
ORIGINAL RESEARCH
published: 22 July 2021

doi: 10.3389/fnhum.2021.667509

Frontiers in Human Neuroscience | www.frontiersin.org 1 July 2021 | Volume 15 | Article 667509

Edited by:

Giovanni Di Pino,

Campus Bio-Medico University, Italy

Reviewed by:

Alessandro Scano,

National Research Council (CNR), Italy

Vincent Crocher,

The University of Melbourne, Australia

Johannes Pohl,

University of Zurich, Switzerland

*Correspondence:

Sivakumar Balasubramanian

siva82kb@cmcvellore.ac.in

Specialty section:

This article was submitted to

Motor Neuroscience,

a section of the journal

Frontiers in Human Neuroscience

Received: 13 February 2021

Accepted: 02 June 2021

Published: 22 July 2021

Citation:

David A, Subash T, Varadhan SKM,

Melendez-Calderon A and

Balasubramanian S (2021) A

Framework for Sensor-Based

Assessment of Upper-Limb

Functioning in Hemiparesis.

Front. Hum. Neurosci. 15:667509.

doi: 10.3389/fnhum.2021.667509

A Framework for Sensor-Based
Assessment of Upper-Limb
Functioning in Hemiparesis

Ann David 1,2, Tanya Subash 2, S. K. M. Varadhan 1, Alejandro Melendez-Calderon 3 and

Sivakumar Balasubramanian 2*

1Department of Applied Mechanics, Indian Institute of Technology - Madras, Chennai, India, 2Department of Bioengineering,

Christian Medical College, Vellore, India, 3Biomedical Engineering, School of Information Technology and Electrical

Engineering, The University of Queensland, Brisbane, QLD, Australia

The ultimate goal of any upper-limb neurorehabilitation procedure is to improve

upper-limb functioning in daily life. While clinic-based assessments provide an

assessment of what a patient can do, they do not completely reflect what a patient

does in his/her daily life. The use of compensatory strategies such as the use of the less

affected upper-limb or excessive use of trunk in daily life is a common behavioral pattern

seen in patients with hemiparesis. To this end, there has been an increasing interest in

the use of wearable sensors to objectively assess upper-limb functioning. This paper

presents a framework for assessing upper-limb functioning using sensors by providing:

(a) a set of definitions of important constructs associated with upper-limb functioning;

(b) different visualization methods for evaluating upper-limb functioning; and (c) two new

measures for quantifying how much an upper-limb is used and the relative bias in their

use. The demonstration of some of these components is presented using data collected

from inertial measurement units from a previous study. The proposed framework can

help guide the future technical and clinical work in this area to realize valid, objective, and

robust tools for assessing upper-limb functioning. This will in turn drive the refinement

and standardization of the assessment of upper-limb functioning.

Keywords: wearable sensors, upper-limb rehabilitation, arm and hand use, sensorimotor assessment, real world

activity, stroke rehabilitation, framework, hemiparesis

1. INTRODUCTION

After neurological injury, individuals require physical rehabilitation to promote recovery, minimize
disability, and maximize independent living. Despite years of research pointing to the benefits
of repetitive practice, the time patients spend in inpatient rehabilitation settings is often much
less than the recommended guidelines (De Wit et al., 2005; Barrett et al., 2018). Moreover, after
discharge, patients do not have enough opportunities to do targeted movement therapy at home,
sometimes leading to a pattern of “learned non-use” (André et al., 2004) and other compensatory
strategies to accomplish daily activities.

Valid and reliable assessments are crucial for gaining a better understanding of a subject’s
sensorimotor state, and allowing us to tailor intervention strategies or improve health services.
While clinic-based assessments of body function and activity can measure the capability of a
patient, they are poor indicators of the actual use of a limb in day-to-day life (Mallinson and
Hammel, 2010; Lemmens et al., 2012; Rand and Eng, 2012; Van Meulen et al., 2016). Thus,
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the assessment of movement behavior in natural settings
is vital to evaluate recovery and the real-world impact of
rehabilitation interventions. In the context of hemiparesis, such
assessments can help gauge the extent to which changes in
day-to-day activities can be attributed to true recovery or
compensatory strategies.

There are four inter-related aspects that need consideration
to build a comprehensive picture of upper-limb functioning in
daily life: (a) amount of use (duration and/or intensity), (b)
hand preference, (c) ability and capability, and (d) quality of
movement. They can be posed as the following questions of
interest to a clinician:

• Q1. How much is an upper-limb used during daily life?
• Q2. What is the relative preference for using the more-affected

limb over the less-affected one?
• Q3. What kind of upper-limb tasks does the subject achieve in

day-to-day activities?
• Q4. What is the quality of upper-limb movements performed

during day-to-day activities?

Assessments such as the motor activity log (MAL) (Uswatte et al.,
2006b) have been devised to capture, to an extent, such aspects of
upper-limb functioning. In the MAL, the amount and quality of
use are rated on a 11-point Likert scale for a set of pre-selected
tasks. The amount and quality of the more-affected limb’use is
reported by comparing it either to less-affected limb or to the
pre-stroke condition of that limb. However, the MAL has limited
sensitivity and relies on a patient’s ability to recall upper-limb
use from memory. Thus, the MAL can only provide a coarse and
subjective evaluation of upper-limb functioning in daily life.

There is growing interest in wearable sensors for continuous
and objective monitoring of upper-limb functioning (Bailey
et al., 2014, 2015; McLeod et al., 2016; Bochniewicz et al., 2017;
de Lucena et al., 2017; Lang et al., 2017; Leuenberger et al., 2017;
David et al., 2020; Lum et al., 2020). Inertial sensors composed of
accelerometers and gyroscopes have been the preferred modality
for assessing upper-limb functioning in the natural setting,
due to their availability, affordability, and compact size (Bailey
et al., 2014, 2015; McLeod et al., 2016; Bochniewicz et al., 2017;
de Lucena et al., 2017; Lang et al., 2017; Leuenberger et al., 2017;
David et al., 2020; Lum et al., 2020). Thus far, the focus of sensor-
based assessment in hemiparesis has been the quantification of
the overall amount (Q1) and the relative bias (Q2) in using the
upper-limbs during daily life (Bailey et al., 2014, 2015; McLeod
et al., 2016; Bochniewicz et al., 2017; de Lucena et al., 2017; Lang
et al., 2017; Leuenberger et al., 2017; David et al., 2020; Lum et al.,
2020). The current methods for quantifying the amount of upper-
limb use have either used: (a) the magnitude of acceleration
[e.g., activity counting (AC) (Uswatte et al., 2006a; Bailey et al.,
2014; de Lucena et al., 2017)] or (b) the duration of functional
movements detected from sensor data [e.g., gross movement
(GM) score (Leuenberger et al., 2017; David et al., 2020), machine
learning (ML) algorithms (McLeod et al., 2016; Bochniewicz
et al., 2017; Lum et al., 2020)]. Although related, movement
duration and intensity convey slightly different information, and
individually they only provide partial characterization of how

much a particular arm is used. A complete picture of how much
an arm is used in daily life requires knowledge of both the
duration and the intensity of the upper-limb movements. Also,
there is currently little work on using sensor data for determining
the nature of tasks/activities and quantifying the quality of
movements performed during daily life in neurorehabilitation
application. These aspects are likely to be explored in the coming
years with the increasing interest in this area, the availability of
more data and sophisticated data analysis methods.

In order to develop rigorous methods to assess different
aspects of upper-limb functioning, now is an opportune moment
to lay a good foundation for this problem through a formal
framework consisting of: (a) definitions of essential concepts
and their interrelationships, (b) visualization methods for the
information collected and computed from the sensor data, and
(c) quantitative measures for different aspects of upper-limb
functioning. Such a framework can help steer future technical
developments in the appropriate direction, and limit work on
ill-founded methods.

This paper presents a framework for the sensor-based
assessment of upper-limb functioning, targeting researchers
developing and validating quantitative methods for sensorimotor
assessments. This framework focuses on questions Q1 and Q2
described earlier, which is necessary for answering the other
two questions. The paper starts with formal definitions of the
various concepts (section 3) of the framework. This is followed
by qualitative and quantitative analysis (section 4) of different
methods for visualizing how much an upper-limb is used (Q1),
and the relative bias between the two upper-limbs (Q2). We note
two important points about the current work to set the right
context for the reader:

1. The work presented here is theoretical in nature concentrating
primarily on clearly defining essential concepts and
delineating their relationships. Demonstrations of the
different concepts, new visualizations, and measures are
preliminary in nature, carried out through data collected from
a previous pilot clinical study (David et al., 2020).

2. The framework presented in sections 3–4 does not make
any overt assumptions on the sensing modality used for
assessing upper-limb functioning. The exact nature of the
sensing modality can have a major influence on the fidelity of
the assessment.

The clinical relevance of the proposed framework, followed
by its limitations are discussed in the final section of the
paper section 5. We also bring to light some important issues that
should be addressed in the coming years for making pervasive,
sensor-based objective assessment of upper-limb functioning a
clinical reality.

