A Framework for Set-Oriented Computation in
Inductive Logic Programming and its
Application in Generalizing Inverse Entailment*

Héctor Corrada Bravo', David Page®!, Raghu Ramakrishnan', Jude
Shavlik!'2, and Vitor Santos Costa?:3

! Department of Computer Sciences
2 Department of Biostatistics and Medical Informatics
University of Wisconsin-Madison, USA
3 COPPE/Sistemas UFRJ, Brasil

{hcorrada,raghu,shavlik}@cs.wisc.edu
{page,vitor}@biostat.wisc.edu

Abstract. We propose a new approach to Inductive Logic Programming
that systematically exploits caching and offers a number of advantages
over current systems. It avoids redundant computation, is more amenable
to the use of set-oriented generation and evaluation of hypotheses, and
allows relational DBMS technology to be more easily applied to ILP
systems. Further, our approach opens up new avenues such as proba-
bilistically scoring rules during search and the generation of probabilistic
rules. As a first example of the benefits of our ILP framework, we pro-
pose a scheme for defining the hypothesis search space through Inverse
Entailment using multiple example seeds.

1 Introduction

The goal of Inductive Logic Programming (ILP) [1] is to autonomously learn
first-order logic programs that model relational data. However, the current ap-
proach to ILP has limitations in its scalability and computational efficiency.
Recent efforts extend ideas from relational database query optimization to this
setting [2-6]. Along the same line, we present a new formulation of ILP that
systematically exploits caching to achieve greater efficiency and flexibility, and
present theoretical results that characterize it.

The fundamental building blocks for our approach are a new data structure
and an extension operation for hypotheses that expose and exploit opportunities
for caching the results of previous computation. This provides an immediate
benefit by avoiding the redundant computation pervasive in the standard ILP
search and score paradigm. Further, the extension operation is formulated as
a set-oriented computational strategy defined in terms of (extended) relational

* Work was supported by Air Force Grant F30602-01-2-0571, DARPA ISTO Grant
HRO0011-04-0007 and a Ford Fellowship from the National Academy of Sciences.

database operations, facilitating the use of relational query-processing techniques
in ILP systems.

Extensional representations of hypotheses are treated as first-class objects.
Consequently, statistics derived from these objects are easily maintained, and can
be used to define alternatives to guide the search process in ILP. For example,
probabilistic methods for search [7,3,4,8,9] can directly use statistics derived
from our new data structure for representing hypotheses.

Additionally, statistics derived from an extensional representation of hy-
potheses offer new avenues for learning a class of rules richer class than Horn
clauses. For example, rules containing statements about aggregates [10], and
rules containing probabilistic statements, such as statements about missing val-
ues [11], can be generated. While these extensions are beyond the scope of this
paper, we investigate a scheme for restricting the hypothesis search space using
Inverse Entailment based on a set of multiple seed examples. Our algorithm for
Generalized Inverse Entailment offers flexibility and robustness in hypothesis
space restriction, including alternative seed-coverage measures (which we study
in this paper) and cost-based measures that can be readily obtained from our
hypothesis representation.

Our main contributions are as follows:

(1) New data representation and extension-join operation (Section 3), with a
discussion of potential benefits (Section 3.2).

(2) New set-oriented hypothesis generation framework, with proof of soundness
and completeness with respect to inverse entailment under subsumption for
the single-seed case (Section 4).

(3) Generalization of inverse entailment to the multiple-seeds case; extension of
our hypothesis generation framework to this case; and a proof of soundness
and completeness with respect to a generalized coverage measure (Section 5).

2 Mode-Restricted Languages

The ILP task consists of learning a logic program that models a dataset of ground
facts, given as two disjoint sets of positive examples and negative examples.
We are also given “background knowledge” in the form of additional facts or
predicates defined as Horn clauses. The learned program is a set of Horn clauses
that, when added to the background knowledge, entails as many of the positive
example facts as possible while entailing as few of the negative example facts
as possible. Each clause, or hypothesis, in the learned program is built from the
predicates given in the background knowledge, and we assume they are functor-
free Horn clauses. In this section we define the space of hypotheses we seek to
represent.

We borrow the concept of user-specified “modes” that constrain the space of
allowable hypotheses from the Aleph [12] and Progol [13] ILP systems.

Definition 1. A mode is defined by (p/n, B, F) where: p is an n-ary background
predicate, B is the list of arguments of p specified to be bound, F is the list of
arguments of p specified to be free.

Further restrictions are that B and F' are disjoint sets, every argument in the
predicate is specified as either bound or free, and at least one bound argument
is specified. (We do not include the case where modes specify arguments to be
constants, but our results apply to this case as well.)

Definition 2. A moded literal p*(A,...,N) is the adornment of a literal as
specified by the binding pattern in a mode.

As an example, let g be a background predicate. If ¢(4, B) is a literal, and
mode (q/2,[1],[2]) is defined, then ¢*/(A, B) is an allowed moded literal. The
first argument of ¢ is specified as bound, that is, an input argument in the
usual ILP nomenclature, while the second is specified as free, that is, an output
argument. In the rest of this paper, we treat arguments in literals as implicit
when their details are not required, and use p* to denote moded literals.

For convenience, we define the following operations on moded literals: let
p* be the moded literal specified by mode (p/n, B, F'), then: bound(p*) = B,
free(p*) = F, vars(p*) = BU F, and pred(p*) = p.

