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ABSTRACT

We develop a framework for automated optimization

of stochastic simulation models using Response Surface

Methodology. The framework is especially intended for

simulation models where the calculation of the corre-

sponding stochastic response function is very expensive

or time-consuming. Response Surface Methodology is

frequently used for the optimization of stochastic sim-

ulation models in a non-automated fashion. In scien-

ti�c applications there is a clear need for a standard-

ized algorithm based on Response Surface Methodol-

ogy. In addition, an automated algorithm is less time-

consuming, since there is no need to interfere in the

optimization process. In our framework for automated

optimization we describe all choices that have to be

made in constructing such an algorithm.

1 INTRODUCTION

When optimizing a stochastic simulation model, one

tries to estimate the model parameters that optimize

speci�c stochastic output of the simulation model. In

this optimization procedure, the simulation model is of-

ten considered as a black-box model (Pug, 1996) where

the output of the simulation model can be regarded

as a stochastic function of the model parameters. In

this paper we propose a framework for automated Re-

sponse Surface Methodology (RSM) for the optimiza-

tion of stochastic simulation models. This framework

that is especially intended for simulation models where

the calculation of the corresponding stochastic objective

function is very expensive or time-consuming (Wright,

1996). The simulation models that we consider only

have real-valued parameters in the optimization.

RSM is a collection of statistical and mathemati-

cal techniques useful for optimizing stochastic functions

(Myers and Montgomery, 1995). It is frequently used

for the optimization of stochastic simulation models

(Fu, 1994; Carson and Maria, 1997; Kleijnen, 1998).

This methodology is based on approximation of the

stochastic objective function by a low order polynomial

on a small subregion of the domain. The coeÆcients of

the polynomial are determined by regression analysis

applied to a number of observations of the stochastic

objective function. To this end, the objective function

is evaluated in an arrangement of points referred to as

an experimental design (Kleijnen, 1998). Based on the

�tted polynomial, the local best point is derived, which

is used as a current estimator of the optimum and as

the center point of a new region of interest (Fu, 1994),



where again the stochastic objective function is approx-

imated by a low order polynomial.

There is a vast amount of papers and books on RSM.

For extensive information on various aspects of RSM

we refer to Box and Draper (1987), Myers and Mont-

gomery (1995) and Khuri and Cornell (1996). Hood

and Welch (1993) give an outline of RSM when applied

to non-automated optimization of simulation models.

In non-automated optimization RSM is an interactive

process in which one gradually gains understanding of

the nature of the stochastic objective function. Based

on these insights the algorithm can be adapted dur-

ing the optimization exercise. In an automated RSM

algorithm human intervention during the optimization

process is of course not possible. A good automated

RSM algorithm should therefore include some degree

of self-correction mechanisms (Box and Liu, 1999).

The establishment of a clear and consistent RSM op-

timization algorithm is of signi�cant importance for its

use as a tool in scienti�c applications, e.g. for estima-

tion of model parameters, where results should be re-

producible and derived via a clear method. A complete

and clear de�nition of all steps and choices in a RSM

algorithm is also necessary for automated optimization

where all choices concerning the algorithm have to be

made at the outset of an application. Automated opti-

mization is less time-consuming, since there is no need

to interfere in this optimization process. This is an

advantage in large-scale time-consuming applications.

However, there is no consensus about a standard RSM

algorithm.

For the optimization of stochastic simulation models

several methods can be used, such as RSM, the Nelder

and Mead simplex method (Neddermeijer et al., 1999)

and Simultaneous Perturbation Stochastic Approxima-

tion (Fu and Hill, 1996). There are surprisingly few pa-

pers that systematically compare the performances of

these optimization methods. Such a comparison clearly

requires a standardized RSM algorithm.

Smith (1976) was the �rst to describe an automated

optimum-seeking RSM program, without elaborating

on the choices that are made within the RSM algorithm

used in this program. Joshi, Sherali and Tew (1998)

describe an enhanced algorithm for RSM and compare

this algorithm with a standard RSM algorithm, again

without describing this standard algorithm in detail. In

this paper we will propose a framework for a Response

Surface Methodology algorithm for automated simula-

tion optimization. It will be obvious that this frame-

work can also be used for non-automated optimization.

We will discuss the choices that have to be made to

construct a standard RSM algorithm and will mention

relevant references on the choices concerned.

