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This paper extends the resolvent formulation proposed by McKeon & Sharma
(J. Fluid Mech., vol. 658, 2010, pp. 336–382) to consider turbulence–compliant
wall interactions. Under this formulation, the turbulent velocity field is expressed as a
linear superposition of propagating modes, identified via a gain-based decomposition
of the Navier–Stokes equations. Compliant surfaces, modelled as a complex wall
admittance linking pressure and velocity, affect the gain and structure of these modes.
With minimal computation, this framework accurately predicts the emergence of
the quasi-two-dimensional propagating waves observed in recent direct numerical
simulations. Further, the analysis also enables the rational design of compliant
surfaces, with properties optimized to suppress flow structures energetic in wall
turbulence. It is shown that walls with unphysical negative damping are required to
interact favourably with modes resembling the energetic near-wall cycle, which could
explain why previous studies have met with limited success. Positive-damping walls
are effective for modes resembling the so-called very-large-scale motions, indicating
that compliant surfaces may be better suited for application at higher Reynolds
number. Unfortunately, walls that suppress structures energetic in natural turbulence
are also predicted to have detrimental effects elsewhere in spectral space. Consistent
with previous experiments and simulations, slow-moving spanwise-constant structures
are particularly susceptible to further amplification. Mitigating these adverse effects
will be central to the development of compliant coatings that have a net positive
influence on the flow.
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1. Introduction

It has long been recognized that compliant walls have the potential to serve
as passive controllers for turbulent flows (Gad-el-Hak 2000). The fact that such
walls would require no energy input for control and involve no sensors, actuators
or complex control algorithms makes them especially attractive from a practical
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standpoint. However, despite numerous efforts since the early experiments of Kramer
(1961), designing a compliant surface that can interact favourably with wall-bounded
turbulent flows and reduce skin friction drag remains an open challenge.

Classical instability analyses have provided significant insight into the possibility
of transition delay using compliant walls (Benjamin 1960; Landahl 1962; Carpenter
& Garrad 1985, 1986; Lucey & Carpenter 1995; Davies & Carpenter 1997), which
has led to an elegant energy-based classification of the various fluid and structural
instabilities possible (Benjamin 1963). Some studies suggest that the use of multiple
compliant panels of different material properties may even delay transition indefinitely
(Carpenter, Davies & Lucey 2000). Yet, to our knowledge, there is no universally
accepted theoretical framework to study the interaction between turbulent flows and
compliant surfaces. Without this guiding framework, time- and resource-intensive
experiments (e.g. Bushnell, Hefner & Ash 1977; Lee, Fisher & Schwarz 1993;
Choi et al. 1997) and direct numerical simulations (e.g. Endo & Himeno 2002;
Xu, Rempfer & Lumley 2003; Fukagata et al. 2008; Kim & Choi 2014) have been
restricted to relatively small parameter ranges and met with limited success.

1.1. Previous studies

For a critical review of the early experimental efforts studying the interaction between
compliant walls and turbulent boundary layers, the reader is referred to Bushnell
et al. (1977). A comprehensive review of the theoretical and experimental efforts
after 1977 can be found in Riley, Gad-el-Hak & Metcalfe (1988) and Carpenter
(1990). Since then, the hydrogen bubble flow-visualization experiments pursued by
Lee et al. (1993) have shown that a single-layer viscoelastic coating can lead to an
intermittent relaminarization-like phenomenon. These experiments did not yield skin
friction estimates, but Lee et al. (1993) did report a reduction in the Reynolds stress
and streamwise energy intensity over the compliant surface. Subsequent water-tunnel
experiments by Choi et al. (1997) have confirmed that a viscoelastic coating made
of silicone rubber can reduce the skin friction by 3–7 % at low free-stream velocities.
However, these promising results should be treated with a degree of caution, since
the experimental error associated with the skin friction measurements was estimated
to be as much as ±4 %, and another coating with a larger loss coefficient (i.e. greater
viscous damping) resulted in a skin friction increase.

While the experiments provide some cause for optimism, results from numerical
simulations have been inconclusive. The compliant wall tested by Xu et al. (2003) in
their direct numerical simulation (DNS) study led to very little modification of the
near-wall coherent structures and no change in the long-time skin friction drag. The
optimization performed by Fukagata et al. (2008) showed that anisotropic compliant
surfaces could yield skin friction reductions of up to 8 % for turbulent channel
flow at very low Reynolds numbers (bulk Reynolds number Reb = 3300). However,
performance deteriorated as the size of the flow domain increased. A recent DNS
study by Kim & Choi (2014) showed very little change in skin friction over stiff
walls (characterized by a high spring constant, damping and tension). Softer walls led
to the generation of large-amplitude two-dimensional travelling waves that resulted in
a significant increase in drag.

There have also been some previous attempts at developing simplified models
for the study of turbulence–compliant wall interactions. Duncan (1986) developed a
two-dimensional quasi-interactive scheme wherein an unsteady pressure pulse of an
assumed shape was imposed on a compliant surface of known material properties. The
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interaction between the deflecting compliant wall and a mean potential flow was then
computed explicitly. Kireiko (1990) used a linearized monoharmonic approximation
to consider the interaction between near-wall turbulence and compliant surfaces.

More recently, Rempfer et al. (2001) developed a low-order dynamical model for
the fluid–structure system that employed a Galerkin projection onto a combination of
(i) basis functions obtained via proper orthogonal decomposition (POD) of a rigid-wall
DNS dataset and (ii) Stokes eigenfunctions to account for the compliant-wall
boundary condition. The wall itself was assumed to act as a simple second-order
mass–spring–damper system (although it is clear that the model can be extended
to account for more complex surfaces). This last study by Rempfer et al. (2001)
provides a reasonably complete framework for the study of turbulence–compliant wall
interactions. However, it does have some limitations. For example, the requirement of
a pre-existing DNS database for the POD restricts the model to low Reynolds numbers.
Rempfer et al. (2001) also noted that the ad hoc use of Stokes eigenfunctions to
satisfy the boundary conditions may not adequately describe the near-wall physics.

1.2. This contribution

The lack of any definitive results highlights the need for a computationally inexpensive
framework that allows an exploration of the parameter space and enables the rational
design of performance-enhancing compliant walls. In an effort to address this need,
this paper extends the resolvent analysis of McKeon & Sharma (2010). Under the
resolvent formulation, the turbulent velocity and pressure fields are represented by
a series of highly amplified flow structures identified directly from the governing
Navier–Stokes equations (NSEs) through a gain-based decomposition. Specifically,
this analysis interprets the Fourier-transformed NSEs as a forcing–response system
with feedback: the nonlinear convective terms are treated as the forcing that is
processed by the linear terms to generate a velocity and pressure response. A
singular-value decomposition (SVD) of the forcing–response transfer function (the
resolvent operator) is used to identify the most amplified velocity and pressure
fields at each wavenumber–frequency combination. These high-gain travelling-wave
structures, termed resolvent modes, are assumed to dominate the flow field.

Subsequent studies have shown that the resolvent modes yield predictions consistent
with the structure, statistics and scaling of wall-bounded turbulent flows. For example,
certain resolvent modes reproduce features of the dynamically important near-wall
(NW) cycle, while others resemble the so-called very-large-scale motions (VLSMs)
that appear in the logarithmic region at higher Reynolds numbers and have an
organizing influence on the near-wall flow (McKeon, Jacobi & Sharma 2013). Sharma
& McKeon (2013) demonstrated that some modes naturally give rise to hairpin-like
vortices and that a small number of modes can be combined to yield realistic
structure resembling modulating hairpin packets. Moarref et al. (2013) identified
different scaling regimes for the resolvent modes as a function of their wave speed
and used this knowledge to develop a model for the streamwise energy intensity
profile.

