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Abstract Advances in database and data acquisition technologies have re-
sulted in an immense amount of spatial data, much of which cannot be readily
explored using traditional data analysis techniques. The goal of spatial data
mining is to automate the extraction of interesting and useful patterns that
are not explicitly represented in spatial datasets. The motivation for regional
association rule mining and scoping is driven by the facts that global statistics
seldom provide useful insight and that most relationships in spatial datasets
are geographically regional, rather than global. Furthermore, when using tradi-
tional association rule mining, regional patterns frequently fail to be discovered
due to insufficient global confidence and/or support. This raises the challenges
on how to measure the interestingness of a set of regions and how to search
and evaluate regional patterns among those regions. This paper centers on
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discovering regional association rules and determining the scope of these rules
in spatial datasets. In particular, we present a reward-based region discovery
method that employs clustering to find interesting places where regional asso-
ciation rules are valid. A divisive, grid-based supervised clustering algorithm is
introduced for region discovery. We evaluate our approach in a real-world case
study to identify spatial risk patterns from arsenic in the Texas water supply.
Our experimental results not only confirm and validate research results in the
study of arsenic contamination, but also lead to the discovery of novel findings
that need to be further explored by domain scientists.

Keywords Region Discovery · Association Rule Mining and Scoping ·
Clustering · Spatial Data Mining

1 Introduction

Advances in database and data acquisition technologies have resulted in an im-
mense amount of spatial data, much of which cannot be readily explored using
traditional data analysis techniques. Techniques of spatial data mining have
been developed to automatically find novel, useful, but implicit patterns from
large spatial datasets [21,36–38,17,12,16,26,32,34,44]. Of particular interests
to scientists is to find scientifically meaningful regions and their associated
patterns, such as, identification of earthquake hot spots, association of partic-
ular cancers with environmental pollution, and detection of crime zones with
unusual activities, etc.

The motivation for regional association rule mining and scoping is driven
by the facts that global statistics seldom provide useful insight and that most
relationships in spatial datasets are geographically regional, rather than global.
It has been pointed out in the literature [15,30,35] that “whole map statistics
are seldom useful,” that “most relationships in spatial data sets are geograph-
ically regional, rather than global” and that “there is no average place on the
Earth’s surface” – a county is not a representative of a state, and a state is
not a representative of a country. Therefore, it is not surprising that domain
experts are most interested in discovering hidden patterns at a regional scale
rather than a global scale [15,28,29].

Unfortunately, most of the current data mining techniques are ill-suited
for discovering regional knowledge. For example, traditional association rule
mining frequently fails to discover regional patterns due to insufficient global
confidence and/or support. A common approach to alleviate the problem is
to use a small support threshold. However, this approach usually suffers from
a combinatorial explosion in the number of rules generated. Furthermore, for
a given dataset, the number of regions as well as the regions themselves are
not known a priori. This raises two questions: how to measure the interest-
ingness of a set of regions and how to search for interesting regions. One
popular approach is to select regions to be mined based on an a priori given
structure, such as a grid structure using longitude and latitude, or based on
political/demographical boundaries, such as counties within a state. However,
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Well Depth Dangerous Safe Total

(0, 251.5] 1000 1000 2000
(251.5, ∞) 1200 800 2000
Total 2200 1800 4000

Well Depth Dangerous Safe Total

ZoneA (0, 251.5] 400 100 500
(251.5, ∞) 1050 450 1500

ZoneB (0, 251.5] 600 900 1500
(251.5, ∞) 150 350 500
Total 2200 1800 4000

Table 1 Contingency tables between well depth and arsenic concentration.

the boundaries of the so-constructed regions usually do not match the surface
boundaries of the interesting patterns, making them difficult to be discovered.
Using results from our real-world case study, let us consider an association
rule that suggests a well X, up to 251.5-feet deep, is associated with danger-
ous arsenic concentrations:

depth(X, 0 − 251.5) → arsenic level(X, dangerous)

Table 1 describes the well data of a county that includes Zone A and Zone
B. Assuming the minimum confidence threshold is 70%, the pattern would
not have enough confidence (1000

2000 = 50% < 70% threshold) to be identified
globally in the county. However, the same rule holds in Zone A because its
confidence, 400

500 = 80%, is above the 70% threshold. Notice that this rule does
not hold in Zone B, due to its low confidence ( 600

1500 = 40%). Hence a well up
to 251.5-feet deep is positively associated with high arsenic contamination in
zone A, but is negatively associated with dangerous arsenic concentration in
the combined dataset. This reversal of an association in the global dataset is
also known as spatial heterogeneity [38] or Simpson’s Paradox in statistics[11].

Another interesting phenomenon is that regional association rules, by defi-
nition, only hold in a subspace but not in the global space; therefore, regional
association rules may only be discovered in a particular subspace of the global
space. This fact leads to novel challenges for regional association mining and
scoping: (1) region discovery: how to determine regions from which useful asso-
ciation rules can be extracted; and (2) regional rule scoping: how to identify the
scope of regional association rules. In this paper, we formalize both problems
and propose our reward-based framework that utilizes the duality between re-
gional patterns and regions where the patterns are supported: regions are used
to discover regional association rules, and then regional association rules are
used to determine regions in which those association rules are valid. Such re-
gions provide a quantitative measure of how significant a regional association
rule is in the global space.

Our Contributions. In this paper, we propose a novel efficient framework
for regional association rule mining and scoping. We present a reward-based
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Fig. 1 An example for regional association rule mining and scoping.

region discovery method to search for regions that maximize an external fit-
ness function, which captures what domain experts are interested in. Then an
integrated approach is introduced to systematically mine regional rules from
the discovered regions. At last we determine the scope of regional association
rules to find places where those association rules are valid. We formulate re-
gion discovery as a clustering problem in which an externally given fitness
function has to be maximized. Each cluster is assigned a “reward” value. A
cluster receives a higher reward if a regional association rule exhibits stronger
confidence and support.

