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Abstract: Susceptibility analysis is an intelligent technique that not only assists decision makers
in assessing the suspected severity of any sort of brain tumour in a patient but also helps them
diagnose and cure these tumours. This technique has been proven more useful in those developing
countries where the available health-based and funding-based resources are limited. By employing
set-based operations of an arithmetical model, namely fuzzy parameterised complex intuitionistic
fuzzy hypersoft set (FPCIFHSS), this study seeks to develop a robust multi-attribute decision support
mechanism for appraising patients’ susceptibility to brain tumours. The FPCIFHSS is regarded as
more reliable and generalised for handling information-based uncertainties because its complex
components and fuzzy parameterisation are designed to deal with the periodic nature of the data and
dubious parameters (sub-parameters), respectively. In the proposed FPCIFHSS-susceptibility model,
some suitable types of brain tumours are approximated with respect to the most relevant symptoms
(parameters) based on the expert opinions of decision makers in terms of complex intuitionistic fuzzy
numbers (CIFNs). After determining the fuzzy parameterised values of multi-argument-based tuples
and converting the CIFNs into fuzzy values, the scores for such types of tumours are computed based
on a core matrix which relates them with fuzzy parameterised multi-argument-based tuples. The
sub-intervals within [0, 1] denote the susceptibility degrees of patients corresponding to these types
of brain tumours. The susceptibility of patients is examined by observing the membership of score
values in the sub-intervals.

Keywords: brain tumour; complex intuitionistic fuzzy set; core matrix; fuzzy parameterisation;
hypersoft set; susceptibility analysis

1. Introduction

Over the course of time, human intelligence coupled with advancements in biomedical
systems have allowed for the development of methodologies and procedures that allow
medical professionals to access cancerous masses in a more in-depth manner and more
concisely. However, these advancements still fall short when considering curing methods
of cancerous tumours [1]. Multiple avenues of research can be generated with a single
research question while following different methodologies for solving that problem with
unique analytical pipelines. So, when considering the field of functional neuroimaging
coupled with the development of diagnostic systems in its fledgling nature, analytical
exploration is an inescapable process of the scientific method and can lead to significant
discoveries over time.
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The brain is the most complex organ in the human body and even a slight abnor-
mality can have catastrophic effects on the whole body. The statistics indicate that about
23,000 people fell prey to cancerous tumours in the brain in the USA alone, indicating it as
one of the major emerging ailments [2]. The cancer indicator reports indicate the proba-
bility of development of these tumours is the same for adults and children [3]. Another
report indicated that a total of 80,000 new cases of brain tumours were reported in 2018,
which were divided into four classes based on their location in the brain: meningioma
represented 36.3% (29,320), gliomas 26.5% (21,200), pituitary tumours represented nearly
16.2% (13,210) and the rest of the cases belonged to other types of brain tumour such as
malignant, medulloblastoma and lymphomas [4]. The majority of the cases of reported
meningiomas start as benign lesions from a histological perspective [5]. Based on these
figures, the timely diagnosis and effective handling of a tumour are essential for the patient.
Advancements in the field of medical and neural imaging had allowed for timely detection
of these lesions in the pre-symptomatic stages, unlike a couple of decades ago when these
tumours were only detected when they became large and severely symptomatic [6]. When
studying these tumours, some of them never became symptomatic while others progressed
to cause symptoms, raising the question of which patient to select for treatment and what
treatment methods to opt for for optimal results [7–9]. In the case of most tumours, surgery
is the very first option for tumours with large size, while for those masses that are close to
radiosensitive structures like the optic apparatus, SRS is a viable option for the treatment
of small meningiomas [10–12].

Now, the mode of therapy to choose for effective treatment of the tumour relies on
the pathological nature of the tumour, the stage at which it is diagnosed and the tumour
category. When diagnosing a patient with a particular disease, medical imaging techniques
and the intuition of medical professionals go hand in hand. The diagnostic process is
highly reliant on how the medical images are perceived by the medical professionals
while considering other symptomatic conditions simultaneously. Medical professionals
use computer-aided diagnosis (CAD) to efficiently analyse and classify pathological and
imaging data obtained for diagnosing brain tumours [13]. With recent advances in machine
learning, data mining and artificial intelligence, these CAD models have come a long way.
In the case of brain tumour diagnosis, the accuracy of these models is still sub-par for
regular medical use. Researchers are trying to improve the accuracy of these models by
processing huge data sets of images and diagnostic test data of brain tumours using deep
learning models for improvement in diagnostic accuracy [14,15]. Another approach that is
on par with these models is applying fuzzy set theory concepts to design diagnostic support
systems. When diagnosing a patient with a particular disease, medical imaging techniques
and the intuition of medical professionals go hand in hand. The diagnostic process is
highly reliant on how the medical images are perceived by the medical professionals while
considering other symptomatic conditions at the same time. So, this diagnostic process
presents itself as an MADM (a particular type of MCDM) problem where the medical
professional decides, based on the numerous factors of different natures, to come to a
tentative decision in the form of a diagnosis. Fuzzy set theory has been extensively used in
designing decision support systems as it is considered to handle human intuition using
mathematical syntax. The idea was introduced by Zadeh [16]. This theory became the basis
of numerous other decision-making studies and led to the development of complex hybrid
mathematical structures such as the concept of rough set and period mathematics.

As an extension of existing structures [17–20], Smarandache put forward the concept
of hypersoft set (HSS) [21] which is an emerging field of research to tackle data-based
vagueness and uncertainties. Recently, Saeed et al. [22] presented various set-based oper-
ations of HSS. The HSS has been a subject of great interest for many researchers since its
introduction in 2018. Its hybridised models have been applied in many multidisciplinary
areas while dealing with MADM problems. Saeed et al. [23–26] studied the diagnoses of
diseases such as COVID-19, tuberculosis, allergy-based diseases, and hepatitis, respectively,
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by using the hybrids of HSS. Similarly, Rahman et al. [27,28] studied the diagnosis of heart
disease by proposing robust algorithmic MADM techniques based on hybrids of HSS.

Analysis of susceptibility to brain tumours has attracted many researchers but the
most significant contributions are the following: Romano et al. [29] discussed clinical
applications of dynamic susceptibility contrast perfusion-weighted MR imaging in brain
tumours. Järnum et al. [30] investigated the perfusion MRI of brain tumours by providing
a comparative study of pseudo-continuous arterial spin labeling and dynamic suscep-
tibility contrast imaging. Fayed et al. [31] proposed a robust technique for malignancy
assessment of brain tumours with magnetic resonance spectroscopy and dynamic suscep-
tibility contrast MRI. Lehmann et al. [32] presented the comparative study of perfusion
measurement in brain tumours at 3 Tesla MR on the basis of arterial spin labeling versus dy-
namic susceptibility contrast-enhanced MRI. Park et al. [33] combined the high-resolution
susceptibility-weighted imaging and the apparent diffusion coefficient by assigning value
to brain tumour imaging and clinical feasibility of non-contrast MRI at 3T. The majority
of the studies involve the application of fuzzy hybrid structures with reference to brain
tumours that employ fuzzy logic to classify brain tumours based on data obtained from
neuroimaging techniques. Some examples include the use of a picture fuzzy clustering
method for segmentations of brain MRI images [34], tumour symmetry analysis using spa-
tially constrained deformable models based on fuzzy classification of 3D MRI images [35],
classification of brain tumour type using fuzzy cognitive maps [36] and studies involving
the concept of hypersoft mapping for the suggestion of an appropriate treatment method
based on the type of tumour [37].

Although the research work conducted by Saeed et al. [37] regarding the diagnosis
of brain tumours is convincing, it is not sufficient for real-world MADM situations such
as a medical diagnosis in which the regular data-based periodicity is observed. Similarly,
they employed the concept hypersoft mapping with an indeterminate setting with many
computation-based complexities. As the work of Saeed et al. is the research item most
relevant to this study, the scarcity of such research motivates the authors to initiate this
paper. The proposed structure FPCIFHSS is more flexible and easily understandable as
compared to the mentioned studies. It has a lesser degree of computational complexities,
which enables readers from multidisciplinary fields of study to understand its findings and
computations with great ease.

The prominent contributions of the paper can be outlined as follows:

1. The ambiguous nature of parameters (symptoms) and their related sub-parameters
are managed by applying the concept of fuzzy parameterisation, which assigns them
a fuzzy membership grade. An innovative algebraic method, namely the FPCIFHSS-
Ranking method, is used to find out the fuzzy parameterised values of parametric
valued tuples based on their complex intuitionistic fuzzy numbers-based approxima-
tion. The data-based periodicity is treated with the use of amplitude and phase values
(complex plane setting). The amplitude value is meant for the membership magnitude
and the other is for its periodic value.