Given a set of modes, we denote the set of allowable moded literals as M.
From now on, we assume every literal in a hypothesis is a moded literal and
leave the adornment implicit when not needed. With this set of allowable moded
literals the mode-restricted set of hypotheses can be defined recursively as fol-
lows:

Definition 3. Given a set of allowable moded literals M, and a target predicate
h, the set H(M,h) of hypotheses allowable in the mode-restricted language is
recursively defined as: H(M,h) = {(h < true.)} U{(h < r1,...,1m,p.) : (h «
T1yevyTn.) € HM,h),p € M, and bound(p) C Vars(h < r1,...,7r,.)}

The set of variables Vars(h < r1,...,7,.) of a hypothesis is the union of the
variable sets of its literals. That is, Vars(h < r1,...7,.) = vars(h) J;_, vars(r;).
The given positive facts we want to model are instances of the target predicate h.
For example, let r and ¢ be background predicates and let there be modes that
specify the adornments r®/ and ¢f?. Then, h = (h(A) — f (A, B),¢/*(C, B).) €
H(M,h), while h = (h(A) — "/ (A, B),¢/*(B,C).) & H(M, h).

The set H(M, h) in Definition 3 is the set of hypothesis we want to capture
using our representation.

3 The WILD Representation

We seek to represent hypotheses in H(M, h) in such a way that, intuitively, the
result of operating on a hypothesis is reused when operating on an extension
of the hypothesis. For instance, when measuring the coverage of a hypothesis,
the substitution found in proving that a hypothesis covers an example contains
bindings which could potentially make an extension of the hypothesis cover the
same example. Our representation should reuse those bindings when measuring
the coverage of the extended hypothesis.

Another objective is that useful statistics regarding a hypothesis should be
easy to derive and maintain from the representation of hypotheses. Continuing
with the example, we want the coverage of a hypothesis for a given example
to be easily recoverable from our data structure. However, we are interested in
maintaining statistics that are useful for measures other than coverage. We now
define a data representation and extension operation for hypotheses that meet
these goals.

Definition 4. Hypothesis h € H(M, h) is represented by the pair (h,t), where t
is a database table. t has schema t[id, fid, A, ..., N], where id is a unique (across
all existing tables) row identifier; fid is the unique identifier of the ‘parent’ row;
and A, ... N are variable names appearing in h.

Each row of t is a binding that makes h cover a fact e in a set of seeds E.
The schema of ¢ serves to share common subsets of bindings between hypotheses
by its use of the id and fid fields. Given a set of seeds, an initial table is built
where fid is null and each seed is represented by one row.

As an example, consider hypothesis hy = (h(X,Y) — ¢*/(X,Z).), along
with seed table ¢y shown in Fig. 1(a), built for the seed set {h(a,b),h(a’,b)}.
Let the facts g(a,c) and g(a’,c¢’) be in the table for background predicate gq.
hy is represented as the intensional /extensional pair (h(X,Y) — ¢*/ (X, Z).,t1),
where t7 is shown in Fig. 1(b).

(a) i | fid | X |Y
Ll nul|fa|b () id| fid| Z
12 [nul [a | b 3] 1 c
4 2 ¢

Fig. 1. (a) Initial table to. (b) Table for pair (h1 = (h(X,Y) — ¢"(X, Z).), t1).

Continuing this example, let the facts r(b,d) and r(b,e) be in the base ta-
ble for background predicate r. We represent the hypothesis hy = (h(X,Y) «
(X, Z),r? T (Y, W).) as pair (ha, t5), where ty is shown in Fig. 2(a) along with
its references to t; for illustration.

We could avoid indirection and store all variable bindings for a corresponding
seed in each row. However, significant savings are obtained by not storing shared
bindings redundantly. For example, given pair <ﬁl, t1) above, all hypotheses that
are extensions of le, including ;LQ, share bindings for variables appearing in table
t;. Using chained tables allows these bindings to be stored once, and extensions
then refer to these bindings through indirection. Otherwise, each new table would
store a copy of table ¢; along with any new bindings. The use of unique row ids
allows tables to be unambiguously reconstructed from the chained tables when
necessary. For the running example, the reconstructed table for ¢5 is shown in
Fig. 2(b).

Ll |null | a|b id | fid | W dIX1Y 1 Z W
» 3T g (b)

, . [1la|b|c| d

d 2d b || d

e 1| a|b|c| e

e 21d | b|d]| e

Fig. 2. (a) Table to in pair (ho,ts) with its references to to and t;. (b) Reconstructed
version of ts.

3.1 Extension-Join

Using this representation, we formulate hypothesis extension as a stylized join
operation on database tables [14]. This operation takes as input two inten-
sional /extensional pairs as described above. The first (b, = (h «— 71,...,75), tn)
is a hypothesis pair as in definition 4. The second, (p, pred(p)), consists of a

moded literal p and its corresponding base table pred(p). The result of the op-

eration is a new hypothesis pair (hj41 = (h < r1,...,74,D), ti+1). Each substi-
tution in ¢; is extended according to the moded literal and those that make the
new hypothesis h;y; cover the corresponding seed e € E are retained in the new
table t;1. We denote this operation as (hit1,tis1) = (hs, t;)mi(p, pred(p)).

The extension-join operation combines a number of steps, the most significant
of which is an equi-join of the input tables. The remaining steps are for book-
keeping, and set up the equi-join to capture the proper variable bindings of the
extension. Extension-join is defined by Algorithm 1.

Algorithm 1: The Extension-Join operation

Input: Hypothesis pair (h;,t;) and extension (p, pred(p))
Output: Extended hypothesis pair (hit1,ti+1)
X-Jom({hs, 1), (p, pred(p)))

(1) compute projection of ¢;

build join constraints and result projection list
execute join and result projection

if result is not empty make new table ¢;41

let hiy = (h <« 71,...,70.), and set hit1 = (h «
TlyeeoyTn,yD.)

(6) output (his1,tiy1)

o~~~ —
- ==

2
3
4
5

We present the details of these steps using the running example. To create
pair (ho,ts) we calculate (hy,t;)=a(r®f (Y, W), pred(r)), where ¢; is shown in
Fig. 1(b) and the table pred(r) contains the facts r(b,d) and r(b, e).

1. Compute projection of t;. We project the input hypothesis table to only those
columns containing the bound arguments of the extension, following fid fields to

gather necessary variable bindings. We also keep the ¢d and fid columns required
for chaining rows in the result ¢;,4.1 to rows in ¢;. In our example, ¢; is projected
to table ¢} shown in Fig. 3(a). For extension 7%/ (Y, W) only column Y is needed
since Y is the only bound argument of r*/ (Y, W).