2 THE FRAMEWORK

Without loss of generality, we assume that the opti-

mization is a minimization problem. Mathematically,

this problem can be described by

minimize f : D ! IR, D � IRk

where f (�1; :::; �k) = IE (F (�1; :::; �k)). Here,

F (�1; :::; �k) denotes the stochastic output for given

input f�1; :::; �kg, and IE (F (�1; :::; �k)) denotes its ex-

pected value. When optimizing a simulation model,

the arguments �1; :::; �k represent the parameters of the

simulation model. In RSM, the parameters of the sim-

ulation model are usually called factors, whereas the

stochastic output is called the response of the simu-

lation model. It is assumed that a screening phase, in

which factors that are considered unimportant are elim-

inated from the optimization problem, as well as possi-

ble transformations of the factors and the response have

already taken place.

Usually, a RSM algorithm comprises two phases. In

the �rst phase the response surface function is approx-

imated by �rst-order polynomials, until a polynomial

is �tted that shows signi�cant lack-of-�t, or until there

is no direction of improved response anymore (Cochran

and Cox, 1962). In the second phase the objective func-

tion is approximated by a second-order polynomial (Fu,

1994). On the basis of the various extensions and mod-

i�cations of this classic algorithm that can be found

in literature, we constructed a framework for an auto-

mated RSM algorithm, see Figure 1. The various ele-

ments of this framework are described in the remainder

of this paper.



A) Approximate the response

surface function locally by a

first-order model

B) Test the first-order

model for adequacy

C) Perform a line search

in the steepest descent

direction

E) Approximate the response

surface function locally

by a second-order model

F) Test the second-order

model for adequacy

G) Solve the inadequacy of

the second-order model

H) Perform canonical analysis

I) Perform ridge analysis

J) Accept the stationary point

as the center point of the

new region of interest

Start

K) Determine a steepest�

descent direction

D) Solve the inadequacy of

the first-order model

Figure 1: Framework for an automated RSM algorithm



In each iteration n, n � 1, we consider a small subre-

gion of the domain, which is called the region of interest

and is denoted by

[ln1 ; u
n
1 ]� :::� [lnk ; u

n
k ]

This region can be described by a center point

�ni =
lni + uni

2
; i = 1; :::; k

and step sizes

cni = (uni � lni ) =2; i = 1; :::; k

At the start of the algorithm, an initial starting point

and initial step sizes should be given. Choosing the

initial step sizes at the start of the algorithm should be

done with extreme caution, as will discussed below.

A. Approximate the simulation response func-

tion in the current region of interest by a �rst-

order model. The �rst-order model is given by

y = �0 +

kX
i=1

�i�i + �

It is assumed that the additive error � has a normal

distribution with mean 0 and variance �2. To increase

the computational accuracy in estimating the regression

coeÆcients, the factors are coded, which gives the coded

variables xi; i = 1; :::; k:

xi =
�i � �ni
cni

=) �i = cni xi + �ni

and the coded �rst-order model:

Y = �0 +

kX
i=1

�ixi + �

Estimators of the regression coeÆcients f�0; �1; :::; �kg
are determined by using regression analysis and are de-

noted by fb0; b1; :::; bkg. To this end, the objective func-
tion is evaluated in the points of an experimental design,

which is a speci�c arrangement of points in the current

region of interest. Although there are many designs

to choose from, usually a fractional two-level factorial

design of resolution-III (Kleijnen, 1998) is used, often

augmented by the center point of the current region of

interest (Myers and Montgomery, 1995). This design is

orthogonal, which means that the variance of the pre-

dicted response in the region of interest is minimal, and

that the regression coeÆcients can be assessed indepen-

dently (Khuri and Cornell, 1996). Moreover, resolution-

III designs give unbiased estimators of the regression

coeÆcients of a �rst-order polynomial (Kleijnen, 1998),

and are eÆcient since the number of design points is

small compared to other types of two-level factorial de-

signs. Another advantage is that this type of design

can quite easily be augmented to derive a second-order

design. If the design is not within the domain D, then

it is moved into this region (Smith, 1976).

B. Test the �rst-order model for adequacy. Be-

fore using the �rst-order model to move into a direction

of improved response, it should be tested if the esti-

mated �rst-order model adequately describes the be-

haviour of the response in the current region of inter-

est. If the true response shows interaction between the

factors and / or pure curvature, the estimated �rst-

order model will likely show lack-of-�t, which can be

assessed from the analysis of variance (ANOVA) table.