2. A novel robust MADM-based algorithm i.e., Pythagorean Means-based Scoring Al-
gorithm (PMBSA) is proposed by using set-based operations of FPCIFHSS to assess
analyses of the susceptibility of patients to brain tumours. These steps of the proposed
algorithms are easily understandable and free of computational complexities.

3. The expert opinions of decision makers (medical experts with expertise in dealing
with brain tumours such as neurologists, neuropathologists, internists, oncologists,
radiation oncologists, neuro-oncologists and neurosurgeons) are gathered in terms
of CIFNs, which are not only easily computable but also easily transformable to
fuzzy values. The patients are first assigned a susceptibility degree in subintervals
within [0, 1] then scores of brain tumours, computed from the proposed algorithm,
are matched on their respective

As far as the organisation of the remainder of this paper is concerned, the next section
(Section 2) consists of some preliminary knowledge which is provided to understand the
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main methodology and the presented mathematical structure with great ease. Section 3
describes the various stages of the proposed methodology, including the characterisation
of the basic notions of FPCIFHSS, the role of fuzzy parameterisation for the symptoms and
their related subcategories, arithmetic criteria for the transformation of CIFNs to CFNs and
then CFNs to fuzzy values, the process for the selection of parameters and sub-parameters
and the profiles of decision makers for this evaluation. It also includes an MADM system
based on the proposal of a robust algorithm for assessing the susceptibility of patients to
brain tumours using aggregation-based operations of FPCIFHSS. Section 4 presents the
discussion, sensitivity analysis and comparison of the proposed study. Finally, Section 5
concludes the paper with limitations and future scope.

Abbreviations and Acronyms

All the abbreviations and acronyms (that are used in the paper) along with their full
names are presented in Table 1.

Table 1. Abbreviations and their full names.

Symbol Stands for

MCDM Multi-criteria decision making
MRI Magnetic resonance imaging
DMP Decision making problem
FS Fuzzy set
CFS Complex fuzzy set
IFS Intuitionistic fuzzy set
CIFS Complex intuitionistic fuzzy set
SS Soft set
HSS Hypersoft set
MADM Muti-attribute decision making
FPFHSS Fuzzy parameterised fuzzy hypersoft set
FPIFHSS Fuzzy parameterised intuitionistic fuzzy hypersoft set
CFHSS Complex fuzzy hypersoft set
CIFHSS Complex intuitionistic fuzzy hypersoft set
CIFN Complex intuitionistic fuzzy number
CFN Complex fuzzy number
MAGAF Multi-argument approximate function
CVF Complex valued function
AT Amplitude term
PT Phase term
FPCIFHSS Fuzzy parameterised complex intuitionistic fuzzy hypersoft set

2. Preliminary Knowledge

This section reviews some preliminary definitions to assist the main results. The
following applies throughout the remainder of the paper.

Definition 1 (Atanassov, [17]). An intuitionistic fuzzy set ΨΛ̂ over Λ̂ is stated as

ΨΛ̂ =
{(

â,
〈

T̂Ψ(â), F̂Ψ(â)
〉)
| â ∈ Λ̂

}
w (1)

here T̂Ψ, F̂Ψ : Λ̂→ [0, 1] such that (T̂Ψ(â) + F̂Ψ(â)) ∈ [0, 1] and the values T̂Ψ(â) and F̂Ψ(â) are
true and false belonging grades of â, respectively. The grade of hesitancy is ĤΨ(â) = 1− T̂Ψ(â)−
F̂Ψ(â).

Example 1. Let Λ̂ = {â1, â2, â3, â4} be a collection of objects with T̂Ψ(x̂1) = 0.4, T̂Ψ(x̂2) = 0.3,
T̂Ψ(x̂3) = 0.2, T̂Ψ(x̂4) = 0.6, F̂Ψ(x̂1) = 0.3, F̂Ψ(x̂2) = 0.5, F̂Ψ(x̂3) = 0.7 and F̂Ψ(x̂4) = 0.2;
then an IFS ΨΛ̂ is constructed as

ΨΛ̂ =
{

(â1, 〈0.4, 0.3〉), (â2, 〈0.3, 0.5〉), (â3, 〈0.2, 0.7〉), (â4, 〈0.6, 0.2〉)
}
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with hesitancy grades ĤΨ(â1) = 0.3, ĤΨ(â2) = 0.2, ĤΨ(â3) = 0.1 and ĤΨ(â4) = 0.2.

Definition 2 (Alkouri, [19]). A complex intuitionistic fuzzy set ζΛ̂ over Λ̂ is stated as

ζΛ̂ =
{(

â,
〈

T̂ζ(â), F̂ζ(â)
〉)
| â ∈ Λ̂

}
w (2)

where T̂ζ = ÂT̂ ejB̂T̂ , F̂ζ = ÂF̂ ejB̂F̂ are complex valued true and false belonging mappings such
that (ÂT̂(â) + ÂF̂(â)) ∈ [0, 1] and (B̂T̂(â) + B̂F̂(â)) ∈ [0, 2π]. The values ÂT̂(â) and ÂF̂(â)
are the amplitude terms for true and false belonging grades of â, respectively. Similarly, the
values B̂T̂(â) and B̂F̂(â) are the phase terms for true and false belonging grades of â, respectively.
The grades of hesitancy for amplitude and phase terms are Ĥamp(â) = 1− ÂT̂(â)− ÂF̂(â) and
Ĥpha(â) = 2π − B̂T̂(â)− B̂F̂(â).

Example 2. Let Λ̂ = {â1, â2, â3, â4} be a collection of objects with T̂ζ(x̂1) = 0.4 ej2π(0.2),
T̂ζ(x̂2) = 0.3 ej2π(0.1), T̂ζ(x̂3) = 0.2 ej2π(0.4), T̂ζ(x̂4) = 0.6 ej2π(0.3), F̂ζ(x̂1) = 0.3 ej2π(0.6),
F̂ζ(x̂2) = 0.5 ej2π(0.5), F̂ζ(x̂3) = 0.7 ej2π(0.4) and F̂ζ(x̂4) = 0.2 ej2π(0.3); then a CIFS ζΛ̂ is
constructed as

ζΛ̂ =


(

â1, 〈0.4 ej2π(0.2), 0.3 ej2π(0.6)〉
)

,
(

â2, 〈0.3 ej2π(0.1), 0.5 ej2π(0.5)〉
)

,(
â3, 〈0.2 ej2π(0.4), 0.7 ej2π(0.4)〉

)
,
(

â4, 〈0.6 ej2π(0.3), 0.2 ej2π(0.3)〉
) 

with hesitancy grades Ĥamp(â1) = 0.3, Ĥamp(â2) = 0.2, Ĥamp(â3) = 0.1, Ĥamp(â4) = 0.2,
Ĥpha(â1) = 2π(0.2), Ĥpha(â2) = 2π(0.4), Ĥpha(â3) = 2π(0.2) and Ĥpha(â4) = 2π(0.4).

Definition 3 (Molodtsov, [20]). Let Ξ̂ and Λ̂ be the sets consisting of evaluating features (at-
tributes) and alternatives, respectively. An SS ΓΛ̂ over Λ̂ is stated as

ΓΛ̂ =
{
(ê, ξΓ(ê))| ξΓ(ê) ⊆ Λ̂ & ê ∈ Ξ̂

}
(3)

in which ξΓ : Ξ̂→ 2Λ̂ is an approximate mapping and the value ξΓ(ê) is an ê-approximate entity
of ΓΛ̂.

Definition 4 (Smarandache, [21], Rahman et al. [27]). Let Ξ̂i be the sets containing the sub-
parametric values of the parameters êi belonging to Ξ̂ such that for any two êi 6= êj, the corresponding

sets Ξ̂i and Ξ̂j are non-overlapping. The HSS ˆ̄h
Λ̂

over Λ̂ is stated as

ˆ̄h
Λ̂
=
{(

℘̂, ξ ˆ̄h(℘̂)
)
| ξ ˆ̄h(℘̂) ⊆ Λ̂ & ℘̂ ∈ =̂

}
i (4)

n which ξ ˆ̄h : =̂ → 2Λ̂ is a multi argument approximate mapping, =̂ = ∏
i

Ξ̂i and the value ξ ˆ̄h(℘̂)

is a ℘̂-multi-approximate entity of ˆ̄h
Λ̂

.

3. Salient Features of Proposed Methodology

This section discusses the various aspects of stages involved in the proposed method-
ology. In the first stage, a novel algebraic model, i.e., fuzzy parameterised complex intu-
itionistic fuzzy hypersoft set (FPCIFHSS), is introduced, which best suits the analysis of
susceptibility to brain tumours by considering its expected uncertainties. The stages of the
adopted methodology are presented briefly in Figure 1.
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Figure 1. The brief pictorial description of proposed decision support framework.

