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Automatic extraction and reasoning over temporal properties in natural language discourse has not had wide 
use in practical systems due to its demand for a rich and compositional, yet inference-friendly, representation 
of time. Motivated by our study of temporal expressions from the Penn Treebank corpora, we address the 
problem by proposing a two-level constraint-based framework for processing and reasoning over temporal 
information in natural language. Within this framework, temporal expressions are viewed as partial 
assignments to the variables of an underlying calendar constraint system, and multiple expressions together 
describe a temporal constraint-satisfaction problem (TCSP). To support this framework, we designed a typed 
formal language for encoding natural language expressions. The language can cope with phenomena such as 
under-specification and granularity change. The constraint problems can be solved using various constraint 
propagation and search methods, and the solutions can then be used to answer a wide range of time-related 
queries. 
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1. INTRODUCTION  

Time plays an active role in all facets of our lives, yet in many practical systems that 

perform automatic analysis of natural language (NL), real time has long been a forgotten 

dimension. Incorporating time into these systems is by no means trivial: to start with, 

such systems need a rich yet compositional representation for encoding the nuances of 

time manifested in NL, and the encoding needs to be inference-friendly to facilitate 

sophisticated reasoning. Achieving these goals would require work on designing a 

syntax-semantics interface for time, crafting formal models for real calendars (including 

non-Gregorian ones), coping with under-specification and granularity change in 

temporal expressions, accounting for the effect of temporal focus shifting, and finally 

reasoning about a prescribed temporal scenario. The infrastructure thus provided can then 

serve to represent and reason about more complex phenomena in NL brought by tense, 

aspect, and discourse, and would greatly benefit numerous applications. For example, 

with a more complete understanding of the temporal aspect of a discourse, a question- 

answering system could answer temporal or cause-effect questions, a text summarization 

system could provide a chronologically coherent account of events, and an intelligence 



analysis system such as that of Hauck et al. [2002] could derive conclusions based on a 

set of known cause-effect relations, which may be automatically learned by observing 

recurring chronological patterns, and so on. 

 Over the years the problems of temporal analysis in NL have been addressed 

with a spectrum of approaches, ranging from heavily inference-oriented to mostly NL-

motivated ones.  These include temporal logics [Gabby et al. 1994; Wooldridge et al. 

1998; Artale et al., to appear]; formal accounts of calendars [Ohlbach and Gabbay 1998; 

Wijsen 2000; Ning et al. 2002]; a theory for representing actions and time [Allen 1984] 

and its continuation in the DAML Ontology of Time [Hobbs et al. 2002]; annotation of 

temporal expressions in newswire texts [Setzer 2001]; TIMEX2 annotation scheme [Ferro 

et al. 2001]; and the recent proposal of TimeML [Pustejovsky et al. 2002]. Taking a 

position somewhere in the middle of this spectrum is research on temporal databases 

[Snodgrass 1995] and their natural language interfaces [Androutsopoulos 2002]. Although 

all of these approaches have their own strengths in providing the infrastructure required for 

representing and reasoning about time in NL, few of them can at the same time deal with 

common phenomena such as granularity change and under-specification or is rigorous 

enough to facilitate sophisticated inferences. 

 

 
Fig. 1. A framework for resolution of temporal information in NL. 

 

In this article we set out to address these requirements by proposing a constraint-based 

framework for resolution of temporal information in NL. In particular, we focus our effort 

in putting forward a practical way of modeling temporal expressions. Common temporal 

expressions in NL include noun phrases (“Wednesday”), prepositional phrases (“in a 

week”), adjectival phrases (“current”), adverbial phrases (“recently”), and subordinate 

clauses (“..., when the market stabilized.”). Within our framework these expressions 



denote temporal objects (timestamps of events), which are essentially sets of partial 

assignments to the variables of a calendar-constraint system. On a higher level, multiple 

expressions together describe a temporal scenario, which can be modeled as a temporal 

constraint-satisfaction problem (TCSP) [Dechter et al. 1991]. Figure 1 presents an 

overview of the framework: via the Syntax-semantics interface, temporal expressions are 

first extracted and translated into temporal objects encoded in a typed formal language, 

which is designed on the basis of our study of the Penn Treebank corpora [Marcus et al. 

1994]. This representation can encode a wide variety of expressions and cope with 

phenomena such as under-specification and granularity change. The interpretation module 

is then called upon to rewrite certain temporal objects based on the contextual 

information, e.g., interpreting “Wednesday” as the nearest coming/past Wednesday, 

based on the corresponding verb tense if the expression is used in a non-habitual sense, or 

instantiating temporal foci throughout the discourse. The processed temporal objects 

together describe a TCSP, which is sent off to the constraint solver to find a set of 

complete and consistent assignments (solutions to the problem). During this stage, facts 

from a temporal database (TDB) can be retrieved to aid the solution process and the 

solutions can be stored in the TDB for future use. Various other NL applications can then 

access the framework by sending queries and obtaining answers. 

Understanding the temporal aspect of a discourse obviously requires much more 

than just interpreting temporal expressions. Complicated problems such as modeling 

tense and aspect [Hwang and Schubert 1994], interpreting temporal prepositions and 

quantification [Pratt and Francez 2001], representing events [Steedman 1996], and dealing 

with discourse [Kamp and Reyle 1993] must also be tackled during the process. 

Addressing these problems, however, is not our main focus here. Our hope is that by 

providing a unified and principled treatment of temporal expressions (timestamps of 

events), solutions to these problems can be obtained more readily. 

The rest of the article is organized as follows: Section 2 first motivates our 

approach by solving a historical puzzle; Section 3 then introduces the basic ideas behind 

the constraint-based temporal reasoning framework. Section 4 formalizes calendars as 

constraint systems. The details of our representation language for temporal expressions 

are then described in Section 5; in particular, it begins with our study of the Penn 

Treebank corpora that motivates the design decisions of our representation language and 

ends with derivation of meaning from example expressions. Section 6 gives a brief 

discussion on the related work. Finally, Section 7 concludes this article with a summary 

and plans for future work. 