Testing for lack of �t requires that the resolution-III de-

sign used for estimating the regression coeÆcients of the

�rst-order model is not saturated, i.e. the total num-

ber of observations should be larger than the number of

regression coeÆcients. Moreover, multiple observations

are needed in the center point of the region of interest

(Box and Draper, 1987). Furthermore, it could happen

that although the �rst-order model does �t well, it is not

possible to determine a direction of improved response

from this model. This occurs when the estimated re-

gression coeÆcients are not signi�cantly di�erent from

zero, which can also be assessed using the ANOVA ta-

ble.

At the start of the algorithm it should be decided

which of these tests to use, i.e. when to accept the

�rst-order model. For example, if there is interaction

between the factors but no pure curvature, one could

still decide to accept the �rst-order model. The de-

cisions include choosing the signi�cance levels for the

tests involved.

C. Perform a line search in the steepest de-

scent direction. If the �rst-order model is accepted,



then it is used for determining the direction where im-

provement of the simulation response is expected. The

steepest descent direction is given by (�b1; :::;�bk). A
line search is performed from the center point of the cur-

rent region of interest in this direction to �nd a point

of improved response. This point is taken as the esti-

mator of the optimum of the simulation response func-

tion in the nth iteration and is used as the center point

of the region of interest in the (n+ 1)th iteration, i.e.�
�n+11 ; :::; �n+1k

	
.

In most RSM literature, line search is applied as fol-

lows (Box and Draper, 1987; Myers and Montgomery,

1995; Khuri and Cornell, 1996). First, increments

(�1; :::;�k) along the steepest descent direction are

chosen, where �1� :::��k = b1� :::� bk. These incre-

ments are usually determined by subjectively choosing

a most important factor, e.g. �j . This factor will be

increased (decreased) by 1:0 unit in coded values, i.e.

this factor will be increased by cnj . The other factors

are consequently increased by

�i =
bi

bj
; i = 1; :::; k; i 6= j

units in coded variables. Alternatively, one could

objectively choose such a factor by determining j

such that j = argmaxi=1;:::;k jbij. Another option

is to set the increments (�1; :::;�k) equal to the

distance from the center point to the point of in-

tersection of the direction of steepest descent and

the sphere given by
Pk

i=1�
2
i = 1. (Neddermeijer et

al., 1999). The mth line search point is given by

f�n1 +m�1c
n
1 ; :::; �

n
k +m�kc

n
kg. It follows that the ini-

tial step sizes chosen at the start of the algorithm have

a direct e�ect on the magnitude of the movement of

the factors, whereas it has no e�ect on the direction of

steepest descent (Myers and Montgomery, 1995). As

soon as a boundary of the domain D is crossed, the line

search is continued along the projection of the search

direction on this boundary (Smith, 1976).

For ending this type of line search, a stopping rule

has to be chosen. The usual recommendation in RSM

is to stop the line search when no further improvement

is observed (Del Castillo, 1997). The most straightfor-

ward rule ends the line search when an observed value

of the simulation response function is higher than the

preceding observation, i.e. set �n+1i equal to line search

point m if line search point m+1 is the �rst line search

point for which no improvement was found. This rule

is sensitive to the noise from the response surface func-

tion. Therefore the new center point is probably not

optimal. Del Castillo (1997) compares this stopping

rule with a number of rules that do take the noise into

account. These include two other empirical stopping

rules, i.e. the 2-in-a-row and the 3-in-a-row stopping

rules, that end the line search when 2 or 3 consecutive

observed values of the simulation response function are

higher than the preceding observation. In the Myers

and Khuri stopping rule, the line search ends when an

observed value of the simulation response function is

signi�cantly higher than the preceding observation. Del

Castillo proposes a stopping rule with variable incre-

ments that is based on recursive estimation of second-

order polynomials along the search direction. Based

on simulated line searches Del Castillo �nds that both

this recursive procedure and the Myers and Khuri rule

perform better that the empirical stopping rules.

