
A Framework for Resolution of Time in Natural

Language

BENJAMIN HAN and ALON LAVIE

Language Technologies Institute, Carnegie Mellon University, Pittsburgh, PA

15213

__

Automatic extraction and reasoning over temporal properties in natural language discourse has not had wide
use in practical systems due to its demand for a rich and compositional, yet inference-friendly, representation
of time. Motivated by our study of temporal expressions from the Penn Treebank corpora, we address the
problem by proposing a two-level constraint-based framework for processing and reasoning over temporal
information in natural language. Within this framework, temporal expressions are viewed as partial
assignments to the variables of an underlying calendar constraint system, and multiple expressions together
describe a temporal constraint-satisfaction problem (TCSP). To support this framework, we designed a typed
formal language for encoding natural language expressions. The language can cope with phenomena such as
under-specification and granularity change. The constraint problems can be solved using various constraint
propagation and search methods, and the solutions can then be used to answer a wide range of time-related
queries.

Categories and Subject Descriptors: I.2.4 [Artificial Intelligence]: Knowledge Representation Formalisms
and Methods---Representation languages, Representations (procedural and rule-based); I.2.7 [Artificial

Intelligence]: Natural Language Processing---Language parsing and understanding, Text analysis.

General Terms: Languages, Design, Theory.

Additional Key Words and Phrases: Temporal Information Processing, Temporal Reasoning, Computational
Semantics, Knowledge Representation, Constraint Solving.

__

1. INTRODUCTION

Time plays an active role in all facets of our lives, yet in many practical systems that

perform automatic analysis of natural language (NL), real time has long been a forgotten

dimension. Incorporating time into these systems is by no means trivial: to start with,

such systems need a rich yet compositional representation for encoding the nuances of

time manifested in NL, and the encoding needs to be inference-friendly to facilitate

sophisticated reasoning. Achieving these goals would require work on designing a

syntax-semantics interface for time, crafting formal models for real calendars (including

non-Gregorian ones), coping with under-specification and granularity change in

temporal expressions, accounting for the effect of temporal focus shifting, and finally

reasoning about a prescribed temporal scenario. The infrastructure thus provided can then

serve to represent and reason about more complex phenomena in NL brought by tense,

aspect, and discourse, and would greatly benefit numerous applications. For example,

with a more complete understanding of the temporal aspect of a discourse, a question-

answering system could answer temporal or cause-effect questions, a text summarization

system could provide a chronologically coherent account of events, and an intelligence

analysis system such as that of Hauck et al. [2002] could derive conclusions based on a

set of known cause-effect relations, which may be automatically learned by observing

recurring chronological patterns, and so on.

 Over the years the problems of temporal analysis in NL have been addressed

with a spectrum of approaches, ranging from heavily inference-oriented to mostly NL-

motivated ones. These include temporal logics [Gabby et al. 1994; Wooldridge et al.

1998; Artale et al., to appear]; formal accounts of calendars [Ohlbach and Gabbay 1998;

Wijsen 2000; Ning et al. 2002]; a theory for representing actions and time [Allen 1984]

and its continuation in the DAML Ontology of Time [Hobbs et al. 2002]; annotation of

temporal expressions in newswire texts [Setzer 2001]; TIMEX2 annotation scheme [Ferro

et al. 2001]; and the recent proposal of TimeML [Pustejovsky et al. 2002]. Taking a

position somewhere in the middle of this spectrum is research on temporal databases

[Snodgrass 1995] and their natural language interfaces [Androutsopoulos 2002]. Although

all of these approaches have their own strengths in providing the infrastructure required for

representing and reasoning about time in NL, few of them can at the same time deal with

common phenomena such as granularity change and under-specification or is rigorous

enough to facilitate sophisticated inferences.

Fig. 1. A framework for resolution of temporal information in NL.

In this article we set out to address these requirements by proposing a constraint-based

framework for resolution of temporal information in NL. In particular, we focus our effort

in putting forward a practical way of modeling temporal expressions. Common temporal

expressions in NL include noun phrases (“Wednesday”), prepositional phrases (“in a

week”), adjectival phrases (“current”), adverbial phrases (“recently”), and subordinate

clauses (“..., when the market stabilized.”). Within our framework these expressions

denote temporal objects (timestamps of events), which are essentially sets of partial

assignments to the variables of a calendar-constraint system. On a higher level, multiple

expressions together describe a temporal scenario, which can be modeled as a temporal

constraint-satisfaction problem (TCSP) [Dechter et al. 1991]. Figure 1 presents an

overview of the framework: via the Syntax-semantics interface, temporal expressions are

first extracted and translated into temporal objects encoded in a typed formal language,

which is designed on the basis of our study of the Penn Treebank corpora [Marcus et al.

1994]. This representation can encode a wide variety of expressions and cope with

phenomena such as under-specification and granularity change. The interpretation module

is then called upon to rewrite certain temporal objects based on the contextual

information, e.g., interpreting “Wednesday” as the nearest coming/past Wednesday,

based on the corresponding verb tense if the expression is used in a non-habitual sense, or

instantiating temporal foci throughout the discourse. The processed temporal objects

together describe a TCSP, which is sent off to the constraint solver to find a set of

complete and consistent assignments (solutions to the problem). During this stage, facts

from a temporal database (TDB) can be retrieved to aid the solution process and the

solutions can be stored in the TDB for future use. Various other NL applications can then

access the framework by sending queries and obtaining answers.

Understanding the temporal aspect of a discourse obviously requires much more

than just interpreting temporal expressions. Complicated problems such as modeling

tense and aspect [Hwang and Schubert 1994], interpreting temporal prepositions and

quantification [Pratt and Francez 2001], representing events [Steedman 1996], and dealing

with discourse [Kamp and Reyle 1993] must also be tackled during the process.

Addressing these problems, however, is not our main focus here. Our hope is that by

providing a unified and principled treatment of temporal expressions (timestamps of

events), solutions to these problems can be obtained more readily.

The rest of the article is organized as follows: Section 2 first motivates our

approach by solving a historical puzzle; Section 3 then introduces the basic ideas behind

the constraint-based temporal reasoning framework. Section 4 formalizes calendars as

constraint systems. The details of our representation language for temporal expressions

are then described in Section 5; in particular, it begins with our study of the Penn

Treebank corpora that motivates the design decisions of our representation language and

ends with derivation of meaning from example expressions. Section 6 gives a brief

discussion on the related work. Finally, Section 7 concludes this article with a summary

and plans for future work.