 



2. AN EXAMPLE: SOLVING A HISTORICAL PUZZLE 

The possible meeting between Beethoven and Mozart has long been a fascinating puzzle: 

did they really meet? In this section we consider how a system utilizing our framework 

could at least confirm the possibility. To maintain our focus we assume that certain 

knowledge, such as two people can meet only if they are physically at the same location, 

is available to the system. 

Consider the following short passage describing Beethoven’s first trip to 

Vienna: the syntax-semantics interface identifies the temporal expressions (shown in 

boldface), and translates them into our temporal representation (shown in the 

parentheses): 

“At 14 (T1: {T1’+|14year|}) Beethoven was able to deputize for his 

teacher. Three years later (T2: {_+|3year|}), recognizing his talent, Prince 

Maxmilian Franz sent him to Vienna to further his education. He would soon 

return within two weeks (T3: {_+|(<2)week|}) on the news that his 

mother was dying. She passed away 3 months later on July 17
th

 1787 (T4: 
{_+|3month|,jul,17day,1787year}).” 

The details of the representation language are given in Section 5; but suffice it to say that 

T1’ to T4 denote temporal objects; {.} represents a point (at certain granularity) in 

time; |.| denotes a temporal quantity; and ‘_’ encodes an open temporal variable 

(temporal focus). The time T1’ in particular denotes the birth of the composer. The 

Interpretation module then instantiates the temporal foci based on the context: 

T1:  {T1’+|14year|} (deputizing-at-14) 

T2: {T1+|3year|} (off-to-Vienna) 

T3: {T2+|(<2)week|} (return) 

T4: {T3+|3month|,jul,17day,1787year} (mother’s-death) 

 

 
Fig. 2. TCSP depicting Beethoven’s first trip to Vienna. 



The entire set of temporal objects is then converted into temporal variables of a TCSP, 

shown in Figure 21: each node in the figure represents one temporal variable, and the 

label on an edge represents the time difference between the adjacent variables, e.g., label 

[0,2weeks] means the difference between T2 and T3 is from 0 to 2 weeks (T2 is earlier). 

Inside each node is a calendar constraint system initialized by the expression which 

serves as the unary constraint for the node in solving the TCSP. Finally, the constraint 

solver takes over, decides that the particular TCSP is consistent, and gives an anchored 

time for each variable (also shown in Figure 2). At this point, the solution can be entered 

into a TDB for future use. 

Suppose we are given another passage describing Mozart’s activity in Vienna: 

“Mozart went to Munich to compose the opera late in 1780 (T5: 
{1780year}). The next year (T6: {_+|1year|}), he was summoned from 
Munich to Vienna, where the Salzburg court was in residence on the accession of 
a new emperor. Mozart lived in Vienna for the rest of his life, until he died in 

1791 (T7: {1791year}).” 

Again, the interpretation module rewrites T6 into {T5+|1year|}, and a TCSP is 

formed. At this point we are interested in whether it is possible that Beethoven’s stay in 

Vienna overlaps with Mozart’s residence in the city, which requires tests of all possible 

interval-interval relations. In particular, the test that the interval from T2 to T3 is 

contained in that from T6 to T7 can be performed by inserting two hypothetical edges to 

relate the two TCSPs (shown in Figure 3). The constraint solver then confirms the 

consistency of the merged TCSP, and hence the facts support the possibility of a 

meeting.2 

 
Fig. 3. Did Beethoven and Mozart meet in Vienna? Mozart’s activity is shown in shaded graph. 

                                                             
1 The week numbers are counted from January 1, 1 AD (the 1st week). 
2  Historically, whether the two met anywhere is still an unsolved puzzle, although Mozart did make comments 
on Beethoven’s works. 



 

 

3. CONSTRAINT-BASED TEMPORAL REASONING 

Our framework essentially translates an NL discourse into a two-level constraint- 

satisfaction problem: at the higher level is a TCSP relating different temporal objects 

(variables), and within each temporal variable is a model of human calendars – a CSP 

describing constraints among different temporal units such as years and months. The 

overall TCSP is solved by conventional methods with the aid of the calendar model. In 

this section we briefly introduce the idea of constraint-based temporal reasoning.  

A constraint-satisfaction problem (CSP) consists of a set of constraints over a set 

of variables, where each variable is associated with its domain of values. The goal is to 

find the assignments for variables such that none of the constraints is violated 

[Mackworth 1977]. Most CSPs involve only unary and binary constraints, and a 

constraint involving more than two variables can always be “binarized” [Bacchus et al. 

1998]. CSPs can be solved by using a backtracking method to systematically search the 

solution space; but this is usually done with a combination of constraint propagation 

methods such as node-, arc-, and path-consistency methods, which can prune away a large 

portion of the search space. Other heuristics such as judiciously picking the right variable 

ordering are also helpful [Kumar 1992].  

A temporal constraint-satisfaction problem (TCSP), on the other hand, is a particular 

kind of CSP where domains are infinite (time) and constraints are allowed temporal 

relations [Dechter et al. 1991]. In particular, a binary constraint between variable Xi and 

Xj can be specified by an interval of time difference [a, b], which is interpreted as 

… a ! X j " X i ! b
3. For a simple TCSP (STP) without disjunctive constraints, the 

problem can be converted into a flow network, and a minimal network can be found in 

polynomial time using an all-pairs-shortest-path algorithm. Sets of feasible assignments 

to the variables can then be obtained using a simple search on the edge labels of a 

minimal network. Figure 4 shows an example STP taken from Dechter et al. [1991]: in 

 
Fig. 4. (a) an STP; (b) the flow network; (c) the minimal network. 

 



(a) a node labeled i represents a variable Xi, and the edges are the time-difference 

constraints; (b) shows its converted flow network; and (c) is the minimal network. The 

variable X0 in particular is added to represent the beginning of time (time 0), thus the 

minimal network indicates that, for example, the feasible range for X3 is 20 ! X
3
! 30 . A 

special solution to Figure 4 is X1 = 20,  X2 = 50,  X3 = 30,  X4 = 70 . A general TCSP can 

be decomposed into several STPs, and a backtracking search method can be used to find 

the solutions. 