For the purposes of the present study, two further developments are key. First,
Luhar, Sharma & McKeon (2014a) recently showed that resolvent modes reconcile
many of the key relationships between the velocity field, wall-pressure fluctuations
and coherent structure observed in previous experiment and DNS. Second, using
opposition control (Choi, Moin & Kim 1994) as an example, Luhar, Sharma &
McKeon (2014b) demonstrated that these modes also serve as effective building
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blocks for reduced-order models that can be used to evaluate and design flow control
schemes. Thus, the resolvent modes can reasonably represent turbulent flow structures,
capture their wall-pressure footprint and account for the effects of control. Motivated
by these developments, the present study employs them to consider the effect of
compliant surfaces. The compliant wall is introduced via a change in the dynamic
boundary conditions for the NSEs (i.e. the pressure–velocity relationship at the wall)
prior to performing the SVD. The resulting change in the structure and amplification
of the resolvent modes relative to the rigid-wall case is used to infer the effectiveness
of the compliant surface.

Note that the framework developed in this paper is conceptually similar to the work
of Rempfer et al. (2001) in that it considers the effect of compliant walls on a limited
set of basis functions (resolvent modes). However, since the rigid-wall (null-case) and
compliant-wall resolvent modes are identified directly from the governing equations,
there are no Reynolds-number limitations for the present study and the boundary
conditions are satisfied automatically. Another advantage of the present approach
is that it permits a mode-by-mode evaluation of control. This is computationally
inexpensive, which makes it possible to perform searches for optimal wall properties
that are tuned to suppress structures energetic in natural flows. As will be shown
later, such blind searches occasionally identify non-traditional wall properties to be
optimal. This finding in itself is important because it indicates that designing effective
compliant walls might call for the use of metamaterials or require further advances
in materials development.

2. Approach

This section provides a brief review of the resolvent formulation proposed by
McKeon & Sharma (2010), before presenting the extension to account for compliant
walls. To maintain consistency with DNS studies considering compliant surfaces (Xu
et al. 2003; Fukagata et al. 2008; Kim & Choi 2014), this paper considers only fully
developed channel flow. However, the approach presented herein can be extended to
turbulent pipe and boundary layer flows as well.

2.1. Resolvent analysis

As discussed in McKeon & Sharma (2010) and McKeon et al. (2013), the resolvent
formulation stems from the insight that the governing NSEs can be considered a
forcing–response system with feedback. The conservative nonlinear terms, which
serve to transfer energy across spectral space, are interpreted as the feedback forcing
that acts on the linear terms of the NSEs to generate a velocity and pressure response.
Importantly, it turns out that the linear terms behave like highly directional filters
and so the flow response is (almost) insensitive to the nature of the nonlinear
forcing. McKeon et al. (2013) argue that this directionality is partially responsible
for the robust nature of wall turbulence, i.e. the presence of repeating, recognizable
flow patterns across geometries, scales and operating conditions (NW cycle, hairpins,
VLSMs). Given this directionality, a gain-based decomposition of the forcing–response
transfer function is used to arrive at a low-order representation for the flow field.

For fully developed turbulent channel flow, spatial invariance and statistical
stationarity ensure that Fourier modes are the most appropriate bases for decomposition
in the streamwise direction x, spanwise direction z and time t:

[
u(x, y, z, t)

p(x, y, z, t)

]
=
∫∫∫ ∞

−∞

[
uk(y)

pk(y)

]
ei(κxx+κzz−ωt) dκx dκz dω. (2.1)



Effect of compliant surfaces on wall turbulence 419

Here, u = [u, v, w]T represents the streamwise (u), wall-normal (v) and spanwise
(w) velocity fields, and p denotes the pressure field. Each wavenumber–frequency
combination k = (κx, κz, ω) represents a flow structure, or mode, with streamwise
and spanwise wavelengths λx = 2π/κx and λz = 2π/κz propagating downstream at
speed c = ω/κx. (Note that, unless otherwise indicated, length scales are normalized
with respect to the channel half-height h and velocity scales are normalized with
respect to the friction velocity uτ . Following standard notation, a superscript + is
used to denote normalization with respect to uτ and the kinematic viscosity ν.)
The Fourier coefficients uk and pk represent the wall-normal (y) variation in the
magnitude and phase of the velocity and pressure fields for each mode. The special
case u0 = [U(y), 0, 0]T represents the mean velocity profile.

For the inhomogeneous wall-normal direction, the analysis seeks a gain-based
decomposition. Specifically, the Fourier-transformed NSEs and continuity constraint
are expressed as the following forcing–response system:

[
uk

pk

]
=

(
−iω

[
I

0

]
−
[
LLL k −∇k

∇
T
k 0

])−1 [
I

0

]
f k

= H̃HH k f k, (2.2)

where ∇k = [iκx, ∂/∂y, iκz]T and ∇
T
k represent the gradient and divergence operators,

respectively, and f k = (−u · ∇u)k represents the nonlinear forcing. The forcing is

mapped to a velocity and pressure response by the resolvent H̃HH k, which depends on
the linear operator:

LLL k =




−iκxU + Re−1
τ ∇2

k −∂U/∂y 0

0 −iκxU + Re−1
τ ∇2

k 0

0 0 −iκxU + Re−1
τ ∇2

k


 . (2.3)

Here, Reτ = uτh/ν is the friction Reynolds number and ∇2
k = [−κ2

x + ∂2/∂y2 − κ2
z ]

is the Fourier-transformed Laplacian. The first line in the operator on the right-hand
side of (2.2) represents the momentum equations and the second line represents the
continuity constraint.

Following McKeon & Sharma (2010), an SVD of the resolvent operator H̃HH k,
discretized using a Chebyshev collocation method (§ 2.3), yields a set of orthonormal
forcing ( f k,m) and response ([uk,m, pk,m]T) modes, ordered based on the input–output

gain (σk,m) under an L2 energy norm. To enforce this energy norm, the primitive-
variable resolvent in (2.2) is scaled as

[
W u 0

] [uk

pk

]
=
([

W u 0
]
H̃HH k W

−1
f

)
W f f k (2.4)

or

W u uk = H̃HH
S

k W f f k. (2.5)

Note that the discretized resolvent operator H̃HH k is a block matrix of dimension [4 × 3]
while the scaled resolvent operator H̃HH

S

k is of dimension [3 × 3]. The [3 × 3] block
diagonal matrices W u and W f incorporate numerical quadrature weights, which ensure
that the SVD of the scaled resolvent operator,

H̃HH
S

k =
∑

m

ψk,mσk,mφ
∗
k,m, (2.6)
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where

σk,1 >σk,2 > · · ·>σk,m > · · ·> 0, φ∗
k,lφk,m = δlm, ψ∗

k,lψk,m = δlm, (2.7a−c)

yields forcing modes f k,m = W
−1
f φk,m and velocity response modes uk,m = W

−1
u ψk,m with

unit energy over the channel cross-section, i.e. the orthonormality constraints (2.7)
translate into ∫ 2

0

f ∗
k,l f k,m dy = δlm,

∫ 2

0

u∗
k,l uk,m dy = δlm, (2.8a,b)

where a superscript ∗ denotes a complex conjugate.
From (2.2)–(2.7), it can be seen that forcing in the direction of the mth singular

forcing mode with unit amplitude results in a response in the direction of the mth
singular response mode amplified by the singular value σk,m, i.e. forcing f k = f k,1

creates a response [uk, pk]T = σk,1[uk,1, pk,1]T. Luhar et al. (2014a) provide a more
detailed description of how the primitive-variable resolvent shown in (2.2) is scaled
to enforce the energy norm and how the pressure field is extracted from the unscaled
operator.

Importantly, for k combinations energetic in natural turbulence, the resolvent
operator tends to be of low rank. Only a limited number of inputs are highly
amplified. Frequently, σk,1 ≫ σk,2 and so the velocity and pressure fields can be
reasonably approximated by the first response modes, uk,1 and pk,1, respectively.
Recent studies (McKeon & Sharma 2010; McKeon et al. 2013; Moarref et al. 2013;
Luhar et al. 2014a) have shown that models based on this rank-1 approximation yield
statistical and structural predictions consistent with previous observations for wall
turbulence. The reader is referred to these studies for an expanded discussion of the
amplification characteristics of the resolvent operator and the rank-1 approximation.

