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Abstract

Rough sets framework has two appealing aspects. First, it is a mathematical
approach to deal with vague concepts. Second, rough set techniques can be
used in data analysis to find patterns hidden in the data. The number of ap-
plications of rough sets to practical problems in different fields demonstrates
the increasing interest in this framework and its applicability.

Most of the current rough sets techniques and software systems based on
them only consider rough sets defined explicitly by concrete examples given
in tabular form. The previous research mostly disregards the following two
problems. The first problem is related with how to define rough sets in terms
of other rough sets. The second problem is related with how to incorporate
domain or expert knowledge.

This thesis1 proposes a language that caters for implicit definitions of
rough sets obtained by combining different regions of other rough sets. In
this way, concept approximations can be derived by taking into account do-
main knowledge. A declarative semantics for the language is also discussed.
It is then shown that programs in the proposed language can be compiled to
extended logic programs under the paraconsistent stable model semantics.
The equivalence between the declarative semantics of the language and the
declarative semantics of the compiled programs is proved. This transforma-
tion provides the computational basis for implementing our ideas. A query
language for retrieving information about the concepts represented through
the defined rough sets is also defined. Several motivating applications are
described. Finally, an extension of the proposed language with numerical
measures is discussed. This extension is motivated by the fact that numeri-
cal measures are an important aspect in data mining applications.

1This work has been partially supported by the European Commission and by the
Swiss Federal Office for Education and Science within the 6th Framework Programme
project REWERSE number 506779 (http://rewerse.net).
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Chapter 1

Introduction

This thesis addresses the problem of using rough sets for knowledge represen-
tation. We propose an extension of the basic rough set formalism [Paw82]
that caters for the representation of vague concepts and reasoning about
those concepts.

We present a language that allows the user to define rough sets implicitly.
This contrasts with most of the currently existing systems based on rough
set techniques where rough sets can only be defined explicitly by a set of
examples.

We also introduce a query language to retrieve non-trivial knowledge
implied by the defined rough sets.

This introductory chapter starts by presenting the motivation that drove
us into this research (section 1.1), followed by the formulation of the concrete
problem addressed in this thesis (section 1.2), and then we highlight the main
contributions of our work (section 1.3). Finally, we give an overview of the
structure of this thesis (section 1.4).

1.1 Motivation

Rough sets techniques [Paw82, NNSS96] can be used to discover new inter-
esting data patterns (or knowledge) hidden in large tables with many lines
and several columns. In more concrete terms, the main aim of rough set
techniques is to synthesize descriptions of concepts from the data in the
tables. The concept descriptions consist of a set of decision rules. These
decision rules can be used in two different perspectives. First, rules can be

7



8 CHAPTER 1. INTRODUCTION

used for building predictive models (i.e. classifiers) from the data. Second,
rules can reveal interesting relationships in the data, i.e. each rule may rep-
resent an interesting pattern hidden in the data. These techniques have been
successfully applied to many real problems in different areas like medicine
[KØ99, LR04], economy [TS02], and bioinformatics [MK02]. Therefore, it is
not a surprise that rough set methods are enjoying an increasing popularity
in the data mining field.

The rough set framework has two major appealing aspects. First, it
proposes a method to handle inconsistencies due to imprecise or noisy data.
Approximate concept descriptions can then be induced. This point is par-
ticularly relevant from the point of view of knowledge representation. As a
consequence of using approximations, the derived decision rules describing
concepts are categorized into certain and possible rules. In addition, rough
set techniques have a clear mathematical foundation.

Several other important problems are also tackled in the context of rough
sets:

• reducing the number of relevant attributes;

• measuring the significance of attributes;

• discovering the degree of dependency between attributes;

• generating classifiers with the possibility to predict more than one class
for an object.

What we wish to emphasize here is the relevance of the rough set frame-
work from the knowledge representation and data mining perspectives. The
capability to handle vague and contradictory knowledge makes rough sets an
important technique that can be incorporated in knowledge base systems.
On the other hand, rough set methods can also be used to perform data
exploration what makes them relevant from a data mining point of view.
These two aspects account for the motivation that drove us in this research.

1.2 Problem Formulation

Most of the research in the rough sets field has been focused on the following
issues: algebraic characterization and interpretation of rough sets [Pag97];
relations of rough set theory with other theories to represent knowledge, like
modal logics [YL96]; integration of rough sets with other techniques like in-
ductive logic programming [MK00] or fuzzy sets [Wyg89, DP92]; extensions
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to the basic rough set formalism using different types of indiscernibility
relations and more general definitions of upper and lower approximations
[YL96, SS96, Zia93]; construction of software tools for data mining based
on rough sets methods [ØK97]; application of rough set techniques to real
problems [KØ99, MK02, ZF02].

Most of the current rough sets techniques and software systems based
on them only consider rough sets defined explicitly by concrete examples
given in tabular form. The previous research mostly disregards the following
problems.

• How to define rough sets in terms of other rough sets. For instance,
we may wish to express that a rough set is obtained as a projection of
another rough set over a subset of its attributes.

• How to incorporate domain or expert knowledge. An example of do-
main knowledge could be “if a gene participates in cytoplasmic trans-
port then it may also participate in the transport process”. A question
arises of how concept approximations can be derived by taking into ac-
count not only the examples provided explicitly by one or more tables
but also the domain knowledge.

The problems described above are in the focus of this thesis. They are
also addressed in [DÃLS02] presenting the Computer Aided Knowledge Engi-
neering technique supported by system CAKE. However, several important
differences exist between this system and our framework. This issue is fur-
ther discussed in chapter 7.

1.3 Contributions

The main contributions of this thesis are as follows.

• Definition of a language [MV02, VM02, VDM03b] that caters for im-
plicit definitions of rough sets obtained by combining different regions
of other rough sets (e.g. lower approximations, upper approximations,
and boundaries). The language also allows defining rough sets in terms
of explicit examples, as in most currently available systems. A declar-
ative semantics for the language is also proposed.

• Definition of a query language [VDM03b] for retrieving information
about the concepts represented through the defined rough sets.
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• Definition of a computational engine for the proposed language. This
engine is obtained by a translation of the proposed language to the
language of extended logic programs, under the paraconsistent stable
model semantics. We also prove the correctness of the proposed trans-
lation with respect to the declarative semantics of the language. In
this way we establish a link between two important fields, rough set
theory and paraconsistent logic programming [DP98].

• Several motivating applications are discussed [VDM03a]. These exam-
ples show that several useful techniques and extensions to rough sets,
reported in the literature, and implemented in an “ad hoc” way can
be naturally expressed in our language.

• Extension of the proposed language with numerical measures [VDM04]
is presented. This extension is motivated by the fact that numerical
measures are an important aspect in data mining applications.

• A software system based on the proposed language. The system was
developed by R. Andersson [And04b] under joint supervision of the
author and J. MaÃluszyński.

Although the major ideas presented in this thesis have been previously
published in conference and journal papers, there are are some new notions
that are not addressed in those previous publications. First, we present a
declarative semantics for the language that caters for implicit definition of
rough sets, without considering quantitative measures. Second, the declar-
ative semantics of the query language is also formalized. Third, the correct-
ness of the transformation of rough programs (without quantitative mea-
sures) into extended logic programs is only proved in this thesis. Finally,
the correctness of the query answering algorithm has not been previously
published.

This thesis also gives a more comprehensive introduction to both rough
sets and logic programming main notions than the previous publications.
Hence, readers acquainted with none or just one of the fields can easily read
this work.

1.4 Structure of the Thesis

The rest of this thesis is organized as follows.

• Chapter 2 gives an introduction to rough sets and a brief overview of
how several main problems are addressed in this framework.
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• Chapter 3 surveys some important notions of logic programming and
paraconsistent stable model semantics. These topics help the reader
to understand the transformation technique applied to the proposed
language.

• Chapter 4 introduces formally a language that caters for implicit def-
initions of rough sets in terms of other rough sets. We present the
declarative semantics of the language. We also show a transformation
of programs in this language to paraconsistent logic programs. More-
over, we prove that this transformation is correct with respect to the
declarative semantics of the language. In addition, a query language
is also defined and an algorithm to obtain answers to the queries is
discussed.

• Chapter 5 demonstrates the feasibility of our approach on practical ap-
plications by formulating in our language several problems, presented
in the rough set literature.

• Chapter 6 proposes an extension of the language with numerical mea-
sures. We also give an overview of a software system, available through
a Web page, based on these ideas.

• Chapter 7 concludes this thesis and points to several problems that
deserve further research.
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Chapter 2

Basics of Rough Set

Theory

This chapter provides a brief overview of rough set theory. Rough set theory
was introduced by Z. Pawlak [Paw82, Paw91] in the early eighties as a
methodology for handling uncertainty in data.

The underlying idea of rough set theory is that several objects may look
similar due to the limitations in our knowledge. Hence, it is only possi-
ble to distinguish classes of objects rather than individual objects. Conse-
quently, only approximate descriptions of concepts (sets of objects) can be
constructed. Section 2.1 discusses this idea while section 2.2 presents the
notion of concept approximations and formalizes the notion of rough set.

One of the important problems addressed in the rough set framework is
the generation of decision rules from which classifiers are then built. Section
2.3 is devoted to this topic.

Numerical measures are another central problem in rough set theory
and this is the issue addressed in section 2.4. We first survey some basic
numerical measures that can be used to analyze the quality of the derived
decision rules. We then discuss how to measure the degree of dependency
between attributes and significance of attributes.

Classifiers obtained by the rough set techniques may predict more than
one class for an object. The problem of how multiple class prediction can
be handled is briefly surveyed in section 2.5.

13



14 CHAPTER 2. BASICS OF ROUGH SET THEORY

We conclude this chapter by presenting, in section 2.6, an extension to
the basic rough set formalism, called Variable Precision Rough Set Model,
that is widely used in practical applications.

Most of the contents of this chapter are based on the ideas presented in
the tutorials [KPPS99, Zia02b].

2.1 Rough Sets: The Main Idea

Datasets in many practical problems are presented as a single database re-
lation or table. For instance, entries in the table may correspond to persons
with sight problems and they record for each person whether he has astig-
matism, the person age, whether the tear production is normal or reduced,
and whether the person is currently using spectacles. Assume that all these
persons have experimented the use of contact lenses. The table also records
for each person whether he has experienced any major problem, related
to the use of contact lenses, that led him to stop using contact lenses. A
concrete example of such table is given.

Example 2.1 In table 2.1 the column headings (or attributes) have the fol-
lowing meaning: Ast stands for astigmatism and can have the value 0 (no
astigmatism) or 1 (with astigmatism); Age can have the values 0 (not more
than 20 years old), 1 (more than 20 years old but not more than 50 years
old), and 2 (more than 50 years old). TearP stands for tear production and
can have the value 1 (reduced tear production) or 2 (normal tear production);
Spec stands for spectacles and can have the value 0 (using spectacles) or 1
(not using spectacles); and Lenses stands for contact lenses and can have
the value 0 (stopped using contact lenses) or 1 (did not stop using contact
lenses).

¤

As the example above shows, objects of a given universe U (e.g. people
with sight problems) are described in terms of certain chosen attributes (e.g.
tear production). An attribute a can be seen as a total function a : U → Va,
where Va is called the value domain of a. In this thesis, we assume that
we do not have missing (unknown) attribute values. Thus, every object is
associated with a tuple of attributes.

The special constant null may belong to the value domain Va off an
attribute a. If for an object o ∈ U , a(o) = null, then this means that for
this particular object o the value of attribute a is not defined (alternatively,
attribute a could be seen as a partial function). Note that null does not
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Ast Age TearP Spec Lenses

o1 0 0 1 0 0
o2 1 1 1 0 0
o3 1 0 2 1 1
o4 1 1 1 0 0
o5 1 0 1 0 0
o6 0 0 1 0 0
o7 0 2 1 1 1
o8 0 2 1 1 1
o9 1 2 1 0 1
o10 0 0 2 1 0
o11 1 0 1 0 0
o12 1 0 1 0 0
o13 1 0 2 1 1
o14 1 2 2 1 1
o15 0 2 1 1 1
o16 0 0 2 1 1
o17 1 0 1 0 0
o18 1 0 2 1 0

Table 2.1: Table of people with sight problems

denote a missing value. In the latter case a value exists but it is not known,
while in our framework null means that the attribute value is not relevant.
For example, if patient’s age is ’<2’ then the value of the attribute employer
should be null.

Objects of the universe are often classified as belonging or not to a pre-
defined class determined by one of the attributes, often called decision at-
tribute. Consider again the example above. We may consider two classes of
persons: those who had to abandon the use of contact lenses and those who
had not. Each person o ∈ U is then classified as belonging to the former
class (Lenses(o) = 0) or to the latter one (Lenses(o) = 1). Hence, Lenses
is in this case the decision attribute.

The notion of decision table is formalized to capture these ideas.

Definition 2.1 A decision table D is a triple (U,A, d), where U is a set of
objects, A is a set of condition attributes, and d is a (often binary) decision
attribute such that null 6∈ Vd (i.e. for each object o ∈ U , d(o) is defined).



16 CHAPTER 2. BASICS OF ROUGH SET THEORY

The table of example 2.1 can be seen as the decision table Lenses =
(U,A, Lenses), where U = {o1, . . . , o18} and A = {Ast, Age, TearP, Spec}.
Moreover, using the attributes from A, persons o3 and o18 are indiscernible
from each other because they are represented by the same tuple of condition
attributes 〈1, 0, 2, 1〉. However, they have different outcomes for the decision
attribute: o3 did not have to stop using contact lenses, while o18 did have.
This points out that the information available in a decision table may be
contradictory.

Definition 2.2 Given a decision table D = (U,A, d), an object oi ∈ U is
indiscernible from object oj ∈ U if and only if, for all condition attributes
a ∈ A, a(oi) = a(oj) .

Hence, a decision table D = (U,A, d) induces an indiscernibility relation
RA

RA = {(oi, oj) ∈ U2 | oi is indiscernible from oj} .

The indiscernibility relation is an equivalence relation and it induces a parti-
tion of the universe U into equivalence classes. These equivalence classes are
also known in the rough set literature as indiscernibility classes or elemen-
tary sets. The pair (U,RA) is called approximation space and R∗

A denotes
the set of its equivalence classes.

Note that if a(o) = null, for some object o of an indiscernibility class,
then a(o′) = null, for every other object o′ in the same equivalence class.

To simplify the presentation of several central ideas in later sections of
this chapter (e.g. decision rules), we introduce informally the notion of
derived decision table.

Example 2.2 The decision table 2.2 Lenses′ = (U ′, A, Lenses’) is derived
from table 2.1. Column Class designates an indiscernibility class of table
2.1. Hence, the universe U ′ of the derived table is composed of indiscerni-
bility classes. The condition attributes remain the same as in table 2.1,
i.e. A = {Ast, Age, TearP, Spec}. The values for the decision attribute
Lenses’ are now non-empty subsets of {0, 1}. If an indiscernibility class
E only contains objects whose outcome for the decision attribute in table
2.1 is 0 (1) then the decision attribute in this derived table has value {0}
({1}). However, if some objects in an indiscernibility class E have outcome
0 for decision attribute Lenses while other objects belonging to E have out-
come 1, then the decision attribute in this derived table has value {0, 1} (i.e.
Lenses’= {0, 1}).
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There are 8 indiscernibility classes:

E1 = {o1, o6},
E2 = {o3, o13, o18},
E3 = {o2, o4},
E4 = {o7, o8, o15},
E5 = {o9},
E6 = {o5, o11, o12, o17},
E7 = {o14},
E8 = {o10, o16}.

From the second line of table 2.2, we can read that indiscernibility class
E2 contains some objects whose outcome for the decision attribute Lenses

is 0 (o18) while other objects in E2 have outcome 1 (o3 and o13).

Class Ast Age TearP Spec Lenses’

E1 0 0 1 0 {0}
E2 1 0 2 1 {0, 1}
E3 1 1 1 0 {0}
E4 0 2 1 1 {1}
E5 1 2 1 0 {1}
E6 1 0 1 0 {0}
E7 1 2 2 1 {1}
E8 0 0 2 1 {0, 1}

Table 2.2: Decision table derived from Table 2.1

Each indiscernibility class can be described by a boolean formula. For
instance, consider E1. It can be described by

(Ast = 0 ∧ Age = 0 ∧ TearP = 1 ∧ Spec = 0) .

Alternatively, we can simply use the tuple 〈0, 0, 1, 0〉 to describe the same
indiscernibility class. This is the approach followed in this thesis.

¤

As shown in the example 2.2, indiscernibility classes can be described
by a unique tuple of

∏

ai∈A Vai

1. These elementary sets are like atomic

1The expression
∏

ai∈A
Vai

denotes the cartesian product Va1
× · · · × Vak

, where

A = {a1, · · · , ak}.
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information granules that are used to define concepts, i.e. subsets of the
universe. The next example illustrates this point.

Example 2.3 Consider the decision table 2.2. This decision table is asso-
ciated with two concepts: those people who stopped using contact lenses and
those who did not. The former concept is denoted by the subset

WithoutLenses = {o1, o2, o4, o5, o6, o10, o11, o12, o17, o18} ,

while the latter is denoted by the subset

WithLenses = {o3, o7, o8, o9, o13, o14, o15, o16} .

An important question is

• When can we say that a person could be recommended the use of con-
tact lenses, based on the attributes Ast, Age, TearP, and Spec and
their values shown on the decision table 2.2?

To answer the above question we need to build a discriminating descrip-
tion of concept WithLenses. This description can be obtained in terms of
the description of the indiscernibility classes. We remind the reader that
each indiscernibility class can be described by a tuple of (condition) attribute
values. For instance, E4 ⊆ WithLenses. Hence, we can conclude that for
people satisfying the conditions

(Ast = 0 ∧ Age = 2 ∧ TearP = 1 ∧ Spec = 1) ,

the use of contact lenses should be recommended. However, indiscernibility
class E2 seems to raise a problem in this context because E2 is neither con-
tained in WithLenses nor it is disjoint from WithLenses. This indicates
that concept WithLenses cannot be defined precisely using the available in-
formation.

¤

We can conclude from the example above that it is not always possible to
learn precise descriptions of concepts. This is due to the fact that we may
have contradictory knowledge that leads to vague concepts. It is in this
context that the notion of rough set emerges naturally, since it introduces
the idea of set (or concept) approximations.
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2.2 Approximations and Rough Sets

Let (U,RA) be an approximation space. The tuple describing each indis-

cernibility class E ∈ R∗
A is denoted by

−→
EA. For example, in table 2.2,

−→
EA

1 = 〈0, 0, 1, 0〉.

Definition 2.3 Let D = (U,A, d) be a decision table and X ⊆ U . Rough
set theory introduces two types of approximations of concept X in the ap-
proximation space (U,RA).

• Lower approximation of X, denoted by X,

X = {
−→
EA | E ∈ R∗

A and E ⊆ X} .

• Upper approximation of X, denoted by X,

X = {
−→
EA | E ∈ R∗

A and E ∩ X 6= ∅} .

Let ¬X = U \X, where U is the set of objects under consideration. The
upper approximation X can informally be interpreted as a description of the
objects that possibly belong to a given concept X. Notice that some doubt
exists in this description because there may exist a tuple t ∈ X ∩ ¬X. The
lower approximation of X should informally be viewed as a description of
those objects that definitely belong to the concept. The set X = X ∩ ¬X
is called the boundary and it corresponds to the conflicting cases (i.e. the
doubtful ones).

Example 2.4 Consider once more the decision table 2.2 and the concepts

WithLenses = {o3, o7, o8, o9, o13, o14, o15, o16} ,

¬WithLenses = {o1, o2, o4, o5, o6, o10, o11, o12, o17, o18} .

Note that ¬WithLenses represents the same concept as WithoutLenses,
introduced in example 2.3. Their upper and lower approximations are given.

WithLenses = {〈1, 0, 2, 1〉 , 〈0, 2, 1, 1〉 , 〈1, 2, 1, 0〉 ,
〈1, 2, 2, 1〉 , 〈0, 0, 2, 1〉} ,

WithLenses = {〈0, 2, 1, 1〉 , 〈1, 2, 1, 0〉 , 〈1, 2, 2, 1〉} ,

¬WithLenses = {〈0, 0, 1, 0〉 , 〈1, 0, 2, 1〉 , 〈1, 1, 1, 0〉 ,
〈1, 0, 1, 0〉 , 〈0, 0, 2, 1〉} ,

¬WithLenses = {〈0, 0, 1, 0〉 , 〈1, 1, 1, 0〉 , 〈1, 0, 1, 0〉} .
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The upper approximation of WithLenses describes those persons who
possibly will not have problems in using contact lenses while the lower ap-
proximation of ¬WithLenses describes those person who certainly will have
problems due to the use of contact lenses. Notice that the tuple 〈1, 0, 2, 1〉 be-
longs to both WithLenses and ¬WithLenses, i.e. 〈1, 0, 2, 1〉 ∈ WithLenses.
This fact indicates that for persons satisfying the condition

(Ast = 1 ∧ Age = 0 ∧ TearP = 2 ∧ Spec = 1)

there exists contradictory evidence and, therefore, it is not possible to state
with certainty whether they should be recommended to use contact lenses.

¤

Let (U,RA) be an approximation space and X,Y ⊆ U . It has been
proved that set approximations have several important properties [Paw91].
We list some of them.

(1) X ⊆ X ⊆ X.

(2) (X ∪ Y ) = X ∪ Y .

(3) (X ∩ Y ) ⊆ X ∩ Y .

(4) (X ∪ Y ) ⊇ X ∪ Y .

(5) (X ∩ Y ) = X ∩ Y .

(6) ¬X = ¬X.

(7) ¬X = ¬X.

(8) If X ⊆ Y then X ⊆ Y and X ⊆ Y .

A concept that cannot be defined precisely is represented by a pair of
sets of tuples, to be called rough set.

Definition 2.4 A rough set (or rough relation) S is a pair (S,¬S) such
that S,¬S ⊆

∏

ai∈A Vai
, for some non empty set of attributes A. The rough

complement of a rough set S = (S,¬S) is the rough set ¬S = (¬S, S).

Example 2.5 Consider again example 2.4. Since concept WithLenses
cannot be defined precisely in terms of the elementary sets belonging to R∗

A,
where A = {Ast, Age, TearP, Spec}, this concept is then represented by the
rough set Lenses = (WithLenses,¬WithLenses).

¤
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We stress that there is not a unique way to define a rough set. Different
definitions for the concept of rough set have been proposed in the literature
[Pag97]. For instance, a rough set could be defined as the pair S = (S, S).
All these definitions formalize the idea of vague sets due to the existence of
a boundary region. The reason for preferring one definition over another is
related to the concrete application the definition’s author has in mind. We
have chosen to define a rough set as S = (S,¬S) rather than S = (S, S)
because the former definition gives information about all negative examples
while the latter only indicates those negative examples in the boundary
region.

The notion of rough set used in our framework and the one usually
presented in rough set literature differs in a number of respects. First in our
framework, lower and upper approximations are sets of tuples while these
approximations are usually defined as subsets of the universe U . Second,
we assume that a rough set may partition the set of all possible tuples
W =

∏

ai∈A Vai
, where A is a set of condition attributes, into four regions.

Figure 2.1 illustrates this point.

S SS

W

Figure 2.1: The four regions generated by a rough set S.

Given a rough set S, these regions correspond to S, ¬S, S, and the set
of tuples about which there is no information, W \ (S ∪ ¬S ∪ S). Most
literature considers that a rough set divides the universe U in three regions:
lower approximation of a rough set and its complement, and boundary.

Let (U,RA) be an approximation space, [x]A be the equivalence class of
object x ∈ U in that approximation space, and S be a rough set. Then,
ε(x, S) denotes whether x belongs to the concept represented by rough set
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S and it is defined as follows.

ε(x, S) =



















true if
−−→
[x]A ∈ S

false if
−−→
[x]A ∈ ¬S

⊤ if
−−→
[x]A ∈ S

⊥ otherwise .

ε(x, S) = ⊤ indicates the existence of contradictory information about ob-
ject x and ε(x, S) = ⊥ shows lack of information about x.

Let us assume, without loss of generality, that d is a binary decision
attribute of a decision table D = (U,A, d). It is easy to see that we can
associate a rough set D = (D,¬D) with D, where D is the set of tuples
with positive outcome for the decision attribute d and ¬D is the set of
tuples with negative outcome. Our definition of rough set cannot be seen as
an alternative representation for a decision table. This can be explained by
the fact that, for the former case, there is no information associated with
each tuple of how many objects belong to the corresponding indiscernibility
class or how many objects in an indiscernibility class have positive (negative)
outcome for the decision attribute. From a formal point of view, this problem
can be easily addressed and we will discuss it in section 2.4.

We have adopted the convention to give the same name to a decision
table, to its decision attribute, and to the rough relation it defines, since
all these concepts are very associated with each other. However, the ap-
pearance of the printed names is different for each case. For instance, if a
decision table is called “Lenses”, a name usually starting with calligraphic
letter, then its decision attribute is called “Lenses” and it defines the rough
relation “Lenses”. We use interchangeably the expression “objects” and
“individuals” to refer to the elements of the universe U under consideration.

We stress that, in this work, we only consider approximation spaces
(U,RA) where RA is an equivalence relation. The literature also discusses
its generalizations to tolerance approximation spaces [SS96] and similarity
approximation spaces [SV97].

2.3 Decision Rules

In the context of supervised learning, an important task is the discovery
of classification rules from the data provided in the decision tables. The
decision rules not only capture patterns hidden in the data as they can also
be used to classify new unseen objects.
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Definition 2.5 Let D = (U,A, d) be a decision table and {a1, . . . , an} ⊆ A.
Assume also that {vd1, . . . , vdk} ⊆ Vd and vi ∈ Vai

, for 1 ≤ k and 1 ≤ i ≤ n.
A decision rule is an expression of the form

(a1 = vi) ∧ . . . ∧ (an = vn) −→ (d = vd1) ∨ . . . ∨ (d = vdk) .

If k = 1 then the decision rule is called a deterministc rule. Otherwise
(k > 1), the decision rule is called non-deterministic rule.

A decision rules can informally be understood as an implication. Symbols
“∧”, “∨” can be read as “and” and “or”, respectively.

Given a decision rule r, cond(r) denotes the expression on the left hand
side of symbol “→” and dec(r) denotes the expression on the right hand
side.

Example 2.6 Consider again table 2.2. Then, r1 is a deterministic deci-
sion rule obtained from this table

r1 ≡ (Age = 0) ∧ (TearP = 2) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) .

It states that if a person’s age is not more than 20 years, and his tear pro-
duction is normal, and he does not use spectacles then the outcome for the
decision attribute Lenses is 0 or 1, i.e. the optician cannot with certainty
recommend contact lenses.

The above rule corresponds to the following non-deterministic rule for
decision table 2.1.

(Age = 0) ∧ (TearP = 2) ∧ (Spec = 1) −→ (Lenses = 0) ∨ (Lenses = 1)

Hence, this rule describes some of the objects belonging to the upper approx-
imation of rough set Lenses.

Consider now the decision rule

r2 ≡ (Age = 0) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) .

Both decision rules r1 and r2 above can be used to identify some of the
objects belonging to Lenses. However, an important difference should be
pointed. The latter rule is more general than the former in the sense that
it states a smaller number of conditions in cond(r). Therefore, r2 is more
likely to be applied to a larger number of new objects to predict the outcome
for the decision attribute.