(b) tad | t.fid | pred(r).2
N id | fid |Y 3 1 d
(a)
3 1 b 4 2 d
4 2 b 3 1 e
4 2 e

Fig. 3. (a) Table t7, the projection of ¢; to bound arguments of extension. (b) Result
of equi-join of t] and pred(r) after projection to identifier and free argument columns.

In principle, several extensions to a given hypothesis require the same bound
variables from the input hypothesis table. The result of extension-joining each
of these extensions and the input hypothesis can be computed simultaneously
using a single projection of the input hypothesis table. This first step in the
extension-join operation permits set-oriented optimizations of this kind.

2. Build join constraints and result projection list . This step finds common
bindings between the input hypothesis and its extension using the input moded
literal. These bindings are expressed as constraints on an equi-join operation,
the result of which is then projected to only those columns required for chaining
and those containing new variables.

For a given pair of operands, a list ¢ of join constraints of the form ¢;.7 = p.k
is constructed, where j is a variable column in ¢; and k is a column of base table p.
For our current example, ¢ = {#].Y = pred(r).1} since the first column of pred(r)
is specified as a bound argument and variable Y is assigned to that column in
o (Y, W). A list of column names [is constructed as {t;.id, t;, fid, p.z1,...,p.Tm}
where p.z1,...,p.Zy are the columns of base table p that do not appear in the
join constraints in list ¢. In the example | = {t].id,t}.fid, pred(r).2} since col-
umn 2 of pred(r) is not involved in any constraint in list c.

3. Ezecute join and projection . The result of the previous step is used to ex-
ecute an equi-join on the two input tables. This operation is defined by the
relational algebra [14] expression m;(t; M. p) where X, is an equi-join under
the constraints given in list ¢, and m; is a projection to the columns listed in
[. This has the effect of extending substitutions in input table ¢; with bind-
ings from the input base predicate. For our running example, the result of

Titrid, b, fid,pred(r).2} (t1 My v —pred(r).1 Pred(r)) is shown in Fig. 3(b).

4. If result is not empty, build new table t;1 . This step transforms the result
of the previous step so it conforms to the hypothesis schema. It also chains the
rows in ¢;41 to rows of ¢; by making the proper entries in the fid column of the

new table. Column names for the new table are derived from the moded literal
and a unique id is generated for each row in the result. The final result for our
example, to, was shown in Fig. 2.

By Definition 4 and the extension-join in Algorithm 1, all hypothesis tables
contain a unique identifier for each row, and refer to the unique identifier of
a parent row. Since the seed table t; contains exactly one row for each seed
example e in seed set F, a row identifier e;4 can be uniquely associated with
each seed example. Thus, any row in subsequent tables can be associated with a
seed example e € F using the row identifier e;q in seed table ¢y, by following fid
links. We define a selection operation, denoted o, (t), and a projection operation,
denoted E(t), that use these row identifiers:

Definition 5. Let h = (h — r1,...,7,) and

(h,ty = {(h < .), to)pxa(ry, pred(ry)) - - - {7y, pred(ry))

such that seed table ty is built from a seed example set E, and t, is the recon-
struction of t through fid fields as described above. Then:

1. E(t) dzefmd(tm) is the projection of t to its example identifiers, where 7 is the
relational algebra projection operator.

2. o.(t) d:efaid:eid (tz) is the selection of t to rows involving seed e, where e;q is
the row identifier for seed e € E in the initial table to, and o is the relational
algebra selection operator.

A useful property of the extension-join operation is that selection on examples
for a hypothesis table can be pushed to a selection on the original table of seeds
to. We formalize this with the following lemma:

Lemma 1. Let h,, = (h—r1,...,mm.) € HM,h),
(ﬁm, tm) = ((h < true.), to)oxa(ry, pred(ry)) - - {7y, pred(rm)),

such that seed table to is built from a seed example set E, and let (ﬁn,tn> =

(ﬁm, b YD1, pred (7)) -
For every e € E, if (ﬁn,t8> o <iLm, Oe (b))(ry,, pred(ry,)), then t. = oe(ty),
where o¢ is the selection operation of Definition 5.

Proof. Let e;q be the unique row identifier for example e in seed table %.

(oe(tn) C te). Let te C 0c(tn), then there is a tuple s € o.(t,) such that
s € te. Let s be the result of joining tuples s’ € t,,, and s € pred(r,) according
to the definition of extension-join. Since s € o.(t,), the s.id = e;4, by definition
of extension-join, s’.id = s.id. = e;q. However, since s & t., the definition of
extension-join implies s’ & o.(t,,). This is a contradiction since we established
s'.id = e;q.

(te C 0c(t)). Conversely, let oe(t,) C t., then there is a tuple s € t. such
that s ¢ oc(ty). Let s be the result of joining tuples s € o¢(ty,) and s’ €

pred(r,) according to the definition of extension-join. Since s’ € g¢(tm), s" € tm
which implies by definition of extension-join that s € t,. Furthermore, since
s’ € oe(tm), we have s'.id = e;q, and the definition of extension-join implies
s.id = e;q. We have shown that s € t,, and s.id = e;q, but s & o.(t,). This is a
contradiction. a

It is worth noting that existing work addresses issues we present here. For ex-
ample, data structures used in algorithms for testing #-subsumption [15-17] store
multiple substitutions compactly to avoid backtracking when finding satisfying
substitutions. However, the compact representation used can make maintain-
ing statistics of the type we discuss below difficult. On the other hand, the data
structure for storing multiple substitutions used in the LogAn-H system [18] uses
the reconstructed tables we discuss above which store information redundantly.