Adopting a TCSP framework for processing temporal information in NL has at 

least four advantages. (1) the minimal network enables us to find the minimal set of 

feasible times of a variable and the minimal set of relations between any pair of variables; 

the consistency of the network can be readily checked by detecting the existence of a 

negative cycle. Together they encompass a wide range of possible queries. (2) Both 

quantitative constraints and qualitative constraints (such as the 13 relations proposed in 

Allen [1984]) can be converted into such a “metric” network and solved uniformly [Meiri 

1992]. (3) Obtaining a minimal network in STPs takes only polynomial time and 

assembling a feasible solution from it is backtrack-free; although solving general TCSPs 

is still NP-complete, efficient methods for exploiting special topologies of the constraint 

networks exist. (4) Finally, treating a temporal discourse as a TCSP fits naturally with 

our formal calendar modeled as a CSP.  

 A TCSP in this original form requires significant 

simplifications about real-world scenarios, where time is 

described not by simple real numbers but by using quantities of 

various sorts. Adding the missing concept of real calendars 

back to TCSPs has one main implication: i.e., the distance 

updating equation at the heart of the all-pair-shortest-path 

algorithm: d ij ! min(d ij ,d ik + dkj ) , where dij  denotes the 

distance between variable Xi and Xj. In the partial TCSP shown 

in Figure 5, the shorter path from Xi and Xj is contingent on the distance between X0 and 

Xi: if Xi is assigned to February of a non-leap year, “2 months” would be the shorter path 

from Xi to X j; however, if Xi is assigned to March, the other path is the shorter one. This 

complication arises because in real calendars some metric units do not have constant size 

in terms of a base unit. We can, however, work around this problem by selectively 

updating distances affected by changes in assignments in certain situations. 

There are other complications as well. With the variety of metric units, the 

operator ‘+’ and the relation ‘<’ between distances must be defined on the basis of our 

                                                                                                                                                       
3  When a = b, we simplify the notation to only [a]. 

Fig. 5. A partial TCSP. 



linguistic intuition, and the concept of calendars needs to be formalized (these are topics 

in the following sections). 

 

4. MODELING CALENDARS 4 

Our goal in modeling calendars is similar to those of Ohlbach and Gabbay [1998]; 

Wijsen [2000]; and Ning et al. [2002], in that we want to find a principled way to 

formalize the structure of any human calendar. This would guarantee the necessary 

provisions for incorporating different kinds of calendars into our system. In our approach, 

however, the difference is that we not only view calendars as the ontology for representing 

temporal expressions, but also as constraint systems necessary for solving for the missing 

information in an under-specified expression. For example, given the expression 

“February 29”, even without being told about the year, we can safely conclude that it 

cannot be the year 2003. The constraint-solving process can even be extended to convert 

expressions of a certain granularity (“November 29, 2003”) to another (“Sunday”), and to 

answer questions about calendric arithmetics (“what is the date of two days after 

February 27, 2000?”). Ultimately, the calendar-constraint systems serve as unary 

constraints over the individual temporal variables in the higher-level TCSP. 

 

4.1 Calendars as Constraint Systems 

A calendar consists of a set of temporal units, and each unit can take on a set of possible 

values (e.g., unit month can be assigned to values jan, feb, ..., dec). This 

dichotomy naturally reflects the distinction between variables and domains in the setting 

of a CSP. Thus, a temporal coordinate expressed by an expression such as “February 

29” essentially specifies an incomplete set of assignments to the units, and the omitted 

information can be derived (later) by solving the constraint system. In the rest of the 

article we shall denote a coordinate in a simple curly-bracketed format; e.g., 

{feb,29day} represents the aforementioned date;5 and we denote the set of units being 

assigned in a coordinate c as D(c)  (domain of c); e.g., D({feb,29day}) = {month, 

day}. The additional requirement for a calendar, however, is that both values and units 

have to be ordered, so that two partial assignments in time can be compared (e.g., “the 

first quarter of 1995” is earlier than “summer 1995”). We therefore stipulate that values 

must be totally ordered, while the ordering among units can be partial. We denote the 

                                                             
4  See Han and Kohlhase [2003] for a more formal treatment. 
5  Each element in the braces is a value assignment to a unit; units are shown in subscripts only when it is 
necessary for clarity. 



latter ordering by the measurement relation !
M

; e.g., we could have year !
M
soy 

(seasons)6 and year !
M
qoy (quarters of a year), and qoy and soy are not 

comparable. If u1 is said to be higher than u2 in u
1
!

M
u
2
, then there could be more 

than one maximal/minimal unit in a calendar system. Note that although we give a 

notion of ordering to both units and values, it is somewhat different in nature for the two 

kinds of entities. As we shall see, the definitions essentially enable us to compare two 

coordinates lexicographically. Another point to note is that u
1
!

M
u
2
 does not imply u2 

is periodic in u1 – a concept we define in the next section. 

To complete the definition of a calendar-constraint system, we must also specify 

the constraints among the assignments of the units. Naturally, each u1!M
 u2 pair could 

be governed by a constraint, which we formalize by specifying a cover function from unit 

u1 to u2 as C
u1 ,u2

:V
u1
! 2

V
u2 , where V

u
1

 and V
u
2
 are values of u1 and u2.

7 For example, 

to represent the fact that the first quarter of a calendric year ranges from January to 

March, we write Cqoy,month(1) = {jan, feb, mar}. Using various conventional 

methods such as a combination of a constraint-propagation method (e.g., AC-3) and a 

backtracking search method [Kumar 1992], we can solve for a complete set of solutions 

based on a given coordinate c, which we call the full extension of c, denoted !(c) . For 

example, assuming year, qoy, and month are the only units in our calendar, 

ε({1qoy,1995year}) then contains {jan,1qoy,1995year}, {feb,1qoy,1995year}, 

and  {mar,1qoy,1995year}. The consistency of a coordinate c can then be defined 

straightforwardly: c is consistent iff !(c) "# . Furthermore, the ordering of two 

coordinates c1 and c2 can also be defined based on the concept of full extensions: if 

D(c1) = D(c2)  and the units in the domain form a path from a maximal unit, they can be 

compared lexicographically (from the maximal unit to the lower ones). For example, 

{1qoy,1995year}<{2qoy,1995year}, since both coordinates are anchored on the same 

set of units that contains a maximal unit year. To compare two coordinates c1 and c2 

that might be anchored on different units, e.g., {1qoy,1995year}and {apr,1995year}, 

we define c
1
! c

2
 iff every coordinate c

1
'  in !(c1)  and every coordinate c

2
'  in !(c2)  such 

that D(c1' ) = D(c2 ' )  (comparable), c
1
'! c

2
'  is true; c

1
< c

2
 is true iff c

1
'< c

2
'  is true at 

least once. For example, we have {1qoy,1995year} < {apr,1995year}. 