We have designed and implemented a new divisive, grid-based supervised
clustering algorithm to identify interesting regions in spatial datasets. The
cluster algorithm searches for clusters to find interesting regions of arbitrary
shape and scale.

We empirically evaluate the effectiveness of our framework using a real-
world case study to identify spatial risk patterns from arsenic in the Texas
water supply. Our experimental results not only confirm and validate research
results in geoscience, but also lead to the discovery of novel findings that need
to be further studied by domain scientists.

Figure 1 illustrates the basic procedure of our approach using a real ex-
ample from our case study. An association rule a, Wells with nitrate concen-
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trations lower than 0.085mg/l have dangerous arsenic concentration level, is
discovered from an arsenic hot spot area in the South Texas with 100% confi-
dence. The scope of the association rule a is a much larger area which mostly
overlaps with the Texas Gulf Coast. Statistical analysis shows that the rule a
cannot be discovered at the Texas state level due to its insufficient confidence
(less than 50%).

The reminder of this paper is organized as follows. Section 2 reviews related
work. Section 3 introduces the framework of regional association rule mining
and scoping. Section 4 describes the algorithms used in the framework. Section
5 presents the experimental results of a real-world application on identifying
arsenic spatial risk patterns in the Texas water supply, and we conclude the
paper in Section 6.

2 Related Work

The areas most relevant to our work are hot spot discovery, spatial association
rule mining, spatial co-location pattern discovery.

2.1 Hot Spot Discovery

Hot spots are traditionally defined as clusters of “more than usual interest,
activity, or popularity” with respect to spatial coordinates [25]. Wang et al. [44]
introduce a “region-oriented” clustering algorithm to select hot spots to satisfy
certain conditions such as density. Their approach uses statistical information,
for example, means and standard deviations, instead of a fitness function to
evaluate a cluster.

In spatial statistics, detection of hot spots using a variable resolution ap-
proach [4] was investigated in order to minimize the effects of spatial superpo-
sition. In [41], a region-growing method for hot spot discovery was described,
which selects seed points first and then grows clusters from these seed points
by adding neighbor points as long as a density threshold is satisfied. The
definition of hot spots was extended in [22] using circular zones for multiple
variables. Getis and Ord propose a popular method to find hot spots in spatial
datasets relying on the G∗ Statistic [14,31]. G∗ Statistic detects local pockets
of spatial association, and the value of G∗ depends on an a priori given scale
of the packets and is calculated for each object individually. Visualizing the
results of G∗ calculations graphically reveals hot spots (aggregates of objects
with values of G∗ higher than expected) and cold spots (aggregates of objects
with values of G∗ lower than expected). Note that such aggregates are not
formally-defined clusters since the G∗-based method has no built-in cluster-
ing capabilities. Instead, hot spots are inferred from visualization and manual
selection.
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2.2 Spatial Association Rule Mining

Association rule mining has been introduced in [2] to mine interesting rela-
tions hidden in market basket transactions. Spatial association rule mining
[21] extends association rule mining to spatial datasets. A spatial association
rule takes the form of

P1 ∧ P2 ∧ ... ∧ Pm → Q1 ∧ Q2 ∧ ... ∧ Qn (sup%, con%).

It denotes an association relation among a set of predicates Pi (i = 1, ..., m)
and Qj (j = 1, ..., n), containing at least one spatial predicate. Spatial predi-
cates may represent topological relations among spatial objects (e.g., intersect-
ing, containing), or indicate a spatial orientation (e.g., north, left). The support
of the rule (sup%) measures the percentage of transactions containing both the
antecedent and consequent of the rule. The confidence of the rule (con%) indi-
cates that con% of transactions that satisfy the antecedent of the rule will also
satisfy the consequent of the rule. A rule P1∧P2∧ ...∧Pm → Q1∧Q2∧ ...∧Qn

is strong if sup% and con% satisfy minimum support and minimum confidence
thresholds.

A common strategy used in spatial association rule mining is to divide the
problem into three subtasks:

1. Item representation and transaction definition: define “items” and
“transactions” for spatial datasets.

2. Frequent itemset generation: find all the itemsets that satisfy the min-
imum support threshold.

3. Rule generation: construct rules from the frequent itemsets that satisfy
the minimum confidence threshold.

Apriori-style [2] association mining algorithms require that objects are de-
scribed using categorical attributes. Therefore, continuous attributes have to
be discretized which frequently results in information loss. Moreover, transac-
tions are usually not a priori given for spatial datasets and therefore need to
be defined. In addition, a transaction is not defined by nature in spatial space.
If spatial association rule discovery is restricted to a reference feature (such
as cities or wells), then transactions can be defined using the instances of this
reference feature, as discussed in [21]. Our work adopts the same transaction
model.

2.3 Spatial Co-Location Pattern Discovery

Shekhar et al. discussed several interesting approaches to mining co-location
patterns, which are subsets of Boolean spatial features whose instances are
frequently located together in close proximity [37,47,46]. Huang et al. pro-
posed co-location mining involving rare events [17]. In [18], Huang and Zhang
explored the relations between clustering and co-location mining. Instead of
clustering spatial objects, the features of spatial objects are clustered using a
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proximity function that is designed to find co-location patterns. However, it
should be stressed that all the described approaches are restricted to global
co-location patterns. Our approach, on the other hand, centers on discovering
regional patterns. Aggarwal et al. [1] introduced localized association rule min-
ing that seeks local association rules in clustered basket data. Their discovery
is limited to non-spatial basket datasets, and they did not identify the scope
of regional patterns.