¤
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Let us call decision classes to the partitions of the universe generated
by the decision attribute, i.e. elements of R∗

{d}. The preceding example
points that rules induced from a decision table with a minimal number of
conditions (i.e. attribute-value pairs, (a = v)) are the most useful because
those rules are more general. In the context of data mining, one of the main
aims of rough-set based algorithms is to either find a set of minimal rules
that covers a given decision class or to compute all minimal rules for the
chosen decision class.

As shown in the previous sections, the concept associated with a given
decision class may not be definable in terms of the elementary sets, i.e. the
concept is rough. Decision rules can then be computed either with respect to
the lower approximation or upper approximation of the target concept. An
important difference between these two cases is that rules generated from
the lower approximation are deterministic while rules generated from the
upper approximation may be non-deterministic.

We turn now to the formalization of minimal decision rules.
Let D = (U,A, d) be a decision table, c1 ≡ (a1 = v1)∧. . .∧(an = vn) and

c2 ≡ (a1 = v1) ∨ . . . ∨ (an = vn) be two conditions, with {a1, . . . , an} ⊆ A
and 1 ≤ n. Cover(c1) and Cover(c2) denote the following subsets of U .

Cover(c1) =
⋂

1≤i≤n{o ∈ U | ai(o) = vi} ,

and
Cover(c2) =

⋃

1≤i≤n{o ∈ U | ai(o) = vi} .

A rule r covers all objects that match the condition on its left-hand side,
denoted as Cover(r), i.e. Cover(r) = Cover(cond(r)). This definition can
be extended to a set of rules S:

Cover(S) =
⋃

r∈S

Cover(r) .

Let c1 ≡ (a11 = v11)∧. . .∧(a1n = v1n) and c2 ≡ (a21 = v21)∧. . .∧(a2k =
v2k), with n, k ≥ 1, be two conditions. We write c1 ¹ c2 to denote that every
attribute-value pair (a1i = v1i) occurring in c1, with 1 ≤ i ≤ n, also occurs
in c2. The expression c1 ≺ c2 means that c1 ¹ c2 and c1 6= c2. For instance,
(Age = 2) ¹ (Age = 2) ∧ (TearP = 1).

Definition 2.6 ([Zia02b]) Let r be a decision rule. A value reduct for r,
denoted as red(r), is a condition satisfying the following properties.

(1) red(r) ¹ cond(r).
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(2) Cover(red(r)) ⊆ Cover(dec(r)). i.e. value reduct preserves the inclu-
sion relation of the set of objects covered by the rule in Cover(dec(r));

(3) For every condition c ≺ red(r), Cover(c) 6⊆ Cover(dec(r)), i.e. the
value reduct is a minimal condition, with respect to the partial order
≺, satisfying properties (1) and (2).

The definition of minimal rules is based on the notion of value reduct.

Definition 2.7 Let r be a decision rule. r is a minimal rule if and only if
red(r) = cond(r).

Given a decision rule r, a single value reduct can be computed in linear
time with respect to the number of attributes that appear in cond(r).

Example 2.7 Consider example 2.6 and table 2.2. Decision rule

(Age = 0) ∧ (TearP = 2) ∧ (Spec = 1) −→ (Lenses’ = {0, 1})

is not minimal while

(Age = 0) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) and
(Age = 0) ∧ (TearP = 2) −→ (Lenses’ = {0, 1})

are minimal decision rules. Note that

Cover((Age = 0) ∧ (Spec = 1)) = E2 ∪ E8 = Cover(Lenses’ = {0, 1}) .

¤

Let D = (U,A, d) be a decision table, A = {a1, . . . , an}, and assume
that v ∈ Vd. An algorithm based on value reducts that computes a set of
minimal rules covering the decision class Dv = {o ∈ U | d(o) = v} can be
easily devised. Assume that we are interested in a set of deterministic rules.

• Computation of Minimal Rules [Zia02b]:

(i) Compute Dv . Let L be a set of decision rules initialized to the empty
set.

(ii) Consider the decision rule

r ≡ (a1 = v1) ∧ . . . ∧ (an = vn) → (d = v)

associated with each tuple 〈v1, . . . , vn〉 ∈ Dv.



26 CHAPTER 2. BASICS OF ROUGH SET THEORY

(ii.1) Compute a value reduct for rule r, i.e. red(r).

(ii.2) If the Cover(red(r)) 6⊆
⋃

ri∈L Cover(ri) then

L = L ∪ {red(r) → (d = v)} .

(iii) Output each rule in L.

If a set of non-deterministic rules is sought instead then Dv should be

replaced by Dv in the algorithm above. The algorithm can be computed
in polynomial time. Its time complexity is proportional to the number of
condition attributes and number of tuples in Dv (Dv).

Example 2.8 Consider again table 2.2 and let us compute the minimal
deterministic decision rules for Lenses′{0,1}, corresponding to the boundary

region of table Lenses. We have that

Lenses′{0,1} = {〈1, 0, 2, 1〉 , 〈0, 0, 2, 1〉} .

It can be easily verified that for the decision rules associated with tuples
〈1, 0, 2, 1〉 and 〈0, 0, 2, 1〉 there are two possible value reducts

(Age = 0) ∧ (Spec = 1) and
(Age = 0) ∧ (TearP = 2)

It can be also easily verified that (Age = 2) is a value reduct for each of
the decision rules obtained from the tuples belonging to the set

Lenses′{1} = {〈0, 2, 1, 1〉 , 〈1, 2, 1, 0〉 , 〈1, 2, 2, 1〉} .

Note that Lenses′{1} corresponds to the lower approximation of rough set

Lenses.
Since

Cover(Age = 2) 6⊆ Cover((Age = 0) ∧ (Spec = 1)) and
Cover((Age = 0) ∧ (Spec = 1)) 6⊆ Cover(Age = 2) ,

the following two minimal decision rules describe the set of objects
Lenses′{0,1} ∪ Lenses′{1}.

(Age = 0) ∧ (Spec = 1) −→ (Lenses’ = {0, 1}) ,
(Age = 2) −→ (Lenses’ = {1}) .
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If we consider table 2.1 instead then, the deterministic decision rules
above correspond to a non-deterministic rule and to a deterministic rule,
respectively.

(Age = 0) ∧ (Spec = 1) −→ (Lenses = 0) ∨ (Lenses = 1) ,
(Age = 2) −→ (Lenses = 1) .

These two rules cover all objects described by tuples in the upper approxi-
mation of rough set Lenses (obtained from table 2.1).

¤

In step (iii) above, L is a non-empty set of minimal rules such that
Cover(L) = Dv. Hence, these set of rules form a discriminating description
of the approximated concept. However, from the point of view of knowl-
edge discovery, it is more interesting to find all possible minimal rules than
just one set of minimal rules. In contrast to the above algorithm that is
polynomial, computing all possible minimal rules is NP-hard.

All minimal rules can be computed by first creating the decision-relative
discernibility matrix. A Boolean expression can then be constructed from
this matrix. This expression is simplified (absorption law of Boolean alge-
bra can be applied) and prime implicants of the simplified expression are
computed. Each prime implicant can finally be translated to a decision
rule. More detailed descriptions of this algorithm can be obtained from
[KPPS99, SP97]. A survey of the main algorithms for inducing decision
rules using rough set theory is presented in [Baz98, Ste98].

2.4 Numerical Measures

The first part of this section is devoted to the discussion of several numer-
ical measures that can be associated with a decision rule for measuring its
quality. In the second part, we introduce the notion of reduct and we briefly
mention an algorithm to compute decision rules based on reducts.

2.4.1 Measuring Quality of Decision Rules

Quality measures associated with decision rules can be used to eliminate
some of the decision rules. We list below some of these quality measures
[KPPS99].

Given a set S, the expression |S| denotes the number of elements in S.
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Definition 2.8 (Support) Let r be a decision rule induced from a decision
table D = (U,A, d). The support of r, denoted as Supp(r), is defined as

Supp(r) = |Cover(cond(r)) ∩ Cover(dec(r))| .

The support of a rule represents the number of objects of the universe
that match both conditions cond(r) and dec(r).

Definition 2.9 (Strength) Let r be a decision rule induced from a deci-
sion table D = (U,A, d). The strength of r, denoted as Strength(r), is
defined as

Strength(r) =
|Supp(r)|

|U |
.

The strength of a rule indicates the proportion of objects in the universe
that match both cond(r) and dec(r); i.e. the percentage of objects for which
the pattern expressed by the rule is true. Hence, Strength(r) can be seen
as an estimate of the probability Pr(cond(r) ∧ dec(r)).

Definition 2.10 (Accuracy) Let r be a decision rule induced from a de-
cision table D = (U,A, d). The accuracy of r, denoted as Acc(r), is defined
as

Acc(r) =
Supp(r)

|Cover(cond(r))|
.

The accuracy of a rule corresponds to the conditional probability Pr(o ∈
Cover(dec(r)) | o ∈ Cover(cond(r))). By other words, Acc(r) expresses
how trustworthy is the rule is drawing the conclusion dec(r) for an object
matching the condition on the left-hand side of the rule.

Definition 2.11 (Coverage) Let r be a decision rule induced from a de-
cision table D = (U,A, d). The coverage of r, denoted as Cov(r), is defined
as

Cov(r) =
Supp(r)

|Cover(dec(r))|
.

The coverage of a rule corresponds to the conditional probability Pr(o ∈
Cover(cond(r)) | o ∈ Cover(dec(r))). Hence, Cov(r) quantifies how well
the rule left-hand side, cond(r), describes the set of objects covered by its
right-hand side, dec(r).
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2.4.2 Reducts

The derived decision table shown in example 2.2 contains nearly the same
information as in table 2.1. However in the derived table, if Lenses’(E) =
{0, 1}, for some indiscernibility class E, then we cannot know how many
objects in E have outcome 0 for decision attribute Lenses and how many
have outcome 1. To overcome this problem, we define a family of functions.
Let D = (U,A, d) be a decision table and Vd = {v1, . . . , vn}. We have then
that, for each indiscernibility class E ∈ R∗

A,

λi
D(

−→
EA) = |{o ∈ E | d(o) = vi}| ,

with 1 ≤ i ≤ n. Moreover, card(
−→
EA) = |E| =

∑

1≤i≤n λi
D(

−→
EA), i.e.

card(
−→
EA) denotes the number of objects in the indiscernibility class de-

scribed by tuple
−→
EA. Function card can be extended to a set of tuples T .

card(T ) =
∑

t∈T

card(t) .

Let (U,RB1
) and (U,RB2

) be two approximation spaces. We now define
those objects of the universe for which knowing the values of attributes B1 is
sufficient for determining the values of attributes B2, denoted as PosB1

(B2).

PosB1
(B2) =

⋃

X∈R∗

B2

X ,

where X is the lower approximation of X in the approximation space (U,RB1
).

An interesting numerical measure associated with a decision table is the
degree of functional dependency [KPPS99, Zia02b] between two subsets of
attributes of the table.

Definition 2.12 Let D = (U,A, d) be a decision table and B1, B2 ⊆ A ∪
{d}. The degree of functional dependency in the relationship between at-
tribute sets B1 and B2, denoted as κ(B1, B2), is defined as

κ(B1, B2) =
card(PosB1

(B2))

|U |
.

Function κ(B1, B2) can be understood as the proportion of objects of
the universe U for which knowing the values of attributes B1 is enough to
determine the values of attributes B2. Obviously, 0 ≤ κ(B1, B2) ≤ 1. If
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κ(B1, B2) = 1 then functional dependency B1 → B2 exists in the table and
it can be easily shown that RB1

⊆ RB2
(i.e. the partition generated by

attributes B1 is finer than the partition generated by B2). If κ(B1, B2) = 0
then no values of attributes B2 can be determined by values of attributes
B1. If 0 < κ(B1, B2) < 1 then the values of attributes B2 can be determined
by values of attributes B1, only for some objects (but not all).

Example 2.9 Consider decision tables of example 2.1 and 2.2. For the
first table, κ({Ast, Age, TearP, Spec}, {Lenses}) ≃ 0.72 indicating that the
decision attribute is not functionally determined by the condition attributes.
For the second table κ({Ast, Age, TearP, Spec}, {Lenses’}) = 1. Hence, we
can conclude that the functional dependency

{Ast, Age, TearP, Spec} → {Lenses’}

holds for this table.
¤

If we consider decision table 2.2, we can conclude that

κ({Age, TearP}, {Lenses’}) = 1 .

Hence, we only need condition attributes Age and TearP in order to be able
to determine the decision class of an object, i.e. to determine Lenses’(Ei)
(1 ≤ i ≤ 8). This makes possible savings in the amount of information that
needs to be represented and it may also lead to a table where regularities
are more easy to find. Relative reducts formalize this idea.

Definition 2.13 Let A and B be two sets of attributes. A relative reduct
of A with respect to κ(A, B), denoted as red(A,B), is a subset of A having
the following properties.

(1) κ(A,B) = κ(red(A,B), B).

(2) For all a ∈ red(A, B),

κ(red(A,B) \ {a}, B) 6= κ(A,B) ,

i.e. red(A,B) is a minimal subset of A satisfying (1).

From a practical point of view, we are often interested in discovering
relative reducts with respect to κ(A, {d}), for a decision table D = (U,A, d).
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A single relative reduct can be computed in linear time. However, com-
puting all relative reducts or a minimal reduct is NP-hard. Most of the
algorithms for determining all reducts are based on a decision-relative dis-
cernibility matrix [KPPS99, SP97].

In section 2.3, we have presented an algorithm to compute a set S of
(minimal) decision rules forming a discriminating description for a given
decision class Dv. This algorithm is based on a covering approach since
Dv = Cover(S) or Dv = Cover(S). A set of non-deterministic rules is
obtained in the former case, while only deterministic rules are computed for
the latter. However, rules can be computed in a different way: find first
relative reducts and then create decision rules by overlaying the reducts
over objects in the table. We illustrate this second approach with the next
example.

Example 2.10 Consider decision table 2.2. A relative reduct of
{Ast, Age, TearP, Spec}, with respect to
κ({Ast, Age, TearP, Spec}, Lenses’), is {Age, TearP}. The following deci-
sion rules would then be obtained

(Age = 0) ∧ (TearP = 1) −→ (Lenses = 0) ,
(Age = 0) ∧ (TearP = 2) −→ (Lenses = 0) ∨ (Lenses = 1) ,
(Age = 1) ∧ (TearP = 1) −→ (Lenses = 0) ,
(Age = 2) ∧ (TearP = 1) −→ (Lenses = 1) ,
(Age = 2) ∧ (TearP = 2) −→ (Lenses = 1) .

Notice that the above decision rules are not minimal. For instance, (Age = 2)
is a value reduct of the last two rules above.

¤

It is also possible to use approximations of a relative reduct red(A,B),
with respect to κ(A, B). These approximations are subsets of A that “al-
most” preserve the same capability as the attribute set A in determining the
values of attributes B. An advantage of using approximations of reducts is
that decision rules synthesized from them are less sensitive to noise in the
data and, therefore, the quality of classification of new objects tends to in-
crease. We briefly mention two approaches: dynamic reducts [Baz96] and
s-reducts [SP97].

Let D = (U,A, d) be a decison table and red(A,B) be a relative reduct,
with respect to κ(A,B), where B ⊆ A ∪ {d}. A dynamic reduct is a subset
of A appearing “sufficiently often” as a relative reduct in random sample
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subtables obtained from D. Notice that “sufficiently often” should be un-
derstood as a parameter that is tuned according to the data in the table.

We can measure how the dropping of a number of attributes from at-
tribute set A1 changes the coefficient κ(A1, B). Let A2 ⊆ A1.

α(A1,B)(A2) = 1 −
κ(A2, B)

κ(A1, B)
.

It is worth noting that if A2 is the minimal subset of A1 such that κ(A1, B) =
κ(A2, B) (i.e. A2 is a relative reduct of A1 with respect to κ(A1, B)) then
α(A1,B)(A2) = 0. The attribute set A2 is an s-reduct if α(A1,B)(A2) is not
larger than a given threshold called error level. This error level should be
tuned for the table being considered.

2.5 Prediction

In sections 2.3 and 2.4.2, we have introduced decision rules and gave an
idea about how they can be computed. These decision rules can then be
used to make predictions for unseen objects. For instance, the decision rules
obtained from one relative reduct form a classifier. Classifiers with better
prediction capabilities are usually obtained by combining rules obtained
from several reducts.

Classifiers may be non-deterministic because

• the new object matches non-deterministic rules, or

• the object matches several (deterministic) rules that lead to different
decisions.

An obvious question is how to solve the problem of conflicting decisions.
This issue can be addressed by voting [KPPS99]. We describe below this
strategy.

Without loss generality, we assume that a classifier only contains deter-
ministic decision rules. A non-deterministic rule (a1 = v1) ∧ . . . ∧ (an =
vn) → (d = vd) ∨ (d = vd′) can always be replaced by two deterministic
rules, (a1 = v1) ∧ . . . ∧ (an = vn) → (d = vd) and (a1 = v1) ∧ . . . ∧ (an =
vn) → (d = vd′).

Let C be a classifier, i.e. a set of (deterministic) decision rules. Moreover,
RulC(o) denotes the set of decision rules of C that match object o and it is
formally defined as

RulC(o) = {r ∈ C | o ∈ Cover(r)} .
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• Voting Algorithm:

(1) If RulC(o) = ∅ then classification is not possible. Otherwise, proceed
with step (2).

(2) For each possible decision v ∈ Vd compute the number of votes casted
by each rule.

votes(v) =
∑

r∈RulC(o)

νv(r) ,

where

νv(r) =

{

0 if dec(r) 6= v
Supp(r) otherwise

(3) Compute δ =
∑

v′∈Vd
votes(v′), i.e. the total number of casted votes.

(4) For each possible decision v ∈ Vd compute the certainty factor

certainty(o, v) =
votes(v)

δ
.

(5) Output the decision with the largest certainty.

The voting algorithm described above can be modified in a number of
ways. For instance, the number of votes casted by each rule fired can be
based on some other measured instead of rules’s support.

2.6 The Variable Precision Rough Set Model

In section 2.2, we introduced the notions of concept approximations, lower
and upper approximations. These ideas have been further generalized by W.
Ziarko, see [Zia93], who introduced the variable precision rough set model
(VPRSM).

We start by discussing informally the VPRSM. Consider two parameters
l and u, called precision control parameters, such that 0 ≤ l < u ≤ 1.
Generalization of lower (upper) approximation and boundary region of a
rough relation can be obtained as follows. The lower approximation of a
concept X (¬X) is obtained from those indiscernibility classes E such that
its degree of overlapping with the set X (¬X) is larger or equal than u (1−l).
Those indiscernibility classes E such that their degree of overlapping with X
is between l and u remain in the boundary region. This technique can also
be seen as a way to “thin” the boundary region and it has the advantage of
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making concept approximations less sensitive to possible noise contained in
the data.

To formalize this idea, we need to introduce a function assigning to each
indiscernibility class E a measure of the degree of overlapping of set X with
E. This function corresponds to the conditional probability

Pr(o ∈ X | o ∈ E) =
|(X ∩ E)|

|E|
.

Let (U,RA) be an approximation space. Concept approximations can
then be defined as

X = {
−→
EA | E ∈ R∗

A and Pr(o ∈ X | o ∈ E) ≥ u} ,

¬X = {
−→
EA | E ∈ R∗

A and Pr(o ∈ X | o ∈ E) ≥ (1 − l)} ,

X = {
−→
EA | E ∈ R∗

A and u < Pr(o ∈ X | o ∈ E) < l} .

It is worth to note that if u = 1 and l = 0 then the above definitions of lower
(upper) approximations and boundary are equivalent to the ones presented
in section 2.2.

Let X ⊆ U and Pr(X) = |X|
|U | . To obtain some gain in the predictive

capability, it is required that u > Pr(X) and l < Pr(X). Requiring that
u > Pr(X) (l < Pr(X)) will enable us to predict that an object o ∈ X
(o ∈ ¬X) more accurately than random guess.



Chapter 3

Logic Programming

Framework

This chapter surveys the logic programming concepts needed in the sequel
and it is self-contained. It gives to the reader the essential notions to un-
derstand the compilation technique discussed in chapters 4 and 6.

We start by introducing definite logic programs, in section 3.1, and then
present in section 3.2 a more general class of logic programs, called extended
logic programs. We also discuss the declarative semantics of extended logic
programs (section 3.2.1) and queries (section 3.2.2).

3.1 The Main Idea: Definite Logic Programs

Logic programming [Llo87, NM95, Bar03, BL04] is a computational formal-
ism that uses logic (e.g. first-order logic) to express knowledge and inference
to manipulate the knowledge in order to be able to extract new knowledge.

In this work, the syntax of a logic program makes use of three disjoint
alphabets: an alphabet of variable symbols V ar, an alphabet of constant
symbols Const, and an alphabet of predicate symbols Pred. Moreover, the
set of symbols {¬,not} * Pred. A term t is either a constant symbol or
a variable, i.e t ∈ V ar ∪ Const. To distinguish between constants and
variable symbols, we follow the usual convention: variables start with upper
case letter (e.g. X, Dist ∈ V ar), while using names beginning with lower
case letters for constants (e.g. small, c ∈ Const). An atom is an expression
of the form p(t1, . . . , tn), where p is an n-ary predicate symbol (p ∈ Pred)
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and each t1, . . . , tn is a term. We write p/n, with n ≥ 0, to express that p is
an n-ary predicate symbol. An atom with zero arguments is simply written
as p .

Intuitively, predicates denote n-ary relations and atoms can be seen as
statements saying that an n-ary tuple belongs to an n-ary relation. For
instance, the atom office(xana, spetsen, 7) expresses that xana’s office is
on 7th floor of building spetsen, i.e. the tuple 〈xana, spetsen, 7〉 belongs
to the relation denoted by predicate office.

In the logic programming framework, knowledge is represented through
clauses.

Definition 3.1 A definite clause is an expression of the form

H :- A1, . . . , An. ,

where H and each Ai (0 ≤ i ≤ n) is an atom.

The left side of a (definite) clause (with respect to :-) is called the head
and the right side is designated as body of the clause. A fact is a clause with
empty body (i.e. n = 0), succinctly represented by H. . When no confusion
arises, we will refer to “clauses” instead of “definite clauses”.

Clauses can informally be understood as implications: if every atom in
the body is true then the head must also be true. Therefore, the comma
symbol “,” is interpreted as conjunction.

Example 3.1 We give an example of a definite clause and a fact.

(1) fly(tom) :- bird(tom). “If tom is a bird then tom flies.
(2) bird(tom). “Tom is a bird.”

¤

The order by which atoms appear in the body of a clause is irrele-
vant. Thus, both clauses fly(tom) :- bird(tom), healthy(tom). and
fly(tom) :- healthy(tom), bird(tom). have the same meaning.

If no variables occur in the atoms of a clause (atom), then the clause
(atom) is ground. For instance, clause (1) of the example above is ground.

Definition 3.2 Let X1, . . . , Xn be variables occurring in some atom
q(t1, . . . , tm), with 1 ≤ n ≤ m. A grounding substitution θ is a set of
bindings

θ = {X1/c1, . . . , Xn/cn}

(including the empty set) of variables Xi (1 ≤ i ≤ n) to constants ci ∈
Const.
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A substitution θ = {X1/c1, . . . , Xn/cn} can be applied to a clause C
(atom A), written as Cθ (Aθ), and it represents the clause (atom) obtained
from C (A) by substituting each variable Xi for ci (1 ≤ i ≤ n). For instance,
if θ = {X1/c1, X2/c2} then p(X1, X2)θ is the atom p(c1, c2). We can also
say that variable X1 (X2) is instantiated with constant c1 (c2).

A ground instance of a clause C is obtained by applying a grounding
substitution θ to clause C and Cθ is ground. A non-ground clause stands
for all its ground instances. Therefore, variables are implicitly universally
quantified.

Example 3.2 We give an example of a non-ground definite clause.

(3) fly(X) :- bird(X). “All birds fly”.

More formally, clause (3) represents the following implication

∀X(bird(X) ⇒ flies(X)) .

Clause (1), in example 3.1, can be obtained by applying substitution
{X/tom} to clause (3).

¤

Definition 3.3 A definite logic program is a set of definite clauses.

Given a definite logic program P, ground(P) represents the set of all
ground instances of any clause C ∈ P. This notation will also be used for
sequence of atoms A1, . . . , An (n ≥ 1), i.e. ground(A1, . . . , An).

Example 3.3 Consider the following definite logic program.

P = {fly(X) :- bird(X). ,
bird(piu). ,
bird(tom).}.

Note that for this logic program, Const = {piu, tom}. The non-ground
clause fly(X) :- bird(X). stands for the two ground clauses below, cor-
responding to its ground instances.

fly(piu) :- bird(piu). fly(tom) :- bird(tom).

The atom fly(piu) is a ground atom, whereas fly(X) is not. We
can also say that the atom fly(piu) is a ground instance of fly(X) (i.e.
fly(piu) ∈ ground(fly(X)) ).

¤
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An interesting aspect of the logic programming framework is the pos-
sibility to query the knowledge encoded in logic programs. By querying a
logic program one may retrieve interesting non-trivial knowledge. For in-
stance, given the program of example 3.3, we may ask whether tom flies or
which birds fly. In the former case, we expect to obtain a positive answer.
In the latter case, we should get as answer tom and piu. This point is par-
ticularly relevant for the operational semantic (i.e. implementation) of the
query languages proposed in later chapters.

We discuss in more detail queries in next section. However, we first
introduce a more general class of logic programs that includes definite logic
programs.

3.2 Extended Logic Programs

Extended Logic Programming (ELP) is the target language of the transfor-
mations discussed in chapter 4, and we resort only to the disjunctive free
fragment of the languages described in [Pea93, SI95], generalizing Answer
Set Semantics [GL90] to the paraconsistent case.

In contrast to ELP, it is not possible to represent negative information
in a definite logic program. The main distinctive feature of ELP is that it
allows to express two forms of negation, explicit and default, allowing both
open-world and closed-world reasoning. Explicit negation describes negative
evidence, e.g. “Tom does not fly.”, while default negation allows reasoning
with lack of information, e.g. “There is no evidence that tom flies.”.

The language in which extended logic programs are expressed is also
based in an alphabet of variable, constant, and predicate symbols, i.e. V ar ∪
Const ∪ Pred. Let At denote the set of all atoms built with alphabet
symbols. An objective literal L is either an atom A ∈ At or its explicit
negation ¬A. The set of all objective literals is OLit = At ∪ ¬At, where
¬At = {¬A : A ∈ At}. The default negation of a literal L is represented
by not L, also called default negated literal. A literal is either an objective
literal L or its default negation not L, and the set of all literals is

Lit = OLit ∪ not OLit = {A,¬A,not A,not ¬A : A ∈ At} .

Intuitively, an objective literal represents a (positive or negative) evi-
dence, while the default negated literal represents lack of (respectively, posi-
tive or negative) evidence. This makes it possible, for example, to represent
differently the information that a flight departed without delay obtained
from the flight control, from lack of the delay announcement.
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Similar to definite logic programs, knowledge is encoded as sets of clauses
in ELP. However, clauses of an extended logic program may include explicit
and default negation.

Definition 3.4 A clause is an expression

L0:- L1, . . . , Lm,not Lm+1, . . . ,not Ln.

where each Li is an objective literal and 0 ≤ m ≤ n.