                                                             
6 This particular modeling would interpret Winter 2004 as two non-contiguous intervals (Jan. 1-Mar. 20 and 
Sept. 23-Dec. 31, 2004), which evaluates the assertion “Winter 2004 is after Spring 2004” to be false. An 
alternative would be to model seasons in a separate calendar with an alignment relation (later).  
7  Notation: 2s is the power set of set s. 



Fig. 8. A partial model of a Gregorian 
calendar. 

Multiple calendars can be coupled using a special alignment relation. This is 

useful in bringing together the calendar components of non-aligned cycles, such as year-

based calendars and week-based calendars, as shown in Figure 6. The concept of full 

extensions can be naturally extended to coupled calendars, and granularity change for a 

coordinate involves shrinking/enlarging the domain of the coordinate (Section 5.3). 

 
Fig. 7. Dependent unit product. 

Note that the constraints defined above by means of specifying cover functions are all 

binary constraints. Non-binary constraints, however, are by no means rare in human 

calendars. For example, to determine how many days a particular month has, we also 

need to know the year, since February 29 only exists for leap years. To accommodate 

this, we adapt the well-known dual-graph approach for converting non-binary constraints 

into binary ones [Bacchus et al. 1998] and introduce dependent unit products (DUP) as 

complex units whose values are pairs of values of the existing units (Cartesian product). 

More formally, for units utop, u, u' , and ubot such 

that utop !M
u!

M
u'!

M
ubot , a DUP u ! u'  is 

defined as having values 

v,w v ! V
u
,w ! C

u,u' (v){ } , where V
u
 is the 

domain of unit u. The topology shown in Figure 7 

is also added into the calendar to ensure 

consistency. As an example, a partial model of a 

Gregorian calendar is shown in Figure 8, where 

 
Fig. 6. Week-based calendar coupled with year-based calendar via an alignment relation (the 

measurement relation is shown by the solid arrows). 
 



DUP month! day  models the ternary constraint among year, month, and day. We can 

then define Cyear,month!day (i)  to return 
  

i, feb,1 ,K, i, feb,29{ }  for leap years i, and 

return 
  

i, feb,1 ,K, i, feb,28{ }  for the others. Similarly, the quaternary constraint among 

year, season, month, and day is modeled by the DUP soy! (month! day) . 

 

4.2 Calendar Arithmetics and Periodicity Relation 

A calendar system has to provide another important service, that is, doing arithmetics. 

For the most general cases, we need to define a predecessor/successor function for 

coordinate backward/forward shifting. The basic idea is to incrementally generate new 

instances of CSP and count the consistent instances to a certain number. For example, 

adding 1 day to {2003year,feb,28day} would first yield an inconsistent coordinate 

{2003year,feb,29day}; the inconsistency then signals the successor function to 

invoke the carry propagation until the consistent {2003year,mar,1day} is generated, 

tested, and returned as the answer. 

The general-case scenario requires linear time with respect to the quantity added. 
8 In addition to the various caching/pre-computing tricks we could use to speed up the 

operation, in some cases we can take advantage of the periodicity relation between two 

units to achieve constant time complexity. We say that unit u1 is periodic in unit u2, 

denoted u
1
!

P
u
2

, iff u
2
!

M
u
1
 and every value of u1 is in the cover of every value of 

u2; e.g., month!
P
year, but month is not periodic in qoy. Because there is no 

“hole” in the cover C
u2 ,u1

 when u
1
!

P
u
2

, adding l units u1 to a coordinate c, written 

as c !
u
1

l , is reduced to a simple modulo operation: 

  
c !

u1
l := (c !

u2
n)[u1 a c(u1) + m] where l = nV

u
+ m  and   c[u a v]  is a coordinate 

identical to c except that value v is assigned to unit u. 

 
5. REPRESENTING TEMPORAL EXPRESSIONS9 

This section describes the meaning representation language for temporal expressions in 

our framework. The typed formal language consists of a set of temporal entities defined in 

a calendar constraint system (temporal units and values), and a set of operators and 

relations. The intensional meaning of an expression (see Section 5.1), be it a temporal 

point, a set of points, or a duration, is then encoded as a formula in this language. The 

omitted information in an under-specified expression can be automatically derived when 

                                                             
8  In terms of number of consistency calls. 
9  Due to the limited space, we refer readers to Han [2003] for a complete description of the language. 



necessary, thanks to the underlying calendar constraint system, and granularity change 

takes place in a transparent way via the built-in type coercion mechanism. 

 We start our discussion by first describing a corpus study based on the Penn 

Treebank corpora. 

 

5.1 Temporal Expressions 

As already mentioned in Section 1, we focus our study on non-verbal phrases, as they 

encode the majority of the complexity in temporal expressions. To better understand the 

variety of these expressions, we analyze the Wall Street Journal collection of the Penn 

Treebank corpora for the following reasons: (i) the Treebank annotation scheme already 

tagged the temporal expressions with function tag “-TMP”, eliminating the need for us 

to prepare the tagged data; (ii) several highly accurate statistical parsers trained on the 

Penn Treebank corpora exist [Collins 1999; Charniak 1999], and these tools can be 

naturally incorporated within our syntax-semantics interface. Table I shows the statistics 

of the leading four categories of temporal expressions: the categories together represent 

99.71% of all temporal expressions in the corpora, so we concentrate only on them. Also 

note that the percentage of the adverbial clauses used for temporal purposes (28.95%) is 

the highest among the four. 

