
A framework for segmentation using physical 

models of image formation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bruce zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Maxwell and Steven A. Shafer 

CMU-RI-TR-93-29 

Robotics Institute 

Carnegie Mellon University 

Pittsburgh. Pennsylvanis 15213 

10 December 1993 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1993 Cmegie Mellon University 

This research zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw x  partially s u p w e d  by the A%,ianics Laboratory, Wright Reseach and Dzvelopmenr Cenfer, Aeronauticd Syr- 

terns Division (AFSC). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU.S. Air Foroe. Wright-Pattenon Am, OH 45433-6543 under conlmct F33b15-90-C-lJb5. ARPA Order 
No. 7597. The views and mndwions conlained in this document are I h m  of the authors and should not be interpreted a cepepre- 

senting the onicial pdicies, richer expressed or implied. of the U.S. government. 





Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Most approachcs to computer image segmentation group sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof pixels according to visible features of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan image such 
as edges, color. brightness, and curvature. Such approaches exploit specialized object properties to ohtaio snrisrxtctory 
- zroupings. which can force those techniques tci he domain specific. Furthermore. they do not providc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAil phq‘sical 
explanalion for the image. nor do  they group regions that have a single physical structure yet differing visible fca- 
tures. 

This papcr presents a new approach to segmentation using explicit hypotheses about the physics that ci-eates images. 
We propose an initial segmentation that identifies image regions exhibiting constant color. but possibly varying inten- 
sity. For cach region. hypotheses are proposed that specifically model the illumination, reflectance. and shape o f  the 
3-D patch which caused that region. An image region may have many hypotheses simultaneously. and tach hypothe- 
sis represents a distinct, plausible explanation for the color and intensity variation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof that patch. Hypotheses for ad,ja- 
cent parchcs can be compared for similarity and merged when appropriate, resulting in more global hypotheses for 
.. eruuping elementary re.gions. 

This approach to segmentation has the potential to provide a list of possible explanations for a given image: to proup 
together region.; with coherent physical properties; and to provide a franiework for applying specific operators such 
as shape-from-shading. color constancy. and roughness evaluation as pan of the overall process of low-level vision. 
However, many profound unsolved problems are raised in determining the most “plausible” explanaduns for a given 
image region. In this paper. we present the approach, working through an example by hand. and discuss thc implica- 
tions (if this approach for physics-based vision. 





1. Introduction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The goal ofphysics-based segmentation is to find image regions that correspond to semantic scene elements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n  prac- 
tical terms. this means finding one or more physical descriptions of the illumination, materials. and geometry that cre- 
ated the image. In this presentation, we focus upon the problcm of segmenting a single color image. That zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa solutinn 
crists for humans is obvious: an individual can look at a picture such as Figure 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnot only comprehend what the 
picture is about. but provide a fairly detailed physical description of the scene. We k l ieve that postulnting such a 

physical dcscription is the key to understanding image data. 

Early work in segmentation was based upon straightforward statistical models of rhe imagc data and did not search 
fur the underlying semantic meaning. They modeled images as regions of uniform color and intensity, and variations 
i n  these characteristics as nciise [6]. Researchers realized that using information about the scene was important. but 
they tried to incorporate such knowledge (such as trees are above and beside a road) on top uf their statistical models 
[ A l l .  

The svatistical approach wan taken partly because of the optimism of the 70’s surrounding symbolic rcasoning and 
artificial intelligence. which relegated to low-level vision the straightforward task of dividing an image into simple 
regions based upon color and brightness. More extensive low-level processing was considered unnecessary because it 
was assumed that programs using higher level reasoning would be able to understand, identify, and mergc. these s in -  
ple regions as appropriate 1351. 

In  t he  mid-7Os, Horn proposed using physical models of image formation--the interaction of light and matter--to ana- 
lyze and understand images [161. the ore tic ally^ using Horn’s model some physical characteristics of a surface. 
including shape, could he estimated from a single image. Unfortunately, Horn’s model was limited to perfectly dif- 
fuse. perfcct reflecting surfaces (also called Lambenian surfaces) and point light sources. and assumed a single sur- 
face and light source in the scene. Furthermore, as it did not allow for noisy images or camera limitations-4.e. 
clippinp of the color values to the camera’s range--it w&% not easily applicable to real images. 

I n  the mid-80’s. Shafer’s dichromatic reflection model [33] allowed researchers to begin looking at a large class of 
actual materials: inhomogeneous dielectrics. Inhomogeneous dielectrics include paints, plastics. acrylics. ccrilniics. 
and paper, Klinker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [20][211 demonstrated the power ofthis model, and the physics-based vision approach. by 
using it i n  tandem with a model for noise and camera effects to segment real images of inhomogeneous dielectrics. 

Dcspite the power of this segmentation program, it was still applicable to a limited class of images. Metals or multi- 
colored objects could not be correctly segmented. Furthermore. the assumptions of Klinker et a/ .  included a single 
color of illumination. This resulted in incorrect segmentations i n  regions with colored interreflection from nearby 
ubjects. 

Finding solutions fur these limitations was the next step i n  physics-based vision. Bajcsy ef ai. [2] attempted to model 
interreflection and improve the parameter estimation methods of Klinker er zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai. by using hue, saturation. and intensity. 
Brill 171 proposed a slightly different model for inhomogeneous dielectrics and demonstrated its use i n  segmentation. 
Healey [I41 proposed the unichromatic reflection model for metals, and showed that it could be used with the dichro- 
matic reflection model to segment images with both metals and inhomogeneous dielectrics under specitic lighting 
conditions. 

As a result of these efforts, the vision community could claim i t  could segment images ccintaining two materiabinh- 
omogeneuus dielectrics and m e t a b a n d  images containing interreflection. but both methods had limitations. To cor- 
rectly model interreflection, for example, a white refere.nce plate was necessary i n  order to negate thc effects of the 
global illumination. Furthermore, there are still a large number of materials and lighting conditions that cannot be 
handled by these models and their variations. More comprehensive reflection models. and models for different types 
of materials are being researched. but no general reflection model yet exists (e.& see 1391, L29I. 1311. [8]. and 1151). 
Up to the present. physics-based scgmentation routines for single color images havc been based upon onc, or at nlcxt 
tu’o. apecitic niodels of reflection with a set number of parameters. Furthermore. the issuc of differing types of illunii- 



Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. (Plate 1) A complex scene composed of numerous materials, textures, and shapes. 

Figure 2. (Plate 2) An object, a mirror image of the object, and a picture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the object. 

nation has not been examined. and all of the major work in segmentation has assumed uniformly colored objects 

In parallel with this work. the computer vision community has looked into determining light source color 1241. and 
continued to work on determining shape. although mostly with range data (e& see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 1 I J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[2h]  [27]). Unlike the work i n  
segmentation. which assuines all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( i f  the objects i n  an image conform to the saine model, in the area of shape recovery 
model selection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well as parameter estimation is being used Large. families of models are initially considered for a 
set ofdata, and the best model is selected, as well as the best estimation of its parameters. 

Recently. Breton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [5] have combined shape. light source direction, and material consistency into a single seg- 
mentation routine. They initially propose a timily of models for light source direction and shape, but they assume a 
single model--Lambertian--for the reflectance properties of the material. 

Unfortunately, none of  these systems can deal with a pictures such as Figure 1 .  It contains grey and ccilored nietals 
reflecting multi-colored illumination. and numerous dielectrics with differing reflectance properties. In order to begin 
to understand general images such as this, the nex t  logical step is to begin looking at the families ofpossihle models 
for all three dements of a scene--illumination. reflectance, and shape or geomehy. The nced for a general niodcl of 
illumination is apparenl fnim the metal teapot on the right side ofFigure I. Unless we can explicitly model the illunii- 
nation from all directions with respect to the surface of the teapot. we cannot understand that the color variation is due 
to br~th the material type (copper), and the illumination. Acomprehensive reflectance model, or at least a spccification 
<if the spacc of possible models. is also necessary in order to segment general images, as shown by the previous dis- 
cussion. 



Figure 3. (Plate 3) Image of uniformly colored Figurr 4. (Plate 4) Image of a single multi-colored 

inhomogeneous dielectrics. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAobject. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the past. researchers have approached the analysis of such images by postulating particular model equations. and 
instantiating their parameters, with discontinuities in the parameters taken zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas segmentation boundaries. Instead. we 
propose that the very forms of the models are t u  be instantiated in order to accommodate qualitatively different 
shapes. materials, colors, and illumination environments. In this, we are moving the analysis fmm the primitive level 
I model of Rissancn [32]--estimating parameters of a previously established model--to a level 3 analysis--selecting 
the model class--with a resultant increase i n  perceptual power. 

From the above summary of work i n  physics-based segmentation, it is clear that model selection has only reccntly 
bccn examined by Breton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAut,: and only for illumination and shape. Model selection is necessary becausc of ambi- 
guity in an image. As can be seen in Figure 2, there can be several different physical explanations for identical image 
regions. But what are the general models we should use? What are the parameters of the model classes we need to 

considcr, and do  we need to consider them all? If not, how do we choose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan initial set of models, and how do they 
merge and interact? 

These are the questions we deal with in this paper. In section 2 we present a general model, showing 811 of the possi- 
ble paramcters for the space of model classes. In section 3 we suggest a method for choosing a subset of the possible 
models with which to begin segmenting an image. Finally, in section 4 we propose a method for merging and analyz- 
ing the different model hypotheses to obtain a global segmentation. 