Given the success of the rank-1 response modes in reproducing previous
observations, the present paper employs them for the study of turbulence–compliant
wall interactions. For the remainder of this paper, it is assumed that the velocity
and pressure fields at each k correspond to the rank-1 responses: [uk(y), pk(y)]T =
[uk,1, pk,1]T. The term ‘resolvent modes’ refers to these rank-1 velocity and pressure
fields, while the terms ‘amplification’ and ‘gain’ are used interchangeably to refer
to the corresponding singular values, σk,1. The additional subscript 1 is dropped for
notational convenience.

Assuming that the efficacy of any control scheme depends on its ability to
suppress the generation of Reynolds stress (Fukagata, Iwamoto & Kasagi 2002),
the forcing–response interpretation of the NSEs suggests three possible mechanisms:
(i) a reduction in the magnitude of the nonlinear forcing f k present in the flow or a
change in the form of the forcing (e.g. towards lower-gain directions) such that the
magnitude of the velocity response diminishes; (ii) a modification of the system such
that the forcing–response gain diminishes; or (iii) a reduction in the Reynolds stress
contribution from high-gain resolvent modes via a change in mode structure. While
mechanism (i) clearly requires knowledge of the nonlinear coupling between resolvent
modes, mechanisms (ii) and (iii) can be evaluated on a linear mode-by-mode basis.
This mode-by-mode approach is adopted here.

In other words, the present paper considers only the effect of compliant walls on
the shape (uk, pk) and forcing–response amplification (σk) of the resolvent modes. It
provides no information on the nonlinear interaction between resolvent modes, which
would feed back via the quadratic nonlinearity to force the linearized system. A
more complete model would require knowledge of the triadic coupling between all
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resolvent modes, which is outside the scope of this paper. However, even without this
knowledge, the change in the gain and structure of the modes can provide significant
insight into the problem, as evidenced by the success of the analogous rank-1 model
for opposition control developed by Luhar et al. (2014b).

In addition to the nonlinearity, the mean velocity profile U(y) in (2.3) is another
point of connection between modes. Here, the discretized resolvent operator is
constructed using a mean profile computed based on a turbulent viscosity model
(Reynolds & Tiederman 1967, see § 2.3). If the compliant wall has a significant
influence on the flow, the mean velocity profile would no longer resemble the
canonical form, which could lead to changes in the gain and structure of the resolvent
modes. Again, in a complete model, the mean profile must be sustained by the total
Reynolds stress generated by the resolvent modes to account for this feedback.

2.2. Compliant-wall effects

For the rigid-wall null case, the discretized resolvent operator in (2.2) is constructed
using the standard no-slip boundary conditions at the lower (y = 0) and upper (y = 2)
walls:

uk(0)= uk(2)= 0. (2.9)

The effect of the compliant wall is introduced by changing the boundary conditions
on velocity and pressure within the resolvent before computing the SVD (2.7).
Specifically, for wall displacement η(x, z, t) constrained to be in the vertical direction,
the kinematic boundary conditions at the lower wall, u(η)= ∂η/∂t, can be expressed
as the following Fourier-transformed linearized Taylor series expansions:

uk(η)≈ uk(0)+ ηk

∂U

∂y

∣∣∣∣
0

+
∑

k=ka−kb

❍
❍
❍
❍
❍

ηka

∂u∗
kb

∂y

∣∣∣∣
0

+ · · · = 0, (2.10)

vk(η)≈ vk(0)+
∑

k=ka−kb

❍
❍
❍
❍
❍

ηka

∂v∗
kb

∂y

∣∣∣∣
0

+ · · · = −iωηk, (2.11)

wk(η)≈ wk(0)+
∑

k=ka−kb

❍
❍
❍
❍
❍

ηka

∂w∗
kb

∂y

∣∣∣∣
0

+ · · · = 0, (2.12)

where ηk represents the Fourier coefficient for the wall displacement at wavenumber–
frequency combination k = (κx, κx, ω). The neglected quadratic terms are shown
for reference. Physically, the kinematic boundary condition (2.10) estimates the
streamwise velocity at y = 0 by trying to satisfy the no-slip condition at the wall
y = η. This means that the streamwise fluctuations must counter the effects of the
mean flow, leading to the additional term ηk(∂U/∂y)0. As will be shown later, this
can result in relatively large magnitudes for uk(0). Further, (2.10) and (2.11) can be
combined to yield the following expression: iωuk(0) ≈ vk(0)(∂U/∂y)0. This means
that the streamwise and wall-normal velocities have to be π/2 out of phase near the
wall.

The dynamic boundary condition is expressed as a complex mechanical admittance
Y linking wall-normal velocity and pressure:

Y =
vk(0)

pk(0)
. (2.13)
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x

y

FIGURE 1. Schematic showing a simple spring- and damper-backed compliant membrane
and boundary conditions.

Similar boundary conditions apply at the top wall, y = 2, although, for walls with
identical material properties, the sign of the admittance changes due to the differing
symmetry of the pressure and wall-normal velocity fields with respect to the centreline,
i.e. vk(0)/pk(0)= −vk(2)/pk(2).

Clearly, the linearization of the kinematic boundary conditions (2.10)–(2.12) is a
significant simplification since the neglected higher-order terms could be important for
large wall displacements. However, retaining terms of quadratic or higher order in the
fluctuations would again require a coupled nonlinear model allowing for interactions
between resolvent modes, which is outside the scope of this paper, as noted earlier.
Further, the linearized boundary conditions require an estimate of the mean shear
at the wall (2.10), which is again assumed to correspond to the rigid wall case.
(Note that this is similar to the compliant-wall boundary conditions imposed in linear
stability analyses, see Carpenter 1990.) This assumption is not rigorously justified and
breaks down if the compliant wall significantly alters the near-wall mean flow. As
mentioned previously, in a more complete model, the mean flow must be consistent
with the total Reynolds stress generated by the modes to enable a priori predictions
of changes in the mean profile. This would allow for changes in the Reynolds stress
contributions from the modes to be propagated through the system via an iterative
process. Unfortunately, the convergence properties of this iterative process are not
known and as such are the subject of ongoing research.

The mechanical admittance Y dictates the relative phase and amplitude of the wall-
normal velocity and the pressure at the wall, which can be estimated based on the
structural properties of the wall. As an example, the dynamics of the simple spring-
and damper-backed membrane shown in figure 1 can be expressed as

−pk(0)= (−Cmω
2 − iωCd + Ck)ηk, (2.14)

where

Cm =
ρw

ρh
, Cd =

dw

ρuτ
and Ck =

kwh

ρu2
τ

(2.15a−c)

are the dimensionless mass, damping and spring coefficients, respectively, ρ is the
mass density of the fluid, ρw is the mass of the wall per unit area, kw is the effective
spring constant and dw is the damping ratio. From (2.14), it is easy to show that the
mechanical admittance for this wall is

Y =
vk(0)

pk(0)
=

iω

−Cmω2 − iωCd + Ck

=
iω(Ck −ω2Cm)−ω2Cd

(Ck −ω2Cm)2 +ω2C2
d

. (2.16)

While (2.14) assumes that the membrane is of negligible stiffness and tension-free,
both of these effects can be introduced via terms involving spatial derivatives.
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Specifically, the restoring effects of tension (Ct) and stiffness (Cs) would introduce
additional terms proportional to (κ2

x + κ2
z ) and (κ4

x + 2κ2
x κ

2
z + κ4

z ), respectively. In
essence, this would result in a wavenumber-dependent effective spring constant
Cke = Ck + Ct(κ

2
x + κ2

z )+ Cs(κ
4
x + 2κ2

x κ
2
z + κ4

z ). Similarly, more complex walls involving
viscoelastic coatings can be incorporated by solving a wave equation for the solid
layer with appropriate boundary conditions (e.g. Gad-el-Hak 2000).

Thus, the admittance Y can be used to account for the effects of compliant
walls with known material properties. However, instead of following the traditional
approach involving a trial-and-error procedure with different wall properties, the
present study considers the inverse problem: finding an optimal wall that leads to the
most favourable effect on the turbulent flow structures that are known to be important
in real flows. The concept of a complex wall admittance has been used previously
(Landahl 1962), perhaps most notably by Sen & Arora (1988), who employed a
similar inverse approach to study the stability of laminar boundary layer flows over
compliant surfaces.