2. AN EXAMPLE: SOLVING A HISTORICAL PUZZLE

The possible meeting between Beethoven and Mozart has long been a fascinating puzzle:

did they really meet? In this section we consider how a system utilizing our framework

could at least confirm the possibility. To maintain our focus we assume that certain

knowledge, such as two people can meet only if they are physically at the same location,

is available to the system.

Consider the following short passage describing Beethoven’s first trip to

Vienna: the syntax-semantics interface identifies the temporal expressions (shown in

boldface), and translates them into our temporal representation (shown in the

parentheses):

“At 14 (T1: {T1’+|14year|}) Beethoven was able to deputize for his

teacher. Three years later (T2: {_+|3year|}), recognizing his talent, Prince

Maxmilian Franz sent him to Vienna to further his education. He would soon

return within two weeks (T3: {_+|(<2)week|}) on the news that his

mother was dying. She passed away 3 months later on July 17
th

 1787 (T4:
{_+|3month|,jul,17day,1787year}).”

The details of the representation language are given in Section 5; but suffice it to say that

T1’ to T4 denote temporal objects; {.} represents a point (at certain granularity) in

time; |.| denotes a temporal quantity; and ‘_’ encodes an open temporal variable

(temporal focus). The time T1’ in particular denotes the birth of the composer. The

Interpretation module then instantiates the temporal foci based on the context:

T1: {T1’+|14year|} (deputizing-at-14)

T2: {T1+|3year|} (off-to-Vienna)

T3: {T2+|(<2)week|} (return)

T4: {T3+|3month|,jul,17day,1787year} (mother’s-death)

Fig. 2. TCSP depicting Beethoven’s first trip to Vienna.

The entire set of temporal objects is then converted into temporal variables of a TCSP,

shown in Figure 21: each node in the figure represents one temporal variable, and the

label on an edge represents the time difference between the adjacent variables, e.g., label

[0,2weeks] means the difference between T2 and T3 is from 0 to 2 weeks (T2 is earlier).

Inside each node is a calendar constraint system initialized by the expression which

serves as the unary constraint for the node in solving the TCSP. Finally, the constraint

solver takes over, decides that the particular TCSP is consistent, and gives an anchored

time for each variable (also shown in Figure 2). At this point, the solution can be entered

into a TDB for future use.

Suppose we are given another passage describing Mozart’s activity in Vienna:

“Mozart went to Munich to compose the opera late in 1780 (T5:
{1780year}). The next year (T6: {_+|1year|}), he was summoned from
Munich to Vienna, where the Salzburg court was in residence on the accession of
a new emperor. Mozart lived in Vienna for the rest of his life, until he died in

1791 (T7: {1791year}).”

Again, the interpretation module rewrites T6 into {T5+|1year|}, and a TCSP is

formed. At this point we are interested in whether it is possible that Beethoven’s stay in

Vienna overlaps with Mozart’s residence in the city, which requires tests of all possible

interval-interval relations. In particular, the test that the interval from T2 to T3 is

contained in that from T6 to T7 can be performed by inserting two hypothetical edges to

relate the two TCSPs (shown in Figure 3). The constraint solver then confirms the

consistency of the merged TCSP, and hence the facts support the possibility of a

meeting.2

Fig. 3. Did Beethoven and Mozart meet in Vienna? Mozart’s activity is shown in shaded graph.

1 The week numbers are counted from January 1, 1 AD (the 1st week).
2 Historically, whether the two met anywhere is still an unsolved puzzle, although Mozart did make comments
on Beethoven’s works.

3. CONSTRAINT-BASED TEMPORAL REASONING

Our framework essentially translates an NL discourse into a two-level constraint-

satisfaction problem: at the higher level is a TCSP relating different temporal objects

(variables), and within each temporal variable is a model of human calendars – a CSP

describing constraints among different temporal units such as years and months. The

overall TCSP is solved by conventional methods with the aid of the calendar model. In

this section we briefly introduce the idea of constraint-based temporal reasoning.

A constraint-satisfaction problem (CSP) consists of a set of constraints over a set

of variables, where each variable is associated with its domain of values. The goal is to

find the assignments for variables such that none of the constraints is violated

[Mackworth 1977]. Most CSPs involve only unary and binary constraints, and a

constraint involving more than two variables can always be “binarized” [Bacchus et al.

1998]. CSPs can be solved by using a backtracking method to systematically search the

solution space; but this is usually done with a combination of constraint propagation

methods such as node-, arc-, and path-consistency methods, which can prune away a large

portion of the search space. Other heuristics such as judiciously picking the right variable

ordering are also helpful [Kumar 1992].

A temporal constraint-satisfaction problem (TCSP), on the other hand, is a particular

kind of CSP where domains are infinite (time) and constraints are allowed temporal

relations [Dechter et al. 1991]. In particular, a binary constraint between variable Xi and

Xj can be specified by an interval of time difference [a, b], which is interpreted as

… a ! X j " X i ! b
3. For a simple TCSP (STP) without disjunctive constraints, the

problem can be converted into a flow network, and a minimal network can be found in

polynomial time using an all-pairs-shortest-path algorithm. Sets of feasible assignments

to the variables can then be obtained using a simple search on the edge labels of a

minimal network. Figure 4 shows an example STP taken from Dechter et al. [1991]: in

Fig. 4. (a) an STP; (b) the flow network; (c) the minimal network.

(a) a node labeled i represents a variable Xi, and the edges are the time-difference

constraints; (b) shows its converted flow network; and (c) is the minimal network. The

variable X0 in particular is added to represent the beginning of time (time 0), thus the

minimal network indicates that, for example, the feasible range for X3 is 20 ! X
3
! 30 . A

special solution to Figure 4 is X1 = 20, X2 = 50, X3 = 30, X4 = 70 . A general TCSP can

be decomposed into several STPs, and a backtracking search method can be used to find

the solutions.

Adopting a TCSP framework for processing temporal information in NL has at

least four advantages. (1) the minimal network enables us to find the minimal set of

feasible times of a variable and the minimal set of relations between any pair of variables;

the consistency of the network can be readily checked by detecting the existence of a

negative cycle. Together they encompass a wide range of possible queries. (2) Both

quantitative constraints and qualitative constraints (such as the 13 relations proposed in

Allen [1984]) can be converted into such a “metric” network and solved uniformly [Meiri

1992]. (3) Obtaining a minimal network in STPs takes only polynomial time and

assembling a feasible solution from it is backtrack-free; although solving general TCSPs

is still NP-complete, efficient methods for exploiting special topologies of the constraint

networks exist. (4) Finally, treating a temporal discourse as a TCSP fits naturally with

our formal calendar modeled as a CSP.

