
A Framework for Scalable Analysis and Design of System-wide

Graceful Degradation in Distributed Embedded Systems

Abstract

We present a framework that will enable scalable
analysis and design of graceful degradation in distributed
embedded systems. We define graceful degradation in
terms of utility. A system that gracefully degrades suffers a
proportional loss of system utility as individual software
and hardware components fail. However, explicitly
designing a system to gracefully degrade; i.e. handle all
possible combinations of component failures, becomes
impractical for systems with more than a few components.
We avoid this exponential complexity of component
combinations by exploiting the structure of the system
architecture to partition components into subsystems. We
view each subsystem as a configuration of components that
changes when components are removed or added. Thus, a
subsystem's utility changes when components fail or are
repaired. We then view the system as a composition of
subsystems that each contribute to overall system utility.
We demonstrate the scalability of our framework by
applying it to an example automobile navigation system.
Using this framework, we aim to improve system
dependability by identifying architectural properties that
enhance a system's ability to gracefully degrade.

1. Introduction

An ideal gracefully degrading system is partitioned so

that failures in non-critical subsystems do not affect critical

subsystems, is structured so that individual component fail-

ures have a limited impact on system functionality, and is

built with just enough redundancy so that failures within

critical subsystems can be tolerated. A system that can

gracefully degrade in the presence of multiple combina-

tions of component failures can be both more robust and

more dependable than a system that cannot gracefully de-

grade. However, designing a complex real-time object-ori-

ented system that can gracefully degrade is a significant

challenge. The system must be able to tolerate multiple

combinations of system component failures automatically.

The traditional method of designing a specific system re-

sponse to every anticipated combination of component fail-

ures will not scale as the system complexity and number of

system components increases.

We present a framework that enables scalable design

and analysis of graceful degradation for distributed embed-

ded systems. We focus on distributed embedded computer

systems because they have high dependability require-

ments due to the fact that they must react to and control

their physical environment, and have become increasingly

software-intensive. Without cost-effective solutions for

making these software systems dependable, systems will

either have a high probability of failure or be too expensive

to build. These systems typically have multiple compute

nodes connected via a real-time fault tolerant network.

Each compute node may be connected to several sensors

and actuators, and host multiple software components. The

software components provide functionality by reading sen-

sor values, communicating with each other through the net-

work, and producing actuator values to provide their

specified behavior.

Intuitively, the term graceful degradation means that a

system tolerates failures by reducing functionality or per-

formance, rather than shutting down completely. In order

for graceful degradation to be possible, the system must

have some level of auxiliary functionality; i.e., it must be

possible to define the system's state as “working” with

other than complete functionality. In many systems, a sub-

stantial portion of the system is built to optimize some

properties such as performance, availability, and usability.

We must be able to define the minimum functionality the

system must have to complete its primary mission, and treat

optimized functionality as desirable, but optional, enhance-

ment. For example, a large part of a car's engine control

software is devoted to emission control and fuel efficiency.

Such a car can lose this functionality and still perform its

primary function of transportation from point Ato point B.

We define graceful degradation in terms of system util-

ity: a measure of the system’s ability to provide its specified

capabilities. A system that has all of its components func-

tioning properly has maximum utility. A system degrades

gracefully if individual component failures reduce system

utility proportionally with the number of components

failed. Utility is not “all or nothing”; the system provides a

1

Charles P. Shelton
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA
cshelton@cmu.edu

Philip Koopman
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA
koopman@cmu.edu

William Nace
ECE Department

Carnegie Mellon University
Pittsburgh, PA, USA

wnace@cmu.edu

WORDS03 – January 2003



set of features, and ideally the loss of one feature should not

hinder the system’s ability to provide the remaining fea-

tures. Combinations of multiple component failures should

only reduce the system utility by at most the sum of each

component’s individual utility contribution. It should be

possible to lose a significant number of components before

system utility falls to zero. Ideally no one individual com-

ponent should cause a complete loss of system utility, i.e.,

there should be no single point of failure in the system.

