Pprev) -> Pstop!{out,Pprev};

r1(Fun,[Hd|Rst],Leader,Pstop,Pprev) ->

Pnew = spawn(Fun,[Pprev,Leader,Hd]),

r1(Fun,Rst,Leader,Pstop,Pnew).

190 Chapter 6. Examples

d(Fun,Leader,D) ->

receive

{out,Out} -> Fun(Out,Leader,D)

end.

The r function accepts three parameters, Fun is the name of the ERLANG function

that describes the action of a ring node, Ids is a list of ERLANG values corresponding

to identifiers for nodes (elements of the list should be unique), and Leader is the

process identifier to which a message will be sent when a leader has been elected.

6.7.3 Defining the Network Functions

A large number of node functions for electing a leader are possible. Consider first a

simple function named tnode:

tnode(Out,Leader,D) -> Out!D, tnodeB(Out,Leader,D).

tnodeB(Out,Leader,D) ->

receive E ->

if

E==D -> Leader!D;

E>D -> tnode(Out,Leader,E);

E<D -> tnodeB(Out,Leader,D)

end

end.

Intuitively the function will filter incoming values, retransmitting only values greater

than its previously stored value. A simple variant of tnode is to become inert once a

smaller value is seen:

snode(Out,Leader,D) ->

Out!D,

receive E ->

if

E==D -> Leader!D;

E>D -> snode(Out,Leader,E);

E<D -> c(Out)

end

end.

The function c copies all elements read from its input queue to its process identifier

argument.

c(Out) -> receive V -> Out!V, c(Out) end.

Dolev, Klawe and Rodeh’s algorithm is described by the function dnode:

6.7 Proof of Leader Election Protocols in ERLANG 191

dnode(Out,Leader,D) ->

Out!D,

receive E ->

if

E==D -> Leader!D;

true ->

Out!E,

receive F ->

if

E > D, E > F -> dnode(Out,Leader,E);

true -> c(Out)

end

end

end

end.

6.7.4 Common Formulas

Below a number of commonly utilised constructs are defined:

alwaysEV [φ]
∆
=

µX : erlangSystem → prop

φ ∨

(
〈τ〉true ∨ ∃P : erlangPid, V : erlangValue.〈P !V 〉true

∧ [τ](X [φ]) ∧ ∀P : erlangPid, V : erlangValue.[P !V](X [φ])

)

alwaysEVτ [φ]
∆
=

νX : erlangPid → erlangSystem → prop

φ ∨ (〈τ〉true ∧ [τ](X [φ]))

silent
∆
=∀P : erlangPid, V : erlangValue.[P !V]false

stable
∆
= [τ]false ∧ silent

The macro formula s : alwaysEV[φ] expresses that along every path labelled by inter-

nal or output actions in the transition system of s there must eventually occur a state

such that the predicate φ is satisfied. Similarly alwaysEVτ [φ] expresses a similar state-

ment for τ labelled paths. The formula s : silent expresses that s has no transition

labelled by an output action. Finally a system s is stable if can neither perform an

internal nor output action.

6.7.5 Main Correctness Property

The main correctness property (cp) states that, in the absence of input and after some

internal negotiation, eventually one process will announce itself leader and thereafter

192 Chapter 6. Examples

the ring network will become silent.

cp : erlangPid → erlangSystem → prop
∆
=

λL : erlangPid.

alwaysEVτ

∃V : erlangValue.〈L!V 〉true

∧ ∀P : erlangPid, V : erlangValue.[P !V] (P = L ∧ stable)

∧ [τ]false

6.7.6 Proof Structure

The proof structure is the same for all protocols; the behaviour of a ring segment (but

not the whole ring) is characterised, and then the composition of ring segments is con-

sidered, by showing that the composition of two segments yields another segment. This

stepwise argument is the basis of an inductive argument to extend the ring up to its last

element.

The next proof obligation is to show that when the ring is closed the desired end

property cp holds. The argument here is about well-founded induction. We must find

some decreasing measure to ensure that the complexity, in terms of states of processes

and messages in transit, is constantly decreasing.

Before ring segments can be considered, however, the concrete ring creation pro-

cedure has to be studied. In the following proof sketch, however, we consider only the

segment based induction argument.

Behaviour of Ring Segments A ring segment is described by the generic state pred-

icate:

state ⇒

λI : erlangPid.O : erlangPid.L : erlangPid.Vl : erlangQueue.Ol : erlangValue.

[](state I O L Vl Ol)

∧ ∀V.[I?V] (∀V l
′, O′

l.(upd V Vl V l
′ Ol O

′
l) ⇒ (state I O L V l

′ O′
l))

∧ ∀O′, V.[O′!V]

O′ = O ∧ ∃O′
l.Ol = V ·O′

l ∧ (state I O L Vl O
′
l)

∨ ∃Va, Vb.O
′ = L ∧ Vl = Va · {leader,V } · Vb∧

(state I O L Va · Vb Ol)

∧ Ol 6= ǫ ⇒ ∃O′, V.alwaysEVτ [〈O′!V 〉true]

∧ alwaysEV [stable]

Intuitively the state predicate expresses the following facts of a ring segment: (i) a

segment output values only to its designated output channels (P or L), (ii) if the output

queue (Ol) is nonempty then in the absence of inputs the process always reaches a state

in which some value is output, (iii) in the absence of input the process eventually halts.

The shape of the definition allows to consider input only in stable states, the idea

resembles the concept of focus points in µCRL.

6.7 Proof of Leader Election Protocols in ERLANG 193

Characterisation of a ring segment state update The predicate that describes the

reaction of a ring segment to an input message differs for each network function.

For the node function tnode the update predicate can be characterised:

upd ⇐

λV : erlangValue.Vl : erlangQueue.Vl
′ : erlangQueue.

Ol : erlangQueue.Ol
′ : erlangQueue.

Vl = ǫ⇒ Ol
′ = Ol · V ∧ Vl

′ = Vl

∧ ∃Hd, Tl.Vl = Hd · Tl∧

¬isAtom Hd ⇒ Ol
′ = Ol ∧ Vl

′ = Vl

isAtom Hd ∧ ∃Hd, Tl.Vl = Hd · Tl ∧ V = Hd ⇒

Ol
′ = Ol ∧ Vl

′ = {leader,V }

isAtom Hd ∧ ∃Hd, Tl.Vl = Hd · Tl ∧ V < Hd ⇒

Ol
′ = Ol ∧ Vl

′ = Vl

isAtom Hd ∧ ∃Hd, Tl.Vl = Hd · Tl ∧ V > Hd∧

∃Vl
′′.(upd V Tl Vl

′′ Ol Ol
′) ⇒ Vl

′ = V · Vl
′′

In upd l the value V is generalised to a queue Q of received values:

upd l ⇐

λQ : erlangQueue.Vl : erlangQueue.Vl
′ : erlangQueue.

Ol : erlangQueue.Ol
′ : erlangQueue.

Q = ǫ⇒ Vl
′ = Vl ∧Ol

′ = Ol

∧ ∃Hd, Tl.Q = Hd · Tl ∧ ∃Vl
′′, Ol

′′.(upd Hd Vl Vl
′′ Ol Ol

′′) ⇒

(upd l Tl Vl
′′ Vl

′ Ol
′′ Ol

′)

The generalisation is needed for two purposes. First, to account for a generalisation of

the queue of a single node. Second in the composition of two nodes, where there is a

list of elements to output from one node to the other.

A basic fact about the upd predicates can easily be established: upd V Vl Vl
′ Ol Ol

′

(and upd l Q Vl Vl
′ Ol Ol

′) is a function in the arguments V , Vl and Ol (and Q), i.e.,

∀V, Vl, Ol.∃Vl
′, Ol

′.

upd V Vl Vl
′ Ol Ol

′∧

∀Vl
′′, Ol

′′.upd V Vl Vl
′′ Ol Ol

′′ ⇒ Vl
′ = Vl

′′ ∧Ol
′ = Ol

′′

The axioms (L–upd–fun), and (L–upd l–fun) establishes the analogue for upd l.

Base Case The overall proof structure will be an induction on the network struc-

ture. First we show the base case, that a process executing the node function

tnode(Out,Leader,D) can be characterised as a ring segment:

194 Chapter 6. Examples

O 6= L,O 6= P,L 6= P ⊢ 〈tnode(O,L,P), P, ǫ〉 : state P O L P P

Following the standard proof practise the queue ǫ must first be generalised (to later

be able to discharge with respect to the greatest fixed point of upd after the input of a

value):

Γ, upd l Q P Vl P Ol ⊢ 〈tnode(O,L,P), P,Q〉 : state P O L Vl Ol (6.74)

where Q,D′ and Ol are of the expected types (queue, a single value in a queue, and

queue, respectively), and Γ are the distinctions O 6= L,O 6= P,L 6= P . Note that

proof obligation upd l ǫ P P P P must be proved to validate the generalisation, but

this is a trivial consequence of the definition of upd l.