In this paper, a simple gradient-free pattern search is used to find the optimal
Y (Hooke & Jeeves 1961), with a particular focus on resolvent modes resembling
the NW cycle and VLSMs. Optimality in this context is defined in two different
ways: (i) the compliant wall that leads to the greatest reduction in forcing–response
gain (σk) relative to the rigid-wall case, indicating mode suppression, and (ii) the
compliant wall that leads to the greatest reduction in the channel-integrated Reynolds
stress contribution from the resolvent mode:

RS =
∫ 2

0

σ 2
k Re(u∗

kvk)(y − 1) dy, (2.17)

where Re(· · ·) denotes the real component. The weighing factor (y − 1) is included
per the decomposition developed by Fukagata et al. (2002), who showed that the
friction coefficient in turbulent channel flow comprises a laminar component inversely
proportional to the Reynolds number, defined using the bulk-averaged velocity, and
a turbulent component proportional to the weighted Reynolds stress integral shown
in (2.17). For channels with compliant walls, the drag coefficient also comprises
an additional term that depends on the wall deformation. However, the integrated
Reynolds stress still plays a major role (Nakanishi, Mamori & Fukagata 2012). Note
that (2.17) represents a forcing-normalized quantity; it assumes unit forcing along
the first forcing mode, such that the velocity response at that wavenumber–frequency
combination is given by σkuk(y).

Keep in mind that the above optimization of wall properties is only valid for
a single wavenumber–frequency combination. As discussed in § 3.4, the optimal
admittance identified for one mode could very well have adverse effects on resolvent
modes at other wavenumber–frequency combinations. Further, the admittance of the
same wall also changes across spectral space. For instance, the simple second-order
model (2.16) shows that Y = f (ω). Accounting for the effects of tension and stiffness
would also introduce wavenumber dependencies, Y = f (κx, κz).

2.3. Numerical implementation

The discretized resolvent operator (2.2) is constructed using a spectral collocation
method on Chebyshev points. The differentiation matrices are computed using the
MATLAB differentiation matrix suite developed by Weideman & Reddy (2000). The
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mean velocity profile in the resolvent operator U(y) is obtained based on the turbulent
viscosity model proposed by Reynolds & Tiederman (1967):

νT =
1

2

[
1 +

(
κReτ

3
(2y − y2)(3 − 4y + 2y2)

(
1 − exp

{
(|y − 1| − 1)

Reτ

α

}))2
]1/2

−
1

2
,

(2.18)
where νT is normalized by ν. The parameter κ is the von Kármán constant, and α

appears in van Driest’s mixing length equation. The values for these parameters are
taken to be κ = 0.426 and α= 25.4, based on the optimization performed by Moarref
& Jovanovic (2012) to fit the mean profile obtained from channel-flow DNS at Reτ =
2000 (Hoyas & Jimenez 2006). The majority of the results presented in this paper
correspond to this Reynolds number.

Unlike in a pipe, the SVD of the channel-flow resolvent operator generally yields
pairs of structurally similar response modes with near-identical singular values but
differing symmetry along the channel centreline (Moarref et al. 2013). To avoid
this pairing and to make the computation more efficient, the grid is restricted to N
Chebyshev points in the lower half-channel with user-specified symmetry across the
centreline. All of the results presented in this paper correspond to resolvent modes
with antisymmetric uk, wk, pk fields and symmetric vk. The differentiation matrices for
the velocity and pressure fields are modified to account for these symmetry conditions
(see Trefethen 2000).

A grid resolution study showed that the singular values converge to within O(10−4)

for N > 100, which is the minimum resolution employed in this study. For N > 100,
the singular values for symmetric and antisymmetric modes were also found to differ
by less than O(10−4) at the wavenumber–frequency combinations considered in this
paper. Similarly, the gradient-free pattern search procedure to find the optimal Y
has a specified tolerance of O(10−4). As a rough estimate of computational expense,
each resolvent evaluation (i.e. setting up the operator with the appropriate boundary
conditions and performing the SVD) takes approximately 0.1 s on one core of a
laptop for N = 100 and 0.5 s for N = 200.

3. Results and discussion

While the resolvent formulation can be used to evaluate the effect of compliant
walls on modes across spectral space, this section initially focuses on the two most
natural starting points: the NW cycle (§ 3.1) and VLSMs (§ 3.2). This is followed by
discussions concerning the effects of mode speed (§ 3.3), previous DNS results and
the overall efficacy of the optimal walls identified in §§ 3.1 and 3.2 (§ 3.4), and more
realistic wall properties (§ 3.5).

3.1. Near-wall modes

The dynamically important NW cycle is characterized by coherent structures
with streamwise length scale λ+

x ≈ 1000, spanwise length scale λ+
z ≈ 100 and

characteristic propagation speed c+ ≈ 10 (Robinson 1991). As a result, this section
considers the design of compliant walls that interact favourably with the resolvent
mode corresponding to k = (κx, κz, c+) = (12, ±120, 10) at Reτ = 2000. The
wavenumbers are normalized with respect to the channel half-height, such that
the streamwise and spanwise wavelengths for this mode are λ+

x = 2πReτ/κx ≈ 1050
and λ+

z = 2πReτ/κz ≈ 105, respectively. Note that Reτ = 2000 was chosen because



Effect of compliant surfaces on wall turbulence 425

0

100

200
0

500

1000

40

20

–1 0 1

FIGURE 2. Velocity structure for the NW-type mode k = (κx, κz, c+) = (12, ±120, 10)
at Reτ = 2000 over a rigid wall. The black-and-white isosurfaces show negative and
positive wall-normal velocities at 80 % of maximum absolute value. The shading at the
wall represents the normalized wall-pressure field. Note that the velocity structure shown
includes contributions from both the κz = 120 and κz = −120 modes.

it represents the upper limit for which DNS results are readily available (Hoyas &
Jimenez 2006), and the lowest Reynolds number at which the VLSMs considered
in the following section become prominent (Smits et al. 2011). Resolvent modes
resembling the NW cycle at the lower Reynolds numbers typical of DNS studies
with compliant walls (e.g. k ≈ (1, 10, 10) at Reτ = 140–180) exhibit very similar
behaviour to that described below.

The null-case velocity field associated with these NW-type resolvent modes is
shown in figure 2. As expected for Fourier modes, the velocity field shows regions
of alternating positive and negative velocity with length scales λ+

x and λ+
z . Consistent

with known features of the NW cycle, the velocity field in the spanwise–wall normal
plane (see x+ = 0) shows counter-rotating quasi-streamwise vortices localized just
above the critical layer y+

c ≈ 15, where the mode speed matches the local mean
velocity, U(y+

c ) = c+. The velocity field in the streamwise–wall normal plane (see
z+ = 0) exhibits alternating prograde (with the mean shear) and retrograde rotation.
The wall-pressure field lags the wall-normal velocity field by ≈π/2, such that regions
of maximum (minimum) wall pressure coincide with regions of increasing (decreasing)
wall-normal velocity.

The amplitude, phase and Reynolds stress profiles shown in figure 3(a–c) provide
further insight into the structure of this mode. The streamwise velocity field peaks at
the critical layer while the wall-normal velocity peaks at a location slightly farther
from the wall. The streamwise and wall-normal velocity are ≈π out of phase at
the critical layer, which means that the Reynolds stress contribution from this mode
(figure 3c) also peaks near y+

c . As discussed in McKeon & Sharma (2010), these
features are typical of high-gain resolvent modes.
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FIGURE 3. Profiles showing the wall-normal variation in (a,d,g) amplitude and (b,e,h)
phase for the streamwise velocity (solid lines), wall-normal velocity (dashed lines) and
pressure fields (fine dashed lines) for the resolvent modes resembling the NW cycle.
(c, f,i) The normalized Reynolds stress contribution. Panels (a–c) represent the rigid-wall
case, (d–f ) represent the optimal wall in terms of singular-value suppression (Y = 1.92 +
0.55i), and (g–i) represent the optimal wall in terms of Reynolds stress reduction (Y =
2.23 + 1.55i).