This work is a part of the RoSES (Robust Self-Config-

uring Embedded Systems) project and builds on the idea of

a configuration space that forms a product family architec-

ture [6]. Each point in the space represents a different con-

figuration of hardware and software components that

provides a certain utility. Removal or addition of a compo-

nent to a system configuration moves the system to another

point in the configuration space with a different level of

utility. For each possible hardware configuration, there are

several software configurations that provide positive sys-

tem utility. Our model focuses on specifying the relative

utility of all possible software component configurations

for a fixed hardware configuration. For a system with N

software components, the complexity of specifying a com-

plete system utility function is normally O(2N). Our model

exploits the system’s decomposition into subsystems to re-

duce this complexity to O(2k), where k is the number of

components within a single subsystem.

Our framework achieves scalable analysis by partition-

ing the system into subsystems based on component input

and output interfaces. A subsystem is a set of components

that coordinate to produce an output for the rest of the sys-

tem, and can be recursively defined to contain other subsys-

tems. Rather than identify all possible valid configurations

of the system (configurations that provide positive utility),

we determine just the valid configurations of each subsys-

tem. Since we determine all valid subsystem configura-

tions, any configuration that does not contain enough

components to provide working required subsystems can

automatically be eliminated as a failed system configura-

tion. Therefore we can focus our analysis on valid configu-

rations of critical subsystems rather than all possible

configurations of the entire system.

We demonstrate our framework by applying it to a mod-

erately complex example system. We take its system archi-

tecture specified in a product family architecture and use it

to identify valid component configurations of subsystems.

We then show how our framework achieves scalability by

reducing the number of component configurations that we

must identify.

2. Related Work

Previous work on formally defining graceful degrada-

tion for computer systems was presented in [2]. That work

proposed constructing a lattice of system constraints that

identifies what tasks the system can accomplish based on

which constraints it can satisfy. A system that works per-

fectly satisfies all constraints, and a system that encounters

failures can satisfy a looser set of constraints that can still

provide functionality, but is degraded with respect to some

system properties. The difficulty with this model is that in

order to specify the relaxation lattice, it is necessary to

specify not only every system constraint, but also how con-

straints are relaxed in the presence of failures. It further re-

quires determining how constraints interact and developing

a recovery scheme for every combination of failures in or-

der to move between points in the lattice. Because all com-

binations of component failures must be considered,

specifying and achieving graceful degradation becomes ex-

ponentially complex as the number of system components

increases.

Current industry practice for dealing with faults and fail-

ures in embedded systems focuses on the traditional ap-

proaches of fault tolerance and fault containment [9].

Software subsystems are physically separated into different

hardware modules. Additionally, system resources, such as

sensors and actuators, that may be commonly used are rep-

licated for each subsystem. This approach provides assur-

ance that faults will not propagate between subsystems

since they are physically partitioned, and fault tolerance is

achieved by replicating resources and subsystems. Grace-

ful degradation is not an explicit goal of these systems, and

typically failures are dealt with by having separate backup

subsystems available rather than shedding functionality

when resources are lost. This approach is a restricted ver-

sion of graceful degradation, in that it can tolerate the loss

of a finite set of components before suffering a complete

system failure. However, this methodology is costly be-

cause of its high level of redundancy, and makes coordina-

tion among subsystems difficult.

A promising approach to achieving system dependabil-

ity is NASA’s Mission Data System (MDS) architecture [1,

8]. This system architecture is being designed for un-

manned autonomous space flight systems that must com-

plete missions with limited human oversight. Their

architecture focuses on designing software systems that

have specific goals based on well defined state variables.

The software is decomposed based on the subgoals it must

complete to satisfy the primary goal. The software is not

constrained to a particular sequence of behavior, but rather

must determine the best course of action based on the goals

it must accomplish. The limitation with this approach is

that it is not trivial to decompose goals into subgoals, nor is

it clear how to specify goal priorities to resolve goal con-

flicts without causing a mission failure. Our framework

differs from MDS in that we specifically focus on behav-

2



ior-based subsystems and the coordination among them

through system interfaces.

Related to our concept of graceful degradation are the

terms survivability and performability. Survivability is a

property of dependability that has been proposed to define

explicitly how systems will degrade functionality in the

presence of failures [4]. Performability is a unified mea-

sure of both performance and reliability that tracks how

system performance degrades in the presence of faults [5].