Fu (1994) describes another type of line search al-

gorithms where a set of experiments along the steep-

est descent direction is performed. From these exper-

iments, a one-dimensional second-order polynomial is

estimated. This polynomial is optimized to derive the

next center point �n+1i . Sa�zadeh and Signorile (1994)

mention a similar line search algorithm. In addition,

Joshi, Sherali and Tew (1998) introduce a line search

algorithm which applies gradient deection methods to

prevent zigzagging of the steepest descent directions in

multiple iterations.

D. Solve the inadequacy of the �rst-order

model. If the �rst-order model is not accepted, then

either there is some evidence of pure curvature or in-

teraction between the factors in the current region of

interest, or the steepest descent direction cannot be

discerned from zero. Usually, this is solved by approx-

imating the simulation response function in the region

of interest by a second-order polynomial. However, the

optimization algorithm becomes less eÆcient especially

if this occurs very early during the optimization exer-



cise. Therefore, an alternative solution is to reduce the

size of the region of interest by decreasing the step sizes

cni ; i = 1; :::; k. In this way this region can possibly be-

come small enough to ensure that a �rst-order approxi-

mation is an adequate local representation of the simu-

lation response function. Another solution is to increase

the simulation size used in evaluating a design point or

to increase the number of replicated observations done

in the design points. This may ensure that indeed a

signi�cant direction of steepest descent is found.

At the start of the algorithm it should be decided

which actions will be taken if the �rst-order model is

rejected. Di�erent actions can be taken depending on

the outcome of the tests and the stage of the optimiza-

tion exercise. For example, depending on the p-value

found for the lack-of-�t test, one could decide to apply

a second-order approximation or to decrease the size of

the region of interest.

E. Approximate the objective function in the

current region of interest using a second-order

model. The coded second-order model is given by:

Y = �0 +

kX
i=1

�ixi +

kX
i=1

�i;ix
2
i +

kX
i=1

kX
i<j

�i;jxixj + �

The regression coeÆcients of the second-order model

are again determined by using regression analysis ap-

plied to observations performed in an experimental de-

sign. The most popular class of second-order designs is

the central composite design (CCD) (Myers and Mont-

gomery, 1995). As was mentioned above, this design

can easily be constructed by augmenting the fractional

factorial design that was used for estimating the �rst-

order model. It is common to construct the CCD in

such a way that it is rotatable, which means that the

variance of the predicted response remains constant at

all points which are equidistant to the center point of

the current region of interest (Khuri and Cornell, 1996).

Furthermore, the CCD can be transformed such that it

is orthogonal by choosing a speci�c number of repli-

cated observations in the center point of the current

region of interest (Khuri and Cornell, 1996). If the de-

sign is not within the domain D, then it is moved into

this region (Smith, 1976).

F. Testing the second-order model for ade-

quacy. Similar to the �rst-order model, it should be

tested if the estimated second-order model adequately

describes the behaviour of the response in the current

region of interest before using this model. The second-

order model can be tested for the presence of lack-of-�t

using the ANOVA table which results from the �tting

procedure.

G. Solve the inadequacy of the second-order

model. If the second-order model is found not to be

adequate, then one can reduce the size of the region of

interest (Joshi, Sherali and Tew, 1998) or increase the

simulation size used in evaluating a design point. In

RSM it is not customary to �t a higher than second-

order polynomial (Kleijnen, 1998).

H. Perform canonical analysis. If the second-

order model is found to be adequate, then canonical

analysis is performed to determine the location and

the nature of the stationary point of the second-order

model. The estimated second-order approximation can

be written as follows:

Ŷ = �0 + x0b+ x0Bx

where

b = (b1; :::; bk)

B =

0
BBBBB@

b1;1 b1;2=2 � � � b1;k=2

b2;2 � � � b2;k=2

. . .
...

sym: bk;k

1
CCCCCA

The stationary point s of the second-order polynomial

is determined by

s = �1

2
B�1b

Let E be the matrix of normalized eigenvectors ofB and

let v1; :::; vk be the eigenvalues of B. If all eigenvalues

are positive (negative), then the quadratic surface has

a minimum (maximum) at the stationary point s. If

the eigenvalues are mixed in sign, then the stationary

point s is a saddle point.