 A TCSP in this original form requires significant

simplifications about real-world scenarios, where time is

described not by simple real numbers but by using quantities of

various sorts. Adding the missing concept of real calendars

back to TCSPs has one main implication: i.e., the distance

updating equation at the heart of the all-pair-shortest-path

algorithm: d ij ! min(d ij ,d ik + dkj) , where dij denotes the

distance between variable Xi and Xj. In the partial TCSP shown

in Figure 5, the shorter path from Xi and Xj is contingent on the distance between X0 and

Xi: if Xi is assigned to February of a non-leap year, “2 months” would be the shorter path

from Xi to X j; however, if Xi is assigned to March, the other path is the shorter one. This

complication arises because in real calendars some metric units do not have constant size

in terms of a base unit. We can, however, work around this problem by selectively

updating distances affected by changes in assignments in certain situations.

There are other complications as well. With the variety of metric units, the

operator ‘+’ and the relation ‘<’ between distances must be defined on the basis of our

3 When a = b, we simplify the notation to only [a].

Fig. 5. A partial TCSP.

linguistic intuition, and the concept of calendars needs to be formalized (these are topics

in the following sections).

4. MODELING CALENDARS 4

Our goal in modeling calendars is similar to those of Ohlbach and Gabbay [1998];

Wijsen [2000]; and Ning et al. [2002], in that we want to find a principled way to

formalize the structure of any human calendar. This would guarantee the necessary

provisions for incorporating different kinds of calendars into our system. In our approach,

however, the difference is that we not only view calendars as the ontology for representing

temporal expressions, but also as constraint systems necessary for solving for the missing

information in an under-specified expression. For example, given the expression

“February 29”, even without being told about the year, we can safely conclude that it

cannot be the year 2003. The constraint-solving process can even be extended to convert

expressions of a certain granularity (“November 29, 2003”) to another (“Sunday”), and to

answer questions about calendric arithmetics (“what is the date of two days after

February 27, 2000?”). Ultimately, the calendar-constraint systems serve as unary

constraints over the individual temporal variables in the higher-level TCSP.

4.1 Calendars as Constraint Systems

A calendar consists of a set of temporal units, and each unit can take on a set of possible

values (e.g., unit month can be assigned to values jan, feb, ..., dec). This

dichotomy naturally reflects the distinction between variables and domains in the setting

of a CSP. Thus, a temporal coordinate expressed by an expression such as “February

29” essentially specifies an incomplete set of assignments to the units, and the omitted

information can be derived (later) by solving the constraint system. In the rest of the

article we shall denote a coordinate in a simple curly-bracketed format; e.g.,

{feb,29day} represents the aforementioned date;5 and we denote the set of units being

assigned in a coordinate c as D(c) (domain of c); e.g., D({feb,29day}) = {month,

day}. The additional requirement for a calendar, however, is that both values and units

have to be ordered, so that two partial assignments in time can be compared (e.g., “the

first quarter of 1995” is earlier than “summer 1995”). We therefore stipulate that values

must be totally ordered, while the ordering among units can be partial. We denote the

4 See Han and Kohlhase [2003] for a more formal treatment.
5 Each element in the braces is a value assignment to a unit; units are shown in subscripts only when it is
necessary for clarity.

latter ordering by the measurement relation !
M

; e.g., we could have year !
M
soy

(seasons)6 and year !
M
qoy (quarters of a year), and qoy and soy are not

comparable. If u1 is said to be higher than u2 in u
1
!

M
u
2
, then there could be more

than one maximal/minimal unit in a calendar system. Note that although we give a

notion of ordering to both units and values, it is somewhat different in nature for the two

kinds of entities. As we shall see, the definitions essentially enable us to compare two

coordinates lexicographically. Another point to note is that u
1
!

M
u
2
 does not imply u2

is periodic in u1 – a concept we define in the next section.

To complete the definition of a calendar-constraint system, we must also specify

the constraints among the assignments of the units. Naturally, each u1!M
 u2 pair could

be governed by a constraint, which we formalize by specifying a cover function from unit

u1 to u2 as C
u1 ,u2

:V
u1
! 2

V
u2 , where V

u
1

 and V
u
2
 are values of u1 and u2.

7 For example,

to represent the fact that the first quarter of a calendric year ranges from January to

March, we write Cqoy,month(1) = {jan, feb, mar}. Using various conventional

methods such as a combination of a constraint-propagation method (e.g., AC-3) and a

backtracking search method [Kumar 1992], we can solve for a complete set of solutions

based on a given coordinate c, which we call the full extension of c, denoted !(c) . For

example, assuming year, qoy, and month are the only units in our calendar,

ε({1qoy,1995year}) then contains {jan,1qoy,1995year}, {feb,1qoy,1995year},

and {mar,1qoy,1995year}. The consistency of a coordinate c can then be defined

straightforwardly: c is consistent iff !(c) "# . Furthermore, the ordering of two

coordinates c1 and c2 can also be defined based on the concept of full extensions: if

D(c1) = D(c2) and the units in the domain form a path from a maximal unit, they can be

compared lexicographically (from the maximal unit to the lower ones). For example,

{1qoy,1995year}<{2qoy,1995year}, since both coordinates are anchored on the same

set of units that contains a maximal unit year. To compare two coordinates c1 and c2

that might be anchored on different units, e.g., {1qoy,1995year}and {apr,1995year},

we define c
1
! c

2
 iff every coordinate c

1
' in !(c1) and every coordinate c

2
' in !(c2) such

that D(c1') = D(c2 ') (comparable), c
1
'! c

2
' is true; c

1
< c

2
 is true iff c

1
'< c

2
' is true at

least once. For example, we have {1qoy,1995year} < {apr,1995year}.

6 This particular modeling would interpret Winter 2004 as two non-contiguous intervals (Jan. 1-Mar. 20 and
Sept. 23-Dec. 31, 2004), which evaluates the assertion “Winter 2004 is after Spring 2004” to be false. An
alternative would be to model seasons in a separate calendar with an alignment relation (later).
7 Notation: 2s is the power set of set s.

Fig. 8. A partial model of a Gregorian
calendar.

Multiple calendars can be coupled using a special alignment relation. This is

useful in bringing together the calendar components of non-aligned cycles, such as year-

based calendars and week-based calendars, as shown in Figure 6. The concept of full

extensions can be naturally extended to coupled calendars, and granularity change for a

coordinate involves shrinking/enlarging the domain of the coordinate (Section 5.3).

Fig. 7. Dependent unit product.

Note that the constraints defined above by means of specifying cover functions are all

binary constraints. Non-binary constraints, however, are by no means rare in human

calendars. For example, to determine how many days a particular month has, we also

need to know the year, since February 29 only exists for leap years. To accommodate

this, we adapt the well-known dual-graph approach for converting non-binary constraints

into binary ones [Bacchus et al. 1998] and introduce dependent unit products (DUP) as

complex units whose values are pairs of values of the existing units (Cartesian product).