3 The Framework for Regional Association Rule Mining and
Scoping

As illustrated in Figure 1, the framework of regional association rule mining
and scoping consists of three steps:

Step 1 Region Discovery: identifying interesting regions for regional asso-
ciation rules.

Step 2 Regional Association Rule Mining: mining regional association
rules among discovered regions.

Step 3 Regional Association Rule Scoping: determining the scope of re-
gional association rules.

In the remaining part of the section, we will first discuss our reward-based
method for region discovery which is closely involved with Steps 1 and 3, and
we will formally define the goal of our framework and formulate the measures
of interestingness.

3.1 Region Discovery

Our region discovery method employs a reward-based evaluation scheme that
evaluates the quality of the discovered regions. Given a set of regions R =
{r1, . . . , rk} identified from a spatial dataset O = {o1, . . . , on}, the fitness of
R, q(R), is defined as the sum of the rewards obtained from each region rj

(j = 1 . . . k):

q(R) =

k
∑

j=1

(i(rj) × size(rj)
β) (1)

where i(rj) is the interestingness measure of a region rj , a quantity based on
domain interest to reflect the degree to which the region is newsworthy. Our
reward-based method seeks a set of regions R such that the sum of rewards
over all of its constituent regions is maximized. size(rj)

β (β > 1) in q(R)
increases the value of the fitness nonlinearly with respect to the number of
objects in O belonging to the region rj . A region reward is proportional to its
interestingness, but given two regions with the same value of interestingness,
a larger region receives a higher reward to reflect a preference given to larger
regions.
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We employ clustering algorithms for region discovery. A region is a con-
tiguous subspace that contains a set of spatial objects such that for each pair
of objects belonging to the same region, there always exists a path within this
region that connects them. We search for regions r1, . . . , rk such that:

1. ri ∩ rj = ∅, i 6= j, that is, the regions are disjoint.
2. R = {r1, . . . , rk} maximizes q(R).
3. r1 ∪ . . . ∪ rk ⊆ O: the generated regions are not required to be exhaustive

with respect to the global dataset O.
4. r1, . . . , rk are ranked based on their reward values. Regions that receive no

reward are discarded as outliers.

3.2 Problem Formulation

Let O be a spatial dataset, S = {s1, s2, ..., sl} be a set of spatial attributes,
A = {a1, a2, ..., am} a set of non-spatial attributes, and CL = {cl1, cl2, ..., cln}
a set of class labels. Let

I = S ∪ A ∪ CL

= {s1, s2, ..., sl, a1, a2, ..., am, cl1, cl2, ..., cln}

be the set of all the items in O, and let T = {t1, t2, ..., tN} be the set of all
the transactions. T can be represented as a relational table, which contains N
tuples conforming to the schema I (I contains l +m+n items). An item i ∈ I
is a binary variable whose value is 1 if the item is presented in ti (i = 1, ..., N)
or 0, otherwise. Consequently, the set of transactions T is classified based on
the given class structure CL.

Our framework leads to a class-guided generation of association rules that
sheds more light on the patterns related to the given class structure. We define
such rules as supervised association rules.

Definition 1 (Supervised Association Rule) A supervised association
rule a is of the form P → Q, where P ⊆ I, Q ⊆ I, and (P ∪ Q) ∩ CL 6= ∅.

The rule a holds in the O with confidence conf and support sup where

sup(P → Q) =
|P ∪ Q|

N

conf(P → Q) =
|P ∪ Q|

|P |

where | | denotes the number of elements in a set. A supervised association
rule is strong if it satisfies user-specified minimum support (min sup) and
minimum confidence (min conf) thresholds: sup(P → Q) ≥ min sup and
conf(P → Q) ≥ min conf .

The goal of regional association rule scoping is to compute a set of regions
where a given association rule is valid. The scope of a regional association rule
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represents the spatial impact of this regional pattern. We give formal definition
of the scope of an association rule below.

Definition 2 (Scope of an Association Rule) The scope of an association
rule a is a set of regions in which the association rule a satisfies the min sup
and min conf thresholds.

Given these definition and nomenclature, the problem of regional associa-
tion rule mining and scoping can be formulated as:

Find: interesting regions, supervised association rules from the discovered
regions, and scope of strong regional association rules.

Given: a set of items I, a classified transaction set T , fitness functions for
different measures of interestingness.

3.3 Measure of Interestingness

Different interestingness functions that correspond to various domain interests
can easily be supported in our framework. In this section, we present two
interestingness functions, ihotpot coldspot and iscope, for regional association rule
mining and scoping, respectively.

In function ihotpot coldspot, the measure of interestingness is based on a set
of class labels CL. It rewards regions whose probability distribution of CL
significantly deviates from its priori probability. A region is a hot spot/cold
spot if its probability distribution of CL is significantly higher / lower than an
expected probability. The interestingness function ihotpot coldspot is calculated
based on P (r, CL) and priori(CL), with the following parameters: η, γ1, γ2,
R+, R , where η > 0, γ1 ≤ 1 ≤γ2, 0 ≤ R+, R− ≤ 1. P (r, CL) is the probability
of objects in a region r belonging to CL, priori(CL) is the probability of
objects in datasets O belonging to CL, and R+ and R− are the maximum
rewards for hot spots and cold spots, respectively.

ihotpot coldspot =










[priori(CL)×γ1−P (r,CL)
priori(CL)×γ1

× R−]
η

if P (r, CL) < priori(CL) × γ1

[P (r,CL)−priori(CL)×γ2

1−priori(CL)×γ2

× R+]
η

if P (r, CL) > priori(CL) × γ2

0 otherwise

(2)

The parameter η determines how quickly the value of interestingness grows
to the maximum value (either R+ or R−). If η is set to 1, the interestingness
function changes linearly, as shown in Figure 2. In general, the larger the
value for η is, the higher rewards for purer clusters are. priori(CL) × γ1 and
priori(CL)× γ2 determine the thresholds based on which a reward is given to
a cluster.