Using this method allows both multiple explanations for the same image region, and grouping together nfregiona that 
display coherence in one or  more of the elements of their physical explanation. For example, physics-based vision 
can segment images such as Figure 3 1211. The discontinuities in color in Figure 4, however, cause current methods LO 

fail for this common image. Only by using more general models for segmentation can the image region corrcspond- 
ing to the entire cup be proposed as a single semantic entity. 

2. A General Model of Image Formation 

Images are formed when light strikes an object and reflects towards an imaging device such as a camera or an cye. 
The color and brightness of a point i n  an image is the result of the color and intensity of the incident light. and the 
shape and optical properties of the object. This section presents a new formal model of these elements, how they 
interact, and how they are related to what we see in an image. 

2.1. The Elements of a Scene 

The elemcnts constituting our model of a scene are surfaces, illumination, and the light transfer function or rellcc- 



Figuw 5. Local coordinate system zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon a 

surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatch. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFigure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6. Specifying direction in the global and 

local coordinate systems. 

tance at a point in 3-D space. These elements can be thought of as the intrinsic characteristics of a scene, as opposed 
to image features such as edges zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor regions of constant color [36]. We begin by providing a formal notation for each of 
these elements. 

2.1.1. Surfaces 

We model objects in the real world using 2-D manifolds we call zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurfaces. On a given surface, we can define local 
coordinates as a two-variable parameterization zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( I < :  v )  relative to an arbitrary origin. The shape of the manifold i n  7-  
D space is specified by a surfuce emheddirrg function S(u, v) --t (x. y. :) . defined over an extent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG ( u .  1,) . The 
sutiace embedding function maps a point in the local coordinates of the manifold to apoint in 3-D global coordinates. 
This global coordinate syslem is also anchored to an arbitrary origin, often specified relative to an imaging device. As 

shown in Figure 5. the surface embedding allows us to define a tangent plane vu. v )  and surface normal N ( f i ,  1,) at 
each p o i n t  on the manifold, and thereby to define a local 3-D coordinate system at each surface point with two axes 
on the tangent plane and one in the direction of the surface normal. Other useful properties. such as curvature. can 
also he defined and specified for each point using the surface embedding function. Throughout this presentation we 
use wire-frame diagrams, such as Figure 5 to show the shape of a surface patch. 

It is important tu note that we do not view the world as consisting of surfaces to be found. but as objects to be mod- 
eled. It is commonly presumed i n  machine vision that “surfaces” exist in nature, and that the job of the vision system 
is to discover them. We reject that view, believing instead that surfaces are artifacts of the interpretation procc 
exist only within the perceptual system that is attempting to build a model of the world. Given this vicw, there is no 
“correct” sutiace with which to model an object. Instead, the choice of which manifold and surface embedding func- 
t ion  will be used to represent a given object is made by the modeler, and depends lxgely upon the task and infonna- 
tion at hand. Given a brick wall, for example, if the application is obstacle avoidance, a single plane could be chosen 
to model the  entire wall. For other situations. such as segmentation, it might be necessal?. to model each brick as well 
as the troughs between them. At an even smaller scale, understanding the image texture i n  detail may require a model 
of each bump on each brick in order to interpret the wall. All are potentially useful “surfaces” to model the same wall. 
and all might be needed at various points i n  the visual process. Thus one object in the world can be modeled by many 
different surfaces. and the choice of model, or surface. is made by the interpreter. This view allows us to conceive of 
a pcrceptual process that incorporates numemus differing surfaces to describe an object, an imponant capability that 
other computational vision systems. which seek for a single “correct” surface, lack. 

In order to parameterize light striking and reflecting from a surface, wc also need to define a parameterization of 
direction. In the global coordinate system we use two angles (ex ,  Ely), where Elr specifies the angle between the 
direction vector and the x-axis. and OV corresponds lo the angle between the direction vector and the y-axis. To spec- 
ify directions i n  the local coordinate systems, we will use normal spherical coordinates, as shown in Figure h. speci- 
lied by the ordered pair (0. fp) . 0 is the polar ungle, defined as the angle between the surface normal and Ihc 
direction, and cp is the aiinruth, defined as the angle between a perpendicular projection of the ray onto the tangent 
plane and a reference line on the surface (usually defined to be either the u or v axis). 



2.1.2. Illumination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Much research in machine vision assumes a single light source, often a relatively large distance away from the scene 
being imaged. However, many visual phenomena arise because of reflection from nearby objects acting as additional 
light sources. Thc field ofcomputer graphics has long incorporated this idea into systems such as ray tracing and rildi- 
osity. In the field of machine vision, interreflection has been studied betwcen two objects, hut still no general model 
exists for specifying the totality of illumination on a surfacc point. 

T<> begin examining general images we can't assume point lighting. three independent light sources, nr other con- 
structed illuniination setup. A general model must allow us to specify any type of illumination. including interrellcc- 
tion from other objects, and still have identifiable subsets that fit with our traditional conceptions of illumination. We 
develop our model by first defining and specifying the parameters of a single ray of light. then extending this model to 
the describe the light arriving at a point. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAphoton zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  a quantum of light energy that moves in a single direction unless something--like mattcr, o r  a strong grav- 
ity field--affects its motion. Thanks to the s u n  and artificial light sources, there are many photons moving i n  many 
directions at any given time, Collections of photons moving in the same direction at the same place and time consti- 
tute zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAroy ot light. As photons move, they oscillate about their direction of travel at a spectrum of wavelengths zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh which 
specify the distance traveled in a single oscillation. The human eye is sensitive to photons with wavelengths that fall 
hctween approximately 380 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA760nm. and the spectral distribution of wavelengths present i n  a collection of phw 
tons determine what color we see.  A charge-coupled device [CCD] camera responds to a slightly difkrcnt range of 
wavelengths, and infrared color filters are normally used to approximately match the color response of the human 
eye. The polurizutinn of a population of photons specifies their oscillation and orientdtion with respect to  the direc- 
tion oftravel, and it can affect the manner of reflection and transmission when light interacts with matter. Polarizaticin 
is commonly represented using a set of parameters. such as the Stokes parameters [4], which we indicate by the vari- 
able s E { I ,  2 :  3, 4 )  that indexes the Stokes parameters to specify the relative energy of photons oscillating at dif- 
feren t orientations. 

In a scene, light is being emitted or reflected in numerous directions, entering and leaving points throughout the ilrcil 
of interest. Using the parameters described above, a single ray of light at time t at position (x. J. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI). nioving in direc- 
tion (.Ox. e,,). of frequency ?,and polarizations, can be specified by the 8-tuple (I, y ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. O ~ ,  tlv. h. 9 ,  I) . 

For the puqmses of image formation, we want to specify the intensity of visible light that is incident froni all d i r a -  
tions on p i n t s  (x, y, z )  in global 3-D coordinates. Wecan describe the light energy arriving at a point from a11 direc- 
tions by the incident light eneqyf ie ld  function L+(x, ?, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz. €Ir. Or, h s, t). which specifies the radiant intensity. or 
radiance per unit solid angle, of light incoming to the point (x,j,z) from direction (Ox, Ov) of wavelength h and 
Stokes parameters at time f .  This function is similar to the p l e n u p t i c ~ ~ i c t i o n  defined in [ I ] ,  or the heIiosfiriicriuir 
[ Z X l .  In this paper we consider only single pictures taken at timet, making time a constant and allowing us to drop i t  
from our parameterization of illumination functions. As a result, we consider only the subspace of the incident light 
energy field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf.+(+, y. L, ox, 

For a point in free space. we note that rays arriving at that point can be mapped onto a sphere of uni t  radius [Y] .  In this 
manner, the incident light on a surface point can be visualized on the unit sphere. The brightness and color o f a  point 
( O ~ r ,  e,,) on the sphere indicates the brightness and color of the incident light from that direction. We define this rep- 
resenlition of the light energy field on the unit sphere for a 3-D point ( x ,  ?. z )  to he the glubal illunrinarimn eni,i,nri- 
n m r  IGIE] for that puint. It is important to note that on opaque surfaces some of the incident light is blucked by the 
object inattcr itself. limiting the illumination environment to the hemisphere above the tangent plane. If the surface is 
transparent, the illumination environment will be the complete sphere. as light can be incident on the surface point 
from below as well as above. We can visualize the illumination environment for opaque surfaces by orthogonally pro- 
jecting i t  onto a plane as in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. To give some simple examples. several common illumination environments can 
he visualizcd as in Figure 8. Figure 9. and Figure 10. A simple example of what such illumination environmcnts 
might look like is shown in the inset image beside each figure. 

I f  wc substitute thc lncal surface coordinates (12, I.) for the global coordinates (.~,y,z), and the local spherical coordi- 

h, s). 



/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. Orthogonal mapping of the 

illumination environment onto zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa plane. 
Figure 8. (Plate 5 )  Illumination environment 

for inset image: orthogonal mapping of a 
white light source directly overhead. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY. (Plate 6) Blue ambient light with a 
white circular source to the right and behind. 

Figure 10. (Plate 7) Grey ambient light with 
red light reflected off another nh ject  

nates (0. I$) for the global axis angles, we obtain the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIucal incident light zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAenergyfeld L+(u, I,, 8. cp. A, s). which also 
can be visualized on a hemisphere above the tangent plane to the local surface point for opaque surfaces. This rcpre- 
sentation we call the loud illuniinurion environment [LIE] for the surface point ( u ,  1:) . Note that the global and local 
illumination functions are distinguished by their parameters. 