An integrity constraint has the form

:- L1, . . . , Lm,not Lm+1, . . . ,not Ln. ,

with n ≥ m ≥ 1 and it can be seen as a clause with the head being the atom
false (or ⊥) representing falsehood. For instance, the integrity constraint

:- human(X), male(X), female(X).

expresses that no human can be male and female, simultaneously.

Definition 3.5 An extended logic program is a finite set of clauses and
integrity constraints.

The notions of ground atom previously introduced can be easily extended
to literals and sequences of literals. Moreover, the definitions of ground
program and substitution presented for definite logic programs apply also
to extended logic programs.

Example 3.4 Assume that the following clauses belong to the extended logic
program P.

“Someone is guilty if he is guilty”
(1) guilty(X) :- guilty(X).

“Someone is innocent if we cannot prove he is guilty.”
(2) innocent(X) :- not guilty(X).

“Someone is not guilty if he is innocent.”
(3) ¬guilty(X) :- innocent(X).
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“A person is a male if we cannot prove he is a female.”
(4) male(X) :- person(X), not female(X).

“A person is a female if we cannot prove she is a male.”
(5) female(X) :- person(X), not male(X).

“A person cannot be guilty and non-guilty, simultaneously.”
(6) :- person(X), guilty(X), ¬guilty(X).

“Tommy is a person.”
(7) person(tommy)

Clauses (4) and (5) together express the idea that a person must be either
a male or a female.

3.2.1 Declarative Semantics of Extended Logic Programs

The declarative semantics of a program captures its meaning. The declar-
ative semantics of (extended) logic programs is based on the notion of in-
terpretation. An interpretation is simply a subset of the ground objective
literals, also known as the extended Herbrand base.

Definition 3.6 An interpretation I of an extended logic program P is any
subset of ground(OLit) = ground(At) ∪ ¬ground(At).

As usual, an interpretation settles the set of true literals. If L ∈ I
then the objective literal L has the truth value true, and if L 6∈ I then the
objective literal L is false. Clearly, if an objective literal L is false then
not L is true.

An interpretation induces the following consequence relation:

I |= L if an only if L ∈ I ,
I |= not L if and only if L 6∈ I ,
I |= L1, . . . , Ln if and only if I |= L1 and . . . and I |= Ln ,

where L is an arbitrary ground objective literal and each Li (1 ≤ i ≤ n) is
an arbitrary ground literal.

Example 3.5 Consider the extended logic program P of example 3.4. A
possible interpretation for P is

I = {innocent(tommy),¬guilty(tommy), male(tommy), person(tommy)} .
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In this interpretation the literals guilty(tommy), female(tommy), not
male(tommy) are false, i.e. I 6|= guilty(tommy) , I 6|= female(tommy) ,
I 6|= not male(tommy) . Obviously,

I |= ¬guilty(tommy),not female(tommy) .

¤

An interpretation I satisfies a program clause if the corresponding im-
plication holds in I, and satisfies an integrity constraint if at least one literal
in its body is false. Next definition formalizes this idea.

Definition 3.7 A model MP of an extended logic program P is any inter-
pretation that satisfies every clause and integrity constraint of ground(P),
i.e. (0 ≤ m ≤ n)

1. For every L0:- L1, . . . , Lm,not Lm+1, . . . ,not Ln ∈ ground(P),
if I |= L1, . . . , Lm,not Lm+1, . . . ,not Ln then I |= L0.

2. For every :- L1, . . . , Lm,not Lm+1, . . . ,not Ln ∈ ground(P), then
I 6|= L1, . . . , Lm,not Lm+1, . . . ,not Ln.

For instance, the interpretation I in example 3.5 is also a model of the
program. Intuitively, an integrity constraint discards all model candidates
that make every literal in its body true.

An extended logic program may have zero, one, or more models. More-
over, set inclusion is a partial order for the set of models of an extended logic
program. Since we want to consider only the models such that each objective
literal can be justified by some evidence in the program, only (some of) the
minimal models are of interest. To capture formally this intuition, we need
to recall an important property of definite logic programs (theorem 3.1) and
introduce the notion of reduct 1 of an extended logic program [GL88].

Note that an extended logic program may have several minimal models
while a definite logic program has always a least model (unique minimal
model).

Theorem 3.1 ([Llo87]) Let P be a definite logic program. Then, P has a
least model.

1Reduct of a logic program and reduct of a decision table (commonly used in the rough
set framework) are two independent notions.
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Definition 3.8 ([GL88]) Let P be an extended logic program and I an
interpretation. The reduct of P with respect to I is the definite logic program
ψI(P) such that L0:- L1, . . . , Lm. ∈ ψI(P) if and only if there is a program
clause of the form L0:- L1, . . . , Lm,not Lm+1, . . . ,not Ln. ∈ ground(P)
such that I |= not Lm+1, . . . ,not Ln , where 0 ≤ n ≤ m.

It should be stressed that ψI(P) is always a definite logic program. Hence
by theorem 3.1, it must have a least model.

Definition 3.9 Let P be an extended logic program. An interpretation I is
a paraconsistent stable model of P if and only I is the least model of ψI(P)
and I satisfies all integrity constraints of P.

The semantics of extended logic programs is captured by those minimal
models that are also paraconsistent stable models. The semantics is paracon-
sistent because a piece of information and its explicit negation can simulta-
neously hold. Note that an extended logic program may have no paraconsis-
tent stable models, although it can have several minimal models. Intuitively,
these programs are meaningless. The paraconsistent stable model semantics
coincides with the stable model semantics [GL88, IS98, ALP+00] whenever
explicit negated literals do not occur in the program.

Example 3.6 Consider once more the extended logic program P of example
3.4 and assume that P1 = P ∪ {:- female(X).}. Although,

I1 = {innocent(tommy),¬guilty(tommy),
female(tommy), person(tommy)}

is a model of P, it cannot be a model of P1 because the new integrity con-
straint rejects those interpretations containing any ground instance of literal
female(X).

The following interpretations

M1 = {guilty(tommy), male(tommy), person(tommy)} and
M2 = {innocent(tommy),¬guilty(tommy),

male(tommy), person(tommy)}

are minimal models of P1. However, only M2 is a paraconsistent stable
model, whereas M1 is not.

Intuitively, the reason for M1 not being a paraconsistent stable model
is that guilty(tommy) is a justification to itself (see clause (1) of example
3.4). However, we can justify having innocent(tommy) in M2 because there
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is no evidence that guilty(tommy) is true (i.e. not guilty(tommy) is true)
and then, by clause (2), we must have that innocent(tommy) is true.

Formally, taking definition 3.9, the reduct of P1 with respect to M1 is
the definite logic program ϕM1

(P1) consisting of the following clauses.

guilty(tommy) :- guilty(tommy).

¬guilty(tommy) :- innocent(tommy).

male(tommy) :- person(tommy).

person(tommy).

The least model of ϕM1
(P1) is M = {male(tommy), person(tommy)}.

Since M1 6= M, we conclude that M1 is not a paraconsistent stable model.
It can be easily checked that M2 is in this case a paraconsistent stable model.

¤

We introduce now the notion of a ground literal l to be implied by an
extended logic program P, denoted as P |= l.

Definition 3.10 Let P be an extended logic program and L be a ground
literal. There is a paraconsistent stable model M of P such that M |= L if
and only if P |= L.

We conclude this section with a final remark. The semantics presented in
this section is non-monotonic because by adding a new statement to a pro-
gram the set of literals implied by the program may decrease. For instance
consider again the program of example 3.4. If the fact guilty(tommy).

would be added to P then P 6|=innocent(tommy).

3.2.2 Queries

As we mentioned in the end of the section 3.1, one of the main aims of the
ELP framework is to extract information from extended logic programs by
querying them. Let us introduce the notion of query.

Definition 3.11 A query is a pair (L1, . . . , Ln , P), with n ≥ 1, where P
is an extended logic program and each Li is a literal.

We need now to define the notion of answer.

Definition 3.12 Let (Q, P) be a query. An answer to the query is the set
of ground substitutions

{θ | Qθ ∈ ground(Q) and M |= Qθ} ,
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for some paraconsistent stable model M of P.

Example 3.7 Consider the extended logic program P of example 3.4 and
the queries

(innocent(X), P) “Who is innocent?”
(guilty(tommy), P) “Is Tommy guilty?”

The answer to the first query is {{X/tommy}}, since innocent(tommy) be-
longs to a paraconsistent stable model of P (see M2 in example 3.6). How-
ever, the answer to the second question is ∅ because the literal
guilty(tommy) does not belong to any paraconsistent stable model of P.

¤

Finally, we refer that Smodels [NS96, Sim] and dlv [ELM+98, Pro] are
currently available systems for computing stable models of programs (often
with tens of thousands of clauses). Both systems can also handle integrity
constraints, and can be used in practice to determine paraconsistent stable
models of extended logic programs. Moreover, any standard Prolog system
[DEBC96] can be used to compute answers to queries (Q, P), when P is a
definite logic program.



Chapter 4

A Language for Defining

Rough Relations

This chapter presents a new language [VDM03b, VDM03a] for defining and
querying rough relations, based on logic programming.

The main intuitive idea underlying this language is as follows. A rough
relation S divides the universe in four regions: those examples that definitely
belong to the concept represented by S (to be denoted S); those examples
that definitely do not belong to the concept (to be denoted ¬S), those
examples for which there is contradictory evidence (to be denoted S); and
those examples for which there is not any information of whether they belong
to the concept (i.e. the remaining part of the universe not contained in
S ∪ ¬S ∪ S). Using clauses we can then combine regions of different rough
relations to define implicitly a new rough relation. The language introduced
in this chapter does not take into account quantitative measures. This
extension is discussed in chapter 6.

The declarative semantics of the language (discussed in section 4.2) as-
sociates a rough set S with each predicate symbol s of the language. Hence,
we give indirectly a four-valued interpretation to each predicate: if tuple
t ∈ S then s(t) has the logic value true; if tuple t ∈ ¬S then s(t) has the
logic value false; if tuple t ∈ S then s(t) has the logic value ⊤ (denoting
contradictory evidence); otherwise, s(t) has the logic value ⊥ (denoting lack
of information). Four-valued logics have been studied by other authors, of
which the most well-known is Belnap’s four-valued logic [Bel77b, Bel77a].
However, statements in our language make explicit reference to one of the
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three regions of a rough set (lower approximation, upper approximation, or
boundary region) or the remaining part of the world not belonging to any
of these three regions. In other words, the statements contain explicit tests
of whether a tuple t belongs to one of those four regions (as shown in the
next section, predicate symbols can only occur in rough and testing literals).
Since each of those four regions is a crisp set, we do not need to resort to
four-valued logical operations (e.g. disjunction). We use instead two-valued
logic. The main advantage of using two-valued semantics is that there are
several systems [DEBC96, Sim] readily available that can be used for mak-
ing computations and answering queries. This aspect is particularly relevant
from the point of view of implementing a system that can answer queries
about knowledge bases encoded in our language. Formulating a language
with a four-valued semantics that caters for representing and reasoning with
rough concepts is out of the scope of this thesis, although this could be an
issue for future work.

Section 4.1 introduces the language and its declarative semantics is then
formalized in section 4.2. A transformation of the proposed language into
the language of extended logic programs and a proof of its correctness is
presented in section 4.3. Finally, section 4.4 puts forward a query language
to extract information from rough relations defined in a program.

4.1 The Syntax

The language we are going to introduce uses three disjoint alphabets: an
alphabet of variable symbols V ar, an alphabet of constant symbols Const,
and an alphabet of predicate symbols Pred. The notions of term and atom
are similar to the ones introduced for logic programs. A term t is any symbol
belonging to V ar ∪ Const. We follow the usual convention that variables
start with upper case letter (e.g. X,Dist ∈ V ar) and constants begin with
lower case (e.g. small, c ∈ Const). Moreover, an n-ary predicate p is often
denoted p/n ∈ Pred and the set of symbols {¬,not} * Pred. An atom A is
an expression of the form p(t1, . . . , tn), where p is an n-ary predicate symbol
and each t1, . . . , tn is a term.

Given a predicate p/n of arity n > 0, formulas of the form l(t1, . . . , tn),
l(t1, . . . , tn) , or l(t1, . . . , tn) , where l is either p or ¬p, are called rough
literals. Moreover, the expression p?(t1, . . . , tn) represents a testing literal.

Definition 4.1 A rough clause is any expression of the form

H:- B1, . . . , Bn, T1, . . . , Tm.
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where H and every Bi (0 ≤ i ≤ n) is a rough literal, and each Tj (0 ≤ j ≤ m)
is a testing literal such that all variables occurring in a testing literal also
occur in some Bi.

Rough clauses with an empty body (i.e. n = 0 and m = 0) are called
rough facts.

The order by which rough (testing) literals occur in a rough clause is
irrelevant. Thus, both rough clauses

p(X, Y ):- q1(X, Y ),¬q2(X, Y ), r1?(X), r2?(Y ).

p(X, Y ):- ¬q2(X, Y ), q1(X, Y ), r2?(X), r1?(Y ).

have the same meaning.
We can now define the notion of rough program.

Definition 4.2 A rough program P is a finite set of rough clauses.

Intuitively, each predicate p denotes a rough relation P and we use rough
literals to represent evidence about tuples. The lower (upper) approxima-
tion of P is represented by p(t1, . . . , tn) (p(t1, . . . , tn)). The boundary of P
is denoted by p(t1, . . . , tn). Obviously, the rough literals p(t1, . . . , tn) and

¬p(t1, . . . , tn) have the same meaning. For instance, the rough facts1

recommendLenses(young, myope, yes).

and
¬recommendLenses(young, myope, yes).

express the information that the tuple 〈young, myope, yes〉 belongs to both
RecommendLenses and to ¬RecommendLenses (thus, to the boundary
of RecommendLenses). Informally, the first fact states that young my-
ope people with astigmatism should use contact lenses while the second
asserts exactly the opposite (perhaps, because different opticians have dif-
ferent opinions for these customers). The rough fact

recommendLenses(young, myope, no).

states that the tuple 〈young, myope, no〉 is a positive example of rough re-
lation RecommendLenses but cannot be a negative example of it (i.e.
〈young, myope, no〉 ∈ RecommendLenses). Notice that rough literals of
the form ¬p(t1, . . . , tn) or ¬p(t1, . . . , tn) express negative evidence.

1The third condition attribute refers to whether the person suffers from astigmatism.
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A testing literal p?(t1, . . . , tn) asserts that there is no information whether
tuple 〈t1, . . . , tn〉 describes a positive and/or a negative example of the con-
cept represented by rough relation P .

A decision table D = (U,A, d) can be easily represented in our lan-
guage, if quantitative measures are ignored. A row 〈c1, . . . , cn〉 of D corre-
sponding to a positive (negative) example, where each ci ∈ Vai

is the value
of a condition attribute ai ∈ A, is represented as the fact d(c1, . . . , cn)
(¬d(c1, . . . , cn)). An important aspect to bear in mind is that the proposed
language does not represent the individuals in U . Rough relations are rep-
resented as sets of tuples of attribute values, not as sets of individuals.

We stress that condition attributes are not referred by their name (e.g.
Age) in the rough literals. They are instead identified by their position in
the argument list of the rough literal. For instance, we use the convention
that the first argument of the predicate recommendLenses represents the
condition attribute Age. The condition attribute associated with a term ti
in a rough literal

q(t1, . . . , tn) or ¬q(t1, . . . , tn) or
q(t1, . . . , tn) or ¬q(t1, . . . , tn) or
q(t1, . . . , tn) or ¬q(t1, . . . , tn),

is represented as attQ(i). Each term ti can only represent values belonging
to VattQ(i).

A rough clause represents an implication, as in the context of logic pro-
grams. The use of variables in a rough literal of a rough clause indicate
that the underlying implication is valid for each possible value of the cor-
responding condition attribute. Since rough clauses allow lower and upper
approximations of a relation as well as boundaries to occur both in the body
and in the head of a clause, it is possible to define separately each of the
regions (i.e. lower and upper approximations and boundary) of a rough
relation in terms of regions of other rough relations. For instance, we can
state that the boundary of a rough relation Q is contained in the lower ap-
proximation of another rough relation P . If predicates q/3 and p/3 denote
the rough relations Q and P , respectively, then the rough clause

p(X1, X2, X3):- q(X1, X2, X3).

captures such information.
Given a rough relation P with n attributes, an n-ary tuple t is undefined

with respect to P if and only if t is neither a positive nor a negative example
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of the relation, i.e.

〈t1, . . . , tn〉 6∈ P and 〈t1, . . . , tn〉 6∈ ¬P ,

where each ti ∈ VattP (i). We can test in the body of a rough clause whether
a tuple 〈t1, . . . , tn〉 is undefined with respect to P , by using the testing literal
p?(t1, . . . , tn).

The following rough clause

p(X1, X2, X3):- q(X1, X2, X3), r?(X1, X2, X3).

asserts that if a tuple t ∈ Q and and t is undefined with respect to R (i.e.
there is no information whether t describes a positive or a negative example
of the concept represented by rough relation R) then t also belongs to P .

The following two examples motivate the potential usefulness of our lan-
guage. More examples are presented in the next chapter.

Example 4.1 A relation Train has two arguments (condition attributes)
representing time and location, respectively. Two (or more) sensors au-
tomatically detect presence/absence of an approaching train at a crossing,
producing facts like train(12:50,montijo). automatically added to the
knowledge base. A malfunction of a sensor may result in the contradictory
fact ¬train(12:50,montijo). being added, too. Crossing is allowed if for
sure no train approaches. This can be described by the following clause in-
volving lower approximation in the body.

cross(X,Y) :- ¬train(X,Y).

¤

Example 4.2 Statistical data on purchases of certain product during a cal-
endar year is organized as a decision table with the following 3 condition
attributes defining groups of customers:

Area - zip code of the area where the customer lives

Income - customer’s income interval

Age - customer’s age interval

Notice that the decision table may define a rough relation: a young cus-
tomer living in Norrköping and having medium income may be considered
inactive (perhaps, because he has not bought any product item during last
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year) while another young customer, also living in Norrköping and with
medium income is classified as active.

The marketing department uses the activity tables act1 and act2 from
two consecutive years to identify the groups of growing activity (ga). The
tables are represented as rough facts in our language. The activity of a group
may be defined: (1) as definitely growing, if the group was possibly inactive
in year 1 and definitely active in year 2; (2) as definitely non growing, if
its activity changed from possibly active to definitely inactive; and (3) as a
boundary, if the activity was boundary in both years. This can be described
by the following rough clauses.

(1) ga(Area, Inc, Age) :- ¬act1(Area, Inc, Age),

act2(Area, Inc, Age).

(2) ¬ga(Area, Inc, Age) :- act1(Area, Inc, Age),

¬act2(Area, Inc, Age).

(3) ga(Area, Inc, Age) :- act1(Area, Inc, Age),

act2(Area, Inc, Age).
¤

The language described in this section extends substantially the language
presented in [MV02, VM02]. The language discussed in this previous work
only allows the use of upper approximations in the definition of new rough
relations.

4.2 The Declarative Semantics

The main idea underlying the proposed language is that each predicate
symbol occurring in a rough program denotes a rough relation. We formalize
this idea in this section.

Definition 4.3 Let P be a rough program. A rough interpretation I of P
is a function mapping each predicate symbol q/n occurring in P into a rough

relation QI = (QI ,¬QI) such that QI ,¬QI ⊆
∏

1≤i≤n VattQ(i).

If no variables occur in a rough (testing) literal then the rough (testing)
literal is called a ground rough (testing) literal. A rough clause is ground, if
all rough and testing literals occurring in it are also ground.

The notion of a rough literal L being true in a rough interpretation I,
denoted as I |= L, is defined by statements (1) − (8) below.
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(1) I |= q(c1, . . . , cn) ⇔ 〈c1, . . . , cn〉 ∈ QI .

(2) I |= q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 6∈ ¬QI).

(3) I |= q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI).

(4) I |= ¬q(c1, . . . , cn) ⇔ 〈c1, . . . , cn〉 ∈ ¬QI .

(5) I |= ¬q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ ¬QI and 〈c1, . . . , cn〉 6∈ QI).

(6) I |= ¬q(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI).

(7) I |= q?(c1, . . . , cn) ⇔ (〈c1, . . . , cn〉 6∈ QI and 〈c1, . . . , cn〉 6∈ ¬QI).

(8) I |= B1, · · · , Bn, T1, · · · , Tm ⇔ (I |= B1, · · · , I |= Bn,
I |= T1, · · · , I |= Tm), where each Bi (0 ≤ i ≤ n) is a ground rough
literal and each Tj (0 ≤ j ≤ m) is a ground testing literal.

Note that for any rough interpretation I, it is possible that

I |= q(t1, . . . , tn),¬q(t1, . . . , tn) ,

for two rough literals q(t1, . . . , tn) and ¬q(t1, . . . , tn). However, if we consider
lower approximations instead then we must have

I 6|= q(t1, . . . , tn),¬q(t1, . . . , tn) .

Consider a rough literal l(t1, . . . , tn), with 1 ≤ n and l is either q, or q,
or q, or ¬q, or ¬q, or ¬q, for some predicate q/n. Recall that each term
ti is associated with a condition attribute of rough relation Q whose value
domain is VattQ(i).

Definition 4.4 Let X1j , . . . , Xnk (1 ≤ n and 1 ≤ j ≤ k) be variables oc-
curring in some rough literal, where the second index indicates the variable’s
position in the argument list of the literal. Assume also that q is the predi-
cate symbol occurring in the rough literal. A grounding substitution θ is a
set of bindings {X1j/c1, . . . , Xnk/cn} (including the empty set) of variables
Xim (1 ≤ i ≤ n and j ≤ m ≤ k) to constants ci ∈ VattQ(m).

The notion of ground rough program is similar to the notion of ground
(extended) logic program, presented in the previous chapter. A ground
instance of a rough clause C, denoted by Cθ, is obtained by applying a
grounding substitution θ to rough clause C and Cθ is ground. Given a
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rough program P, ground(P) represents the set of all ground instances of
any rough clause C ∈ P.

A rough interpretation I of a rough program P satisfies a rough clause

H:- B1, . . . , Bn, T1, . . . , Tm. ∈ ground(P)

if and only if

• if I |= B1, . . . , Bn, T1, . . . , Tm then I |= H.

Definition 4.5 A model of a rough program P is a rough interpretation
that satisfies each rough clause of ground(P).

A rough program may have several models or no models at all. For
instance, the rough program

P = {p(a):- q(b). ,¬p(a). , q(b).}

has no models. Example 4.3 below shows a rough program with more than
one model.

We turn now to the definition of a partial order between the models of
a rough program.

Definition 4.6 Let M1 and M2 be two models of a rough program P.
M1 ¹ M2 if and only if

QM1 ⊆ QM2 and ¬QM1 ⊆ ¬QM2 ,

for every predicate symbol q/n occurring in P.

Based on the partial order ¹ defined above, we introduce the notion of
minimal models.

Definition 4.7 A model M is a minimal model of a rough program P if
and only if M′ � M, for every other model M′ of P.

We give next an example illustrating a situation where a rough program
has more than one model.

Example 4.3 Consider that we want to represent some expert knowledge
saying that

”If someone possibly has an infection but his temperature is normal,
then he either might suffer from diseaseA or from diseaseB (but
never from both).”
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Moreover, two decision tables are given. Based on the existence of certain
symptoms and results of some clinical tests, several experts decide indepen-
dently whether a patient has diseaseA or diseaseB. Symptoms and clinical
test results form the condition attributes. For instance, a condition attribute
is temperature that can have the values low, normal, or high.

The expert knowledge can be represented as follows. Assume that predi-
cates diseaseA and diseaseB have arity three (i.e. the corresponding deci-
sion tables have three condition attributes).

diseaseA(infect, normal, Z) :-

¬diseaseB(infect, normal, Z).

diseaseB(infect, normal, Z) :-

¬diseaseA(infect, normal, Z).

Note that rough relations DiseaseA and DiseaseB, denoted by predicates
diseaseA and diseaseB respectively, are partially defined explicitly by deci-
sion tables. Some other tuples belonging to these relations are obtained from
the clauses above. In reality experts may decide in different ways whether a
person may have a certain disease.

Consider the rough program P consisting of the two clauses above and
including also the following facts obtained from the decision tables.

¬diseaseA(infect, normal, c). ¬diseaseB(infect, normal, c).

Program P has (at least) two models, M1 and M2, reflecting two possible
situations according to the available knowledge.

• 〈infect,normal, c〉 ∈ DiseaseAM1 and
〈infect,normal, c〉 ∈ ¬DiseaseBM1 .

• 〈infect,normal, c〉 ∈ DiseaseBM2 and
〈infect,normal, c〉 ∈ ¬DiseaseAM2 .

In practice it may be desirable to find preferred models or at least discard
some models seen as not relevant. This issue has been studied in the context
of logic programming and the proposed techniques may be applicable here.
In the context of rough sets, we could address this problem by extending
to clauses the quantitative measures associated with decision tables. In the
example above, model M1 is obtained by applying the first clause above,
while model M2 is obtained by applying the second clause. If the tuple
〈infect, normal, c〉 appears as a negative example many more times in the
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decision table for diseaseB than in the decision table for diseaseA then we
may decide to discard the second model.

¤

Let P be a rough program and q be a relation symbol occurring in P. We
are obviously not interested in any model M of P that makes more tuples to
belong to QM or to ¬QM than what is needed to satisfy the rough clauses
of P. Thus, minimal models (as defined in 4.7) seem good candidates to
express the meaning of a rough program. However, not all minimal models
may properly capture the semantics of a rough program. Next example tries
to illustrate this point.

Example 4.4 Consider the following rough program

P = {r(c):- ¬r(c). ,¬r(c).} .

A minimal model M of P maps predicate r into the rough relation RM =
({〈c〉}, {〈c〉}) i.e. 〈c〉 belongs to the boundary of rough relation RM. How-
ever, no information encoded in the rough clauses of P leads to the conclu-
sion that 〈c〉 ∈ RM. In order to be able to conclude that 〈c〉 ∈ RM, it would
be needed that M |= ¬r(c). By rough clause

r(c):- ¬r(c). (1)

we could then conclude that 〈c〉 ∈ RM. However, M 6|= ¬r(c). Hence, it
seems reasonable to reject model M. Note that a rough interpretation I
such that RI = (∅, {〈c〉}) is not a model of P because it does not satisfy
rough clause (1). Thus, P seems to bear a contradiction. Rough clause (1)
informally states that if there is evidence that 〈c〉 is only a negative example
of the concept represented by rough relation R (i.e. there is no evidence that
〈c〉 is a positive example of the concept) then we can conclude that 〈c〉 is
also a positive example of that concept.

¤

Let I be a rough interpretation of a rough program P. In order to be able
to define the declarative semantics of a rough program, we need to introduce
the following function, ΨI , transforming P into a ground rough program
ΨI(P) such that neither lower approximations nor testing literals occur in
the body of any of its rough clauses. This transformation can be informally
described as follows. Assume that C is a rough clause of ground(P). For
every ground rough literal q(t1, . . . , tn) referring to a lower approximation
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and occurring in the body of C, if I 6|= ¬q(t1, . . . , tn) then q(t1, . . . , tn) in
the body of C is replaced by q(t1, . . . , tn). Moreover, if a ground testing
literal occurring in the body of C is true in I, then it is removed from the
body of the clause. The underlying idea behind this transformation is that
if I is a model of P then it should also be a model of the transformed rough
program. We give a simple example of this transformation.