The following example explains how to calculate the fitness of a clustering
schema X of an example dataset using Equations 1 and 2.
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Fig. 2 The interestingness function ihotpot coldspot using η = 1.

Example Let us assume a clustering schema R is evaluated with respect
to the class of interest dangerous (high-level arsenic) concentrations with
priori(dangerous) = 0.2 and a dataset that contains 1000 examples. Sup-
pose that the dataset is partitioned into 4 clusters X = {x11, x12, x13, x14},
and |x11| = 50, |x12| = 200, |x13| = 400, |x14| = 350. Assume that there
are 20, 100, 80, and 0 objects labeled “dangerous” in the 4 clusters, re-
spectively. P (x11, dangerous) = 20

50 = 0.4, P (x12, dangerous) = 100
200 =

0.5, P (x13, dangerous) = 80
400 = 0.2, P (x14, dangerous) = 0

350 = 0. The
parameters used in the fitness function are as follows: γ1 = 0.5, γ2 =
1.5, R+ = 1, R− = 1. Hence, priori(CL) × γ1 = 0.2 × 0.5 = 0.1, and
priori(CL) × γ2 = 0.2 × 1.5 = 0.3. With this setting, a cluster does not
receive any reward if its probability of class “dangerous” is not significanlty
higher or lower than the expected probability, that is, the value is between
priori(CL) × γ1 = 0.1 and priori(CL) × γ2 = 0.3. Therefore, x13 receives
no reward. The interestingness for the other clusters using η = 1 are

ihotpot coldspot(x11) = (
0.4 − 0.3

1 − 0.3
)1 =

1

7
,

ihotpot coldspot(x12) = (
0.5 − 0.3

1 − 0.3
)1 =

2

7
,

ihotpot coldspot(x14) = (
0.1 − 0

0.1
)1 = 1.

The fitness value of the clustering schema X calculated using Equation 1
with β = 1.1 is

q(X) = 1
7 × ( 50

1000 )1.1 + 2
7 × ( 200

1000 )1.1 +

0 × ( 400
1000 )1.1 + 1 × ( 350

1000 )1.1

= 0.369

Function iscope evaluates the interestingness of a region for a given asso-
ciation rule. Let a be an association rule, conf(a, r) the confidence of a in
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a region r, and sup(a, r) the support of a in r, we define the interestingness
iscope(r) of a region r with respect to a given association rule a as follows:

iscope(r) =














0 if sup(a, r) < min sup × δ1 or
conf(a, r) < min conf × δ2,

( sup(a,r)
min sup

)η1( conf(a,r)−min conf×δ2

1−min conf×δ2

)η2 otherwise.

(3)

In regional association rule scoping, a region’s reward is proportional to its
interestingness, which is determined based on the confidence and support of
association rule a in region r. In Equation 3, the thresholds min sup× δ1 and
min conf × δ2 are introduced to weed out regions in which the association
a barely holds. The minimum support and confidence thresholds prevent the
clustering solution from containing large clusters with low interestingness. Val-
ues of parameters η1 and η2 (η1, η2 > 0) determine the weight to the increment
of the support and confidence, respectively.

The measure of interestingness is designed to efficiently identify the scope of
a given regional association rule. Firstly, in contrast to traditional association
rule mining, the proposed measure of interestingness uses “soft” instead of
“hard” thresholds to avoid a crisp effect [3]. For example, with δ1 = δ2 = 0.9,
the function iscope(r) rewards regions as long as their confidence or support
thresholds are within 90% of the hard thresholds min conf and min sup.
Assume min sup = 10%, min conf = 80%, and an association rule whose
support is 9% and confidence is 100% in a region r′. Instead of assigning zero
reward to the region r′, we argue to reward the region because the confidence of
the rule is significantly above the min conf threshold and its support is just a
little bit lower (1%) than the min sup threshold. Secondly, our approach uses a
quantitative evaluation method that assigns a higher degree of interestingness
and consequently a higher reward to regions whose support and confidence are
high with respect to an association rule of interest. Thirdly, once an association
rule a is discovered from a particular region r, we know that the region r from
which the association rule a originates, receives a positive reward due to the
fact that a satisfies the support and confidence thresholds in r.

4 Algorithms

4.1 Region Discovery

We formulate region discovery as a clustering problem to search for clusters
that maximize domain-specific metrics as described in detail in previous sec-
tion. Different measures of interestingness may lead to different sets of identi-
fied regions. Consequently, clustering algorithms embedded in the framework
should allow for plug-in fitness functions. However, the use of fitness functions
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is quite uncommon in clustering methods, although a few exceptions exist, for
example, the hierarchical clustering algorithm CHAMELEON [20] uses fitness
functions to evaluate inter-connectivity and proximity between two clusters.
Furthermore, our region discovery method is different from traditional clus-
tering methods as it is geared toward finding interesting places with respect
to a given measure of interestingness. Clusters are ranked based on reward
values, and clusters receive low reward are discarded as outlier and will not be
identied as interesting regions.