More formally, for units utop, u, u' , and ubot such

that utop !M
u!

M
u'!

M
ubot , a DUP u ! u' is

defined as having values

v,w v ! V
u
,w ! C

u,u' (v){ } , where V
u
 is the

domain of unit u. The topology shown in Figure 7

is also added into the calendar to ensure

consistency. As an example, a partial model of a

Gregorian calendar is shown in Figure 8, where

Fig. 6. Week-based calendar coupled with year-based calendar via an alignment relation (the

measurement relation is shown by the solid arrows).

DUP month! day models the ternary constraint among year, month, and day. We can

then define Cyear,month!day (i) to return

i, feb,1 ,K, i, feb,29{ } for leap years i, and

return

i, feb,1 ,K, i, feb,28{ } for the others. Similarly, the quaternary constraint among

year, season, month, and day is modeled by the DUP soy! (month! day) .

4.2 Calendar Arithmetics and Periodicity Relation

A calendar system has to provide another important service, that is, doing arithmetics.

For the most general cases, we need to define a predecessor/successor function for

coordinate backward/forward shifting. The basic idea is to incrementally generate new

instances of CSP and count the consistent instances to a certain number. For example,

adding 1 day to {2003year,feb,28day} would first yield an inconsistent coordinate

{2003year,feb,29day}; the inconsistency then signals the successor function to

invoke the carry propagation until the consistent {2003year,mar,1day} is generated,

tested, and returned as the answer.

The general-case scenario requires linear time with respect to the quantity added.
8 In addition to the various caching/pre-computing tricks we could use to speed up the

operation, in some cases we can take advantage of the periodicity relation between two

units to achieve constant time complexity. We say that unit u1 is periodic in unit u2,

denoted u
1
!

P
u
2

, iff u
2
!

M
u
1
 and every value of u1 is in the cover of every value of

u2; e.g., month!
P
year, but month is not periodic in qoy. Because there is no

“hole” in the cover C
u2 ,u1

 when u
1
!

P
u
2

, adding l units u1 to a coordinate c, written

as c !
u
1

l , is reduced to a simple modulo operation:

c !

u1
l := (c !

u2
n)[u1 a c(u1) + m] where l = nV

u
+ m and c[u a v] is a coordinate

identical to c except that value v is assigned to unit u.

5. REPRESENTING TEMPORAL EXPRESSIONS9

This section describes the meaning representation language for temporal expressions in

our framework. The typed formal language consists of a set of temporal entities defined in

a calendar constraint system (temporal units and values), and a set of operators and

relations. The intensional meaning of an expression (see Section 5.1), be it a temporal

point, a set of points, or a duration, is then encoded as a formula in this language. The

omitted information in an under-specified expression can be automatically derived when

8 In terms of number of consistency calls.
9 Due to the limited space, we refer readers to Han [2003] for a complete description of the language.

necessary, thanks to the underlying calendar constraint system, and granularity change

takes place in a transparent way via the built-in type coercion mechanism.

 We start our discussion by first describing a corpus study based on the Penn

Treebank corpora.

5.1 Temporal Expressions

As already mentioned in Section 1, we focus our study on non-verbal phrases, as they

encode the majority of the complexity in temporal expressions. To better understand the

variety of these expressions, we analyze the Wall Street Journal collection of the Penn

Treebank corpora for the following reasons: (i) the Treebank annotation scheme already

tagged the temporal expressions with function tag “-TMP”, eliminating the need for us

to prepare the tagged data; (ii) several highly accurate statistical parsers trained on the

Penn Treebank corpora exist [Collins 1999; Charniak 1999], and these tools can be

naturally incorporated within our syntax-semantics interface. Table I shows the statistics

of the leading four categories of temporal expressions: the categories together represent

99.71% of all temporal expressions in the corpora, so we concentrate only on them. Also

note that the percentage of the adverbial clauses used for temporal purposes (28.95%) is

the highest among the four.

Table I. Temporal Expression Statistics in the Penn Treebank (Wall Street Journal Collection)

 ADVP-TMP NP-TMP PP-TMP SBAR-TMP
Count 8303 5477 10573 2757
Percentage within all –TMP clauses 30.54% 20.14% 38.89% 10.14%
Percentage in the category 28.95% 1.35% 9.01% 8.65%

To better appreciate the complexity of temporal expressions, a list of representative

expressions and their meanings is given below:

1. “Sept. 9, 1987”: The simplest expressions are directly anchorable on a time line.

2. “on Wednesday”: Most of the expressions are under-specified at least in two ways:

they are not directly anchorable, and they do not commit themselves to either a time

interval or a point.

3. “Wednesday or Friday”: Logical disjunction can be expressed by using words such

as “or”.

4. “4 o’clock”: Linguistic ambiguity occurs and is different from the logical

disjunction; e.g., the expression could mean 4 in the morning or in the afternoon.

5. “ today”: Deictic expressions are anchorable only by implicitly making an external

reference to a temporal focus (such as the utterance time).

6. “ last week”: Complex expressions usually involve shifting from a time with a

specified offset; the offset not only specifies a duration to shift, but also implies the

granularity of interest; e.g., no matter how fine the granularity of the current time,

“ last week” refers to a time down to the week granularity only.

7. “ last Wednesday”: In contrast to 6, above, shifting from a time that is not expressed

in metric units behaves differently; e.g., the expression refers to the Wednesday in

the last week.10

8. “ the second Sunday in May”: An ordinal expression is specified by an ordinal and a

range.

9. “an hour and 30 minutes”: Quantifier phrases with temporal units can denote a

duration in time.

10. “Tuesday and Thursday”: A set of temporal entities, not necessarily continuous, can

be enumerated.

11. “ from now until 1995”: An interval, a specialized form of enumeration, can be

specified by a starting and an ending point. Implicit granularity change works behind

the scene to ensure both points are at the same granularity; e.g., the intended interval

is to the last minute of the last day of 1994, provided the current time is at the

minute granularity.

12. “every week in May”: A recurrence expression is specified by a step size and a

“pattern,” possibly indicating a range. Again, “every week” and “every Wednesday”

behave differently.

13. “ twice on Wednesday”: A rate expression can be specified by a frequency term and a

range. This is also under-specified, since we do not known the specific time when

each occurrence of the event takes place.