2. THE NATURE OF ASSESSMENT OF
UPPER-LIMB FUNCTIONING

Any assessment of human behavior in a natural setting is a non-
trivial undertaking due to the lack of control over important
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FIGURE 1 | Different factors affecting the nature of use of the two upper-limbs during daily life. The construct of upper-limb functioning is composed of one’s ability,

preference, and observable behavior. Behavior is affected by multiple factors: intrinsic and extrinsic factors. Intrinsic factors inherent to a subject, e.g., ability and

preference, while extrinsic factors are external to the subject. Measurements of behavior are used by an assessment procedure to estimate upper-limb functioning.

confounding factors influencing behavior (e.g., desk vs. manual
jobs would lead to very different movement patterns), and
the constraints in measuring the information of interest (e.g.,
privacy/security issues). Note that behavior in this context refers
to the different tasks, postures, and movements carried out by
a subject. In standard clinic-based assessments of motor ability
(e.g., FMA, ARAT, etc.), these factors are controlled by defining
them as part of the assessment protocol (e.g., definition of the
task, limb to be used, measurement approach etc.). A controlled
environment for assessment enables clear interpretation of the
observed movement behavior, and simplifies intra- and inter-
subject comparison of motor abilities. This luxury is absent in the
assessment of upper-limb functioning in natural settings, which
uses measurements during unconstrained behavior to assess the
different aspects of upper-limb functioning (questions Q1–Q4 in
section 1). Behavior is affected by two types of factors:

• intrinsic factors that are directly related to upper-limb
functioning, which are to be estimated by the assessment
process (shown within the purple ellipse in Figure 1). The
motor ability and the preference for the two upper-limbs
will determine the types of tasks, amount, and quality of
movements performed by a subject during daily life. For
example, lower ability is likely to reduce the overall use of the
affected upper-limb and result in poorer quality ofmovements.
This will also discourage its use in complex, high intensity, and
long duration tasks. Similarly, a subject might avoid doing fine
manipulation tasks with the affected dominant upper-limb.

• extrinsic factors are confounders that influence behavior and
thus affect assessment outcome (listed on the left of the purple
ellipse in Figure 1). Some of these factors include the time of
observation of behavior, personal and professional constraints,
etc. For instance, the observed behavior is likely to be different
earlier vs. latter in a day, or the day of the week/month etc., due
to changes in requirements and constraints of daily routine.
Similarly, constraints from personal and professional life will
influence behavior.

Interpretation of behavior through measurements is influenced
by two factors, namely, the nature of the sensing modality
used, and the duration for which a subject is observed (shown
above the green ellipse in Figure 1). The exact choice of sensing
modality is constrained by conflicting requirements of being
minimally obtrusive while gathering maximal information for
the accurate assessment of upper-limb functioning. An ideal
sensing modality must be compact, wearable, aesthetic, and
must comply with the necessary privacy requirements, while
still gathering rich behavioral information. Furthermore, the
duration of observation will also determine the quality of
information gathered for assessment; longer observation periods
are likely to better capture “typical” behavior than shorter ones,
and thus provide a less biased estimate of different aspects of
upper-limb functioning. However, longer observations periods
are likely to have poor compliance, due to inconvenience in using
the sensors for recording daily behavior.

Thus, the assessment of upper-limb functioning must control
for as many extrinsic factors as possible (e.g., fix the time of
observation within and across subjects), while also ensuring the
choice of sensing modality and the duration of observation are
kept unchanged. This can minimize the effect on assessment
outcome variability within and across subjects, thus improving
the interpretability of the outcomes. It is, however, crucial to be
aware that there are other extrinsic factors that still influence
the outcome and thus interpreting outcomes of upper-limb
functioning must be done with care.

3. ASSESSING UPPER-LIMB
FUNCTIONING: FORMAL DEFINITIONS

Before getting into the details of the framework, we start with a
brief overview of the general process of sensorimotor assessment
in the context of neurorehabilitation. This detour is necessary to
establish the meanings of the terms “evaluation,” “assessment,”
“measure,” and “measurements,” as some of these terms are
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FIGURE 2 | A directed graph representation of the connections between the different constructs defined in the proposed framework. The leftmost node represents

the measurements, while the rest of the nodes are constructs of interest in the assessment of upper-limb functioning. The construct at the end of a directed edge is

derived using the construct/measurements at the start of the directed edge. The measures (gray color text) used to quantify a construct from measurements are

placed above the directed edge. The brown colored text next to some of the construct indicate how two constructs are combined to derive the target construct.

used to mean different things in the current literature. The
process of determining the sensorimotor state of a subject is a
hierarchical process with clinical evaluation at its highest level.
We define evaluation as the process of interpreting the results of
one or more assessments to gauge a subject’s sensorimotor state
with respect to a reference, either him/herself from a different
time point (intra-subject), or another subject (inter-subject). For
instance, an evaluation is performed when comparing the results
of ARAT assessments across different time points, or comparing
smoothness of reaching movements of a patient against
normative data. Evaluations can be aided through visualizations
that allow interpretation of assessments. One level below in this
hierarchy are assessments, which we define as the process of
quantifying (i.e., putting numbers) abstract theoretical constructs
(e.g., smoothness, coordination, synergies). For instance, the
Fugl-Meyer upper-limb assessment is a process of quantifying
the constructs “motor function,” “synergy,” and “coordination.”
Unlike an evaluation, an assessment only deals with assigning
numbers (or labels in some cases) to constructs of interest.
Assessments require clearly defined protocols for collecting
data (e.g., tasks/movements to be performed), and measures.
A measure is a well-defined mathematical function/formula,
a computational algorithm, or a set of rules for mapping
measurements or observations to quantities that are interpretable
in the context of the given construct. For instance, spectral arc
length (SPARC) and log dimensionless jerk (LDLJ) are measures

of the construct “movement smoothness”; the rules used for
assigning a score to the flexion synergy task in the Fugl-Meyer
assessment is a measure of the construct “flexion synergy.”
Measures with good properties are essential to obtain valid,
reliable, and interpretable assessments. Finally, measurements
are records of variables (e.g., speed, position, orientation, etc.)
obtained through various sensors or through human observation.
Measurements are used by measures to quantify constructs, e.g.,
measurements of movement speed profile are used by the SPARC
measure to quantify movement smoothness.

In the rest of this section we provide definitions of the
constructs of the proposed framework for assessing upper-
limb functioning. The relationship between various constructs
introduced is in this section is summarized in Figure 2. Relevant
literature that supports the constructs defined below are given
in Table 1. We make no explicit assumption on the types of
measurements available for quantifying the different constructs
defined below. It should, however, be evident that the different
types of measurements will vary in terms the amount of
information they convey about the different‘constructs.

3.1. Measurement Space
The type of sensor measurements available for an assessment
will determine the steps in the analysis pipeline and the nature
of information extracted about a subject’s sensorimotor state. It
is thus crucial for any assessment procedure to clearly state the
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TABLE 1 | List of studies that have implemented measures related to upper limb functioning during free living conditions.

Construct Literature

Measurement space

(Mi)

Wrist-worn Accelerometers (Uswatte et al., 2006a; Bailey et al., 2014, 2015)

Wrist-worn Inertial measurement units (Bochniewicz et al., 2017; de Lucena et al., 2017; David et al., 2020; Lum et al., 2020)

Finger-worn magnetic ring (Friedman et al., 2014)

Egocentric camera (Nguyen et al., 2016; Tsai et al., 2020, 2021)

Upper-limb use

(ui)

Thresholded activity count (Lum et al., 2020; Subash et al., 2020)

Gross movement score algorithm (Leuenberger et al., 2017; David et al., 2020)

Random forests algorithm (Bochniewicz et al., 2017; Lum et al., 2020)

Instantaneous

intensity of use (µi)

Activity count (Uswatte et al., 2006a; Bailey et al., 2014, 2015; de Lucena et al., 2017)

Average upper-limb

use (Ui)

Mean arm-use (David et al., 2020)

Average intensity

of use (Ii)

None*

Average upper-limb

activity (Ai)
None*

Task (τi) for detecting tasks using

different sensors (e.g., Bulling et al., 2014; Nweke et al., 2018)

Movement quality None*

The components of the framework that have not been explored in the current literature, entry is filled as “None”. *means that this is to best of the authors’ knowledge.

measurement variables used to quantify a specific construct. In
this context, we define measurement space as the following.
Definition Measurement space is the universal set of all
possible sensor measurements available from an upper-limb for
quantifying the different constructs in an assessment.

We denote this set—the measurement space—by M and
assume that the same quantities are measured from both upper-
limbs for the given assessment procedure. Inertial sensing is one
of the most common modalities used in the current literature,
where the arm movements are measured using wrist-worn
accelerometers

(

M = R
3
)

or IMUs1
(

M = R
6
)

. For a more
elaborate measurement setup that includes wrist position and
orientation, along with k joint angles of the arm, M = R

3 ×

SO (3) × [0, 2π)k; where R
3 is the set of all possible wrist

positions, SO (3) is the special orthogonal group of all rotation
matrices representing 3D orientations of the wrist, and [0, 2π)k

is the set of k joint angles.
Measurements for an assessment are made over a finite

observation period referred to as the measurement epoch. Let
Ml (t) andMr (t) represent the values of the measurements from
the left and right upper-limb, respectively, made at time instant t,
where t ∈ [0,T], andMl (t) ,Mr (t) ∈ M; T is the duration of the
measurement epoch. We use Ml and Mr to represent the entire
time series or signal, where Ml,Mr ∈ M ([0,T]); M ([0,T]) is
the set of all possible measurement signals over a measurement
epoch of duration T seconds starting at time t = 0. In addition
to specifying M, it is also essential for the reproducibility of
an assessment to clearly specify the exact sensors used for the
measurements, their accuracy, noise characteristics, resolution,
sampling rate, etc. The values of these parameters have practical
implications for data analysis and interpretation. These practical

1IMU—InertialMeasurement Unit—consists of an accelerometer and a gyroscope.

issues will be not be considered in this manuscript, and to
simplify the presentation the mathematical formalism used
assumes all measurements to be continuous in time and space.

3.2. Upper-Limb Use
Definition Upper-limb use is a binary construct indicating the
presence or absence of a voluntary, meaningful movement, or
posture of an upper-limb.