Note that the wall-normal velocity and pressure fields exhibit a near-constant π/2
phase difference. Luhar et al. (2014a) show that this is because the pressure field
associated with the resolvent modes arises primarily from the so-called fast source
terms in the Poisson equation, which represent the linear interaction between the mean
shear and wall-normal velocity, i.e. ∇2

k pk ≈ −2iκxvk(∂U/∂y). It can be shown that the
slow source term in the pressure Poisson equation corresponds to the divergence of
the nonlinear forcing, ∇k · f k, which tends to be near-zero for the resolvent modes.
In other words, the most amplified forcing fields tend to be divergence-free. However,
despite the fact that the resolvent pressure fields do not contain contributions from the
nonlinear slow terms, they reproduce many previous observations (e.g. local pressure
minima under hairpin heads, pressure maxima associated with regions where sweeps
meet ejections, etc., Luhar et al. 2014a).
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The pattern-search optimization procedure indicates that a compliant wall with
admittance Y = 1.92 + 0.55i leads to the greatest reduction in singular value for
this mode. Specifically, this wall yields a 32 % reduction in gain (i.e. the ratio of
compliant- to rigid-wall singular values is σkc/σk0 = 0.68). As shown in figure 3(d–f ),
this reduction in singular value is not accompanied by a significant change in mode
structure. The only major distinction is that the magnitude of the pressure field
at the wall is much lower over the compliant wall (figure 3d, fine dashed line).
Perhaps this reduction in the magnitude of the wall-pressure field indicates a link
to the vorticity-flux control method proposed by Koumoutsakos (1999), who showed
that a suppression of the spanwise vorticity flux from the wall led to a significant
(up to 40 %) drag decrease in channel-flow DNS at Reτ = 180. Since the planar
gradients of the wall-pressure field (iκxpk(0) and iκzpk(0)) are directly proportional
to the flux of streamwise and spanwise vorticity from the wall, the reduction in
wall pressure suggests a reduction in the vorticity flux. However, keep in mind
that a direct comparison between the present results and the vorticity flux control
method is not strictly appropriate. The controller developed by Koumoutsakos (1999)
only considered the flux of spanwise vorticity and so the resulting flow structures
were more similar to the spanwise-constant travelling waves discussed in § 3.4. Finally,
note that the normalized Reynolds stress contribution from this mode does not change
significantly relative to the rigid-wall case (figure 3c, f ). However, for identical forcing
strengths, the 32 % suppression in mode amplitude over the compliant wall would
translate into a near-50 % reduction in the actual Reynolds stress generated by this
mode (∝ σ 2

k ; see (2.17)).
A compliant wall with admittance Y = 2.23 + 1.55i is found to be optimal based

on the lowest channel-integrated Reynolds stress criterion (2.17). Although this wall
does not yield a substantial reduction in gain (σkc/σk0 = 0.90), it does result in a
significant modification of the flow structure (figure 3g–i). Instead of peaking at or
near the critical layer, the magnitude of the velocity fields is largest at the wall.
Further, the phase relationship between the streamwise and wall-normal velocity is
modified substantially relative to the rigid-wall case (figure 3h). The velocity fields
are approximately ±π/2 out of phase across y+

c ≈ 0–40, leading to a significant
reduction in the normalized Reynolds stress (figure 3i). Physically, this change in
mode structure means that the quasi-streamwise vortices observed for the rigid-wall
case, which are important for Reynolds stress and turbulent kinetic energy production
via the lift-up mechanism, are almost entirely suppressed, and structures resembling
rollers are generated near the wall (figure 4).

Recall that the above results were obtained with linear approximations to the
boundary conditions (2.10)–(2.12). Since the velocity magnitudes peak at the wall
(figure 3), the boundary conditions clearly play a major role in dictating mode
behaviour. Hence, the use of linearized boundary conditions is a significant limitation
of the present approach, which needs to be carefully evaluated against results from
simulations employing more accurate boundary conditions (e.g. involving immersed
boundaries or coordinate transformations) or from experiments as they become
available.

The results presented thus far suggest that it might be possible to suppress the
dynamically important NW cycle using compliant walls. However, it is important
to keep in mind that the admittance Y must reflect the physical properties of the
wall. The simple spring–damper model (2.16) suggests that the optimal admittances
identified in this section, Y = 1.92 + 0.55i for mode suppression and Y = 2.23 +
1.55i for Reynolds stress reduction, would require negative damping coefficients,
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FIGURE 4. Velocity structure for the NW-type mode with the optimal Reynolds-stress-
reducing wall. The black-and-white isosurfaces show negative and positive wall-normal
velocities at 80 % of maximum absolute value. The shading on the compliant wall
(deflection not to scale) represents the normalized pressure field.

i.e. Re(Y) > 0 corresponds to Cd < 0. This is further confirmed by the contour maps

shown in figure 5. Only compliant walls with Re(Y) > 0 lead to a reduction in

singular value (figure 5a). A reduction in Reynolds stress does appear possible with

Re(Y) < 0, despite the increase in gain (see Y ≈ −0.1 + 2i; figure 5b). However,

this result must be treated with caution because the higher-rank resolvent modes not

considered in this paper may become important as the singular values increase relative

to the rigid-wall case, and the Reynolds stress contribution from these higher-rank

modes could offset the Reynolds stress reduction from the rank-1 modes. In other

words, the rank-1 approximation might fail in the modified flow.

Since the NW cycle is a dominant feature of low-Reynolds-number flows, the

results presented in this section may also explain why previous DNS studies have met

with limited success. The present analysis suggests that the positive-damping walls

typically tested in DNS are unlikely to interact favourably with the NW cycle (to our

knowledge, no previous simulations have considered negative damping coefficients).

Optimal wall admittances with Re(Y) > 0 are also indicative of a situation where

the wall-normal velocity is, at least partially, in phase with the wall-pressure field

(figure 4). This phase relationship is consistent with suggestions made in previous

studies based on heuristic arguments (e.g. Xu et al. 2003; Fukagata et al. 2008) that

the velocity fluctuations need to be in phase with the wall pressure for drag reduction.

Finally, it is also important to keep in mind that a wall with negative damping

is, strictly speaking, no longer passive. It results in a net energy transfer into the

flow. However, negative damping does not necessarily imply that the wall requires an

external energy input. It may be possible to identify materials that are passive globally

but exhibit negative damping over a limited bandwidth.
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FIGURE 5. Contours showing the ratio of (a) compliant- to rigid-wall singular
values σkc/σk0 and (b) channel-integrated Reynolds stress RSkc/RSk0 across a range
of wall admittances, Y , for resolvent modes resembling the NW cycle. The optimal
admittances identified based on the pattern-search procedure are marked with a white
+. The channel-integrated Reynolds stress is defined in (2.17). The dashed contour line
corresponds to a ratio of 1, i.e. no change.

3.2. Very-large-scale motions

This section considers the effect of compliant surfaces on modes with k = (1,±10, 16)
at Reτ =2000. Similar to the VLSMs (Monty & Chong 2009; Smits et al. 2011), these
modes represent flow structures of streamwise and spanwise length scales λx ≈ 6h

(λ+
x ≈ 12 600) and λz ≈ 0.6h (λ+

z ≈ 1260), propagating downstream at c+ = 16. Despite
the roughly 10-fold increase in wavelength, figure 6(a–c) shows that the rigid-wall
structure for this resolvent mode is very similar to that for the NW mode considered
in the previous section. The streamwise velocity, wall-normal velocity and Reynolds
stress again peak at or near the critical layer, which is now located at y+

c ≈ 94, and
there is a near-constant π/2 phase difference between vk and pk.