Example 4.5 Consider the following ground rough clause

p(a, b):- q(a, b), r?(b, c). ∈ ground(P)

and an interpretation I of P such that QI = ¬QI = RI = ¬RI = ∅. Since
I 6|= ¬q(a, b) and I |= r?(b, c), we have that

p(a, b):- q(a, b). ∈ ΨI(P) .

¤

We present below the formal definition of function Ψ. This definition
extends the notion of reduct proposed in [GL88] to rough programs.

Consider that ¬¬q ≡ q, for any predicate symbol q.

Definition 4.8 Let P be a rough program and I be a rough interpretation
of P. Assume also that each lj (1 ≤ j ≤ k) in the expression below is either
qi or ¬qi, for some predicate qi. Then ΨI(P) maps P into a ground rough
program satisfying the following condition (n, i, k ≥ 0 and m1, . . . ,mk ≥ 0):

H:- B1, . . . , Bn, l1(t11, . . . t1m1
), . . . , lk(tk1, . . . tkmk

). ∈ ΨI(P)

if and only if there is a rough clause

H:- B1, . . . , Bn,
l1(t11, . . . t1m1

), . . . , lk(tk1, . . . tkmk
),

T1, . . . , Ti. ∈ ground(P)

such that

I 6|= ¬l1(t11, . . . t1m1
), . . . ,¬lk(tk1, . . . tkmk

) and
I |= T1, . . . , Ti ,

where each Bj (0 ≤ j ≤ n) is a rough literal not referring to a lower ap-
proximation and each Tl (0 ≤ l ≤ i) is a testing literal.
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An important property of a rough program ΨI(P) is that it either has
a least model (a unique minimal model) or no model at all.

Lemma 4.1 Let P be a rough program and I be a rough interpretation of
P. If ΨI(P) has a model then it has a least model, with respect to partial
relation ¹.

Proof: Let us assume that ΨI(P) has a model. To prove that ΨI(P)
has a least model, we show that any rough interpretation M defined as
below is also a model of ΨI(P). Let V be any non-empty set of models of
ΨI(P).

QM = (
⋂

M′∈V

QM′ ,
⋂

M′∈V

¬QM′) ,

for each rough relation Q.
Assume that H:- B. ∈ ΨI(P) and that M |= B. Then, W |= B, for

every W ∈ V . The key to understanding this point is that the body B
can only contain rough literals referring to upper approximations and to
boundaries. Moreover, upper approximations and boundaries can be seen
as monotonic operators.

We conclude that W |= H, for every model W ∈ V , and consequently,
M |= H.

It is obvious that M ¹ W , for all W ∈ V .
¤

The meaning of a rough program is captured by those minimal models
that satisfy the condition described in the following definition.

Definition 4.9 Let P be a rough program and min(P) be the set of minimal
models of P. The semantics of P, denoted as sem(P), is defined as

sem(P) = {M ∈ min(P) | M is the least model of ΨM(P)} .

Example 4.6 Consider a rough program P containing only the rough clauses
and facts of example 4.3. Then, sem(P) = {M1,M2}.

DiseaseAM1 = ({〈infect, normal, c〉}, {〈infect, normal, c〉}) ,
DiseaseBM1 = (∅, {〈infect, normal, c〉}) ,

DiseaseAM2 = (∅, {〈infect, normal, c〉})
DiseaseBM2 = ({〈infect, normal, c〉}, {〈infect, normal, c〉}) .

Note that ΨM1
(P) has only the following rough clauses
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diseaseA(infect, normal, c) :-

¬diseaseB(infect, normal, c).

¬diseaseA(infect, normal, c).

¬diseaseB(infect, normal, c).

It is easy to see that M1 (M2) is the least model of ΨM1
(P) (ΨM2

(P)).
¤

Different minimal models M ∈ sem(P) can be informally understood as
different alternative scenarios implied by the knowledge encoded in P.

Example 4.7 Consider again the rough program presented in example 4.4,

P = {r(c):- ¬r(c). ,¬r(c).} ,

and the minimal model M such that RM = ({〈c〉}, {〈c〉}). Note that ΨM(P) =
{¬r(c).}. Obviously, M is not the least model of ΨM(P). Hence, M 6∈
sem(P).

We can easily see that sem(P) = ∅.
¤

Finally, we introduce the notion of a rough (testing) literal l to be implied
by a rough program P, denoted as P |= l.

Definition 4.10 Let P be a rough program and l be a rough or testing
literal. There is a model M ∈ sem(P) such that M |= l if and only if
P |= l.

4.3 Computing the Semantics of Rough Pro-

grams

In the previous section, we define the declarative semantics of a rough pro-
gram P as a subset of its minimal models. An obvious question is how such
models, belonging to sem(P), can be computed. This section addresses this
problem.

Each rough program is compiled to an extended logic program. As we
show in section 4.3.2, each paraconsistent stable model, of the extended
logic program obtained by compiling a rough program P, is isomorphic to
a model belonging to sem(P), and vice-versa. The operational semantics of
extended logic programs is well studied [NS96, Bar03] and there are several
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systems, like dlv [ELM+98, Pro] and Smodels [NS97, Sim], that can be used
to compute paraconsistent stable models of extended logic programs.

Some rough programs have at most one model. Absence of recursion is
a sufficient condition for a rough program to have either a least model or no
models. These rough programs can be compiled to a non-recursive extended
logic program. Rough programs can be queried (queries are discussed in
section 4.4). Queries to a rough program are also transformed into queries
to the compiled program. Given a non-recursive extended logic program,
any standard Prolog system [DEBC96] can be used to determine whether
this program has a paraconsistent stable model and answer queries. Hence
for non-recursive rough programs, we could implement a system based on
our ideas in Prolog. An easy way to verify whether a rough program is
recursive consists in checking whether the ground compiled extended logic
program is recursive.

We give below some examples of recursive and non-recursive rough pro-
grams.

Example 4.8 Consider the following rough programs.

P1 = {q(a, b):- r(a, b). , r(a, b):- q(a, b).} ,
P2 = {q(a, b):- r(a, b). , r(a, b):- q(c, b).} ,
P3 = {q(a, b):- ¬q(a, b).} .

Rough program P1 is recursive while rough programs P2 and P3 are not.
¤

Generally speaking, the application problems discussed in rough set liter-
ature that can be formulated in our language do not seem to require recursive
rough programs and, therefore, they are not compiled to recursive extended
logic programs. Some of these applications are discussed in the next chap-
ter. Moreover, we have also implemented in Prolog a system that is able
to reason about rough relations defined in a non-recursive rough program.
This system is the topic of chapter 6.

4.3.1 Compiling Rough Programs into Extended Logic

Programs

In this section, we discuss in detail how rough programs can be transformed
into extended logic programs.
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The transformation to be presented has the following property. A model
M of a rough program P belongs to sem(P) if and only if there is a para-
consistent stable model M′ of the transformed program P ′ such that each
predicate symbol q/n occurring in P denotes the rough relation

QM = ({〈c1, . . . , cn〉 | q(c1, . . . , cn) ∈ M′},
{〈c1, . . . , cn〉 | ¬q(c1, . . . , cn) ∈ M′}) .

In section 4.3.2, we prove that this property is in fact guaranteed by the
proposed compilation.

The intuition underlying the compilation procedure is as follows. Assume
that P and Q are the rough relations denoted by predicates p and q occurring
in a rough program, respectively. Then, the literal p(t1, . . . , tn) states that
the tuple 〈t1, . . . , tn〉 belongs to P and the literal ¬p(t1, . . . , tn) indicates
that tuple 〈t1, . . . , tn〉 is not in P . (i.e. belongs to ¬P ). The default negated
literal not p(t1, . . . , tn) (not ¬p(t1, . . . , tn)) states that there is no evidence
that the tuple 〈t1, . . . , tn〉 is a positive (negative) example of P . Now the
notions of approximations and boundary reflected by rough literals can be
equivalently expressed by conjunctions of literals of extended logic programs,
as formalized by the following transformation τ2. This transformation can
be used to compile rough literals in the bodies of rough clauses.

τ2(p?(t1, . . . , tn)) = not p(t1, . . . , tn),not ¬p(t1, . . . , tn) ,
τ2(p(t1, . . . , tn)) = p(t1, . . . , tn),not ¬p(t1, . . . , tn) ,

τ2(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn),not p(t1, . . . , tn) ,
τ2(p(t1, . . . , tn)) = p(t1, . . . , tn) ,

τ2(¬p(t1, . . . , tn)) = ¬p(t1, . . . , tn) ,
τ2(p(t1, . . . , tn)) = p(t1, . . . , tn),¬p(t1, . . . , tn) ,

τ2(¬p(t1, . . . , tn)) = τ2(p(t1, . . . , tn)) ,
τ2((B1, . . . , Bn)) = τ2(B1), . . . , τ2(Bn) .

The translation above is not directly applicable to the heads of rough
clauses, since the heads in the target programs can contain neither con-
junctions of literals nor default negated literals. In order to address this
problem, rough clauses in the source program are compiled into a clause
and an integrity constraint of the target program, as described below. For
example, consider the rough clause

p(X1, X2, X3):- q(X1, X2, Xn).

stating that the boundary of Q (rough relation denoted by predicate q/3)
is contained in the lower approximation of P (rough relation denoted by
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predicate p/3). Any element in the boundary of Q should be also considered
a positive example of P but it should be excluded that those tuples are
examples of ¬P . Moreover, a tuple t belongs to the boundary of Q if and
only if it represents both positive and negative evidence of it. Thus,

p(X1, X2, X3):- q(X1, X2, X3),¬q(X1, X2, X3). (1)

and
:- ¬p(X1, X2, X3), q(X1, X2, X3),¬q(X1, X2, X3). (2)

capture the same information as the rough clause above. Clause (1) states
that tuples belonging to both Q and ¬Q also belong to P , while the integrity
constraint (2) does not allow those tuples to belong to ¬P .

The discussion above gives a motivation for the formalization of the
translation of rough clauses into clauses of an extended logic program. This
formalization is defined as the following function τ1 which refers to the above
defined function τ2. Note that ¬p in an extended logic program should es-
sentially be viewed as a new predicate symbol representing explicit negation.

τ1(p(t1, . . . , tn):- B.) = {p(t1, . . . , tn):- τ2(B). ,
:- ¬p(t1, . . . , tn) , τ2(B).} ,

τ1(p(t1, . . . , tn):- B.) = {p(t1, . . . , tn):- τ2(B).} ,

τ1(¬p(t1, . . . , tn):- B.) = {¬p(t1, . . . , tn):- τ2(B). ,
:- p(t1, . . . , tn) , τ2(B).} ,

τ1(¬p(t1, . . . , tn):- B.) = {¬p(t1, . . . , tn):- τ2(B).} ,

τ1(p(t1, . . . , tn):- B.) = {¬p(t1, . . . , tn):- τ2(B). ,
p(t1, . . . , tn):- τ2(B).} ,

τ1(¬p(t1, . . . , tn):- B.) = τ1(p(t1, . . . , tn):- B.) .

A rough program P will be transformed into an extended logic program
by compiling each rough clause. Thus, τ1(P) =

⋃

C∈P τ1(C) .
Next example illustrates the proposed encoding of rough programs.

Example 4.9 Assume that we have two similar decision tables

Deathmi1=(U1, {Age, Hypert, Scanabn}, Deathmi1) ,
Deathmi2=(U2, {Age, Hypert, Scanabn}, Deathmi2) ,

referring to different periods of time (e.g. year 1 and year 2, respectively).
These tables record for several patients their age group (Age), whether they
have hypertension (Hypert), and the result of a medical test to the heart



4.3. COMPUTING THE SEMANTICS OF ROUGH PROGRAMS 61

(Scanabn). The decision attribute indicates whether the patient had a major
heart problem during the follow up period. Both tables are represented as a
set of facts in our language.

Our aim is to monitor changes in the boundary region from one period
of time to another. For instance, this can give us an idea whether there
are groups of patients for who the risk of having a serious cardiac problem
has increased, decreased, or remained stable from the first period of time
to the second period. Thus, if an indiscernibility class described by a tuple
t belongs to the boundary of table Deathmi1 and the indiscernibility class
corresponding to the same tuple t is contained in the lower approximation
of the rough relation represented by table Deathmi2 then, we may interpret
this fact as an increase of risk for those patients having the symptoms and
test results indicated by t.

These ideas can be expressed by the following rough clauses defining a
new rough relation, denoted by predicate risk, in such a way that Risk,
¬Risk, and Risk correspond to an increase, decrease, and stability of the
risk of a cardiac event, respectively.

(1) risk(Age, Hypert, Scanabn) :-

deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn).

(2) ¬risk(Age, Hypert, Scanabn):-

deathmi1(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn).

(3) risk(Age, Hypert, Scanabn) :-

deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn).

Next, we show the result of compiling (i.e. applying function τ1 to) each
rough clause above.
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• Compilation of rough clause (1).

risk(Age, Hypert, Scanabn) :-

deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
not ¬deathmi2(Age, Hypert, Scanabn).

:- ¬risk(Age, Hypert, Scanabn),
deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
not ¬deathmi2(Age, Hypert, Scanabn).

• Compilation of rough clause (2).

¬risk(Age, Hypert, Scanabn) :-

deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn),
not deathmi2(Age, Hypert, Scanabn).

:- risk(Age, Hypert, Scanabn),
deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn),
not deathmi2(Age, Hypert, Scanabn).

• Compilation of rough clause (3).

risk(Age, Hypert, Scanabn) :-

deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn).

¬risk(Age, Hypert, Scanabn) :-

deathmi1(Age, Hypert, Scanabn),
¬deathmi1(Age, Hypert, Scanabn),
deathmi2(Age, Hypert, Scanabn),
¬deathmi2(Age, Hypert, Scanabn).

¤



4.3. COMPUTING THE SEMANTICS OF ROUGH PROGRAMS 63

Recall that, for each rough interpretation I of a rough program P, a
predicate q occurring in P may denote a different rough relation, represented
as QI . Consequently, the denotation of a predicate is always with respect
to a rough interpretation.

4.3.2 Correctness of the Compilation Procedure

In order to be able to prove that the compilation function τ1 is correct, we
first show that each model of a rough program P corresponds to a model of
τ1(P), and vice-versa.

We start by defining a bijective function that maps each model of a rough
program into a model of an extended logic program.

Definition 4.11 Let I be a rough interpretation of a rough program. Then,
ϕ(I) is a interpretation of an extended logic program defined as follows.

(i) If 〈c1, . . . , cn〉 ∈ QI then q(c1, . . . , cn) ∈ ϕ(I).

(ii) If 〈c1, . . . , cn〉 ∈ ¬QI then ¬q(c1, . . . , cn) ∈ ϕ(I).

(iii) ϕ(I) is the smallest set (with respect to set inclusion) satisfying both
conditions(i) and (ii).

Lemma 4.2 Let I be a rough interpretation of a rough program. Then,
ϕ−1(ϕ(I)) = I.

Proof: Note that ϕ is a bijection, i.e. it is a surjection and an injection.
¤

Lemma 4.3 Let I1 and I2 be two rough interpretations of a rough program.
Then, I1 ¹ I2 if and only if ϕ(I1) ⊆ ϕ(I2).

Proof: The statement I1 ¹ I2 ⇔ ϕ(I1) ⊆ ϕ(I2) can be easily proved
by taking into account the definition of function ϕ and the definition of
partial relation ¹.

¤

Lemma 4.4 Let B1, . . . , Bn (n ≥ 1) be rough or testing literals. Assume
also that I is a rough interpretation.

• I |= B1, . . . , Bn if and only if ϕ(I) |= τ2(B1, . . . , Bn).

Proof: The prove can be simply done by structural induction. We start
with the base case.
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(i.1) First, we show that if I |= B then ϕ(I) |= τ2(B). Assume that
I |= B and let us consider the different possibilities for B.

• B ≡ q(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 ∈ QI and, by definition
4.11, q(c1, . . . , cn) ∈ ϕ(I). Since τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),
we conclude that ϕ(I) |= τ2(B).

• B ≡ ¬q(c1, . . . , cn). The argument is similar to the previous case.

• B ≡ q(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 ∈ QI and

〈c1, . . . , cn〉 6∈ ¬QI . By definition 4.11, q(c1, . . . , cn) ∈ ϕ(I) and
¬q(c1, . . . , cn) 6∈ ϕ(I). We have then that

ϕ(I) |= q(c1, . . . , cn),not ¬q(c1, . . . , cn) .

Since

τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),not ¬q(c1, . . . , cn) ,

we conclude that ϕ(I) |= τ2(B).

• B ≡ ¬q(c1, . . . , cn). The argument is similar to the previous case.

• B ≡ q(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 ∈ QI and

〈c1, . . . , cn〉 ∈ ¬QI . By definition 4.11, q(c1, . . . , cn) ∈ ϕ(I) and
¬q(c1, . . . , cn) ∈ ϕ(I). We have then that

ϕ(I) |= q(c1, . . . , cn),¬q(c1, . . . , cn) .

Since

τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),¬q(c1, . . . , cn) ,

we conclude that ϕ(I) |= τ2(B).

• B ≡ ¬q(c1, . . . , cn). The argument of the previous case applies
to this case, too.

• B ≡ q?(c1, . . . , cn). Thus, 〈c1, . . . , cn〉 6∈ QI and 〈c1, . . . , cn〉 6∈

¬QI . By definition 4.11, q(c1, . . . , cn) 6∈ ϕ(I) and
¬q(c1, . . . , cn) 6∈ ϕ(I). We have then that

ϕ(I) |= not q(c1, . . . , cn),not ¬q(c1, . . . , cn) .

Since τ2(q(c1, . . . , cn)) = not q(c1, . . . , cn),not ¬q(c1, . . . , cn) , we
conclude that ϕ(I) |= τ2(B).
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(i.2) Second, we show that if ϕ(I) |= τ2(B) then I |= B. Assume that
ϕ(I) |= τ2(B) and let us consider the different possibilities for B.

• B = q(c1, . . . , cn). Since τ2(q(c1, . . . , cn)) = q(c1, . . . , cn) and
ϕ(I) |= q(c1, . . . , cn), we conclude that q(c1, . . . , cn) ∈ ϕ(I). By

definition 4.11, we have that 〈c1, . . . , cn〉 ∈ QI . Hence, I |= B.

• B = ¬q(c1, . . . , cn). The argument is similar to the previous case.

• B = q(c1, . . . , cn). Since

τ2(q(c1, . . . , cn)) = q(c1, . . . , cn),not ¬q(c1, . . . , cn)

and ϕ(I) |= q(c1, . . . , cn),not ¬q(c1, . . . , cn), we conclude that
q(c1, . . . , cn) ∈ ϕ(I) and ¬q(c1, . . . , cn) 6∈ ϕ(I). By definition

4.11, we have that 〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 6∈ ¬QI .
Hence, I |= B.

• B = ¬q(c1, . . . , cn). The argument is similar to the previous case.

• B ≡ q(c1, . . . , cn). Then by definition of τ2, we have that ϕ(I) |=
q(c1, . . . , cn),¬q(c1, . . . , cn). Moreover by definition 4.11, we also

have that 〈c1, . . . , cn〉 ∈ QI and 〈c1, . . . , cn〉 ∈ ¬QI . We can then
conclude that I |= B.

• B ≡ ¬q(c1, . . . , cn). This case is equal to the previous one.

• B ≡ q?(c1, . . . , cn). Then by definition of τ2, we have that ϕ(I) 6|=
q(c1, . . . , cn) and ϕ(I) 6|= ¬q(c1, . . . , cn). Moreover by definition

4.11, we also have that 〈c1, . . . , cn〉 6∈ QI and 〈c1, . . . , cn〉 6∈ ¬QI .
We can then conclude that I |= B.

We proceed now to the inductive step.

(ii.1) First, we prove that if I |= B1, . . . , Bn then
ϕ(I) |= τ2(B1, . . . , Bn). Note that the base case (n = 1) has been
proved in (i.1). If I |= B1, . . . , Bn then I |= B1, . . . , I |= Bn . Conse-
quently, by inductive hypothesis, ϕ(I) |= τ2(B1), . . . , ϕ(I) |= τ2(Bn) .
The same is to say that ϕ(I) |= τ2(B1), . . . , τ2(Bn). By definition of
τ2, ϕ(I) |= τ2(B1, . . . , Bn) .

(ii.2) Second, we show that if ϕ(I) |= τ2(B1, . . . , Bn) then
I |= B1, . . . , Bn. Note that the base case (n = 1) has been proved
in (i.2). If ϕ(I) |= τ2(B1, . . . , Bn) then, by definition of τ2, ϕ(I) |=
τ2(B1), . . . , τ2(Bn). This is the same as ϕ(I) |= τ2(B1), . . . , ϕ(I) |=
τ2(Bn). By inductive hypothesis, I |= B1, . . . , I |= Bn and, conse-
quently, I |= B1, . . . , Bn .
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Lemma 4.5 Let P be a rough program and P ′ = τ1(P). If MP′ is a model
of P ′ then ϕ−1(MP′) is a model of P.

Proof: Assume that MP = ϕ−1(MP′) and let us prove that MP is a
model of P. Hence, we need to show that MP satisfies each rough clause
H:- B. ∈ ground(P). If MP 6|= B then MP trivially satisfies H:- B. .
Otherwise, let us assume that MP |= B. The head H of the rough clause
can be one of the rough literals:

(i) H ≡ q(c1, . . . , cn). Then, the compilation function τ1 ensures that
q(c1, . . . , cn):- τ2(B). ∈ P ′. By lemma 4.4, MP′ |= τ2(B). Con-
sequently, MP′ |= q(c1, . . . , cn) because MP′ is a model of P ′. By

definition of function ϕ, we can conclude that 〈c1, . . . , cn〉 ∈ QMP .
Hence, MP |= q(c1, . . . , cn).

(ii) H ≡ ¬q(c1, . . . , cn). The argument is similar to case (i).

(iii) H ≡ q(c1, . . . , cn). Then, the compilation function τ1 ensures that

{q(c1, . . . , cn):- τ2(B). , :- ¬q(c1, . . . , cn), τ2(B).} ⊆ P ′ .

By lemma 4.4, MP′ |= τ2(B). Consequently, MP′ |= q(c1, . . . , cn) and
MP′ 6|= ¬q(c1, . . . , cn) because MP′ is a model of P ′. By definition of

function ϕ, we can conclude that 〈c1, . . . , cn〉 ∈ QMP but 〈c1, . . . , cn〉 6∈

¬QMP . Hence, MP |= q(c1, . . . , cn).

(iv) H ≡ ¬q(c1, . . . , cn). The argument is similar to case (iii).

(v) H ≡ q(c1, . . . , cn). Then, the compilation function τ1 ensures that

{q(c1, . . . , cn):- τ2(B). , ¬q(c1, . . . , cn):- τ2(B).} ⊆ P ′ .

By lemma 4.4, MP′ |= τ2(B). Consequently, MP′ |= q(c1, . . . , cn)
and MP′ |= ¬q(c1, . . . , cn) because MP′ is a model of P ′. By def-

inition of function ϕ, we can conclude that 〈c1, . . . , cn〉 ∈ QMP and

〈c1, . . . , cn〉 ∈ ¬QMP . Hence, MP |= q(c1, . . . , cn).

(vi) H ≡ ¬q(c1, . . . , cn). This case is equivalent to case (v).

¤

Lemma 4.6 Let P be a rough program and P ′ = τ1(P). If MP is a model
of P then ϕ(MP) is a model of P ′.
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Proof: Assume that MP is a model of P. Hence, we need to show that
ϕ(MP) satisfies each clause H:- B1. ∈ ground(P ′) and each integrity con-
straint :- B2. ∈ ground(P ′). Note that clauses and integrity constraints
belonging to ground(P ′) can only have some particular forms determined
by the compilation function τ1. Let us then consider each possible case of
function τ1.

(i) Assume that the rough clause q(c1, . . . , cn):- B. ∈ P. Since MP

satisfies q(c1, . . . , cn):- B. , we have either that MP 6|= B or MP |=
B, q(c1, . . . , cn). If MP 6|= B then, by lemma 4.4, ϕ(MP) 6|= τ2(B),
and consequently, ϕ(MP) trivially satisfies the clause in
τ1(q(c1, . . . , cn):- B.) ⊆ P ′. Otherwise, MP |= B, q(c1, . . . , cn) and,
by lemma 4.4, ϕ(MP) |= τ2(B). Moreover by definition 4.11,
q(c1, . . . , cn) ∈ ϕ(MP).
Hence, ϕ(MP) satisfies the clause in τ1(q(c1, . . . , cn):- B.).

(ii) Assume that the rough clause ¬q(c1, . . . , cn):- B. ∈ P. This case can
be justified in a way similar to the previous one.

(iii) Assume that the rough clause q(c1, . . . , cn):- B. ∈ P. Since MP

satisfies q(c1, . . . , cn):- B. , we have either that MP 6|= B or MP |=
B, q(c1, . . . , cn). If MP 6|= B then, by lemma 4.4, ϕ(MP) 6|= τ2(B),
and consequently, ϕ(MP) satisfies the clause and the integrity con-
straint in τ1(q(c1, . . . , cn):- B.) ⊆ P ′. Otherwise, MP |= B and
MP |= q(c1, . . . , cn). By lemma 4.4, ϕ(MP) |= τ2(B) and by defini-

tion of |=, 〈c1, . . . , cn〉 ∈ QMP and 〈c1, . . . , cn〉 6∈ ¬QMP . By defini-
tion 4.11, we have that q(c1, . . . , cn) ∈ ϕ(MP) but ¬q(c1, . . . , cn) 6∈
ϕ(MP). Hence, ϕ(MP) satisfies the clause q(c1, . . . , cn):- τ2(B).
and the integrity constraint
:- ¬q(c1, . . . , cn), τ2(B). obtained by compiling the rough clause.

(iv) Assume that the rough clause ¬q(c1, . . . , cn):- B. ∈ P. An argument
similar to the previous case can be also used here.

(v) Assume that the rough clause q(c1, . . . , cn):- B. ∈ P. Since MP

satisfies q(c1, . . . , cn):- B. , we have either that MP 6|= B or MP |=
B, q(c1, . . . , cn). If MP 6|= B then, by lemma 4.4, ϕ(MP) 6|= τ2(B),
and consequently, ϕ(MP) satisfies both clauses in
τ1(q(c1, . . . , cn):- B.) ⊆ P ′. Otherwise, MP |= B and MP |=
q(c1, . . . , cn). By lemma 4.4, ϕ(MP) |= τ2(B) and by definition

of |=, 〈c1, . . . , cn〉 ∈ QMP and 〈c1, . . . , cn〉 ∈ ¬QMP . By defini-
tion 4.11, we have that q(c1, . . . , cn) ∈ ϕ(MP) and ¬q(c1, . . . , cn) ∈
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ϕ(MP). Thus, ϕ(MP) satisfies both clauses q(c1, . . . , cn):- τ2(B).
and ¬q(c1, . . . , cn):- τ2(B). obtained by compiling the rough clause.

(vi) Assume that the rough clause ¬q(c1, . . . , cn):- B. ∈ P. This case is
equivalent to the previous one.

¤

Lemma 4.7 Let P be a rough program. M is the least model (with respect
to ¹) of P if and only if ϕ(M) is the least model (with respect to ⊆) of
τ1(P).

Proof: This lemma is direct consequence of lemmas 4.3, 4.5, and 4.6.
¤

Lemma 4.8 Let P be a rough program and M be one of its models. Then,

ψϕ(M)(τ1(P)) = {H:- B. ∈ τ1(ΨM(P))} .