The tow1 radiance of a patch of the illumination envimnment hemisphere with polarization specitication s at wave- 
length zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. specified by the angles (8, rp) and subtending dB and d q  is given by Lc(u. v. 8 .  cp. 5, A)sinBdBdcpdh 
[ 161. The total irradiance at a point ( u ,  v) is given by (1). The sine term is part of the solid angle specific;ltiim and 
the cosine term rcnects the foreshortening effect as seen by the surface point. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1.3. Reflectance and the Light nansfer Function 

I n  order for a point on a surface to be visible to an imaging system. there must be some emission of light frotn that 
point. As with the incident light energy field, we are interested i n  describing the. light energy that is leaving a surface 
point (I. J. z )  i n  evety direction (Ox, e,,) in polarization states for every wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. The light leaving a point is 
specified by the eritunt lighr ener8yfielil L-(x. y. z, Elx. e,,, c: A). This function has the same parameterizatim as the 
incident light energy field, and describes an intensity for-every dirmtion and wavelength. As with thc incident light 
energy field. w c  can define a local coordinate version of the exitant light energy field L-(rr, v. 8, cp, .s, 1). 
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Lambertian Polarized Polarized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Some Special Cases of the Light Transfer Function: Fluorescence, Polarization, Transmittance, and 
Specular or Surface Reflection 

The relationship between the incident and exitant light energy fields depends upon  the macroscopic, microscopic. and 
atomic characteristics of the given point the light strikes. It is the gross characteristics of this relationship that allow 
us  to identify and describe surfaces in a scene. Formally, the incident and exitant light energy fields are related by the 
reflectance, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAglobal light transfer function %(x,?.. z;B:, 0:. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs+, kf;8-x, e;., s-,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh-;?) which indicates the exitant 
light enerFy field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL-(I. y,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, 0,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe,,, s, hj produced by one unit of incident light from direction (8:.  Ot) of polariza- 
tion s+ . and wavelength h+ for aparticular surface point (x, y,  z) at time f. To allow us to drop time from the param- 
eterization_ we assume surfaces whose transfer functions do not change. An alternative form of the light transfer 
function can be obtained by substituting the local coordinates ( id ,  v, 8, rp) for the global parameters (.r. ?, z ,  Or 0,) 

resulting in the local IightrraiisferSrrncrion %(u,v;Ot, v t , s t ,  h+;0-, q i ,  s., 1.). 

The relationship between the incident light energy, the exitant light energy, and the transfer function can be written 
using lvcal cwrdinates as the integral in (2). This integral says that the exitant light energy field is the sum of the belf- 
luminance of the point, Lo. and the product of the transfer function and the incident light energy field integrated over 
the parameters of the incident light. The cosine term is due to foreshortening. and the sine term from the solid angle 
specitication. The result of this integral is a function of the exitant light variables. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

n n  

L - ( u >  L': ) = L;( u , v ;  . . . - , . . )+Cj  ~ J L + ( u , v ,  . . .+ . . . j%(  u,i ' ; ...+,.. ; . . . - . . . j cos8+s inO+d0+d~+~/h+ (2) 

A structured analysis of the transfer function shows how it subsumes several common special cases. sketched i n  Fig- 
ure I I .  We give a brief description of the parameter constraints that correspond to these special cilses: fluorescence. 
polarization. transmittance, and surface or specular reflection. These descriptions demonstrate the framcwork pro- 
vided by the general transfer function. 

I+ h' - x o  

* For a non-fluorescing surface. if the incident light is of wavelength hw then the exitant light energy field 
will also have wavelength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh, and no other wavelengths will be present. If, on the other hand. the same 
incident lighr strikes a fluorescent surface, there may be other wavelengths present in the exitant light 
cnergy field. In terms of the parameters of the transfer function, fluorescence implies there exists some 
pair of wavelengths (h+,h-) where L- # h+ for which % > 0. 

Polarizing transfer functions modify the polarization of the incoming light. This effect can he seen in suii- 

glasses; which often block the horizontal polarization mode. For non-polarizing surfaces. 3 = 0 whenever 
s+ # s ~ .  For a polaizing transfer function, there exists some pair of stokes parameters (.r+.s~) where 
J- # s +  for which 3 > 0. 

Transmitting surfaces allow some light to pass through them. Conversely, an opaque surface limits both 

* 

* 



Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA12. (Plate 8) Illustration of the transfer 
function for a slightly rough metal object. 

Figure 13. (Plate 9) Illustration of the transfer 
function for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa slightly rough plastic object. 

the incident and exitant light energy fields to a hemisphere above the tangent plane for that surface. Trans- 
mittance occurs when either the exitant or incident light energy field bounds (e-,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArp-) and (e-, rp') are 
cxtcnded bcyond the hemisphere above the tangent plane of the surface, implying that at least some of the 
exitant or incident light energy is passing through the material In terms of the parameters. a surface is 
transmitting i f 3  > 0 when 0- > Y O "  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 when 0' > YOc. 

Specular reflection, described i n  more detail in Section 3.2.4., occurs when the incident light is only 
reflected about the local surface normal in the perfect specular direction. This restriction implics that the 
transfer function is zero except when cp- = cp+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+IC and 0- = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO + .  It is important to note that surface 
reflection is relative to the local surface normal, and it is possible to have an optically rough surface where 
the local surface normals vary relative to the overall surface zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3](38]. 

Finally. Lamhertian surfaces--also called perfectly diffusing perfect reflectors--reflect incident light 
equally i n  all directions. For a unit energy ray of light from direction (13, cp) , the exitant light cncrgy in all 

directions is specified by the expression cos@. 

- 

To illustrate a transfer function. we show a sphere with that transfer function i n  the environment shown i n  Figurc 12 
and Figure 13. The sphere sits above a matte black and white checkered surface under a dark grey sky with a white 
point light source shining on it from above and to the right of the viewer. Because all illumination is of  uniform spec- 
trum (Le. grey). any color i n  the image is due to the transfer function. The checkerboard pattern is present to highlight 
the specularity of the ubject. Figure 12 is an illustration of a highly specular material with no body reflection. and Fig- 
ure 13 shows a matte colored material with a small amount of surface reflection. 

2.2. General Hypotheses of Physical Appearance 

We have defined a 3-D world model for individual points and their optical properties, but how does a whole surface 
appear in  a digitized computer image? To describe a surface and i ts  appearance. we introduce a nomenclature for the 
aggregation of appearance properties in the 3-D world and how these aggregations map to an image. 

We have defined surfaces with an extent an embedding. and we have defined a transfer function 3 over a surface. The 
combination of a surface and a transfer function we define to be a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsurfoce parch. Because the transfer function can 
vary arbitrarily, there are nu constraints on the appearance of a general surface patch in an image. Frequently, how- 
ever. thc transfer function at nearby points on a surface displays some type of identifiable coherence. Coherence docs 
not imply uniformity. and covers a broad scope of possible aggregations such as uniformity, repctitivc patterns. or 
irregular textures. Some properties that commonly impart coherence include material type, color, roughness. and the 
index of refraction. We can mudel the coherence of the object's appearance with a surface patch whose transfer func- 
tion is similarly coherent. 



\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Appearance Patch Hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARegion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 14. Mapping from an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAappeurance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatch zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto a hypothesis region. 

A surface patch with a coherent transfer function. however, will not always display the coherence i n  an image. Differ- 
ing illumination over the surface patch or occluding objects can mask or modify the appearance of the patch to an 
imaging system. For the purposes of image analysis, we would like to specify not only coherence i n  the transfer func- 
tion. but coherence in the exitant light energy field, which is what is viewed hy the imaging device. To achieve coher- 
cnce in the exitant light energy field, we must add to the surfacdtransfer function pair a coherent illumination 
environment over the surface patch. This combination we define as an appearance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApatch: a surface patch whose 
points exhibit a coherent transfer function and illumination environment, and whose exitant light energy field exhihits 
a coherence related to that of the transfer function over the entire patch, and which is not occluded from the imaging 
system. 

Given an appearance patch, we can imagine that the exitant light energy field over the patch maps to a set of pixels in 
the image. As sketched in Figure 14, the exitant light from a surface caught by the imaging device determines the 
ciilor and position of the set of pixels related to that surface. The physical explanation for a given exitant light energy 
field from a given patch we define to he a hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH = (S, E, %, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL'). The four elementc of a hypothesis are the 
surface embedding S, the surface extent E, the transfer function %. and the incident light energy field L'. With these 
functions, i t  is possible to completely determine the exitant light energy field (assuming no self-luminance), The basic 
connection between a physical explanation and a group of image pixels is provided by a hypothe.7i.y region 
H R  = ( P ,  H). defined as a set of pixels P that are the image of the hypothesis H. The combination of the hypothesis 
elements represents an explanation for the color and brightness of every pixel in the image patch. For simplicity. we 
assume the image is formed by a pinhole camera at the origin looking at the canonical view volume. To represent the 
fact that a single region may have more than one possible explanation. we define a hyp(ifhesi.s set 

H S  = (P,  H I !  ., ., H n )  to he a set of pixels P with an acsociated list of hypotheses H I .  H , , ,  where each hypothe- 
sis Hi provides a unique explanation for all of the pixels in F, and only the pixels in P. 

Finally, given a set [ HS,} of hypothesis sets for pixel regions Pi, we define a segmenration of the pixel set 

P = U P ,  to be a set of hypotheses, containing one hypnthesis from each HSi. that explains the values (if the pixcls 

i n  P. Of course. to be physically realizable, these hypotheses must be mutually consistent. The goal of low-level 
vision. in terms of our vocabulary, is to produce one or more segmentations of the entire image. 