3.1. The FPCIFHSS and Its Set-Theoretic Operations

In this part, the definition of FPCIFHSS and its aggregation operations are presented
with examples.

Definition 5. Let Ξ̂i be the sets containing the sub-parametric values of the parameters êi belonging
to Ξ̂ such that for any two êi 6= êj, the corresponding sets Ξ̂i and Ξ̂j are non-overlapping and for
℘̂k ∈ =̂ = ∏

i
Ξ̂i where k is the total number of elements in =̂, F̂ = { ℘̂k

ψ̂(℘̂k)
: ψ̂(℘̂k) ∈ [0, 1]} is a

fuzzy set over =̂, then an FPCIFHSS Θ̂Λ̂ over Λ̂ can be stated as

Θ̂Λ̂ =

{(
℘̂k

ψ̂(℘̂k)
, Ψ(

℘̂k

ψ̂(℘̂k)
)

)
| âi ∈ Λ̂,

℘̂k

ψ̂(℘̂k)
∈ F̂

}
(5)

where Ψ( ℘̂k
ψ̂(℘̂k)

) =
〈

T̂Θ̂(
℘̂k

ψ̂(℘̂k)
)(âi), F̂Θ̂(

℘̂k
ψ̂(℘̂k)

)(âi)
〉

with

T̂Θ̂(
℘̂k

ψ̂(℘̂k)
)(âi) = ÂT̂(

℘̂k

ψ̂(℘̂k)
)(âi) e

jB̂T̂(
℘̂k

ψ̂(℘̂k)
)(âi) (6)

F̂Θ̂(
℘̂k

ψ̂(℘̂k)
)(âi) = ÂF̂(

℘̂k

ψ̂(℘̂k)
)(âi) e

jB̂F̂(
℘̂k

ψ̂(℘̂k)
)(âi) (7)

are complex valued true and false belonging mappings such that (ÂT̂(
℘̂k

ψ̂(℘̂k)
)(âi)+ ÂF̂(

℘̂k
ψ̂(℘̂k)

)(âi)) ∈
[0, 1] and (B̂T̂(

℘̂k
ψ̂(℘̂k)

)(âi) + B̂F̂(
℘̂k

ψ̂(℘̂k)
)(âi)) ∈ [0, 2π]. The values ÂT̂(

℘̂k
ψ̂(℘̂k)

)(âi) and ÂF̂(
℘̂k

ψ̂(℘̂k)
)

(âi) are the amplitude terms for true and false belonging grades of âi, respectively. Similarly, the
values B̂T̂(âi) and B̂F̂(

℘̂k
ψ̂(℘̂k)

)(âi) are the phase terms for true and false belonging grades of âi,

respectively. The grades of hesitancy for amplitude and phase terms are Ĥamp(
℘̂k

ψ̂(℘̂k)
)(âi) = 1−

ÂT̂(
℘̂k

ψ̂(℘̂k)
)(âi)− ÂF̂(

℘̂k
ψ̂(℘̂k)

)(âi) and Ĥpha(
℘̂k

ψ̂(℘̂k)
)(âi) = 2π − B̂T̂(

℘̂k
ψ̂(℘̂k)

)(âi)− B̂F̂(
℘̂k

ψ̂(℘̂k)
)(âi).

Example 3. Let Λ̂ = {â1, â2, â3, â4} be a collection of objects, Ξ̂ = {ê1, ê2, ê3} be the set of
parameters and the respective parametric valued non-overlapping sets be Ξ̂1 = {ê11, ê12}, Ξ̂2 =

{ê21, ê22} and Ξ̂3 = {ê31}, respectively, such that =̂ =
3

∏
i=1

Ξ̂i = {℘̂1 = (ê11, ê21, ê31), ℘̂2 =
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(ê11, ê22, ê31), ℘̂3 = (ê12, ê21, ê31), ℘̂4 = (ê21, ê22, ê31)}, then the fuzzy set F̂ over =̂ is { ℘̂1
0.1 , ℘̂2

0.3 , ℘̂3
0.5 ,

℘̂4
0.6}, then FPCIFHSS Θ̂Λ̂ over Λ̂ can be constructed as

Θ̂Λ̂ =



 ℘̂1
0.1 ,


(

â1, 〈0.2 ej2π(0.3), 0.3 ej2π(0.4)〉
)

,
(

â2, 〈0.4 ej2π(0.5), 0.5 ej2π(0.6)〉
)

,(
â3, 〈0.6 ej2π(0.7), 0.3 ej2π(0.8)〉

)
,
(

â4, 〈0.8 ej2π(0.4), 0.1 ej2π(0.6)〉
) 

, ℘̂2
0.3 ,


(

â1, 〈0.7 ej2π(0.4), 0.1 ej2π(0.3)〉
)

,
(

â2, 〈0.6 ej2π(0.5), 0.2 ej2π(0.3)〉
)

,(
â3, 〈0.5 ej2π(0.6), 0.2 ej2π(0.5)〉

)
,
(

â4, 〈0.4 ej2π(0.4), 0.3 ej2π(0.5)〉
) 

, ℘̂3
0.5 ,


(

â1, 〈0.8 ej2π(0.6), 0.1 ej2π(0.5)〉
)

,
(

â2, 〈0.7 ej2π(0.5), 0.2 ej2π(0.4)〉
)

,(
â3, 〈0.6 ej2π(0.6), 0.1 ej2π(0.1)〉

)
,
(

â4, 〈0.5 ej2π(0.3), 0.3 ej2π(0.6)〉
) 

, ℘̂4
0.6 ,


(

â1, 〈0.5 ej2π(0.1), 0.1 ej2π(0.1)〉
)

,
(

â2, 〈0.4 ej2π(0.2), 0.3 ej2π(0.2)〉
)

,(
â3, 〈0.3 ej2π(0.1), 0.1 ej2π(0.5)〉

)
,
(

â4, 〈0.2 ej2π(0.6), 0.4 ej2π(0.6)〉
) 




with hesitancy grades Ĥamp(â1) = 0.3, Ĥamp(â2) = 0.2, Ĥamp(â3) = 0.1, Ĥamp(â4) = 0.2,
Ĥpha(â1) = 2π(0.2), Ĥpha(â2) = 2π(0.4), Ĥpha(â3) = 2π(0.2) and Ĥpha(â4) = 2π(0.4).

In Example 3, the approximate element of sub-parametric tuple ℘̂1 (with 10% fuzzy
parameterised grade) is

(
â1, 〈0.2 ej2π(0.3), 0.3 ej2π(0.4)〉

)
,
(

â2, 〈0.4 ej2π(0.5), 0.5 ej2π(0.6)〉
)

,(
â3, 〈0.6 ej2π(0.7), 0.3 ej2π(0.8)〉

)
,
(

â4, 〈0.8 ej2π(0.4), 0.1 ej2π(0.6)〉
) 

in which
(

â1, 〈0.2 ej2π(0.3), 0.3 ej2π(0.4)〉
)

means that truth- and falsity-based amplitude
values of â1 are 0.2 and 0.3, respectively, similarly truth- and falsity-based phase values of
â1 are 2π(0.3) and 2π(0.4), respectively, in the approximation of sub-parametric tuple ℘̂1.
Similarly, all other terms can also be interpreted.

Definition 6. Let Θ̂Λ̂
1 and Θ̂Λ̂

2 be FPCIFHSSs over Λ̂ such that

Θ̂Λ̂
1 =

{(
℘̂k

ψ̂1(℘̂k)
, Ψ1(

℘̂k

ψ̂1(℘̂k)
)

)
| âi ∈ Λ̂,

℘̂k

ψ̂1(℘̂k)
∈ F̂1

}
(8)

where Ψ1(
℘̂k

ψ̂1(℘̂k)
) =

〈
T̂1

Θ̂
( ℘̂k

ψ̂1(℘̂k)
)(âi), F̂1

Θ̂
( ℘̂k

ψ̂1(℘̂k)
)(âi)

〉
with

T̂1
Θ̂(

℘̂k

ψ̂1(℘̂k)
)(âi) = Â1

T̂(
℘̂k

ψ̂1(℘̂k)
)(âi) e

jB̂1
T̂
(

℘̂k
ψ̂1(℘̂k)

)(âi) (9)

F̂1
Θ̂(

℘̂k

ψ̂1(℘̂k)
)(âi) = Â1

F̂(
℘̂k

ψ̂1(℘̂k)
)(âi) e

jB̂1
F̂
(

℘̂k
ψ̂1(℘̂k)

)(âi) (10)

and

Θ̂Λ̂
2 =

{(
℘̂k

ψ̂2(℘̂k)
, Ψ2(

℘̂k

ψ̂2(℘̂k)
)