Based on this study, a desirable temporal representation for NL has to satisfy the

following requirements: (i) it needs to provide an intensional representation for all of the

expressions above, i.e., a single representation that can be evaluated in different contexts

to give different interpretations; (ii) it must allow a natural representation and

interpretation of under-specification and granularity change; (iii) it should facilitate a clean

separation from discourse-level force (so discourse processing can act on the

representation); and (iv) although it is not our focus here, the representation scheme

should be readily integratable with a chosen event representation. These requirements are

10 In some languages “last Wednesday” means the nearest Wednesday in the past (relative to the temporal focus)
– this can be encoded in our representation using the ordinal `@’ operator (Section 5.4).

satisfied in our constraint-based approach: since every temporal expression only serves as

a timestamp (index) of an event, there is almost no restriction as to what kind of event

representation we should adopt in our framework. The constraint-based approach also

naturally accommodates the under-specified expressions. The representation language

provides many operators, and allows referring to a discourse temporal variable (“temporal

focus”), thus the intensionality and the separation from the discourse-level force are

achieved. Finally, the granularity change is taken care of via the design of types and a

mechanism of type coercion in the representation language.

5.2 Temporal Objects and Types

Every temporal expression is represented as a temporal object of the following three

major types:

1. A coordinate (C) is a point in time. The simplest form is a conjunction of value

constraints vu where v is a value of unit u; e.g., “Sep. 9, 1987” is represented as

{1987year,sep,9day};

2. A quantity (Q) denotes a polarity-neutral duration of time. The simplest form is

a conjunction of numeric constraints nt, where n is a non-negative integer and t

can be a unit or a set of values whose units form a path in the calendar; e.g., “an

hour and 30 minutes” is represented as |1hour,30min|, and “two Saturday

nights” is represented as |2(sat,night)|.

3. An enumeration (E) is a set of coordinates. The simplest form is a list of

coordinates; e.g., “Tuesday and Thursday” is represented as

[{tue},{thu}].

Connective “,” is used to conjoin two terms in both C and Q and to enumerate

additional terms in E. For disjunctions, we distinguish between language ambiguity and

genuine logical disjunction by using “|” for the former and “;” for the latter.

More complex objects can be built by using one of the infix operators and

relations (Section 5.4). For example, using backward fuzzy shifting operator “-“, the

expression “two weeks before Sept. 9 1987” is represented as

{{1987year,sep,9day}-|2week|}; using a point-interval relation “b” (before), the

expression “sometime before Sept. 9, 1987” can be encoded as {b

{1987year,sep,9day}}. Also, external temporal references can be introduced in order

to represent deictic expressions, e.g., “yesterday” is represented as {_-|1day|}: the

underscore is an open variable representing the current temporal focus. Note that in order

to keep the flexibility, we do not use the utterance time directly in this case, since it can

be shifted within a discourse (e.g., reports from third parties in news articles). Instead, a

discourse-level mechanism inside the interpretation module (Fig. 1) is responsible for

instantiating the temporal focus. For under-specified expressions that are not deictic and

not generic, another mechanism inside the interpretation module is also necessary for

injecting a focus variable into the representation. For example, a non-generic expression

“Wednesday” in “the company will announce Wednesday” is translated simply as

{wed}, but will be rewritten into {|1wed|@{bi_}}by the interpretation module

because the corresponding verb is in the future tense (thus the formula means “the nearest

Wednesday in the future”, and bi is relation after [Allen 1984]).

As Examples 6 and 11 in Section 5.1 have shown, certain expressions can

trigger implicit granularity change. We might suspect that cases of granularity change in

NL are rare, since people usually do not mix expressions of different granularity together.

However this is almost always not true for under-specified expressions, since their

interpretations depend on an implicit temporal focus that speakers often make use of for

economic reasons, and the temporal focus can be specified at any granularity possible.

Even without referencing a temporal focus, interpreting expressions such as “the summer

following 1998” still requires a treatment of granularity change (two other examples are

shown at the end of Section 5.4). To model the phenomenon, we need to define the

concept of granularity: our definition is via a function g recursively mapping a temporal

object into a set of minimal temporal units, with respect to the measurement relation

defined in the calendar. For example, g({2003year,nov}) = minM(year, month) =

{month} (the granularity of “November 2003” is month), and

g({{_+|1day|},19hour}) = minM(g({_+|1day|}), hour) = {hour} (the granularity

of “tomorrow at 7pm” is hour). The granularity of an enumeration is simply defined as

the set of minimal units over all granularities of its components.

To make the granularity change a transparent process, we decorate the major

types with the granularity to become the type system for our language: we say that an

object o is of type Tg(o) when the major type of o is T. Under this definition, the type of

{19hour,55min} is simply C{min}. This gives us tremendous convenience: since every

operator and relation in our representation is typed, type coercion will automatically kick

in to bring the involved objects into the required types.

5.3 Type Coercion

Type coercion is possible within the same major type or among different major types.

The former is realized by a granularity change function !g over major type C and E,

where g is the target granularity. Major type Q is excluded, since the use of a quantity

never requires a granularity change for itself (instead, it drives the change of the others).

Function !g relies on a simple projection operation: c
!

 gives a new coordinate of

domain ! from c. Operationally, this can be done by solving the underlying calendar

CSP specified by the coordinate and then changing the domain. The function !g over a

coordinate can then be defined by specifying the set ! :11

! := D(c) \"#$#g

" := {u' | u%M
*
u' ,u & g,u'& D(c)}

$:= {u" | u'%M
*
u"%M

*
u,u & g,u'& D(c)}

Intuitively, !g (c) installs a new set of minimal units g in c; in particular, ! represents

granularity promotion (pruning) while ! represents demotion (adding information). A

pictorial illustration of these processes is shown in Figure 9.

Fig. 9. Granularity change for a single temporal object: on each side, the biggest circle represents the set of

assigned temporal units in a calendar constraint system (Fig. 8), and small circles are temporal units

Function !g over E can be extended from the definition above. Examples of !g are

!{day} ({may}) = {may, (>=1,<=31)day} and !{month} ({31day}) = {jan;

mar; may; jul; aug; oct; dec}.

For conversions among different major types, we only allow coercion from major

type C to major type E via a re-interpretation function C ! Eg , which can be defined as

(see Section 5.4 for the interval operator “:”):

1. C ! Eg (c) := [i [min(!g (c)) : max(!g (c))]] if u'!
M

*
u for some u'! g(c)

and u ! g ;

2. C ! Eg (c) := [!g (c)] otherwise.

An example is C ! E{day} ({may}) = [i [{may,1day} : {may, 31day}]].

5.4 Typed Operators and Relations

11 !

M

*
 is the closure of the measurement relation.