Proof: To simplify the presentation of this proof, we represent (rough)

predicate argument tuples as
−→
t , i.e. q(t1, . . . , tn) is represented as q(

−→
t ).

(i) We assume that

q(
−→
t ) :- B. ∈ τ1(ΨM(P)) .

and then show that q(
−→
t ) :- B. ∈ ψϕ(M)(τ1(P)).

From the hypotheses, it follows that one of the rough clauses below
belongs to ΨM(P).

q(
−→
t ) :- B′.

q(
−→
t ) :- B′.

q(
−→
t ) :- B′. ,

where B′ is such that τ2(B
′) = B.

Assume that q(
−→
t ) :- B′. ∈ ΨM(P) (the other two cases follow a

similar reasoning). By definition of ΨM, there is a rough clause

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ∈ ground(P) ,

with k, m ≥ 0,

M 6|= ¬r1(
−→
t1 ), . . . ,¬rk(

−→
tk ) (1)

M |= s1?(
−→
t′1 ), . . . , rk?(

−→
t′k ) (2)
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and B′ ≡ B1, r1(
−→
t1 ), . . . , rk(

−→
tk ). Consequently,

q(
−→
t ) :- τ2(B1), r1(

−→
t1 ), not ¬r1(

−→
t1 ) . . . , rk(

−→
tk ), not rk(

−→
t1k),

not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ) . . . , not ¬sm(

−→
t′m),¬sm(

−→
t′m).

belongs to τ1(ground(P)). Moreover, we conclude from (1) that

ϕ(M) |= not ¬r1(
−→
t1 ), . . . , not ¬rk(

−→
tk )

and (2) implies that

ϕ(M) |= not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ) . . . , not sm(

−→
t′m), not ¬sm(

−→
t′m) .

But then,

q(
−→
t ) :- τ2(B1), r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ ψϕ(M)(τ1(P)) .

Note that ψϕ(M)(τ1(ground(P))) = ψϕ(M)(τ1(P)).

Since (τ2(B1), r1(
−→
t1 ), . . . , rk(

−→
tk )) = τ2(B

′) = B, we can conclude that

q(
−→
t ) :- B. ∈ ψϕ(M)(τ1(P)).

(ii) We now assume

q(
−→
t ):- B. ∈ ψϕ(M)(τ1(P))

and then show that q(
−→
t ):- B. ∈ τ1(ΨM(P)).

From the hypotheses, it follows that there is a clause

q(
−→
t ) :- B, not ¬r1(

−→
t1 ), . . . , not ¬rk(

−→
tk ),

not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . , not sm(

−→
t′m), not ¬sm(

−→
t′m).

belonging to τ1(ground(P)), with m, k ≥ 0, and

ϕ(M) |= not ¬r1(
−→
t1 ), . . . , not ¬rk(

−→
tk ) (3)

ϕ(M) |= not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . ,

not sm(
−→
t′m), not ¬sm(

−→
t′m) (4)

Moreover, B ≡ B′, r1(
−→
t1 ), . . . , rk(

−→
tk ). One of the following rough

clauses has then to belong to ground(P).

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m).

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m).

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ,
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where τ2(B1) = B′.

Assume that

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ∈ ground(P)

(the other two cases follow a similar reasoning). We can conclude from
(3) that

M 6|= ¬r1(
−→
t1 ), . . . ,¬rk(

−→
tk )

and (4) implies that

M |= s1?(
−→
t′1 ), . . . , sm?(

−→
t′m) .

We have then that q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ ΨM(P) . Conse-

quently,

q(
−→
t ) :- B′, r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ τ1(ΨM(P)) .

Hence, q(
−→
t ) :- B. ∈ τ1(ΨM(P)).

¤

Lemma 4.9 Let P be a rough program. If M is the least model of ΨM(P)
then ϕ(M) is the least model of {H:- B. ∈ τ1(ΨM(P))}.

Proof: Let P ′ = {H:- B. ∈ τ1(ΨM(P))}. If M is the least model of
ΨM(P) then, by lemma 4.7, ϕ(M) is the least model of τ1(ΨM(P)) and,
therefore, it is a model of P ′.

Note that default negated literals cannot occur in any clause or integrity
constraint of τ1(ΨM(P)). The reason is that neither lower approximations
nor testing literals occur in the body of any rough clause in ΨM(P). In
addition, τ1(ΨM(P)) is definite logic program with integrity constraints.

Assume that ϕ(M) is not the least model of P ′. Then, there is a model
(e.g. the least model) M′ of P ′ such that M′ ≺ ϕ(M). Therefore, there
is one atom q(t1, . . . , tn) (or ¬q(t1, . . . , tn)) such that q(t1, . . . , tn) ∈ ϕ(M)
but q(t1, . . . , tn) 6∈ M′. Only the occurrence of a default negated literal, e.g.
not q(t1, . . . , tn), in an integrity constraint belonging to τ1(ΨM(P)) could
force the entrance of an atom in the least model of P ′ in order to be also
able to satisfy the integrity constraints. However, as we pointed out above,
this cannot be the case.

¤
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Lemma 4.10 Let P be a rough program and I be a rough interpretation
of P. If ϕ(I) satisfies each integrity constraint in τ1(P) then ϕ(I) satisfies
each integrity constraint in τ1(ΨI(P)).

Proof: To simplify the presentation of this proof, we represent predicate
argument tuples as

−→
t , i.e. q(t1, . . . , tn) is represented as q(

−→
t ).

Assume that ϕ(I) satisfies each integrity constraint in τ1(P). Taking into
account the definition of τ1, we conclude that integrity constraints originate
from compilation of rough clauses with a lower approximation in their head.
Hence, suppose that

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ), s1?(

−→
t′1 ), . . . , sm?(

−→
t′m). ∈ P ,

where k,m ≥ 0 and no lower approximations or testing literals occur in B1.
Let ic be an integrity constraint defined as follows.

ic = :- ¬q(
−→
t ), τ2(B1), r1(

−→
t1 ), not ¬r1(

−→
t1 ), . . . , rk(

−→
tk ), not ¬rk(

−→
tk ),

not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . ,not sm(

−→
t′m), not ¬sm(

−→
t′m).

Then, ic ∈ τ1(P) and ϕ(I) |= ic.
Assume also that

(a) I 6|= ¬r1(
−→
t1 ), . . . ,¬rk(

−→
tk ) and

(b) I |= s1?(
−→
t′1 ), . . . , sm?(

−→
t′m).

From (a) and (b) and by definition of ΨI ,

q(
−→
t ) :- B1, r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ ΨM(P) .

Thus, i′c ∈ τ1(ΨI(P)), with

i′c = ¬q(
−→
t ), τ2(B1), r1(

−→
t1 ), . . . , rk(

−→
tk ). ∈ τ1(ΨI(P)) .

Moreover,

• from (a), we have that ϕ(I) |= not ¬r1(
−→
t1 ), . . . not ¬rk(

−→
tk ) and

• from (b), we have that

ϕ(I) |= not s1(
−→
t′1 ), not ¬s1(

−→
t′1 ), . . . ,not sm(

−→
t′m), not ¬sm(

−→
t′m) .

Since ϕ(I) |= ic, we can conclude that ϕ(I) |= i′c.
¤
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Theorem 4.1 Let P be a rough program and P ′ = τ1(P). Then, M ∈
sem(P) if and only if ϕ(M) is a paraconsistent stable model of P ′.

Proof:

(i) First, we prove that if M ∈ sem(P) then ϕ(M) is a paraconsistent
stable model of P ′.

Assume that M ∈ sem(P). Then, M is the least model (with respect
to ¹) of ΨM(P) and, by lemma 4.9, ϕ(M) is the least (with respect to
⊆) model of {H :- B. ∈ τ1(ΨM(P))}. Consequently, by lemma 4.8,
ϕ(M) is the least model of ψϕ(M)(τ1(P)). Moreover, ϕ(M) satisfies
each integrity constraint belonging to τ1(P) because M is a model
of P and, by lemma 4.6, ϕ(M) is a model of τ1(P). We can then
conclude that ϕ(M) is a paraconsistent stable model of τ1(P).

(ii) Second, we show that if ϕ(M) is a paraconsistent stable model of P ′

then M ∈ sem(P).

Assume that ϕ(M) is a paraconsistent stable model of P ′. Then,

(a) ϕ(M) satisfies all integrity constraints belonging to τ1(P) and

(b) ϕ(M) is the least model of ψϕ(M)(τ1(P)).

From (a) and lemma 4.10, we conclude that ϕ(M) satisfies all integrity
constraints in τ1(ΨM(P))}. From (b) and lemma 4.8, we have that
ϕ(M) is the least model of {H :- B. ∈ τ1(ΨM(P))}. These two facts
lead us to the conclusion that ϕ(M) has to be the least model of
τ1(ΨM(P))}. Then, by lemma 4.7, M is the least model of ΨM(P)
and, therefore, M ∈ sem(P).

¤

Theorem 4.2 (Correctness) Let P be a rough program and P ′ = τ1(P)
and l be a rough or testing literal. Then, P |= l if and only if P ′ |= τ2(l).

Proof: This theorem is a direct consequence of theorem 4.1, of lemma
4.4, and of definitions 3.10 and 4.10.

4.4 Queries

This section proposes a query language for querying rough programs. This
can be achieved by adapting existing systems based on the stable model
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semantics [ELM+98, Sim]. Here, we only present queries and their expected
answers. Since there might exist more than one model for a rough program
P, answers are computed with respect to one model of sem(P). If a rough
program has a unique model, which may often be the case2, the answers will
refer to this model.

Definition 4.12 A rough query is a pair (Q,P), where P is a rough pro-
gram and Q is defined by the following abstract syntax rules

Q1 −→ A? | A?,Q1 .

Q2 −→ L1 | L1,Q2 | Q2,Q1 .
Q3 −→ L1 ⊆ L2 | L1 ⊆ L2,Q3 .
Q −→ Q1 | Q2 | Q3 .

where A? is a testing literal and each Li (i = 1, 2) is a rough literal. More-
over, a rough query is well-formed if the following conditions are satisfied.

(i) Any testing literal A? is ground (i.e. it does not contain any variables)
or its variables occur also in some rough literal of the query.

(ii) For an expression of the form L1 ⊆ L2 occurring in the query, any
variable occurring in L1 should also occur in L2, and vice-versa.

For example, rough queries (p(X1, X2), q?(X2, X3),P) and
(p(X1, X2, X3) ⊆ q(X1, X2),P) are not well-formed because the former
does not satisfy condition (i) and the latter violates condition (ii). In what
follows, we always assume that rough queries are well-formed.

Consider the rough query (q(c1, c2),P). Before presenting the notion of
answer, we explain informally what is being queried and the corresponding
answer. With that query we want to know whether the tuple 〈c1, c2〉 belongs
to the boundary region of the rough relation denoted by q, in some model
of P belonging to sem(P). If the atom occurring in the query is not ground
then, as answer, we may obtain a list of examples valid in a certain model.
For example, the query (q(X, Y ),P) requests a list of pairs that belong to

QM, for some some model M ∈ sem(P).
We formalize now the notion of answer to a rough query.

Definition 4.13 Let (Q,P) be a rough query.

2For instance, any rough program whose rough clauses do not contain lower approxi-
mations or testing literals in their bodies either has a least model or no model at all.
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(i) If Q is of the form Q1 or Q2 (see definition 4.12) then an answer to
the rough query is the set of ground substitutions

{θ | Qθ ∈ ground(Q) and M |= Qθ} ,

for some model M ∈ sem(P).

(ii) If Q is of the form L11 ⊆ L21, . . . , L1n ⊆ L2n, where each L1i and L2i

(1 ≤ i ≤ n) are rough literals, then the answer to the rough query is

(ii.1) yes , if there is a model M ∈ sem(P) such that

M |= L11θ ⇒ M |= L21θ ,
...

M |= L1nθ ⇒ M |= L2nθ ,

for every ground substitution θ;

(ii.2) no , otherwise.

Note that {∅} is a possible answer to a rough query. This answer can be
obtained in case (i) when the query is ground and it should essentially be
viewed as an affirmative answer. This contrasts with the empty set answer
that should be interpreted as a negative answer. For instance, if the answer
to the rough query (q(c1, c2),P) is ∅ then this means that 〈c1, c2〉 does not
belong to the upper approximation of rough relation Q (whatever is the
model M ∈ sem(P) that is considered).

The notion of answer to a rough query introduced above is declarative.
Hence, we need to discuss how such answers can be computed. A rough
query (Q,P), where Q is of the form Q1 or Q2 (see definition 4.12), is
translated into a query to the extended logic program τ1(P)

(τ2(Q), τ1(P)) ,

and each set of substitutions obtained as answer to this query is also an
answer to the rough query.

We now discuss how a query of the form (L1 ⊆ L2,P), where L1 and
L2 are rough literals, could be answered. The idea is to translate it to a
set of integrity constraints that are added to the compiled program (τ1(P)).
Hence, a new extended logic program P ′ is obtained in this way. Then,
the answer to the query is yes (i.e. the test succeeds) if P ′ has at least
one paraconsistent stable model. Otherwise, the answer is no (i.e. the test
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fails). Thus, we reduce the answering problem for this kind of queries to
the problem of checking the existence of paraconsistent stable models of an
extended logic program where certain properties, expressed by the integrity
constraints, hold.

Given an objective literal L, we assume that ¬¬L and L have the same
meaning. Moreover, consider the rough query (L1 ⊆ L2,P), where L1 and
L2 are rough literals. We define a function τ3 that transforms these queries
into an extended logic program with integrity constraints, for each possible
case of L2 (i.e. L,L, L).

τ3((L1 ⊆ L,P)) = τ1(P) ∪ {:- τ2(L1),not L.} ,
τ3((L1 ⊆ L,P)) = τ1(P) ∪ {:- τ2(L1),not L. , :- τ2(L1),¬L.} ,
τ3((L1 ⊆ L,P)) = τ1(P) ∪ {:- τ2(L1),not L. , :- τ2(L1),not ¬L.} .

It is trivial to extend function τ3 for compiling queries of the form (Q3,P).
Assume that P is a rough program, L1i and L2i are rough literals, with
1 ≤ i ≤ n, then

τ3((L11 ⊆ L21, · · · , L1n ⊆ L2n,P)) =
⋃

1≤i≤n

τ3((L1i ⊆ L2i,P)) .

Thus, given a rough program P, we have that the answer to the query
(Q3,P) is yes, if the extended logic program τ3((Q3,P)) has a paraconsis-
tent stable model. Otherwise, the answer is no.

Example 4.10 Consider again the rough program

P = {diseaseA(infect, normal, Z) :-

¬diseaseB(infect, normal, Z). ,

diseaseB(infect, normal, Z) :-

¬diseaseA(infect, normal, Z). ,

¬diseaseA(infect, normal, Z). ,
¬diseaseB(infect, normal, Z).} .

and the queries

(i) (diseaseA(X, Y, Z), P),

(ii) (diseaseA(X, Y, Z) ⊆ ¬diseaseB(X, Y, Z), P).
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Recall that there are two models that belong to sem(P), see example 4.6.
The answer to query (i) is the set of substitutions

{{X/infect, Y/normal, Z/c}}

because in one of the models, M1, 〈infect, normal, c〉 ∈ DiseaseAM1 .
Note that

τ3(diseaseA(X,Y, Z) ⊆ diseaseB(X, Y, Z), P) = τ1(P) ∪

{:- τ2(diseaseA(X,Y, Z)),not diseaseB(X, Y, Z). ,

:- τ2(diseaseA(X, Y, Z)),¬diseaseB(X,Y, Z).}

Since M1 is a paraconsistent stable model of this extended logic program,
obtained after compiling rough query (ii), we conclude that the answer to

(diseaseA(X, Y, Z) ⊆ ¬diseaseB(X, Y, Z), P)

is yes.
¤

The query language proposed here is slightly more general than the one
presented in [VDM03b], since now we allow for testing arbitrary inclusions
between lower and upper approximations. For instance in [VDM03b], we
could not test whether the lower approximation of one rough relation R1,
denoted by predicate r1/n, was included in the upper approximation of
another rough relation R2, denoted by another predicate r2/n. With the
rough query language discussed in this chapter, this can be achieved through
the query (r1(X1, . . . , Xn) ⊆ r2(X1, . . . , Xn) , P).

In some applications it is necessary to check rough inclusion or rough
equality of given rough relations. We recall the notions of rough inclusion
and rough equality [Paw91].

Definition 4.14 Rough relation Q1 is roughly included in rough relation
Q2, denoted as Q1⊏Q2, if and only if Q1 ⊆ Q2 and Q1 ⊆ Q2.

Definition 4.15 The rough sets Q1 and Q2 are roughly equal, denoted as
Q1 ≈ Q2, if and only if Q1 = Q2 and Q1 = Q2.

Given a rough program P and two predicates q1/n and q2/n denoting
rough relations Q1 and Q2, respectively, we can easily test whether Q1⊏Q2

or Q1 ≈ Q2. The rough query

(q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn), q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn) , P)
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tests for rough inclusion. Rough equality can be tested through the rough
query

(q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn),
q2(X1, . . . , Xn) ⊆ q1(X1, . . . , Xn),
q1(X1, . . . , Xn) ⊆ q2(X1, . . . , Xn),
q2(X1, . . . , Xn) ⊆ q1(X1, . . . , Xn) , P) .

Finally, we show the equivalence between the proposed technique to com-
pute answers of a rough query and its declarative semantics. To that end,
we need to prove the following two lemmas.

Lemma 4.11 Let (Q,P) be a rough query.

(i) Assume that Q is of the form Q1 or Q2 (see definition 4.12). If θ is
a ground substitution belonging to an answer of (τ2(Q), τ1(P)) then θ
also belongs to an answer of (Q,P).

(ii) Assume that Q is of the form Q3. If the extended logic program
τ3((Q,P)) has a paraconsistent stable model then the answer to the
rough query (Q,P) is yes . Otherwise, the answer is no .

Proof:

(i) Assume that θ is a ground substitution belonging to an answer of
(τ2(Q), τ1(P)). Hence by definition 3.10, we have that

τ1(P) |= τ2(Q)θ .

It easy to see that τ2(Q)θ = τ2(Qθ). By theorem 4.2, we have then
that P |= Qθ.

(ii) Assume that the extended logic program τ3((Q,P)) has a paraconsis-
tent stable model. Let Q ≡ L11 ⊆ L12, . . . , Ln1 ⊆ Ln2.

(ii.1) If some Li1 ⊆ Li2 ≡ Li1 ⊆ L (1 ≤ i ≤ n) then for all paracon-
sistent stable models M of τ3((Q,P)) and ground substitutions
θ we have that

M 6|= τ2(Li1)θ, not Lθ . (1)

Consider a paraconsistent stable model M of τ3((Q,P)) and a
ground substitution θ such that M |= τ2(Li1)θ. By (1), we have
then that M 6|= not Lθ. Therefore, Lθ ∈ M and, consequently,
M |= Lθ.
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If M |= τ2(Li1θ), Lθ then, by lemma 4.4 and definition of func-
tion τ2, ϕ−1(M) |= Li1θ, Lθ. Since M is a paraconsistent stable
model of τ3((Q,P)), M is also a paraconsistent stable model of
τ1(P). Hence by lemma 4.1, ϕ−1(M) ∈ sem(P).

We can then conclude that there is a model M′ ∈ sem(P) such
that, if M′ |= Li1θ then M′ |= Lθ, for any ground substitution
θ.

(ii.2) If some Li1 ⊆ Li2 ≡ Li1 ⊆ L (1 ≤ i ≤ n) then for all paracon-
sistent stable models M of τ3((Q,P)) and ground substitutions
θ we have that

M 6|= τ2(Li1)θ, not Lθ . (2)

and
M 6|= τ2(Li1)θ,¬Lθ . (3)

Consider a paraconsistent stable model M of τ3((Q,P)) and a
ground substitution θ such that M |= τ2(Li1)θ. By (2) and (3),
we have then that M |= Lθ and M |= not ¬Lθ, i.e. M |=
(L, not ¬L)θ ⇔ M |= τ2(Lθ).

If M |= τ2(Li1θ) and M |= τ2(Lθ) then, by lemma 4.4, ϕ−1(M) |=
Li1θ and ϕ−1(M) |= Lθ. Moreover, as it was shown in the pre-
vious case, ϕ−1(M) ∈ sem(P).

We can then conclude that there is a model M′ ∈ sem(P) such
that, if M′ |= Li1θ then M′ |= Lθ, for any ground substitution
θ.

(ii.3) If some Li1 ⊆ Li2 ≡ Li1 ⊆ L (1 ≤ i ≤ n) then for all paracon-
sistent stable models M of τ3((Q,P)) and ground substitutions
θ we have that

M 6|= τ2(Li1)θ, not Lθ . (4)

and
M 6|= τ2(Li1)θ, not ¬Lθ . (5)

Consider a paraconsistent stable model M of τ3((Q,P)) and a
ground substitution θ such that M |= τ2(Li1)θ. By (4) and (5),
we have then that M |= Lθ and M |= ¬Lθ, i.e. M |= (L,¬L)θ ⇔
M |= τ2(Lθ).

If M |= τ2(Li1θ) and M |= τ2(Lθ) then, by lemma 4.4, ϕ−1(M) |=
Li1θ and ϕ−1(M) |= Lθ. Moreover, as it was shown previously,
ϕ−1(M) ∈ sem(P).
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We can then conclude that there is a model M′ ∈ sem(P) such
that, if M′ |= Li1θ then M′ |= Lθ, for any ground substitution
θ.

¤

Lemma 4.12 Let (Q,P) be a rough query.

(i) Assume that Q is of the form Q1 or Q2 (see definition 4.12). If θ
is a ground substitution belonging to an answer of (Q,P) then θ also
belongs to an answer of (τ2(Q), τ1(P)).

(ii) Assume that Q is of the form Q3. If the answer to the rough query
(Q,P) is yes then the extended logic program τ3((Q,P)) has a para-
consistent stable model.

Proof:

(i) The statement above is direct consequence of theorem 4.2 and of def-
inition of answer of a query to an extended logic program.

(ii) Let M ∈ sem(P). Assume also that Q ≡ L1 ⊆ L2 and that the answer
to the rough query (L1 ⊆ L2,P) is yes . Thus by definition of answer
to a rough query,

M |= L1θ ⇒ M |= L2θ , (6)

for every ground substitution θ.

If M ∈ sem(P) then, by theorem 4.1, ϕ(M) is a paraconsistent stable
model of τ1(P). Moreover, from (6) and by lemma 4.4,

ϕ(M) |= τ2(L1)θ ⇒ ϕ(M) |= τ2(L2)θ (7)

We need now to show that τ3((L1 ⊆ L2,P)) has a paraconsistent stable
model. We consider each possible case for the rough literal L2.

(ii.1) Let L2 ≡ L. Recall that the integrity constraint

:- τ2(L1), not L.

is added in this case to τ1(P). From (7), we have that

ϕ(M) |= :- τ2(L1), not L. .

Since ϕ(M) is a paraconsistent stable model of τ1(P), we can
conclude that ϕ(M) is a paraconsistent stable model of τ3((L1 ⊆
L2,P)).
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(ii.2) Let L2 ≡ L. Recall that the set of integrity constraints

{:- τ2(L1), not L. , :- τ2(L1),¬L.}

is added in this case to τ1(P). By reasoning in a way similar to
case (i), we can conclude that ϕ(M) is a paraconsistent stable
model of τ3((L1 ⊆ L2,P)).

(ii.3) Let L2 ≡ L . Recall that the set of integrity constraints

{:- τ2(L1), not L. , :- τ2(L1), not ¬L.}

is added in this case to τ1(P). By reasoning in a way similar to
case (i), we can conclude that ϕ(M) is a paraconsistent stable
model of τ3((L1 ⊆ L2,P)).

This proof generalizes easily to the case Q ≡ L11 ⊆ L12, . . . , Ln1 ⊆
Ln2, with 1 < n.

¤

Theorem 4.3 Let (Q,P) be a rough query.

(i) Assume that Q is of the form Q1 or Q2 (see definition 4.12). A ground
substitution θ belongs to the answer of (τ2(Q), τ1(P)) if and only if θ
also belongs to the answer of (Q,P).

(ii) Assume that Q is of the form Q3. The extended logic program τ3((Q,P))
has a paraconsistent stable model if and only if the answer to the rough
query (Q,P) is yes .

Proof: This theorem is a direct consequence of both lemmas 4.11 and
4.12.

¤

The theorem above shows that the problem of answering rough queries
reduces to one of the two problems: to compute answer substitutions for a
query to the compiled program; or to test whether the compiled program
has a paraconsistent stable model. This provides a foundation for imple-
mentation of the language. Since the compilation procedure is polynomial
with respect to the size of a rough program, the efficiency of the algorithm to
answer rough queries is mainly determined by the system (e.g. Prolog, dlv,
Smodels) used to compute answers to the queries for the compiled program.
Howevere, deciding the existence of a (paraconsistent) stable model for an
extended logic program is a NP-complete problem [DEGV01].



Chapter 5

Application Examples

This chapter presents several examples [VDM03a] that highlight the appli-
cability of the language discussed in the previous chapter.

We have chosen three different relevant problems reported in the rough
set literature and show how these problems can be encoded in the proposed
language. In contrast to the specific-purpose solutions usually presented, our
language offers a general framework where the solution to different types of
problems can be declaratively expressed. Moreover, another particularly
important aspect illustrated is the integration of rough sets with domain
knowledge.

We start by presenting, in section 5.1, a technique to reduce the boundary
region of a rough relation. Then in section 5.2, we show how to monitor
changes in the boundary region of a rough relation, when some condition
attributes are eliminated. Finally, section 5.3 illustrates the integration of
expert knowledge through the use of default rules encoded in our language.

5.1 Hierarchy-Structured Decision Tables

A technique to reduce, and eventually eliminate, the boundary region of a
rough relation R (or decision table) is introduced in [Zia02a], in the context
of the variable precision rough set model [Zia93]. This is a relevant issue
because any object belonging to the boundary cannot be classified with
certainty as belonging to R or ¬R. If we interpret a rough relation as a
classifier then a large boundary might imply that the classifier is of little
value.

81
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One way to cope with the above problem is, for instance, to add more
condition attributes to the table. Alternatively, if some attributes have
been subject to discretization then, we could increase the precision of the
existing attributes by providing more cut-points (i.e. the number of attribute
values would increase). However, the disadvantage of these ideas is the rapid
growth in the number of decision rules, each of them with a smaller domain
coverage, i.e. cov(r) tends to decrease for each decision rule r.

The main idea described in [Zia02a] is to associate only with the bound-
ary examples a new layer of decision tables. For instance, more cut-points
could be introduced for discretization of attribute values of objects in the
boundary region. This would lead to the thinning of the boundary region, in
may cases. Note that this “refining” process is only applied to that part of
the table corresponding to the boundary region, instead of considering the
whole decision table. This idea can be concretized in two ways: by building
a hierarchical tree structure of decision tables or by creating a hierarchical
linear structure of tables. These techniques are described below.

Each indiscernibility class contained in the boundary region can be treated
as new independent universe of objects by itself and a new decision table is
associated with each class, forming a new layer of decision tables. The at-
tributes of the decision tables in a new layer have to be “more precise” in the
sense they split each indiscernibility class (of the previous layer) into several
sub-equivalence classes. This process can be applied recursively yielding a
hierarchical tree structure of decision tables.

Next example shows how a tree-structured hierarchy of decision tables
could be easily encoded in our language. We remind the reader that the
value of an attribute a for an object o is null, i.e. a(o) = null, if the
valued of a is not defined for that particular object o.