We have designed and implemented a new Supervised Clustering algorithm
using Multi-Resolution Grids (SCMRG). SCMRG is a hierarchical, grid-based
method that utilizes a top-down search. The spatial space of the dataset is
partitioned into grid cells. Each grid cell at a higher level is partitioned further
into smaller cells at the lower level, and this process continues as long as the
sum of the rewards of the lower level cells q(R) is not decreased. The regions
returned by SCMRG are the combination of grid cells obtained at different
levels of resolution. The number of clusters, k, is calculated by the algorithm
itself.

Algorithm 1 gives the pseudo-code of SCMRG. A queue data structure is
used to store all the cells that need to be processed. The algorithm starts at
a user-defined level of resolution and considers the following three cases when
processing a cell c:

Case 1: if the cell c receives a reward, and its reward is greater than the sum
of the rewards of its children (succ(c)) and greater than the sum of rewards
of its grandchildren, this cell is returned as a cluster by the algorithm (steps
15-17).

Case 2: if the cell c does not receive a reward and its children and grandchil-
dren do not receive a reward, neither the cell nor any of its descendents
will be labeled clusters (steps 23-29).

Case 3: otherwise, put all the children of the cell c (succ(c)) into a queue for
further processing (steps 18-21, steps 24-28).

The algorithm traverses through the hierarchical structure and examine
those cells in the queue from the higher level. It uses a user-defined cell size
as a depth boundary. Cells smaller than this cell size will not be split any
further (step 19, step 25). Finally, SCMRG collects all the cells that have
been identified in Case 1 from different levels, and merges neighbor clusters
if it improves the fitness as defined in Equation 1. The obtained regions are
returned as the result of executing SCMRG (steps 31-33).

This hierarchical grid-based approach captures clustering information as-
sociated with spatial cells without recourse to the individual objects because
we do not drill down a cell if it does not look so promising (Case 2). SCMRG
avoids time-consuming distance calculation because it uses the grid struc-
ture to define the neighborhood of objects. The computational complexity of
SCMRG is thus linear in the number of grid cells processed, which is usually
much less than the number of objects. Thus, the algorithm is capable of pro-
cessing large datasets efficiently. The SCMRG algorithm has some similarity
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Algorithm 1 The Algorithm of Supervised Clustering using Multi-Resolution
Grids (SCMRG).

SCMRG (min cell size)
1.Determine a level of resolution l to start with.
2. Assign spatial objects to grid cells.
3. for each cell c at the current level l do
4. enqueue(c, cellQueue).
5. end for
6.while NOT empty(cellQueue) do
7. c = dequeue(cellQueue).
8. r = reward (c). {Calculate reward for the cell.}
9. for each cchild ∈succ(c) do
10. rchildren = rchildren+reward (cchild).
11. end for {Calculate reward for its children.}
12. for each cgrandchild ∈succ(succ(c)) do
13. rgrandchildren = rgrandchildren+reward (cgrandchild).
14. end for {Calculate reward for its grandchildren.}
15. if r > 0 {The cell receives a reward.}
16. if r > rchildren AND r > rgrandchildren

17. label the cell a cluster.
18. else {The cell should be divided further.}
19. if ( the size of each cchild ∈succ(c) > min cell size)
20. enqueue(succ(c), cellQueue).
21. end if
22. end if
23. else if r = 0 {The cell does not receive a reward.)
24. if NOT (rchildren = 0 AND rgrandchildren = 0)
25. if ( the size of each cchild ∈succ(c) > min cell size)
26. enqueue(succ(c), cellQueue).
27. end if
28. end if {The cell should be divided further.}
29. end if
30.end while
31.Collect all the cluster-labeled cells from different levels.
32.Obtain regions by merging neighbor clusters if it improves the fitness.
33.Return the obtained regions.

with the STING clustering algorithm [44]. The difference is that the SCMRG
algorithm focuses on finding interesting cells (those receive high rewards) in-
stead of cells that contain answers to a given query. In addition, SCMRG only
computes cell statistics when needed and not in advance as STING does, thus
saving storage space as well.

The example in Figure 3 explains the procedure of this algorithm using a
sample dataset. The first decomposition results into four cells c11, c12, c13, c14

at Level 1. If the reward of c11 is greater than the sum of the rewards of its
children, and if it is also greater than the sum of rewards of its grandchildren,
c11 is then labeled a cluster according to Case 1. Cell c14 does not receive
any rewards, if neither its children nor grandchildren receive any rewards.
According to Case 2, c14 is not labeled a cluster, and its successors are not
saved in the queue. Although Cell c13 receives no reward, assume its children
receive rewards, all the children of c13 are saved in the queue to be further
processed (Case 3). The cells at Level 1 are then divided into Levels 2 and
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Fig. 3 Runing the SCMRG algorithm on a sample dataset.

3, and the same procedure is applied to all the cells in the queue. Each cell
is labeled accordingly. The intermediate results are shown at Levels 2 and 3
in Figure 3. Neighbor clusters are merged if this improves the fitness. In this
example, two regions are identified.

4.2 Generation of Regional Association Rules

Once regions are identified, we construct frequent itemsets for each region.
Our Supervised Apriori Gen algorithm (see Algorithm 2) extends the Apriori
algorithm [2] by utilizing a given class structure.