To i l l u ~ ~ a t e  a hypothesis. we combine the representations developed previously into a 3-panel image displaying [he 
characteristics of S, L, and 3. Returning to the image of the cup in Figure 4, we can examine a single uniformly col- 
ored reginn (shown at the far left of Figure 15) and visualize two hypotheses for it: a mirror reflecting some illumina- 
tion environment. or a plastic object under white illumination. We can illustrate the metal hypothesis in Figure IS. 
and the plastic hypothesis i n  Figure 16. Both hypotheses describe the same image region. and the combination of the 
two forms a hypothesis set. 

i 

3. Fundamental Hypothesis Regions 

The difficult? inherent i n  segmentation using physical descriptions lies in determining the correct mapping between 



Figure 15. (Plate 10) nlustration of a metal hypothesis: (a) actual region (from Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4). (b) wire frame 

surface representation (planar), (c) illumination environment (diffuse), (d) transfer function (metal). 

Figure 16. (Plate 11) Illustration of a dielectric hypothesis: (a) actual region (from Figure 4), (b) wire frame 

surface representation (planar), (c) illumination environment (diffuse), (d) transfer function (dielectric). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the image pixels and the scene that created them. The problem is that for a single pixel in an image, there are an infi- 
nite number of physical explanations for its color, and, in isolation, it is not possible to distinguish hetwecn those 
explanations. A single red pixel can be a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAred object under white light, a white object under red light, a mirror reflect- 
ing red light. a mirror reflecting a red object, or numerous other possibilities, and it is impossible to discriminate 
between them given only the one pixel value. Fortunately, we are not analyzing pixels in isolation. but images, which 
represent collections of appearance patches from the real world. These appearance patches possess coherence in their 
transfer function and their illumination environment. The segmentation process is thus the act of identifying which 
sets of pixels correspond to which appearance patches, identifying the possible physical explanations for those 
patches, and then merging them with other appearance patches when their possible physical explanations are compat- 
ible in some identifiable fashion. 

Such a concept for segmentation is not new--for example, Klinker et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAai. [ZU] and Healey [ 141 both identified regions 
of similarity of some physical properties. What is new in this presentation is the generality. These past works assumed 
that the scene obeyed certain properties and looked only for a single, narrowly defined kind of coherence. In our new 
approach, the general illumination and transfer functions allow us to represent, reason about. and discover many dif- 
ferent kinds of coherence in a single image. This capability is necessary for the analysis of natural or common man- 
made scenes such as Figure 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.1. Pixel Classification 

The first step i n  segmentation is to identify pixel regions that display coherence in some feature space. In a color 
image, the most obvious characteristic linking together groups of pixels is their color. The simplest such groupings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
are aggregates of pixels with identical color. A reasonable starting assumption might be that a set of connected pixels 
with the same color correspond to a single appearance patch within a scene. We believe. however. that using regions 
of unifum color overlooks much of the information contained in the image. 



Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Plate 12) Mug divided into idealized uniform chromaticity regions. 

3.1.1. Uniform Chromaticity Kegions 

An approach of slightly greater complexity is to group together pixels displaying the same basic color ratios. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAor chro- 
maticity. hut with varying brightness. Mathematically, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAchromoricity is defined by "normalized color" coordinates. as 

defined in (3) [19]. Chromaticity can also be thought of as the hue and saturation of a color without the intensity 
information. 

We define a rrnifomi chromariciq region [UCR] to he a connected set of pixels that possess uniform chromaticity and 
possibly varying brightness. A UCR corresponds to a linear cluster, as defined by Klinker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/.[211. As such, a morc 
general definition of a UCR is a connected set of pixels whose covariance matrix in color space has a single non-zero 
cigcnvaluc, whose eigenvector is related to the chromaticity of the region. Because it allows for varying brightncss 
within a region, a UCR is able to capture more ofthe relevant coherence between neighboring pixels than simple uni- 
form regions. 

Klinkcr et u/. 1201 note that a UCR, or linear cluster; can represent two distinct objects if hoth are dark or poorly illu- 
minated. In this segmentation method. however, we initially assume that a UCR represents a single surface patch 
under a single illumination environment. This requires a form of coherence from the physical elements generating the 
UCR. Clearly. it is possible to construct an image with UCRs that do not have such coherence in the physical wcirld, 
and we realize that our current approach will not correctly handle such situations. 

The benefit derived by using UCRs is that they are groupings of pixels that we can reasonably assume to comespoiid 
to a single appearance patch in the physical world, setting constraints on the associated hypotheses. These constraints 
are that over the patch the transfer functions are coherent and the illumination environments are similar. Because it is 
a single appearance patch, it is, by definition, a single surface. Figure 17 shows an idealization of the cup image 
divided intu UCRs. 

By identifying UCRs in the image. we have taken the first step in the segmentation process by linking pixels with 
appearance patches in  the scene. The next step is to begin to identify the relevant physical explanations, or  hypothc- 
ses, for the appearance patches corresponding to the identified UCRs. 

3.2. Generating Hypotheses 

Ita UCR does correspond to a single appearance patch in the scene, what art. the possihle hypotheses for that appear- 
ance patch given the constraints identified previously? Clearly, the relationship between appearancc patches and 
hypotheses is not one-to-one. As demonstrated by Figure 2, i t  is possible for identical image regions to have differing 



hypotheses specifying their physical description. Therefore, given a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUCR and i t s  related appearancc patch, we must 
consider multiple physical descriptions. 

The zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtirzl question we examine is how many physical descriptions must he considered? We begin to answer this qucs- 
tions by noting that a UCR has two characteristics that make it interesting: it is not nccessarily white, and i t  is not nec- 
essarily uniform intcnsity. Any hypothesis that explains a UCR has to explain what element or elements are causing 
the color and the brightness variation’? 

The possible sources of color for an appearance patch are the illumination, the transfer function. or both. Intuitively. 
the simplest hypotheses attribute the color to a single element of the hypothesis. As an example. consider a UCR of 
uniform pixel values. Asimple hypothesis is one that specifies the surface as red plastic under diffuse white illumina- 
tion. Such a hypothesis is intuitively plausible, and simple to express. A more complex hypothesis, attributing the 
color to two elements. is one where both the illumination and the color of the object vay over the surface. but in such 
a way that their combination produces the same color and intensity at each point. This hypothesis is much more difti- 
cult to express. and is not automatically accepted by our intuition as a plausible explanation. 

The varying intensity of a UCR could be due to uneven illumination, uneven coloring. or curvature of the surface. 
Any or all of these possibilities could uccur on a single patch. Again, intuitively some of these explanations are sinl- 
pler than others. Attributing a11 brightness variation to the shape. for example, is the underlying assumption for many 
shape from shading algorithms. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
From these observations, we can begin to answer the question “how many hypotheses must we considei‘ by looking 
at the simplest ones tirst. Using simplicity. or plausibility to select between alternative hypotheses has been suggested 
by Tympanum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAel zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/., and has been used as the basis for several vision systems 12311 I 1  ][22]1271[261. This requires us 
to distinguish between simple and complex hypotheses. Furthermore, we need to look for simplicity not only within 
the hypotheses, but in the representations of the elements themselves. But what constitute simple forms of the 
hypothesis elements. and must every possibility by entertained? Furthermore, does simplicity always imply a hypoth- 
esis is more likely. or  more plausible? To answer these questions, we must delve into the meaning of what constitutc 
classes of the hypothesis elements S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL. and %, and what we mean by the terms “plausibility,” “complexity.” or 
“weirdness” with respect to a hypothesis an its elements. 

3.2.1. Plausibility 

In an ideal world, we would be able to quantify complexity, or “weirdness” and use it as the basis for generating and 
rank-urdering the possible hypotheses for a given region. The weirdness of a hypothesis [night he represented by 
three axes indicating the complexity of the shape, transfer function. and illumination environment. Less wcird cxpla- 
nations would be those closer to the origin of the three axes. The further from the origin, the weirder the hypothesis 
elements would become. By generating hypotheses close to the origin. or with only one weird element. we could 
begin with a small set of simple hypotheses and generate weirder ones only i f  necessary. Weirdness is a difficult con- 
cept lo measure, however, and the axes of our weirdness scale are almost certainly non-linear and not independent. 

The minimum description length [MDL] principle. however, is a mathematical formalism for “wcirdness.”Thc MDL 

principle rays that. given a parameterization for describing a model. the best model that describes a set of data is the 
one that can be encoded in fewest number of binary digits. or shoriest length. In computer vision. the MDL principle 
has been used successfully by Leclerc [23]. Darrell eta! .  [ I  I ] ,  Krumm 1221 and Leanardis [Zh]. If we postulate a lan- 
guage for S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE, L. and 92, then a hypothesis region and its fields and subfields are a model described in that language. 
Our task i n  segmentation is to find a set of such models that describe an entire image. or data set. Based upon the 
MDL principle, we propose that the most desirable sets of hypotheses that describe a particular scene are the least 
complex ones. or the ones that can be described most succinctly. 

11 is important to note that the description length has two components: the complexity of Ihe description. and how 
well that description tits the data. The combination of the two components is used to  select the best model. &’hen we 
are dealing with a set of hypotheses for an image region, they ought to fit the data about equally well. so that t c m  of 



tt~e description lcngth should he approximately constant. Therefore, rank-ordering the hypotheses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor a region usins 
some measure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof complexity, should be sufficient to satisfy the MDL criteria. 