Next, in the by now standard manner, the definition of state is approximated, un-

folded, a few simple proof steps are applied, resulting in five goals:

Γ′ ⊢ 〈begin O!P, tnode(O,L,P) end, P,Q〉 : state P O L Vl Ol (6.75)

Γ′, upd V Vl Vl
′ Ol Ol

′ ⊢ 〈tnode(O,L,P), P,Q · V 〉 : state P O L Vl
′ Ol

′

(6.76)

Γ′ ⊢ 〈tnode(O,L,P), P,Q〉 : [O′!V] . . . (6.77)

Γ′ ⊢ 〈tnode(O,L,P), P,Q〉 : ∃O′, V.alwaysEVτ [〈O′!V 〉true] (6.78)

Γ′ ⊢ 〈tnode(O,L,P), P,Q〉 : alwaysEV [stable] (6.79)

where Γ′ is Γ, κ′ < κ, upd l Q P Vl P Ol.

Treating the goals bottom-to-top, goal 6.79 is solved by introducing an explicit

assumption on the finite size of the queue,

queue : erlangQueue → prop⇐

λQ : erlangQueue.

Q = ǫ

∨ ∃V : erlangValue, Q1 : erlangQueue, Q2 : erlangQueue.

Q = Q1 · V ·Q2 ∧ queue Q1 ·Q2

and then applying a model checking scripts. After the queue is emptied, eventually the

process will halt and wait in its receive state (proof sketch omitted).

Next goal 6.78 is solved by application of the same model checking script since

after an initial silent transition, P will be output to O. The third goal (6.77) is trivially

true since no output transition is enabled. The fourth goal (6.76) is the input case and

we expect to be able to discharge against the original sequent (6.74). For the instance

check to succeed the assumption upd l Q · V P Vl
′ P Ol

′ must be established. That is,

the sequent

upd l Q P Vl P Ol, upd V Vl Vl
′ Ol Ol

′ ⊢ upd l Q · V P Vl P Ol
′

6.7 Proof of Leader Election Protocols in ERLANG 195

(L–upd–input) must be proved. This is accomplished through a (fixed point) induction

on the definition of upd l on the left hand side, reducing Q, and matching the steps on

the right hand side. Goal 6.75 remains. After unfolding the right-hand formula once

again, and simplifying the goals according to the established pattern only the following

sequent is not trivially proved:

Γ′ ⊢ 〈tnodeB(O,L,P), P,Q〉 : ∃O′
l.Ol = P ·Ol

′ ∧ (state I O L Vl Ol
′) (6.80)

Using the lemma

upd l Q P Vl P Ol ⊢ ∃Ol
′.Ol = P ·Ol

′

(L–upd–input) the sequent can be rewritten into

Γ′{P ·Ol
′/Ol} ⊢ 〈tnodeB(O,L,P), P,Q〉 : state I O L Vl Ol

′ (6.81)

After again unfolding the right-hand side and solving straightforward goals, two re-

main:

Γ′′ ⊢ 〈receive . . . end, P,Q〉 : state I O L Vl Ol
′ (6.82)

Γ′′ ⊢ 〈tnodeB(O,L,P), P,Q〉 : Ol
′ 6= ǫ ⇒ ∃O′, V.alwaysEVτ [〈O′!V 〉true]

(6.83)

where Γ′′ = Γ′{P ·Ol
′/Ol}.

Induction Step The induction step is represented by the sequent

S1 : state I I ′ L Vl1 Ol1 ,

S2 : state I ′ O L Vl2 Ol2 ,

upd l Ol1 Vl2 Vl2
′ Ol2 Ol ⊢

S1 ‖ S2 : state I O L Vl1 · Vl2
′ Ol

(6.84)

The sequent expresses that, if two segments are coupled together by the output of

one and the input of the other, and if the output list of the first process updates the state

vector of the second in the manner prescribed by the assumption on upd l above then

the new composed segment satisfies the segment property.

Proving this goal involves the following steps of quite heavy reasoning with data:

we approximate the formula state on the right hand side a co-inductive argument will

take place, essentially matching an action by the parallel composed system S1 ‖ S2

with a corresponding action by their components as ring segments. For the input case

it is necessary to show that upd l updates the combined state accordingly, after the input

has caused a reduction in S1, and as a result of later output, also in S2. Output is easier

as it is handled only by S2.

196 Chapter 6. Examples

Conclusion There are a number of preliminary conclusions to be made. First, the

proof structure is quite regular and seems to permit elegant reasoning about a variety

of leader election protocols for ring structures. The different election protocols yield

different semantics states of ring segments, and different functions to update the se-

mantic content of a ring segment.

Characterising a ring segment by the state predicate seems natural. The predicate

focuses on input and output behaviour and abstracts away from the internal compu-

tation required to convert input to output. These concerns are instead handled on the

logical level where the abstract state of a segment is characterised. The drawback of

the method is clear: a large number of results about functions that update the semantic

state of a segment are needed for a reasonably high-level proof.

Chapter 7

Related Work

This chapter briefly surveys related approaches to solving the challenges encountered in

this thesis. The basis for our effort is the formal semantics for ERLANG; in Section 7.1

comparable efforts in providing semantics for concurrent languages are discussed. The

second section focuses on the proof system, and traces the evolution of proof systems

for variants of Hennessy-Milner logic and the modal µ-calculus. Next, we consider

works in which programming language semantics for concurrent languages are em-

bedded in proof tools. Finally related developments for ERLANG are investigated.

Naturally these areas overlap; for instance the embedding of a programming language

in a proof tool of course requires a formal semantics.

An interesting observation is the impact of process algebras such as CSP [Hoa85],

CCS [Mil89] and the π-calculus [MPW92] on all these areas; no doubt this is caused by

the combination of a well-worked out theory, apparent simplicity, an algebra with few

operators, and expressive power; the operators capture right operational abstractions.

For instance, semantics for concurrent languages are often provided through a transla-

tion into the π-calculus; CCS is a popular choice for experimenting with proof systems

for concurrency, and numerous works embed CCS and the π-calculus in various proof

tools.

7.1 Formal Semantics for Concurrent Programming

Languages

By now it is a straightforward activity to equip a programming language with some

kind of formal semantics, and numerous textbooks are available on the topic, e.g.

Winskel [Win93] and Nielson [NN92]. In this section we will briefly recall some ef-

forts to provide formal semantics for languages that are comparable to ERLANG in

the sense that they offer a notion of concurrency and support message passing. Fur-

ther their primary use is as programming languages rather than for the specification of

applications.

197

198 Chapter 7. Related Work

Three different approaches to provide a semantics for programming languages are

widely recognised. An operational semantics provides an account of stepwise trans-

formation of the states of a program, and the side effects a program causes [Plo81].

The second approach defines a semantics by translating the source language into a tar-

get one; in denotational semantics the target language is a mathematical formalism. A

common occurrence in the study of semantics for concurrent languages is to translate

into the π-calculus [MPW92]. The third type of semantics, axiomatic semantics, pro-

vides axioms and proof rules grounded in the syntactic constructs of the programming

language under study, a founding example is Hoare logic [Hoa69].

The full range of semantic options was illustrated early in the case of POOL, a par-

allel object-oriented language, where variants of the language were treated both using

a denotational semantics based on metric spaces [AdBKR89], a traditional operational

semantics [ABKR86] and a translation into process algebra [Vaa90].

Facile [GMP89] and Concurrent ML [Rep93] (CML) are two early concurrent ex-

tensions of Standard ML which in a sense rival ERLANG as programming languages.

Facile clearly borrows inspiration from process algebra: the basic communication

mechanism is synchronous (blocking) where processes communicate over first-order

typed channels. Similarly CML offers threads and synchronous communication as ba-

sic primitives. Numerous semantic treatments of Facile exist; Degano et al. [DPLT96]

for instance develop a non-interleaving semantics for the language to analyse causal

and locality aspects of Facile programs. Giacalone et al. [GMP90] develop an inter-

leaving operational semantics for Facile, and consider a variant of (weak) bisimulation

equivalence [Mil89]. The equivalence relation is relativised with respect to the notion

of a window: the set of channels over which communication can take place, similar

to the dual role of restriction in the π-calculus. Further the notion of action equality

is also relativised: actions communicating higher-order objects are considered equiva-

lent if the objects yield equivalent results, and have equivalent behaviour. Adopting a

window-based scheme for our ERLANG semantics would provide one means for encod-

ing private knowledge such as process identifiers of freshly spawned processes. How-

ever, an alternative, for future work, is to enrich the target language, i.e., ERLANG, with

primitive constructs for expressing privacy like restriction in the case of the π-calculus.

Works covering aspects of formal semantics for Concurrent ML include [PR97,

NN93, FH95, ANN98, FHJ96]. Consider for instance Nielson and Nielson [NN93]

which extends the type system of Concurrent ML with communication behaviours and

develops an operational semantics that takes these behaviours into account. The se-

mantics is similar to ours in that the concerns of sequential evaluation, concurrent eval-

uation, and communication are treated separately. On the sequential level the notion

of evaluation contexts, which are called reduction contexts in our work, are used to

regulate the order of subexpression evaluation. In contrast to our approach primitives

that cause environmental changes are not modelled on the sequential level, but are in-

terpreted at the concurrency level to handle process spawning, channel creation and so

on. The communicating behaviours can be seen as an instance of a process algebra,

and the main result connects such an algebra with Concurrent ML.