Every operator and relation is typed in our representation, so that type coercion can

transparently bring all of the involved objects into the required types beforehand. The

type of an operator/relation, however, depends on the granularity of one of the involved

objects: as shown in Example 6 of Section 5.1 (“last week”), the granularity of a shifting

expression is determined by the quantity. To “factor out” the intended granularity from a

quantity, we use a function u(q) to convert quantity q into its pure-unit form – i.e.,

every term in a pure-unit quantity must be of the form nu, where n is a non-negative

integer and u is a unit. The function u(q) is defined as follows:

1. change every n
v
u

 term into n
u'

, where vu is a value of unit u, and u!
P
u' (u

is periodic in u');

2. change every n(v1 ,v2 ,...) term into nu, where v1,v2 ,... is a set of values whose

units u1,u2 ,... form a path in the calendar, and max(u1,u2,...)!P
u .

For example, u(|2day|) = |2day|, u(|2morning|) = |2day|, and u(|2(sat,night)|) =

|2week|.

Table II. List of the Typed Operators

Op Type Meaning Examples

+/- E!g(u (op2))
"Qg(op2)

! Cg(op2)

forward/backward
fuzzy shifting

{_+|1month|}
(“next month”)

++/
--

E!gm
"Q!gm

! C!gm

gm = min(g(op1)!g(op2))

forward/backward
exact shifting

{_++|1month|}

 (“exactly one month after”)

@ Qg(op1)
!E"g(op1)

"Cg(op1)
 ordinal {|1wed|@{bi _}}

(“the next nearest Wednesday”)
: C!gm

"C!gm
! Egm

C!g(op2)
"Qg(op2)

! Eg(op2)

gm = min(g(op1)!g(op2))

interval [{may}:{jun}]
[{may}:+|1month|]
[{may}:-|1month|]

/ E!g(op2)
"Qg(op2)

!C
g(op2)

 arithmetic
recurrence

[{may}:{aug}]/|1month|
(“every month from May to August”)

^ E!gm
"E!gm

! Egm

gm = min(g(op1)!g(op2))

enumeration
intersection

\ E!gm
"E!gm

! Egm

gm = min(g(op1)!g(op2))

enumeration
difference

Table II gives a complete list of the typed operators: we use op1 and op2 to denote the

two operands (from left to right), and T
!g

 denotes an object of major type T converted to

granularity g. The two sets of shifting operators move the ending coordinate of an

enumeration with an offset specified by a quantity: the fuzzy version prunes away

information below the target granularity, while the exact version preserves the

granularity. The ordinal operator selects a coordinate from an enumeration; the interval

operator forms an interval using either a pair of coordinates or a starting coordinate and a

duration specified by a quantity; the arithmetic recurrence operator enumerates a set of

coordinates within a range specified by a quantity, using a step-size specified by a second

quantity12; and finally, the intersection and difference operators perform the respective set

operation over enumerations.

When using a relation in the form of r x2 in a hosting entity x1, the intended

meaning is x1 r x2. There are two main categories for the relations: value relations and

object relations. The former can only be used inside a value term, and it has the form r

v, where v is a value. Value relations are <, >, and = with their usual semantics.13

Examples of value relations are {sun,(>19)hour} (“Sunday after 7pm”) and {_-

|(<2)day|} (“less than 2 days ago”). For object relations there are two sets available:

the point-interval relations can only be used inside a coordinate, while the interval

relations can only be used inside an enumeration, as shown in Table III. For example,

{|1summer|@{bi {1998year}}} (“the summer following 1998”) and {i

[{jan,1998year}:{mar,1998year}]} (“sometime between January and March

1998”).

Table III. Object Relations

 Type Relations Remarks
Point-interval
relations

C!
min

"E!
min

min = minM (g(op1)!g(op2))

b, s, d, f, bi, i Subset of the
interval relations

Interval relations E!
min

"E!
min

min = minM (g(op1)!g(op2))

b, m, o, s, d, f, i,
=, bi, mi, oi, si,
di, fi, ii

From [Allen
1984]; i :=
(s;d;f)14

Before showing how an operator and type-coercion work together, we need to define

another utility function. Function c(q), complementing u(q), produces the implied

constraints from quantity q, and is defined as follows; initially we set c(q) = ∅:

1. For every nv term, where n is a non-negative integer and v is a value,

c(q)! c(q)"{v} .

2. For every n(v1 ,v2 ,...) term, where v1,v2 ,... is a set of values whose units form a

path in the calendar, c(q)! c(q)"{v1,v2,...} .

12 Pattern recurrence is another construct for representing recurrence [Han 2003]; e.g., “every Wednesday
from 3pm to 5pm” can be represented by [{*wed,15hour}:{17hour}], and “every 4 years since 1896” is
[{*/4year,bi {1896year}}].
13 = is usually dropped when there is no ambiguity.
14 The relations are before (b), meets (m), overlaps (o), starts (s), during (d), finishes (f), 6 of their inverse
relations, and equal (=). The relation in (i) and its inverse are added as a convenience.

To illustrate, we now define the semantics of fuzzy shifting +. Let e and q be an

enumeration and a quantity, respectively, and assume u(q) = nu1
1
,...,num

m , the operator is

defined as e+ q := {max(e[!1])"u1
n
1
..."um

n
m
,c(q)} , where e[!1] is the last

coordinate in enumeration e, and function max(c) returns the “latest” possible coordinate

from c. We first give a more involved derivation for expression “two nights after the

accident on March 28”:

u(2night) = 2day , g(2day) = {day}

{mar,28day } + 2night = {max(C ! E{day} ({mar,28day })["1]) #day 2,c(2night)}

= {{mar,28day } #day 2,{night}}

= {mar,30day ,night}

The derivation for expression “tomorrow,” on the other hand, is simpler (assuming the

temporal focus is {2003year,feb,28day,8hour}):

_+ 1day = {2003year , feb,28day ,8hour } + 1day

= {max(C ! E{day} ({2003year , feb,28day ,8hour })["1])#day 1}

= {{2003year , feb,28day}#day 1}

= {2003year ,mar,1day}

6. RELATED WORK

There are essentially three components in our framework: the calendar models, the

representation language for temporal expressions, and the overall reasoning mechanism

based on solving TCSPs. In this section we briefly discuss the work related to each of

the components, and to contrast the previous approaches with our framework.