Because there arc an inlinite number of hypothcses for any VCR, care must he taken i n  thc initial selection of the 
hypothesis set for each UCR. One important consideration of the MDL principle is that the optimal model; or  modcl 
set must he among those tested for shortest length. Following our methodology. we want to identify subspaces of our 
general parameterization which will are both simple and likely to occur in general images. There are at least three 
appnvachcs that could be taken to generate this model set: 

* Generate a large number of possible hypotheses and test 

Generate incrementally according to some search criterion 

Generate a small, hut comprehensive set. using broad classes of the hypothesis elements; cxpand [hir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS C ~  

increinentally if all of its constituents are ruled out as possibilities 

- 
* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As indicated by previous discussion, the first approach seems pointless and intractable. Breron el zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnl. were able to use 
Ihe approach by creating a discrete mesh of possible light source directions for a "uinual" point source. hut since our 
model has many more parameters i n  both the illumination environment and the transfer function, such coverage by a 
discrete mesh is intractable. The second approach has merit, but it is unclea~ what t ype  of search criterion is needed 
for this task. Instead. we propose the use of broad classes to initially assign hypotheses to a UCR. with the under- 
standing that the particular details of a hypothesis-i.e.; the actual shape, the specific colors, surface roughness, and 
other characteristics--will he determined at a later point  in the segmentation process. It is also important to note that 
this set can he incrementally expanded if all of its initial constituents are considered unlikely. The broad classes; 
which we derive from the general model for scene description, arc simple, yet comprehensive enough LO cover a wide 
range of possible environments and objects. 

3.2.2. Taxonomy of Surfaces 

Surfaces can be described at many levels of complexity. A c u k ,  for example, can be modeled as a set of plilnx 
pdlches. a polyhedron, or a superquadric. As noted previously. when modeling objects in the real world. surfaces can 
take on any aniount ofcomplexity, depending upon the needs ofthe modeler. When reasoning about hypotheses. what 
we are most interested in is how the surfaces of adjacent hypothesis regions are related. When they show siniilar qual- 
ities. i t  is reasonable to consider merging the two regions. 

To simplify this reasoning process, we initially consider only two classes of surfaces: curved and planar. These two 
classes provide a simple distinction that can he used to reason about merging hypotheses. A finer distincrion would 
require a specific method for modeling curved surfaces, which we leave for future exploration. Whcn a surface reprc- 
scntation merhod is determined for the actual segmentation system. reasoning about merging two curved surfaces 
could be done based on that representation--e.g. matching two spheres, superquadrics. generalized cylinders. or poly- 
nomial surfaces. 

3.2.3, Taxonomy of Illumination 

There are several simplified special forms of the incident light energy field function that represent useful models of 
illumination. Recall that the general form of the global incident light function is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL+(x,  y. :., 0,. e,,. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh. s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ) .  

Figurc I X  shmvs the relationships of the subspaces we identify for this function. The largest subspace we cunsider is 
that of time-invariant illumination, where we consider time to he a constant and drop it from our parameterization. 
The second subspace we highlight is unpolarized time-invariant illumination Lf(xl J: ;, ex, e zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.A). For most images 
of interest. all of [he illuniination in a scene will fall into this category. Scenes with illumination outside this subspace 
are rare. and would be those illuminated by a polarized light source such as a laser, or  by a lime-varying wurce (over 
the course of the image capture process). Within the unpolarized, Lime-inuariant subspace are those illuniination func- 
tions in which the color of the light is independent uf the direction of incidence. The hue and saturation of such illu- 

y 



General Illumination for p i n t  (x,y,z): L(8,.8y,s. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
\ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 18. Subspaces of the global incident light energy field L(x,y,z,B,.e,h,s). 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19. (Plate 13) Diffuse Figure 20. (Plate 14) Uniform 

illumination environment. illumination en5ironmeut. illumination environment. 

mination functions me the same in all  directions and only the brightness varies over the illumination hemisphere 
These illuniination functions me separable i n to  the form L+(x, y. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOx, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ , ) C ( I ,  y, z,  h), where L+(x_ ?. z. 0,. Br)  
denotes the incoming intensity in a given direction at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(x,y,z)$ and C(x, y, z, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAy the color of the illumination. Within the 
subspace of separable functions is the unifomi illumination subspace which can he written for the point (r.y,z) as 
L+(B*. B,)C(h). where L+(BX, By) = { I ,  O} . Uniform illumination thus implies that all illumination i n  the environ- 
ment has the same color. Some important special C ~ S  of uniform lighting include: 

Figure 21. (Plate 15) General 

I angle between (e,, B,.) and (etv By(,) < a 
* Finite disk source of apex angle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa L+(BU, 6.1 = r_ 

I" otherwise zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .I 

ccntered at (Oxo. 8 ) 
YO 

* Perfectly diffuse "ambient" L+(Bx, ev) = I for all ex and Bv. Thus, L'is trivial and the 
illumination is fully characterized by C(h) at (.r. J, z )  . illumination 

These three simple cases play an important role in modeling illumination. Indeed, as shown by the computer graphics 
community, a large number of illumination environments can he modeled using one or more point. finite disk. or 
ambient light sources 1121. For the purpose of reasoning about hypotheses, we use three subspaces--in order of 
increasing complexity--diffuse. uniform, and general illumination to describe the forms of the illumination environ- 
ment. A diffuse illuminatiun environment. unifurm colur and brightness over the hemisphere. is shown i n  Figure 19, 

along with its eRect on a white sphere. Figure 20 illusuates a uniform illumination environment, as specified in  Fig- 
ure 18. and its effect also on a white sphere. Finally, a general illumination environment is illustrated in Figure 21; 
along with its effect un a metal sphere 
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Figure 22. Taxonomy of the bi-directional reflectance distribution function 

3.2.4. Taxonomy of the Transfer Function 

Numerous common cases of the transfer function arise when we consider the subset of non-polarizing. opaque. and 
non-fluorescing surfacer. At present. we consider only surfaces that fall into this class. For non-polarizing malerial. 
thc polarization parameters are separable and, since we are only considering unpolarized incident light. can be 
removed from the overall function. For non-fluorescent materials, T =  0 if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh+ # X , allowing the wavelength param- 
eters to he combined into a single parameter 1. For opaque materials, the directions of incident and exitant light 
energy are limited to the hemisphere above the tangent plane for the surface point (u. v) . With these restrictions. the 
transfer function becomes %(u, v, e', qp+. e-, v-, X), where 0 < e < 90". 

This reduced transfer function still includes surfaces with arbitrary changes in the transfer function over ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ,  1,) . Such 
surface patches can havediffering color and texture within their extent. Therefore, we further identify two nested sub- 
sets: transfer functions that are piecewise-uniform. and those that are completely uniform over the extent of the 
(u, r )  parameters. The subset of uniform transfer functions, shown in Figure 22. can be specified hy the reduccd 

function %(€I+, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq+, W ,  9.. k), as it is constant over all relevant values of u and v, This form of the transfer function is 
recognizable as the well-known specrral hi-directional repertonce distribution function [spectral BRDF] for a uni- 
form surface (301. 

Within this set are further interesting subspaces of the transfer function. Transfer functions with surface reflection or 
body reflection are two important overlapping subspaces. Their relationship within the BRDF and the interaction of 
the union of these subspaces is shown in Figure 22. Surface reflection, noted previously takes place at thc interfacc 
between an object and the surrounding air. The direction of the exitant light energy is governed by the surface normal 
at the point of reflection; it is reflected through the local surface normal i n  the "perfect specular direct iw~" The 
amount of light reflected is determined by Fresnel's laws, whose parameters include the angles of incidence and emir- 
tance, the index of refraction of the material, and the polarization of the incoming light. For white metals and most 
man-made dielectrics the surface reflection can he considered constant over the visible spectrum [ 17][ 181. Materials 
whose surface refleclion is approximately constant over the visible spectrum form a useful subset and are said l o  have 
neutral interface reflection (NIR) [251. The surface reflection from an NIR material is assumed to be the same color 
as the illumination. Common materials for which the surface reflection is more dependent upm wavelength include 
"red metals" such m gold. copper, and bronze, all of which modify the color of  the reflected surface illumination [ 141. 

Many materials displaying surface reflection are optically "rough." They possess microscopic surfaces with local sur- 
face normals that differ from the macroscopic shape, as shown in Figure 23. A subset of these rough swfaces are 
those with roughness characteristics--such as microscopic slopes or heights--that have a Gaussian distribution. Sev- 
eral reflection models. such as Torrance-Sparrow and Beckmann-Spizzwhino, have been developed for rough sur- 
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Figure 23. Microfacet surface reflection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel. Figure 21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABody reflection model: transparent 

medium with pigment particles. 

faces using a Gaussian distribution assumption for some surface characteristic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[3][ IO] [  13][25][29][34][38]. These 
models f i t into our taxonomy of transfer functions as shuwn in Figurc 22. 

A more complex form of reflection, body reflection, takes place when light penetrates a surface and interacts with 
colorant particles as shown in Figure 24. During this interaction, some of the wavelengths may k absorkd, coloring 
the reflection. The remaining wavelengths are re-emitted in random directions. striking other colorant particles. and 
some ultimately exiting the surface as body reflection. Surfaces whose colorant particles re-emit equally all wave- 
lengths of visible light form the "white" subset of transfer functions with body reflection. Becausc of thc stochastic 
nature of this reflection, a common assumption is that the body reflection is independent of viewing direction. The 
subset of transfer functions that display this independence in their body reflection are called Lamhertian surfaces. 
These subset relationships are shown in Figure 22. The body reflection of the Lambertian subset is said to obey Lun- 
bert's Law, which states that the reflection is dependent upon the incoming light's intensity and cosine of the angle of  
incidence [16]. Improved models of body reflection are being researched [15][31][39]. 

Many interesting and useful transfer functions exhibit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAboth body and surface reflection. Common materials simulta- 
neously displaying these types of reflection include plastic, paint, glass, ink. paper. cloth, and ceramic. m o s t  o f  which 
can be modeled with the NIR assumption [30][37]. Transfer functions within this overlapping region have been 
approximated by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdichromatic reflection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel [33]. 