Table I. Temporal Expression Statistics in the Penn Treebank (Wall Street Journal Collection) 

 ADVP-TMP NP-TMP PP-TMP SBAR-TMP 
Count 8303 5477 10573 2757 
Percentage within all –TMP clauses 30.54% 20.14% 38.89% 10.14% 
Percentage in the category 28.95% 1.35% 9.01% 8.65% 

 

To better appreciate the complexity of temporal expressions, a list of representative 

expressions and their meanings is given below: 

1. “Sept. 9, 1987”: The simplest expressions are directly anchorable on a time line. 

2. “on Wednesday”: Most of the expressions are under-specified at least in two ways: 

they are not directly anchorable, and they do not commit themselves to either a time 

interval or a point. 

3. “Wednesday or Friday”: Logical disjunction can be expressed by using words such 

as “or”. 

4. “4 o’clock”: Linguistic ambiguity occurs and is different from the logical 

disjunction; e.g., the expression could mean 4 in the morning or in the afternoon. 

5. “ today”: Deictic expressions are anchorable only by implicitly making an external 

reference to a temporal focus (such as the utterance time). 



6. “ last week”: Complex expressions usually involve shifting from a time with a 

specified offset; the offset not only specifies a duration to shift, but also implies the 

granularity of interest; e.g., no matter how fine the granularity of the current time, 

“ last week” refers to a time down to the week granularity only. 

7. “ last Wednesday”: In contrast to 6, above, shifting from a time that is not expressed 

in metric units behaves differently; e.g., the expression refers to the Wednesday in 

the last week.10 

8. “ the second Sunday in May”: An ordinal expression is specified by an ordinal and a 

range. 

9. “an hour and 30 minutes”: Quantifier phrases with temporal units can denote a 

duration in time. 

10. “Tuesday and Thursday”: A set of temporal entities, not necessarily continuous, can 

be enumerated. 

11. “ from now until 1995”: An interval, a specialized form of enumeration, can be 

specified by a starting and an ending point. Implicit granularity change works behind 

the scene to ensure both points are at the same granularity; e.g., the intended interval 

is to the last minute of the last day of 1994, provided the current time is at the 

minute granularity. 

12. “every week in May”: A recurrence expression is specified by a step size and a 

“pattern,” possibly indicating a range. Again, “every week” and “every Wednesday” 

behave differently. 

13. “ twice on Wednesday”: A rate expression can be specified by a frequency term and a 

range. This is also under-specified, since we do not known the specific time when 

each occurrence of the event takes place. 

Based on this study, a desirable temporal representation for NL has to satisfy the 

following requirements: (i) it needs to provide an intensional representation for all of the 

expressions above, i.e., a single representation that can be evaluated in different contexts 

to give different interpretations; (ii) it must allow a natural representation and 

interpretation of under-specification and granularity change; (iii) it should facilitate a clean 

separation from discourse-level force (so discourse processing can act on the 

representation); and (iv) although it is not our focus here, the representation scheme 

should be readily integratable with a chosen event representation. These requirements are 

                                                             
10 In some languages “last Wednesday” means the nearest Wednesday in the past (relative to the temporal focus) 
– this can be encoded in our representation using the ordinal `@’ operator (Section 5.4). 



satisfied in our constraint-based approach: since every temporal expression only serves as 

a timestamp (index) of an event, there is almost no restriction as to what kind of event 

representation we should adopt in our framework. The constraint-based approach also 

naturally accommodates the under-specified expressions. The representation language 

provides many operators, and allows referring to a discourse temporal variable (“temporal 

focus”), thus the intensionality and the separation from the discourse-level force are 

achieved. Finally, the granularity change is taken care of via the design of types and a 

mechanism of type coercion in the representation language. 

 

5.2 Temporal Objects and Types 

Every temporal expression is represented as a temporal object of the following three 

major types: 

1. A coordinate (C) is a point in time. The simplest form is a conjunction of value 

constraints vu where v is a value of unit u; e.g., “Sep. 9, 1987” is represented as 

{1987year,sep,9day}; 

2. A quantity (Q) denotes a polarity-neutral duration of time. The simplest form is 

a conjunction of numeric constraints nt, where n is a non-negative integer and t 

can be a unit or a set of values whose units form a path in the calendar; e.g., “an 

hour and 30 minutes” is represented as |1hour,30min|, and “two Saturday 

nights” is represented as |2(sat,night)|. 

3. An enumeration (E) is a set of coordinates. The simplest form is a list of 

coordinates; e.g., “Tuesday and Thursday” is represented as 

[{tue},{thu}]. 

 

Connective “,” is used to conjoin two terms in both C and Q and to enumerate 

additional terms in E. For disjunctions, we distinguish between language ambiguity and 

genuine logical disjunction by using “|” for the former and “;” for the latter. 

More complex objects can be built by using one of the infix operators and 

relations (Section 5.4). For example, using backward fuzzy shifting operator “-“, the 

expression “two weeks before Sept. 9 1987” is represented as 

{{1987year,sep,9day}-|2week|}; using a point-interval relation “b” (before), the 

expression “sometime before Sept. 9, 1987” can be encoded as {b 

{1987year,sep,9day}}. Also, external temporal references can be introduced in order 

to represent deictic expressions, e.g., “yesterday” is represented as  {_-|1day|}: the 

underscore is an open variable representing the current temporal focus. Note that in order 

to keep the flexibility, we do not use the utterance time directly in this case, since it can 



be shifted within a discourse (e.g., reports from third parties in news articles). Instead, a 

discourse-level mechanism inside the interpretation module (Fig. 1) is responsible for 

instantiating the temporal focus. For under-specified expressions that are not deictic and 

not generic, another mechanism inside the interpretation module is also necessary for 

injecting a focus variable into the representation. For example, a non-generic expression 

“Wednesday” in “the company will announce Wednesday” is translated simply as 

{wed}, but will be rewritten into {|1wed|@{bi_}}by the interpretation module 

because the corresponding verb is in the future tense (thus the formula means “the nearest 

Wednesday in the future”, and bi is relation after [Allen 1984]). 