The Apriori algorithm first makes a single pass over the data set to deter-
mine the support of each single item, which generates all frequent 1-itemsets
F1. Next, the algorithm iteratively generates candidate k-itemsets using the
frequent (k-1)-itemsets found in the previous iteration. A k-itemset is an item-
set that has k attributes. A candidate itemset is pruned if it is not frequent.
The algorithm terminates when there are no new frequent itemsets generated,
for example, Fk=∅. In Supervised Apriori Gen algorithm, the given class struc-
ture is incorporated by enforcing that each candidate k-itemset include at least
one class label; otherwise it is pruned even if it is frequent. The Supervised-
Apriori-Gen uses the Fk−1 × Fk−1 method [40] to merge a pair of frequent
(k-1)-itemsets. Basically, let A = {a1, a2, ..., ak−1} and B = {b1, b2, ..., bk−1}
be a pair of frequent (k-1)-itemsets. A and B are merged to form a k-itemset
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Algorithm 2 Supervised Apriori Gen: Candidate Generation and Prun-
ing.
Supervised Apriori Gen(Fk−1)
1. if k = 2 {Deal with candidate 1- and 2-itemsets}
2. for each frequent 1-itemset f ∈ F1 do
3. insert f into C1. {Generate candidate 1-itemsets}
4. end for
5. (C1 class label, C1 other) = split(C1, CL).
6. for each candidate itemset c1 ∈ C1 class label do
7. for each candidate itemset c2 ∈ C1 other do
8. c = form c1 and c2.

9. insert c into C2. {Generate candidate 2-itemsets}
10. end for
11. end for
12. for each candidate itemset c1 ∈ C1 class label do
13. for each candidate itemset c2 ∈ C1 class label − {c1} do
14. c = form c1 and c2.
15. insert c into C2.

16. end for
17. end for
18. else
19. for each i1 in Fk−1

20. for each i2 in Fk−1

21. if (first k − 2 items of i1, i2 are same) ∧ (last item of i1, i2 differs)
22. c = form (first k − 1 items of i1) and (last item of i2).
23. insert c into Ck.
24. end if
25. end for
26. end for
27. end if
28. return Ck.

{a1, a2, ..., ak−1, bk−1} (see form function in step 22) if they satisfy the fol-
lowing conditions:

ai = bi (for i = 1, 2, ..., k − 2) and ak−1 6= bk−1.

The Supervised-Apriori-Gen algorithm initially starts with a candidate 2-
itemset construction, which is the basis of the k-itemset generation (k > 2).
To ensure that each 2-itemset includes at least one class label, the algorithm
firstly constructs candidate 1-itemsets from frequent 1-itemsets (steps 2-4).
The algorithm separates class-label items from other items using the split
function (step 5). Next the algorithm enumerates class-label items with the rest
of items (steps 6-11), as well as class-label items with themselves (steps 12-18).
Thus, steps 6-11 generate candidate 2-itemsets formed between class labels and
other non-class-label items; steps 12-17 generate candidate 2-itemsets formed
between class labels. The 2-itemsets are then used for k-itemsets generation
(k > 2) (steps 19-26).

After frequent itemsets are generated, we use the same approach proposed
by the Apriori algorithm to generate strong supervised association rules using
the min conf threshold.
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5 Arsenic Regional Association Rule Mining and Scoping in the
Texas Water Supply

In this section, we describe the experimental procedures of applying the frame-
work of regional association rule mining and scoping to a real world case study
that identifies arsenic spatial risk patterns in the Texas water supply. We then
discuss the experimental results and evaluate the performance of the proposed
framework.

The experiments are conducted in four steps:

1. Data collection and data preprocessing, including cleaning data, trans-
forming continuous attributes into categorical attributes, and constructing
transactions using water wells as the reference feature.

2. Identifying arsenic cold spots and hot spots. A region whose arsenic dis-
tribution is significantly higher is considered an arsenic hot spot; a region
whose arsenic distribution is significantly lower is considered an arsenic
cold spot.

3. Mining supervised association rules from each identified region and for the
complete dataset.

4. Determining scope of strong supervised association rules.

5.1 Datasets: Data Collection and Data Preprocessing

The datasets used in this study are extracted from the Texas Ground Wa-
ter Database (GWDB) maintained by the Texas Water Development Board,
the state agency in charge of statewide water planning [42]. The Texas Water
Development Board has monitored and analyzed arsenic concentrations over
the last 30 years. Arsenic in very high concentration is poisonous. Long term
exposure to arsenic, even though at low level, can still lead to increased risk of
cancers [39]. Arsenic is derived from both anthropogenic sources, such as the
drainage from mines and mine tailings, pesticides, and biocides, and from natu-
ral sources, such as the hydrothermal leaching of arsenic-containing minerals or
rocks. The World Health Organization has reported arsenic in drinking water
in U.S., Thailand, Mexico, India, Hungary, Ghana, Chile, China, Bangladesh,
and Argentina [45], as one of the key parameters for drinking water quality
and safety evaluation.

Because data collection and maintenance procedures and standards have
changed over the years in GWDB, datasets have to be cleaned to deal with
problems such as missing values, inconsistent data, and duplicate entries. The
obtained arsenic spatial dataset includes spatial attributes (S), non-spatial
attributes (A), and class labels (CL) for each water well. Some of the spatial
attributes are directly extracted from the database, such as river basin, zone,
latitude and longitude. Implicit spatial attributes, such as distance between
wells and rivers, are estimated using the 9-intersection model [10]. Non-spatial
attributes are selected with the assistance of domain experts [19,23,33]; they
include well depth, and concentration of fluoride, nitrate, and other chemical
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Fig. 4 Arsenic contamination in Texas; background depicts Texas terrain color ramp. Leg-
end: red (or dark grey) dots – dangerous wells.

metal elements including vanadium, iron, molybdenum and selenium. Among
those attributes, attribute well depth is used for studies on mobilizing mecha-
nism; attributes vanadium and molybdenum have similar geochemical behavior;
attributes fluoride, nitrate, iron, and selenium may suggest the ultimate origin
of arsenic. The arsenic dataset generated by our research group is available on
the web at [6].