In this definition, the boundary of what constitutes a
“meaningful” movement/posture must be defined a priori. Some
examples of meaningful use include reaching and grasping,
turning a doorknob, stabilizing an object with one limb
while manipulating it with the other, holding a glass, writing,
typing, upper-limb therapy exercises etc. Under this definition,
involuntary and passive upper-limb movements/postures are not
considered meaningful, e.g., resting the arm on a table, upper-
limb moved by an external force, etc. There are, however, cases
where the presence/absence of upper-limb use is ambiguous, e.g.,
arm swing during walking, passively resting the upper-limb on
a book to prevent the pages from turning, etc. Such ambiguities
are best resolved in an application-specific manner, where the
set of tasks considered as meaningful are clearly stated a priori.
For instance, in the current upper-limb use literature arm swing
during walking is not considered as meaningful, even though
these are unlikely to be purely passive movements (Blouin and
Fitzpatrick, 2010).

Upper-limb use can be mathematically represented as a binary
signal over time computed from upper-limb measurementsMi ∈

M ([0,T]), where i ∈
{

l, r
}

. Let fu be a function representing a
measure that maps a given measurement signal Mi to a binary
signal ui over the same temporal domain, i.e., fu :M ([0,T]) 7→

B ([0,T]); B ([0,T]) is set of Riemann-integrable binary signals
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in the time interval [0,T].

ui , fu (Mi) , ui (t) ,

{

0, UL is not in use at time t

1, UL is in use at time t
(1)

where, ui is the upper-limb use signal of the upper-limb
i. The choice of fu is determined by several factors, such
as the measurement space M, computational complexity of
the measure, sensitivity/specificity of the measure, etc. All
measures of upper-limb use exploit some common structure in
functional/meaningful movements present in the measured data
to detect upper-limb use. Some examples of the current measures
(

fu
)

that make use of accelerometers or IMUs are:

• Thresholded activity counting. Activity counting (AC) is one
of the most popular methods in the literature to quantify
upper-limb functional and non-functional activity (Uswatte
et al., 2006a; Bailey et al., 2014, 2015; de Lucena et al., 2017).
AC has high sensitivity, but poor specificity (Subash et al.,
2020). AC can be used with both accelerometers and IMUs.
Upper-limb use ui is computed from AC by assigning a value
of 1, whenever the AC is above a threshold.

• Gross movement (GM) score. The Gross movement (GM)
score (a.k.a Gross Counts or Gross Movement Identification
method) proposed by Leuenberger et al. (2017) reconstructs
the forearm orientation using a wrist-worn IMU to detect
movements that occur in a pre-specified range of forearm
orientations (Leuenberger et al., 2017). It is 1 whenever there
are arm movements in a pre-specified range of forearm
orientations, else it is 0. The GM score is highly specific, but
has low sensitivity (Subash et al., 2020), and it can only be used
with an IMU.

• Random forests classifier. Bochniewicz et al. (2017) proposed
the use of a random forests classifier to detect upper-limb
use from features extracted from an accelerometer. The ML
approach can be used with both accelerometers and IMUs, and
has reasonable sensitivity and specificity (Lum et al., 2020).

Upper-limb use as defined in this section is an idealized
construct, and its detection in practice using sensor
measurements will be error-prone due to measurement noise,
the natural intra- and inter-subject movement variability, and
the relative sensitivity of the sensor measurements to movements
and postures. The nature of the measurementsM and the choice
of measure fu will influence how well upper-limb use can be
quantified (e.g., sensitivity and specificity) in practice.

The upper-limb use signals from the two limbs can be used
for defining unimanual and bimanual upper-limb use at time t as
the following:

Unimanual use of the right limb: ur (t) · (1− ul (t))

Unimanual use of the left limb: ul (t) · (1− ur (t))

Bimanual use of both limbs: ur (t) · ul (t)

(2)

Unimanual use refers to a situation where only one of the upper-
limbs is used, i.e., only ur (t) or ul (t) is 1 at time instant t, but
not both. On the other hand, bimanual use involves the use of

both limbs simultaneously, i.e., both ur (t) and ul (t) are 1 at
a given time instant t. Bimanual use will include a wide range
of coordination patterns between the two limbs (Kantak et al.,
2017), including completely independent use of the two limb
(e.g., writing with one hand while holding and drinking from a
cup with the other hand) tomovement of the two limbs with tight
spatio-temporal synchronization (e.g., holding and balancing a
tray of glasses with both hands).

3.3. Instantaneous Intensity of Use
Definition Instantaneous intensity of use is a construct that
reflects how strenuous a movement/posture is at a particular
instant of time, when the upper-limb is in use.

Some examples of measures
(

fµ
)

to quantify instantaneous
intensity of use include the magnitude of movement velocity,
acceleration, interaction force, muscle activity, etc. Let µi

represent the instantaneous intensity of use signal for the upper-
limb i. It assumes non-negative values when the upper-limb is
used, and is defined to be zero otherwise.

µi , ui · fµ (Mi) (3)

where, µi ∈ R≥0 ([0,T]), and the function fµ :M ([0,T]) 7→

R≥0 ([0,T]) computes instantaneous intensity of use signal from
the upper-limb measurement signalMi.

The exact choice for fµ is application-specific and dictated
by M. We also note that results obtained from different types
of measurements and different measures fµ might not be
comparable, e.g., the magnitude of movement velocity can be
independent of the magnitude of movement acceleration. Thus,
it is imperative to report the exact fµ and its units when reporting
the instantaneous intensity of use. Activity counting, as defined
in Bailey et al. (2014), Bailey et al. (2015), and de Lucena
et al. (2017), is an example of an instantaneous intensity of use
measure in the current literature.

In general, µi (t) will not be uniformly zero in a continuous
interval of time t ∈ [t1, t2] where there is a functional movement.
However, µi (t) can be uniformly zero in a continuous interval
under two circumstances:

1. ui (t) = 0, ∀t ∈ [t1, t2]: When there is no upper-limb use
during this interval.

2. fµ (Mi) (t) = 0, t ∈ [t1, t2]: When the upper-limb is used
in a meaningful posture, fµ (Mi) (t) can be uniformly zero
in the interval t ∈ [t1, t2] for some choice of measurement
signal and fµ. For example, activity count, magnitude of
movement acceleration/velocity will be zero during an upper-
limb posture. On the other hand, the magnitude of muscle
activity controlling the upper-limb will not be zero even while
holding a voluntary posture.

3.4. Average Upper-Limb Use or Relative
Duration
Definition Average upper-limb use or relative duration is a
construct that reflects the proportion of time an upper-limb is
used in a given time period D.
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Average upper-limb use at time t, denoted by Ui (t;D), can be
computed as the average value of ui in the past D seconds.

Ui (t;D) ,
1

D

∫ t

t−D
ui (x) dx, t ∈ [D,T] (4)

Ui (t;D) is a smoothed version of ui. We will drop D in the
parenthesis in the rest of the manuscript and use it only if it
needs to be explicitly mentioned. From Equation (4), we can
immediately identify some essential properties of Ui:

• Ui is a continuous-valued signal that can take any value in the
closed interval [0, 1].

• The value of Ui (t) indicates the proportion of time in the
interval (t − D, t] where the upper-limb was used, i.e., ui (t)
was 1. Thus, there are infinitely many uis that can result in the
same Ui.

• The value of the parameter D will depend on the application,
and controls the amount of smoothing of ui; larger values
of D will results in smoother Ui while compromising time
localization of the information conveyed by Ui. When D = T,
then Ui measures the proportion of time the upper-limb i was
used over the entire measurement epoch.

3.5. Average Intensity of Use
Definition Average intensity of use is a construct that reflects the
average intensity of movements during upper-limb use in a given
time period D.

Average intensity of use Ii (t) can be computed from the
upper-limb use signal ui and the instantaneous intensity of use
signal µi(t) as the following,

Ii (t;D) ,











∫ t
t−D µi (x) dx

∫ t
t−D ui (x) dx

,
∫ t
t−D ui (x) dx 6= 0

0,
∫ t
t−D ui (x) dx = 0

(5)

where, Ii (t) ∈ R≥0. The same ambiguity as µi (t) exists when
Ii (t) = 0 for some time instant t. Ii (t) = 0 could mean that the
upper-limb was either not used during the time interval (t − D, t]
or it was used for performing upper-limb postures, depending on
the measure used to quantify instantaneous intensity of use.

3.6. Average Upper-Limb Activity
The amount of use of an upper-limb during a measurement
epoch depends on both the duration and intensity of movements
performed during this period, which are captured by Ui and
Ii, respectively.
Definition Average upper-limb activity is a construct that reflects
of how long and how intensely an upper-limb is used in a given
time period D.

High amounts of average upper-limb activity correspond to
long duration, high intensity movements, while low activity
corresponds to short duration, low intensity movements. Average
upper-limb activityAi of the upper-limb i can be captured by the
product of Ui and Ii, which quantifies the co-variation of these
two factors. We thus defineAi as,

Ai (t) , Ui (t) · Ii (t) =
1

D

∫ t

t−D
µi (x) dx, t ∈ [D,T] (6)

where, Ai (t) ∈ R≥0 assumes non-negative values and is upper-
bound by Ii (t). A subject with high values for Ai would be
referred to as more active, than one with lower values of Ai.
Visualization of how much an upper-limb is used during a
measurement epoch, and its quantification through a single
number usingAi are discussed in section 4.2.

3.7. Functional Workspace
We are also often interested in knowing the region of space
around a person’s body where an upper-limb is used to reach
and manipulate the environment (Ploderer et al., 2016). The in-
clinic assessment of active range of motion of an upper-limb
only tells us about the space that can be reached by a subject. It
does not necessarily convey information about the space a subject
regularly moves to carry out daily activities. We refer to the latter
as the functional workspace, defined as the following.
Definition Functional workspace of an upper-limb is a
quantitative representation of space traversed by an upper-limb
when carrying out functional activities during daily life.

In this definition space could be the endpoint (Euclidean)
space of the hand represented in an egocentric frame of reference,
or the joint space upper-limb composed of the various joints of
the limb.