Techniques that store only coverage lists or some computed answers meet
some, but not all, of our goals. For example, storing coverage lists [19] or a
technique such as tuple-id propagation [20] allows for compact storage and fast
retrieval of statistics used to determine coverage measures of a hypothesis in a
classification setting. However other types statistics, those not involving cover-
age as used in some probabilistic models, for example, are not easily derivable.
We present a formulation that seeks to balance the two goals of caching and
availability of general statistics.

3.2 Benefits of the WILD Representation
We identify two general areas in which our representation offers advantages:

1. Within the current search and score paradigm in ILP, this framework allows
for efficiency, scalability and flexibility.

2. This framework easily adapts to settings where learning theories in languages
other than Horn clauses is desired.

We discuss these benefits below.

Caching Benefits. Each table contains those bindings required to determine the
coverage properties of a hypothesis h with respect to the seed table ty. Once these
bindings are cached by pair (ﬁ,t), they can be reused to determine coverage
properties of extensions to h. This is exploited in the context of search-space
restriction in the next section.

Set-oriented Hypothesis FExtension. The extension-join operation can be carried
out efficiently in a relational database system since it is defined in terms of
relational operations. Thus, ILP could potentially be carried out on disk-resident
data.

There are also set-oriented optimizations that can be performed at the tuple
level during extension-join. For instance, earlier we described an optimization
where extension-join on a particular hypothesis and a set of its extensions (for
example, modes that share a base table) is executed in a set-oriented fashion.
This optimization is in the spirit of the query packs presented by Blockeel et
al. [5]

Alternative Search Methods The cached table for a hypothesis pair can be used
to maintain statistics that help in defining the hypothesis search-space, and in
exploring that space. In this paper we present an application in which statistics
from extensional tables are used to restrict the space of allowable hypotheses.

As another example, stochastic search methods can use prior distributions
over the space to guide search towards probably useful parts of the space [7,8].
A hypothesis space generated and, thus, defined using our representation can
use an informative prior derived from coverage statistics derivable from cached
tables.

Similarly, estimates of a given property of hypotheses can also be used to
guide search. For example, estimates of the coverage of a hypothesis may be
used to specify which parts of the hypothesis space to explore [4,9]. Under
our representation, these estimates are derived from a cached table resulting
from the extension-join of background predicates to some representative set of
seeds. Another method might use our representation to estimate how efficiently
a hypotheses can be evaluated. For example, Struyf and Blockeel [3] estimate
a prior on the selectivity of literals to decide an efficient literal reordering for
a given hypothesis. Statistics derived from our representation can provide good
estimates of the selectivity of a literal.

Language Extensions This framework permits learning rules in languages other
than sets of Horn clauses. For example, we can use statistics in the cached
table for a hypothesis to train a statistical model that infers missing values in
other instances of similar datasets. This is the formulation for CLP(BN) [11], a
language easily incorporated into our hypothesis framework.

Alternatively, we can use statistics in the cached table to make distributional
statements regarding variables in a hypothesis. For example, we can estimate the
distribution of a column in our target predicate and determine its correlation to
subsets of other columns in the background knowledge using statistics derived
from cached tables. This allows for statements of the type rich people tend to
live in big houses to be made in the learned program.

Extensions to the Datalog language have been proposed that add the ability
to group constants and calculate aggregates on these groups [21]. By having
cached tables available, these groups can be defined and aggregates calculated
on the fly during the learning process. This may allow for statements about
aggregates like those described by Vens et al. [10]. Another Datalog extension
is the use of negated literals in clauses. This is allowed through the requirement
that programs be stratified with respect to negation. Since we assume a set-
oriented, bottom-up evaluation strategy in our system, we can expect to learn
stratified programs with negated literals.

The remainder of this paper presents an initial example of the benefits of the
WILD representation and the avenues it opens when defining the ILP task. We
look at how the space of allowable hypotheses can be defined using background
knowledge about multiple facts in the target predicate.

4 An Initial Application

The Aleph and Progol systems restrict the set of hypotheses in the search space
through Inverse Entailment [13]. A specific seed example is chosen to generate
a set of literals, known as the bottom clause, by finding facts in the background
knowledge that are relevant to the chosen seed example. The space of hypotheses
is restricted to include only generalizations of this bottom clause, consequently,
all hypotheses generated will cover the seed example. This process seeks to re-
strict search to useful hypotheses. However, a seed defines a space of hypotheses
that are useful only in respect to that seed.

In the presence of noise in data, restricting the search space based on a
single seed is potentially wasteful. For instance, suppose that a few positive
examples are mislabelled, and are in fact negative examples. Using any of these
examples as seeds will restrict the search space to hypotheses that probably
cover many negative examples. Hypothesis evaluation based on coverage will
then try to find a, possibly non-existent, very specific clause that differentiates
between negative examples. While search parameters can be used to alleviate
this, a minimum positive example coverage constraint for example, a principled
method that avoids this phenomenon while defining the search space is best.

If a ‘usefulness’ restriction is imposed on the search space defined in terms
of multiple seeds, then the effect of an unfavorable choice of seed might be
mitigated by true representative seeds in the set. Furthermore, it would be useful
to provide a degree of freedom in how the space restriction is defined in terms
of the multiple seeds. We show how a hypothesis generation strategy using the
WILD representation meets these goals by generalizing Inverse Entailment to
multiple seeds.

First, we describe Inverse Entailment in more detail and then show how the
WILD representation is used to define a hypothesis space. Specifically, how it is
used to define a space using Inverse Entailment in the single-seed case. Finally,
we define a generalization of Inverse Entailment and show it defines a class of
‘usefulness’ restrictions that can be imposed on the hypothesis space.

4.1 Inverse Entailment

Inverse Entailment constructs a set of literals that defines the allowable hypothe-
ses in the search space. In practice, this construction is done using a partitioning
approach: the first partition contains the constants appearing in the seed exam-
ple; at each step of the iteration, instances of the constants in the current par-
tition are found in each background predicate as specified in any of the binding
patterns defined by the given modes; each ground literal containing instances is
added to the bottom clause and new constants appearing in these literals are
added to the next partition if the corresponding argument is specified as free
in some mode. This is repeated until no new constants are added to the next
partition or a user-defined bound on the number of iterations performed is met.
To finalize, the ground literals in the bottom clause are ‘variabilized’ according

to the given set of modes. Here and below we leave out a bound on hypothesis
length for clarity, but this can be easily implemented.