Our work differs from survivability in that we are interested

in building implicit graceful degradation into systems with-

out specifying all failure scenarios a priori. Also, we focus

on distributed embedded systems rather than on large-scale

critical infrastructure information systems. Performability

relates system performance and reliability, but our concept

of graceful degradation addresses how system functionality

can change to cope with component failures.

3. System Framework

Since we are primarily concerned with the scalability of

our approach with respect to the software system, we will

focus on the software view and utility model in our frame-

work. We will briefly discuss implications of the hardware

view and allocation mapping in the conclusions. To

achieve scalability, we partition the software components,

sensors, and actuators into hierarchical subsystems based

on the outputs they produce. We then analyze the utility of

each subsystem individually, and analyze system utility

based on the composition of subsystems.

3.1. Example System

In order to illustrate our framework we present an exam-

ple of a hypothetical vehicle navigation system taken from

[7]. Figure 1 shows a partial diagram of the navigation soft-

ware system components as a product family architecture

(PFA) data flow graph. In the figure, adapters and features

represent software components in the system, and data ele-

ments represent the information passed among compo-

nents. Various sensors on the vehicle produce data that is

synthesized into location information. This information is

then passed to navigation software that plans a route based

on the destination the driver provides. Finally the system

dynamically outputs information to the driver about where

to turn from multiple actuators such as the turn signal lights

on the dashboard, a color map display, or a speaker that pro-

vides audio cues when a turn is coming.

In [7] the focus was on hardware reconfiguration for

graceful degradation. The product family architecture pre-

sented for the example system represented a library of pos-

sible software components that could be installed on the

system based on the amount of hardware resources avail-

able. Our framework takes a different but complementary

approach. We want to assess, given a certain software con-

figuration, what possibilities for automatic graceful degra-

dation are achievable for the system without hardware

reconfiguration. Therefore we will start by assuming that

all software components and features are available in the

system, and analyze how many possible system configura-

tions that provide positive utility are possible. For all sys-

tem configurations, each component can either be working

or failed. With 9 sensors, 3 actuators, and 33 software com-

ponents there are 2(9 + 3 + 33) = 245 possible system configura-

tions.

3.2. Software View

In order to generate a view of software subsystems, we

define a set of system variables to capture the input and out-

put interfaces of all the sensors, actuators, and software

components. We take the PFA graph of the navigation sys-

tem and develop a set of subsystem graphs based on data

flow among system components. The hierarchical defini-

tion of subsystems is straightforward because it is based on

the producers and consumers of these system variables. We

define these subsystems in our framework as feature sub-

sets. A feature subset is a set of components (software com-

ponents, sensors, actuators, and possibly other feature

subsets) that work together to provide a set of output vari-

ables. Feature subsets may or may not be disjoint and can

share components across different subsets.

The top-level feature subsets are the three subsystems

that control the system actuators: the display, turn signal in-

dicator, and speaker. The other feature subsets are con-

tained as components within these feature subsets and

recursively defined for all system variables. Dependencies

among components and subsystems are also based on sys-

tem variable definitions. In our navigation example, the

major system variables we defined from the input and out-

put interfaces were GroundSpeed, CurrentDirection,

CurrentLocation (a combined variable with both the loca-

tion information and error estimate), PathInfo, TurnInfo,

and MapData. These system variables were mapped di-

rectly from the data elements labeled in the PFA graph.

Figure 2 shows a portion of the feature subset graph for

our navigation system, decomposing the top-level Sound

and Turn Signal feature subsets. Lower-level feature sub-

sets can be components of higher-level ones, and feature

subsets can also share multiple components. These feature

subset graphs can also show dependency relationships be-

tween components. Each component may not require all of

its inputs to provide some functionality. For example, the

TurnInfo feature subset has four software components that

represent different algorithms for generating turn informa-

tion from the CurrentLocation and PathInfo system vari-

3



4

Figure 1. Section of PFA Data Flow Graph for the Navigation System. Taken from [Nace2002].



ables. The TurnInfo feature

subset only requires that at

least one of these components

be present to provide utility to

the rest of the system.