Gurevich et al. have employed abstract state machines [Gur95] for specifying lan-

guage semantics; treatments include an investigation into Java Concurrency [EGGP00]

7.2 Logics and Proof Systems for Reasoning about Concurrent Systems 199

and a proposed authoritative semantics for SDL-2000 (see discussion in Eschbach

et al. [EGGP00]). As an example of the approach the SDL subset considered in Es-

chbach [EGGP00] is compiled into code for an abstract machine; this abstract machine

is itself equipped with a rigorous executable semantics.

7.2 Logics and Proof Systems for Reasoning about Con-

current Systems

This section considers developments in tableau based proof systems for reasoning

about concurrent systems using some modal logic. Predominantly in these works the

modal logic extends Hennessy-Milner logic [HM80] with fixed point operators, result-

ing in the propositional µ-calculus [Koz83] (also referred to as the modal µ-calculus).

The chosen specification language is frequently a variant of CCS. An excellent intro-

duction to the area can be found in Stirling [Sti01].

Early work in the field include numerous algorithms and proof systems for the ver-

ification of finite-state systems [Sti85, Lar88, Win91, Cle90, SW91]. Larsen [Lar88]

introduced the concept of local modal checking, i.e., algorithms that considers only

the part of the state space reachable from an agent p which is necessary to determine

whether a satisfaction p : φ holds. Another common topic is compositional proof

systems, in order to naturally decompose the proof task, and as a means of dealing

with the explosion in the number of states due to parallelism. Stirling [Sti85], for ex-

ample, introduces proof rules that to split the task of verifying the satisfaction of a

parallel composition p1 ‖ p2 : φ into the tasks of verifying the three goals p1 : φ1

and p2 : φ2 and φ1 ‖ φ2 : φ, where the latter goal is to be interpreted as requiring

to establish that any agents satisfying φ1 and φ2 by necessity satisfy also φ. This rule

is in our proof system derivable from the TERMCUT proof rule. The main difference

between the compositional proof system of Stirling [Sti85] and our work is that modal-

ities are basic in Stirling, and thus a basic set of proof rules have to be provided for

solving the goal φ1 ‖ φ2 : φ above whereas in contrast regard modalities as abbreviat-

ing operational semantics assertions. Other examples of compositional proof systems

include [Win90, XL90, ASW94].

In 1991 Stirling and Walker presented a tableau system for local modal checking of

the µ-calculus [SW91], based on the idea of introducing constants abbreviating fixed

point formulas, and to permit unfolding of constants only once, as implemented by two

rules (here written bottom-up instead of top-down):

s ⊢∆′ U

s ⊢∆ µZ.A
∆′ is ∆ · U = µZ.A

s ⊢∆ A[U/Z]

s ⊢∆ U
∆(U) = µZ.A and no ancestor proof node is labelled by s ⊢∆′ U

Sequents are decorated with sets of fixed points unfolded on a proof path. The first

rule is a constant replacement rule: the least fixed point is replaced by a constant and

200 Chapter 7. Related Work

information about the replacement is stored in the set ∆′. The second rule unfolds

a constant (e.g., the corresponding fixed point), under the condition that there is no

ancestor proof node such that s was unfolded also under ∆. In other words, the rule

provides a bound for the number of times a fixed point may be unfolded. In our proof

system there is no rule providing such a bound. However, in the tool implementation

a fixed point tagging scheme [Win91] is used as a heuristic for when further unfolding

of a fixed point is futile, much to the same effect as the constant scheme of Stirling

and Walker. In Stirling and Bradfield [BS92] the notion of local model checking was

extended to the infinite state case by, among other changes, removing the side condition

on the second rule above, and stipulating a global well-foundedness condition on the

paths between nodes labelled by the least fixed point operator. An implementation of

the proof method is documented in Bradfield [Bra93]. An alternative proof system

developed by Andersen [And94] results from replacing the use of constants in [BS92]

with the tagging approach of Winskel [Win91]. In the tagging approach instead of

replacing fixed points with constants as Stirling and Walker, the states under which a

fixed point was unfolded is kept in the unfolded fixed point itself.. As an example of

the tagging approach, consider two rules from Andersen [And94] albeit in a different

notation:

ν0
U : φ[νX{V ∪ U}φ/X]

U : νX{V }φ
if U 6⊆ V

ν1 U : νX{V }φ if U ⊆ V

Informally U and V are sets of states, and a fixed point have associated with a set of

states (the tag) under which it has been unfolded. Thus the rule ν0 expresses that further

unfolding is useful if the set of statesU is not included in V . Further the unfolding itself

adds the set of states U to V and records it in the tag of the fixed point. In contrast, if

U ⊆ V then the greatest fixed point property holds of φ. The treatment of the least fixed

point operator is more complicated, and involves an infinitary proof rule. Essentially

the idea is to find an external well-founded relation on the set of states under which

the least fixed point is unfolded, and to use it in the proof rule for unfolding a least

fixed point resulting and as a result requiring an infinitary proof system. In contrast

we employ a global induction scheme in the proof system. Further there is no external

justification of a least fixed point induction scheme.

The above proof systems cater for non-value passing process algebras; an extension

to a value-passing variant of CCS using a proof system based on the approach is con-

sidered in Gurov [Gur98]. Rather than basis the reasoning for concluding that a least

fixed point holds on an inductive argument on the set of states under which it is un-

folded, Gurov [Gur98] motivates discharge based on an inductive argument external to

the proof system about the domain of values considered. Rathke [Rat97] also considers

a local proof system using the tagging approach for model checking value-passing pro-

cesses but here the underlying models for value-passing processes are symbolic graphs.

Dam [Dam98] considers the verification of infinite-state systems described in CCS

using a compositional proof system. Apart from regular proof rules, the proof system

7.3 Embedding Semantics of Concurrent Languages in Theorem Proving Tools 201

contains for each CCS operator a set of compositional proof rules, a cut-rule, and a

global rule for discharging proof goals due to fixed point induction. The proof system

scheme was later applied to ERLANG [DF98]. In Dam et al. [DFG98b] the proof sys-

tem was improved by the explicit introduction of ordinal inequation, and a simplified

global rule of discharge. The resulting proof system is included in this thesis, and has

been also been adapted to the π-calculus in Dam [Dam01].

Simpson [Sim95] simplified and generalised the linking between operational se-

mantics of process algebras (in the GSOS format) and Hennessy-Milner logic in typ-

ical sequent based proof system. Proof rules are provided for introducing modalities

based on the transitional capabilities of agents, rather than on the syntactical shape of

the agent under study. The paper inspired a number of papers by Dam et al̇, treating

CCS [DG00a], Erlang [FG99] and in obtaining completeness results [DG00b].

7.3 Embedding Semantics of Concurrent Languages in

Theorem Proving Tools

By now there are many studies where a concurrent programming or specification lan-

guage has been embedded in a theorem proving tool, in order to permit formal and

possibly mechanised analysis of the semantics of the language, or to provide a facility

to analyse programs in the target language. Numerous proof tools (theorem provers,

proof assistants, proof checkers, etc.) are by now available. Among the early efforts

can be mentioned the Boyer Moore theorem prover [BM79] and the Automath sys-

tem [dB68]. Several comparative studies exist that classify and compare contemporary

tools [GH98, BFM99]. Here we will briefly describe some key features of a few tools

that figure prominently in efforts to embed language semantics.

The Isabelle general theorem proving environment [Pau94] is founded on a frag-

ment of typed higher-order logic. In the foundation, or meta-logic, other frameworks

or object logics are represented, e.g., typed higher-order logic (Isabelle/HOL) and first-

order logic (Isabelle/FOL). The principal proof method of Isabelle is through resolu-

tion. The HOL [Ge93] theorem prover is based on the LCF (Logic of Computable

Functions) tradition [GMW79], representing propositions as abstract data types, and

offering a few select base mechanisms (rules of definition) to soundly extend the un-

derlying logic.

The NuPRL [CAB+86], COQ [DFH+93], and Automath [dB68] theorem provers

are based in type theory, i.e., they regard a proposition as a type, and a proof as an

inhabitant of the type. The PVS [ORR+96] prover is based on classical higher-order

typed logic, its type system extended with predicate subtypes and dependent types.

Apart from the underlying logical framework, many aspects influence the suitabil-

ity of a particular proof system for the task of embedding a concurrent language. For

instance, what level of automation is supported by a prover, are there any decision pro-

cedures (say for propositional logic), what is the exact nature of its specification logic,

can user defined syntax be embedded in the prover (e.g., can user defined parsers and

pretty-printers be added for ERLANG), how are theories specified, what is the imple-

202 Chapter 7. Related Work

mentation language and to what extent does it support convenient user defined higher-

order proof procedures, and are convenient graphical or textual interfaces available that

aim to provide assistance in selecting useful proof rules to apply.