Allowable hypotheses in the search space are valid ordered subsets of the
literals in the bottom clause. Literals can only be used to extend a hypothesis if
it appears in the bottom clause and variables appearing in its bound arguments
must appear in the hypothesis to be extended. The subset of H (M, h) built from
a given bottom clause can now be defined.

Definition 6. Given a set of allowable moded literals M, target predicate h,
seed example e, depth bound k and background knowledge B, let L. be the bot-
tom clause built from seed example e. Define the set of hypotheses Ha(e) gen-
erated from L. as Ha(M, h,e, k,B) = {(h — true.)}U{h «—711,...,70,p. : (h—
T1ye.oyTn.) € Ha(M,h,e,k,B),p €L., and bound(p) C Vars(h < rq1,...,75.).}

Remark 1. We stated previously that all hypotheses in set Hus(M,h, e, k,B)
will cover the seed example e. Muggleton proved in [13] that Inverse Entailment
is complete under f-subsumption, thus if the depth bound is relaxed, that is, if
k = 0o, for a given h € H(M,h), hABF e if, and only if, h € Ha(M,h,e,00,B).

4.2 WILD Hypothesis Generation

This process of Inverse Entailment can be generalized to a set-oriented formula-
tion. Instead of a single seed example being used to restrict the search space, a
set of examples is used along with a filter function that determines which candi-
date hypotheses can be included in the search space. This generalized version of
Inverse Entailment, like the original Aleph/Progol version, benefits from bottom-
up computation. Using the representation and the extension-join operation of
Section 3, we propose the following algorithm for generating hypotheses:

Algorithm 2: WILD Hypothesis Generator
Input: Set of allowable moded literals M, target predicate h, seed fact set E, depth
bound k, background knowledge B, filter-function ¢
Output: Set of hypotheses
GENERATEH (M, h, E| k, B, ¢)
(1) openset = {((h < true.), to)}, (to built from seed set E)

(2) output ((h « true.), to)

(3) while openset is not empty

(4) choose and remove (h;, t;) from openset

(5) foreach moded predicate p that is a valid extension to h;
(6) compute (hit1,tit1) = (hi, ti)=i(p, pred(p))

(7) if ¢(tiy1) is true

(8) output (hit1,tis1) as an allowable hypothesis

(9) if depth of hiy1 < k

(10) add (ﬁi+1,ti+1> to openset

Valid extensions here are as in set H (M, h), that is: bound(p) C Vars(h;) so
that arguments marked bound are assigned a variable already appearing in the

hypothesis to be extended. In step 9, the depth of h; 11 as defined by Muggleton
in [13] is easily obtained from ¢;,,. First, we define hg = (h « true) to have
depth 0. If the depth of h; is j, and table ¢;41 has columns for variables not
appearing in ¢;, then the depth fziH isj+1.

Using the WILD hypothesis generator we formulate a strategy to enumerate
the set of hypotheses generated by Inverse Entailment in the single-seed case.
First, we make the seed set E = {e} a singleton set. We then set the filter
function ¢ to take a table as input, and return true if the table is not empty.
We’ll denote this emptiness-testing function as gempty. We prove in the following
proposition that with these parameters, we can generate a complete and sound
set of hypotheses that cover the given single seed e.

Proposition 1. Soundness and Completeness of WILD Generation for
a Single Seed. Let Hp(e) = GENERATEH (M, h, {e}, 0o, B, Gempty). Hypothesis
h € H(M,h) covers e if, and only if, there exists table t such that (h,t) € Hp(e).

Proof. (Only if). Proceeds by induction on n, the number of literals in h. 1f
n =1 we have that i must be of the form (h « true.). h covers e by a unique
substitution € that maps variables in h to constants in e such that h[f] = e.
That is, the result of applying substitution 6 to literal h is e. By construction,
in Step 2 of Algorithm 2, we have (h,t) € Hp(e).

Let the ‘only if’ direction of the Proposition be true for all n < m — 1; thus

we assume that for each hp,_1 = = (h < r1,...,7m—1.) € H that covers e, there
exists a table tm 1 such that (hm 1,tm—1) € Hp(e). We show that for each
extension h to hm 1 such that h = (h«<ri,...,"m_1,Tm.) covers e, there is

a pair (hm, tm) € Hp(e).

Since hm covers e we must have that hm 1 also covers e, and thus by the
inductive hypothesis, there is table t,,_1 such that <hm,1,t _1) € Hg(e). Also,
since h,,, covers e, there exists a substitution # such that h[f] = e and for each
i, 1 <1i < m there is a tuple s € pred(r;) such that r;[0] = s;, specifically there
is a tuple sy, € pred(ry,) such that r,[0] = sp,. Let

(iLm, tm) = <iLm_1, tim—1)0(Tm, pred(ry,)),

then due to tuple s,, € pred(r,,) and the definition of extension-join, there is at
least one tuple in t,,, that is, Gempty (tm) = true. This implies (ﬁm, tm) € Hp(e)
as desired.

(If). Now we prove that if there is a pair (h,t) € Hp(e), then h covers e.
Proceed by induction on n, the number of literals in h.If n = 1 then we have
(h = (h « true.),to) € Hp(e), and by construction we have that to is built
from the constants appearing in e. We build a substitution 6 from ¢y such that
h[6] = e which makes h cover e.

Let the ‘if’ direction of the claim be true for all n < m — 1, and assume
that if <iLm_1 =(h < ri,...,"m-1.),tm—1) € Hp(e) then 1 covers e. We
show that for each extension (A, tm) = (A1, tm—1)(rm, pred(r,)) € Hp(e),
- (h =71, .,T"m—1,Tm.) COVers e.