Metals also fall into the spectral BRDF category, although they only display surface reflection and have been mod- 
eled by the unichrornaric refiecrion nlodel [14]. Most models for rough specular surfaces apply directly lo metals. 

For the purposes of our proposed segmentation method, we initially consider objects whose uansfcr functicins fall 
within the union of body reflection and sulface reflection. Objects with these properties naturally divide into two cat- 
cgorics: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmetab and dielectrics. Metals, as noted previously display only surface reflection; dielectrics always have 
some body reflection, and often display surface reflection as well, although not as strongly as metals. Illustrations of 
these two classes of the transfer function can he seen in Figure 12 and Figure 13. 

3.3. Hypothesis Classification 

Rased on the above taxonomies of S, Lt, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. we now identify a simple, ye1 comprehensivc set of hypotheses for 
explaining the color and brightness variation of a UCR. To accomplish this task. we first form a set of hypothesis 
classes based upon the forms previously developed for the individual hypothesis elements. The broad classes for each 
element are: 

* Surfhces = planar, curved 

Illumination Environment = diffuse, uniform. general function 

* Transfer Function =metal, dielectric 



Figure 25. (Plate 16) Fundamental hypothesis with body reflection as color source: (a) surface, (b) illumination 

environment, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(c) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtransfer function. 

Figure 26. (Plate 17) Fundamental hypothesis with illumination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas color source: (a) surface. (b) illumination 

environment, (c) transfer function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The possible combinations of these broad classes create a set of twelve simple hypothesis forms for an appearance 
patch conesponding to a UCR. 

3.3.1. Fundamental Hypotheses 

To account for the distribution of color between the elements of a given form, we identify a set of hypotheses that is 
simplc, and yet provides a significant amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof explanatory power. This set, which we call the set of fundanierrral 
Iiypotheses. consists of those hypotheses in which the color of the region is due to only one of the possible color pro- 
ducing elements: the body reflection. the surface reflection, or the illuminalion environment. Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2s and Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2h 
illustrate two of the fundamental hypotheses foraregion of the cup. In Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25,  we see that the curved plastic is col- 
ored and the illumination is white. Figure 26 shows the illumination as the color source with white plastic. Both are 
equally possible explanations for the UCR. 

Combining the broad classes for hypothesis elements with the requirement that the color of apixel is due t n  either thc 
transfcr function or the illumination environment, but not both, creates a finite set of hypotheses that must be consid- 
ered for an UCR. Given two material types, two shape classes. three illumination environments, and three possiblc 
color sources. we arrive at 36 possible hypotheses. As the body reflection cannot be the color source if there is no 
body reflection (metals). there are at most 30 fundamental hypotheses that explain the same UCR for non-polarized. 
opaque, non-fluorescent surfaces. Note this is true for all UCRs, no matter the shape. color, or  brightness distribution. 

Closer analysis of these 30 fundamental hypotheses shows that the six hypotheses corresponding to dielectric.; whose 
color source is the surface reflection are highly unlikely, and probably do n o t  conform to the single color source rule. 
These six hypotheses are unlikely because uf the commonly used Neutral Interface Reflection assumption. which 
btdtes that the spectrum of surface reflection of a dielectric is approximately uniform. or neutral i n  terms of its effect 
on the color of the reflection [251. This assumption is based upon the observation that one of the inanufacturing critc- 
ria for the medium of many common dielectrics is that it have a neutral, or uniform spccmm. This criterion ensures 
that the coloring will be imparted entirely by the pigment materials added during the manufacturing process. A s  most 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA27. A Taxonomy of fundamental hypotheses. 

of the dielectric surfaces we are concerned with are manufactured materials--paint, plastic, glass, ink. paper, cloth. 
ceramic--using the NIR assumption to prune the list of fundamental hypotheses does not significantly alter the 
explanatory power of this method. Furthermore, if the surface reflection does not admit all wavelengths evenly to the 
colorant particles that constitute the body reflection, then the body reflection will be colored zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas well. violating our sin- 
gle color source cunstraint. Pruning these six hypotheses results in 24 fundamental hypotheses of image formation. 

3.3.2. Taxonomy of Fundamental Hypotheses 

We can arrange these 24 hypotheses in a tree structure according to the material type, color source, illumination envi- 
ronment. and shape as shown in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21. The first branching indicates the material, or general transfer function of 
the hypothesis and divides the 24 hypotheses into two subsets. The second branching indicates the color source of the 
hypothesis. As the body reflection cannot be a color source for a metal, and the surface reflection cannot be a color 
source for a dielectric. four subsets result from this branching. The third branching specifies the illumination en\’ .iron- 
ment of the hypothesis. With three possible illumination environments for each category of material and color source. 
this divides the 24 hypotheses into twelve subsets. Each of these subsets has two leaves, not shown i n  the tree, one 
representing a hypothesis with a curved surface, and one with a planar surface. 

The resulting tree with its 24 leaves represents a taxonomy of fundamental, or the simplest hypotheses, classifying 
the different physical explanations for an image region. The true importance of this taxonomy is that it rcprescnts a 
finite set of simple. yet relatively comprehensive hypotheses for describing an appearance patch corresponding to a 

UCR. Therefore, we can postulate a hypothesis set. with a reasonably small number of hypotheses, for each UCR we 
identify in an image. This provides an initial segmentation and sets the stage for us to begin reasoning about and 
merging hypothesis regions. 



4. Analysis and Merging of Hypotheses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I n  this section we further analyze the fundamental hypotheses and dcvelop a set of tools for comparing and merging 
them To illustrate these tools we simultaneously work through a simple example image of a lambertiiln sphere with a 
stripe i n  the middle, shown in Figure 28. The goal of this section is to develop the outline of a segmentation algorithm 
using reasoning abuut the physics underlying fundamental hypothesis regions. 

4.1. Analysis of the Fundamental Hypotheses 

The taxonomy shown in Figure 27 might he taken to suggest that all of the fundamental hypotheses are of equal value 
i n  explaining zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu scene. We do  not believe this is the case for most images. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a deeper analysis shows, several of thc 
fundamental hypotheses have little relative value in explaining image regions. This same analysis also shows that 
sonie mechanism will have to be proposed for the orderly development uf murc complcx hypothcses to cxpluin some 
common physical phenomena. 

We begin with a structured analysis of each subtree of the taxonomy. considering in turn each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo l  the four possible 
combinations of material and color source and the six associated hypotheses. The goal of this examination is to divide 
the 23 hypotheses into two groups, or tiers, comesponding to common and rare physical situations. Common hypoth- 
eses we specify as belunging to tier one, and rare hypotheses we place in tier two. 

We begin with the tree corresponding to colored dielectrics under white illumination. These six hypotheses are 
grouped into three pairs according to the illumination environment. Clearly. curved and planar dielectrics under t in- 
form lighting form a large subset of objects in a typical scene. Scenes that can he modeled by these two hypotheses 
include paper, plastic, and painted objects under one or more light sources of approximately cquivalcnt hrightncss. 
Sunlight can also be tiequcntly approximated by a uniform source when considering dielectrics because its effect on 
dielectric surfaces usually overwhelms any illumination from other directions. Likewise. curved and planar dielec- 
trics under diffuse lighting are often used as a model for surfaces in shadow. where no light source is directly incident 
on the surface [ IO ]  

Curved and planar dielectrics under general function white lighting are an interesting pair of hypmheses. In the reill 
wcirld. they are probably the most common hypotheses, as uniform and diffuse lighting are only approximations of 
the real world. In the case of dielectrics, however. uniform and diffuse lighting models are probably sufficient for 
most surfaces. The major reason is that dielectrics, unlike metals, have a strong body reflection component, they 
reHect some of the light from each incident direction in each exitant direction. In the extreme case, a perfectly Lain- 
bertian surface reflects the incident light from a single direction equally in all directions. Practically. this means that 
the exitant light energy field due to a strong incident light source from a single direction can overshadow the addi- 
tional exitant light due to the incident light from all other directions. In scenes where there are one or most light 
sources incident on an object, therefore. we propose that most lighting conditions can be modeled as a set of uniform 
brightness white sources, which falls under the uniform illumination category. This analysis is strengthened by the 
fact that the 'general function' illumination in this case must still be uniform spectrum--black, white, or grey--at each 
p o i n t  on Ihe hemisphere because the color source is the body reflection. This makes the uniform illumination category 
an even better approximation to the general function category because only the geometry is approximated. rather than 
the rpectral characteristics of the illumination. Because of this analysis. we propose that the brdnch (if thc taxonomy 
with colored dielectrics under white illumination has four common hypotheses which belong in tier one--those with 
diffuse and unifkrm illumination environments--and two rare hypotheses which belong i n  tier two--thcisc with the 
general function illumination environment. 

The next branch corresponds to white dielectrics under colored illumination. In commm scencs wc suggest that situ- 
ations correspunding tu these hyputhescs are rare. The most common Occurrence of these is probably interreflection 
bctween a colored object and a white dielectric object such as a white wall. In thesc cdxs ,  the white object is l i t  by 
both a direct light source and some type of colored reflection from a nearby object. The illumination environmcnt cor- 
responding to this case can only be represented by a general function illumination environment, as hoth the direct 



Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28. (Hate 18) Three-color lambertian sphem. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
illuniination and the interreflection are significant. Tbe hypotheses correspn'nding to colored diffuse reflection are less 
common, generally occurring when the white object is i n  shadow from direct sources hut still experiences reflection 
from a nearby colored object. Colored uniform sources--blue light bulbs, for example--are not common in human 
environments. Given this analysis. we propose that the cumed and planar hypotheses with general function illumina- 
tion hc placed i n  tier one, and the other four hypotheses in tier two. 