We used our framework to

completely specify all feature

subsets in the navigation sys-

tem based on the system com-

ponents’ input and output

interfaces. Due to length con-

straints, we did not include all

of the feature subset diagrams

here. For example, the Loca-

tion and Path Planner feature

subsets contained in the

TurnInfo feature subset can be

further decomposed into the

sets of components that pro-

vide the CurrentLocation and

PathInfo system variables as

outputs.

In addition to grouping

components into feature sub-

sets, we define a set of depend-

ency relationships between feature subsets and their

components. A feature subset may have strong dependence

on some of its components, weak dependence on others,

and some of its components may be completely optional. A

feature subset strongly depends on one of its components if

the loss of that component results in the feature subset’s

having zero utility. A feature subset weakly depends on one

of its components if the loss of that component reduces the

feature subset’s utility to zero in some, but not all, configu-

rations in which that component was working. For exam-

ple, if there are two components that output a required

system variable, loss of both will result in the feature subset

having zero utility, but loss of only one or the other will not.

If a component is optional to a feature subset, then it may

provide enhancements to the feature subset’s utility, but

there are no instances in which an optional component fail-

ure alone will reduce the feature subset’s utility to zero. Ev-

ery valid component configuration of the feature subset

where that component is working still provides positive

(but possibly lower) utility when that component is broken.

These dependency relationships can also exist among

individual components as well, based on their input and

output interfaces. A component that requires a certain sys-

tem variable as an input will depend on the components that

provide it as an output. For the sake of brevity we have not

detailed these dependency relationships here since our fo-

cus is on demonstrating the scalability of our framework,

but earlier work in representing an elevator control system

with this feature subset graph with these dependencies

identified was presented in [10].

3.3. Utility Model

System utility is a key concept in our model for compar-

ing system configurations. Utility is a measure of how

much benefit can be gained from the system. Overall sys-

tem utility may be related to functionality, performance, or

dependability properties such as reliability and safety. We

apply multi-attribute utility theory [3] to develop a utility

model that provides a framework for expressing the utility

of each system configuration as a utility vector of func-

tional and nonfunctional attributes. These attributes must

be specified by the system designer. For example, system

utility may be defined by functionality, reliability, safety, or

other properties that are considered important system goals.

We can apply the utility model to the data flow graph to de-

termine which configurations of components result in a

valid system, and which valid configurations have more

utility than others, given that we have a specification for our

utility attributes.

In general, utility is a vector that consists of several util-

ity attributes. This utility vector is defined for every com-

ponent in the system, every feature subset, and the entire

system itself based on their current configuration. A com-

ponent has two possible configurations: working, or not

working. A feature subset is a set of components, and its

5

TurnInfo

Text

TurnSound
TurnSound

TurnSound

TurnInfo
Cvt2

TurnInfo
Cvt

Speech
Synth

Speech
Synth
Simple

Speaker

Sound
Feature Subset

TurnInfo
Feature Subset

TurnSpeaker
Driver Speaker

Commands

TurnInfo

Turn Signal
Indicator Turn Signal

Feature Subset

TurnInfo
Feature
Subset

TurnSignal
Driver

TurnSignal
Commands

CurrentLocation

TurnInfo
Gen1

TurnInfo
Feature Subset

Location
Feature Subset

Path Planner
Feature Subset

TurnInfo

PathInfo

TurnInfo
Gen2

TurnInfo
Gen3

TurnInfo
Gen4

Sensor

Software Component

Feature Subset

Actuator

Data Flow/Dependence

Feature Subset Boundary

Figure 2. Top-Level Feature Subsets for Sound and Turn Signal Subsystems.



configurations are determined by its power set. For a fea-

ture subset with k components, there are 2k possible config-

urations. The entire set of system configurations can be

designated by the power set of its system components.

Each utility attribute is a nonnegative number. A compo-

nent, feature subset, or system configuration has zero utility

when all of its attributes are zero. A configuration is valid if

it does not have zero utility, i.e., the configuration provides

some positive value for at least one of the specified utility

attributes.