Since (Am,tm) € Hp(e), we have that (hm_1,tm_1) € Hp(e). By the in-
ductive hypothesis, there is a substitution 6" such that h[f'] = e and there is
a tuple s; € pred(r;) for all i, 1 < ¢ < m — 1, such that r;[0'] = s;. Since
(ﬁm,tm> € Hgp(e) we know that @empty(tm) = true, thus there is at least one
tuple s, € t,,,. We build a substitution ¢ with a domain consisting of variables
not appearing in €', which corresponds to arguments of 7, in free(r,,). We bind
the variables in ¢ to the constants appearing in the corresponding arguments in
tuple $,,,. Since bound(r,,) is a subset of the domain of ', we can build the sub-
stitution 6 = ’c. The result is that h[f] = e, and there is a tuple s; € pred(r;)
for all 4, 1 <4 < m — 1 such that r;[0] = s;. Finally due to the definition of
equi-join, there is a tuple s, € pred(ry,) such that r,,[0] = sp,. This implies Ay,
covers e as desired. O

The following corollary follows from Proposition 1 and Remark 1.

Corollary 1. WILD Generates the Inverse Entailment Space for a
Single Seed. Let Hg(e) = GENERATEH (M, h,{e}, 00, B, dempty), and Ha(e)
be as in Definition 6, then for every h € H(M,h), h € Ha(e) if, and only if
there exits table t such that (h,t) € Hg(e).

Proof. Follows trivially from Proposition 1 and Remark 1. as both sets contain
exactly the subset of H (M, h) that cover single seed e. O

5 Generalized Inverse Entailment

We now present a scheme for generalizing Inverse Entailment using multiple
seeds. It uses the parameters in the WILD generation algorithm to restrict the
set of allowable hypotheses. Specifically, the filter function is used to only allow
generation of hypotheses that meet some coverage criteria. Inverse Entailment
is generalized in the sense that while the criterion used for restriction in Inverse
Entailment is that hypotheses cover a single seed, we use a class of measures of
the coverage of a hypotheses over the set of seed examples. This class of measures
is implemented as the filter function ¢ of the WILD generation algorithm.

Given a set of seed examples we denote the subset of seeds covered by a
hypothesis h € H(M, h) as E(h).

Definition 7. Let h € H(M,h), then: E(h) = {e € E | h € Ha(e)}, where
Hy(e) is the set of hypotheses generated by Inverse Entailment from the single
seed example e as in Definition 6.

Intuitively, e € E (ﬁ) if h is a hypothesis generated from the bottom clause
built from seed e. This is equivalent to stating, due to Remark 1, that e € F (ﬁ)
if h covers e.

We define two filter functions we propose and evaluate in this paper. Given

a subset E' C FE, define:

1. Intersection: ¢int(E') = true if B/ = E. We will claim in Proposition 2 that
the hypotheses generated by the WILD hypothesis generator using this filter
are those hypotheses that would be generated by every bottom clause built,
in turn, by a seed in E. That is, the resulting space is the intersection of the
spaces defined by the set of Aleph bottom clauses.

2. Support: ¢sup(E’) = true if, for a given threshold n, |E’|/|E| > n. We bor-
row this concept from frequent itemset and relational pattern mining algo-
rithms, [22,23] and use it to generalize the coverage assumptions of Inverse
Entailment. This introduces an extra parameter that can be used to deter-
mine the amount of filtering to apply. We will claim in Proposition 2 that
the hypotheses generated using this filter are those that cover at least n|E|
seed examples. Notice that if 7 = 1, this is equivalent to ¢, above.

Notice that these functions are monotonic on the size of seed subset F’ and
that they return true for the entire set E. We formalize this in the following
definition and use these properties when proving our main result in Proposition 2.

Definition 8. Proper Filter Function Let E be a set of seed examples and
E' C E. A filter function ¢ is proper when (1) if ¢(E') = true then for any
superset E" O E': E' = true; and (2) ¢(E) = true.

Below, we take ¢(t) where ¢ is a table in an intensional/extensional pair, to
mean ¢(FE(t)) where E(t) is the projection of ¢ to its example identifiers as in
Definition 5.

We can now present our main result regarding generalized Inverse Entailment
which states that the WILD generator will produce only, and all, hypotheses
in H(M,h) that meet the criteria imposed by the filter function. That is, it
generates those hypotheses we deem as useful with respect to the set of seed
examples.

Proposition 2. Soundness and Completeness of WILD Generation for
Multiple Seeds. Let Hy (E) o GENERATEH(M, h, E, 00, B, ¢) be the set of
hypotheses generated by the WILD generator for seed set E such that ¢ is a
proper filter as specified in Definition 8. For all h € H(M,h), ¢(E(h)) = true
if, and only if, there exists a table t such that (h,t) € Hy (E).

We use two Lemmas to prove this result. Once these are stated and proven
we present the proof of Proposition 2. Throughout we denote as Hp(e) =
GENERATEH (M, h, {e}, 00, B, Pempty) the set of hypotheses described in Propo-
sition 1, that is, the set of hypotheses generated by the WILD hypothesis gen-
erator for single seed e, using the emptiness-testing function @empty. Also, we
denote as H4(e) the set from Definition 6, that is, the set of hypotheses gener-
ated by Inverse Entailment using single seed e. Recall from Corollary 1 that sets
Ha(e) and Hp(e) are equal.

First, we use the selection result in Lemma 1 to reason about pairs <iL, t), built
from multiple seeds, in terms of the single-seed space Hp(e). We state in the
next Lemma the conditions in which the projection of ¢ to its seed row identifiers

contains the identifier for a particular example e. We show this occurs if, and
only if, the pair <iL, o.(t)) is in the single-seed space Hp(e), or equivalently, due
to Proposition 1, when A covers e. Here o.(t) is the selection of rows in ¢ involving
seed e as defined in Definition 5

Lemma 2. Let hy, = (h < r1,...,7m.) € H(M,h), and

(ﬁn, tn) = ((h « .), to)=(ry, pred(ry))a- - - {7y, pred(ry,)),

such that seed table to is built from a seed example set E as described in Section 3.
Let eiq be the unique row identifier associated with seed example e € E in table
to. For every e € E, e;q € E(t) if, and only if, (h,0.(t)) € Hp(e).