However, unlike the modes resembling the NW cycle, compliant walls with positive
damping interact favourably with these larger-scale modes. This is illustrated by the
predicted performance maps shown in figure 7; regions of singular value and Reynolds
stress reduction are primarily confined to admittances with Re(Y) < 0. The pattern
search suggests that the optimal wall admittances for gain and Reynolds stress
reductions for this mode are Y = −2.04 − 0.44i and Y = −3.19 − 0.39i, respectively.
Both admittances lead to similar reductions in singular value and changes in mode
structure (see figure 6d–f and g–i). The best gain-reducing wall leads to σkc/σk0 =0.52,
while the optimal Reynolds-stress-reducing wall leads to σkc/σk0 = 0.56.

The mode structure over the compliant walls is modified such that the streamwise
velocity (solid lines) is largest at the wall, while the magnitude of the wall-normal
velocity (bold dashed lines) exhibits local maxima above and below the critical layer.
The local peak in vk below the critical layer is also accompanied by a ±π/2 phase
shift between the wall and the critical layer (see bold dashed lines, figure 6e,h). Note
that the normalized Reynolds stress contribution from the compliant-wall resolvent
modes is significantly lower compared to the rigid-wall case. Figure 6(i) suggests that
the compliant wall may even lead to a reversal in the sign of the Reynolds stress.

The rigid-wall flow structure associated with this large-scale mode is broadly similar
to that shown in figure 2, but with vastly different length scales. Figure 8 shows how
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FIGURE 6. Profiles showing the wall-normal variation in (a,d,g) amplitude and (b,e,h)
phase for the streamwise velocity (solid lines), wall-normal velocity (dashed lines) and
pressure fields (fine dashed lines) for the resolvent modes resembling VLSMs. (c, f,i) The
normalized Reynolds stress contribution. Panels (a–c) represent the rigid-wall case, (d–f )
represent the optimal wall in terms of singular-value suppression (Y = −2.04 − 0.44i), and
(g–i) represent the optimal wall in terms of Reynolds stress reduction (Y =−3.10 − 0.39i).

the wall optimized for Reynolds stress alters this physical structure. The compliant
wall again leads to a suppression of the quasi-streamwise vortices associated with
Reynolds stress production. However, unlike the NW modes, the wall-normal velocity
and pressure fields are not in phase at the wall. Regions of positive pk coincide
with regions of negative vk (i.e. the wall moves downwards under high pressure), as
expected for Re(Y) < 0.

The fact that walls with positive damping are predicted to interact favourably with
the larger VLSM-type modes might explain why previous experiments have met
with more success than numerical simulations. In general, the experiments (Lee et al.
1993; Choi et al. 1997) have been carried out at higher Reynolds numbers, where
these larger-scale flow structures play a more prominent role. Since the VLSMs are
known to have an organizing influence on the near-wall turbulence (Marusic, Mathis
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FIGURE 8. Velocity structure for the VLSM-type mode with the optimal Reynolds-stress-
reducing wall. The black-and-white isosurfaces show negative and positive wall-normal
velocities at 80 % of maximum absolute value. The shading on the compliant wall
(deflection not to scale) represents the normalized pressure field.

& Hutchins 2010), they may also serve as a pathway for compliant walls to influence
the entire flow.

3.3. Effect of mode speed

As a sensitivity analysis, this section evaluates the effects of compliant walls on
resolvent modes with varying speed c+. The speed c+ determines the wall-normal
localization of the mode (McKeon & Sharma 2010). Slower-moving resolvent modes
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FIGURE 9. Optimal wall admittances, in terms of singular-value suppression, for modes of
varying speed c+ = 5–20. Each marker represents an increment of 1c+ = 0.2. The darkness
of the marker indicates the degree of suppression. Also shown are the optimal admittances
for Reynolds stress reduction for the NW and VLSM-type modes considered in §§ 3.1
and 3.2 (marked with RS).

are located close to the wall and so they have stronger source terms in the pressure

Poisson equation (recall that the fast source term ∝ vk∂U/∂y and the mean velocity

gradient is larger close to the wall). Luhar et al. (2014a) show that, everything else

being equal, the stronger source terms and wall proximity translate into a larger

wall-pressure signature for slower-moving resolvent modes. As the mode speed

increases, the flow structure associated with the resolvent modes moves further away

from the wall and the magnitude of the wall-pressure field decreases. Above some

threshold speed, the modes detach from the wall entirely and have a near-zero

wall-pressure field. This threshold speed tends to be wavelength-dependent; longer

modes have a larger wall-normal extent, which means that they detach from the wall

at higher mode speeds.

The above observations suggest that relatively rigid walls with low |Y| are likely

to interact only with slower-moving modes with high fluctuating wall pressure, while

softer walls might be able to interact with modes further away from the wall. However,

it may be impossible to influence detached modes with a compliant wall. This is

confirmed by the data shown in figure 9, which plots the optimal admittance for gain

reduction for modes with the same wavelengths as the NW- and VLSM-type structures

considered in the previous two sections, (κx, κz)= (12, 120) and (κx, κz)= (1, 10), but

mode speed varying from c+ = 5 to c+ = 20. The magnitude of the optimal admittance,

|Y|, is smallest for the slowest modes and increases with increasing mode speed. In

other words, stiffer walls are optimal for slow-moving modes with high-amplitude

wall-pressure fields, while softer walls are better suited for faster modes further away

from wall. Note that there is a turning point near c+ ≈ 19 for the longer κx = 1

(figure 9,E) modes and c+ ≈ 13 for the κx = 12 modes (figure 9, +), above which

the optimal |Y| decreases and the effectiveness of the compliant surfaces diminishes
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(i.e. the markers get lighter). Consistent with the mode detachment hypothesis, it may
not be possible to design walls that can interact with these fast-moving structures.

Figure 9 also provides a measure of the sensitivity of the optimal wall admittances
on mode parameters. The fact that there are no sharp jumps in the optimal Y

with increasing c+ indicates that the optimal wall admittances are unlikely to be
very different for resolvent modes similar to those identified in the previous two
sections. This is important because the previous two sections assume that the NW
cycle and VLSMs are adequately characterized by resolvent modes at one specific
wavenumber–frequency combination. However, in reality, the NW cycle and the
VLSMs represent regions that are energetic in spectral space. Hence, resolvent modes
with slightly different wavelengths and speeds are equally viable candidates to serve
as models for the NW cycle and VLSMs.

Finally, note that there is a consistent trend in the optimal pressure–velocity phase
relationship, 6 Y = 6 vk(0) − 6 pk(0), with mode speed. Perhaps the most interesting
aspect of this trend is that the optimal admittance for the larger (κx, κz) = (1, 10)
modes is also characterized by Re(Y) > 0 (i.e. Cd < 0; see (2.16)) for c+ . 14. It may
be the case that the negative-damping requirement discussed in § 3.1 is restricted to
slower-moving modes. These issues will be explored further in future publications.

3.4. Comparison with previous DNS and overall efficacy of optimal walls

So far, this paper has focused primarily on the interaction between compliant walls
and individual resolvent modes that resemble flow structures that are energetic in
natural wall turbulence. However, it is important to keep in mind that the compliant
wall could also have detrimental effects elsewhere in spectral space. This is illustrated
by the recent DNS results obtained by Kim & Choi (2014) at Reτ = 140. The softest
compliant wall tested by Kim & Choi (2014, termed case II) led to the generation
of large-amplitude quasi-two-dimensional (2D) waves of wavelength λx ≈ 2.4h

propagating downstream at a speed roughly 0.3 times the centreline velocity (c+ ≈ 5).
These waves, which are clearly not energetic in rigid-wall turbulent channel flow,
led to a substantial increase in the total drag. Kim & Choi (2014) attributed the
generation of the quasi-2D waves to a wall-resonance effect.