I. Perform ridge analysis. It is not advisable

to extrapolate the second-order polynomial beyond the



current region of interest (Myers and Montgomery,

1995). Therefore, if the stationary point is a minimum

which lies outside the current region of interest, the sta-

tionary point is not accepted as the center of the next

region of interest. If the stationary point is a maxi-

mum or a saddle point, then the stationary point is

rejected as well. In these cases, ridge analysis is per-

formed, which means that we search for a new station-

ary point sR on a given radius R such that the second

order model has a minimum at this stationary point

(Myers and Montgomery, 1995). Using Lagrange anal-

ysis with multiplier �, this stationary point is given by

(B� �I) sR = �1

2
b

and it should hold that � < mini vi and
p
s0RsR = R.

We can write

R2 = s0RsR =

kX
i=1

�
e0ib

2 (vi � �)

�2

where ei is the eigenvector corresponding to the ith

eigenvalue vi.

A choice for the radius R has to be made. For exam-

ple, one could consider the radius of the circumscribed

sphere of the region of interest, i.e. R =
p
2, which

means that we have to �nd � < mini vi such that

kX
i=1

�
e0ib

2 (vi � �)

�2
= 2

Standard numerical methods for �nding the root of an

equation can be used to determine �.

J. Accept the stationary point. The stationary

point will be used as the center point of the next region

of interest. It should be decided whether a �rst-order or

a second-order model is used to approximate the simu-

lation response surface in this region. These decisions

can be made dependent on the results of the canoni-

cal analysis. For example, if a minimum was found, it

could be useful to explore a region around this mini-

mum with a new second-order approximation. On the

other hand, if a maximum or a saddle point was found,

the optimum could still be located far away from the

current region of interest. In this case, approximating

this region with a �rst-order model and consequently

performing a line search would be preferable. Allow-

ing this return to the �rst phase of the RSM algorithm

is a powerful self-correction mechanism (Neddermeijer,

1999).

K. Determine a steepest descent direction

from the second-order model. Joshi, Sherali and

Tew (1998) introduced an enhanced RSM algorithm, in

which they use the gradient of the second-order model

in the center point of the current region and the re-

sults of the canonical analysis to determine a direction

of steepest descent. Next, they perform a line search

using this direction, resulting in a new center of a re-

gion of interest. In this region the simulation response

surface will be approximated by a �rst-order model.

Stopping criterion. In RSM literature, it is often

proposed to end the algorithm after �tting only one

second order polynomial (Fu, 1994, Kleijnen, 1998).

However, we do not recommend this strategy for two

reasons. First of all, this strategy assumes that a min-

imum inside the current region is found, and therefore

excludes the cases in which either a minimum outside

the current region is found or a maximum or a sad-

dle point is found. Furthermore, Greenwood, Rees and

Siochi (1998) �nd that even for simple simulation re-

sponse surfaces, �rst-order models can be inappropriate

over a large percentage of the domain. Depending on

the choices made in the algorithm, this means that the

optimization can turn to the second-order phase quite

early in the optimization exercise. Consequently, if the

optimization algorithm ends after only one second-order

approximation, it is likely that the best point of the op-

timization is located far from the optimum.

Therefore, we recommend ending the optimization

exercise if either the estimated optimal simulation re-

sponse value does not improve suÆciently anymore, if

the region of interest becomes too small, or, in case

there are budget constraints, if a �xed maximum num-

ber of evaluations have been performed. Next, a con�-

dence interval about the response at the estimator for

the optimum and the location of this estimator can be

determined, see e.g. Carter et al. (1984).

We want to underline the fact that the Nelder and

Mead simplex method is a local search method. No



guarantee is given for �nding the global optimum.

Therefore, when optimizing a stochastic objective func-

tion, multistart using multiple starting points and / or

multiple searches from the same starting point should

be considered.

3 CONCLUSION

In this paper, we proposed a framework for optimization

of simulation models using Response Surface Method-

ology. In existing RSM literature, this methodology is

usually applied in a non-automated fashion, and much

work is done on improving separate parts of RSM. This

paper is the �rst attempt to de�ne a clear, detailed

and consistent RSM algorithm. The framework is es-

pecially useful for automated optimization, in which all

the settings of the algorithm have to be chosen at the

outset of the optimization process. Based on this frame-

work, additional research can be done on comparing the

di�erent settings of the RSM algorithm for automated

optimization of simulation models. Furthermore, the

question how the RSM algorithm compares to other al-

gorithms such as the Nelder and Mead simplex method

and Simultaneous Perturbation Stochastic Approxima-

tion remains to be addressed.
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