Proof. (If). 1 (h,0.(t)) € Hg(e), by definition of ¢empty, 0e(tn) # 0. This
implies e;q € E(t).

(Only if). We proceed by induction on n, the number of literals in the body
of h. If n = 1, then by construction (h,o.(t)) € Hp(e).

Let the ‘only if’ direction of the Lemma be true for all n < m — 1; we assume
that for every

(Pm—1,tm—1) = ((h — .), to)=a(ry, pred(ry) o« - - oxi{rp_1, pred(rm—_1)),

such that seed table ¢y is built from a seed example set E as described in Sec-

tion 3, and e € E, e;q4 € E(t;,—1) implies (ﬁm,l,ae(tm,1)> € Hg(e).

Let (ﬁm, tm) = (ﬁm_l,tm_l)D-Q(rm,pred(rm)), and e;q € E(t,), we now show
(h,0e(tm)) € Hp(e). Since e;q € E(ty,) the selection o (t,,) # 0. By the defi-
nition of extension-join and o, this implies that o.(¢;,—1) # 0, and thus e;q €
E(t;_1). By the inductive hypothesis pair (Am_1,0e(tm_1)) € Hp(e). There-
fore, since (hp_1,0¢(tm—-1)) € Hp(e), and oo (tm) # 0, (m, 0c(tm)) € Hp(e) as
desired. O

The result of E(t) is a set of row identifiers for examples in seed set E.
Given this set of identifiers a subset of examples in seed set E can be uniquely
specified. The next Lemma shows that under some conditions, for a hypothesis
pair (ﬁ, t) the set of example identifiers in ¢ can be mapped to the set of examples
covered by h. We denote this relationship as E(t) = E (ﬁ) This mapping will lead
directly to the desired result for Proposition 2, except for the issues presented
by the filter function ¢. Addressing those effects will be the bulk of the proof of
Proposition 2.

Lemma 3. Let h = (h —r1,...,r,.) € H(M,h), and
<fL, t) = ((h < .),to)=(ry, pred(ry))osd - - - (7, pred(ry,)),

such that seed table to is built from a seed example set E as described in Section 3.
Let e;q be the unique row identifier associated with seed example e € E in table
to. Then for every e € E, e;q € E(t), if and only if, e € E(h), where E(t) is the
projection of table t as in Definition 5 and E(ﬂ) is the set of examples covered

by hypothesis h as in Definition 7. That is, E(t) = E(h).

Proof. (If). By Definition 7, e € E(h) if h € Ha(e). By Proposition 1, if h €
Ha(e) then there exists table ¢, such that (h,t.) € Hp(e). This implies by
Lemma 1 that e;q € E(t) the projection of ¢ to its seed example identifiers.
(Only if). By Lemma 1, e;q € E(t) implies (h,00(t)) € Hp(e). By Proposi-
tion 1, (h,t.) € Hp(e) implies h € H(e). Then by definition, e € E(h), that is,
h covers single seed e. ad

We now prove Proposition 2 proceeding by induction on the number of literals
in the hypothesis. We note that if a hypothesis hn, € H (M, h) is an extension of
hypothesis h,_1 € H(M, h), the set of examples covered by h,, is a subset of the
examples covered by hn_1. We use the monotonicity of the proper filter function
¢ to reason about the result of applying ¢ to the set of examples covered by B
Finally, Lemmas 2 and 3 provide a mapping from the set of examples covered by
a hypothesis to the examples present in a table resulting from a chain of multiple
extension-joins starting from the seed table.

Proof. (If). Let h = (h «—r1,...,rn.) € H(M,h). If (h,t) € Hy (E), then
<iL, t) = ((h < .),to)=(ry, pred(ry))osa - - - (7, pred(ry,)),

such that seed table ¢y is built from a seed example set F as described in Section 3
and ¢(t) = $(E(t)) = true. We have by Lemma 3 that E(h) = E(t), and thus,
d(E(h)) = true since ¢(E(t)) = true.

(Only if). We proceed by induction on n, the number of literals in the body
of h. If n = 1, then h = (h « true.). By construction there is a to such that
<}Alnat0> € HW(E)

Let the ‘only if’ direction of the Proposition be true for all n < m — 1; we
assume that for every hp,_1 = (h — r1,...,rm_1.) € HM,h), ¢(E(hm_1)) =
true implies that there is a table ¢,,_1 such that <ﬁm,1,tm,1> € Hy(E). Let
B = (B —71,. .., Tm_1,7m) € H(M, h) and ¢(E(hy,)) = true. We show there
is a table t,, such that (A, ty) € Hy (E).

By the monotonicity of ¢, ¢(E(hm_1)) = true since E(hy,) € E(hpm_1) and
@(E(hm)) = true. Then, by the inductive hypothesis, there exists (A, _1,tm_1) €
Hyy (E) where

(ﬁm_l,tm_ﬁ = ((h < .),to)a(ry, pred(ry)y - - 0x{ry—1, pred(rm—1)),

such that table ¢y is built from a seed example set E as described in Section 3 and
Htm—1) = (E(tm—1)) = true. Let (fun,tm) = (A1, tm—1)>(rm, pred(rp)).

7 def

By Lemma 3, we have E(t,,) = E(hy,) which implies ¢(t,,) = ¢(E(tn,)) = true.
This implies (A, tm) € Hw (F) as desired. 0

In the case of the strict intersection filter function, this Proposition states
that only hypotheses that cover every seed are generated. On the other hand, in
the case of the support filter function, only hypotheses that cover the required
number of seeds are generated.