)
| âi ∈ Λ̂,

℘̂k

ψ̂2(℘̂k)
∈ F̂2

}
(11)

where Ψ2(
℘̂k

ψ̂2(℘̂k)
) =

〈
T̂2

Θ̂
( ℘̂k

ψ̂2(℘̂k)
)(âi), F̂2

Θ̂
( ℘̂k

ψ̂2(℘̂k)
)(âi)

〉
with

T̂2
Θ̂(

℘̂k

ψ̂2(℘̂k)
)(âi) = Â2

T̂(
℘̂k

ψ̂2(℘̂k)
)(âi) e

jB̂2
T̂
(

℘̂k
ψ̂2(℘̂k)

)(âi) (12)

F̂2
Θ̂(

℘̂k

ψ̂2(℘̂k)
)(âi) = Â2

F̂(
℘̂k

ψ̂2(℘̂k)
)(âi) e

jB̂2
F̂
(

℘̂k
ψ̂2(℘̂k)

)(âi) (13)
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then

(1) Θ̂Λ̂
1 ∪ Θ̂Λ̂

2 = Θ̂Λ̂
3 is another FPCIFHSS over Λ̂ such that

Ψ3(
℘̂k

ψ̂3(℘̂k)
) =


Ψ1(

℘̂k
ψ̂1(℘̂k)

)

Ψ2(
℘̂k

ψ̂2(℘̂k)
)

Ψ3(
℘̂k

ψ̂
′
3(℘̂k)

)

℘̂k ∈ =̂1 \ =̂2
℘̂k ∈ =̂2 \ =̂1
℘̂k ∈ =̂1 ∩ =̂2

where Ψ3(
℘̂k

ψ̂
′
3(℘̂k)

) = Ψ1(
℘̂k

ψ̂1(℘̂k)
) ∪Ψ2(

℘̂k
ψ̂2(℘̂k)

) with

Â3
T̂(

℘̂k

ψ̂3(℘̂k)
)(âi) = max

{
Â1

T̂(
℘̂k

ψ̂1(℘̂k)
)(âi), Â2

T̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

Â3
F̂(

℘̂k

ψ̂3(℘̂k)
)(âi) = min

{
Â1

F̂(
℘̂k

ψ̂1(℘̂k)
)(âi), Â2

F̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

B̂3
T̂(

℘̂k

ψ̂3(℘̂k)
)(âi) = max

{
B̂1

T̂(
℘̂k

ψ̂1(℘̂k)
)(âi), B̂2

T̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

B̂3
F̂(

℘̂k

ψ̂3(℘̂k)
)(âi) = max

{
B̂1

F̂(
℘̂k

ψ̂1(℘̂k)
)(âi), B̂2

F̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
and

ψ̂3(℘̂k) = max{ψ̂1(℘̂k), ψ̂2(℘̂k)}.

(2) Θ̂Λ̂
1 ∩ Θ̂Λ̂

2 = Θ̂Λ̂
4 is another FPCIFHSS over Λ̂ such that

Ψ4(
℘̂k

ψ̂4(℘̂k)
) = Ψ1(

℘̂k

ψ̂1(℘̂k)
) ∩Ψ2(

℘̂k

ψ̂2(℘̂k)
)

with

Â3
T̂(

℘̂k

ψ̂3(℘̂k)
)(âi) = min

{
Â1

T̂(
℘̂k

ψ̂1(℘̂k)
)(âi), Â2

T̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

Â3
F̂(

℘̂k

ψ̂3(℘̂k)
)(âi) = max

{
Â1

F̂(
℘̂k

ψ̂1(℘̂k)
)(âi), Â2

F̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

B̂3
T̂(

℘̂k

ψ̂4(℘̂k)
)(âi) = min

{
B̂1

T̂(
℘̂k

ψ̂1(℘̂k)
)(âi), B̂2

T̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

B̂3
F̂(

℘̂k

ψ̂4(℘̂k)
)(âi) = min

{
B̂1

F̂(
℘̂k

ψ̂1(℘̂k)
)(âi), B̂2

F̂(
℘̂k

ψ̂2(℘̂k)
)(âi)

}
,

and
ψ̂4(℘̂k) = min{ψ̂1(℘̂k), ψ̂2(℘̂k)}.

Example 4. Reassuming Example 3, we have Θ̂Λ̂
1 =
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

 ℘̂1
0.11 ,


(

â1, 〈0.21 ej2π(0.32), 0.31 ej2π(0.42)〉
)

,
(

â2, 〈0.41 ej2π(0.52), 0.51 ej2π(0.62)〉
)

,(
â3, 〈0.61 ej2π(0.72), 0.31 ej2π(0.82)〉

)
,
(

â4, 〈0.81 ej2π(0.42), 0.11 ej2π(0.62)〉
) 

, ℘̂2
0.31 ,


(

â1, 〈0.71 ej2π(0.42), 0.11 ej2π(0.32)〉
)

,
(

â2, 〈0.61 ej2π(0.52), 0.21 ej2π(0.32)〉
)

,(
â3, 〈0.51 ej2π(0.62), 0.21 ej2π(0.52)〉

)
,
(

â4, 〈0.41 ej2π(0.42), 0.31 ej2π(0.52)〉
) 

, ℘̂3
0.51 ,


(

â1, 〈0.81 ej2π(0.62), 0.11 ej2π(0.52)〉
)

,
(

â2, 〈0.71 ej2π(0.52), 0.21 ej2π(0.42)〉
)

,(
â3, 〈0.61 ej2π(0.62), 0.11 ej2π(0.12)〉

)
,
(

â4, 〈0.51 ej2π(0.32), 0.31 ej2π(0.62)〉
) 

, ℘̂4
0.61 ,


(

â1, 〈0.51 ej2π(0.12), 0.11 ej2π(0.12)〉
)

,
(

â2, 〈0.41 ej2π(0.22), 0.31 ej2π(0.22)〉
)

,(
â3, 〈0.31 ej2π(0.12), 0.11 ej2π(0.52)〉

)
,
(

â4, 〈0.21 ej2π(0.62), 0.41 ej2π(0.62)〉
) 




and Θ̂Λ̂

2 =

 ℘̂1
0.12 ,


(

â1, 〈0.22 ej2π(0.31), 0.32 ej2π(0.41)〉
)

,
(

â2, 〈0.42 ej2π(0.51), 0.52 ej2π(0.61)〉
)

,(
â3, 〈0.62 ej2π(0.71), 0.32 ej2π(0.81)〉

)
,
(

â4, 〈0.82 ej2π(0.41), 0.12 ej2π(0.61)〉
) 

, ℘̂2
0.32 ,


(

â1, 〈0.72 ej2π(0.41), 0.12 ej2π(0.31)〉
)

,
(

â2, 〈0.62 ej2π(0.51), 0.22 ej2π(0.31)〉
)

,(
â3, 〈0.52 ej2π(0.61), 0.22 ej2π(0.51)〉

)
,
(

â4, 〈0.42 ej2π(0.41), 0.32 ej2π(0.51)〉
) 

, ℘̂3
0.52 ,


(

â1, 〈0.82 ej2π(0.61), 0.12 ej2π(0.51)〉
)

,
(

â2, 〈0.72 ej2π(0.51), 0.22 ej2π(0.41)〉
)

,(
â3, 〈0.62 ej2π(0.61), 0.12 ej2π(0.11)〉

)
,
(

â4, 〈0.52 ej2π(0.31), 0.32 ej2π(0.61)〉
) 

, ℘̂4
0.62 ,


(

â1, 〈0.52 ej2π(0.11), 0.12 ej2π(0.11)〉
)

,
(

â2, 〈0.42 ej2π(0.21), 0.32 ej2π(0.21)〉
)

,(
â3, 〈0.32 ej2π(0.11), 0.12 ej2π(0.51)〉

)
,
(

â4, 〈0.22 ej2π(0.61), 0.42 ej2π(0.61)〉
) 




then Θ̂Λ̂

3 = Θ̂Λ̂
1 ∪ Θ̂Λ̂

2

 ℘̂1
0.12 ,


(

â1, 〈0.22 ej2π(0.32), 0.31 ej2π(0.42)〉
)

,
(

â2, 〈0.42 ej2π(0.52), 0.51 ej2π(0.62)〉
)

,(
â3, 〈0.62 ej2π(0.72), 0.31 ej2π(0.82)〉

)
,
(

â4, 〈0.82 ej2π(0.42), 0.11 ej2π(0.62)〉
) 

, ℘̂2
0.32 ,


(

â1, 〈0.72 ej2π(0.42), 0.11 ej2π(0.32)〉
)

,
(

â2, 〈0.62 ej2π(0.52), 0.21 ej2π(0.32)〉
)

,(
â3, 〈0.52 ej2π(0.62), 0.21 ej2π(0.52)〉

)
,
(

â4, 〈0.42 ej2π(0.42), 0.31 ej2π(0.52)〉
) 