Leaving this brief overview of contemporary proof tools, we turn to the task of

giving an overview of previous efforts at embedding a concurrent language in a theorem

prover. An early example of the embedding of a concurrent language in a theorem

prover is represented by the formalisation of the Calculus of Communicating Systems

(CCS) in Nuprl [CAB+86] by Cleaveland and Panangaden [CP88].

The HOL [Ge93] theorem prover has been the vehicle for a number of formali-

sations. Camillieri [Cam90] has formalised the process algebra CSP (Communicat-

ing Sequential Processes) [Hoa85], Nesi [Nes93, Nes99] considers CCS and Mel-

ham [Mel94] the π-calculus. Taking the work on formalising value-passing CCS in

HOL as an example, Nesi embeds the operational semantics of the value-free fragment

of CCS as an inductively defined relation, together with various congruence notions

over CCS agents. Then a mapping from the value-passing calculus to the value-free

fragment is formalised. Together, the mapping and the semantics for the value-free cal-

culus are used to prove the soundness of a direct characterisation of the value-passing

semantics of CCS. The author then proceeds to derive the usual axioms for observation

congruence from the embedded notion of observation congruence. Röckl [Röc00] also

considers a formalisation of the π-calculus, albeit in Isabelle/HOL [Pau94]. A key dif-

ference compared to Melham (and for that matter also to the treatment of substitution

in ERLANG in this thesis) is the treatment of substitution in the π-calculus : Melham

explicitly defines a substitution function in HOL (a so called deep embedding of sub-

stitution) whereas Röckl reuses the underlying substitution mechanism of Isabelle in

the encoding of π-calculus substitution (a shallow language embedding).

Lin developed the two general proof checking tools PAM [Lin95] and VPAM [Lin93]

(for reasoning about value-passing processes) to support reasoning about process alge-

bra specifications. The tools permit users to define their own process algebra, by spec-

ifying its syntax and the axioms that govern term equality. Recursive, possibly infinite,

behaviours of processes are reasoned about using unique fixed point induction. Little,

if any, support for mechanisation of proofs is available in PAM.

Another important line of investigation concerns the embedding of the µCRL [GP90]

process algebra in the COQ proof assistant [DFH+93]. Numerous papers and theses

discuss details in the formalisation of µCRL [BBG97, Sel96], or the application of

the resulting framework to the verification of µCRL specifications [BBG93, GvdP93,

Kor94, KS96]. The style of proofs is equational; the proof theory of µCRL is embed-

ded in COQ and proofs proceed by rewriting.

The previously mentioned efforts yield proofs that are largely manual or at best

semi-automatic (there is little support for proof strategic decisions such as finding in-

variants). In contrast Monroy et al. [Mon97, MBG00] attempts to automate proofs

of equality between value-passing, infinite-state and even parametric CCS specifica-

tions. The means of automation is by embedding the equational theory of CCS in the

Clam proof planning tool [BvHHS90] and providing CCS specific heuristics to drive

the proof process. Naturally the result is an incomplete proof method; still interesting

results have been obtained.

7.4 Semantics and Analysis Techniques for ERLANG 203

Lately much attention has been targeted towards the formalisation of the Java pro-

gramming language. Research groups at Munchen, Nijmegen, INRIA and elsewhere

have developed semantics for subsets of Java and embedded them in various theorem

provers [vdBHJP00, Hui00, NvOP00, BDJ+01]. Typically, these formalisations have

focused on the sequential object-oriented part of the language rather than concurrent

language features such as threads.

7.4 Semantics and Analysis Techniques for ERLANG

A number of approaches to defining the semantics of ERLANG exists. Barklund and

Virding [BV99, Bar98] have given a semi-formal account of ERLANG 4.7.3 (and a

proposed new version, referred to as STANDARD ERLANG). In careful wording the

syntax, semantics and assumptions underlying the language implementations are ex-

plained. An initial, not completed, attempt to specify the semantics of ERLANG in the

tradition of natural semantics was undertaken by Pettersson [Pet96]. The Formal De-

sign Techniques group at the Swedish Institute of Computer Science has developed a

number of formal semantics for various subsets of ERLANG. Initial attempts (see for

example [DFG98a] and [DFG98b]) are seen in hindsight to be inelegant compared to

the current formalisation; the separation between functional and concurrent behaviour

is incomplete. For instance, in [DFG98b] no meaning is ascribed to a send expression

except in the context of a process. An alternative approach to defining a semantics

for (a smaller subset of) ERLANG is found in Huch [Huc99]. His semantics, in con-

trast to ours, relies heavily on contextual information. For example, there are no rules

that describe the effect of executing a send expression outside the context of a receiv-

ing process. Thus, in a sense, the equality of processes can be compared only when

considered as explicit parts of a closed system.

A number of works have applied model checking techniques to the verification of

ERLANG code. Wiklander [Wik99] implemented a translation from a finite-state sub-

set of ERLANG to Promela, the specification language of SPIN [Hol91, Hol97]. The

major difficulties experienced were the translation of the ERLANG dynamic data types,

i.e., the lists and tuples, into Promela constructs. A second difficulty lay in achieving

an efficient implementation of the ERLANG receive statement using the rather different

message passing constructs of Promela. Arts and Benac Earle [AB01] have imple-

mented a tool for translating from ERLANG to µCRL [GP90], and applied it to the

verification of a series of mutual exclusion protocols. The translation tool performs a

number of non-trivial transformations. For example, higher-order functions are trans-

formed into first-order ERLANG functions, and asynchronous calls using the generic

server design pattern of ERLANG/OTP are translated into synchronous communication

in µCRL, mimicking the concept of the design pattern rather than its implementation in

ERLANG. Correctness properties are specified in the alternation free modal µ-calculus,

and checked using the CÆSAR/ALDÉBARAN tool set [FGK+96] against the state spaces

that are generated by the µCRL tool set [Wou01].n A difficulty with the approach to

translate ERLANG into µCRL is the handling of fairness. The ERLANG language speci-

fication require process fairness, which µCRL (with regards to the parallel composition

204 Chapter 7. Related Work

operator) does not provide. As a result fairness assumptions must be explicitly stated

in the correctness properties. Since the model checking tool of CÆSAR/ALDÉBARAN

handles only the alternation-free µ-calculus the encoding is cumbersome.

Huch [Huc99] explores the verification of ERLANG programs using abstract inter-

pretation and model checking. The interpretation is proved to preserve all paths of

the standard operational semantics, but may introduce new ones due to possible in-

troduction of non-determinism in the abstraction of (deterministic) branches. Since

ERLANG is untyped the abstraction does not use types as abstract values but rather ab-

stract patterns involving process identifiers and atoms that occur in a program. In the

implementation a finite-state fragment of ERLANG is considered, where function call

patterns are restricted, a finite number of processes are spawned, and restriction queues

to a fixed size. As program logic linear temporal logic (LTL) is used, and because the

abstraction yields a finite state transition system, model checking is decidable [VW86].

Finally Giesl and Arts [GA01] show how techniques for analysing the termination

properties of conditional term rewriting systems (CRTS) are applicable to ERLANG.

The paper considers the query lookup protocol of the Mnesia distributed database also

analysed using our proof assistant tool EVT by Arts and Dam [AD99]. The authors

transform the correctness properties of the protocol into a termination problem and

then proceed to show that using refinements on dependency pair techniques [AG97],

the protocol can be proven to terminate without manual intervention.

Chapter 8

Conclusion

8.1 Summary

This thesis has presented a number of interrelated results. First, we have developed

a clean formal semantics for the ERLANG programming language used within the

telecommunications industry to develop complex distributed applications. The seman-

tics considers a real programming language, and addresses aspects of ERLANG which

have rarely been treated in formalisations of other languages and systems, most notably

error detection and recovery in connection with concurrency.

Next, we have presented a proof system for reasoning about applications pro-

grammed in ERLANG and about aspects of its formal semantics. One key feature of the

proof system is the uniform treatment of program behaviour and program data; both

aspects are captured through an encoding into first-order logic with explicit fixed point

operators. Inductive and co-inductive proof arguments are handled through the appli-

cation of a single proof rule that discharges goals through an inductive argument on

ordinals, resulting from the approximation and unfolding of fixed point definitions.

A further key point of the proof system, or perhaps rather of the advocated proof

method, is compositionality; splitting the correctness proof of a program into the sub-

problems of proving correctness properties of its subcomponents. In proofs about data

this method is considered very natural; in proofs about behaviour the technique is re-

quired in order to analyse infinite state behaviour. Compositional proof rules are eas-

ily derived due to the clean separation between operational semantics and other proof

rules. In fact it is possible to derive all the compositional reasoning schemes used in

the thesis by application of the classical cut rule of Gentzen–style proof systems.