Let Wi (t) represent the functional workspace of upper-limb
i computed at the time instant t from a segment of Mi from the
last Dsec, i.e., from t − D sec to t sec. In order to have a general
and informative representation of the workspace, we define Wi

to be a probability density function over the space of interest,
where the density at a given spatial location is proportional to the
relative amount of time spent in a small volume of space around
the spatial location during the lastD sec of performing functional
movements or postures.

Wi (t;D) = fW (Mi, ui; t,D) (7)

where, fW (Mi, ui; t,D) is the function that computes
a probability density function from the segment of the
measurement Mi and upper-limb use ui signals between times
t − D and t. Such a probability density function would allow
useful visualization of the functional workspace as a heatmap
representing regions of space that a subject is comfortable
traversing during their daily activities. Such heatmaps have been
found to be useful by clinicians to understand the nature of use
of the upper-limb (Ploderer et al., 2016). It should be noted
that one might also be interested in the workspace of the limb
when performing non-functional movements—non-functional
workspace, which can be obtained from fW (Mi, 1− ui; t,D).

Additionally, the use of probability density functions for
Wi also enables one to compute various summary measures
about the nature of the workspace, such as volume of the
functional workspace, preferred spatial locations during day-to-
day activities, symmetry of the functional workspace between the
two limbs, etc., which help to characterize different aspects of the
functional workspace.

3.8. Task
The constructs discussed so far—ui, µi, Ui, Ii, Ai, and Wi—are
task-agnostic constructs that only depend on whether or not a
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meaningful movement or posture is performed, irrespective of
its type (e.g., reaching, manipulation, drawing). To elucidate the
nature of upper-limb use, task-specificmeasures are required, i.e.,
measures that can classify the types of tasks being performed, how
well these tasks are performed, etc. This information could be
used to target therapy to accomplish specific rehabilitation goals.
To carry out task-specific analysis, one must first define a set of
tasks of interest that can be identified from the measurementMi.
Definition Task is any upper-limb movement or postural pattern
of interest.

Let the set T ,
{

0, 1, 2, . . . p
}

⊂ N be a set of natural numbers
representing the p distinct tasks of interest; the numbers from 1
to p correspond to the p tasks, and 0 represents all tasks other
than these p tasks of interest. Let τi (t) ∈ T ([0,T]) represent the
task performed by the upper-limb i at time t.

τi , fτ (Mi) , τi (t) =



















n, Task n is being performed by UL

i at time t.

0, None of the n tasks of are being

performed by ULi at time t.

(8)
The function fτ is a measure that maps the measurement signal
Mi to τi, i.e., fτ :M ([0,T]) 7→ T ([0,T]). We assume that, in
general, the p tasks of interest are functional in nature, which
implies τi (t) can take on a non-zero value only if ui (t) =

1. Similar to upper-limb use, the detection of tasks from the
measurement data will also be probabilistic in nature due to the
natural intra- and inter-subject movement variability (Bulling
et al., 2014). Human activity recognition using various sensing
modalities is a current area of research in the machine learning
and artificial intelligence community (Bulling et al., 2014; Nweke
et al., 2018). Wearable sensors such as IMUs and vision systems
are two commonly employed sensing modalities for recognizing
different activities or tasks. The choice of the algorithm fτ will
depend on several interrelated factors, all of which have a bearing
on its overall performance in detecting tasks:

• the exact nature of the measurements M, determined by the
types and number of sensors used for measuring movement
behavior. A diverse set of sensing modalities and higher
numbers of sensors is likely to result in better detection
performance. For wearable sensors, there is evidence that
indicates that sensors on multiple segments of the arm can
result in better performance than a single sensor just on the
hand (Bulling et al., 2014).

• the sets of tasks T that one is interested in detecting.
The choice of the specific tasks of interest is application
specific, and must ensure they can be detected using the
available sensor data. Ideally, one must avoid complex tasks
which are composed of a set “sub-tasks” (e.g., cooking)
and require contextual information about the user and the
environment that is often not available (Van Meulen et al.,
2016). Furthermore, the chosen tasks in T must have distinct
kinematic patterns that can be robustly distinguished with the
available measurements.

• the size of annotated ground-truth data available for training
a chosen algorithm will determine the nature of algorithm
that can be used. This factor will also have direct implications
for the generalizability of the algorithm’s performance to
unseen data, and thus its performance. The size of the training
dataset required for any algorithm will depend on the nature
of the algorithm, the number of tasks, and the intra- and
inter-class variability in the data for the problem of interest.
For example, machine learning algorithms perform better in
detecting movement behavior in healthy subjects compared to
patients (Lum et al., 2020), arguably due to an increased inter-
subject (and may be also intra-subject) variability in patient
populations.

• the availability of computational resources will also influence
the types of algorithms that can be trained and used for
detecting tasks. Real-time algorithms running on wearable
devices will have more constraints (Laput and Harrison, 2019)
than algorithms that work on the data offline on a PC.

A range of different algorithms have been explored for
human activity recognition, such as Hidden Markov Models,
Decision Trees, Supper Vector Machines, k-Nearest Neighbors,
etc. (Bulling et al., 2014). More recently there has been
an increased use of deep learning networks for activity
recognition (Nweke et al., 2018), which have shown very
promising results even with a single wrist-worn smartwatch
measuring accelerations of the wrist (Laput and Harrison, 2019).

3.9. Movement Quality (MQ)
Definition Movement quality (MQ) is construct that reflects the
quality of the underlying sensorimotor control.

MQ is a high level construct indicative of the motor ability of
a user, and is composed of other constructs such as movement
smoothness (Balasubramanian et al., 2015), coordination (Levin,
1996; Cirstea et al., 2003), tremor (Mansur et al., 2007),
etc. Movement quality includes both tasks-specific and task-
agnostic constructs, which differ primarily in terms of their
computational procedure, and their interpretation. Task-agnostic
measures of movement quality (e.g., amount of tremor) can be
computed from the Mi without worrying about the underlying
tasks being performed. For instance, the amount of tremor in
a frequency band of interest could be computed over short
segments of movement data from the entire measurement
epoch. The numbers, thus obtained, indicate the change in
the amount of tremor as function of time. Although there
can be several reasons (e.g., the task currently performed)
that influence the amount of tremor experienced by a subject,
these reasons do not influence what the numbers mean at a
given time instant. On the other hand, task-specific measures
(e.g., smoothness, coordination, etc.) must be computed only
from complete data segments corresponding to a particular
occurrence of a specific task. The appropriate interpretation of
such task-specific movement quality measures requires necessary
contextual information, which must include at least the task
being performed (Balasubramanian et al., 2015). For example, an
equally smooth reaching movement and a drawing movement
will result in two different values computed from the same
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smoothness measure, because the spatio-temporal constraints
of the two tasks are different (Balasubramanian et al., 2015).
Thus, for such task-specific constructs the numbers alone
are not sufficient to appropriately interpret quality of the
observed movement. The context in which the different tasks are
performed are also crucial for meaningfully interpreting these
numbers in this scenario (Ploderer et al., 2016).

Similar to the other constructs discussed above, issues such
as the nature of the available sensor data, the use of appropriate
measures for movement qualities, applicability of these measures
with different types of sensor data etc. need to be considered. For
instance, recent work on estimating movement smoothness with
IMUs has shown that the SPARC measure cannot be used with
acceleration data, even though the SPARC has been shown to
be a good measure of movement smoothness when applied on
movement velocity (Melendez-Calderon et al., 2021).

Given these difficulties, it is not surprising that there is
currently little work on assessing movement quality of upper-
limb functioning in daily life using sensors (Bulling et al.,
2014). We note that it might also be of interest to evaluate
the quality of postures (e.g., the amount of scapular elevation
used by subject to hold an object against gravity), in which case
movement quality can be generalized to mean movement or
posture quality. Furthermore, common compensatory strategies,
such as the use of the trunk to compensate for shoulder and
elbow deficits (Levin et al., 2002, 2009), would also fall within
the purview of movement quality. Such compensatory strategies
can be seen as some form of task-specific abnormal coordination
between the different joints of the trunk and upper-limb.

4. VISUALIZATION AND QUANTIFICATION
OF UPPER-LIMB FUNCTIONING

Measuring upper-limb movements during daily-life can result
in vast amounts of data, which needs to be summarized
through appropriate quantitative and graphical means. A well-
designed graphical summary can provide quick and clear
insights into data, and allow users to answer specific questions
about upper-limb behavior. In this section, we present three
graphical approaches for summarizing answers to Q1 and Q2
discussed in the introduction: (a) temporal profile of upper-
limb functioning for depicting the variation of upper-limb
use over time; (b) summary of upper-limb activity; and (c)
relative use of the two upper-limbs. Each graphical approach
mentioned above is explained using data obtained from a
previous study by David et al. (2020). The measurements were
obtained from IMUs donned on each wrist, i.e., Mi (t) =
[

ai (t)
⊤

ωi (t)
⊤
]⊤

∈ R
6 = M and consists of the linear

acceleration ai (t) and angular velocity ωi (t) measured by the
triaxial accelerometer and gyroscope, respectively, at time t from
the upper-limb i. Upper-limb use was estimated using the GM
score algorithm (Leuenberger et al., 2017), and instantaneous
intensity of upper-limb use was chosen to be the activity counts
(Brønd et al., 2017) derived from the accelerometer data. Average
upper-limb use and intensity were computed using D = 60s.
Note that the visualizations discussed below are not restricted to

one particular sensing modality but can be appropriately adapted
for different measurements as discussed in section 5.1.