White metals under culured illumination form the next branch of the taxonomy. Unlike dielectrics. incident light from 
almost all directions is significant in the appearance of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa metal appearance patch. This can be seen i n  Figurc I .  where 
inter-reflected light that is dim relative to the global light source still h a  an effect on the appearance of the metal 
objects. For this reason, the hypotheses with general function illumination are the most common. It is rarc for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAil mctal 
surface to be lit only by colored uniform illumination, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto have the same color and intensity lieht incident from all 
directions as under diffuse illumination. Furthermore. unlike dielectrics, diffuse illumination environments are not 
- mod approximations because the exitant light energy field i n  a given direction is dependent on only 1)ne dircction of 
the incident light energy field. Therefore, the two hypotheses with general function illumination belong to the first 
tier, and thc other tour hypotheses--diffuse and uniform illumination--belong to the second tier. 

The final branch of hypotheses is the colored metals under white illumination. As with grey metals. the hypotheses 
with general function illumination are the most common models for colored metal objects. Unfortunately, because of 
the single color source constraint, this general function illuminatiun cannot also be colored, severely restricting the 
set of objects these hypotheses can model. In fact. we propose that uniform illumination is sufficient to model any 
surfaces that would correspond to colored metal under white illumination. Diffuse illumination. as with grey metals? 
we believe is rare. From this analysis. the two hypotheses with uniform illumination belong in tier one; the other four 
belong in tier two. 

It is the analysis of colored metals that most clearly demonstrates the need for a method to incorporate more complex 
hypotheses into the reasoning process. Our definition of "fundamental hypotheses" stipulating a single color source 
for a UCR will not be adequate to explain many images of colored metals. because thcir appearance will a150 depend 
on colored interreflection from nearby objects. The other area where more complex hypotheses are nccdcd is fbr 
interreflection between colored objects, especially dielectrics. I n  the example we work through herein, these prob- 
lems d o  not arise. However. we will ultimately need a mechanism for infusing more complex hypotheses--for exan-  
ple, red metals under colored illumination--in order to achieve the generality we desire in this seginentation method. 

The ovcrall rcsult ofthis analysis is that there are ten common fundamental hypotheses in tier one. and fourteen less 
common or  rare fundamental hypotheses i n  tier two. Figure 30 through Figure 39 illustrate the ten fundamental 
hypotheses in tier one. 

I n  our cxample segmentation. we consider only the fundamental hypotheses in tier one. As shown i n  Figure 29. lhc 
two-color sphere divides into three UCRs: top. middle, and bottom. To each region we can attach the list of ten 
hypotheses fium tier m e ,  fomiing three hypothesis sets of ten hypotheses each. 



rigure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALY. (rlate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIY) inree nypotnesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsets in m e  cxampie image. 

4.2. Merging Hypothesis Regions 

Each of the UCRs i n  our example image has a hypothesis sets with 10 fundamental hypotheses explaining its physics 
of  formation. We seek to agglomerate small regions into big ones in order to search for coherence between regions. 
Our basic method is to take two adjacent hypothesis sets zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (PI. H I , ,  H,*. ...) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
HS2 = (Pz,  H,,, H,*, ...), and form a new hypothesis set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH S 3  = (Pz  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu P2, Hj,,  . ..), in which the hypotheses HJi 

i l ~e  created by merging compatible hypotheses Hlj and HZk. 

A bulldozer approach would consider all possible combinations of the fundamental hypotheses, resulting in lo' 
aggregate hypotheses. But are there really loo0 plausible explanations for this combination of three regions? Such a 
merging method is not only unreasonable, hut also too expensive to use even on simple images because of the expo- 
nential explosion of the number of hypotheses. The interaction between hypothesis regions and the nature of the 
physical explanations must provide a guide or constraint to limit this explosion. 

Fortunately. the god  of the segmentation process provides a partial solution. The mergers in which w e  arc intcrcstcd 
during segmentation involve coherence in the general variables: material type, shape, color source. and illumination 
environment. When two hypotheses match in several or all of these four variables, but differ i n  color or other subfea- 
ture, i t  makes sense to cumbine them into a single region. It does not makc sense tu combine two hypotheses that pro- 
pose different materials at this stage of the image analysis. Nor does it make sense to combine a hypothesis proposing 
thc surface retlcction as the color source with a neighboring hypothesis that proposes the body reflection as the color 
source. While such a merger may make sense on a more abstract scale--consider a watch with a painted face and 
metal watchband--it does not make sense in a low-level segmentation. Likewise, at this level of segmentation u'e pro- 
pose that two hypotheses of differing shape should not be merged. 

On the other hand, i t  is possible that two hypotheses with differing illumination environmenrs should be combined. A 

coininon example of this is an object partly in shadow. One hypothesis for the surface not in shadow could havc uni- 
form illumination. while one hypothesis for the region in shadow may be diffuse illumination. Combining these two 
hypotheses is desirable if the sur fxe  shapes and material match. The resulting hypothesis would have a general func- 
tion illumination environment, albeit with recognizable structure. 

The constraints requiring that mergeable hypothesis pairs must have the same material type and color source sharply 
curtail the number ofresulting explanations. The chart in Figure 40shows all possible combinations of the fundamen- 
tal hypotheses of two regions for the ten hypotheses i n  tier one. As it shows. twelve hypotheses result from merging 
the two hypothesis sets containing the ten hypotheses from tier one. The explicit rules we use to obtain these twelve 
hypotheses are: 

* Hypotheses of differing materials should not be merged 

Hypotheses of differing color sources should not be merged. 

Hypotheses of differing shape should not be merged. 

- 



Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA30. (Plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20) Hypothesis 1: planar--diffuse 
ill.--colored dielectric. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA31. (Plate 21) Hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: curved-diffuse 
ill.--colored dielectric. 

Figure 32. (Plate 22) Hypothesis 3: planar-. 
uniform ill.--colored dielectric. 

Figure 33. (Plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA23) Hypothesis 4: curved-. 
uniform ill.--colored dielectric. 

Figure 34. (Plate 24) Hypothesis 5: planar-general 
ill.--grey metal. 

Figure 35. (Plate 25) Hypothesis 6: curved-general 
ill.--grey metal. 

Figure 36. (Plate 26) Hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7: planar- 
uniform ill.--colored metal. 

Figure 37. (Plate 27) Hypothesis 8: curved-- 
uniform ill.--colored metal. 

Figure 38. (Plate 28) Hypothesis 9 planar--general 
ill.--grey or  white dielectric 

Figurc 39. (Plate 29) Hypothesis 10 curved-- 
general i lbgrey o r  white dielectric. 
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uniform 

grey diel. 
general ill. 
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Figure 40. Possible mergers zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the ten ‘best’ fundamental hypotheses for two regions of differing color. The 
grey squares indicate the desirable mergers. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

* ”Colored metal” hypotheses of differing chromaticity and similar illumination should not be merged. 

If thc hypotheses differ i n  their chromaticity and the illumination is the color source. then hypothcscs with 
diffuse illumination environments should not be merged. 

- 
The reasoning behind the first three rules should be clear; we do not want to propose abstract relationships between 
image regions at this low-level stage of segmentation. The fourth rule results from the fact that the surface reflection. 
or material properties of the surface, determine the color of “red metal” hypotheses. Therefore. if two of these 
hypothesis regions differ in color but have the same illumination environment, they must be different materials. As 
they are different materials, they should not he merged. 

The last rule is due to the physics of illumination. Diffuse illumination specifics that the color and intensity of the illu- 
mination are constant over the illumination hemisphere. Now consider two adjacent appearance patches with the illu- 
mination as the color source. If the illumination is diffuse, and the adjacent patches are at less than a 180” angle, there 
will he overlap between the illurnination environments of the two patches. If the two patches are differing colors. this 
situation is impossible unless the illumination is such that each point on the illumination hemisphere appears one 
color from one appearance patch and a different color from the adjacent appearance patch. Such an illumination envi- 
ronment is unlikely at best and is reawnably discarded. 

Returning to our example, merging the top and middle regions, and the middle and bottom regions, we obtain [wclve 
possible hypotheses for the merger of each pair. As the hypotheses for the middle region can bc matched fol-each pair. 



there are. i n  fact. twcnty resulting hypotheses for the entire sphere. These twenty hypothescs are listed in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Table 1. Final set of hypotheses for the example image 

Hypurhcsia 

I Tier I 

2 Tier 2 

Top Region Middle Region Bottum Rcgion 

Diel/CS=BRRlni./Cun,ed Diel/CS=BWUni./Curved Diel/CS=BR/Uni./Curve[l 

Dicl/CS=BR/Dif./Curved Diel/CS=BWDif./Cun,ed Diel/CS=BRIDiC/Curvcd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 Diel/CS=BWUni/Planar Diel/CS=BWLn i/Planar DiellCS=BRIUnifflanar 

4 Diel/CS=B R/Dif./Planar Diel/CS=BWDif./Planar Diel/CS=BR/Dif./Planar 

I Diel/CS=BR/Uni./Curved I DieUCS=BR/Dif./Curvcd I DicUCS=BR/Dif./Curved I I I '  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