, ℘̂3
0.52 ,


(

â1, 〈0.82 ej2π(0.62), 0.11 ej2π(0.52)〉
)

,
(

â2, 〈0.72 ej2π(0.52), 0.21 ej2π(0.42)〉
)

,(
â3, 〈0.62 ej2π(0.62), 0.11 ej2π(0.12)〉

)
,
(

â4, 〈0.52 ej2π(0.32), 0.31 ej2π(0.62)〉
) 

, ℘̂4
0.62 ,


(

â1, 〈0.52 ej2π(0.12), 0.11 ej2π(0.12)〉
)

,
(

â2, 〈0.42 ej2π(0.22), 0.31 ej2π(0.22)〉
)

,(
â3, 〈0.32 ej2π(0.12), 0.11 ej2π(0.52)〉

)
,
(

â4, 〈0.22 ej2π(0.62), 0.41 ej2π(0.62)〉
) 




and Θ̂Λ̂

4 = Θ̂Λ̂
1 ∩ Θ̂Λ̂

2

 ℘̂1
0.11 ,


(

â1, 〈0.21 ej2π(0.31), 0.32 ej2π(0.41)〉
)

,
(

â2, 〈0.41 ej2π(0.51), 0.52 ej2π(0.61)〉
)

,(
â3, 〈0.61 ej2π(0.71), 0.32 ej2π(0.81)〉

)
,
(

â4, 〈0.81 ej2π(0.41), 0.12 ej2π(0.61)〉
) 

, ℘̂2
0.31 ,


(

â1, 〈0.71 ej2π(0.41), 0.12 ej2π(0.31)〉
)

,
(

â2, 〈0.61 ej2π(0.51), 0.22 ej2π(0.31)〉
)

,(
â3, 〈0.51 ej2π(0.61), 0.22 ej2π(0.51)〉

)
,
(

â4, 〈0.41 ej2π(0.41), 0.32 ej2π(0.51)〉
) 

, ℘̂3
0.51 ,


(

â1, 〈0.81 ej2π(0.61), 0.12 ej2π(0.51)〉
)

,
(

â2, 〈0.71 ej2π(0.51), 0.22 ej2π(0.41)〉
)

,(
â3, 〈0.61 ej2π(0.61), 0.12 ej2π(0.11)〉

)
,
(

â4, 〈0.51 ej2π(0.31), 0.32 ej2π(0.61)〉
) 

, ℘̂4
0.61 ,


(

â1, 〈0.51 ej2π(0.11), 0.12 ej2π(0.11)〉
)

,
(

â2, 〈0.41 ej2π(0.21), 0.32 ej2π(0.21)〉
)

,(
â3, 〈0.31 ej2π(0.11), 0.12 ej2π(0.51)〉

)
,
(

â4, 〈0.21 ej2π(0.61), 0.42 ej2π(0.61)〉
) 





.
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3.2. Role of Fuzzy Parameterisation in Analysis of Susceptibility to Brain Tumours

The idea of fuzzy parameterisation is meant to tackle uncertainties attached to the
procedure of selecting parameters for the analysis and ranking of objects under obser-
vation. Let Λ̂ = {â1, â2, â3, . . . , âα} be a space of objects under consideration and F̂ =
{℘̂1/ψ̂(℘̂1), ℘̂2/ψ̂(℘̂2), . . . , ℘̂r/ψ̂(℘̂β)} be an FS over the set of attribute-valued tuples
=̂ = {℘̂1, ℘̂2, . . . , ℘̂β}. Let Âi

T̂
(℘̂1/ψ̂(℘̂1)) and Âi

F̂
(℘̂1/ψ̂(℘̂1)) be amplitude values of

âi, i = 1, 2, . . . , α in true-belonging and false-belonging components of CIFNs with respect
to ℘̂1/ψ̂(℘̂1). Similarly, let B̂i

T̂
(℘̂1/ψ̂(℘̂1)) and B̂i

F̂
(℘̂1/ψ̂(℘̂1)) be phase values of âi in true-

belonging and false-belonging components of CIFNs with respect to ℘̂1/ψ̂(℘̂1). Then, the
fuzzy parameterised value ψ̂(℘̂1) of ℘̂1 can be computed as

ψ̂(℘̂1) =
1
2

{
max{Âi

T̂
(℘̂1)}+min{Âi

F̂
(℘̂1)}

2 +
max{B̂i

T̂
(℘̂1)}+min{B̂i

F̂
(℘̂1)}

2

}
. (14)

3.3. Algebraic Criterion for the Transformation of CIFNs

If
〈

ÂT̂(âi) ejB̂T̂(âi), ÂF̂(âi) ejB̂F̂(âi)
〉

is a CIFN for âi ∈ Λ̂ corresponding to fuzzy param-

eterised tuples ℘̂k
ψ̂(℘̂k)

∈ F̂, then CIFN can be converted to CFN by using the following
arithmetical formula

∇̂CFN =

〈
|ÂT̂(âi)− ÂF̂(âi)|

2
,

B̂T̂(âi) + B̂F̂(âi)

4π

〉
. (15)

If ∇̂CFN = 〈v̂1, v̂2〉 is a CFN, then fuzzy values can be obtained from it by using the
following formula

AFN =
|v̂1 − v̂2|

2
. (16)

3.4. Selection Criterion for Parameters and Sub-Parameters

The characteristics (criteria) and sub-attributes (sub-criteria) are the main elements
that directly connect to the MADM problem and potentially have a significant impact on
decisions. Because of this, it is advised to choose parameters and sub-parameters with
intelligence. Interviewing people and conducting questionnaire-based surveys are seen as
appropriate methods for gathering information that will help select parameters and sub-
parameters. However, only the parameters and sub-parameters compatible with the chosen
algebraic model will likely be taken into account. Only those parameters (criteria) that are
likely to be divided into disjoint sub-classes with sub-parametric values (sub-criteria) are
accepted after reviewing the pertinent literature and utilising the suggested model.

According to the American Association of Neurological Surgeons [38], many types of
tumours may appear in the body for several uncertain reasons, but this study considered
only those tumours which relate to the brain based on their positions in the cerebrum. A
brief description of them is provided in Figure 2. Since there are many symptoms which
may lead to the suffering of brain tumours [39,40], the most relevant symptoms and their
sub-categories are considered as parameters (criteria) and sub-parameters (sub-criteria) for
the evaluation of susceptibility to brain tumours. The purpose of choosing them is based
on their relevance and suitability with respect to brain tumours. Figure 3 presents a brief
description of adopted modified parameters and sub-parameters. To study their roles in
detail, one can visit the web pages [39,40].
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Figure 2. Classification of cerebrum (source: [39]).

Figure 3. Classification of tumour location-based symptoms (source: [39]).

3.5. Profile of Decision Makers and Their Roles

The key players in MADM practice are decision makers (experts) who make the
decisions necessary for the evaluation process to be completed successfully. Their shared
conflicts of interest or other relevant disagreements might result in biased judgments.
Therefore, it is common to employ professionals with multi-disciplinary competence areas
from many sources (departments). A few of the main duties of decision makers in MADM
include the following:

1. Analysing raw data (information) gathered from various sources.
2. Processing the analysed data statistically.
3. Examination of options and constraints.
4. Analysing processed data using various parameters.
5. A concise set of appropriate parameters for assessing alternatives.
6. Using an appropriate algebraic model to offer recommendations for approximating

options based on parameters.
7. Sorting of objects under observation.
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In the present study, the decision makers are qualified doctors such as neurologists and
neuropathologists who specialise in issues concerning the brain and central nervous system.
Although they can manage a major part of the evaluation easily, due to the involvement of
many other factors, they can be assisted by other doctors such as internists, oncologists,
radiation oncologists, neuro-oncologists and neurosurgeons [40].

3.6. Designing of Decision Support System

In this section, a decision support mechanism is presented, which assists the decision
makers in assessing the susceptibility of patients to brain tumours by following the easy
steps of the proposed robust algorithm.

Patients with brain tumours are typically directed to the oncology department at
urban hospitals in some developing Asian countries such as Pakistan. There, the tumours’
conditions are first assessed before an appropriate course of therapy is suggested. Lack of
resources makes it nearly impossible to diagnose a particular type of brain tumour and then
treat it locally. Therefore, it is preferable to just evaluate a patient’s susceptibility to brain
tumours at this local level before referring them to the appropriate facilities for treatment.

Now, a robust algorithm is being proposed using the aggregations of the proposed
algebraic model FPCIFHSS and other arithmetical cum decision-making techniques.

A brief step-wise description of Algorithm 1 is presented in Figure 4. Now, Algorithm 1
is explained by the following case study-based numerical example. In this case, the opinions
of decision makers are hypothetical.