As Examples 6 and 11 in Section 5.1 have shown, certain expressions can 

trigger implicit granularity change. We might suspect that cases of granularity change in 

NL are rare, since people usually do not mix expressions of different granularity together. 

However this is almost always not true for under-specified expressions, since their 

interpretations depend on an implicit temporal focus that speakers often make use of for 

economic reasons, and the temporal focus can be specified at any granularity possible. 

Even without referencing a temporal focus, interpreting expressions such as “the summer 

following 1998” still requires a treatment of granularity change (two other examples are 

shown at the end of Section 5.4). To model the phenomenon, we need to define the 

concept of granularity: our definition is via a function g recursively mapping a temporal 

object into a set of minimal temporal units, with respect to the measurement relation 

defined in the calendar. For example, g({2003year,nov}) = minM(year, month) = 

{month} (the granularity of “November 2003” is month), and 

g({{_+|1day|},19hour}) = minM(g({_+|1day|}), hour) = {hour} (the granularity 

of “tomorrow at 7pm” is hour). The granularity of an enumeration is simply defined as 

the set of minimal units over all granularities of its components. 

To make the granularity change a transparent process, we decorate the major 

types with the granularity to become the type system for our language: we say that an 

object o is of type Tg(o) when the major type of o is T. Under this definition, the type of 

{19hour,55min} is simply C{min}. This gives us tremendous convenience: since every 

operator and relation in our representation is typed, type coercion will automatically kick 

in to bring the involved objects into the required types. 

 

5.3 Type Coercion 

Type coercion is possible within the same major type or among different major types. 

The former is realized by a granularity change function !g  over major type C and E, 

where g is the target granularity. Major type Q is excluded, since the use of a quantity 



never requires a granularity change for itself (instead, it drives the change of the others). 

Function !g  relies on a simple projection operation: c
!

 gives a new coordinate of 

domain !  from c. Operationally, this can be done by solving the underlying calendar 

CSP specified by the coordinate and then changing the domain. The function !g  over a 

coordinate can then be defined by specifying the set ! :11 

! := D(c) \"#$#g

" := {u' | u%M
*
u' ,u & g,u'& D(c)}

$ := {u" | u'%M
*
u"%M

*
u,u & g,u'& D(c)}

 

Intuitively, !g (c)  installs a new set of minimal units g in c; in particular, !  represents 

granularity promotion (pruning) while ! represents demotion (adding information). A 

pictorial illustration of these processes is shown in Figure 9. 

 
Fig. 9. Granularity change for a single temporal object: on each side, the biggest circle represents the set of 

assigned temporal units in a calendar constraint system (Fig. 8), and small circles are temporal units 

Function !g  over E can be extended from the definition above. Examples of !g  are 

!{day} ({may})  =  {may, (>=1,<=31)day} and  !{month} ({31day})  =  {jan; 

mar; may; jul; aug; oct; dec}. 

For conversions among different major types, we only allow coercion from major 

type C to major type E via a re-interpretation function C ! Eg , which can be defined as 

(see Section 5.4 for the interval operator “:”): 

1. C ! Eg (c) := [ i [min(!g (c)) : max(!g (c))]] if u'!
M

*
u  for some u'! g(c)  

and u ! g ; 

2. C ! Eg (c) := [!g (c)]  otherwise. 

An example is C ! E{day} ({may}) = [i [{may,1day} : {may, 31day}]]. 

 

5.4 Typed Operators and Relations  

                                                             
11  !

M

*
 is the closure of the measurement relation. 



Every operator and relation is typed in our representation, so that type coercion can 

transparently bring all of the involved objects into the required types beforehand. The 

type of an operator/relation, however, depends on the granularity of one of the involved 

objects: as shown in Example 6 of Section 5.1 (“last week”), the granularity of a shifting 

expression is determined by the quantity. To “factor out” the intended granularity from a 

quantity, we use a function u(q)  to convert quantity q into its pure-unit form – i.e., 

every term in a pure-unit quantity must be of the form nu, where n is a non-negative 

integer and u is a unit. The function u(q)  is defined as follows: 

1. change every n
v
u

 term into n
u'

, where vu is a value of unit u, and u!
P
u'  (u 

is periodic in u'); 

2. change every n(v1 ,v2 ,...)  term into nu, where v1,v2 ,...  is a set of values whose 

units u1,u2 ,...  form a path in the calendar, and max(u1,u2,...)!P
u . 

For example, u(|2day|) = |2day|, u(|2morning|) = |2day|, and u(|2(sat,night)|) = 

|2week|. 

 

Table II. List of the Typed Operators 

Op Type Meaning Examples 

+/- E!g(u (op2 ))
"Qg(op2 )

! Cg(op2 )

 

forward/backward 
fuzzy shifting 

{_+|1month|} 
(“next month”) 

++/
-- 

E!gm
"Q!gm

! C!gm

gm = min(g(op1)!g(op2 ))  

forward/backward 
exact shifting 

{_++|1month|} 

 (“exactly one month after”) 

@ Qg(op1 )
!E"g(op1 )

"Cg(op1 )
 ordinal {|1wed|@{bi _}} 

(“the next nearest Wednesday”) 
: C!gm

"C!gm
! Egm

C!g(op2 )
"Qg(op2 )

! Eg(op2 )

gm = min(g(op1)!g(op2 ))  

interval [{may}:{jun}] 
[{may}:+|1month|] 
[{may}:-|1month|] 

/ E!g(op2 )
"Qg(op2 )

!C
g(op2 )

 arithmetic 
recurrence 

[{may}:{aug}]/|1month| 
(“every month from May to August”) 

^ E!gm
"E!gm

! Egm

gm = min(g(op1)!g(op2 ))  

enumeration 
intersection 

 

\ E!gm
"E!gm

! Egm

gm = min(g(op1)!g(op2 ))  

enumeration 
difference 

 

 

Table II gives a complete list of the typed operators: we use op1 and op2 to denote the 

two operands (from left to right), and T
!g

 denotes an object of major type T converted to 

granularity g. The two sets of shifting operators move the ending coordinate of an 

enumeration with an offset specified by a quantity: the fuzzy version prunes away 

information below the target granularity, while the exact version preserves the 

granularity. The ordinal operator selects a coordinate from an enumeration; the interval 



operator forms an interval using either a pair of coordinates or a starting coordinate and a 

duration specified by a quantity; the arithmetic recurrence operator enumerates a set of 

coordinates within a range specified by a quantity, using a step-size specified by a second 

quantity12; and finally, the intersection and difference operators perform the respective set 

operation over enumerations. 