We classify water wells into two classes: safe and dangerous. Based on the
standard for drinking water defined by the Environment Protection Agency
[43], a well is considered dangerous if its arsenic concentration level is above
10µg/l. To ensure the quality of the association rule generated in the study, we
only select lab test results that use honored sampling procedures. This results
in 11,922 records selected from GWDB after data preprocessing. Figure 4
illustrates arsenic contamination in Texas, where dangerous wells are in red
(or dark grey).

In preparation of the association rule mining, continuous attributes ex-
cluding latitude and longitude are first converted into categorical attributes.
In general, two different methods are used for discretization of continuous
attributes: unsupervised discretization without using class information and
supervised discertization using class information [40]. In our experiments, we
adopt the supervised method Recursive Minimal Entropy Partitioning intro-
duced in [13]. The supervised entropy-based method uses class labels danger-
ous and safe to place the splits in a way that maximizes the purity of arsenic
classes in the intervals. This discretization method maximized the support
for arsenic class attribute, facilitating the discovery of supervised association
rules involving with arsenic. Hence the method can effectively find the su-
pervised association rules related with arsenic classes. The method produces
unequal bin sizes and has been shown to produce better results in data mining
tasks [9]. For example, the value of nitrate concentration has been discretized
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Fig. 5 Interesting regions are identified using β = 1.01, η = 1, γ1 = 0.5, γ2 = 1.5, R+ =
1, R− = 1. Average region purity = 0.85.

into five intervals with respect to the arsenic classes: (0,0.085], (0.085,0.455],
(0.455,16.1], (16.1,28.085], and (28.085,∞) (measurement unit mg/l).

5.2 Experimental Results and Evaluation

We have re-discovered several interesting risk regions with high arsenic con-
centrations (hot spots), which have been studied by geoscientists before. We
have also identified regions with low arsenic concentrations (cold spots). The
association rules that we constructed from those identified regions can help
geoscientists identify the causes of high arsenic concentrations in different re-
gions. We now present our results with validation from the published results in
geoscience for both region discovery and association rule mining and scoping.

In region discovery, the SCMRG algorithm is applied to a dataset that
consists of longitude and latitude of wells along with arsenic class labels dan-
gerous or safe using Equation 2. Figure 5 depicts the result of the top four
regions that have received the highest reward. Specifically, Regions 1 and 3
have high density of dangerous wells, and Regions 2 and 4 have high density
of safe wells. Hot spot Region 1 overlaps with the arsenic risk zone reported
in the National Water-Quality Assessment Program [27], and hot spot Region
3 is confirmed as an arsenic risk zone by Parker’s work [33].

If we are interested in finding larger regions with lower purity, using a larger
value of β results in a bigger size of the regions. Figure 6 shows enlarged regions
when β is increased from 1.01 to 1.035. In our experiments, we adjusted the
granularity of regions by the quality of rules discovered in step 3. We observed
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Fig. 6 Interesting regions are identified using β = 1.035, η = 1, γ1 = 0.5, γ2 = 1.5, R+ =
1, R− = 1. Average region purity = 0.83.

that β = 1.01 and η = 1 give us the best results in the rules constructed in
supervised association rule mining.

The Supervised Apriori Gen algorithm is used to generate frequent item-
sets for all the regions identified. We use min support = 10% and min confidence =
70% thresholds for the experiments. We present the first few rules for the re-
gions investigated, which are all meaningful and important according to the
arsenic study literature.

Mining regional rules in arsenic hot spots discovers attributes that are
associated with high arsenic concentrations; in cold spots it discovers attributes
related to low arsenic concentrations. For example, in Region 3 of Figure 5,
we discover

is a(X,Well) ∧ nitrate(X, 0 − 0.085)

→ arsenic level(X, dangerous) (100%). (1)

The rule states, with 100% confidence, that the wells in Region 3 with ni-
trate concentrations lower than 0.085mg/l have dangerous arsenic concentra-
tions. The strong association between nitrate and high arsenic concentrations
is verified by Hudak’s work [19] in environmental geology.

In Region 1 of Figure 5, we also discover

is a(X, Well) ∧ vanadium(X, 20.05 − 37.95) ∧ selenium(X, 74.55 −∞)

→ arsenic level(X, dangerous) (100%). (2)
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The rule states with 100% confidence that the wells in Region 1, with vana-
dium concentrations between 20.05 and 37.95µg/l and selenium concentrations
larger than 74.55µg/l, have dangerous arsenic concentrations. Our discovery
is confirmed by the work of Lee et al. in [23].

Our experiment results also show some novel rules that have not been
reported in the literature of arsenic analysis. For example, in Region 1 the
following rule is discovered:

is a(X,Well) ∧ depth(X, 0 − 215.5) ∧ iron(X, 19.65 − 20.05)

→ arsenic level(X, dangerous) (100%). (3)

The rule indicates that shallow wells with a certain range of iron concentra-
tions are associated with high arsenic concentrations. We hope that the results
from our study will help domain experts in selecting interesting hypotheses for
further scientific exploration.

Furthermore, we are interested to know whether the rules are different in
different regions. We compared the sets of rules generated for Regions 1 and
Region 3 (hot spots), as well as for Region 2 and Region 4 (cold spots). Due
to different geographical structure and farm activities of the study area, the
spatial risk patterns associated with arsenic are different in each region. For
example, comparing the previously studied rule 1 identified in Region 3 with
rule 4 extracted from Region 1:

is a(X, Well) ∧ nitrate(X, 28.085 −∞) ∧ fluoride(X, 4.605 −∞)

→ arsenic level(X, dangerous) (100%). (4)

Instead of being related to relatively low concentrations of nitrate (<
0.085mg/l), the rule says that with 100% confidence, the wells in Region 3,
with high nitrate concentrations (> 28.085mg/l) and fluoride concentrations
higher than 4.605 mg/l, have dangerous arsenic concentrations.