We make a non-trivial assumption that the system is

“well-designed” such that combinations of components do

not interact negatively with respect to feature subset or sys-

tem utility. In other words, when a component has zero util-

ity, it contributes zero utility to the system or feature subset,

but when a component has some positive utility attributes,

it contributes at least zero or positive utility for each attrib-

ute to the system or feature subset, and never has an interac-

tion with the rest of the system that results in a loss of utility

for any attribute. Thus, working components can enhance

but never reduce system utility. At the worst we can assume

that if we observe a situation in which a component contrib-

utes negative utility to the system, we can intentionally de-

activate it.

For a component, feature subset, or system, we specify a

utility function for each attribute in the utility vector. Each

function is defined for every configuration of the compo-

nent, feature subset, or system, and is in general nonlinear.

These functions are non-trivial and are not easily generated.

However, a suitable estimate can be achieved by using ex-

pert knowledge of the system domain to rank each configu-

ration with respect to each utility attribute. For a single

component, there are only two possible configurations:

working or not working. A component has zero utility

when it is not working, and some arbitrary values for its

utility attributes when it is working. Each component’s in-

dividual utility attributes must be specified by the system

designer.

Calculating the utility of all system component configu-

rations is in the general case exponentially complex. We

avoid this complexity by basing the system utility calcula-

tion on a function of the utilities of the top level feature sub-

sets, which are in turn functions of the utilities of all system

components. Therefore, we can calculate system utility by

considering only valid configurations of feature subsets,

rather than all system component configurations. Some

utility attribute functions, such as those for reliability and

availability, may have functions that can be easily defined

for feature subsets based on the data flow graph. However,

other utility attribute functions, such as those for function-

ality or safety, might only be qualitatively defined by rank-

ing configurations within feature subsets. Our framework

can reduce the complexity of calculating system utility be-

cause we no longer have to rank the utility attributes of all

system component configurations. We exploit the system’s

decomposition into feature subsets to significantly reduce

the number of utility functions we must define to determine

system utility.

3.4. System Analysis

In our navigation example, we partitioned the system

into 11 feature subsets. No feature subset had more than 8

components. We have significantly reduced the size and

complexity of component configurations that we must ana-

lyze by defining these hierarchical subsystems. Further, we

generated these subsystems based only on the input and

output interfaces of software components. We defined

standard system variables based on these interfaces that be-

came the dependancy arcs in our framework.

The navigation system utility analysis can be based on

the top level feature subsets: Display, Sound, and Turn Sig-

nal. These feature subsets recursively contain the other fea-

ture subsets in the system, and encapsulate the details of

their utility analyses. Because of this encapsulation, we can

determine the utility functions of the configurations of a

higher-level feature subset by treating contained feature

subsets as components that are working or not working.

Once we have identified all possible utility configurations

of lower-level feature subsets, we can simply reuse those

values when determining the utility of higher level feature

subsets without redefining utility functions.

Since we only need to determine utility functions for

each feature subset configuration, we reduce the number of

configurations we must analyze from the total possible

number of system component configurations (245) to the

sum of all feature subset configurations, which is 1200.

This number will be further reduced since some feature

subsets share components and will be constrained to certain

configurations based on whether these components are

present or absent. For example, both the Sound and Turn

Signal feature subsets must contain a working TurnInfo

feature subset in order to provide positive utility.

4. Key Issues

There are several key issues that must be resolved in or-

der to apply our framework for graceful degradation to a

large class of distributed embedded systems. We must en-

sure that our fault model is appropriate for the systems we

are analyzing so that we can be reasonably sure that our

analysis covers as much of the fault domain as possible.

Additionally, we should have a standard representation of

data quality or accuracy associated with system variables,

so that components that receive system variables can pick

the best data from multiple senders. Our methodology also

6



requires a middleware infrastructure that can reliably trans-

mit system variables between software components.

The fault model we use is a major concern for our frame-

work because we want to be able to analyze the system’s

ability to withstand both hardware and software faults. As a

first step, we assumed a fail-fast, fail-silent fault model

with perfect fault detection. However, we can relax this as-

sumption based on how we constrain the system architec-

ture and the distributed nature of the system. For graceful

degradation we are more concerned with the effects a fault

produces rather than the source of the fault, so that the rest

of the system can effectively deal with the situation. In or-

der to minimize the failures a fault can produce, as well as

minimize fault propagation, we constrain our system archi-

tecture to only allow communication among software com-

ponents via system variables. As long as the

implementation adheres to the architecture and does not

provide hidden communication channels among software

components, faults can only be propagated through the de-

fined system variables.