When using a relation in the form of r x2 in a hosting entity x1, the intended 

meaning is x1 r x2. There are two main categories for the relations: value relations and 

object relations. The former can only be used inside a value term, and it has the form r 

v, where v is a value. Value relations are <, >, and = with their usual semantics.13 

Examples of value relations are {sun,(>19)hour} (“Sunday after 7pm”) and {_-

|(<2)day|} (“less than 2 days ago”). For object relations there are two sets available: 

the point-interval relations can only be used inside a coordinate, while the interval 

relations can only be used inside an enumeration, as shown in Table III. For example, 

{|1summer|@{bi {1998year}}} (“the summer following 1998”) and {i 

[{jan,1998year}:{mar,1998year}]} (“sometime between January and March 

1998”). 

Table III. Object Relations 

 Type Relations Remarks 
Point-interval 
relations 

C!
min

"E!
min

 

min = minM (g(op1)!g(op2 ))  

b, s, d, f, bi, i Subset of the 
interval relations 

Interval relations E!
min

"E!
min

 

min = minM (g(op1)!g(op2 ))  

b, m, o, s, d, f, i, 
=, bi, mi, oi, si, 
di, fi, ii 

From [Allen 
1984]; i := 
(s;d;f)14 

 

 

Before showing how an operator and type-coercion work together, we need to define 

another utility function. Function c(q), complementing u(q), produces the implied 

constraints from quantity q, and is defined as follows; initially we set c(q) = ∅: 

1. For every nv term, where n is a non-negative integer and v is a value, 

c(q)! c(q)"{v} . 

2. For every n(v1 ,v2 ,...)  term, where v1,v2 ,...  is a set of values whose units form a 

path in the calendar, c(q)! c(q)"{v1,v2,...} . 

                                                             
12  Pattern recurrence is another construct for representing recurrence [Han 2003]; e.g., “every Wednesday 
from 3pm to 5pm” can be represented by [{*wed,15hour}:{17hour}], and “every 4 years since 1896” is 
[{*/4year,bi {1896year}}]. 
13  = is usually dropped when there is no ambiguity. 
14 The relations are before (b), meets (m), overlaps (o), starts (s), during (d), finishes (f), 6 of their inverse 
relations, and equal (=). The relation in (i) and its inverse are added as a convenience. 



To illustrate, we now define the semantics of fuzzy shifting +. Let e and q be an 

enumeration and a quantity, respectively, and assume u(q) = nu1
1
,...,num

m , the operator is 

defined as e+ q := {max(e[!1])"u1
n
1
..."um

n
m
,c(q)} , where e[!1] is the last 

coordinate in enumeration e, and function max(c) returns the “latest” possible coordinate 

from c. We first give a more involved derivation for expression “two nights after the 

accident on March 28”: 

u( 2night ) = 2day ,   g( 2day ) = {day}

{mar,28day } + 2night = {max(C ! E{day} ({mar,28day })["1]) #day 2,c( 2night )}

= {{mar,28day } #day 2,{night}}

= {mar,30day ,night}

 

The derivation for expression “tomorrow,” on the other hand, is simpler (assuming the 

temporal focus is {2003year,feb,28day,8hour}): 

_+ 1day = {2003year , feb,28day ,8hour } + 1day

= {max(C ! E{day} ({2003year , feb,28day ,8hour })["1])#day 1}

= {{2003year , feb,28day}#day 1}

= {2003year ,mar,1day}

 

 

6. RELATED WORK 

There are essentially three components in our framework: the calendar models, the 

representation language for temporal expressions, and the overall reasoning mechanism 

based on solving TCSPs. In this section we briefly discuss the work related to each of 

the components, and to contrast the previous approaches with our framework. 

 In modeling calendars, Ohlbach and Gabbay [1998] described a multi-modal 

logic for reasoning about calendric time. The many-sorted term language in their calendar 

logic formalizes calendars. The logic overall is decidable (via translation to propositional 

logic or via a tableaux decision procedure), but in the worst case is still exponential. One 

limitation in their representation is that every temporal unit has to be defined as a convex 

set using a base unit, and this makes defining units with “holes” difficult. In Wijsen 

[2000] a finite string-based representation is proposed to describe infinite granularities 

based on the idea that infinite patterns can be generated by fairly simple and recurrent 

patterns. The approach is much more efficient than the conventional methods where every 

temporal granule is defined by a smallest granule. Although it is not clear how under-

specification can be dealt with, this is indeed an interesting idea that our constraint-based 

approach could incorporate to further restrict the formulation of cover functions. Another 



approach in formalizing calendars is that of Ning et al. [2001], where an algebra-based 

method is proposed. Every granularity is represented against a “bottom” granularity, and 

algorithms for granularity change are also presented. Although the representation is fairly 

flexible (e.g., capable of finding all business days in a given month), it is again not clear 

how under-specification is addressed. Overall, we believe our constraint-based calendars is 

a natural formalization that addresses particular needs in NL discourse, and fits well with 

the rest of the framework. 