Rules in Regions 2 and 4 (cold spots) shed light on what may prevent high
arsenic concentrations. For example, we find the following rule, discovered both
in Regions 2 and 4, states what is associated with low arsenic concentrations.

is a(X, Well) ∧ nitrate(X, 0.455 − 16.1) ∧

fluoride(X, 0.095 − 0.315) ∧ vanadium(X, 3.25 − 5.945)

→ arsenic level(X, safe) (100%) (5)

In comparison, we also mine supervised association rules in the whole
dataset. After some exploratory experiments, we found that by reducing the
value of min support from 10% to 1%, we are able to identify more interesting
rules globally. However, in this case more than 100,000 rules are generated.
It is painstaking to evaluate all these rules to find any meaningful ones. On
the other hand, up to 300 rules on average are identified per region using our
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regional rule mining. The need to use low support values for complete datasets
has also been observed by [24]. However, all the regional rules (rules 1 to 5)
that we discussed previously were not able to be identified due to low global
confidence or support. Not surprisingly, statewide association rule mining finds
very trivial and general rules, such as

is a(X,Well) ∧ water use(X, “by humam beings”) ∧ arsenic level(X, safe)

→ inside(X,Basin19) (86%) (6)

It claims that wells which are used by human beings and have safe arsenic
concentrations are very likely (confidence is 86%) located in river basin 19 (in
San Antonio area). It is a well-known fact in Texas.

We use the same clustering algorithm SCMRG but a different fitness func-
tion iscope(Equation 3) for regional association rule scoping. The following four
regional association rules with 100% confidence from Regions 1, 2, 3, and 4 are
used as illustration examples in the rest of this section for regional association
rule scoping. Association rules 1 and 3 are confirmed in arsenic literature [19,
23].

Association Rule 1

nitrate(X, 28.31 −∞) ∧ arsenic level(X, dangerous) → depth(X, 0 − 251.5)

Association Rule 2

depth(X, 0 − 251.5) ∧ fluoride(X, 0 − 0.085) → arsenic level(X, safe)

Association Rule 3

nitrate(X, 0 − 0.085) → arsenic level(X, dangerous)

Association Rule 4

depth(X, 251.5 −∞) ∧ nitrate(X, 0.265 − 16.1) → arsenic level(X, safe)

Figure 7 depicts the scope of four association rules above. The scope of
an association rule can contain several regions. The scope of Association Rule
1 (top row, left column) overlaps with the Texas High Plains. In this area,
shallow depth wells (< 251.5 feet) indicate the aquifer is thin; thus, nitrate
comes from surface contamination (> 28.31 MG/L). Arsenic contamination
is of geological origin and is then enhanced by the lack of dilution because the
aquifer is thin. The scope of Association Rule 3 (bottom row, left column) is
applicable to the whole Texas Gulf Coast because the geology there is similar.
The scope of Association Rules 2 and 4 represents the areas where arsenic
contamination is low. They are interesting places that domain scientists will
explore in the future.

It is also important to point out that the scope of an association rule
indicates how global, regional, or local a pattern is. For example, the scope of
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Fig. 7 Region - Regional association rule - Scope using β = 1.01, η1 = 1, η2 = 1.1, δ1 =
δ2 = 0.9, min sup = 10%, min conf = 80%. Legend: regions are highlighted by bold
border line; scopes are in color blue (or light grey).

the association rule 4 in Figure 7 covers a large percentage of the global space
(> 75%). We find that the association rule 4 is also valid (holds with 85%
confidence) in the global dataset. Hence, it is indeed a global association rule.
However, none of the other three association rules are discovered globally. We
can also fine-tune the measure of interestingness for association rule scoping
by varying its support and confidence thresholds for a given association rule.
Figure 8 shows how the scope of the association rule 3 changes using different
confience and support thresholds. Typically, a lower value of the min sup
results in a larger scope; a higher value of the min conf results in a smaller
scope.

Our SCMRG algorithm is computationally efficient. On average, it takes
3.031 seconds for hot spots/cold spots discovery, and 4.68 seconds for regional
association rule scoping. The computer has an Intel(R) Pentium(R) M, a CPU
1.2GHz, and 632 MB of RAM. The algorithm can be accessed on the Web at
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Fig. 8 The scope of a particular rule changes based on the different values of min sup and
min conf . β = 1.01, η1 = 1, η2 = 1.1, δ1 = δ2 = 0.9, min sup = 10%, min conf = 80%.

our open source project Cougar2 Java Library for Machine Learning and Data
Mining Algorithms [5].

6 Discussion

One critical requirement for spatial data mining is the capability to analyze
datasets at different levels of granularity, as well as analyze the data globally.
We face two special challenges in regional association mining and scoping:
(1) how to determine regions from which regional association rules will be
extracted, and (2) how to evaluate the scope of regional association rules.
We solve the first issue using a reward-based region discovery algorithm that
employs a grid-based supervised approach to identify interesting subregions
in spatial datasets. We address the second problem by exploiting the duality
between regional patterns and regions: regions are used to discover regional
association rules, then regional association rules are used to determine places
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in which the association rules are valid. Such regions, defined as the scopes of
regional patterns, provide a quantitative measure of how significant a regional
association rule is in the global space. We evaluate the proposed framework in
a real-world case study to identify spatial risk patterns and risk zones of arsenic
in the Texas water supply. We have identified arsenic hot spots and cold spots,
created regional rules from the obtained regions, and rediscovered associations
that have already been reported in the scientific literature. Moreover, our
approach identified several new relationships between arsenic and other factors
which provide scientists with novel hypotheses for further exploration.
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