A software component could fail to update a system

variable at the appropriate time, a system variable could be

corrupted to an invalid state either by the sender, receiver,

or communication medium, or the system variable could be

corrupted to a valid but incorrect state. In a real-time sys-

tem, failure to update a system variable can be detected as

its deadlines are missed. If a system variable becomes

stale; i.e. it hasn’t been updated for several periods, then the

receivers of that variable can assume that the sender has

failed or is unreachable. If receivers detect invalid data in a

system variable for multiple consecutive periods, then they

can assume that the sender has failed. The most difficult

failure to detect is when a system variable has valid but in-

correct data. These failures cannot be easily distinguished

from a correct system variable that is manifested by an ex-

ceptional condition occurring in the environment.

We believe the fail-fast, fail-silent fault model is a rea-

sonable assumption because we are only concerned with

faults that cause corruption of the system variables’ state,

and this corruption can be readily detected by the system

variables’ receivers. We do not envision a centralized fail-

ure detection infrastructure, which itself could be a single

point of failure, but rather software components that vali-

date their system variable inputs as they are updated and

only use those inputs if they pass the validation tests. Sim-

ple checks on the input variables can catch many errors, and

scale with the number of inputs per software component.

Since we have made system variables a key mechanism

in our system architecture, we need to standardize how

these variables represent their accuracy or quality as a part

of their system state. One approach would be to represent

data accuracy as a range of uncertainty or confidence inter-

val. This might work well for numerical data types and is

flexible in that the accuracy of a system variable can be dy-

namically updated while the system is running. However,

this approach might require a heavyweight analytical

model for each producer of the system variable that would

be costly to implement. Additionally, this model would not

work well for non-numeric system variable data types.

Another approach would be to specify the quality of data

for the outputs of each software component at design time.

The system designers could rank software components that

produce the same system variables based on the algorithms

they use. This static ranking would then be used at run time

by the receivers of the system variables to determine which

ones to use. Additionally, similar data from different send-

ers that have significant qualitative differences could be de-

fined as two separate system variables. This approach has

the advantage of requiring less system resources to imple-

ment and is reasonable when there are not many independ-

ent sources of the same system variable. The drawbacks of

this approach are that it is less flexible since changes in sys-

tem variable quality during runtime cannot be detected, and

receivers of system variables have a heavier burden in de-

ciding which inputs to use. We are starting with the second

approach because we are dealing with resource constrained

systems that generally will not have more than a few di-

verse sources of key system variables.

Another key assumption in our framework is that system

variables can be reliably transmitted from senders to re-

ceivers. This requires a middleware infrastructure that is

lightweight enough to work in a distributed embedded net-

work, but has data object manipulation features similar to

CORBA. Software components know their input and out-

put interfaces, but should not have to be concerned with the

sources and destinations of those inputs and outputs. Since

we are dealing with embedded networks, bandwidth and

real-time deadlines are key issues. Initially, we are assum-

ing that the embedded networks these systems use will be

broadcast networks, such as a control area network (CAN),

rather than connection-oriented networks. Thus senders of

system variables can transmit their data on the bus, and re-

ceivers will only listen for messages that have the system

variables they require as inputs. However, the amount of

required bandwidth will grow with the number of system

variables, and we must impose constraints on our system

architecture to limit the number and type of system vari-

ables provided.

5. Conclusions

Previous best practice for specifying graceful degrada-

tion required specifying every possible combination of fail-

ures individually, as well as designing a specific system

response for each such combination. For complex systems

that integrate hundreds or thousands of heterogeneous soft-

7



ware components, this is not scalable. Our framework en-

ables scalable representation and analysis of system-wide

graceful degradation. With this system model, we can enu-

merate all valid system configurations, identify which fail-

ure modes the system can handle, and compare the relative

utility of different configurations, all without specifying

every possible system failure scenario. This analysis pro-

vides a basis for determining how well a system gracefully

degrades.