The proof system has been implemented in a proof assistant tool, the ERLANG

Verification Tool (EVT) which offers substantial support for verifying ERLANG pro-

grams: high-level tactics for deriving next states using the transition relation, parsers

and pretty-printers for ERLANG, and so on.

As an illustration of the framework a number of prototypical ERLANG programs

have been verified with respect to correctness properties formulated in a specification

205

206 Chapter 8. Conclusion

logic. Such correctness properties are permitted to describe both the states of a program

and its actions. Parts of these proof have been checked using the ERLANG Verification

Tool. Proofs are typically semi-automated: the proof assistant can correctly decide on

many steps but strategic decisions, such as the exact nature of an inductive argument,

or the decomposition of a proof task in smaller steps, require manual intervention.

8.2 Impact

The impact of this thesis falls into the two categories: achievements that are of direct

concern primarily to other researchers in the field, and results that have an impact on

practise in software production. The overall goal of this thesis is to bridge the gap

between research and software practise, more concretely concerning the verification of

software written in ERLANG.

This goal has necessitated development in a number of areas of research, with re-

sults of a much wider interest than the treatment of ERLANG. The scope of the effort

represents a contribution in that it demonstrates feasibility: we have shown that it is

possible to address a real programming language, with data, with concurrency, with

message passing, and with error handling. No restriction to the finite state domain for

purposes of verification has been made. The full scope of verification techniques from

mathematics, such as inductive and co-inductive reasoning schemas, and compositional

reasoning, is applicable to ERLANG programs in our framework. Finite-state verifica-

tion subproblems can be automated, and the means of automation can be tailored to the

particular problem at hand. For instance, a set of lemmas to perform symbolic compu-

tations over some data domain can be used to augment and guide the process of state

exploration. Moreover the treatment of ERLANG has been on the level of code, rather

than specifications. In a number of examples we have shown the feasibility of reason-

ing about program code, rather than about an abstract specification of its behaviour.

A first technical contribution is the demonstration that behaviour and data can be

treated uniformly. In the thesis this is achieved by encoding both concerns through

fixed point definitions, and by devising a powerful proof system in which the distinction

between co-inductive and inductive proof schemas largely disappears. Furthermore, the

method for checking the validity of fixed point induction is an interesting variation of

existing schemes based on tagging or constant techniques. It is expected that the global

nature of the method will provide a natural setting for work on discovering induction

schemes.

In the verification of ERLANG programs we have found that compositional reason-

ing is a useful proof technique on many levels: purely functional reasoning involving

classical post- and pre-conditions, reasoning about expressions with side effects, split-

ting parallel compositions to combat state explosion, and so on. As the thesis demon-

strates all these compositional reasoning schemes can be traced back to instances of

application of the classical cut rule in Gentzen style proof systems. The reason for this

clean result is the concrete semantics based reasoning style adopted in the thesis. We

hope that this thesis will inspire other efforts in program reasoning to follow a simi-

lar approach with regards to the interplay between operational semantics, specification

8.3 Future Work 207

logics and proof system support for compositional reasoning.

Another contribution is the proof assistant tool itself. By making it publicly avail-

able we aim to stimulate further research in the exploration of program behaviour using

a fixed point approach, not necessarily always addressing the ERLANG programming

language. An example of this can be found in the European research project Verificard

which is considering using the proof assistant to support compositional reasoning about

JavaCard programs, a dialect of Java suitable for programming Smartcard applications.

The industrial impact of the work is also promising. As evidenced in a number of

case studies it is feasible to address substantial programs. It is fair to say, however, that

as in most other verification approaches including model checking, training is neces-

sary before the verification technique and tool implementation can be used effectively.

Perhaps the most promising scenario is for trained personnel to formally verify criti-

cal parts of the ERLANG runtime environment such as the process supervision man-

ager that enables automatic restart of abnormally terminated processes, or prominent

components of the ERLANG platform such as the Mnesia database manager. Reliable

operation of almost any substantial ERLANG application depends on the correct func-

tioning of these components, and there remain aspects in their operation under adverse

conditions that are very difficult to test for. A formalisation, and verification, as made

feasible through the existence of this framework would contribute to the overall trust

in the underlying programming platform.

8.3 Future Work

The ERLANG language itself is changing: higher-order functions and records have

been added to language implementations while the work reported here took place. New

features are expected to be added; a formalisation effort for a living language can never

end.

More concretely, the present formalisation of the language is far from complete.

One particular class of applications which cannot be analysed using the current for-

malisation of ERLANG are the time critical systems. Other features, which the present

formalisation does not adequately address, include distribution (the distribution of pro-

cesses onto nodes), fairness (scheduling is fair, processes cannot starve forever) and

the privacy of processes (fresh process identifiers should be unknown until they are

communicated).

To facilitate more convenient proofs a number of aspects of the formalisation need

further consideration. One crucial point concerns the current language semantics,

which is a small-step one, and therefore provides a natural and easy treatment of con-

currency. However, large fragments of typical ERLANG programs are usually side-

effect-free. For the formal analysis of such code fragments a natural (big step) seman-

tics can be more convenient, reducing a number of proof steps. The work of Gurov and

Chugunov [GC00] facilitates reasoning about side-effect-free code fragments through

the annotation of function definitions with post and pre-conditions.

A second concern is library code. The majority of non-trivial applications make

use of standard library components for programming client-server applications or finite

208 Chapter 8. Conclusion

state machines. To support efficient reasoning about programs using such components

standard reasoning patterns need to be developed. As a solution, Arts and Noll [AN00]

recast the asynchronous handshake between client and server utilising the client-server

pattern as a synchronous operation, by adding specialised knowledge about the func-

tions invoking the client-server pattern to the operational semantics of ERLANG.

Considering the current implementation of the proof system it is clear that we can-

not hope to compete with mature proof assistants like Isabelle or PVS, for instance

regarding theories for data. A worthwhile future task is then to study how to efficiently

code the global rule of discharge in these proof assistants; or alternatively to transform

arguments using a global discharge rule into local induction schemes. Another option

is to factor the verification problem for ERLANG programs into two distinct parts: one

concerning program behaviour and best conducted in our own proof assistant, and the

other concerning general arguments about data and best addressed in a good first-order

theorem proving tool.

The verification approach described in the thesis is certainly not applicable only to

the ERLANG language. For instance, the European project VerifiCard is considering

a related approach. There a compositional operational semantics with an associated

proof system is being developed by Barthe, Gurov and Huisman [BGH01].

References

[AB01] T. Arts and C. Benac Earle. Development of a verified Erlang program

for resource locking. In Proc. FMICS 2001, GMD Report No.91, pages

109–122, 2001.

[ABKR86] P. America, J. Bakker, J. Kok, and J. Rutten. Operational semantics of

a parallel object-oriented language. In Conference Record of the 13th

Symposium on Principles of Programming Languages, pages 194–205,

1986.

[AD99] T. Arts and M. Dam. Verifying a distributed database lookup manager

written in Erlang. In J. M. Wing, J. Woodcock, and J. Davies, editors,

FM’99—Formal Methods, Volume I, volume 1708 of Lecture Notes in

Computer Science, pages 682–700. Springer, 1999.

[AdBKR89] P. America, J. de Bakker, J. Kok, and J. Rutten. Denotational semantics

of a parallel object-oriented language. Information and Computation, 83,

1989.

[ADFG98] T. Arts, M. Dam, L. Fredlund, and D. Gurov. System description: Verifi-

cation of distributed Erlang programs. In Proc. CADE’98, Lecture Notes

in Artificial Intelligence, vol. 1421, pp. 38–41, 1998.

[AG97] T. Arts and J. Giesl. Automatically proving termination where simplifi-

cation orderings fail. In TAPSOFT: 7th International Joint Conference

on Theory and Practice of Software Development, 1997.

[AN00] T. Arts and T. Noll. Verifying generic Erlang client-server implemen-

tations. Proc. IFL 2000, Aachener Informatik-Berichte(00-7):387–402,

2000.

[And94] H. R. Andersen. On model checking infinite-state systems. In In proceed-

ings of Logical Foundations of Computer Science 1994, Lecture Notes in

Computer Science 813, pages 8–17. Springer-Verlag, 1994.

[ANN98] T. Amtoft, F. Nielson, and H. Nielson. Behaviour analysis and safety

conditions: a case study in CML. In FASE’98, LNCS 1382, pages 255–

269. Springer-Verlag, 1998.

209

210 References

[Arm97] J. Armstrong. The development of Erlang. In Proceedings of the ACM

SIGPLAN International Conference on Functional Programming, pages

196–203. ACM Press, 1997.

[ASW94] H. Andersen, C. Stirling, and G. Winskel. A compositional proof system

for the modal µ-calculus. In In Proceedings of LICS’94, 1994.

[AVWW96] J. Armstrong, R. Virding, C. Wikström, and M. Williams. Concurrent

Programming in Erlang (Second Edition). Prentice-Hall International

(UK) Ltd., 1996.

[Bar98] J. Barklund. Specification of the STANDARD ERLANG programming lan-

guage. Final draft (0.6), Ericsson Computer Science Laboratory, 1998.