Figure 10 shows that the framework developed in this study can predict this
resonant response with minimal computation. Figure 10(a) shows the rigid-wall
singular values for 2D (κz = 0) resolvent modes at Reτ = 140 as a function of the
streamwise wavenumber and wave speed. Figure 10(b) shows the singular values
predicted by the present analysis over the case II compliant wall of Kim & Choi
(2014). Since Kim & Choi (2014) also employed a simple mass–spring–damper
mechanical model for the compliant wall, the admittances were estimated using
(2.16) to arrive at these predictions. The mass coefficient for the case II compliant
wall was Cm = 2, while the spring and damping coefficients, normalized by 1.5 times
the bulk velocity (≈21uτ ), were C∗

k = 1 and C∗
d = 0.5, respectively. This translates

into Ck ≈ 440 and Cd ≈ 10.5 with the uτ normalization shown in (2.15). The resonant

frequency for this wall is ωr = ωn

√
1 − 2ζ 2 = 14.7. Here, ωn =

√
Ck/Cm is the

undamped natural frequency of the wall and ζ = Cd/(2
√

CkCm) is the damping factor.
The compliant-wall singular values clearly show a region of high amplification

around ωr extending from (κx, c+)≈ (3, 5) to (κx, c+)≈ (1.5, 9), which does not exist
for the rigid-wall case. The singular values over the compliant wall are as much as 70
times larger relative to the rigid case. The greatest change in singular value relative
to the rigid-wall case falls at κx = 2.8 and c+ = 5.25, which corresponds closely
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FIGURE 10. Singular values for spanwise-constant (κz = 0) modes as a function of
streamwise wavenumber and wave speed at Reτ = 140. (a) The rigid-wall singular values
and (b) the singular values for the case II compliant wall tested by Kim & Choi (2014).
The + marker represents the length and velocity scale for the quasi-2D travelling wave
observed in the DNS. The solid black line shows the resonant frequency of the wall ωr.
Note the log scaling for the shading.

to the wavelength and speed (κx = 8/3 and c+ = 4.78) of the quasi-2D travelling

wave observed in DNS. The slight differences in wavenumber and speed could be

attributed to three different reasons: (i) the uncertainty in Ck and Cd arising from the

bulk velocity to friction velocity translation of these dimensionless coefficients; (ii) the

use of the unperturbed mean velocity profile in the resolvent operator; and (iii) the

linearized boundary conditions at the wall. The latter two sources of uncertainty are

significant because the DNS results show a substantial increase in drag over the

compliant wall, which is likely to be accompanied by a change in the mean velocity

profile (not reported by Kim & Choi 2014), and the 2D waves excited had amplitudes

in excess of 10 viscous units.

Figure 11 shows the flow structure and v–p relationship associated with this

resonant resolvent mode. The streamwise velocity for this mode is confined to a

very small region close to the wall (y+ < 10). Above this location, the velocity field

comprises a predominantly up–down motion. This is consistent with the DNS results,

which showed that the streamwise velocity field at y+ = 14 above the compliant wall

was dominated by streaky structures elongated in the streamwise direction (figure 8 in

Kim & Choi 2014). Further, the predicted phase relationship between the wall-normal

velocity and pressure at the wall (figure 11b) is also similar to the DNS observations

(figure 7 in Kim & Choi 2014).

Although qualitative in nature, the comparison presented above indicates that the

framework developed in this paper is a useful first-order test of material properties

before implementation in more computationally intensive numerical simulations or

experiments. Recall that each resolvent evaluation only takes ≈0.1 s on one core

of a laptop. The contour maps shown in figure 10 were estimated at 100 linearly

spaced intervals in c+ and 50 log-spaced intervals in κx, and as such required

approximately 2 × 500 s of computation time on one core of a laptop (without

any significant effort towards making the computation efficient). Of course, the above

computations were limited by the constraint κz = 0. A true a priori evaluation requires

a sweep across the entire spectral space. However, this is still inexpensive relative to
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FIGURE 11. (a) Velocity structure for the resolvent mode corresponding to wavenumber–
frequency combination (κx, κz, c+)= (8/3, 0, 5) at Reτ = 140. This represents roughly the
quasi-2D travelling waves observed in DNS by Kim & Choi (2014). The shading on the
compliant wall (deflection not to scale) represents the normalized pressure field. (b) The
phase relationship between wall-normal velocity and pressure at the wall.

numerical simulations, especially so given the spectral sparsity observed recently in
wall turbulence (Bourguignon et al. 2014).

The high-amplitude resonant modes observed in DNS suggest that compliant walls
optimized to suppress modes resembling the NW cycle and the VLSMs could lead to
detrimental effects at other wavenumber–frequency combinations. If the increased drag
contribution from these other modes outweighs the decrease from the NW- and VLSM-
type modes, the compliant wall would have a negative net influence on performance.
To test whether this is the case, the effect of the optimal gain-reducing walls identified
in §§ 3.1 and 3.2 on modes elsewhere in spectral space is considered next.

Assuming a dimensionless mass coefficient of Cm = 2, it can be shown based on
(2.16) that the optimal wall for the NW-type modes (Y = 1.92 + 0.55i) requires a
high stiffness coefficient Ck = 28 817 and a negative damping coefficient Cd = −0.48.
Similarly, the optimal wall for the VLSM-type modes (Y = −2.04 − 0.44i) requires
Ck = 510 and Cd = 0.47. Note that the resonant frequencies of the optimal walls
correspond very closely to the temporal frequencies for the modes resembling the NW
cycle (ωr = 120.03, ω = 120) and the VLSMs (ωr = 15.97, ω = 16). This is to be
expected given that the amplitude of the compliant-wall response is likely to be largest
(i.e. largest |Y|) at or near the resonant frequency (2.16). This large wall response
would translate into a bigger impact on the turbulent flow structure.

Figure 12 shows how the optimal walls affect the amplification of resolvent modes
with κz = 0, κz = 10 and κz = 120 as a function of streamwise wavenumber and
mode speed at Reτ = 2000. As expected, the compliant walls have the largest effect,
positive or negative, on modes with frequencies close to ωr. Further, the impact
of the compliant wall is restricted to a smaller region of spectral space around
ωr as the spanwise wavelength decreases (κz increases; compare figure 12a,b with
figure 12e, f ) and the mode speed c+ increases (compare c+ ≈ 4 with c+ ≈ 12
in figure 12d). This is because, everything else being equal, larger-scale resolvent
modes that are slow-moving and localized close to the wall have a much larger
wall-pressure signature compared to smaller, faster modes farther from the wall
(Luhar et al. 2014a). The higher-amplitude wall-pressure field yields a larger wall
response, which compensates for the decrease in |Y| as the temporal frequency of the
modes moves away from ωr. This scale and speed dependence may also explain why
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FIGURE 12. Shaded contours showing the singular-value ratio σkc/σk0 as a function of
wavenumber κx and speed c+ at (a,b) κz = 0 (spanwise constant), (c,d) κz = 10 (λ+

z ≈ 1250)
and (e, f ) κz = 120 (λ+

z ≈ 100). White regions denote an increase in mode amplification
over the compliant wall. Darker regions denote suppression. Note the log scaling for the
shading. The dashed contour lines indicate the magnitude of the singular values above the
compliant wall, σkc. (a,c,e) The compliant wall optimized for modes resembling the NW
cycle (κx = 12, κz = 120, c+ = 10; white circle in panels e and f ). (b,d,f ) The optimal
compliant wall for VLSM-type modes (κx = 1, κz = 10, c+ = 16; white circle in panels c
and d). The solid black lines show the resonant frequency of the walls ωr.

the compliant wall optimized for the NW-type modes (figure 12a,c,e) has a smaller

reach in spectral space compared to the wall optimized for the VLSM-type modes

(figure 12b,d,f ). The higher resonant frequency for the wall optimized for NW-type

modes means that it interacts preferentially with modes that are faster or shorter in x

(ω= c+κx ≈ωr). These modes are likely to have a smaller wall-pressure signature and

so only interact significantly with the compliant wall at conditions close to resonance.
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Note that there are sharp transitions in the effectiveness of the compliant walls
around the resonant frequency. In general, modes with ω<ωr are further amplified by
the compliant wall, while modes with ω>ωr are suppressed (although this appears to
reverse for c+ & 15). Thus, modes with length and velocity scales very similar to the
assumed parameters for NW cycle or VLSMs may actually be further amplified over
the optimal compliant walls. This result suggests that it may be better for the overall
performance to design compliant walls that are slightly detuned and resonant away
from the spectral region of interest. More generally, the above results suggest that it is
insufficient to optimize compliant-wall properties for a single wavenumber–frequency
combination; the optimization must be performed over a wider region in spectral space.
This is similar to the approach employed in designing compliant walls for transition
delay, wherein compliant-wall properties are optimized against all the mode types that
the fluid and wall can concurrently support (see e.g. Dixon, Lucey & Carpenter 1994).