Example 5.1 Consider the decision table shown in table 5.1.
Each line of the decision table above can be encoded in our language as

a fact. For instance, the first lines would be represented as

¬deathmi(<70, no, no).
deathmi(>70, yes, yes).
deathmi(>70, yes, no).

...
We stress that expressions like “<70”, used as arguments of a predicate,

should be understood as constants.
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Age Hypert Scanabn Deathmi

o1 < 70 no no no
o2 > 70 no no no
o3 > 70 yes yes yes
o4 > 70 yes no yes
o5 > 70 yes no no
o6 > 70 yes no no
o7 < 70 yes yes no
o8 < 70 yes yes yes

Table 5.1: Table of patients with heart problems.

It is easy to see that the indiscernibility classes

E1 = {o4, o5, o6} ,
E2 = {o7, o8}

are in the boundary region.
In order to reduce the boundary region, a different set of condition at-

tributes can be considered for some of these indiscernibility classes (in the
boundary area), i.e. the new set of attributes considered for one class may
be different from the set of attributes considered for another indiscernibility
class in the boundary. The new combination of attributes may have been
defined by experts in the field of application. It could also be the case that
for some other indiscernibility classes the same attributes as in the origi-
nal table have been considered, but increased discretization precision of the
condition attributes has been applied to each of these classes, possibly with
different cut-points for each of them. Let us illustrate these ideas with the
table above.

Suppose that experts decided to consider a different set of attributes for
patients belonging to E1: instead of the age, it was considered whether the
patient was a smoker. For patients in E2 only different discretization for
the Age attribute was applied.

As the reader can see from tables 5.2 and 5.3, the boundary region
has been reduced to one indiscernibility class with two patients only, E3 =
{o4, o6}.

The decision tables 5.2 and 5.3 can be represented by the following facts.
Note that each decision table is recorded under a different predicate name
(deathmi, deathmi1, and deathmi2).
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Hypert Scanabn Smoke Deathmi

o4 yes no yes yes
o5 yes no no no
o6 yes no yes no

Table 5.2: Decison table associated with class E1.

Age Hypert Scanabn Deathmi

o7 < 40 yes yes no
o8 > 40 yes yes yes

Table 5.3: Decison table associated with class E2.

deathmi1(yes, no, yes). ¬deathmi2(<40, yes, yes).
¬deathmi1(yes, no, no). deathmi2(>40, yes, yes).
¬deathmi1(yes, no, yes).

Putting together all the above decision tables, we create a new rough rela-
tion shown in table 5.4. It corresponds to the initial decision table Deathmi
with a reduced boundary, by integrating tables 5.2 and 5.3. Using rough
clauses, the rough relation corresponding to this table can be easily encoded.
Predicate deathmi3 denotes this rough relation.

Age Hypert Scanabn Smoke Deathmi

o1 < 70 no no null no
o2 > 70 no no null no
o3 > 70 yes yes null yes
o4 null yes no yes yes
o5 null yes no no no
o6 null yes no yes no
o7 < 40 yes yes null no
o8 > 40 yes yes null yes

Table 5.4: Decision table obtained by integrating tables 5.2 and 5.3 with
table 5.1.
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(1) deathmi3(Age,Hypert,Scanabn,null) :-

deathmi(Age,Hypert,Scanabn).

(2) ¬deathmi3(Age,Hypert,Scanabn,null) :-

¬deathmi(Age,Hypert,Scanabn).
(3) deathmi3(null,Hypert,Scanabn,Smoke) :-

deathmi1(Hypert,Scanabn,Smoke).

(4) ¬deathmi3(null,Hypert,Scanabn,Smoke) :-

¬deathmi1(Hypert,Scanabn,Smoke).

(5) deathmi3(Age,Hypert,Scanabn,null) :-

deathmi2(Age,Hypert,Scanabn).

(6) ¬deathmi3(Age,Hypert,Scanabn,null) :-

¬deathmi2(Age,Hypert,Scanabn).

As we can see in this example, it is possible that some indiscernibility
classes in the boundary region have been split into new classes (for instance,
E1 = {o4, o5, o6} was split into E11 = {o4, o6} and E12 = {o5}) and that
some of them are still in the boundary region (E11 = {o4, o6}). Then, the
same idea could be applied once more generating another layer of decision
tables.

¤

A slightly different method (also proposed in [Zia02a]) for reducing the
boundary region is obtained by treating the whole subset of the universe
corresponding to the boundary as a new domain by itself. Thus, a new deci-
sion table is associated with this subset of the universe forming a new layer.
However, in this case each new layer has one table only and, consequently,
we get a hierarchical linear structure of decision tables.

The following example shows how a linear-structured hierarchy of deci-
sion tables could be encoded in our language.

Example 5.2 Consider the decision table 5.1 of example 5.1. The whole
boundary region is treated as new domain by itself and we associate with it
a new decision table. In this case the hypertension attribute was replaced by
the sex of the patient and one more condition attribute indicating whether
the patient is a smoker was considered. The aim is that when considering
these new set of attributes, the boundary region will be reduced (or even
eliminated).

Looking at the table 5.5, we see that the boundary has been reduced to two
objects E3 = {o7, o8}. Experts decided to try a different discretization for
the age attribute, with the aim to eventually eliminate the boundary region.
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Age Scanabn Sex Smoke Deathmi

o4 > 70 no M yes yes
o5 > 70 no F no no
o6 > 70 no M no no
o7 < 70 yes M yes no
o8 < 70 yes M yes yes

Table 5.5: Decison table associated with the boundary region of table 5.1.

Age Scanabn Sex Smoke Deathmi

o7 < 40 yes M yes no
o8 > 40 yes M yes yes

Table 5.6: Decison table associated with the boundary of table 5.5.

Thus, another decision table (see table 5.6) was associated with the boundary
of table 5.5 .

Decision tables 5.5 and 5.6 are represented in our language as a set of
facts under predicates deathmi1 and deathmi2, respectively.

deathmi1(>70, no, M, yes). ¬deathmi2(<40, yes, M, yes).
¬deathmi1(>70, no, F, no). deathmi2(>40, yes, M, yes).
¬deathmi1(>70, no, M, no).
¬deathmi1(<70, yes, M, yes).
deathmi1(<70, yes, M, yes).

The relation between the decision tables 5.1, 5.5, and 5.6, a hierarchical
linear structure, can be encoded using rough clauses. All these decision tables
are related to the same rough set (relation) that we designate by predicate
deathmi3.
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(1) deathmi3(Age,Hypert,Scanabn,null,null) :-

deathmi(Age,Hypert,Scanabn).

(2) ¬deathmi3(Age,Hypert,Scanabn,null,null) :-

¬deathmi(Age,Hypert,Scanabn).
(3) deathmi3(Age,null,Scanabn,Sex,Smoke) :-

¬deathmi1(Age,Scanabn,Sex,Smoke).

(4) ¬deathmi3(Age,null,Scanabn,Sex,Smoke) :-

¬deathmi1(Age,Scanabn,Sex,Smoke).

(5) deathmi3(Age,null,Scanabn,Sex,Smoke) :-

deathmi2(Age,Scanabn,Sex,Smoke).

(6) ¬deathmi3(Age,null,Scanabn,Sex,Smoke) :-

¬deathmi2(Age,Scanabn,Sex,Smoke).

When considering a graphical interface, possibly showing the hierarchical
structure of the tables, the clauses above could be generated automatically.
Moreover, the graphical interface could also hide those predicate arguments
corresponding to attributes with null value.

5.2 Avoiding Expensive Tests

In many practical applications, the attribute values correspond to the out-
come of a certain test applied to objects of the universe (e.g. a medical test
performed on patients). Thus, we may intuitively associate with each at-
tribute a cost, corresponding to the cost of the test that must be performed.
Obviously, some attributes may be more expensive than others. For in-
stance, a medical test may be considered expensive because it requires the
use of expensive equipment, or because it may cause a lot of discomfort to
the patient, or because in general the underlying procedure is expensive.

Given an object o of the universe U and, based on the values of a set
of attributes A, a certain decision d is taken (e.g. whether a patient suffers
from a certain disease). This information, for each object, can be thought as
recorded in the form of a decision table DA = (U,A, d). Assume that a set
of attributes B ⊂ A has been identified as being expensive and, therefore,
desirable to avoid. We would like to identify those objects o for which the
knowledge about attributes B is absolutely necessary for making a decision,
i.e. for determining d(o).

The problem described has been studied in [KØ99] and following the
approach suggested there, identification of the above mentioned set of ob-
jects requires monitoring changes in the boundary of DA (the rough relation
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defined by decision table DA) when considering only the set of attributes
A \B (i.e. removing expensive tests B). Next, we summarize the main idea
described in [KØ99].

Given two sets A and B, the expression A \ B denotes set difference.
Let DA = (U,A, d) be a decision table, with a binary decision attribute,

and [t] denote the set of objects belonging to the indiscernibility class de-
scribed by tuple t. If β is a set of tuples then the set of objects described
by the tuples belonging to β is given by

obj(β) =
⋃

t∈β

[t] .

Assume also that DA\B = (U,A\B, d) corresponds to the decision table DA

without attributes B (i.e. it is a projection of table DA). When considering
a subset A \ B of attributes, we have that

RA ⊆ RA\B ,

where RA and RA\B are the indiscernibility relations induced by decision
tables DA and DA\B , respectively. Intuitively, this means that when con-
sidering the set of attributes A \ B, several indiscernibility classes may be
merged into one single class. Thus, when considering less attributes, the ap-
proximation space may be formed by a smaller number of larger indiscerni-
bility classes. Consequently, the number of objects belonging to obj(DA)

tends to decrease while the number of objects in obj(DA) tends to increase.
Hence, it can also be easily concluded that

obj(DA\B) ⊆ obj(DA) and

obj(¬DA\B) ⊆ obj(¬DA) .

When considering the reduced set of attributes A\B, the number of ob-
jects in the boundary region of DA also increases, since some indiscernibility
classes previously belonging to ¬DA or belonging to DA have now migrated
to the new boundary. Intuitively, characterization of these indiscernibility
classes defines the set of objects for which knowledge about attributes B is
crucial for making a decision. For all other objects, knowledge about B will
not change the region, ¬DA, DA or DA, where they already belong. The
set of migrating objects can then be defined as

Migrate(A,B, D) = (obj(DA\B) ∩ obj(DA))

∪
(obj(DA\B) ∩ obj(¬DA)) . (1)
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Although the definition above looks different from the one used in [KØ99],
they are both equivalent. However, the formulation presented here is more
suitable in the context of our framework, as the reader will see soon.

Obviously, the set on non-migrating objects is defined as

¬Migrate(A, B,D) = obj(DA\B) ∪ obj(¬DA\B) ∪ obj(DA) . (2)

It is important to note that the set of (non)migrating objects is rough,
if only attributes A \ B are considered. Otherwise, if all attributes A are
considered then the set is crisp. The example 5.3 illustrates this point.

The migration set enables us to find those objects that require the results
of the tests associated with attributes B to be known in order to be able to
make a decision. Thus, we aim at finding a description of this set of objects
using attributes A\B. This description can then be applied to new (unseen)
objects to decide whether tests B should be performed.

In practice, for all objects falling in the upper approximation of the
migrate set (i.e. conforming to the description of the upper approximation),
tests associated with attributes B could be requested. However, if the upper
approximation gets very large when attributes B are removed, then not
that much is gained. This points to the need of associating some numerical
measures with the upper and lower approximations giving some information
about the number of objects they might contain. This issue is discussed
further in chapter 6.

Both expressions above, the set of migrating and non-migrating objects,
can be translated to a set of rough clauses. These rough clauses permit
the user to discover a set of tuples describing those objects belonging to
Migrate(A,B, D) (¬Migrate(A,B, D)). The next example illustrates this
application.

Example 5.3 Consider the decision table
Deathmi = (U, {Age, Test A1, Test A2}, Deathmi), where U is a set of pa-
tients with heart problems. Assume that the condition attributes A1 and A2

represent two medical tests. Moreover, test A2 is usually considered as being
expensive, and therefore, desirable to avoid.

From table 5.7, it is easy to see that

(i) {〈>70, b1, c1〉 , 〈>40 <70, b2, c4〉} ⊆ ¬Deathmi;

(ii) {〈>40 <70, b2, c3〉 , 〈<40, b4, c3〉} ⊆ Deathmi;

(iii) {〈>70, b1, c2〉 , 〈<40, b3, c5〉} ⊆ Deathmi;
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Age Test A1 Test A2 Deathmi

> 70 b1 c1 no
> 70 b1 c2 yes
> 70 b1 c2 no

> 40 < 70 b2 c3 yes
> 40 < 70 b2 c4 no

< 40 b3 c5 yes
< 40 b3 c5 no
< 40 b3 c5 no
< 40 b4 c3 yes

Table 5.7: Decision table of patients with heart problems.

The table is encoded as facts in our language.

¬deathmi(>70, b1, c1). deathmi(>70, b1, c2).

¬deathmi(>70, b1, c2). deathmi(>40 <70, b2, c3).

¬deathmi(>40 <70, b2, c4). deathmi(<40, b3, c5).

¬deathmi(<40, b3, c5). deathmi(<40, b4, c3).

Moreover, the following clauses monitor the impact in the boundary re-
gion of not considering test A2. Basically, these clauses translate the set of
migrating and non-migrating patients represented by formulas (1) and (2)
above. The predicate d denotes the rough relation D corresponding to the
projection in the first two attributes of Deathmi (table 5.7).
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(1) d(Age,Test_A1) :- deathmi(Age,Test_A1,Test_A2).

(2) ¬d(Age,Test_A1) :- ¬deathmi(Age,Test_A1,Test_A2).

(3) migrate(Age,Test_A1) :-

d(Age,Test_A1),
deathmi(Age,Test_A1,Test_A2).

(4) migrate(Age,Test_A1) :-

d(Age,Test_A1),
¬deathmi(Age,Test_A1,Test_A2).

(5) ¬migrate(Age,Test_A1) :- ¬d(Age,Test_A1).

(6) ¬migrate(Age,Test_A1) :- d(Age,Test_A1).

(7) ¬migrate(Age,Test_A1) :-

deathmi(Age,Test_A1,Test_A2).

Thus, by clauses (1) and (2), we have that {〈>70, b1〉, 〈>40 <70, b2〉,
〈<40, b3〉} ⊆ D. By clause (4), 〈>70, b1〉 ∈ Migrate and it corre-
sponds to a (class of) patient(s) that migrated from the lower approximation
of rough set ¬Deathmi. But by clause (7) and taking into account (iii),
〈>70, b1〉 ∈ ¬Migrate. Thus, 〈>70, b1〉 is in the boundary of relation
migrate, consequently, showing that the set of migrating patients is rough
in this case.

By clause (3) or (4), 〈>40 <70, b2〉 ∈ Migrate and it corresponds to
the merging of two indiscernibility classes, one originating from
Deathmi and the other from ¬Deathmi.

By clause (6), 〈<40, b4〉 ∈ ¬Migrate. This indiscernibility class re-
mains in the lower approximation, even after dropping attribute A2. Thus,
nothing is gained in performing the expensive test for these patients.

By clause (7), 〈<40, b3〉 ∈ ¬Migrate and it corresponds to a non-
migrating (class of) patient(s) that remained in the boundary after dropping
the attribute corresponding to the 3rd argument of deathmi, i.e. the expen-
sive medical test.

Let P be the rough program obtained from the set of facts encoding
decision table 5.7 together with the rough clauses (1) − (7). The query
(migrate(Age,A1), P) requests a description of all patients that may mi-
grate when the expensive test is dropped. The answer is the set of substitu-
tions θ,

θ = {{Age/>40 <70, A1/b2}, {Age/>70, A1/b1}} ,
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indicating that the tuples 〈>40 <70, b2〉 and 〈>70, b1〉 belong to the upper
approximation of rough relation denoted by migrate (i.e. Migrate). We
may then conclude that for a new patient whose age is between 40 and 70
and who obtained the result b2 for the test A1, it is advisable to perform the
medical test A2. We may also ask

• “For which patients more than 70 years old it is worth to perform test
A2?”

This can be translated to the rough query (migrate(>70,A1), P). As answer
we get the singleton {{A1/b1}} stating that only patients with outcome b1

for test A1 should be submitted to test A2.
Another relevant question is

• “Which patients may not be submitted to test A2?”

It can be represented by the rough query (¬migrate(Age,A1), P). As an-
swer we get the set of substitutions θ′

θ′ = {{Age/<40, A1/b3}, {Age/<40, A1/b4}, {Age/>70, A1/b1}} .

This answer can be interpreted as stating that if a patient conforms to the
case

((Age < 40) ∧ (Test A1 = b3)) ∨
((Age < 40) ∧ (Test A1 = b4)) ∨
((Age > 70) ∧ (Test A1 = b1))

then test A2 may be rather irrelevant.
¤

In [KØ99], the migration set is defined in a different way.

Migrate(A,B,D) = obj(DA\B) ∩ (U \ obj(DA)) . (3)

Note that U is the set of all objects represented in the decision tables DA

and DA\B . Thus,

U \ obj(DA) = obj(DA) ∪ obj(¬DA) .

This shows that expressions (1) and (3) above are equivalent. Based on (3),
a new decision table D1 = (U,A \ B, d1) is defined in [KØ99]:

d1(o) =

{

yes o ∈ Migrate(A, B,D)
no otherwise
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A specific program then takes as input the decision table DA = (U,A, d)
and creates as output table D1 = (U,A \ B, d1), as defined above.

What we wish to emphasize here is that the language we propose is
a general framework to create new rough relations and to describe them
declaratively in terms of other rough relations. This contrasts with the way
the problem was tackled in [KØ99], since there a specific program to create
a specific rough relation had to be built.

5.3 Representing Default Knowledge

In this section, we show through a couple of examples that we can also easily
express default knowledge in our language and, as in system CAKE [DÃLS02],
define priorities between defaults.

Intuitively, default knowledge corresponds to conclusions assumed to be
true in general (we may also call it common sense knowledge), even if we do
not have a direct evidence of their truth. For example, we assume that

• “If someone is driving a car then he has a driving licence.”

However, this does not always have to be true. We may have information
that invalidates this conclusion by default (e.g. the person is less than 18
years old).

Representation of default knowledge has been addressed by Reiter who
has proposed default logic [Rei80]. The following example shows how normal
default rules of the default logic can be encoded in our formalism. A formal
comparison of default logic with our formalism is out of the scope of this
thesis.

Example 5.4 Consider table 5.8

Distance = (U, {Dif, Road Conditions, Physical Distance}, Distance).

This table takes a set of traffic situations U characterized by

• the difference between the actual speed of a vehicle and the speed limit
at the road where the vehicle circulates (attribute Dif);

• road conditions (dry, wet, snow, or ice); and

• the distance between the vehicle and the one in front of it.
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Dif Road Conditions Physical Distance Distance

10 dry 9 medium
10 ice 15 medium
10 ice 12 small
30 wet 30 large
−10 snow 9 medium
−10 snow 9 small

Table 5.8: Decision table classifying vehicle distances.

This data could have been acquired from a number of different sources.
For instance, road conditions could have been obtained by sensors, a cam-
era records traffic images, while speed limit in roads are obtained from a
database. Then, one or more experts in traffic safety, decide for each situ-
ation whether the distance between vehicles is large, medium, or small. It
is easy to accept that this classification depends on the attributes mentioned
above. It may also happen that, given the same traffic situation, different
experts classify differently the distance (i.e. one expert might say that the
distance is small and another consider it as medium).

Note that the decision attribute Distance is not binary in this case, since
it may assume the values small, medium, or large. However, it is easy to
see this table as three decision tables defining the (rough) concepts of small,
medium, and large distance. Moreover, this idea can be easily expressed in
our language as rough clauses (1)−(9) together with the facts under predicate
p (see below). The whole table is encoded as a set of positive facts.

p(10, dry, 9, medium). p(10, ice, 15, medium).

p(10, ice, 12, small). p(30, wet, 30, large).

p(-10, snow, 9, medium). p(-10, snow, 9, small).
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(1) large(X1,X2,X3):- p(X1,X2,X3,large).

(2) ¬large(X1,X2,X3):- medium(X1,X2,X3).

(3) ¬large(X1,X2,X3):- small(X1,X2,X3).

(4) medium(X1,X2,X3):- p(X1,X2,X3,medium).

(5) ¬medium(X1,X2,X3) :- small(X1,X2,X3).

(6) ¬medium(X1,X2,X3) :- large(X1,X2,X3).

(7) small(X1,X2,X3):- p(X1,X2,X3,small).

(8) ¬small(X1,X2,X3):- medium(X1,X2,X3).

(9) ¬small(X1,X2,X3):- large(X1,X2,X3).

Another decision table, see table 5.9,

Danger = (U, {Dif, Road Conditions, Distance}, Danger) ,

shows whether a number of traffic situations has been classified as dangerous
by an expert. As usual, this table is represented as a set of facts.

Dif Road Conditions Distance Danger

10 dry large no
20 ice small yes
0 wet medium no
10 wet medium yes
10 wet medium no
−10 snow medium yes

Table 5.9: Decision table classifying the danger of several traffic situations.

¬danger(10, dry, large). danger(20, ice, small).

¬danger(0, wet, medium). danger(10, wet, medium).

¬danger(10, wet, medium). danger(-10, snow, medium).

We also would like to add some common sense knowledge to the set of
facts above. For instance, consider the following statement expressing that
usually people assume by default that small distances between two vehicles
yield to a dangerous situation.

• “If the distance between two vehicles is small, then we may assume that
the situation is dangerous (unless there is evidence to the contrary ).”
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This statement could be expressed by the following (normal) default rule,
where the variables should be understood as universally quantified.

small(X1, X2, X3) : danger(X1, X2, small)

danger(X1, X2, small)
. (5.1)

The default rule (5.1) can be formally read as follows.
If in a certain situation small(x1, x2, x3) holds (i.e. it can be proved)
and danger(x1, x2, small) is consistent with the current knowledge, then
(by default) we assume that danger(x1, x2, small) holds, too. Note that
danger(x1, x2, small) is consistent with the current knowledge, if we have
no evidence that ¬danger(x1, x2, small) is true. Thus, no contradiction
with the available knowledge arises by the fact that danger(x1, x2, small) is
assumed.

Moreover, consider that we also want to express the next common sense
(default) idea.

• “If the distance between two vehicles is not small, then we may assume
that the situation is not dangerous (unless it can be proved otherwise).”

This statement could be expressed in default logic by default rules (5.2)
and (5.3).

medium(X1, X2, X3) : ¬danger(X1, X2, medium)

¬danger(X1, X2, medium)
, (5.2)

large(X1, X2, X3) : ¬danger(X1, X2, large)

¬danger(X1, X2, large)
. (5.3)

Our next step is to show that the above default rules can be expressed in
the proposed language.

(10) danger1(X1,X2,small):-

small(X1,X2,X3), danger?(X1,X2,small).

(11) ¬danger1(X1,X2,medium):-

medium(X1,X2,X3), danger?(X1,X2,medium).

(12) ¬danger1(X1,X2,large):-

large(X1,X2,X3), danger?(X1,X2,large).
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Rough clauses (10) − (12) express the default rules (5.1)−(5.3), respec-
tively. For instance, consider rough clause (10). The testing literal

danger?(X1,X2,small)

in its body allows to test whether a tuple 〈c1, c2, small〉 is undefined, i.e.
〈c1, c2, small〉 6∈ Danger and 〈c1, c2, small〉 6∈ ¬Danger. If 〈c1, c2, small〉 ∈
Danger then rough clause (10) is not applicable because no new information
would be obtained. If 〈c1, c2, small〉 ∈ ¬Danger then rough clause (10) is
not applicable because its application would lead to a conclusion that would
not be consistent with the available knowledge.

Finally, we put together the knowledge coming from the table Danger
with the default knowledge. To achieve this we define a new rough relation
(clauses (13)−(16)) and use a new predicate name (danger2).

(13) danger2(X1,X2,X3):- danger(X1,X2,X3).

(14) danger2(X1,X2,X3):- danger1(X1,X2,X3).

(15) ¬danger2(X1,X2,X3):- ¬danger(X1,X2,X3).

(16) ¬danger2(X1,X2,X3):- ¬danger1(X1,X2,X3).

From the fifth row of the first table we see that medium(-10,snow,9)
holds. But, the tuple 〈-10,snow,medium〉 corresponds to a dangerous traffic
situation (see last line of the second table). Thus, rough clause (11) (encod-
ing default rule (5.2)) cannot be applied because danger(-10,snow,medium)
holds and consequently 〈-10,snow,medium〉 is not undefined with respect to
rough relation Danger.

Note that small(-10,snow,9) holds (last line of table Distance) but the
tuple 〈-10,snow,small〉 does not exist in the table Danger (i.e. thus, it
does not correspond to a traffic situation known as non-dangerous). Hence,
from rough clause (10) (corresponding to default rule (5.1)), we conclude
danger(-10,snow,small) .

¤

Next example, illustrates the use of priorities between default rules.

Example 5.5 Consider once more the (decision) tables of the previous ex-
ample and default rules (5.1) and (5.2). Moreover, we also assume that

• “If distance between vehicles is medium and the road conditions are icy,
then we may conclude that the traffic situation is dangerous (unless it
can be proved otherwise).”
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Using a default rule, we could express this statement as

medium(X1, ice, X3) : danger(X1, ice, medium)

danger(X1, ice, medium)
. (5.4)

Informally, looking at the second row of the first table, we conclude that
medium(10,ice,15) holds. Moreover, from the second table we can con-
clude that the tuple 〈10,ice,medium〉 is not considered as a dangerous
(or non-dangerous) situation (actually, there is no such tuple in the sec-
ond table). Thus, default rule (5.2) can be applied and we conclude that
¬danger(10,ice,medium) also holds. Similarly, default rule (5.4) can be
applied, to conclude that danger(10,ice,medium) holds, too.

Hence, from this example, we conclude that by applying different default
rules, we may obtain contradictory information. Although this may be ac-
ceptable in some situations (it is a case belonging to the boundary region), in
other situations we may wish to express priorities between several applicable
defaults. For instance, if both default rules (5.2) and (5.4) are applicable,
then we may give priority to (5.4) and block application of default (5.2) for
safety reasons. To achieve this idea we first define a new rough relation
expressing the default rules (5.1) and (5.4).

(10) danger1(X1,X2,small):-

small(X1,X2,X3), danger?(X1,X2,small).

(11) danger1(X1,ice,medium):-

medium(X1,ice,X3), danger?(X1,ice,medium).

We put then together the knowledge coming from the table Danger with
the default knowledge. The last rough clause, (15), encodes default rule
(5.2) and gives it lower priority than rough clause (11) (encoding default
rule (5.4)).

(12) danger2(X1,X2,X3):- danger(X1,X2,X3).

(13) ¬danger2(X1,X2,X3):- ¬danger(X1,X2,X3).

(14) danger2(X1,X2,X3):- danger1(X1,X2,X3).

(15) ¬danger2(X1,X2,medium):- medium(X1,X2,X3),
danger?(X1,X2,medium), danger1?(X1,X2,medium).



Chapter 6

The Rough Knowledge

Base System

We present the principles of a system, called Rough Knowledge Base System
(RKBS). The system is available through a Web page

http://www.ida.liu.se/rkbs .