[BBG93] M.A. Bezem, R. Bol, and J.F. Groote. A formal verification of the al-

ternating bit protocol in the calculus of constructions (revised version).

Technical Report 88, Logic Group Preprint Series, Utrecht University,

March 1993. Original version appeared as M.A. Bezem and J.F. Groote:

A formal verification of the alternating bit protocol in the calculus of

constructions.

[BBG97] M. Bezem, R. N. Bol, and J. F. Groote. Formalizing process algebraic

verifications in the calculus of constructions. Formal Aspects of Comput-

ing, 9(1):1–48, 1997.

[BDJ+01] G. Barthe, G. Dufay, L. Jakubiec, B. Serpette, and S. M. de Sousa. A for-

mal executable semantics of the JavaCard platform. In D. Sands, editor,

Proceedings of the 10th European Symposium on Programming (ESOP

2001), LNCS 2028. Springer, 2001.

[BFM99] J.P. Bodeveix, M. Filali, and C. A. Muñoz. A formalization of the B-

Method in Coq and PVS. In FM99: The World Congress in Formal

Methods, User Group Meeting 2. The B-Method: Applying B in an In-

dustrial Context: Tools, Lessons and Techniques, September 1999.

[BG93] M.A. Bezem and J.F. Groote. A correctness proof of a one bit sliding

window protocol in µCRL. Technical Report 99, Department of Phi-

losophy, Utrecht University, 1993. To appear in the Computer Journal

Volume 37(4).

[BG94] M.A. Bezem and J.F. Groote. Invariants in process algebra with data.

In Proceedings of the CONCUR ’94 Conference on Concurrency The-

ory, volume 836 of Lecture Notes in Computer Science, pages 401–416.

Springer-Verlag, 1994.

[BGH01] G. Barthe, D. Gurov, and M. Huisman. Compositional specification and

verification of control flow based security properties of multi–application

programs. In Proc. FTfJP’01, 2001.

References 211

[BKKM95] J.J. Brunekreef, J.-P. Katoen, R.L.C. Koymans, and S. Mauw. Algebraic

specification of dynamic leader election protocols in broadcast networks.

In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Proceedings

of the workshop on Algebra of Communicating Processes ACP94, Work-

shops in Computing, pages 338–358. Springer-Verlag, 1995.

[BKKM96] J.J. Brunekreef, J.-P. Katoen, R.L.C. Koymans, and S. Mauw. Design

and analysis of dynamic leader election protocols in broadcast networks.

Distributed Computing, 9(4):157–171, 1996.

[BM79] R. S. Boyer and J. S. Moore. A Computational Logic. Academic Press,

New York, 1979.

[BR98] S. Blau and J. Rooth. AXD 301 - a new generation ATM switching

system. Ericsson Review, 1:10–17, 1998.

[Bra93] J. C. Bradfield. A proof assistant for symbolic model-checking. In Pro-

ceedings of CAV’92, LNCS 663, pages 316–329. Springer-Verlag, 1993.

[Bru95] J.J. Brunekreef. Process specification in a UNITY format. In A. Ponse,

C. Verhoef, and S.F.M. van Vlijmen, editors, Proceedings of the work-

shop on Algebra of Communicating Processes ACP94, Workshops in

Computing, pages 319–337. Springer-Verlag, 1995.

[BS92] J. Bradfield and C. Stirling. Local model checking for infinite state

spaces. Theoretical Computer Science, 96:157–174, 1992.

[BT98] Y. Bertot and L. Thery. A generic approach to building user interfaces

for theorem provers. Journal of Symbolic Computation, 25(7):161–194,

February 1998.

[BV99] J. Barklund and R. Virding. ERLANG 4.7.3 reference manual. Draft (0.7),

Ericsson Computer Science Laboratory, 1999.

[BvHHS90] A. Bundy, F. van Harmelen, C. Horn, and A. Smaill. The Oyster-Clam

system. In M. E. Stickel, editor, Proceedings of the 10th International

Conference on Automated Deduction, Lecture Notes in Artificial Intelli-

gence 449, pages 647–648. Springer-Verlag, 1990.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in

Theoretical Computer Science 18. Cambridge University Press, 1990.

[CAB+86] R.L. Constable, S.F. Allen, H.M Bromley, W. R. Cleaveland, J. F. Cre-

mer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P. Mendler, P. Panan-

gaden, J. T. Sasaki, and S. F. Smith. Implementing Mathematics with the

Nuprl Proof Development System. Prentice Hall, 1986.

[Cam90] A. Camillieri. Mechanizing CSP trace theory in higher order logic. IEEE

Transactions on Software Engineering, 16(9):993–1004, 1990.

212 References

[CGJ+00] R. Carlsson, B. Gustavsson, E. Johansson, T. Lindgren, S.-O. Nyström,

M. Pettersson, and R. Virding. Core Erlang 1.0 language specification.

Technical Report 2000–030, Department of Information Technology, Up-

psala University, Sweden, November 2000.

[CH88] T. Coquand and G. Huet. The calculus of constructions. Information and

Control, 76, 1988.

[Cle90] R. Cleaveland. Tableau-based model checking in the propositional mu-

calculus. Acta Informatica, 27(8):725–748, 1990.

[CM88] K.M. Chandy and J. Misra. Parallel Program Design. A Foundation.

Addison Wesley, 1988.

[CP88] R. Cleaveland and P. Panangaden. Type theory and concurrency. Journal

of Parallel Programming, 17:153–206, 1988.

[CW96] E. Clarke and J. Wing. Formal methods: State of the art and future direc-

tions. ACM Computing Surveys, 28(4):626–643, 1996.

[Däc00] B. Däcker. Concurrent functional programming for telecommunications:

A case study of technology introduction. Technical report, Department

of Teleinformatics, Royal Institute of Technology, Sweden, November

2000.

[Dam95] M. Dam. Compositional proof systems for model checking infinite state

processes. In Proc. CONCUR’95, Lecture Notes in Computer Science,

962:12–26, 1995.

[Dam98] M. Dam. Proving properties of dynamic process networks. Information

and Computation, 140:95–114, 1998.

[Dam01] M. Dam. Proof systems for π-calculus logics. In de Queiroz, editor,

Logics for Concurrency and Synchronisation. Oxford University Press,

2001. To appear.

[dB68] N. de Bruijn. The mathematical language automath. In Symposium on

Automatic Demonstration, volume 125 of Lectures Notes in Mathematics,

pages 29–61. Springer-Verlag, 1968.

[DF98] M. Dam and L. Fredlund. On the verification of open distributed systems.

In Proc. of the ACM Symposium on Applied Computing, pages 532–540,

1998.

[DFG98a] M. Dam, L. Fredlund, and D. Gurov. Compositional verification of

Erlang programs. In Proceedings of the 1998 International Workshop

on Formal Methods for Industrial Critical Systems, Amsterdam, The

Netherlands, 1998.

References 213

[DFG98b] M. Dam, L. Fredlund, and D. Gurov. Toward parametric verification

of open distributed systems. In H. Langmaack, A. Pnueli, and W.-P.

de Roever, editors, Compositionality: the Significant Difference, volume

1536 of Lecture Notes in Computer Science, pages 150–185. Springer,

1998.

[DFH+93] G. Dowek, A. Felty, H. Herbelin, G. Huet, C. Murthy, C. Parent,

C. Paulin-Mohring, and B. Werner. The Coq proof assistant user’s guide

version 5.8. Technical Report 154, INRIA, 1993.

[DG00a] M. Dam and D. Gurov. Compositional verification of CCS processes.

pages 2247–256, 2000.

[DG00b] M. Dam and D. Gurov. µ-calculus with explicit points and approxima-

tions. In: Proc. FICS’2000, 2000.

[DKR82] D. Dolev, M. Klawe, and M. Rodeh. An O(n log n) unidirectional dis-

tributed algorithm for extrema finding in a circle. Journal of Algorithms,

(3):245–260, 1982.

[DPLT96] P. Degano, C. Priami, L. Leth, and B. Thomsen. Analysis of Facile Pro-

grams: A Case Study. In M. Dam, editor, Analysis and Verification of

Multiple-Agent Languages, volume 1192, pages 345–369, Stockholm,

1996. Springer-Verlag, Berlin.

[EGGP00] R. Eschbach, U. Glässer, R. Gotzhein, and A. Prinz. On the formal se-

mantics of design languages: a compilation approach using abstract state

machines. In Y. Gurevich, P. W. Kutter, M. Odersky, and L. Thiele,

editors, Abstract State Machines, Theory and Applications, Interna-

tional Workshop, ASM 2000, Monte Verità, Switzerland, March 19-24,

2000, Proceedings, volume 1912 of Lecture Notes in Computer Science.

Springer, 2000.

[FFKD87] M. Felleisen, D.P. Friedman, E. Kohlbecker, and B. Duba. A syntactic

theory of sequential control. Theoretical Computer Science, 52(3):205–

237, 1987.