Algorithm 1 Pythagorean Means based Scoring Algorithm (PMBSA): The algorithm is
divided into following four major stages
Input:
(1). Assume the sets like Λ̂ = {â1, â2, â3, . . . , ân} as initial spaces of objects consisting of

various types of tumours, Ξ̂ = {ê1, ê2, ê3, . . . , êm} as a set of parameters consisting of
relevant symptoms of brain tumours, =̂ = {℘̂1, ℘̂2, ℘̂3, . . . , ℘̂k} as Cartesian product of
Ξ̂i, i ∈ {1, 2, 3, . . . , m} where Ξ̂i are non-overlapping sets consisting of sub-parametric
values of êi ∈ Ξ̂ and X̂ = {Dm1, Dm2, Dm3, . . . , Dml} as a set of decision makers
consisting of some neurologists and neuropathologists.

Construction:
(2). Construct CIFHSSs by considering the expert opinions of each decision maker about

the types of brain tumours based on parametric valued tuples of =̂.
(3). Construct an FS F̂ over =̂ by determining the fuzzy parameterised values of all

℘̂r, r ∈ {1, 2, 3, . . . , k} in accordance with Equation (14).
(4). Construct FPCIFHSSs by combining the data from the previous three steps and

tabulate each FPCIFHSS by representing them in matrices M1, M2, . . . , Ml .
Computation:
(5). Convert CIFNs of each matrix into fuzzy values by using the formula provided in

Equation (15) and obtain new matrices M f p f
1 , M f p f

2 , . . . , M f p f
l .

(6). Obtain matrices M f
1 , M f

2 , . . . , M f
l by multiplying each fuzzy parameterised value with

the fuzzy values in its respective row.
(7). Determine core matrix Mcore by using algebraic formula Mcore = M f

1 ⊕M f
2 ⊕ . . .⊕M f

l
where ⊕ is meant for the usual addition of matrices.

(8). Compute the score values ∂̂(âi), i = 1, 2, 3, . . . , n of brain tumours corresponding to
parametric valued tuples ℘̂j, j = 1, 2, 3, . . . , k by taking the average of fuzzy values
appearing in the respective column of âi.

Output:
(9). Make the decision in accordance with the belonging nature of score values in sub-

intervals of patients.
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Figure 4. Flowchart of proposed PMBSA algorithm.

Example 5. The administration of a cancer hospital, “MEDICARE" (a hypothetical name), is
very much concerned with the increasing ratio of suspected brain tumour patients being referred
by various hospitals from all over the country. In order to evaluate the susceptibility level of
patients to the specific type of brain tumours, a departmental committee is constituted consisting
of two neurologists and one neuropathologist, which is considered as a set of decision makers
X̂ = {Dm1, Dm2, Dm3}. According to the terms and conditions provided to the committee,
the following are the tasks of the committee:

1. Shortlist the patients for analysis of susceptibility to brain tumours and assign susceptibility
degrees as subintervals of [0, 1].

2. List the expected types of brain tumours and their related symptoms after a close analysis of
the literature and other related sources.

3. Provide opinions for the approximations of brain tumour types separately based on multi-
argument-based symptoms by considering fuzzy parameterisation, complex intuitionistic fuzzy
setting and hypersoft setting.

After mutual consultation, three types of brain tumours are shortlisted which are enclosed as
a set of initial spaces of objects Λ̂ = {â1 = craniopharyngioma, â2 = brain-metastases, â3 =
medulloblastomas}. Figures 5–7 present the pictorial display of these types of tumours, respectively.
Six patients, P̂1, P̂2, P̂3, P̂4, P̂5 and P̂6, are shortlisted and their susceptibility degrees are supposed to be
contained in subintervals [0, 0.3), [0.2, 0.4), [0.2, 0.6), [0.3, 0.7), [0.3, 0.85) and [0.85, 1], respectively.
The committee has selected some appropriate symptoms in accordance with the location of brain tumours
and considered them as evaluating parameters for this case. These symptoms form a set of param-
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eters Ξ̂ =

{
ê1 = f rontal lobe tumour symptoms, ê2 = temporal lobe tumour symptoms,
ê3 = parietal lobe tumour symptoms, ê4 = occipetal lobe tumour symptoms

}
.

For the sake of having reliable evaluations, the chosen parameters are then classified on a pref-
erential basis into their respective sub-parametric valued non-overlapping sets:

Ξ̂1 =
{

ê11 = problems with sight and speech, ê12 = loss o f smell
}

,
Ξ̂2 =

{
ê21 = short term memory loss, ê22 = hearing voices in head

}
,

Ξ̂3 =
{

ê31 = loss o f f eeling in one part o f the body
}

,
Ξ̂4 =

{
ê41 = di f f iculty to identi f y the colour and size o f objects

}
.

For the sake of including multiple arguments simultaneously, the Cartesian product of Ξ̂i, i =
1, 2, 3, 4 is calculated, that is

Ξ̂ = Ξ̂1 × Ξ̂2 × Ξ̂3 × Ξ̂4

Ξ̂ =

{
℘̂1 = (ê11, ê21, ê31, ê41), ℘̂2 = (ê11, ê22, ê31, ê41),
℘̂3 = (ê12, ê21, ê31, ê41), ℘̂4 = (ê12, ê22, ê31, ê41)

}
.

Now, all the members provide their expert opinions separately for the approximations of three
types of brain tumours based on sub-parametric valued tuples ℘̂1, ℘̂2, ℘̂3 and ℘̂4 in terms of CIFNs,
that is

For Dm1:

Ψ(℘̂1) =


(

â1, 〈0.12 ej2π(0.13), 0.13 ej2π(0.14)〉
)

,(
â2, 〈0.14 ej2π(0.15), 0.15 ej2π(0.16)〉

)
,(

â3, 〈0.16 ej2π(0.17), 0.13 ej2π(0.18)〉
)
.

Ψ(℘̂2) =


(

â1, 〈0.22 ej2π(0.23), 0.23 ej2π(0.24)〉
)

,(
â2, 〈0.24 ej2π(0.25), 0.25 ej2π(0.26)〉

)
,(

â3, 〈0.26 ej2π(0.27), 0.23 ej2π(0.28)〉
)
,

Ψ(℘̂3) =


(

â1, 〈0.32 ej2π(0.33), 0.33 ej2π(0.34)〉
)

,(
â2, 〈0.34 ej2π(0.35), 0.35 ej2π(0.36)〉

)
,(

â3, 〈0.36 ej2π(0.37), 0.33 ej2π(0.38)〉
)
,

Ψ(℘̂4) =


(

â1, 〈0.42 ej2π(0.43), 0.43 ej2π(0.44)〉
)

,(
â2, 〈0.44 ej2π(0.45), 0.45 ej2π(0.46)〉

)
,(

â3, 〈0.46 ej2π(0.47), 0.43 ej2π(0.48)〉
)
.

For Dm2:

Ψ(℘̂1) =


(

â1, 〈0.21 ej2π(0.31), 0.31 ej2π(0.41)〉
)

,(
â2, 〈0.41 ej2π(0.51), 0.51 ej2π(0.61)〉

)
,(

â3, 〈0.61 ej2π(0.71), 0.31 ej2π(0.81)〉
)
,

Ψ(℘̂2) =


(

â1, 〈0.22 ej2π(0.32), 0.32 ej2π(0.42)〉
)

,(
â2, 〈0.42 ej2π(0.52), 0.52 ej2π(0.62)〉

)
,(

â3, 〈0.62 ej2π(0.72), 0.32 ej2π(0.82)〉
)
,

Ψ(℘̂3) =


(

â1, 〈0.23 ej2π(0.33), 0.33 ej2π(0.43)〉
)

,(
â2, 〈0.43 ej2π(0.53), 0.53 ej2π(0.63)〉

)
,(

â3, 〈0.63 ej2π(0.73), 0.33 ej2π(0.83)〉
)
,
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Ψ(℘̂4) =


(

â1, 〈0.24 ej2π(0.34), 0.34 ej2π(0.44)〉
)

,(
â2, 〈0.44 ej2π(0.54), 0.54 ej2π(0.64)〉

)
,(

â3, 〈0.64 ej2π(0.74), 0.34 ej2π(0.84)〉
)
.