It can reason about rough relations defined in a rough program and answer
queries. The implementation was done by R. Andersson as a master thesis
[And04b, And04a]. The ideas on which this implementation is based were
already previously explored in a prototype written by A. Vitória and C. V.
Damásio.

The language supported by RKBS (to encode rough programs) extends
that of chapter 4 by associating quantitative measures with each tuple of a
rough relation [VDM04]. However, this system may not be able to compute
answers for all queries to a recursive rough program.

We believe that several interesting data mining applications using rough
sets could be encoded in our language. For instance, the example discussed
in section 5.2 illustrates an application of our language to a problem in the
data mining field. Note that quantitative measures are an important aspect
in data mining applications while recursion does not seem to be required by
many of them. For this reason, we have extended our language to support
the former feature while the latter is not yet supported.

A distinction must also be made between the compilation technique pre-
sented in chapter 4 and the compilation of rough programs with quantita-
tive measures. The latter generates extended logic programs which require

99
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aggregate functions1, while these functions are not needed by the former.
RKBS compiles rough programs with quantitative measures to standard
Prolog [NM95, DEBC96] programs. This opens for the use of Prolog built-in
predicates and structured terms like lists. Note that each extended logic
program, obtained by compiling a non-recursive rough program encoded in
the language discussed in chapter 4, corresponds also to a Prolog program.

Another reason for considering only non-recursive rough programs is that
the semantics of aggregates and stable models has been an open problem
under investigation [Zan02, FLP04]. We avoid this problem because each
non-recursive rough program with quantitative measures can be compiled
to a logic program with at most one paraconsistent stable model.

The user interface of the system has been implemented in Java [SM]. We
have chosen XSB Prolog system [Sys] to write the compiler and to reason
with the compiled programs for the following reasons. First, XSB Pro-
log supports definite clause grammars. This fact simplifies the writing of
a parser and compiler for a rough program. Second, XSB provides ISO-
predicates such as setof/3 and findall/3. These predicates can be used
to implement aggregate functions, like sum and count. A third reason is that
XSB allows the use of a technique called tabling when computing answers to
queries for logic programs. Due to this fact, it is possible to obtain answers
to queries for a large class of recursive logic programs, while more tradi-
tional Prolog systems based on SLDNF-resolution [Llo87] would simply loop
forever. This class corresponds to non-floundering logic programs that enjoy
the bounded term-depth property [CSW95, CW96, SS98, Swi99]. An impor-
tant well-known subclass of this class of programs is Datalog. This aspect
opens the future possibility of easily extending our system to applications
that require a limited use of recursive rough programs. Fourth, version 2.6
of XSB has the XASP package that provides an efficient interface to Smod-
els [NS96, NS97, Sim] from XSB system. Note that XSB cannot be used
to compute stable models, while SModels can do it. Thus, this connection
between both systems could make possible to extend RKBS to support any
recursive rough program. Finally, XSB Prolog is free and well-documented
software.

Since we are presenting work in progress, we have restricted ourselves
to the implementation issues of the language supported by RKBS. Hence,
we do not formally present the declarative semantics for this language, as
we did for the language introduced in chaper 4. A fuller description of the

1
sum and count from SQL are examples of aggregate functions.
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declarative semantics of rough programs with quantitative measures will be
submitted for later publication.

As for the language discussed in chapter 4, predicates of a rough program
supported by RKBS denote rough sets. However, the notion of rough set
has been extended to account for quantitative measures. In section 6.1, we
extend the notion of rough set and review some quantitative measures. We
then present in section 6.2 the language supported by our system. Since
the compilation of a rough program with quantitative measures generates a
Prolog program where the special predicates bagof/3 and findall/3 occur,
we informally introduce these standard Prolog predicates in section 6.3.1.
Section 6.3.2 is devoted to the compilation of (non-recursive) rough programs
with quantitative measures. The query language of the system is discussed
in section 6.4. Finally, we describe some examples in section 6.5 .

6.1 Rough Sets Revisited

This section presents an extension of the rough set notion discussed previ-
ously in chapter 2 that explicitly takes into account quantitative measures.
We then review some quantitative measures associated with rough sets in
the context of our framework.

Recall that the set of values associated with an attribute a is denoted as
Va.

Definition 6.1 Given a set of attributes A = {a1, . . . , an}, a rough set (or
rough relation) S is a pair of sets (S,¬S) satisfying conditions (i) and (ii).

(i) The elements of sets S and ¬S are expressions of the form

〈t1, . . . , tn〉 : k ,

where 〈t1, . . . , tn〉 ∈
∏

ai∈A Vai
and k is an integer larger than zero.

(ii) The following implications are true.

〈t1, . . . , tn〉 : k ∈ S ⇒ ∀k′ 6= k(〈t1, . . . , tn〉 : k′ 6∈ S) ,
〈t1, . . . , tn〉 : k ∈ ¬S ⇒ ∀k′ 6= k(〈t1, . . . , tn〉 : k′ 6∈ ¬S) .

The rough complement of a rough set S = (S,¬S) is the rough set ¬S =
(¬S, S).
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For simplicity, we denote by t a general tuple 〈t1, . . . , tn〉 and by [t] the
indiscernibility class described by tuple t. Moreover, we may also write t ∈ S
(t ∈ S or t ∈ S or t ∈ ¬S or t ∈ ¬S or ¬S), if the associated quantitative
measure k is irrelevant.

Intuitively, an element t : k ∈ S (t : k ∈ ¬S) indicates that the indiscerni-
bility class described by the tuple t belongs to the upper approximation of
the rough set S (¬S) and that this class contains k > 0 individuals that are
positive examples of the concept described by S (¬S). Lower approximation
of rough set S, represented S, is then defined as

S = {t : k1 ∈ S | ∀k2 > 0 (t : k2 6∈ ¬S)}

and the boundary region, represented S, is defined as

S = {t : k1 : k2 | ∃k1, k2 > 0 (t : k1 ∈ S and t : k2 ∈ ¬S)} .

A rough set D = (D,¬D), as defined above, can be seen as an alternative
representation of a decision table D = (U,A, d). An expression t : k1 ∈ D
corresponds to k1 > 0 lines t of the table with positive outcome for the
decision attribute, while t : k2 ∈ ¬D corresponds to k2 > 0 lines t with
negative outcome for the decision attribute. The fact that we consider only
binary decision attributes is not a restriction in practice, as shown in chapter
5 (see example 5.4).

Recall that in our work a rough set is not defined in terms of individ-
uals of the universe, but instead in terms of the tuples that describe each
indiscernibility class to which the individuals belong.

Quantitative Measures

Let a tuple t be the description of an indiscernibility class [t] of a decision
table D = (U,A, d). Assume also that |d| (|¬d|) is the number of individuals
(or lines of the table) that have positive (negative) outcome for the deci-
sion attribute d. Thus, |d| + |¬d| is the number of objects (lines) in the
corresponding table. The following quantitative measures are then defined.

• The support of d(t), denoted supp(d(t)), corresponds to the number of
individuals in the indiscernibility class [t] that are positive examples.
Thus, if t : k ∈ D then supp(d(t)) = k.

• The strength of d(t), denoted strength(d(t)), indicates how often in-
dividuals in the indiscernibility class [t] have positive outcome for the
decision attribute d. Thus, if t : k ∈ D then strength(d(t)) = k

|d|+|¬d| .
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• The accuracy of d(t), denoted acc(d(t)), corresponds to the condi-
tional probability Pr(d(i) = yes | i ∈ [t]). By other words, acc(d(t))
expresses how trustworthy the indiscernibility class described by t is in
drawing the conclusion that the outcome for the decision attribute d is
positive. Thus, if t : k1 ∈ D and t : k2 ∈ ¬D then, acc(d(t)) = k1

k1+k2

.

• The coverage of d(t), denoted cov(d(t)), corresponds to the condi-
tional probability Pr(i ∈ [t] | d(i) = yes). By other words, cov(d(t))
expresses how well the indiscernibility class [t] describes the positive
decision class. Thus, if t : k ∈ D then cov(d(t)) = k

|d| .

Obviously, the same measures can also be defined for ¬d(t). For instance, if
t : k1 ∈ D and t : k2 ∈ ¬D then acc(¬d(t)) = k2

k1+k2

. Moreover, supp(d(t))
+ supp(¬d(t)) = |[t]| and acc(d(t)) + acc(¬d(t)) = 1.

In section 2.4, we introduce the notions of support, strength, accuracy,
and coverage for decision rules. Let 〈t1, . . . , tn〉 be a tuple describing an
indiscernibility class of a rough relation D such that Ai = attD(i), with
1 ≤ i ≤ n. If we interpret any statement

〈t1, . . . , tn〉 ∈ D or
〈t1, . . . , , tn〉 ∈ ¬D

as a decision rule

(A1 = t1) ∧ . . . ∧ (An = tn) −→ (d = yes) or
(A1 = t1) ∧ . . . ∧ (An = tn) −→ (d = no),

respectively, then we can easily see that the quantitative measures presented
above correspond to the ones discussed in section 2.4.

6.2 A Language with Numerical Measures

In this section, we extend the language presented in chapter 4 with quanti-
tative measures. We add now to the language the capability to keep track
of the number of individuals that belong to each indiscernibility class of a
rough relation. Moreover, quantitative measures such us support, strength,
accuracy, and coverage, discussed in section 6.1, can be used to define a
rough relation. We start by an informal introduction of the language.

A rough program is a set of rough facts and rough clauses. Rough facts
encode rough relations defined explicitly by a decision table, while rough
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clauses are used to define implicitly new rough relations obtained by com-
bining different regions (e.g. lower approximation, upper approximation,
and boundary) of other rough relations. For instance,

r(c1, c2, c3) : 5. and
¬r(c1, c2, c3) : 8.

are two rough facts. The first says that the indiscernibility class described
by the tuple of attribute values 〈c1, c2, c3〉 has 5 individuals. Moreover, these
individuals are positive examples of the concept represented by the rough
relation denoted by r, designated as R. The second rough fact states that
the same indiscernibility class has 8 individuals that are negative examples
of R (or positive examples of ¬R). Next, we give an example of a rough
clause in the extended language.

p(X1, X2) :-[α, F ] q(X1, X2),¬r(X1, X2).

The expression to the right of :-[α, F ] (i.e. q(X1, X2),¬r(X1, X2)) is called
the body and the expression to the left (i.e. p(X1, X2)) is called the head of
the rough clause. Moreover, α should be a rational number between 0 and
1 and F should be an associative and commutative binary function. (e.g.
the minimum). If quantitative measures are ignored, the rough clause above
can informally be interpreted in a way similar to the interpretation of rough
clauses discussed in chapter 4. The expression q(X1, X2) can be seen as
representing an indiscernibility class belonging to the lower approximation
of rough relation Q, denoted by q. Note that X1 and X2 are variables that
can be thought as representing any attribute value. Hence, the body of the
rule above captures those indiscernibility classes [〈c1, c2〉] that are in the
intersection of the lower approximation of the rough relation Q with the
upper approximation of rough relation ¬R. Moreover, the rough rule above
expresses that each of these indiscernibility classes belongs to the upper
approximation of rough relation P , denoted by p.

Let us now intuitively explain how quantitative information is handled.
Assume that there are two indiscernibility classes described by tuple 〈c1, c2〉:
one indiscernibility class is part of Q and the other indiscernibility class

belongs to ¬R. Function F is then used to combine supp(q(c1, c2)) with the
supp(¬r(c1, c2)). Hence, the rough clause above states that, given a tuple
〈c1, c2〉 describing an indiscernibility class, if

〈c1, c2〉 : k2 ∈ Q and

〈c1, c2〉 : k3 ∈ ¬R
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then 〈c1, c2〉 : k1 ∈ P , where

supp(p(c1, c2)) = k1 ≥ ⌊α × F (k2, k3)⌋ .

Note that the support k1 should be computed by taking into account all
clauses of a rough program, as shown in example 6.1. This is the reason for
writing k1 ≥ ⌊α × F (k2, k3)⌋ instead of writing k1 = ⌊α × F (k2, k3)⌋.

In contrast with the language presented in chapter 4, the head of a
rough clause cannot refer to the boundary region of a rough relation, i.e. an
expression as p(X1, X2) could not be the head of a rough clause. However,
this is not a real restriction as shown in example 6.1. If rough literals
referring to the boundary region were allowed in the head of a rough clause
then we could not know how many individuals computed from the body
would be positive examples and how many would be negative examples.
This is the motivation behind this restriction. Moreover, no testing literals
(e.g. l?(t)) can occur in the body of a rough clause, although this feature
could be easily added.

We argue now on the usefulness of having user parameterized rough
clauses H:-[α, F ] B. , where α and F are the parameters. An example
illustrating the importance of parameter α is when the user wants to decrease
his trust on certain data. For example, assume that the user strongly doubts
of the reliability of the information carried by 20% of the examples belonging
to any indiscernibility class only with positive examples of Q and for which
the second attribute has value c. A rough clause like

q1(X, c):-[0.8,−] q(X, c).

could be used to express such doubt. The new predicate q1 denotes the
same rough relation as q except that any indiscernibility class described by
a tuple 〈t1, c〉 ∈ Q1 has only 80% of the individuals in the corresponding
indiscernibility class 〈t1, c〉 ∈ Q.

We also think that the way the support information, obtained from the
expressions in the body, should be combined strongly depends on the appli-
cation. For instance, if the user wants to represent the join of two decision
tables then parameter F should correspond to the product function. But,
if he wants to define a new rough relation R that captures those indiscerni-
bility classes belonging to the same region of two rough relations P and Q
(i.e. having the same description) then, it might make more sense to use
the minimum function. The rough clauses below could together express this
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idea.
r(X1, X2) :-[1, min] p(X1, X2), q(X1, X2).
r(X1, X2) :-[1, min] p(X1, X2), q(X1, X2).
¬r(X1, X2) :-[1, min] ¬p(X1, X2),¬q(X1, X2).
¬r(X1, X2) :-[1, min] ¬p(X1, X2),¬q(X1, X2).

Thus, if t : k1 ∈ P and t : k2 ∈ Q then one may conclude that, for both
relations, there is an indiscernibility class described by tuple t in the lower
approximation and supp(r(t)) ≥ min(k1, k2).

Example 6.1 We give an example of a rough program P and discuss in-
formally its meaning.

P = {p(X1, X2) :-[1, min] q(X1, X2),¬r(X1, X2). ,
p(X, c) :-[1,−] q1(X, c). ,
¬p(X, c) :-[1,−] ¬q1(X, c). ,
q(a, c) : 2. ,
r(a, c) : 3. ,¬r(a, c) : 4. ,
q1(a, c) : 3. ,¬q1(a, c) : 7. }

The body of the first rough clause represents the intersection of the lower
approximation of the rough relation Q, denoted by q, with the boundary
of rough relation ¬R, denoted by ¬r. From the facts of P, we get that
〈a, c〉 : 2 ∈ Q and 〈a, c〉 : 4 : 3 ∈ ¬R. Hence, from the first rough clause
can be concluded that supp(p(a, c)) ≥ 1 × min(2, 4) (supp(q(a, c)) = 2 and
supp(¬r(a, c)) = 4).

The second and third rough clauses together state that if an indiscerni-
bility class [t] belongs to the boundary of rough relation ¬Q1 and its second
attribute has value c then, [t] also belongs to the boundary of P . Moreover,
the same number of positive and negative examples in [t] should be inherited
by rough relation P (i.e. supp(q1(a, c)) = 3 individuals should be considered
as representing positive examples of P , while supp(¬q1(a, c)) = 7 individuals
should be considered as representing negative examples of P ). Since the body
of each of the rough clauses has only one expression, the choice of function
F is irrelevant. This can be represented by the use of ‘−’ instead of some
concrete function.

Putting all together, it can be concluded from P that supp(p(a, c)) =
min(2, 4) + 3 = 5 and supp(¬p(a, c)) = 7.

As this example shows, information concerning an indiscernibility class
may be obtained independently from different rough clauses. For instance,
information related with indiscernibility class 〈a, c〉 ∈ P is obtained from the
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three rough clauses of P. Note that supp(p(a, c)) is computed by summing
the support obtained from different rough clauses.

¤

Another important aspect of the language is the possibility of using quan-
titative measure expressions in the body of a rough clause. For example,

acc(p(c1, c2)) > acc(¬q(c1, c2)) and
supp(¬p(c1, c2)) > 7

are quantitative measure expressions. The first quantitative measure ex-
pression states that the accuracy of the indiscernibility class described by
〈c1, c2〉 of rough relation P is larger than the accuracy of the indiscernibility
class [〈c1, c2〉] of rough relation ¬Q. The second states that indiscernibility
class [〈c1, c2〉] has more than 7 individuals with negative outcome for the
decision attribute p.

The next step is to define formally the language supported by RKBS, to
encode rough programs. To this end, we first define the notion of quantita-
tive measure expression.

Definition 6.2 Assume that m stands either for supp, or strength, or
acc, or cov and that relOp is one of the relation symbols =, <,≤, >,≥, 6=.
A quantitative measure expression is a formula of the form

m(l(t1, . . . , tn)) relOp k or
m(l1(t1, . . . , tn)) relOp m(l2(t1, . . . , tn)) ,

where

• l, l1, and l2 are either p or ¬p, for some predicate symbol p; and

• n ≥ 0; and

• k is a positive rational number.

Note that not all quantitative measure expressions are meaningful. For
example, acc(q(a, b)) > supp(r(a, b)) is meaningless because it does not
make sense to compare accuracy with support.

Definition 6.3 A rough clause in RKBS is any expression of the form

H :-[α, F ] B1, . . . , Bi,M1, . . . ,Mk. ,

where
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• H is either l(t1, . . . , tn) or l(t1, . . . , tn), with n ≥ 0 and l being either
p or ¬p, for some predicate symbol p; and

• α is a rational number such that 0 < α ≤ 1; and

• F is a commutative and associative binary function; and

• each Bj is a rough literal, with 1 ≤ j ≤ i; and

• each Mj is a quantitative measure expression such that all variables
occurring in Mj also occur in some rough literal in the body of the
rough clause, with 1 ≤ j ≤ k; and

• i, k ≥ 0.

As expected, a rough fact in RKBS is a rough clause with empty body
(i.e. i = k = 0) and a rough program supported by RKBS is a finite set of
non-recursive rough clauses (as defined in 6.3).

Each predicate occurring in a rough program, supported by RKBS, de-
notes a rough relation as defined in section 6.1 (see definition 6.1).

6.3 Compilation of RKBS Programs

Our system transforms a rough program into a Prolog program, where the
special predicates bagof/3 and findall/3 occur. These predicates are used
for the following purposes.

• To count the number of individuals in each indiscernibility class of a
rough relation that are positive (negative) examples of the underlying
concept.

• To count the number of individuals in the universe of a rough relation
D that have positive (negative) outcome for the decision attribute d

(i.e. to compute |d| and |¬d|).

We first informally introduce those special predicates. We then discuss
the details about the compilation of (non-recursive) rough programs with
quantitative measures.
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6.3.1 All Solutions Predicates in Prolog

Any standard Prolog system [DEBC96] has two built-in predicates, bagof/3
and findall/3, to collect together all solutions to a problem. We explain
their meaning through a couple of examples.

Example 6.2 Consider the following (definite) logic program containing a
number of facts about employees and their salaries.

P = {salary(peter, 100). ,
salary(terry, 150). ,
salary(john, 100). ,
salary(susan, 150). ,
who(X, L) :- bagof(Y, salary(Y,X), L).

For instance, the fact salary(peter, 100). states that “Peter’s salary is
100.”.

The query
(who(150, L), P)

requests a list of all employees who earn 150. The answer is the set of
substitutions

{{[ terry, susan ]/L}} .

Note that a list of items is represented between square brackets, ‘[’ and ‘]’.
Thus, [ terry, susan ] represent the list with constants terry and susan.

The query
(who(X, L), P)

requests all salaries together with a list of people who earn each salary. The
answer is the set of substitutions

{{100/X, [ peter, jonh ]/L}, {150/X, [ terry, susan ]/L}} .

¤

The atom bagof(Template, Goal, List) can be interpreted as the
“List of all instances of Template such that Goal is satisfied”. Note that
List may contain duplicates, if the same instance of Template can be proved
in several ways.

Next example illustrates the use of predicate findall.
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Example 6.3 Consider the following (definite) logic program.

P = {salary(peter, 100). ,
salary(terry, 150). ,
salary(john, 100). ,
salary(susan, 150). ,
allSalaries(L) :- findall(X, salary(Y,X), L). ,
total(T) :- findall(X, salary(Y,X), L), sum(L, T).}

Assume that predicate sum(L, T) has the following meaning: “T is the
sum of all numbers in list L”. For example, the atom sum([ 2, 5, 4 ], 11)

is true. This predicate can be easily defined in Prolog.
The query

(allSalaries(L), P)

requests a list of all salaries paid to the employees. The answer is the set of
substitutions

{{[ 100, 150, 100, 150 ]/L}} .

The query
(total(T), P)

requests the total amount spent in salaries. The answer is the set of substi-
tutions {{500/T}}.

¤

An empty list (i.e. a list with no elements) is represented as “[]”. More-
over, the atom sum([], 0) is always true.

The main difference between

bagof(Template, Goal, List) and
findall(Template, Goal, List)

is that the former may produce as answer a set with several substitutions,
if there are variables that occur in Goal but do not appear in Template, while
the latter produces only singleton answers. A query

(bagof(Template, Goal, List), P)

produces a substitution for each possible instantiation of the variables of
Goal that do not appear in Template.
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6.3.2 The Compilation

For each indiscernibility class t of a rough relation R, we need now to com-
pute the support measures, i.e. supp(r(t)) and supp(¬r(t)). This point is
complicated by the following. By applying one rough clause of the program,
we may conclude that a certain number k1 > 0 of individuals belong to
[t] and that they are positive examples. It may also be the case that by
applying another rough clause of the same program, we conclude that other
k2 > 0 individuals belong to the same indiscernibility class and that they
are also positive examples. Hence to compute the number of individuals
belonging to [t] that are positive (negative) examples of a rough relation, we
may need to consider different rough clauses. To this end, the special atoms
introduced in the previous section are used in the transformed program.

We start by giving an overview of the compilation procedure. Figure 6.1
shows the different functions that are called during compilation of a rough
program in RKBS.

τ

τ
1

τ
p

τ
F

τ
m

Figure 6.1: Compilation procedure of RKBS.

Function τ compiles a rough program P to a program τ(P) correspond-
ing to a standard Prolog program. It calls two other functions, τ1 and τp.
Function τ1 compiles each rough clause to a set of clauses and integrity con-
straints. τp generates a set of clauses for each predicate symbol q occurring
in P that gather support information for each indiscernibility class of rough
relation Q. The compilation τ1(C) of a rough clause C ∈ P originates a
call to function τF to compile the body of C. If the body of C contains
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quantitative measure expressions then τF calls function τm to compile each
quantitative measure. In the reminder of this section, we discuss in detail
each of the functions mentioned above.

Without loss of generality, we assume that each rough relation defined
in a rough program P has a different name. Thus, no two equal predicate
symbols with different arity may occur in P.

To simplify the presentation of the compilation procedure, we use some
notation shortcuts.

• The compiled programs may contain clauses with explicit disjunction,
represented as ‘;’, in the body of a clause. These clauses can easily be
re-written as clauses without disjunction in the body. For example,
the clause

p(X):- q(a,X), r(X) ; q(b,X).

can be replace by the following two clauses

p(X):- q(a, X), r(X).
p(X):- q(b, X).

• If we are not interested in the constant value with which a variable X
gets instantiated then, we use ‘−’ instead of X. For instance, if the
value with which the first argument of q is instantiated is irrelevant
then we write q(−, Y ).

• We may write q(X) instead of q(X1, . . . , Xn), for a predicate q/n.

• Given a pair u = 〈c1, c2〉, we write u.1st to denote c1 and u.2nd to
denote c2.

It should be stressed that the compiled program τ(P) may contain in-
tegrity constraints, given a rough program P. Integrity constraints are not
allowed in standard Prolog programs. However, each logic program τ(P)
can be easily transformed into a standard Prolog program. Assume that no
predicate symbol named false occurs in τ(P). Each integrity constraint
:- B. ∈ τ(P) can be replaced by a clause false :- B. . If the atom
false belongs to the least model of the Prolog program obtained this way
then we can conclude that some integrity constraint cannot be satisfied.

Compiling a rough program P implies compilation of each rough clause
and rough fact. For each predicate symbol p occurring in P, p∗, pπ, ¬p,
¬p∗, and ¬pπ should be seen as new predicate symbols not occurring in P.
Note that ¬p, ¬p∗, and ¬pπ represent explicit negation.
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Each predicate p in the compiled program has an extra argument that
carries information about the support. For example, both atoms p(c1, c2, k)
and p∗(c1, c2, k) (¬p(c1, c2, k) and ¬p∗(c1, c2, k, )) indicate that the indis-
cernibility class [〈c1, c2〉] belongs to P (¬P ). However, the former states
that the supp(p(c1, c2)) (supp(¬p(c1, c2))) is exactly k, while the latter says
that supp(p(c1, c2)) (supp(¬p(c1, c2))) is at least k. An atom pπ(c1, c2)
(¬pπ(c1, c2)) indicates that the indiscernibility class [〈c1, c2〉] belongs to the
upper approximation of P (¬P ) but it does not keep any information about
the support.

In the reminder of this section we assume that l (l1, l2, · · · ) is either p
or ¬p and that ¬¬p is equivalent to p, for some predicate symbol p.

We introduce first a function τm to compile quantitative measures in
the body of a rough clause. For example, the compilation of a quantitative
measure such as τm(supp(q(t))) returns a pair u, where

• u.1st is the body of a clause, and

• u.2nd is a variable that will be instantiated with the support of atom
q(t).

If t describes an indiscernibility class of rough relation Q then literal q(t,K)
expresses that the supp(q(t)) = K. The default negated literal not qπ(t) is
true, if t describes an indiscernibility class that does not belong to Q. The
conjunction of atoms

findall(K1, q(X,K1), L1), sum(L1,K
′)

imposes that K ′ = |q|, i.e. K ′ represents the number of individuals in the
universe of rough relation Q that have positive outcome for the decision
attribute. Hence, the following conjunction of atoms expresses that K is
the total number of individuals in universe of Q.

findall(K1, q(X, K1), L1),
findall(K2,¬q(X, K2), L2),
sum(L1,K

′
1), sum(L2,K

′
2),K = K ′

1 + K ′
2
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Function τm that compiles quantitative measures is formally presented
below.

τm(supp(l(t))) = 〈code , K〉
code = l(t,K) ;

not lπ(t),K = 0

τm(strength(l(t))) = 〈code , K〉
code = l(t,K0),

findall(K1, l(X,K1), L1),
findall(K2,¬l(X,K2), L2),
sum(L1, K

′
1), sum(L2, K

′
2),K = K0

K′
1
+K′

2

;

not lπ(t),K = 0

τm(acc(l(t))) = 〈code , K〉
code = l(t,K1),¬l(t,K2), K = K1

K1+K2

;

l(t,K1), not ¬lπ(t),K = 1 ;
not lπ(t),K = 0

τm(cov(l(t))) = 〈code , K〉
code = l(t,K1)

findall(K2, l(X,K2), L), sum(L,K3),K = K1

K3

;

not lπ(t),K = 0 .

Let us informally describe the first two cases above.

• The compilation of supp(l(t)) considers two possible cases. If atom
l(t,K) is true then supp(l(t)) = K. If t does not describe an indis-
cernibility class in the upper approximation, i.e. not lπ(t) is true,
then supp(l(t)) = K = 0.