 In representing temporal expressions, TimeML [Pustejovsky et al. 2002] is one 

of the most recent efforts in standardizing temporal annotations. The proposal is based on 

earlier work such as the temporal annotation scheme proposed in Setzer [2001] and 

TIMEX2 [Ferro et al. 2001]. The scope of TimeML extends beyond temporal 

expressions into the realm of eventuality. Due to its design as a markup language, the 

representation has a closer affinity to NL rather than to an inference formalism (such as 

first-order logic assumed in Hobbs et al. [2002]). Although the reasoning aspect of the 

representation was addressed in Setzer [2001] in the form of simple closure computation 

of temporal relations, it is not clear how more complex queries can be handled. The effect 

of granularity change is also not clear in the current proposal. However, the annotation 

scheme itself, due to its closer tie to surface texts, can be used as the first pass in the 

syntax-semantics interface of a temporal resolution framework such as ours. The more 

complex representation, suitable for more sophisticated reasoning, can then be obtained 

by translating from the annotations. 

 In terms of reasoning with time, many variants of temporal logics were proposed 

before [Gabbay et al. 1994]. Most of the approaches treat time as uniformly distributed 

clicks, and phenomena such as under-specification and granularity change are ignored. 

The meager set of operators also presents a problem in NL discourse; for example, a 

propositional logic based on a standard modal logic is proposed in Wooldridge [1998] 

for reasoning about knowledge and belief among multiple agents, and it has only two 

elementary operators:  Next-time and Until – the former asserts the truth of a proposition 

at the next time click, and the latter asserts the truth until a certain time click. Some of 

the work on temporal reasoning, however, did have a closer tie with NL, such as Allen 

[1984] and its continuation in the DAML Ontology of Time [Hobbs et al. 2002]. In this 

line of work, an extensive axiomatization of time is proposed in first-order logic, taking 

into account the “real” time used in NL discourse. It also encompasses ideas such as 

granularity, convexity, and extensional collapse of time. In comparison, our framework 

addresses many of the same issues, albeit formulated in a constraint-solving formalism. 

We believe, in line with the authors of the SNARK system [Stickel et al. 2001], that 



instead of using a general-purpose inference engine based on first-order logic for temporal 

reasoning, time has special properties that justify the use of a special-purpose reasoner. 

But this does not imply that it is difficult to integrate external knowledge into our 

framework. For example, in the TCSP of Beethoven’s visit to Vienna in Section 2, the 

Constraint Solver could add in additional constraints such as T3 is before T4, based on 

the fact that “dying” is an event culminating in death15. 

 The design of NL interfaces for temporal databases is another important line of 

work relating to temporal processing in NL. In Androutsopoulos [2002], a temporal 

intermediate representation language called TOP is proposed, and a parser driven by 

HPSG grammar is used to map time-related questions into the representation. The 

resulting TOP expressions are then translated into equivalent queries in TSQL2 

[Snodgrass 1995] to query the database. The language TOP partitions NL verbs over the 

domain into a set of relevant aspectual categories, and provides a set of operators dealing 

with tense, aspect, interrogatives, and event identifications (using episode identifiers). 

However, the underlying modeling of time appears to be over-simplistic and fixed 

(Gergorian). It is not clear how phenomena such as under-specification and granularity 

change can be handled with customized calendars. The integration with TSQL2, 

nevertheless, is an important step in bringing the NL interface to a production system, 

and it is also a direction we would like to explore in the future.  

 

7. CONCLUSIONS AND FUTURE WORK 

In this article we have proposed a comprehensive framework for representing and 

reasoning about time in natural language. Our approach is capable of representing a wide 

variety of temporal scenarios described in natural language and translating them into 

temporal constraint-satisfaction problems (TCSPs). With respect to syntax, we have 

designed a representation for temporal expressions based on our study of the Penn 

Treebank corpora: the representation features sets of operators and relations to encode the 

intensional meaning of the expressions. Its type system together with the type coercion 

mechanism provides a transparent way to deal with phenomena such as granularity 

change and re-interpretation. In terms of semantics, real calendars are modeled as 

constraint systems and serve as unary constraints over individual temporal variables in 

the TCSP. Solving this two-level TCSP using conventional methods such as the well-

known all-pairs-shortest-path algorithm combined with a backtracking search method, the 

                                                             
15 However, in this case the added constraint has no additional effect on the final solutions. In fact, we could 
also add additional constraints to reflect the tense of the verbs in the narrative (past), but in this case they would 
have no effect on the solutions either.  



resulting minimal representation of the scenarios can answer a wide range of time-related 

queries. 

Currently, we are developing a prototype system that features two types of 

syntax-semantics interfaces for two different applications (in time we will report on the 

results). The first application is in the email domain (project RADAR16 at CMU), where 

emails sent for scheduling meetings are identified and parsed into a machine-readable form 

to enable further scheduling negotiations among the participants and the agents 

(programs). For this application we used a parsing system based on semantic grammars 

[Gavaldà 2000] to extract and translate temporal expressions into our representation 

language, since a vast number of grammars were developed before for conversational 

speech in the travel-scheduling domain. The second application we are working on is 

answering time-related queries in newswire texts, where the open-domain nature requires 

a more shallow but effective parsing strategy. Our approach focuses on broad coverage and 

uses a simple event representation, recording only a predicate (verb) and its tense, the 

timestamp, and the event participants (any nominals involved in an SBAR/S clause). 

The system uses Charniak’s maximum-entropy-inspired parser (trained on the Treebank 

corpora) [Charniak 2000] to provide CFG parse trees and uses named entities produced 

by BBN’s identifinder [Bikel et al. 1999] to further decorate the trees. For each ADVP, 

NP, PP, and SBAR node in a parse (Section 5.1), we use a statistical classifier to decide 

whether it is a temporal clause, thus effectively recovering the TMP function tag that is 

missing from the output of the parser. The temporal nodes identified are then translated 

into our representation using a finite-state parser driven by hand-crafted grammars. 

In the future we would like to investigate the effectiveness of various formal 

constructs in our framework on the basis of the empirical evidence. We would also like to 

extend the framework by considering other temporal phenomena such as tense and aspect, 

and investigating the effect of temporal focus-shifting in real-world scenarios such as 

emails and newswire texts. We are interested in using machine-learning techniques to 

automate grammar development required for building the syntax-semantics interface. 

Finally, we would like to investigate various methods to further enhance the efficiency of 

the underlying constraint solver, such as introducing a more restrictive constraint 

language for modeling calendars. 
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