For Dm3:

Ψ(℘̂1) =


(

â1, 〈0.24 ej2π(0.34), 0.34 ej2π(0.44)〉
)

,(
â2, 〈0.44 ej2π(0.54), 0.54 ej2π(0.64)〉

)
,(

â3, 〈0.64 ej2π(0.74), 0.34 ej2π(0.84)〉
)
,

Ψ(℘̂2) =


(

â1, 〈0.23 ej2π(0.33), 0.33 ej2π(0.43)〉
)

,(
â2, 〈0.43 ej2π(0.53), 0.53 ej2π(0.63)〉

)
,(

â3, 〈0.63 ej2π(0.73), 0.33 ej2π(0.83)〉
)
,

Ψ(℘̂3) =


(

â1, 〈0.22 ej2π(0.32), 0.32 ej2π(0.42)〉
)

,(
â2, 〈0.42 ej2π(0.52), 0.52 ej2π(0.62)〉

)
,(

â3, 〈0.62 ej2π(0.72), 0.32 ej2π(0.82)〉
)
,

Ψ(℘̂4) =


(

â1, 〈0.52 ej2π(0.33), 0.13 ej2π(0.42)〉
)

,(
â2, 〈0.34 ej2π(0.15), 0.25 ej2π(0.16)〉

)
,(

â3, 〈0.46 ej2π(0.37), 0.43 ej2π(0.48)〉
)
.

Figure 5. Craniopharyngioma: brain tumour of type 1 (source: https://en.wikipedia.org/wiki/
Craniopharyngioma) (accessed on 16 October 2022).

https://en.wikipedia.org/wiki/Craniopharyngioma
https://en.wikipedia.org/wiki/Craniopharyngioma
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Figure 6. Brain-metastases: brain tumour of type 2 (source: https://www.mayoclinic.org/diseases-
conditions/brain-metastases/symptoms-causes/syc-20350136) (accessed on 18 September 2022).

Figure 7. Medulloblastomas: brain tumour of type 3 (source: https://www.mayoclinic.org/diseases-
conditions/medulloblastoma/cdc-20363524) (accessed on 18 September 2022).

Now, for sake of assessing the ambiguous nature of sub-parametric valued tuples, their respec-
tive fuzzy parameterised values computed by using Equation (14) are presented in Table 2.

Table 2. Fuzzy parameterised values corresponding to ℘̂i, i = 1, 2, 3, 4.

DMs ℘̂1 ℘̂2 ℘̂3 ℘̂4

Dm1 0.15 0.25 0.35 0.45

Dm2 0.51 0.52 0.53 0.54

Dm3 0.54 0.53 0.52 0.295

In this stage, the opinions and fuzzy parameterised degrees of each decision maker are compiled
as FPCIFHSSs and are presented in Tables 3–5.

Table 3. Matrix formation of FPCIFHSS Θ̂Λ̂
Dm1

constructed with Dm1.

M1 â1 â2 â3

℘̂1/0.15 〈0.12 ej2π(0.13), 0.13 ej2π(0.14)〉 〈0.14 ej2π(0.15), 0.15 ej2π(0.16)〉 〈0.16 ej2π(0.17), 0.13 ej2π(0.18)〉
℘̂2/0.25 〈0.22 ej2π(0.23), 0.23 ej2π(0.24)〉 〈0.24 ej2π(0.25), 0.25 ej2π(0.26)〉 〈0.26 ej2π(0.27), 0.23 ej2π(0.28)〉
℘̂3/0.35 〈0.32 ej2π(0.33), 0.33 ej2π(0.34)〉 〈0.34 ej2π(0.35), 0.35 ej2π(0.36)〉 〈0.36 ej2π(0.37), 0.33 ej2π(0.38)〉
℘̂4/0.45 〈0.42 ej2π(0.43), 0.43 ej2π(0.44)〉 〈0.44 ej2π(0.45), 0.45 ej2π(0.46)〉 〈0.46 ej2π(0.47), 0.43 ej2π(0.48)〉

https://www.mayoclinic.org/diseases-conditions/brain-metastases/symptoms-causes/syc-20350136
https://www.mayoclinic.org/diseases-conditions/brain-metastases/symptoms-causes/syc-20350136
https://www.mayoclinic.org/diseases-conditions/medulloblastoma/cdc-20363524
https://www.mayoclinic.org/diseases-conditions/medulloblastoma/cdc-20363524
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Table 4. Matrix formation of FPCIFHSS Θ̂Λ̂
Dm2

constructed with Dm2.

M2 â1 â2 â3

℘̂1/0.51 〈0.21 ej2π(0.31), 0.31 ej2π(0.41)〉 〈0.41 ej2π(0.51), 0.51 ej2π(0.61)〉 〈0.61 ej2π(0.71), 0.31 ej2π(0.81)〉
℘̂2/0.52 〈0.22 ej2π(0.32), 0.32 ej2π(0.42)〉 〈0.42 ej2π(0.52), 0.52 ej2π(0.62)〉 〈0.62 ej2π(0.72), 0.32 ej2π(0.82)〉
℘̂3/0.53 〈0.23 ej2π(0.33), 0.33 ej2π(0.43)〉 〈0.43 ej2π(0.53), 0.53 ej2π(0.63)〉 〈0.63 ej2π(0.73), 0.33 ej2π(0.83)〉
℘̂4/0.54 〈0.24 ej2π(0.34), 0.34 ej2π(0.44)〉 〈0.44 ej2π(0.54), 0.54 ej2π(0.64)〉 〈0.64 ej2π(0.74), 0.34 ej2π(0.84)〉

Table 5. Matrix formation of FPCIFHSS Θ̂Λ̂
Dm3

constructed with Dm3.

M3 â1 â2 â3

℘̂1/0.54 〈0.24 ej2π(0.34), 0.34 ej2π(0.44)〉 〈0.44 ej2π(0.54), 0.54 ej2π(0.64)〉 〈0.64 ej2π(0.74), 0.34 ej2π(0.84)〉
℘̂2/0.53 〈0.23 ej2π(0.33), 0.33 ej2π(0.43)〉 〈0.43 ej2π(0.53), 0.53 ej2π(0.63)〉 〈0.63 ej2π(0.73), 0.33 ej2π(0.83)〉
℘̂3/0.52 〈0.22 ej2π(0.32), 0.32 ej2π(0.42)〉 〈0.42 ej2π(0.52), 0.52 ej2π(0.62)〉 〈0.62 ej2π(0.72), 0.32 ej2π(0.82)〉
℘̂4/0.295 〈0.52 ej2π(0.33), 0.13 ej2π(0.42)〉 〈0.34 ej2π(0.15), 0.25 ej2π(0.16)〉 〈0.46 ej2π(0.37), 0.43 ej2π(0.48)〉

Now, all the CIFN-based entries of FPCIFHSSs Θ̂Λ̂
Dm1

, Θ̂Λ̂
Dm2

and Θ̂Λ̂
Dm3

are converted to
CFNs by using the arithmetical criterion given in Equation (15). The new matrices thus obtained
are presented in Tables 6–8.

Table 6. Matrix formation of M f p f
1 with entries in terms of CFNs.

M f p f
1 â1 â2 â3

℘̂1/0.15 〈0.005, 0.135〉 〈0.005, 0.155〉 〈0.015, 0.175〉
℘̂2/0.25 〈0.005, 0.235〉 〈0.005, 0.255〉 〈0.015, 0.275〉
℘̂3/0.35 〈0.005, 0.335〉 〈0.005, 0.355〉 〈0.015, 0.375〉
℘̂4/0.45 〈0.005, 0.435〉 〈0.005, 0.455〉 〈0.015, 0.475〉

Table 7. Matrix formation of M f p f
2 with entries in terms of CFNs.

M f p f
2 â1 â2 â3

℘̂1/0.51 〈0.05, 0.36〉 〈0.05, 0.56〉 〈0.15, 0.76〉
℘̂2/0.52 〈0.05, 0.37〉 〈0.05, 0.57〉 〈0.15, 0.77〉
℘̂3/0.53 〈0.05, 0.38〉 〈0.05, 0.58〉 〈0.15, 0.78〉
℘̂4/0.54 〈0.05, 0.39〉 〈0.05, 0.59〉 〈0.15, 0.79〉

Table 8. Matrix formation of M f p f
3 with entries in terms of CFNs.

M f p f
3 â1 â2 â3

℘̂1/0.54 〈0.05, 0.39〉 〈0.05, 0.59〉 〈0.15, 0.79〉
℘̂2/0.53 〈0.05, 0.38〉 〈0.05, 0.58〉 〈0.15, 0.78〉
℘̂3/0.52 〈0.05, 0.37〉 〈0.05, 0.57〉 〈0.15, 0.77〉
℘̂4/0.295 〈0.195, 0.375〉 〈0.045, 0.155〉 〈0.015, 0.425〉

In this step, CFN-based entries of matrices M f p f
1 , M f p f

2 and M f p f
3 are transformed to fuzzy

values first by employing the criterion provided in Equation (16) and then each fuzzy parameterised
value corresponding to sub-parametric valued tuples ℘̂1, ℘̂2, ℘̂3 and ℘̂4 is multiplied with the fuzzy
valued-based entries in their respective rows. The matrices M f

1 , M f
2 and M f

3 thus obtained are
presented in Tables 9–11.
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Table 9. Tabular formation of M f
1 with entries in terms of fuzzy values.