• The compilation of strength(l(t)) considers also two cases. If t de-
scribes an indiscernibility class in the upper approximation then, atom
l(t,K0) is true, supp(l(t)) = K0, and the number of individuals in the
universe is given by K ′

1 + K ′
2. Otherwise, the default negated literal

not lπ(t) is true and supp(l(t)) = strength(l(t)) = 0.

The next step is to show how to compile the body of a rough clause (with
quantitative measures). Let I+ denote the set of positive integers including
zero and F be a commutative and associative binary function such that
F : I+ → I+. This function indicates how the support of the atoms p(t)
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or ¬p(t), occurring in rough literals of the body, should be combined to
compute the support of the atom corresponding to the head. Given the
body B of a rough clause, τF (B) returns a pair such that (τF (B)).1st is the
body of a clause of a logic program and (τF (B)).2nd represents a variable.
Assume that m is either supp, strength, acc, or cov. E1 and E2 represent
quantitative measure expressions. B1 and B2 stand for rough literals.

τF (m(l(t)) relOp k) = 〈code , −〉
code = τm(m(l(t))).1st,

τm(m(l(t))).2nd relOp k

τF (m(l1(t1)) relOp m(l2(t2))) = 〈code , −〉
code = τm(m(l1(t1))).1st, τm(m(l2(t2))).1st,

τm(m(l1(t1))).2nd
relOp

τm(m(l2(t2))).2nd

τF ((E1, E2)) = 〈code , −〉
code = (τF (E1)).1st, (τF (E2)).1st

τF (p(t)) = 〈code , K〉
code = p(t,K), not ¬pπ(t)

τF (¬p(t)) = 〈code , K〉
code = ¬p(t,K), not pπ(t)

τF (p(t)) = 〈code , K〉
code = p(t,K)

τF (¬p(t)) = 〈code , K〉
code = ¬p(t,K)

τF (p(t)) = 〈code , K〉
code = p(t,K),¬pπ(t)

τF (¬p(t)) = 〈code , K〉
code = ¬p(t,K), pπ(t)
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τF ((B1, B2)) = 〈code , K〉
code = (τF (B1)).1st, (τF (B2)).1st,

K = F ((τF (B1)).2nd, (τF (B2)).2nd)

τF ((B1, E1)) = 〈code , K〉
code = (τF (B1)).1st, τm(E1).1st,

K = (τF (B1)).2nd .

The reader can confirm that the underlying idea to compile the body of
a rough clause is similar to what was discussed in chapter 4.

We need to define a function that compiles a rough clause into a set of
clauses and integrity constraints. This function is presented below and it is
based on ideas similar to the ones discussed in chapter 4.

τ1(p(t):-[α, F ] B.) = {p∗(t,K):- (τF (B)).1st,
K = ⌊α × (τF (B)).2nd⌋. ,

:- ¬pπ(t), (τF (B)).1st.} ,

τ1(p(t):-[α, F ] B.) = {p∗(t,K):- (τF (B)).1st,
K = ⌊α × (τF (B)).2nd⌋.} ,

τ1(¬p(t):-[α, F ] B.) = {¬p∗(t,K):- (τF (B)).1st,
K = ⌊α × (τF (B)).2nd⌋. ,

:- pπ(t), (τF (B)).1st.} ,

τ1(¬p(t):-[α, F ] B.) = {¬p∗(t,K):- (τF (B)).1st,
K = ⌊α × (τF (B)).2nd⌋.} .

The compilation of a rough clause might generate clauses with repeated
literals. Thus, it is convenient to eliminate repeated literals from the bodies
of compiled clauses.

Let [t] be an indiscernibility class of a rough relation R. Application of
different rough clauses may lead to the conclusion that a certain number of
individuals belonging to [t] are positive examples of a rough relation R (¬R).
Hence, it is needed to gather support information for each indiscernibility
class of a rough relation. Function τp formalizes this idea. For each predicate
symbol r occurring in the rough program, the following set of clauses is
generated.
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τp(r) = {r(X, K):- bagof(K ′, r∗(X, K ′), L), sum(L, K). ,
¬r(X,K):- bagof(K ′,¬r∗(X, K ′), L), sum(L,K). ,
rπ(X):- r(X,−). ,
¬rπ(X):- ¬r(X,−).} .

Functions τ1 and τp can also be applied to a rough program P. Let βP

be the set of all predicate symbols occurring in P.

τ1(P) =
⋃

C ∈P τ1(C) ,
τp(P) =

⋃

p∈βP
τp(p).

Compilation of a rough program P is obtained by applying function τ
to P,

τ(P) = τ1(P) ∪ τp(P) .

The example below illustrates the compilation of a simple rough program
in RKBS.

Example 6.4 Consider again the program

P = {p(X1, X2) :-[1,−] q(X1, X2), acc(q(X1, X2)) > 0.85. ,
p(X, c) :-[1,−] q1(X, c). ,
¬p(X, c) :-[1,−] ¬q1(X, c). ,
q(a, c) : 2. ,
q1(a, c) : 3. ,¬q1(a, c) : 7. }

• Compilation of the first rough clause

τ1(p(X1, X2) :-[1,−] q(X1, X2), acc(q(X1, X2)) > 0.85.)

adds the following clauses to τ(P).

p∗(X1, X2,K1):- q(X1, X2,K1),¬q(X1, X2,K2),
K3 = K1

K1+K2

,K3 > 0.85.

p∗(X1, X2,K1):- q(X1, X2,K1),not ¬qπ(X1, X2),
K2 = 1, K2 > 0.85.

p∗(X1, X2,K1):- q(X1, X2,K1),not qπ(X1, X2),
K2 = 0, K2 > 0.85.
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• Compilation of the second rough clause

τ1(p(X, c) :-[1,−] q1(X, c).)

adds the following clause to τ(P).

p∗(X, c, K):- q1(X, c,K),¬qπ
1 (X, c).

• Compilation of the third rough clause

τ1(¬p(X, c) :-[1,−] ¬q1(X, c).)

adds the following clause to τ(P).

¬p∗(X, c, K):- ¬q1(X, c,K), qπ
1 (X, c).

• Compilation of the rough facts adds the following facts to τ(P).

q∗(a, c, 2).

q∗1(a, c, 3).

¬q∗1(a, c, 7).

Finally, function τp is called for each predicate symbol.

τp(p) = {p(X1, X2,K):- bagof(K ′, p∗(X1, X2,K
′), L), sum(L,K). ,

¬p(X1, X2,K):- bagof(K ′,¬p∗(X1, X2, K
′), L), sum(L, K). ,

pπ(X1, X2):- p(X1, X2,−). ,
¬pπ(X1, X2):- ¬p(X1, X2,−).} .

τp(q) = {q(X1, X2, K):- bagof(K ′, q∗(X1, X2,K
′), L), sum(L,K). ,

¬q(X1, X2,K):- bagof(K ′,¬q∗(X1, X2,K
′), L), sum(L,K). ,

qπ(X1, X2):- q(X1, X2,−). ,
¬qπ(X1, X2):- ¬q(X1, X2,−).} .

τp(q1) = {q1(X1, X2, K):- bagof(K ′, q∗1(X1, X2,K
′), L), sum(L,K). ,

¬q1X1, X2,K):- bagof(K ′,¬q∗1(X1, X2,K
′), L), sum(L,K). ,

qπ
1 (X1, X2):- q1(X1, X2,−). ,
¬qπ

1 (X1, X2):- ¬q1(X1, X2,−).} .

¤
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6.4 The Query Language of RKBS

Our system allows rough programs to be queried. Quantitative measure
expressions may also appear in queries.

A rough query is a pair consisting of the query itself and a rough program
from which an answer should be retrieved. We start by formally defining
the query language of the system.

Definition 6.4 A rough query in RKBS is a pair (Q,P), where P is a
rough program supported by RKBS and Q is defined by the following abstract
syntax rules

RelOp −→ ==|6=|>|≥|<|≤ .

Q1 −→ K = M | K = M,Q1 | K = M, K RelOp k,Q1 |
K1 = M, K2 = M, K1 RelOp K2,Q1 .

Q2 −→ classify(A) .
Q3 −→ L | L,Q3 | Q1 .
Q −→ Q3 | Q2 .

where M is a quantitative measure, K, K1,K2 are variables, k is a rational
number, L is a rough literal, and A is an objective literal. A rough query is
well-formed, if all variables occurring in a quantitative measure expression
also occur in some other rough literal of the query.

In contrast to the query language presented in chapter 4, it is not possible
to test whether a region of a rough relation (e.g. lower approximation) is a
subset of another region of some other rough relation. Thus, rough inclusion
and rough equality cannot be tested, either. On the other side, the system
supports queries of the form (classify(d(t)) , P).

We describe informally the meaning of some (well-formed) rough queries.
Consider the rough query

(classify(d(c1, X, c3)) , P) .

Each tuple t = 〈c1, c2, c3〉 describing an indiscernibility class of a rough
relation D can be seen as a decision rule. Assume that rough relation D
corresponds (implicitly) to the decision table D = (U, {a1, a2, a3}, d). If
t ∈ D then it induces the decision rule (a1 = c1) ∧ (a2 = c2) ∧ (a3 = c3) →
(d = yes) . If t ∈ ¬D then it induces the decision rule (a1 = c1) ∧ (a2 =
c2) ∧ (a3 = c3) → (d = no) . The query above requests a prediction for the
decision class to which a new individual i described by (a1 = c1 ∧ a3 = c3)
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may belong. To answer this query the strategy described in section 2.5 is
followed. The answer to the rough query is either the pair (d = yes, CF ),
or (d = no, CF ), or (d = unknown, 0), where CF is the certainty factor of
the prediction. The last case corresponds to the situation where no decision
rule is fired.

Consider another rough query

(p(X1, X2),K1 = supp(p(X1, X2)),K2 = supp(¬p(X1, X2)) , P) .

This rough query requests the description of all indiscernibility classes in
the boundary region of P with indication, for each indiscernibility class, of
how many individuals of that class are positive examples and how many
individuals are negative examples. Hence, the substitution

{a/X1, b/X2,K1/5, K2/7}

could be an answer stating that 〈a, b〉 ∈ P , supp(p(a, b)) = 5, and
supp(¬p(a, b)) = 7.

The rough query

(p(X1, b),K = acc(p(X1, b)),K > 0.6 , P)

requests a description of all indiscernibility classes in the upper approxima-
tion of P such that the second attribute has value b and their corresponding
accuracy is larger than 0.6.

The system answers a rough query for a rough program P by compiling it
to one or more Prolog queries to the Prolog program corresponding to τ(P).
The compilation of rough queries is based on ideas similar to the compilation
functions τm and τF , presented in section 6.3.2. Answers to (rough) queries
are sets of substitutions, like for the query language introduced in chapter
4. We give an example showing how a rough query can be answered by
querying the compiled program.

Example 6.5 Consider the rough query

(p(X1, b),K = supp(r(X1, b)),K < 10 , P)

The following two queries are generated for the compiled program.

(pπ(X1, b),¬pπ(X1, b), r(X1, b,K),K < 10 , τ(P)) and

(pπ(X1, b),¬pπ(X1, b), not rπ(X1, b), K = 0,K < 10 , τ(P)) .

The union of the sets representing the answers to the queries above is the
answer to the initial rough query.

¤
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As the example above shows, a rough query may be answered by issuing
more than one query to the compiled program. The compilation of quantita-
tive measures (see definition of function τm) involves more than one possible
case. This explains why more than one query might be needed. Assume that
variable X1 is instantiated with a constant c. In the example above, the first
query, obtained by compiling the rough query, corresponds to the case where
the indiscernibility class described by 〈c, b〉 ∈ R, i.e. supp(r(c, b)) > 0. The
second query corresponds to the case where 〈c, b〉 6∈ R, i.e. supp(r(c, b)) = 0.

6.5 Application Examples

6.5.1 Variable Precision Rough Relations

We show below how quantitative measure expressions in the body of rough
clauses can be used to build generalized rough approximations of a relation,
in the spirit of the variable precision rough set model [Zia93], described in
section 2.6. This aspect illustrates an important application of our language,
since the VPRSM is the rough set model often used in practical applications.

Example 6.6 Let q denote a rough relation Q (possibly obtained directly
from a decision table and encoded as a set of rough facts in our language) ,
l and u be two precision control parameters such that l < u.

We define then a new rough relation Q1 such that

• if acc(q(t)) ≥ u then t ∈ Q1;

• if acc(q(t)) ≤ l then t ∈ ¬Q1;

• If l < acc(q(t)) < u then t ∈ Q1.
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q1(X1, X2) :-[1,−] q(X1, X2).

¬q1(X1, X2) :-[1,−] ¬q(X1, X2).

%Any indiscernibility class t in the boundary s.t.

% acc(q(t)) ≥ u is considered to be in Q
q1(X1, X2) :-[1, sum] q(X1, X2),¬q(X1, X2), acc(q(X1, X2)) ≥ u.

% Any indiscernibility class t in the boundary s.t.

% acc(q(t)) ≤ l is considered to be in ¬Q
¬q1(X1, X2) :-[1, sum] q(X1, X2),¬q(X1, X2), acc(q(X1, X2)) ≤ l.

% Any indiscernibility class t in the boundary s.t.

% l < acc(q(t)) < u remains in the boundary

q1(X1, X2) :-[1,−] q(X1, X2), acc(q(X1, X2)) > l, acc(q(X1, X2)) < u.

¬q1(X1, X2) :-[1,−] ¬q(X1, X2), acc(q(X1, X2)) > l, acc(q(X1, X2)) < u.

Note that the use of q(X1, X2),¬q(X1, X2) in the body of the third and
fourth rough clauses captures those indiscernibility classes [t] in the boundary
of Q. Moreover, it is worth to note the use of function sum to combine
supp(q(t)) with supp(¬q(t)), since supp(q(t)) + supp(¬q(t)) gives the total
number of individuals in the indiscernibility class [t].

¤

The rough program above shows that our framework caters for extending
the VPRSM to implicitly defined rough relations.

6.5.2 Avoiding Expensive Tests Revisited

In section 5.2, we describe a possible technique to identify those individuals
for who expensive tests, corresponding to some of the condition attributes,
can (cannot) be avoided. We show now the same problem formulated in the
language supported by our system. In addition, we illustrate how quantita-
tive measure expressions can be used to retrieve relevant information.

Example 6.7 Consider the decision table
Deathmi = (U, {Age, A1, A2}, Deathmi), where U is a set of patients with
heart problems. This decision table is encoded as a set of rough facts shown
below. Assume that the conditional attributes A1 and A2 represent two med-
ical tests. Moreover, test A2 is usually considered as being expensive, and
therefore, desirable to avoid.
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¬deathmi(>70, b1, c1): 2.

¬deathmi(>70, b1, c2): 2.

¬deathmi(>40 <70, b2, c4): 2.

¬deathmi(<40, b3, c5): 2.

deathmi(>70, b1, c2): 3.

deathmi(>40 <70, b2, c3): 4.

deathmi(<40, b3, c5): 3.

deathmi(<40, b4, c3): 8.

The following rough clauses monitor the impact in the boundary region
of not considering test A2.

(1) d(Age, A1) :-[1,_] deathmi(Age, A1, A2).

(2) ¬d(Age, A1) :-[1,_] ¬deathmi(Age, A1, A2).

(3) migrate(Age, A1) :-[1,min] d(Age, A1),
deathmi(Age, A1, A2).

(4) migrate(Age, A1) :- [1,min] d(Age, A1),
¬deathmi(Age, A1, A2).

(5) ¬migrate(Age, A1) :-[1,_] ¬d(Age, A1).

(6) ¬migrate(Age, A1) :-[1,_] d(Age, A1).

(7) ¬migrate(Age, A1) :-[1,sum] deathmi(Age, A1, A2),
¬deathmi(Age, A1, A2).

Predicate migrate denotes the rough relation

Migrate = ({〈>70, b1〉 : 2, 〈>40 <70, b2〉 : 6},
{〈>70, b1〉 : 5, 〈<40, b3〉 : 5, 〈<40, b4〉 : 8}) .

We show some useful queries and their answers. Assume that rough
program P contains all rough facts above and the rough clauses (1) − (7).

• “For which patients it may be useful to request the expensive test A2?
And what is the expected gain if only those patients undergo test A2?”

This request can be formulated by the rough query Q1

Q1 = (migrate(Age, A1),
K1 = strength(migrate(Age, A1)),
K2 = strength(¬migrate(Age, A1)) , P) .
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The answer to this rough query is the set

{{>70/Age, b1/A1, 0.0769/K1, 0.1923/K2} ,
{>40 <70/Age, b2/A1, 0.2308/K1, 0/K2}} .

This answer indicates that

⋆ for patients who are more than 70 years old and have got result b1 in
the test A1, or

⋆ for patients who are between 40 and 70 years and have got result b2
in the test A1,

it may be advisable to perform additionally test A2. Moreover, if only the
patients suggested by this answer undergo the expensive test then, we may
expect to avoid the test for about 50% of the patients. Notice that if

∑

t∈Migrate

(strength(migrate(t)) + strength(¬migrate(t)))

would get too close to one then, this would indicate that not that much would
be gained by not requesting test A2 for all patients.

• “Make a prediction of whether individuals with result b1 for test A1

need to be submitted to test A2.”

This query could be formulated as follows

Q2 = (classify(migrate(Age, b1)) , P) .

The answer is
(migrate = no , 0.7193)

Thus, the prediction of the system is that the expensive test is not needed
and the confidence factor on this prediction is 0.7 .

¤

The example discussed in this section has also been tested in RKBS.
The system has also been tested with the same problem but more realistic
data was used: the deathmi table contained 418 patients and 12 condition
attributes. Figure 6.2 shows the interface of the RKBS. On the top part
there is a text area where the user can enter the rough clauses and rough
facts of a rough program. In this case, the text area displays some of the
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Figure 6.2: The Rough Knowledge Base System.

rough clauses belonging to the rough program presented in the example
above. It is also possible to load a rough program from a local file or from
a Web page.

Figure 6.3 displays the first rough query of the example above. On the
bottom part, it is shown the answer to the rough query in table format.
Rough queries can be directly entered in the text area or can be constructed
with the help of several menus. The second rough query and its answer is
shown in figure 6.4.
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Figure 6.3: The RKBS showing query Q1 and its answer.
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Figure 6.4: The RKBS showing query Q2 and its answer.
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Chapter 7

Conclusions and Future

Work

This thesis has introduced a language to define intensionally rough relations.
An extension of the language supporting basic quantitative measures has
also been considered.

This chapter is intended to summarize the work presented in this thesis
(section 7.1) and point out possible directions for future research (section
7.2).

7.1 Concluding Remarks

Rough sets framework has two appealing aspects. First, it is a mathematical
approach to deal with vague concepts. Second, rough set techniques can be
used in data analysis to find patterns hidden in the data. The number of ap-
plications of rough sets to practical problems in different fields demonstrates
the increasing interest in this framework and its applicability.

The first point above suggests that rough sets techniques can be gener-
alized to knowledge bases. It is not uncommon that our knowledge about a
concept bears contradictory information. For instance, one expert may state
that a vehicle driven at medium speed in a wet road corresponds to a danger-
ous situation while another expert may consider that medium speed does not
imply a dangerous traffic situation in general. Thus, the concept “dangerous
traffic situation” cannot be defined precisely using the available knowledge.
There will always be situations that are considered non-dangerous according

129
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the knowledge provided by one expert while the same situation is classified
as dangerous when considering the criteria provided by the other expert.
Rough set based techniques can be used to represent and deal with contra-
dictory knowledge, as in the situation depicted previously. To this end we
have proposed a language that caters for implicit definitions of rough sets.

Different regions (e.g. lower approximation, upper approximation or
boundary region) of several rough sets can be combined to define a region
of another rough set. In this way, existing rough sets can be used in the
definition of other rough sets. This is achieved in the proposed language
through the use of rough clauses and rough facts, forming together a rough
program. The main strengths of our language can be summarized as follows.

• The language captures and integrates in a uniform way vague knowl-
edge with two possible sources: knowledge obtained directly from ex-
perimental data and encoded as rough facts; domain or expert knowl-
edge expressed as rough rules. This contrasts with most of current
rough set techniques that only allow definition of (vague) concepts to
be obtained from experimental data.

• Several useful techniques and extensions to rough sets, reported in the
literature [KØ99, Zia02a], and implemented in an “ad hoc” way can
be naturally expressed in our language.

Another important aspect of the work presented in this thesis is the
definition of a query language to retrieve information about the defined
rough sets and patterns implicit in the data.

The computational basis for reasoning with the rough sets defined in a
rough program is a program transformation. Rough programs are compiled
to extended logic programs whose semantics is captured by paraconsistent
stable models. Systems like Smodels [Sim] or dlv [Pro] can then be read-
ily used to run extended logic programs. The correctness of the proposed
compilation technique has been proved.

An extension of our language to quantitative measures has also been
explored. Quantitative measures are particularly relevant in data mining
applications. However, we have restricted this extension to non-recursive
rough programs. We have implemented a system, called Rough Knowledge
Base System, that can reason and answer queries about rough sets defined
in this language. We also show that this extension allows to capture the
variable precision rough set model [Zia93] and to extend its application to
implicitly defined rough sets.
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To our knowledge, besides our work, only system CAKE [DÃLS02] ad-
dresses the problem of defining implicitly rough sets. We present below a
brief comparison of CAKE with the framework presented in this thesis.

• Our language distinguishes tuples for which there is no information
available from tuples for which there is contradictory evidence. The
latter case corresponds to tuples in the boundary region. System
CAKE does not support this distinction: the boundary region in-
cludes tuples about which there is no information at all and tuples
about which there is contradictory information. Hence, our language
is based on a 4−valued logic while CAKE is based on a 3−valued logic.

• In our framework quantitative measures can be easily supported. This
extension seems less obvious to achieve in CAKE.

• Another important difference is that CAKE only supports a restricted
type of recursively defined rough sets, corresponding to stratified pro-
grams, while our language supports any recursive (rough) program.
However, this restriction of CAKE has the benefit of ensuring its
tractability. Computing all models capturing the meaning of a rough
program is an intractable problem.

• Most knowledge representation systems incorporate either the open-
world assumption or the closed-world assumption in their reasoning
procedures. Systems using the former assume that they may not
have complete information about the world. Thus, information not
known is assumed to be unknown. Under closed-world assumption,
if a system cannot prove that a tuple belongs to a relation then it
is assumed that the tuple does not belong to the relation. Both sys-
tems, the language we propose and CAKE, support reasoning under
the open-world assumption. However, the latter also allows to ap-
ply the closed-world assumption locally in a particular context. This
feature is achieved in CAKE through the use of contextually closed
queries (CCQ) [DKS04] consisting of a query itself and a particular
context for evaluating the query. This context specifies minimization
(maximization) policies to be applied to selected relations and a num-
ber of integrity constraints. However, answering queries using CCQs
is co-NPtime complete [DKS04].
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7.2 Future Work

This section presents possible future directions of our research. We list below
several aspects that can be improved and extensions of this work.

• We have discussed in chapter 6 an extension of our language sup-
porting some basic quantitative measures. However, the declarative
semantics of the language was not formally defined. Moreover, the
compilation technique discussed only applies to non-recursive rough
programs. Thus, we plan to formalize the declarative semantics of
our extended language and investigate a computational technique that
supports recursive rough programs with quantitative measures.

• We plan to investigate how the query language can be enriched. For
instance, we would like to provide system support for formulating and
testing hypothesis.

• More efficient implementation of our language is also one of our goals in
the future. We plan to develop an implementation for recursive rough
programs re-using the existing expertise in stable model systems, such
as Smodels [Sim].

• We also plan to search for other concrete problems that can be for-
mulated in our framework. To this end, we may take a closer look
to rough mereology [PS94, PS97, PS01] applications. Mereology is a
formal theory of parts and wholes. In rough mereology, “parthood” is
a rough relation.

• A particular type of domain knowledge that often has to be considered
when classifying objects of a universe is an ontology of decision classes.
An interesting research direction is to investigate how ontologies can
be represented in our framework. The problem of integrating learning
algorithms based on rough set techniques with a gene ontology has
been addressed in [MLK01, MK02, Mid03] to predict gene function.
Several operators to build approximations of decision classes are pro-
posed. An open question is whether these operators could be easily
encoded in our language or which extensions need to be considered to
achieve that goal.

• This thesis presents foundation and implementation principles for a
rule language able to support reasoning on incomplete and impre-
cise information. The necessity of rule languages for handling im-
precise and incomplete Web data seems to be obvious. The research
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on this topic fits well with the objectives of the EU FP6 Network
of Excellence REWERSE (http://rewerse.net) aiming at designing
rule-based web reasoning languages. A topic of future research is de-
ployment of the proposed language for web reasoning purposes.
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Appendix A

Notation Summary

Notation Meaning

|S| the number of elements in a set S
A \ B set difference between A and B
D = (U,A, d) a decision table such that

U is a set of objects, A is a set of condition attributes,
and d is a decision attribute

RA the indiscernibility relation induced by
a set of attributes A

R∗
A the set of equivalence classes induced by RA

−→
EA the tuple describing indiscernibility class E
(U,RA) an approximation space
X the upper approximation of rough set X
X the lower approximation of rough set X
X the boundary region of rough set X
cond(r) → dec(r) a decision rule r
cover(c) the set of objects satisfying condition c
cover(r) cover(cond(r))
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Notation Meaning

Dv the set of objects having outcome v
for the decision attribute

red(r) a valued reduct for decision rule r
κ(A, B) the degree of functional dependency between

the sets of attributes A and B
red(A,B) a relative reduct of the set of

attributes A w.r.t. κ(A,B)
V ar an alphabet of variable symbols
Const an alphabet of constant symbols
Pred an alphabet of predicate symbols
p/n a predicate p with arity n
I (a rough) interpretation
M a (rough) model
X/c a binding of a variable X to a constant c
θ a substitution
¬A an explicit negated atom A
not A a default negated atom A
ground(P) a ground (rough) program
H:- B. a (rough) clause
:- B. an integrity constraint
sem(P) the semantics of a (rough) program
(Q,P) a (rough) query to a (rough) program P
ψI(P) the reduct of the ELP P
ΨI(P) the ground rough program, obtained from P,

without lower approximations or testing literals
in the body of its rough clauses

I |= l (rough) literal l is true in I
P |= l (rough) program P implies (rough) literal l
QI the rough set denoted by predicate q

in interpretation I
〈t1, . . . , tn〉 a tuple whose attribute values are t1, . . . , tn
t a tuple
[t] the indiscernibility class described by tuple t
〈t1, . . . , tn〉 : k k objects belonging to the indiscernibility class

[〈t1, . . . , tn〉] are positive examples
〈t1, . . . , tn〉 : k1 : k2 k1 (k2) objects belonging to the indiscernibility

class [〈t1, . . . , tn〉] are positive (negative) examples
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Notation Meaning

q(X) q(X1, . . . , X1)
q(−, X) the first argument of predicate q is irrelevant
u.1st if u = 〈c1, c2〉 then u.1st = c1

u.2nd if u = 〈c1, c2〉 then u.2nd = c2

τ1 the compilation function for rough clauses
τ2 the compilation function for bodies of

rough clauses belonging to rough programs
without quantitative measures

τF the compilation function for bodies of
rough clauses in RKBS

τm the compilation function for quantitative measures
τp the compilation function for predicate symbols

occurring in a rough program in RKBS
F a commutative and associative binary function
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