4.1. Temporal Profile of Upper-Limb
Functioning
The plots of ui, µi, Ui, Ii over the course of the measurement
epoch, allows the user to see variations in these constructs over
the course of a day or days. Sample plots of ul, Ul, µl, Il for
a healthy (left column) and an impaired subject (right column)
over a period of 90 min are shown in Figure 3. The left upper-
limb use ul is visualized as an event plot in Figures 3A,B,
where the presence of a gray vertical line at time t means
ul (t) = 1, else it is 0. The average upper-limb use or duration
Ul is displayed in a red trace in Figures 3A,B. Figures 3C,D
display the corresponding µl and Il for this period in gray
and blue traces, respectively. We note that µl (t) = 0 in these
plots correspond to either the upper-limb not being used or a
functional posture, since both the GM score algorithm and the
activity counts are insensitive to postures. Similarly, Il (t) = 0
when the upper-limb was not used or used in a posture in the last
D seconds, i.e., Ul (t) = 0.

Il (t) only provides a summary of the intensity of left upper-
limb use in a temporal segment by computing the average
intensity. A more detailed depiction of movement intensity can
be provided by displaying the relative proportions of time the
movement intensity is low, medium, or high, in an observation
window; the definitions of the three intensity levels are provided
in the figure’s caption for this particular case. The plots in
Figure 3 can aid clinical evaluation. It indicates that the overall
amount and intensity of use for the patient (right column) is
lower than that of the healthy subject. The patient also has little or
no high intensitymovements compared to the healthy participant
(Figures 3E,F).

4.2. Visualization of Upper-Limb Activity
A visual summary of the amount of upper-limb use during a
measurement epoch can be provided through a scatter plot of
Ui (t) vs. Ii (t), ∀t, such that Ui (t) 6= 02. This plot will be referred
to as the Use vs. Intensity plot, UI plot, which provides a simple
visual summary of the overall upper-limb activity. With no loss
of generality, we have chosen Ii and Ui to be the x and y axes of
the UI plot, respectively, which has the following properties:

• All points of this scatter plot belong to the set P =
{(

x, y
)

| 0 ≥ x , 0 < y ≤ 1
}

. This a strip of height 1 extending
along the positive x axis.

• By definition, the x axis is not part of the plot since only data
points where Ui 6= 0 are considered.

• Depending on the measurement signal and the choice of
measure fµ, the set of all points

{(

0, y
)

| 0 < y ≤ 1
}

will
correspond to upper-limb postures; this will not be true when
Ii (t) 6= 0 for meaningful postures.

• Scatter points with large values for x and low values
for y correspond to short duration high intensity

2This condition ensures that data segments where the upper-limb is at rest or is

being used for non-functional movements are ignored.
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FIGURE 3 | Temporal visualization of constructs related to left upper-limb use and intensity. The left and right columns correspond to data from a healthy participant

and a patient, respectively. (A,B) depicts the left upper-limb use signal ul as a gray-colored event plot, where the vertical gray line at time t indicates ul (t) = 1. And the

light red colored graph shows the corresponding average upper limb use Ul . (C,D) depicts the instantaneous intensity of use µl (gray) and the average intensity of use

Ii (light blue) for the left upper-limb. (E,F) depicts the proportion of time the intensity of use was low (orange), medium (brown), or high (black) in the last 60 s.

Although not shown in these figure, it would also be useful to indicate in such plots periods of time where there is no data available, i.e., periods where a wearable

sensor has been removed and is not recording movement data from a subject.

movements, e.g., swatting a fly. Whereas, points
with values of y close to 1 and low values for x
correspond to prolonged low intensity movements, e.g.,
writing, typing.

Data from both upper-limbs can be visualized in a single plot
by plotting them in the first and second quadrants as shown in
Figure 4. Here, the right and left upper-limbs are depicted in
the first and second quadrants, respectively; note that the data
in the second quadrant are plotted by negating the value of Ii.
The light red colored lines in these plots correspond to constant
average upper-limb activity lines, i.e., Ai = Ui · Ii = c, where c
is a constant.

Figures 4b,c display the UI scatter plots for a healthy and
stroke participant, respectively, using data collected from a single
day (6–8 h) of recording (David et al., 2020). For the healthy
subject, most points are of short to medium duration (Ui < 0.5)
and low intensity (Ii < 50) in Figure 4b, with some long
duration, high intensity movements performed with both limbs.
In comparison, most movements of the stroke participant were
of relatively shorter duration (Ui < 0.2), with low to medium
intensity movements (Ii < 100); high intensity movements Ii >

100 were rare. This observation is also evidenced by reduced
number of constant Ai lines that cut through the scatter plot in
Figure 4c compared to that of the healthy subject.

4.3. Quantification of Overall Upper-Limb
Activity
The distribution of points in an UI plot can be thought of as a
sample obtained from a bi-variate probability density function of

U and I , p
I,U

(

x, y
)

3. The univariate probability densities of Ui,
Ii, andAi can be obtained from p

I,U
as the following,

p
I

(x) =

∫ 1

0
p
I,U

(

x, y
)

dy;

p
U

(

y
)

=

∫ ∞

0
p
I,U

(

x, y
)

dx;

p
A

(z) =

∫ 1

0
p
I,U

(

z

y
, y

)

√

1+
z2

y4
dy (9)

We define a quantitative measure of how much an upper-limb is
used,Hq, as the q

th percentile ofA, which can be computed from
its probability density function p

A
,

Hq , q
A
, s.t.

∫ q
A

0
p
A

(z) dz = q (10)

where, the subscript in q in Hq indicates that the measure is

computed using the qth percentile.
Properties ofHq. We demonstrate through a set of simulated

scenarios (Figure 5) that the measure Hq agrees with our
intuition. Consider the scenarios depicted in Figure 5, which
shows five UI plots, in the top row, with different distribution of
points. In each of these plots, points are assumed to be uniformly
distributed in the gray regions shown; the light red colored curves
are theAi = c lines, where c is a constant. The rows of plots below
the UI plots show the univariate probability density functions p

I
,

p
U
, and p

A
estimated from the data points sampled from the

3p
I,U

(

x, y
)

is actually a conditional density function, since we only consider data

where U 6= 0.
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FIGURE 4 | Use vs. Intensity (UI) plot to depict the overall amount of use of

the upper-limbs. (a) This plot provides the details of a typical UI plot and

highlights some critical elements to help interpretation. The x axis cannot be

part of the plot, and light red colored curves are the constant upper-limb

activity lines. If fµ is the magnitude of acceleration as is the case in (b,c), then

the y axis represents meaningful/functional postures where the intensity can

be zero. (b) UI plot for a healthy participant using data collected from a single

day. The 1st and 2nd quadrants of the scatter plot depicts the right (blue) and

left (red) upper-limbs, respectively. (c) UI plot for a stroke participant using data

collected from a single day. It is clear that the stroke participant has a low level

of activity compared to the healthy participant, which is also reflected in their

corresponding Hq scores.

corresponding distributions p
I,U

shown in the UI plots in the

top row, along with the corresponding qth percentile values of the
sample data (q was set to 90).

The following observations can be made about the five
scenarios depicted in Figure 5, which are reflected in the
measureHq:

• Scenario-1 has the lowest upper-limb activity
(

Hq = 1.18
)

among all scenarios, as all movements are of short duration
and low intensity. Ui ∈ [0, 0.2], Ii ∈ [0, 10], andAi ∈ [0, 2].

• Scenario-5 has the highest upper-limb activity
(

Hq = 45.64
)

as all movements are of long duration and high intensity.
Ui ∈ [0.8, 1], Ii ∈ [40, 50], andAi ∈ [32, 50].

• Scenarios 2, 3, and 4 have the same range of values for Ui and
Ii (Ui ∈ [0, 1] , Ii ∈ [0, 50]) with similar values for qI and qU .

• Scenario-2 has higher activity Hq = 6.10 than scenario-1 as
it contains movements of larger duration or higher intensity
in addition to movements similar to scenario-1. This results in
larger values forAi ∈ [0, 10] compared to scenario-1.

• Scenario-3 has higher activity Hq = 14.78 than scenario-
2 as it has longer duration and higher intensity movements
than scenario-2, resulting in even larger range of values for
Ai ∈ [0, 18] than scenario-2.

• Scenario-4 has movements with longer duration and higher
intensity than scenarios 2 and 3, resulting in a large interval
for the possible values of Ai ∈ [0, 50] compared to scenarios
2 and 3. Thus, resulting in a much higher level of activity,
Hq = 36.82.

• The difference in upper-limb activity between scenario-4 and
scenario-5 is smaller than that of scenario-4 and scenario-
3. Scenario-4 has more long duration and high intensity
movements than scenario-3, but has more shorter duration
and lower intensity movements than scenario-5. Scenario-5
only has longer duration and higher intensity movements.

4.4. Visualization of Relative Use of the
Upper-Limbs
Visualizing the relative use of the upper-limbs has been explored
through 2D scatter plots or heat-maps of different variables
related to the use of the upper-limbs (Bailey et al., 2014; David
et al., 2020). Relative upper-limb use can be visualized and
quantified using measures of average upper-limb use (Ur ,Ul),
average upper-limb intensity (Ir , Il) or average upper-limb
activity (Ar ,Al); here, we use average upper-limb intensity for
demonstration purposes. We only consider data points where at
least one of the two upper-limbs was used, i.e., Ir (t) + Il (t) >

04; it is meaningless to talk about relative use when neither
upper-limb is used.