 In modeling calendars, Ohlbach and Gabbay [1998] described a multi-modal

logic for reasoning about calendric time. The many-sorted term language in their calendar

logic formalizes calendars. The logic overall is decidable (via translation to propositional

logic or via a tableaux decision procedure), but in the worst case is still exponential. One

limitation in their representation is that every temporal unit has to be defined as a convex

set using a base unit, and this makes defining units with “holes” difficult. In Wijsen

[2000] a finite string-based representation is proposed to describe infinite granularities

based on the idea that infinite patterns can be generated by fairly simple and recurrent

patterns. The approach is much more efficient than the conventional methods where every

temporal granule is defined by a smallest granule. Although it is not clear how under-

specification can be dealt with, this is indeed an interesting idea that our constraint-based

approach could incorporate to further restrict the formulation of cover functions. Another

approach in formalizing calendars is that of Ning et al. [2001], where an algebra-based

method is proposed. Every granularity is represented against a “bottom” granularity, and

algorithms for granularity change are also presented. Although the representation is fairly

flexible (e.g., capable of finding all business days in a given month), it is again not clear

how under-specification is addressed. Overall, we believe our constraint-based calendars is

a natural formalization that addresses particular needs in NL discourse, and fits well with

the rest of the framework.

 In representing temporal expressions, TimeML [Pustejovsky et al. 2002] is one

of the most recent efforts in standardizing temporal annotations. The proposal is based on

earlier work such as the temporal annotation scheme proposed in Setzer [2001] and

TIMEX2 [Ferro et al. 2001]. The scope of TimeML extends beyond temporal

expressions into the realm of eventuality. Due to its design as a markup language, the

representation has a closer affinity to NL rather than to an inference formalism (such as

first-order logic assumed in Hobbs et al. [2002]). Although the reasoning aspect of the

representation was addressed in Setzer [2001] in the form of simple closure computation

of temporal relations, it is not clear how more complex queries can be handled. The effect

of granularity change is also not clear in the current proposal. However, the annotation

scheme itself, due to its closer tie to surface texts, can be used as the first pass in the

syntax-semantics interface of a temporal resolution framework such as ours. The more

complex representation, suitable for more sophisticated reasoning, can then be obtained

by translating from the annotations.

 In terms of reasoning with time, many variants of temporal logics were proposed

before [Gabbay et al. 1994]. Most of the approaches treat time as uniformly distributed

clicks, and phenomena such as under-specification and granularity change are ignored.

The meager set of operators also presents a problem in NL discourse; for example, a

propositional logic based on a standard modal logic is proposed in Wooldridge [1998]

for reasoning about knowledge and belief among multiple agents, and it has only two

elementary operators: Next-time and Until – the former asserts the truth of a proposition

at the next time click, and the latter asserts the truth until a certain time click. Some of

the work on temporal reasoning, however, did have a closer tie with NL, such as Allen

[1984] and its continuation in the DAML Ontology of Time [Hobbs et al. 2002]. In this

line of work, an extensive axiomatization of time is proposed in first-order logic, taking

into account the “real” time used in NL discourse. It also encompasses ideas such as

granularity, convexity, and extensional collapse of time. In comparison, our framework

addresses many of the same issues, albeit formulated in a constraint-solving formalism.

We believe, in line with the authors of the SNARK system [Stickel et al. 2001], that

instead of using a general-purpose inference engine based on first-order logic for temporal

reasoning, time has special properties that justify the use of a special-purpose reasoner.

But this does not imply that it is difficult to integrate external knowledge into our

framework. For example, in the TCSP of Beethoven’s visit to Vienna in Section 2, the

Constraint Solver could add in additional constraints such as T3 is before T4, based on

the fact that “dying” is an event culminating in death15.

 The design of NL interfaces for temporal databases is another important line of

work relating to temporal processing in NL. In Androutsopoulos [2002], a temporal

intermediate representation language called TOP is proposed, and a parser driven by

HPSG grammar is used to map time-related questions into the representation. The

resulting TOP expressions are then translated into equivalent queries in TSQL2

[Snodgrass 1995] to query the database. The language TOP partitions NL verbs over the

domain into a set of relevant aspectual categories, and provides a set of operators dealing

with tense, aspect, interrogatives, and event identifications (using episode identifiers).

However, the underlying modeling of time appears to be over-simplistic and fixed

(Gergorian). It is not clear how phenomena such as under-specification and granularity

change can be handled with customized calendars. The integration with TSQL2,

nevertheless, is an important step in bringing the NL interface to a production system,

and it is also a direction we would like to explore in the future.

7. CONCLUSIONS AND FUTURE WORK

In this article we have proposed a comprehensive framework for representing and

reasoning about time in natural language. Our approach is capable of representing a wide

variety of temporal scenarios described in natural language and translating them into

temporal constraint-satisfaction problems (TCSPs). With respect to syntax, we have

designed a representation for temporal expressions based on our study of the Penn

Treebank corpora: the representation features sets of operators and relations to encode the

intensional meaning of the expressions. Its type system together with the type coercion

mechanism provides a transparent way to deal with phenomena such as granularity

change and re-interpretation. In terms of semantics, real calendars are modeled as

constraint systems and serve as unary constraints over individual temporal variables in

the TCSP. Solving this two-level TCSP using conventional methods such as the well-

known all-pairs-shortest-path algorithm combined with a backtracking search method, the

15 However, in this case the added constraint has no additional effect on the final solutions. In fact, we could
also add additional constraints to reflect the tense of the verbs in the narrative (past), but in this case they would
have no effect on the solutions either.

resulting minimal representation of the scenarios can answer a wide range of time-related

queries.

Currently, we are developing a prototype system that features two types of

syntax-semantics interfaces for two different applications (in time we will report on the

results). The first application is in the email domain (project RADAR16 at CMU), where

emails sent for scheduling meetings are identified and parsed into a machine-readable form

to enable further scheduling negotiations among the participants and the agents

(programs). For this application we used a parsing system based on semantic grammars

[Gavaldà 2000] to extract and translate temporal expressions into our representation

language, since a vast number of grammars were developed before for conversational

speech in the travel-scheduling domain. The second application we are working on is

answering time-related queries in newswire texts, where the open-domain nature requires

a more shallow but effective parsing strategy. Our approach focuses on broad coverage and

uses a simple event representation, recording only a predicate (verb) and its tense, the

timestamp, and the event participants (any nominals involved in an SBAR/S clause).

The system uses Charniak’s maximum-entropy-inspired parser (trained on the Treebank

corpora) [Charniak 2000] to provide CFG parse trees and uses named entities produced

by BBN’s identifinder [Bikel et al. 1999] to further decorate the trees. For each ADVP,

NP, PP, and SBAR node in a parse (Section 5.1), we use a statistical classifier to decide

whether it is a temporal clause, thus effectively recovering the TMP function tag that is

missing from the output of the parser. The temporal nodes identified are then translated

into our representation using a finite-state parser driven by hand-crafted grammars.