[FG99] L. Fredlund and D. Gurov. A framework for formal reasoning about

open distributed systems. In Proc. ASIAN’99, Lecture Notes in Computer

Science, volume 1742, pages 87–100, 1999.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and

M. Sighireanu. CADP: A protocol validation and verification toolbox.

In Proceedings of the 8th Conference on Computer-Aided Verification,

volume 1102 of Lecture Notes in Computer Science, pages 437–440.

Springer, 1996.

214 References

[FGN+] L. Fredlund, D. Gurov, T. Noll, M. Dam, T. Arts, and G. Chugunov.

A verification tool for Erlang. Software Tools for Technology Transfer.

submitted, conditionally accepted for publication after reviewing.

[FH95] W. Ferreira and M. Hennessy. Towards a semantic theory of CML (ex-

tended abstract). In MFCS: Symposium on Mathematical Foundations of

Computer Science, 1995.

[FHJ96] W. Ferreira, M. Hennessy, and A. Jeffrey. A theory of weak bisimulation

for core CML. In Proceedings of the 1996 ACM SIGPLAN International

Conference on Functional Programming, pages 201–212, Philadelphia,

Pennsylvania, 24–26 1996.

[FW94] M. Fröhlich and M. Werner. The graph visualization system daVinci –

a user interface for applications. Technical Report 5/94, Department of

Computer Science; Universität Bremen, 1994.

[GA01] J. Giesl and T. Arts. Verification of Erlang processes by dependency

pairs. Journal of Applicable Algebra in Engineering, Communication

and Computing, 12(1):39–72, 2001.

[GC00] D. Gurov and G. Chugunov. Verification of Erlang programs: Factor-

ing out the side-effect-free fragment. In Proceedings of the 2000 Inter-

national Workshop on Formal Methods for Industrial Critical Systems,

Berlin, Germany, April 2000.

[Ge93] M.J.C. Gordon and T.F.Melham (eds.). Introduction to HOL: a theorem

proving environment for higher order logic. Cambridge Press, 1993.

[Gen69] G. Gentzen. Investigations into logical deduction. North Holland, 1969.

[GH98] D. Griffioen and M. Huisman. A comparison of PVS and Isabelle/HOL.

In Jim Grundy and Malcolm Newey, editors, Theorem Proving in Higher

Order Logics: 11th International Conference, TPHOLs ’98, volume

1479 of Lecture Notes in Computer Science, pages 123–142, Canberra,

Australia, September 1998. Springer-Verlag.

[GK93] J.F. Groote and H. Korver. A correctness proof of the bakery protocol in

µCRL. Technical Report 80, Department of Philosophy, Utrecht Univer-

sity, 1993.

[GMP89] A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integra-

tion of concurrent and functional programming. International Journal of

Parallel Programming, 18(2):121–160, 1989.

[GMP90] A. Giacalone, P. Mishra, and S. Prasad. Operational and algebraic se-

mantics for facile: A symmetric integration of concurrent and functional

programming. In Proceedings of ICALP 90, LNCS 443, pages 765–779.

Springer-Verlag, 1990.

References 215

[GMW79] M. Gordon, R. Milner, and C. Wadsworth. Edinburgh LCF: A Mecha-

nized Logic of Computation,LNCS 78. Springer-Verlag, New York, 1979.

[GP90] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. Technical

Report CS-R9076, CWI, Amsterdam, 1990.

[GP94] J.F. Groote and A. Ponse. Proof theory for µCRL: a language for pro-

cesses with data. In D.J. Andrews, J.F. Groote, and C.A. Middelburg, ed-

itors, Proceedings of the International Workshop on Semantics of Speci-

fication Languages. Workshops in Computing, pages 231–250. Springer-

Verlag, 1994.

[GS95] J.F. Groote and M.P.A. Sellink. Confluency for process verification.

In Proceedings of the CONCUR ’95 Conference on Concurrency The-

ory, volume 962 of Lecture Notes in Computer Science, pages 204–218.

Springer-Verlag, 1995.

[Gur95] Y. Gurevich. Evolving algebras: Lipari guide. In E. Borger, editor, Spec-

ification and Validation Methods. Oxford University Press, 1995.

[Gur98] D. Gurov. Specification and Verification of Communicating Systems with

Value Passing. PhD thesis, Dept. of Computer Science, University of

Victoria, 1998.

[GvdP93] J.F. Groote and J. van de Pol. A bounded retransmission protocol for

large data packets. a case study in computer checked algebraic verifica-

tion. Technical Report 100, Department of Philosophy, Utrecht Univer-

sity, 1993.

[HM80] M. Hennessy and R. Milner. On observing nondeterminism and concur-

rency. In Proceedings of ICALP, Lecture Notes in Computer Science,

volume 85, pages 295–309, 1980.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Com-

munications of the ACM, 12:576–580, 1969.

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall,

1985.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-

Hall International, 1991.

[Hol97] G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engi-

neering, (23):279–295, 1997.

[Huc99] F. Huch. Verification of Erlang programs using abstract interpretation

and model checking. In Proceedings of the 1999 ACM SIGPLAN Inter-

national Conference on Functional Programming, 1999.

216 References

[Hui00] M. Huisman. Reasoning about Java Programs in Higher-Order Logic

with PVS and Isabelle. PhD thesis, University of Nijmegen, 2000.

[JPS00] E. Johansson, M. Pettersson, and K. Sagonas. A high performance Erlang

system. In In proceedings of ACM SIGPLAN conference on Principles

and Practice of Declarative Programming (PPDP 2000), 2000.

[Kor94] H. Korver. Protocol Verification in µCRL. PhD thesis, University of

Amsterdam, 1994.

[Koz83] D. Kozen. Results on the propositional µ-calculus. Theoretical Computer

Science, 27:333–354, 1983.

[KS94] H. Korver and J. Springintveld. A computer-checked verification of Mil-

ner’s scheduler. In Proceedings of the 2nd International Symposium on

Theoretical Aspects of Computer Software, Sendai, Japan, volume 789

of Lecture Notes in Computer Science, pages 161–178. Springer-Verlag,

1994.

[KS96] H. Korver and A. Sellink. On automating process algebra proofs. Tech-

nical Report 154, Department of Philosophy, Utrecht University, 1996.

[Lar88] K. G. Larsen. Proof systems for Hennessy-Milner logic with recursion.

In M. Dauchet and M. Nivat, editors, Proceedings 13th Coll. on Trees

in Algebra and Programming, CAAP’88, Nancy, France, 21–24 March

1988, volume 299, pages 215–230. Springer-Verlag, Berlin, 1988.

[Lin93] H. Lin. A verification tool for value-passing processes. In Proceedings

of the 13th International Symposium on Protocol Specification, Testing

and Verification. North-Holland, 1993.

[Lin95] H. Lin. PAM: A process algebra manipulator. Formal Methods in System

Design: An International Journal, 7(3):243–259, November 1995.

[Lin96] A. Lindgren. A prototype of a soft type system for Erlang. Technical

Report 91, Computing Science Department, Uppsala University, April

1996.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata.

CWI Quarterly, 2(3):219–246, 1989.

[MBG00] R. Monroy, A. Bundy, and I. Green. Planning proofs of equations in

CCS. Automated Software Engineering, 7(3):263–304, 2000.

[Mel94] T.F. Melham. A mechanized theory of the pi-calculus in HOL. Nordic

Journal of Computing, 1(1):50–76, 1994.

[Mil80] R. Milner. A Calculus of Communicating Systems. Springer-Verlag,

1980. Volume 92 of Lecture Notes in Computer Science.

References 217

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall International,

1989.

[Mon97] R. Monroy. Planning proofs of correctness of CCS systems. PhD thesis,

Department of Artificial Intelligence, University of Edinburgh, 1997.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I

and II. Information and Computation, 100(1):1–40 and 41–77, 1992.

[MT91] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical

Computer Science, 87:209–220, 1991.

[MTH97] R. Milner, M. Tofte, and R. Harper. The Definition of Standard ML –

Revised. MIT Press, 1997.

[MW97] S. Marlow and P. Wadler. A practical subtyping system for Erlang. In

Proceedings of the 1997 ACM SIGPLAN International Conference on

Functional Programming, pages 136–149, Amsterdam, The Netherlands,

June 1997.

[Nes93] M. Nesi. Value-passing CCS in HOL. In Proc. Higher Order Logic The-

orem Proving and its Applications : 6th International Workshop, Lecture

Notes in Computer Science, vol. 780, pp. 352–365, 1993.

[Nes99] M. Nesi. Formalising a value-passing calculus in HOL. Formal Aspects

of Computing, 11(2):160–199, 1999.

[NN92] H. Nielson and F. Nielson. Semantics with Applications. Wiley and Sons,

Chichester, 1992.

[NN93] F. Nielson and H. Nielson. From CML to process algebras. In Pro-

ceesings of CONCUR ’93, pages 493–508, Berlin, Heidelberg, and New

York, 1993. Springer-Verlag.