3.5. More realistic walls and surface instabilities

Much of the discussion thus far has been based on the simple mass–spring–damper
wall model. As illustrated by figure 12, this results in fluid–structure interactions
that are primarily dependent on frequency. In addition, these dynamics are local; the
wall does not communicate in the streamwise or spanwise directions. This means
that the wall cannot support wave propagation and is non-dispersive. Practically
constructed walls such as the elastic and viscoelastic surfaces tested in experiment
not only support waves but also have an embedded natural length scale (e.g. layer
thickness). This allows for spatio-temporal matching between the fluid and solid
motions, leading to much stronger interactions. The experiments performed by
Gad-el-Hak and co-workers (Gad-el-Hak, Blackwelder & Riley 1984; Gad-el-Hak
1986) show that such elastic and viscoelastic layers support two different kinds of
surface instabilities under laminar and turbulent boundary layers: static divergence and
travelling wave flutter. The so-called static divergence waves are very slow-moving
(<5 % of free-stream velocity) with long wavelengths and large amplitudes, while
travelling-wave flutter tends to have shorter wavelengths and lower amplitudes but
propagates much faster, at speeds comparable to the free shear-wave speed in the
solid. Figure 13(a) shows that the resolvent framework qualitatively predicts similar
effects.

Specifically, figure 13(a) shows the effect of a compliant wall optimized to suppress
VLSMs (Y = −2.04 − 0.44i at κx = 1, κz = 10 and c+ = 16) on spanwise-constant
modes, similar to the results shown in figure 12(b). However, the wall is assumed
to be in streamwise tension Ctx = 510 rather than on a spring support. As a result,
the effective spring constant for the wall is Cke = Ctxκ

2
x and the admittance is

Y = iω(Ctxκ
2
x − Cmω

2 − iCd)
−1. Note that this wall can support streamwise-propagating

waves. Relative to the rigid-wall case, there are two regions of extremely high
amplification over the compliant wall: for very long slow-moving modes (κx . 1 and
c+ . 8) and for shorter modes (κx = 2–10) at speeds close to the undamped wave
speed for the wall, c+

w ≈
√

Ctx/Cm = 16. It can be argued that the first class of modes
are similar to static divergence waves and the second class of resonant modes are
similar to travelling-wave flutter (see also Riley et al. 1988; Sen & Arora 1988).
Keep in mind that the tensioned wall does not have a natural length scale and so the
wavelengths of the high-amplification regions are probably determined by the channel
height.

For more quantitative comparisons with experiments, the resolvent formulation
needs to be extended to account for boundary conditions that more accurately reflect
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wavenumber κx and speed c+ for spanwise-constant κz = 0 modes. Both panels correspond
to walls optimized to suppress the VLSMs (cf. figure 12b): (a) a compliant wall in
streamwise tension Ctx with spring constant Ck = 0, and (b) a mass–spring–damper wall
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shading. The dashed contour lines indicate the magnitude of the singular values above the
compliant wall, σkc. The solid black lines show the free wave speed, c+

w , for the tensioned
wall in (a) and the resonant frequency ωr in (b).

elastic and viscoelastic coatings. This is the subject of ongoing work. Even so,
direct comparisons with the observed high-amplitude static divergence waves may
be difficult given that the framework developed in this paper is limited to linearized
boundary conditions.

Finally, note that the preceding results are based on an assumed mass coefficient
Cm = 2. While Cm ∼ O(1) is appropriate for liquid flows over compliant walls, Cm ∼
O(103) for gas flows over walls with realistic material properties. Compliant walls are
unlikely to be effective for systems with such large mass ratios because the magnitude
of the admittance decreases sharply with increasing Cm (2.16) away from resonance,
resulting in much smaller wall responses to the fluid pressure perturbations. This is
illustrated by the results shown in figure 13(b). Again, this figure shows the effect of
a wall optimized to suppress the VLSMs on spanwise-constant modes. However, the
mass ratio here is Cm = 200. Unlike the results shown in figure 12(b), this wall has
a minimal effect on resolvent modes with frequencies far from ωr. In other words,
the wall is effectively rigid at this high-Cm limit, suggesting that the fluid and solid
impedances must at least match approximately for the compliant surface to have a
significant effect on the flow.

4. Conclusions and outlook

In many ways, compliant surfaces are a tremendously attractive proposition for
the passive control of wall-bounded turbulent flows. Such walls would require no
complex sensing or actuation machinery and, depending on the coating materials
required, may even be relatively inexpensive. However, progress towards designing
an effective compliant surface has been hindered by the lack of a computationally
inexpensive theoretical framework that can adequately characterize the interaction
between the turbulent flow structures and the wall. The results presented in this study
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suggest that the resolvent framework developed by McKeon, Sharma and co-authors

(McKeon & Sharma 2010; Moarref et al. 2013; Sharma & McKeon 2013; Luhar

et al. 2014a,b) offers a potential solution.

Unlike previous attempts at low-order models, the resolvent framework stems

directly from the governing NSEs. It does not make any ad hoc assumptions that are

hard to justify physically, and there are no Reynolds-number restrictions beyond the

requirement of a mean velocity profile. However, it is also important to keep in mind

some of its limitations. Chief among these is the fact that the nonlinear convective

terms in the NSEs are simply treated as unstructured forcing in the present paper.

A complete low-order model would require an explicit treatment of the nonlinear

coupling across resolvent modes. In addition, this paper considers only the effect

of compliant walls on the gain and structure of modes expected to be energetic in

turbulent flows. A reduction in gain would translate into mode suppression and a

reduction in turbulent kinetic energy, which is a useful indicator of performance.

However, this approach cannot predict the eventual effect on the mean velocity

profile or skin friction without further assumptions. Another weakness is the use

of the linearized kinematic boundary conditions (2.10)–(2.12), which lose accuracy

with increasing wall deformation. Despite these simplifications, § 3.4 shows that the

resolvent framework is able to predict the resonant quasi-2D response observed in

recent compliant-wall turbulent channel-flow DNS (Kim & Choi 2014). Therefore, at

the very least, this framework can serve as a first-order test of material properties

before implementation in more computationally expensive simulations or physical

experiments.

At the same time, the results presented in §§ 3.1 and 3.2 showcase the true power

of the framework developed in this paper: the possibility of rationally designing

compliant walls, with properties optimized to suppress energetically important features

of wall-bounded turbulent flows. This optimization indicates that walls with negative

damping, which lead to the wall-normal velocity and pressure being in phase at the

wall, are required to suppress the NW cycle. In addition to being consistent with

heuristic arguments made in previous studies (Xu et al. 2003), perhaps this explains

why DNS studies, carried out at low Reynolds numbers where the NW cycle is

dominant, have met with limited success. The optimization shows that walls with

positive damping can effectively suppress modes resembling the VLSMs, suggesting

that compliant walls may be better suited for high-Reynolds-number applications.

Unfortunately, walls optimized to suppress specific types of resolvent modes or

flow structures can have unanticipated detrimental effects elsewhere in spectral space,

which could lead to a net deterioration in performance. Hence, optimization for the

NW cycle alone, which is often thought to be the determining factor in flow control,

may not be sufficient to yield a global improvement in performance. In particular,

§§ 3.4 and 3.5 indicate that there are sharp transitions in performance around the

resonant frequency of the wall and that large slow-moving, spanwise-constant modes

are particularly susceptible to being further amplified over compliant walls. Such

issues may be mitigated by designing walls that are slightly detuned and resonant

away from the region of interest or have a specific wavenumber–frequency bandwidth.

For example, introducing the restoring effects of tension or stiffness would impose

additional low-pass filters on wavenumber. Of course, such low-pass filters would not

eliminate the aforementioned sensitively to long spanwise-constant flow structures.

However, there may be other possibilities, including the use of finite-length panels.

The emergence of tunable metamaterials may also offer significant scope for design.
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