I 13 I DicUCS=BR/Dil./Curued I Diel/CS=BRRlni./Curved I DirUCS=BR/Dilf/Curvcd 1 

MelaUCS=IUgf/Curved MetaVCS=IUgf/Cur\al ~CtduCS=IL/gf/CUr\~Cd 

I I DieUCS=BRIDii./Curved I DiellCS=BR/Dif./Curved I Diel/CS=BRll;ni./Curved 1 

6 

I I6  I DieUCS=BRKni.Planm I Diel/CS=BR/Dif./Planar I DiellCS=BR/Uni./Planm I 

M eIaUCS=lUgf/Planar Metal/CS=IL/gf/Planar MeraUCS=IUgf/Planar 

I 17 I Diel/CS=BWUni.Planar I Diel/CS=BR/Dif./Planar I Diel/CS=BR/Dif./Planar I 

7 Tier 3 Dicl/CS=IL/gf/Curved DieUCS=IUgf/Curved Diel/CS=IL/gf/Cuned 

I 3 1  I Diel/CS=BR/Dif./Planar I Diel/CS=BR/Dif./Planar I DieUCS=BR/Uni./Planar I 

x Dicl/CS=IL/gf/T'kdnar 

I I I I I 

DieUCS=IUgUPlanar DieUCS=IL/gf/Planar 

4.3. Ranking Hypotheses 

9 Ticr zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 

At this point in the segmentation, we use our postulate that the simplest explanation is [he best Explanation for a 
hypothesis set. A5 noted previously, because each broad hypothesis can provide a good approximation to the data, to 
implement the MDL principle we rank order the hypotheses into classes, or tiers. according to their relative simplicity 
in explaining the combined image regions. It is important to realize this stage of the segmentation process is depen- 
dent upon  the specific region being described. For example. a region of uniform pixel values, can easily he described 
by a region of homogeneous color under a diffuse illumination environment. Regions such as thore in uur example. 
howcucr. require a surface of nun-homogeneous color if the illumination environment is diffuse. By using visim 
tools such as isohrightness contours. color histograms [21]. and normalized color [14], as well as reasoning about the 
possible realizations given specific regions and hypotheses. we believe i t  is possible to rank-order the resulting 
merged hypotheses. 

WE finish our example by rank-ordering the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfinal twenty hypotheses for the example image. We rea l i z  that we are 

Diel/CS=B RNni ./Curved DieUCS=BR/Uni,lCurved Diel/CS=BRIDiff/Curvcd 

I O  Dicl/CS=BR/Uni./Curvul DieUCS=BR/Dil./Curved DieUCS=BR/Uni./Curved 

I8 DiellCS=BR/Dif.fflanar Diel/CS=BR/Uni.fflanar Diel/CS=BR/Uni.Planar 

19 Diel/CS=BR/Dif./Planar DieUCS=BR/Uni.Planar DieUCS=BWDiff/Planar 



using some liuinan reasoning in this process. but i t  is the first step towards developing a mure rigorous. computable 
process. 

Clcarly. the simplest explanation for this scene is hypothesis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, proposing that each region is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAil colored dielectric 
under uniform illumination. This hypothesis. the first hypothesis in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ,  belongs by itself in the tirst tier. We pro- 
pose this hypothesis as the simplest explanation because a realization exists where each element of the hypotheses for 
threc sub-regions is both homogeneous and simple. Because of the homogeneity and simplicity. we can specify the 
scene with a small number ofparameters and recreate it exactly. These pardmeters include the body refection color of 
each region of the sphere, the radius of the sphere, the position of the sphere, the position of the light source. the color 
of the light source. and the parameters of the roughness model--e.g. Cook-Torrance. For no other hypothesis in Table 
I is there as compact a realization. 

Tier two contains hypotheses 9 and 16. corresponding to a colored planar dielectric under white uniform or diffuse 
illumination. hypothesis 8, corresponding to a painted ball under diffuse illumination. and hyporheses 17 and I8 spec- 
ifying that the image is planar or curved white metal reflecting colored light. The first two hypotheses propose that we 
are looking at an image of a picture. The grey metal hypotheses propose that we are looking at the reflection of an 
object i nn  mirror. We place these hypolheses in tier two because each of them puts all of the complexity for the image 
into a single element of the description, and the other elements of the hypotheses are simple and homogeneous over 
all thrce regions. Furthermore. each of these hypotheses for the image aTe realizable without the use of strange light 
sources or careful setup. 

In tier three we place hypotheses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA19 and 20. corresponding to white dielectrics under colored illumination. One real- 
ization of these hypotheses is a white object on which the scene is being projected. Note that the use of either active 
optical elements--a lens in a projector--or careful positioning and screening of the light sources niay be necessary to 
recreate these hypotheses in a lab. Nevertheless. [he remaining element- of the hypothesis arc simple and homoge- 
neous for all three sub-regions, which differentiates these hypotheses from the remaining ones in tier four. 

Tier four contains the retnaining 12 hypotheses. each of which is some combination of colored dielectrics under uni- 
form or diffuse illumination. In none of these hypotheses are all of the regions homogeneous in their simple elenients. 
This differentiates them from the first three tiers and make their physical realization more complex, or 'weird.' 

What this analysis provides for our example image is a set of suggested segmentations. Furthermore. these segmenta- 
t ions are rank-ordered, giving a higher level program a sense of which are the 'best' segmentations of the image. 
While the criteria and reasoning used to rank-order the segmentations are not rigorous enough in this formulation to 
allow a computer ti) simulate these results. we believe this method is asking the right questions and laying the founda- 
tion for a rigorous segmentation algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5. Conclusions 

What we llave presented herein is an abstract analysis of the problems and methods involved in segmentation ofgen- 
era1 color images. To support this analysis. we presented a general model and nomenclature describing the physics of 
image formation. We have also provided a rough example of our segmentation framework, demonstrating the major 
themes and ideas. 

We have not presented an implementation based upon our analysis. Implementation of even subsections o f  this 
method will be a large undertaking. The work by Breton et al. 151, for example. demonstrates the type of reasoning 
and algorithms necessary for each of the fundamental hypotheses. Their method. which analyzes large sets c1f surface 
shapes and lighting positions for a Lambertian surface, fits completely within a single fundamental hypothesis. As  
denionstraled by [he taxonomy of funddmental hypotheses, there are some areas in which very little research has been 
underlaken t o  date. Describing this segmentation method in a computable fashion, will require integrating nu[nerous 
techniques from diverse areas of physics based uision. 



p,p zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 

The value of our analysis is that for Ihe first time we are examining where in the general segmentation prncess i t  is 
appropriate to apply specific physics-based vision techniques and how to integrate them i n t o  a whole. We have also 
explicitly identitied some of the difficulties inherent in integrating and rcasnning about the physics of image forma- 
tinn. Our analysis is both a basis and set of guidelines for future research towards the development of an intcgraled 
Segmentation system. 

The analysis of Rissanen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[32] in his discussion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe selection of model classes also provides a methodology for our 
analysis, especially our selection of fundamental hypotheses, or model classes. The process of choosing the fundn- 
mental hypotheses is one of selecting an initial set of model families with which to analyze the imagc rcgions. Ris- 
sanen argues there is no algorithmic method for undertaking this task. and that human intuition is indispensable. What 
we have provided herein is a structured analysis of the segmentation problem that suggests B relatively small. justifi- 
able set of models for the physics of a scene. 

The potential of an integrated segmentation system based on a general model of the physics of image formation i s  tre- 
mendous. Because it would rely upon physical models. a proposed segmentalion becomes not just a set of regions, 
hut a physical explanation forevery pixel in the image as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas how those explanations relate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin the 3-D world with 
regard to shape. transfer function, and illumination. By considering multiple hypotheses for image regions. i t  should 
hc able to  provide multiple segmentations of the entire image. reflecting i n  B smctured manner the ambiguity that is 
present in the mapping from an image zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtc the real world. Finally, because the physical models are general enough to 
capture virtually any illumination environment. transfer function, or surface shape. this segmentation method has the 
potential to work on a wide range of images without prior knowledge of the scene. 
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Plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. A mmpkx scene composed of numewus zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmaterials, textures, and shapes. 

Plait. 2. An objeci, a mirror image of the object, and a picture of ihe objeri 
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Plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. IUlrmination environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfor inset 
image: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAorthogod mapping of a white light zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

snurce directly overhead. 

Plate6. beambient light aith a white 
circular source tothe right and behind. 

Plate 7. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAGrey ambknt light with red Hght 
mfiected Manother object 
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plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. lllnsbgtbn of a metal hypothesis: (a) actual zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAregion, (a) wire frame surface representation (planar), 

(e) illumination environment (diffuse), (d) transfer function (nt4-" zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
!HOC (b) (E) (d) I 

Plate 11. Illustration of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdklecbk hypothesis: (a) actual region, (b) wire i h n e  Surcace representation 

(planar), (e) illumination environment (difluse), (d) trader function (dieleetrie). 

plate 12. Mug divided into Idenlized o n i f m  
rbrormtifitrregions 

Plate 14. Uniform iUumination environment. 

Plate 13. Diffi~se iuUmination environment. 

Plate 15. General Illumination Environment 

I 



Plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA16. Fundamental hypothesis with body reflection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABS color souwe: (a) surface, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) ilklmin-tinn 

environment, (e) transfer function. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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L A  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Plate 17. Fundamental hypothesis With illumination as color soure: (a) d a c e ,  (b) illumination 

environment, (e) transfer fonetion. 

A r --l - 
Plate 18. Threesolor zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALamberlian sphere. 

plate 19. Three hypothesis sets in the example he. 



Plate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20. Hypothe& zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: planar-diffuse ill.-mlored 
dielectrir zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAplate 21. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHypethesis 2: eurved--ditruse ill.-solored 
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Plate 22 Hypothesis 3: planar-niform ill.-solored 

dielectric zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Plate 24. Hypothesis 5 plmar-general ill-grey 
metal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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plate 2% Hypothesis 9: planar-general ill.-grey 

or white dwecMe 
plate 29. Hypothe& 10 curved-general ik-prey zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

or White dielectric 