In future work we will experimentally evaluate the effect of alternative set-
tings of the parameters exposed for hypothesis space restriction by this frame-
work. In particular, we want to observe their effect on the accuracy of learned
hypothesis found under spaces restricted by Generalized Inverse Entailment. For
example, determining what effect different support thresholds have on accuracy
is important. Determining how robust this approach is to sampling effects as
compared to Inverse Entailment would test the conjecture that the effect caused
by a bad choice of a single seed is in fact mitigated by this proposed framework.
Characterizing the types of datasets that benefit from this approach would be
enlightening.

6 Conclusion

We presented a framework for ILP that exploits caching and avoids redundant
computation. This framework is built upon a data structure and hypothesis ex-
tension operation that makes opportunities for caching explicit. We presented
this structure and defined the extension operation in terms of relational database
operations, suggesting a way to incorporate ILP in a relational database envi-
ronment.

We also discussed how current methods that seek to improve efficiency and
alternative search definition can directly benefit from the framework presented
here. In addition, new variants of search restriction and strategy are direct re-
sults of this framework. We discussed one such variant, which generalizes Inverse
Entailment to multiple seeds, and presented theoretical results that offer a foun-
dation for this generalization.

Finally, this framework enables us to learn theories in languages other than
sets of Horn clauses, including theories that make probabilistic statements, state-
ments about aggregates, and that contain negation.

Each of the directions mentioned above holds the potential for significant
improvement in some aspect of ILP, and we believe that the work in this paper
is a first step that opens many promising avenues for future research.

References

1. Dzeroski, S., Lavrac, N., eds.: Relational Data Mining. Springer-Verlag New York,
Inc. (2001)

2. Blockeel, H., Sebag, M.: Scalability and efficiency in multi-relational data mining.
SIGKDD Explor. Newsl. 5 (2003) 17-30

3. Struyf, J., Blockeel, H.: Query optimization in inductive logic programming by
reordering literals. In: ILP. (2003) 329-346

4. Bockhorst, J., Ong, I.M.: FOIL-D: Efficiently scaling FOIL for multi-relational
data mining of large datasets. In: ILP. (2004) 63-79

5. Blockeel, H., Dehaspe, L., Demoen, B., Janssens, G., Ramon, J., Vandecasteele,
H.: Improving the efficiency of inductive logic programming through the use of
query packs. J. Artif. Intell. Res. (JAIR) 16 (2002) 135-166

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Costa, V.S., Srinivasan, A., Camacho, R., Blockeel, H., Demoen, B., Janssens, G.,
Struyf, J., Vandecasteele, H., Laer, W.V.: Query transformations for improving the
efficiency of ILP systems. Journal of Machine Learning Research 4 (2003) 465491
Cussens, J.: Using prior probabilities and density estimation for relational classi-
fication. In: ILP. (1998) 106-115

Zelezny, F., Srinivasan, A., Page, D.: A Monte Carlo study of randomised restarted
search in ILP. In: ILP. (2004) 341-358

DiMaio, F., Shavlik, J.W.: Learning an approximation to inductive logic program-
ming clause evaluation. In: ILP. (2004) 80-97

Vens, C., Assche, A.V., Blockeel, H., Dzeroski, S.: First order random forests with
complex aggregates. In: ILP. (2004) 323-340

Costa, V.S., Page, D., Qazi, M., Cussens, J.: CLP(BN): Constraint logic program-
ming for probabilistic knowledge. In: International Conference on Uncertainty in
Artificial Intelligence. (2003)

Srivasanan, A.: The Aleph manual. Source code available at
http://web.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/aleph.html
(2004)

Muggleton, S.: Inverse entailment and Progol. New Generation Comput. 13 (1998)
245-286

Ramakrishnan, R., Gehrke, J.: Database Management Systems. Third edn.
McGraw-Hill (2003)

Ferilli, S., Mauro, N.D., Basile, T.M.A., Esposito, F.: Theta-subsumption and
resolution: A new algorithm. In Zhong, N., Ras, Z.W., Tsumoto, S., Suzuki, E.,
eds.: ISMIS. Volume 2871 of Lecture Notes in Computer Science., Springer (2003)
384-391

Mauro, N.D., Basile, T.M.A., Ferilli, S., Esposito, F., Fanizzi, N.: An exhaustive
matching procedure for the improvement of learning efficiency. [24] 112-129
Maloberti, J., Sebag, M.: Fast theta-subsumption with constraint satisfaction al-
gorithms. Machine Learning 55 (2004) 137-174

Arias, M., Khardon, R.: Bottom-up ilp using large refinement steps. In Cama-
cho, R., King, R.D., Srinivasan, A., eds.: ILP. Volume 3194 of Lecture Notes in
Computer Science., Springer (2004) 26—43

Fonseca, N., Rocha, R., Camacho, R., Silva, F.M.A.: Efficient data structures for
inductive logic programming. [24] 130-145

Yin, X., Han, J., Yang, J., Yu, P.S.: Crossmine: Efficient classification across
multiple database relations. In: ICDE, IEEE Computer Society (2004) 399-411
Ramakrishnan, R., Srivastava, S., Sudarshan, S.: Efficient bottom-up evaluation
of logic programs. In Dewilde, P., Vandewalle, J., eds.: Computer Systems and
Software Engineering: State-Of-The-Art. Kluwer Academic Publishers (1992)
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discov-
ery of association rules. In: Advances in Knowledge Discovery and Data Mining.
AAAT/MIT Press (1996) 307-328

Dehaspe, L., Toivonen, H.: Discovery of frequent datalog patterns. Data Min.
Knowl. Discov. 3 (1999) 7-36

Horvath, T., ed.: Inductive Logic Programming: 13th International Conference,
ILP 2003, Szeged, Hungary, September 29-October 1, 2003, Proceedings. In
Horvath, T., ed.: ILP. Volume 2835 of Lecture Notes in Computer Science.,
Springer (2003)