In general, relative use of the upper-limbs can be visualized
by plotting two functions g (Ir , Il) and h (Ir , Il) of the subject’s
data along the x and y axis, respectively. These two function
g (·) and h (·) will determine the nature of distribution of data
points in this “gh” scatter plot and its fundamental properties.
A qualitative understanding of these properties can be obtained
from the following four family of curves L1 to L4 in the gh plot:

Average intensity of the left upper-limb is constant

− L1 : Il (t) = c

Average intensity of the right upper-limb is constant

− L2 : Ir (t) = c

Ratio of average intensities of the two upper-limbs is constant

− L3 : Il (t) = c · Ir (t)

Product of average intensities of the two upper-limbs is constant

− L4 : Il (t) · Ir (t) = c

(11)

4As discussed earlier, Ii can be zero during functional postures for some

measurement signals and function fµ. Thus, under this scenario the condition

Il (t) + Ir (t) = 0 will include data either when both upper-limbs are not used

or when both are used for performing functional postures.
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FIGURE 5 | Demonstration of the measure Hq for five different simulated scenarios corresponding to different levels of upper-limb activity. The top row shows the UI

plot for the different scenarios. The shaded areas (gray) indicate different simulated scenarios from which points are sampled with uniform density. Two of constant

activity lines (light red) in each plot are shown as dashed lines corresponding to Ai = 2 and Ai = 20. The bottom three rows depict the marginal probability density

functions for Ii (second row), Ui (third row), and Ai (bottom row) for these different scenarios. The black vertical dashed line indicates the qth percentile (here, q = 90)

for these different scenarios with the corresponding value written on the individual plots. Note that to enable the proper depiction of the density functions for the

different scenarios, the scale for the x axis for the bottom row is adjusted.

where, c ∈ R≥0. L1 and L2 are particularly useful in explaining the
shape of the distribution of points in the different visualization
plots, where the bounding curves of a scatter plot are generated
from different L1 and L2 curves. We present the analysis of three
visualization methods, the first one based on the work of Bailey
et al. (2014), the second from the work of David et al. (2020), and
the third one is a rotated version of second plot. Two additional
visualization methods based on BMMR and LIRI are presented
in Appendix A.

4.4.1. Bilateral-Magnitude vs. Magnitude-Ratio

(BMMR) Plot
This method proposed by Bailey et al. (2014, 2015) and Lang
et al. (2017) used activity counting to plot a heatmap between the
magnitude ratio (MR) and bilateral magnitude (BM),

x (t) = g (Il, Ir) = MR (t) = log

(

Ir (t)

Il (t)

)

; MR (t) ∈ R

y (t) = h (Il, Ir) = BM (t) = Il (t) + Ir (t) ; BM (t) ≥ 0

(12)

Bailey et al. bounded the value of MR to be within ±7, which we
ignore in this discussion. The mathematical definitions of L1 to
L4, and the plot of these curves for different values of c are shown
in Figure 6A. The following are some of the essential properties
of BMMR plot:

• The vertical line x = 0 corresponds to Il = Ir , and divides the
plot into two halves x > 0 and x < 0 corresponding to right
and left dominated halves, respectively.

• Pure unilateral use Il = 0 or Ir = 0 corresponds to x = ±∞,
which was approximated to be x = ±7 by Bailey et al. (2014).

• Equal, unbiased use of the two upper-limbs results in a
symmetric leaf-like distribution of points (blue curves in
Figures 7a,b). The region enclosed by closed blue curve in
Figure 7a corresponds to 5 ≤ Il, Ir ≤ 500. We note that
the shape of the heatmaps for healthy subjects in Bailey et al.
(2015) closely resembles this symmetric leaf shape.

• Biased use of the upper-limbs results in an asymmetric
distribution of points, with more points located at a larger
distance from the x axis on the side with increased use (red
curve in Figures 7a,c). The region enclosed by closed red curve
in Figure 7a corresponds to 1 ≤ Il ≤ 50 and 1 ≤ Ir ≤ 250.

4.4.2. Left Intensity vs. Right Intensity (LIRI) Plot
This simple approach was proposed by David et al. (2020) where
the authors had used the average upper-limb use instead of
intensity. Here, we use the average upper-limb intensity Ir and
Il (Figure 6B),

x (t) = g (Il, Ir) = Ir (t) ; Ir (t) ≥ 0

y (t) = h (Il, Ir) = Il (t) ; Il (t) ≥ 0
(13)

The following are some of the essential properties of the LIRI
plot:

Frontiers in Human Neuroscience | www.frontiersin.org 12 July 2021 | Volume 15 | Article 667509

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


David et al. Framework for Sensor-Based Assessment of Upper-Limb Functioning

FIGURE 6 | Analysis of (A) bilateral magnitude vs. magnitude ratio (BMMR) plot (Bailey et al., 2014), (B) left intensity vs. right intensity (LIRI) plot (David et al., 2020),

and (C) intensity sum vs. intensity difference plot (ISID), by investigating the nature of the family of four curves L1 (blue), L2 (red), L3 (green), and L4 (black) introduced in

Equation (11). The solid and dashed lines indicate different values of c for the same curve.

• The y = x corresponds to Il = Ir and divides the first
quadrant into an upper and lower half about this diagonal line
which correspond to relatively high left Il > Ir and right use
Il < Ir , respectively.

• Pure right and left unilateral use correspond to points long the
x and y axes, respectively.

• Equal, unbiased use of the two upper-limbs in a square shaped
region of distribution of points (blue curve in Figures 7g,h);
the square is symmetric about the y = x line.

• Biased use of the upper-limbs results in rectangular
distribution of points, with the longer side of the rectangular
oriented along the axes corresponding to the upper-limb with
increased use (red curve in Figures 7g,i).

4.4.3. Intensity Sum vs. Intensity Difference (ISID) Plot
This plot is derived by rotating the LIRI plot by 45◦ counter-
clockwise, which results in a plot of the sum vs. the difference
between the average upper-limb intensities (Figure 6C).

x (t) = g (Il, Ir) = ID (t) = Ir (t) − Il (t) ; ID (t) ∈ R

y (t) = h (Il, Ir) = IS (t) = Ir (t) + Il (t) ; IS (t) ≥ |ID (t)|

(14)

Because Ii is non-negative, the points y < |x| are not part of
the plot, which is shown by the shaded region in Figure 6C. The
following are some of the essential properties of ISID plot:

• Like the BMMR plot, the x = 0 corresponds to Il = Ir .
• Pure right and left unilateral use correspond to points long the

y = x and y = −x lines, respectively.

• The shape of the distribution of points are the same as LIRI but
are rotated by 45◦ counter-clockwise (Figures 7h,i).

4.5. Quantification of Relative Upper-Limb
Use
A quantitativemeasure of relative upper-limb use should allow us
to distinguish between different levels of relative use of the upper-
limbs through a single number. Such a measure should map:
(a) the spectrum of pure unimanual behavior to pure bimanual
behavior to a compact interval on the real line, and (b) report low
values for unimanual, and high values for bimanual behaviors.

We can conceive such a quantitative measure of relative
upper-limb use through an approach similar to that of Hq.
Consider the joint probability density pIr ,Il

(

r, l
)

of Il and Ir
5.

We can compute the marginal densities of Ir and Il, and the
probability density of Ir · Il from pIr ,Il

(

r, l
)

using the approach
in Equation (9). We define a measure of relative upper-limb use
Rq as the following,

Rq (Ir , Il) ,
qrl

max
(

q2r , q
2
l

) (15)

where, Rq :R≥0 [0,T] × R≥0 [0,T] 7→ [0, 1] maps two time
signals Ir and Il to the set [0, 1]. The subscript q in Rq indicates
that the measure is computed using the qth percentiles, and qr , ql
and qrl are the qth percentiles of the probability density functions
of Ir , Il, and Ir · Il, respectively. It should be noted that qr and ql

5This is again a conditional probability density function as we only consider data

points where at least one of the upper-limbs is used, i.e., Ir (t) + Il (t) > 0.
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FIGURE 7 | BMMR, LIRI, and ISID plots of actual data from a healthy participant and a patient. The first column shows examples of the boundary of scatter plots for

(a) BMMR, (d) LIRI, and (g) ISID plots for symmetric and asymmetric upper-limb use. This closed curve corresponds to the L1 and L2 curves for different values of Ir

and Il . (a) The symmetric leaf shape (blue) and the asymmetric (red) shape are typical shapes seen in the plots reported by Bailey et al. (2014). (b,c) Depict the BMMR

scatter plots for a healthy participant and patient using data collected during a single day. (e,f) are the corresponding LIRI and (h,i) are the corresponding ISID, plots

for the same subjects. The closed black curves shown in the plots for the healthy participant and patient correspond to the 2.5th and 97.5th percentiles for Il and Ir .

will never be simultaneously zero as we only include data points
where Il (t) + Ir (t) > 0.

The mapping of different movement behaviors to the interval

[0, 1] by this measure is shown in Figure 8, where the LIRI
plot was chosen for depicting different types of unimanual and
bimanual movement behaviors. The distribution of points in
these LIRI plots are indicated by the gray regions, where we
assume the points are distributed with uniform density; plots
with just a black line depict scenarios where the points are
distributed uniformly along the line. The red diagonal line in each
of these LIRI plots is the x = y line. The value of Rq for each
of these plots is shown in the respective plots, and their location
in the interval [0, 1] on the real-line is shown in the bottom of
the figure (thick black line) with colored vertical lines. The Rq

measure has the following properties.

• Pure unimanual use.Rq (Ir , Il) = 0 indicates pure unilateral
use, such that Ir (t) · Il (t) = 0, ∀t6.

• Symmetric bimanual use. Rq (Ir , Il) = 1 indicates pure
symmetric bimanual use, such that Ir (t) = Il (t) , ∀t.

6It should be noted that, depending on the measurements and fµ, pure unimanual

does not always mean the other limb is not used, since Ii can be zero when an

upper-limb is used for functional postures.

• Symmetry about the x = y line. Rq is symmetric about the
x = y line, i.e., Rq (Ir , Il) = Rq (Il, Ir). Two distribution
of points that are mirror symmetric about the x = y line
will have the same value for Rq. Thus, low values for Rq only
indicate biased use and do not provide any information about
the direction of the bias. This implied that Rq (Ir ,m · Il) =

Rq

(

Ir ,
1
m · Il

)

= m, 0 ≤ m ≤ 1.
• Rq is independent of uniform scaling Ir and Il, i.e.