The framework consists of a software component and

subsystem view for determining dependency relationships

among software components, sensors, and actuators, and a

utility model that provides a framework for comparing the

relative utility of system configurations. By grouping com-

ponents into feature subsets by their input and output inter-

faces, we can enumerate all valid system configurations

without considering every possible configuration. Further-

more, our framework explicitly supports subsystems that

are not disjoint and can share components. This allows effi-

cient use of software components, sensors, and actuators

while preserving clean partitioning of subsystems.

The parameters of the utility model must be specified by

the system designer, but this is an essential difficulty in de-

termining which system configuration is “best.” Our

framework reduces the complexity of the utility calcula-

tions by only defining utility functions for each feature sub-

set rather than for every system component configuration.

In order to determine how well a system gracefully de-

grades, we need to know how many valid system configura-

tions are possible and the differences in utility among these

system configurations. We demonstrated a scalable frame-

work for determining both with the feature subset depend-

ency graphs and utility model. The model is at a high level

of abstraction and can be applied to a system’s software ar-

chitecture or detailed design. As long as the system’s com-

ponent input and output interfaces can be abstracted to a

system variable set, and the software has a defined set of

components, it is straightforward to apply this framework

to a system.

Future work on our framework will include the develop-

ment of a hardware view of the system with a soft-

ware/hardware allocation mapping. The hardware view

includes identification of all hardware processing elements,

network topology, and physical sensor and actuator loca-

tions. The allocation mapping details which software com-

ponents are allocated to which processing elements. These

views will enable analysis of hardware failures and their ef-

fects on the software system, as well as how hardware re-

dundancy effects system dependability. We also plan to

refine the utility model and analysis process so that we can

quantitatively assess how design choices such as redun-

dancy and diversity affect system utility.

6. Acknowledgments

This work was supported in part by the General Motors

Collaborative Research Lab at Carnegie Mellon University,

the High Dependability Computing Program from NASA

Ames cooperative agreement NCC-2-1298, the United

States Air Force, and Lucent Technologies.

7. References

[1] Dvorak, D., Rasmussen, R, Reeves, G., Sacks, A., “Software
Architecture Themes in JPL’s Mission Data System,” 2000 IEEE
Aerospace Conference, March 2000, Big Sky, MT.

[2] Herlihy, M. P., Wing, J. M., “Specifying Graceful
Degradation,” IEEE Transactions on Parallel and Distributed
Systems, vol.2, no.1, pp. 93-104, 1991.

[3] Keeney, R.L., Raiffa, H., Decisions with Multiple Objectives:
Preference and Value Tradeoffs, John Wiley & Sons, New York,
1976.

[4] Knight, J.C., Sullivan, K.J., "On the Definition of
Survivability," University of Virginia, Department of Computer
Science, Technical Report CS-TR-33-00, 2000.

[5] Meyer, J.F., "On Evaluating the Performability of Degradable
Computing Systems," The Eighth Annual International
Conference on Fault-Tolerant Computing (FTCS-8), Toulouse,
France, June 21-23 1978.

[6] Nace, W., Koopman, P., “A Product Family Approach to
Graceful Degradation,” Distributed and Parallel Embedded
Systems (DIPES), October 2000.

[7] Nace, W., "Graceful Degradation via System-wide
Customization for Distributed Embedded Systems," Ph.D.
dissertation, Dept. of Electrical And Computer Engineering,
Carnegie Mellon University, May 2002.

[8] Rasmussen, R., “Goal-Based Fault Tolerance for Space
Systems using the Mission Data System,” 2001 IEEE Aerospace
Conference, March 2001, Big Sky, MT.

[9] Rushby, J., "Partitioning in Avionics Architectures:
Requirements, Mechanisms, and Assurance," NASA Contractor
Report CR-1999-209347, June 1999.

[10] Shelton, C., Koopman, P., “Using Architectural Properties to
Model and Measure System-Wide Graceful Degradation,”
Accepted to the Workshop on Architecting Dependable Systems
sponsored by the International Conference on Software
Engineering (ICSE2002), May 2002, Orlando, FL.

8