In the future we would like to investigate the effectiveness of various formal

constructs in our framework on the basis of the empirical evidence. We would also like to

extend the framework by considering other temporal phenomena such as tense and aspect,

and investigating the effect of temporal focus-shifting in real-world scenarios such as

emails and newswire texts. We are interested in using machine-learning techniques to

automate grammar development required for building the syntax-semantics interface.

Finally, we would like to investigate various methods to further enhance the efficiency of

the underlying constraint solver, such as introducing a more restrictive constraint

language for modeling calendars.

ACKNOWLEDGMENTS

16 http://www.radar.cs.cmu.edu/external.asp

The earlier iteration of the work was done with Michael Kohlhase, who helped to shape

many of the key ideas discussed in this article. The authors also wish to thank the

reviewers for their extensive and helpful comments.

REFERENCES

ALLEN, J. F. 1984. Towards a general theory of action and time. Artif. Intell. 23 (1984), 123–154.

ANDROUTSOPOULOS, I. 2002. Exploring Time, Tense and Aspect in Natural Language Database Interfaces.
John Benjamins.

ARTALE, A. AND FRANCONI, E. To appear. Temporal description logics. In Handbook of Time and Temporal

Reasoning in Artificial Intelligence. M. F. Dov Gabbay and L.Vila, eds. MIT Press, Cambridge, MA.

BACCHUS, F. AND VAN BEEK, P. 1998. On the conversion between non-binary and binary constraint satisfaction
problems. In Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98) and the 10th
Conference on Innovative Applications of Artificial Intelligence (IAAI-98), 311–318.

BIKEL, D. M., SCHWARTZ, R., AND WEISCHEDEL, R. M. 1999. An algorithm that learns what’s in a name.
Machine Learning 34,1-3 (1999), 211–231.

CHARNIAK, E. 2000. A maximum-entropy-inspired parser. In Proceedings of NAACL-2000.

COLLINS, M. 1999. Head-driven statistical models for natural language parsing. PhD dissertation, University
of Pennsylvania.

CRISTIANINI, N. AND SHAWE-TAYLOR, J. 2000. An Introduction to Support Vector Machines and Other Kernel-

based Learning Methods. Cambridge University Press.

DECHTER, R., MEIRI, I., AND PEARL, J. 1991. Temporal constraint networks. Artif. Intell. 49 (1991), 61–95.

FERRO, L., MANI, I., SUNDHEIM, B., AND WILSON, G. 2001. TIDES temporal annotation guidelines. MITRE
Tech. Rep.

GABBAY, D., HODKINSON, I., AND REYNOLDS, M. 1994. Temporal Logic: Mathematical Foundations and
Computational Aspects. Oxford University Press.

GAVALDA, M. 2000. SOUP: A parser for real-world spontaneous speech. In Proceedings of the 6th
International Workshop on Parsing Technologies (IWPT-2000, Trento, Italy).

HAN, B. 2003. Time calculus for natural language - tagging guidelines. Unpublished draft, Language
Technologies Institute, Carnegie Mellon University, Pittsburgh, PA.

HAN, B. AND KOHLHASE, M. 2003. A time calculus for natural language. In Proceedings of the 4th Workshop
on Inference in Computational Semantics (Nancy, France).

HAUCK, R. V., CHAU, M., AND CHEN, H. 2002. COPLINK: Arming law enforcement with new knowledge
management technologies. In Advances in Digital Government: Technology, Human Factors, and Policy. W.
McIver and A. Elmagarmid, eds. Kluwer Academic, Dordrecht, The Netherlands.

HOBBS, J. R., FERGUSON, G., ALLEN, J., HAYES, P., NILES, I., AND PEASE, A. 2002. A DAML Ontology of Time.
http://www.cs.rochester.edu/~ferguson/daml/.

HWANG, C. H. AND SCHUBERT, L. K. 1994. Interpreting tense, aspect and time adverbials: A compositional,
unified approach. In Proceedings of the 1st International Conference on Temporal Logic (ICTL 94, Bonn,
Germany, July 11-14), 238-264.

KAMP, H. AND REYLE, U. 1993. From Discourse to Logic. Kluwer Academic, Dordrecht, The Netherlands.

KUMAR, V. 1992. Algorithms for constraint satisfaction problems: A survey. AI Mag. 13, 1 (1992), 32–44.

MACKWORTH, A. K. 1977. Consistency in networks of relations. Artif. Intell. 8 (1977), 99–118.

MARCUS, M., KIM, G., MARCINKIEWICZ, M., MACINTYRE, R., BIES, A., FERGUSON, M., KATZ, K., AND
SCHASBERGER, B. 1994. The Penn Treebank: Annotating predicate argument structure. In Proceedings of the
ARPA Human Language Technology Workshop.

MEIRI, I. 1992. Temporal reasoning: A constraint-based approach. PhD dissertation, UCLA.

NING, P., WANG, X. S., AND JAJODIA, S. 2002. An algebraic representation of calendars. Ann. Math. Artif.

Intell. 36, 1-2 (2002), 5-38.

OHLBACH, H. AND GABBAY, D. 1998. Calendar logic. J. Appl. Non-classical Logics 8, 4 (1998), 291-324.

PRATT, I. AND FRANCEZ, N. 2001. Temporal prepositions and temporal generalized quantifiers. Linguistics and
Philosophy 24 (2001),187-222.

PUSTEJOVSKY, J., SAURÍ, R., SETZER, A., GAIZAUSKAS, R., AND INGRIA, B. 2002. TimeML Annotation
Guidelines. http://www.cs.brandeis.edu/~jamesp/arda/time/documentation/AnnotationGuideline-v0.4.0.pdf.

SETZER, A. 2001. Temporal information in newswire articles: an annotation scheme and corpus study. Ph.D.
dissertation, University of Sheffield.

SNODGRASS, R. T. ed. 1995. The TSQL2 Temporal Query Language. Kluwer Academic, Dordrecht, The
Netherlands.

STEEDMAN, M. 1996. Temporality. In Handbook of Logic and Language. J. van Benthem and A. ter Meulen
eds. Elsevier, London, 895-935.

STICKEL, M. E., WALDINGER, R. J., AND CHAUDHRIM, V. K. 2001. A Guide to SNARK. Tech. Rep.
http://www.ai.sri.com/snark/tutorial/tutorial.html.

WIJSEN, J. 2000. A string-based model for infinite granularities. In Proceedings of the AAAI-2000 Workshop
on Spatial and Temporal Granularity, 9-16.

WOOLDRIDGE, M., DIXON, C., AND FISHER, M. 1998. A tableau-based proof method for temporal logics of
knowledge and belief. J. Appl. Non-Classical Logics 8 (1988), 225–258.

Received December 2003; revised April 2004; accepted April 2004