Rq (Ir , Il) = Rq (c · Ir , c · Il) , c > 0 is the value.

The measure Rq only tells us if one limb is used over the
other, and is silent about which of the two limbs is used more.
This information can be obtained from the sign of the different
between qr and ql, which is +1 when the right limb is used more
than the left, and−1 when it is vice versa.Rq along with the sign
of qr − ql will provide information amount of bias in using the
upper-limbs, along with the preferred limb.

5. DISCUSSION

The framework presented here is a step toward a rigorous
foundation for the sensor-based assessment of upper-limb
functioning by formalizing existing ideas/concepts. Lack of
rigor is not an uncommon problem in movement science,
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FIGURE 8 | Demonstration of the mapping of different types of relative upper-limb use to Rq (here, q = 90). The different types of relative upper-limb use are depicted

as LIRI plots grouped together to into different levels of relative upper-limb use. The leftmost column of three LIRI plots correspond to pure unimanual use. The

different groups of LIRI plots from left to right correspond to reduced bias in using one limb over the other. The corresponding Rq value for these different scenarios

are displayed in the individual LIRI plots, and their mapping to the continuous interval [0, 1] is shown in the bottom.

which is reflected in the literature as ambiguous definitions
of constructs, lack of clear specifications for measures,
and absence of theoretical and experimental validation of
measures proposed to quantify constructs of interest. Movement
smoothness is a prime example of such a construct that was
quantified using several measures with little or no knowledge
about their properties (Balasubramanian et al., 2012, 2015).
Given the increasing interest in assessment of upper-limb
functioning using sensors, we strongly believe that the proposed
framework can help guide future developments in this area.
In this section, we highlight some important issues with
sensor-based assessment of upper-limb functioning, and point
out the limitations of the current work, and avenues for
future work.

5.1. On the Importance of Measurements
and Measures
Measurements and measures form the basis of any
assessment procedure. Measurements contain “raw”
information about an underlying behavior, and measures
map measurements to numbers that quantify and summarize
constructs of interest. Thus, the choice of measurements
and measures determine the quality of information obtained
from an assessment.

In the assessment of upper-limb functioning, several practical
issues play a major role in the choice of sensing modality, such
as the compactness, power efficiency, aesthetics, ease of donning

and doffing of the sensors, privacy, etc. These constraints on
a chosen sensing modality can limit the nature and fidelity
of information about upper-limb functioning. For example,
accelerometers have shown to perform a little better at detecting
different tasks than gyroscopes alone (Bulling et al., 2014).
Upper-limb use involving fine finger, wrist, and handmovements
are unlikely to be captured by a single IMU worn on the
forearm (Subash et al., 2020). Detecting tasks involving physical
interactions with environment will require some form of vision
technology (Tsai et al., 2020), and cannot be obtained purely from
body segment kinematics. Similarly, the movement qualities that
can be quantified also depend on the sensing modality, e.g.,
smoothness cannot be computed from pure accelerometer data,
except under special circumstances (Melendez-Calderon et al.,
2021).

Since these are early days in the field of assessment of upper-

limb functioning, it would be unwise to make recommendations

for the sensing modalities required for accurate assessment

of upper-limb functioning in daily life. However, one can

confidently speculate that a compact, body worn sensing system
[e.g., wrist band (Bailey et al., 2014; David et al., 2020; Lum et al.,
2020), sensorized clothing (Lorussi et al., 2016), etc.] with more
than one sensing modality (Maceira-Elvira et al., 2019) [e.g.,
inertial sensor, pressure sensor, physiological sensing, vision,
radar-on-a-chip for hand movement tracking (Malešević et al.,
2019), magnetic ring finger tracking (Friedman et al., 2014) etc.]
will become the standard for assessing upper-limb functioning.
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5.2. On Task-Agnostic and Task-Specific
Analysis of Upper-Limb Functioning
Upper-limb use ui and instantaneous intensity of use µi, their
averages (Ui, Ii,Ai), and the functional workspace Wi together
provide a measure of how much an upper-limb is used during
a measurement epoch. These constructs are independent of the
nature of the task being performed by the subjects, as they
only demarcate functional behaviors from non-functional ones.
The work presented in this manuscript focused only on task-
agnostic analysis, given that these have been of primary interest
in the recent literature. This is necessary information which only
sheds light on the overall incorporation of the upper-limbs in
daily life, without divulging the details of how the upper-limbs
are used. Although, these task-agnostic construct provide some
information about motor impairments, a more fine-grained task-
specific analysis is required for identifying limitations in activity
and participation.

Task-specific analysis requires the segmentation of
measurements based on features of specific tasks of interest.
Such analysis can allow the estimation of various impairment,
activity, and participation level parameters to help build a
comprehensive profile of the subject’s disability. The details of
the tasks performed during the measurement epoch provide
information about limitations at the activity (e.g., time taken and
range of motion while performing a task) and participation levels
(e.g., limitations in carrying out household and work-related
activities). The fidelity of such an analysis will depend on the
nature of the available measurements, and algorithms that
can accurately and robustly detect the task of interest. To our
knowledge, there is currently no work on task-level analysis for
assessing upper-limb movement functioning. This too is likely
to change in the coming years with advances in human activity
classification using sensors (Chen et al., 2020). Recent work by
Schambra et al. on a taxonomy for upper-limb motion provides
a nice framework for decomposing functional movements into
different “functional primitives” (Schambra et al., 2019). They
also demonstrated that most upper-limb functional activities
carried out during therapy are captured by this taxonomy. One
possible approach to leverage this work for task-specific analysis
of upper-limb functioning is to develop algorithms to detect the
five different functional primitives (reach, reposition, transport,
stabilize, idle) defined in this taxonomy, and use these detected
primitives to further identify higher level tasks/activities. This
bottom up approach to detecting tasks/activities would also help
quantify the “functional” composition of day-to-day movements
in terms of functional primitives. Such a decomposition might be
relevant for therapy planning, allowing therapist to focus therapy
on primitives that might be limiting the patient’s daily activity
and participation.

5.3. On the Visualization of Upper-Limb
Functioning
Ploderer et al. (2016) investigated the usefulness of different
visualization methods for conveying information about upper-
limb functioning in daily life. They found that temporal plots
of the amount of upper-limb activity (similar to Figure 3) can

be useful in understanding the use of the upper-limb from
over several hours to weeks. The clinicians also emphasized
the importance of a visualization method in providing a
quick overview of the upper-limb functioning (Ploderer et al.,
2016) over those provided by Use vs. Intensity (UI) and the
relative upper-limb use plots in Figures 4, 7. Plots of functional
workspace in the form of range of motion plots of joint angles
and/or heatmaps of hand position in an egocentric frame were
also found to be useful, which were not explored in the current
study; data from a single wrist-worn IMU does not allow the
extraction of hand position information or the arm joint angles.
This again highlights the importance of the sensing modality in
determining the information that can be obtained about upper-
limb functioning.

The Use vs. Intensity plot, UI plot provides information about
how much the upper-limbs are used during the measurement
epoch, taking into account both the duration Ui and intensity
Ii of movements. The nature of distribution of points in a
UI plot depends on: (a) the nature of measurements M; (b)
the function fu, fµ used to quantify ui and µi; and (c) the
window length D (Equations 4 and 5) used to compute Ui and
Ii. The extent to which the choice of these parameters affects
interpretation were not investigated in this paper and requires
further investigation.

Three approaches for visualizing relative use of the upper-
limbs were analyzed in this paper. To promote the development
and standardization of an appropriate visualization method, we
make the following recommendations:

• Avoiding complex transformations will make it easier to

interpret graphs. The LIRI plot is simpler than the BMMR
plot, as Il and Ir are visualized without any non-linear
transformations. BMMR, MPMR, and BIUNI plots require
complex transformations that hinder intuitive interpretation
of these plots.

• Symmetry about the x = 0 line might be easier to interpret.
Plots where the x = 0 line corresponds to Il = Ir divide the
plot into two regions where the use of one upper-limb is higher
than the other. These plots are easier to interpret. For instance,
ISID plot, which is a rotated version of LIRI, is probably easier
to interpret than LIRI.

• Elucidating the properties of a visualization method.
Understanding a new visualization method can be made
easier by depicting plots of special cases. For instance, the
family of four curves L1 to L4 (Equation 11) were used to
demonstrate some properties of the visualization approaches
for relative use of the upper-limb. Thus, we recommend that
researchers make use of such an approach when developing
new visualization methods.

The visualization and quantification of relative use of the
upper-limb were demonstrated using (Ir , Il). Although the
properties of the visualization and quantification using (Ur ,Ul)

or (Ar ,Al) are likely to be similar, there will be some
differences. One must be cautious of these differences to
ensure proper interpretation of the data. For example, unlike
Ii and Ai the LIRI plot with (Ur ,Ul) is restricted to the
square 0 ≤ x, y ≤ 1.
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5.4. On the Clinical Relevance of the
Proposed Framework
Information about how an individual uses their upper limbs
in every day activities is arguably a fundamental criterion of
interest to a clinician. Our proposed framework aims at removing
the ambiguity of what is meant by upper-limb functioning by
defining key components that are necessary to depict “how”
individuals behave in every day life in an objective manner. This
information is conveyed by upper-limb use, intensity, and their
averages, which relate to the overall duration and strenuousness
of upper-limb use. The combination of these two constructs
provide a good measure of how active an upper-limb is during
daily life. Visualization of this information over the course of
the day or across days was found to be useful by clinicians for
monitoring upper-limb use in daily life (Ploderer et al., 2016).
Asymmetry of upper-limb use can be evaluated from the level
of activity of the two limbs which, when compared to normative
data, can provide the measure of compensation employed by the
patient by using the less affected limb. The ability to measure
this asymmetry can help identify the underlying cause of this
asymmetry, such as specific sensorimotor impairments, learned
non-use (Taub et al., 2006), etc. The detailed characterization
of upper-limb use by decomposing it into different tasks can
provide ecologically relevant information about activity and
participation. Furthermore, the time of occurrence, duration,
and frequency of different tasks identified during daily life, and
tracking these parameters over time can help evaluate changes
in the ability and confidence in using the upper-limb either due
to therapeutic interventions or spontaneous recovery. Finally,
the quality of movement performed while carrying out different
tasks can provide additional clues about the sensorimotor control
ability and its relationship with hand preference and behavior.