[NvOP00] T. Nipkow, D. von Oheimb, and C. Pusch. µJava: Embedding a program-

ming language in a theorem prover. In F.L. Bauer and R. Steinbrüggen,

editors, Foundations of Secure Computation. IOS Press, 2000.

[ORR+96] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. K. Srivas. PVS:

Combining specification, proof checking, and model checking. In Proc.

CAV’96, Lecture Notes in Computer Science, 1102:411–414, 1996.

[Par70] D. Park. Fixpoint induction and proof of program semantics. Machine

Intelligence, 5:59–78, 1970.

[Pau94] L.C. Paulson. Isabelle: A Generic Theorem Prover. Springer Verlag

(LNCS 828), 1994.

218 References

[Pet82] G.L. Peterson. An O(n log n) unidirectional algorithm for the circular

extrema problem. ACM Transactions on Programming Languages and

Systems, 4(4):758–762, 1982.

[Pet96] M. Pettersson. A definition of Erlang (draft). Manuscript, Department of

Computer and Information Science, Linköping University, 1996.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Aarhus

University report DAIMI FN-19, 1981.

[PR97] P. Panangaden and J. H. Reppy. The essence of Concurrent ML. In

Flemming Nielson, editor, ML with Concurrency. Springer-Verlag, 1997.

[Rat97] J. Rathke. Symbolic Techniques for Value-Passing Calculi. PhD thesis,

University of Sussex, 1997.

[Rep93] J. H. Reppy. Concurrent ML: Design, application and semantics. In

P. E. Lauer, editor, Functional Programming, Concurrency, Simulation

and Automated Reasoning (LNCS 693), pages 165–198. Springer-Verlag,

1993.

[Röc00] C. Röckl. On the Mechanized Validation of Infinite-State and Parameter-

ized Reactive and Mobile Systems. PhD thesis, Fakultät für Informatik,

Technical University of Munchen, 2000.

[Sel94] A. Sellink. Verifying process algebra proofs in type theory. In D.J. An-

drews, J.F. Groote, and C.A. Middelburg, editors, Proceedings of the In-

ternational Workshop on Semantics of Specification Languages (Work-

shops in Computing), pages 314–338. Springer Verlag, 1994.

[Sel96] A. Sellink. Computer-Aided Verification of Protocols, The Type Theoretic

Approach. PhD thesis, Utrecht University, 1996.

[SFH92] D. Sahlin, T. Franzén, and S. Haridi. An intuitionistic predicate logic

theorem prover. In Journal of Logic and Computation, 2(5):619–656,

October 1992.

[Sim95] A. Simpson. Compositionality via cut-elimination: Hennessy-Milner

logic for an arbitrary GSOS. In Proc. LICS, pages 420–430, 1995.

[Sti85] C. Stirling. A complete compositional modal proof system for a subset of

CCS. In Proc. ICALP: Annual International Colloquium on Automata,

Languages and Programming, 1985.

[Sti92] C. Stirling. Modal and temporal logics. In Handbook of Logic in Com-

puter Science Vol. 2 (S. Abramsky, D. Gabbay, T. Maibaum (eds.)), Ox-

ford University Press, pages 478–563, 1992.

[Sti01] C. Stirling. Modal and temporal properties of processes. Springer Verlag,

2001.

References 219

[SW91] C. Stirling and D. Walker. Local model checking in the modal mu-

calculus. Theoretical Computer Science, 89:161–177, 1991.

[Tar55] A. Tarski. A lattice-theoretical fixedpoint theorem and its applications.

Pacific Journal of Mathematics, 83:157–167, 1955.

[Tor97] S. Torstendahl. Open telecom platform. Ericsson Review, 1, 1997.

[Vaa90] F. Vaandrager. A process algebra semantics of pool. In Applications of

process algebra, volume 17 of Tracts in Theoretical Computer Science,

Cambridge University Press., pages 173–236, 1990.

[Vaa93] F. Vaandrager. Uitwerking take-home tentamen protocolverificatie. Un-

published manuscript, in Dutch, 1993.

[vdBHJP00] J. van den Berg, M. Huisman, B. Jacobs, and E. Poll. A type-theoretic

memory model for verication of sequential java programs. In 14th Inter-

national Workshop on Algebraic Development Techniques (WADT’99),

volume 1827 LNCS, pages 1–21, 2000.

[VW86] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification. In Proc. 1st Symp. Logic in Computer Science,

pages 332–344, 1986.

[Wig01] U. Wiger. Four-fold increase in productivity and quality – industrial-

strength functional programming in telecom-class products. In Proceed-

ings of the 2001 Workshop on Formal Design of Safety Critical Embed-

ded Systems (FEmSYS 2001), 2001.

[Wik99] C. Wiklander. Verification of Erlang programs using SPIN. Technical

report, Department of Teleinformatics, Royal Institute of Technology,

March 1999.

[Win90] G. Winskel. Compositional checking of validity on finite state processes.

In Proceedings of CONCUR 1990, LNCS 458. Springer-Verlag, 1990.

[Win91] G. Winskel. A note on model checking the modal ν-calculus. Theoretical

Computer Science, 83:157–187, 1991.

[Win93] G. Winskel. The Formal Semantics of Programming Languages: An In-

troduction. The MIT Press, Cambridge, MA, 1993.

[Wou01] A.G. Wouters. Manual for the µCRL toolset (version 2.07). Technical

Report To appear, CWI, Amsterdam, 2001.

[WWN99] January 1, 2000, the day the earth will stand still. Weekly World News,

December 1999.

[XL90] L. Xinxin and K.G. Larsen. Compositionality through an operational

semantics of contexts. In Proceedings of ICALP’90, LNCS 443, pages

526–539. Springer-Verlag, 1990.

	Abstract
	Acknowledgements
	Introduction
	Formal Reasoning about Open Distributed Systems
	Open Distributed Systems and Erlang
	The Specification Language
	The Proof System
	The Proof Assistant

	Overview of the Thesis
	Contributions
	Personal Contributions

	Foundations
	Terms and Sorts
	Syntax of the Logic
	Semantics
	Logic Conventions
	Modalities
	Formula definitions
	Lifting of Abstractions
	Formula Macros
	Parametric Actions
	Weak Modalities

	A Formal Semantics of Erlang
	An Erlang Subset
	Erlang Syntax
	Values
	Expressions, Variables, Patterns and Matches
	Functions
	Built-in Functions
	Guards
	Processes, Messages, Mailboxes and Links
	Systems
	Intuitive Semantics
	Built-in Functions with Side Effects
	Built-in Functions without Side Effects
	Shorthands
	Throw and Exit Functions
	A Comparison with other Erlang Versions

	A Formal Semantics of Erlang
	Preliminaries
	Dynamic Semantics
	Dynamic Semantics of Expressions
	Bisimilarity for Expressions
	Dynamic Semantics of Systems
	Bisimilarity for Systems
	Language Extension: Function Values

	A Proof System for Reasoning about Erlang Code
	Proof Rules for Classical First-Order Logic
	Pre-Proofs
	Derived Proof Rules
	A Cut Rule for Terms
	Proof Rules for Modalities

	Inductive and Coinductive Reasoning
	Proof of Recursive Formulas
	Fixed Point Rules
	Discharge: Some Intuition
	The Global Discharge Condition
	Fixed Point Induction via Local Proof Rules

	Embedding Erlang into the Proof System
	Embedding Expressions and Values
	Embedding the Transition Relations
	Expression Properties
	System Properties
	Deriving Convenient Operational Semantics Rules
	A More Convenient Theory of Matching

	An Implementation of the Proof System
	Terms, Variables, Formulas and Proofs
	Rules, Tactics, Tacticals and Proof Scripts
	User Interfaces and Commands
	Fixed Point Rules and Checking the Discharge Condition
	The Embedding of Erlang
	Tactics for Deriving Transitions

	Evaluation of the Proof Assistant
	A Session with the Proof Assistant

	Examples
	Patterns of Compositional Reasoning in our Framework
	A Simple Example Using Induction
	The Quicksort Example
	A Proof Sketch

	A Purchasing Agent
	Implementation as an Erlang Program
	Property Specification
	Verification
	Conclusions

	Verifying an Active Data Structure
	Active Data Structures
	An Implementation of a Persistent Set
	The Set Erlang Module
	A Persistent Set Property
	A Proof Sketch
	A Discussion of the Proof

	Formal Verification of a Leader Election Protocol in Process Algebra
	Specification and correctness of the protocol
	A proof of the protocol
	Conclusion
	An overview of the proof theory for CRL
	Data types

	Proof of Leader Election Protocols in Erlang
	Describing the Protocols in Erlang
	Setting up the Network Topology
	Defining the Network Functions
	Common Formulas
	Main Correctness Property
	Proof Structure

	Related Work
	Formal Semantics for Concurrent Programming Languages
	Logics and Proof Systems for Reasoning about Concurrent Systems
	Embedding Semantics of Concurrent Languages in Theorem Proving Tools
	Semantics and Analysis Techniques for Erlang

	Conclusion
	Summary
	Impact
	Future Work

	References