The realization of the clinical utility of the different constructs
in this framework and their incorporation in routine clinical use
is at least a few years away, given the numerous technical and
clinical hurdles that need to be overcome. To this end, we note
some of the limitation of the current work and make suggestions
for future research in the following subsection.

5.5. Limitations
This work is an initial attempt toward a framework for the
systematic analysis and interpretation of upper-limb functioning
using sensors. We hope that the ideas presented here form a base
for future work in this area, and anticipate that these ideas will be
further refined and improved in the coming years. To aid this
process, we make explicit the limitations of the current work,
which are as follows:

• The ideas presented in this work are theoretical in nature,
and do not provide any specific algorithms or methods for
quantifying the different constructs. Appropriate algorithms
for realizing the measures fu, fµ, fW , and fτ are essential
for practical implementation of a good assessment procedure,
which will be an active area of research in the coming years.

• The different components of the proposed framework were
chosen based on the authors’ experience and understanding

of the current clinical needs, and the trends in the
neurorehabilitation literature. However, the clinical utility of
these ideas (concepts, measure, and visualization methods)
needs further validation.

• The work targets the evaluation of upper-limb functioning in
hemiparesis. Thus, not all of the ideas presented here would be
relevant for other conditions, such as those involving tremors,
chorea, dystonia, etc. Application of this framework to other
conditions, e.g., Parkinson’s disease or orthopaedics, might
require new concepts or revised definitions.

• Assessments of upper-limb functioning using sensors usually
results in large amounts of data. The analysis methods
that have been employed in the current literature and
proposed in the current paper typically only extract a
portion of information available in the measured data. Future
work must focus on exploring data mining algorithms for
identifying patterns of recurring behavior across time. Recent
developments in computational ethology (von Ziegler et al.,
2020) and automatic behavioral clustering (Berman et al.,
2014) could be leveraged to identify such patterns. There is also
currently little work on investigating patterns of upper-limb
functioning within and across days, which might be useful in
evaluating the participation of a patient in different day-to-day
activities and their life roles.

• The work only addresses questions Q1 andQ2 presented in the
introduction section, which deal with how much the upper-
limbs are used in daily life and the bias in using one limb over
the other. More detailed task-level analysis are likely to be of
increasing interest in the future. Further, the work also did not
explore measures for constructs such as “ability,” whichmay be
of interest to a clinician; “ability” is likely to depend on amount
of activity, types of tasks, and movement quality.

To address the aforementioned limitations and to advance
the state-of-the-art in sensor-based assessment of upper-
limb functioning, we make the following suggestions for
future research:

• Multi-modal sensing system. Compact wrist/forearm-worn
inertial sensors have been most popular solution to measuring
upper-limb movements in recent times. Given the popularity
this form-factor, exploring the use of additional sensing
modalities such as radar-on-a-chip, EMG sensing, etc. for
picking hand movements might be useful. Other sensing
modalities such a textile-based sensing (Lorussi et al.,
2016), egocentric camera (Tsai et al., 2020), and wrist-
mounted cameras (Chen et al., 2018) might be able to
provide more information about full body movements and
object interactions.

• Robust, accurate methods for detecting upper-limb use

and tasks. Recent work from Lum et al. (2020) and Subash
et al. (2020) have carried out direct comparison of existing
methods for detecting upper-limb use. This line of work, along
with the development, validation and comparison of more
sophisticated methods, leveraging the recent developments in
machine learning, should be pursued to improve the accuracy
and robustness of detecting upper-limb use and tasks of
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interest. One possible approach is to adapt ideas from human
activity recognition literature to the specific needs of assessing
upper-limb functioning. For instance, the taxonomy proposed
by Schambra et al. (2019) could be used for building an
algorithm that exploits the hierarchical structure of complex
activities proposed in this taxonomy. Low-level algorithms
can be devised for detecting the occurrence and duration of
functional primitives. Information about the timing, duration,
and amplitudes of these functional primitives could be used
to detect the occurrence of more complex activities. The
hierarchical analysis of sensor data might also be beneficial in
identifying specific movement difficulties during daily life.

• Open dataset of upper-limb behavior. The development
and validation of algorithms proposed in the previous
points require data from the target population. The
neurorehabilitation research community would immensely
benefit from the availability of annotated open dataset
consisting of relevant movement behaviors of interest from
healthy and patient population with varying degrees of
impairment. The development of such datasets and the
sharing of data from various studies carried out in the
community in this area can help drive the field forward in the
coming years. The ImageNet (Deng et al., 2009) dataset played
a crucial role in recent success of object recognition models
in computer vision using machine learning algorithms.
Similar efforts are already being made in the human activity
recognition community (Laput and Harrison, 2019).

• In-clinic and home-based clinical trials. The clinical
usefulness of the framework needs to be evaluated through
both in-clinic and home-based studies. In-clinic studies for
tracking upper-limb functioning of in-patients undergoing
therapy would be relatively easier to carry out, and the
availability of some information about the day-to-day routine
of patients would allow validation of the assessment of
upper-limb functioning using sensors. These can be followed
by home-based studies to evaluate the usefulness of the
proposed framework for assessing upper-limb functionally in
the natural setting.

6. CONCLUSION

The paper presented a framework for sensor-based assessment
upper-limb functioning, with focus on hemiparesis. The
proposed framework provided formal definitions of constructs
in upper-limb functioning, methods for their visualization, and
two generic measures for quantifying the amount and the bias

in using the two upper-limbs. Demonstration of some of these
components were provided through preliminary data obtained
from a previous study. We also pointed out the limitations
of the current work which are likely to be addressed in the
coming years. We firmly believe that the proposed framework
can act as a scaffold for researchers in the field to build and test
different ideas for assessment of upper-limb functioning. These
future explorations will help identify issues with the framework,
while adding, revising, and even completely replacing elements
from the framework, which are not clinically and technically
relevant. We hope this work is a useful step toward realizing
an objective, accurate, and clinically relevant assessment tool
to evaluate the true effect of neurorehabilitation in patients’
daily life.
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APPENDIX A

In this section we present analysis of two additional visualization
methods by deriving expressions for the loci of L1 to L4, and
demonstrate the nature of these visualization methods using data
from a healthy and impaired participant (David et al., 2020)
(similar to Figure 7).

Magnitude-Product vs. Magnitude-Ratio (MPMR) Plot
Instead of using the sum of Il and Ir along the y axis, like in
BMMR, we can use the log of the product (MP) of the Il and Ir
(Figure A1A).

x (t) = MR (t) = log

(

Ir (t)

Il (t)

)

; MR (t) ∈ R

y (t) = MP (t) = log (Il (t) · Ir (t)) ; MP (t) ∈ R

(16)

Some of the essential properties of the MPMR plot are:

• Like BMMR, the vertical line x = 0 divides the plot into right
and left dominated halves (x > 0 for right and x < 0 for left).

• Pure unilateral use Il = 0 or Ir = 0 corresponds to x = ±∞.
• The use of logarithmic transformation for the x and y

axes leads to simpler looking curves for L1 and L2, and
consequently simpler bounding regions as seen in Figure A2a.

• Equal, unbiased use of the upper-limbs results in a square-
shaped region of distribution of points that is symmetric about
the x = 0 line (blue curve in Figures A2a,b).

Figure A 1 | Analysis of MPMR and BIUNI plots by investigating the nature of the family of four curves L1 to L4 introduced in Equation (11). (A,B) Show the loci for

different curves corresponding to L1 to L4 for the MPMR and BIUNI plots, respectively.

• Biased use of the upper-limbs results in a rotated
rectangular region of points, with more of the rectangle
located on one side of the vertical line (red curve in
Figures A2a,c).

Bimanual vs. Unimanual (BIUNI) Plot
BIUNI plot is obtained through a nonlinear transformation
of the LIRI plot such that any point

(

x, y
)

in the
LIRI plot with polar coordinates (r, θ) is mapped to a
point (r, 2θ) (Figure A1B).

x (t) = g (Il, Ir) = r (t) · cos (2θ (t)) ; x (t) ∈ R

y (t) = h (Il, Ir) = r (t) · sin (2θ (t)) ; y ≥ 0
(17)

where, r (t) =

√

I2
r (t) + I

2
l (t) and θ (t) =

arctan 2 (Il (t) , Ir (t)).
Some of the essential properties of BIUNI plot are:

• Like the BMMR, MPMR, ISID plots, the x = 0 corresponds to
Il = Ir .

• Pure right and left unilateral use correspond to points long the
positive and negative x axes, respectively.

• Equal, unbiased use of the upper-limbs results in a symmetric
dome-shaped region of distribution of points (Figures A2d,e).

• Biased use of the upper-limbs distorts this shape resulting
in more points distributed along the side of increased use
(Figures A2d,f).
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Figure A 2 | MPMR, and BIUNI plots of actual data from a healthy and impaired participant. The first column shows (a,d) examples of the boundary of the distribution

of scatter plots for the MPMR and BIUNI plots for symmetric and asymmetric upper-limb use. This closed curve corresponds to the L1 and L2 curves for different

values of Ir and Il . (b,c) Depict the MPMR scatter plots for a healthy and impaired participant using data collected during a single day. (e,f) Corresponding BIUNI

plots for the same subjects. The closed black curves shown in the plots for the healthy and impaired participant correspond to the 2.5th and 97.5th percentiles for Il

and Ir .
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