M f
1 â1 â2 â3

℘̂1 0.0098 0.0113 0.0120
℘̂2 0.0288 0.0313 0.0325
℘̂3 0.0578 0.0613 0.0630
℘̂4 0.0968 0.1013 0.1035

Table 10. Tabular formation of M f
2 with entries in terms of fuzzy values.

M f
2 â1 â2 â3

℘̂1 0.0791 0.1301 0.1556
℘̂2 0.0832 0.1352 0.3224
℘̂3 0.0875 0.1405 0.1670
℘̂4 0.0918 0.1458 0.1728

Table 11. Tabular formation of M f
3 with entries in terms of fuzzy values.

M f
3 â1 â2 â3

℘̂1 0.0918 0.1458 0.1728
℘̂2 0.0875 0.1405 0.1670
℘̂3 0.0832 0.1352 0.1612
℘̂4 0.0266 0.0163 0.0605

Now, in this phase, the core matrix Mcore is obtained by the ordinary addition of matrices M f
1 ,

M f
2 and M f

3 . Its tabulation formation is provided in Table 12.

Table 12. Tabular formation of core matrix Mcore.

Mcore â1 â2 â3

℘̂1 0.1807 0.2872 0.3404
℘̂2 0.1995 0.3070 0.5219
℘̂3 0.2285 0.3370 0.3912
℘̂4 0.2152 0.2634 0.3368

The score values for the types of brain tumours are computed by taking the average of the
entries in their corresponding rows of core matrix Mcore. The score values are presented in Table 13.

Table 13. Scores of alternatives âi, i = 1, 2, 3 corresponding to ℘̂j, j = 1, 2, 3, 4.

Brain Tumour Types ∂̂(âi): Score Values of âi, i = 1, 2, 3

â1 0.2060
â2 0.2987
â3 0.3976

From Table 13, it is clear that ∂̂(â1), ∂̂(â2) ∈ [0, 0.3), [0.2, 0.4), [0.2, 0.6) and ∂̂(â3) ∈
[0.3, 0.7), [0.3, 0.85); therefore, it is concluded that patients P̂1, P̂2 and P̂3 are suspected to have brain
tumours “craniopharyngioma" and “brain-metastases", whereas patients P̂4 and P̂5 are suspected
to have “medulloblastomas". Patient P̂6 is outside the scope of the analysis of susceptibility to these
three types of brain tumours. This can also be seen in Figure 8.
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Figure 8. Relation between the patients and brain tumours.

4. Discussion, Sensitivity Analysis and Comparison

The proposed mathematical model is new and has not been used by any scholar in
the literature for the proposed study. Moreover, no relevant literature exists regarding
the assessment of analyses of susceptibility of patients to brain tumours by using fuzzy
set-like or soft set-like structures. Therefore, the proposed study is not comparable with any
existing literature studies based on computational results. However, a comparison is made
with its own results by employing different statistical techniques for the determination of
scoring values of brain tumours.

As in Example 5, the susceptibility level of patients is assessed by applying the
concept of arithmetic mean for determining the score values of brain tumours based on
sub-parametric valued tuples and thus five overlapping results and one neutral result are
observed. However, the computed scores may vary if other means are applied to find
score values that definitely alter the final findings. In this regard, the following cases can
be considered:

Case 1. The score values for the types of brain tumours are computed by taking the geometric means
of the entries in their corresponding rows of the core matrix Mcore. The score values are presented in
Table 14.

Table 14. Scores of alternatives âi, i = 1, 2, 3 corresponding to ℘̂j, j = 1, 2, 3, 4 computed through
geometric mean.

Brain Tumour Types ∂̂(âi): Score Values of âi, i = 1, 2, 3

â1 0.2052
â2 0.2974
â3 0.3911

From Table 14, it is clear that ∂̂(â1) = 0.2052, ∂̂(â2) = 0.2974 ∈ [0, 0.3), [0.2, 0.4),
[0.2, 0.6) and ∂̂(â3) = 0.3911 ∈ [0.3, 0.7), [0.3, 0.85); therefore, it is concluded that patients
P̂1, P̂2 and P̂3 are suspected to have brain tumours “craniopharyngioma” and “brain-
metastases”, whereas patients P̂4 and P̂5 are suspected to have “medulloblastomas”. Patient
P̂6 is outside the scope of the analysis of susceptibility to these three types of brain tumours.
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Case 2. The score values for the types of brain tumours are computed by taking the harmonic means
of the entries in their corresponding rows of core matrix Mcore. The score values are presented in
Table 15.

Table 15. Scores of alternatives âi, i = 1, 2, 3 corresponding to ℘̂j, j = 1, 2, 3, 4 computed through
harmonic mean.

Brain Tumour Types ∂̂(âi): Score Values of âi, i = 1, 2, 3

â1 0.2044
â2 0.2962
â3 0.3854

From Table 15, it is clear that ∂̂(â1) = 0.2044, ∂̂(â2) = 0.2962 ∈ [0, 0.3), [0.2, 0.4),
[0.2, 0.6) and ∂̂(â3) = 0.3854 ∈ [0.3, 0.7), [0.3, 0.85); therefore, it is concluded that patients
P̂1, P̂2 and P̂3 are suspected to have brain tumours “craniopharyngioma” and “brain-
metastases”, whereas patients P̂4 and P̂5 are suspected to have “medulloblastomas”. Patient
P̂6 is outside the scope of the analysis of susceptibility to these three types of brain tumours.

Case 3. The score values for the types of brain tumours are computed by taking the harmonic means
of the entries in their corresponding rows of core matrix Mcore. The score values are presented in
Table 16.

Table 16. Scores of alternatives âi, i = 1, 2, 3 corresponding to ℘̂j, j = 1, 2, 3, 4 computed
through median.

Brain Tumour Types ∂̂(âi): Score Values of âi, i = 1, 2, 3

â1 0.2074
â2 0.2971
â3 0.3658

From Table 16, it is clear that ∂̂(â1) = 0.2074, ∂̂(â2) = 0.2971 ∈ [0, 0.3), [0.2, 0.4),
[0.2, 0.6) and ∂̂(â3) = 0.3658 ∈ [0.3, 0.7), [0.3, 0.85); therefore, it is concluded that patients
P̂1, P̂2 and P̂3 are suspected to have brain tumours “craniopharyngioma” and “brain-
metastases”, whereas patients P̂4 and P̂5 are suspected to have “medulloblastomas”. Patient
P̂6 is outside the scope of the analysis of susceptibility to these three types of brain tumours.

In all the above cases, the same results are received by applying different Pythagorean
means. The combined comparison of scores computed through these cases are presented in
Figure 9.

Now, we compare our proposed study with some the most relevant already developed
models such as Kumar et al. [34], Papageorgiou et al. [36] and Saeed et al. [37]. This
comparison is based on some significant evaluating indicators and is presented in Table 17.
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Figure 9. Comparison of scores computed through different statistical techniques.

Table 17. Structural comparison of proposed study with the most relevant existing model.

References Entitlement of Fuzzy
Parameterisation

Handling of
Information-Based

Periodicity

Provision of
Susceptibility-Based

Ranking for Brain
Tumours

Pythagorean
Means-Based

Sensitivity Analysis
of Results

Kumar et al. [34] Inadequate Inadequate Inadequate Inadequate
Papageorgiou et al. [36] Inadequate Inadequate Inadequate Inadequate

Saeed et al. [37] Inadequate Inadequate Inadequate Inadequate

Proposed model

Parameters and
sub-parameter-based

uncertainties are
managed by using the

concept of fuzzy
parameterisation

Information-based
periodicity is tackled by

using amplitude and
phase values in

complex plane settings

Patients and types of
brain tumours are

matched and ranked in
accordance with the
susceptibility scores

Sensitivity of computed
scores is observed

through employing the
formulations of

Pythagorean means
(i.e., arithmetic mean,
geometric mean and

harmonic mean)

5. Conclusions

In the present research, the set-based operations of a flexible arithmetic model FP-
CIFHSS are used to design an MADM system based on the proposal of a robust algorithm
for the assessment of analyses of patients’ susceptibility to brain tumours. This task is
accomplished by characterising the basic notions of FPCIFHSS, studying the role of fuzzy
parameterisation for the symptoms and their related subcategories, studying arithmetic
criteria for the transformation of CIFNs to CFNs and then CFNs to fuzzy values, under-
standing the process for the selection of parameters and sub-parameters and studying
the profiles of decision makers for this evaluation. The suggested method is reliable and
flexible, although it has some restrictions on the decision makers’ right to neutral or indefi-
nite membership grades in exchange for their input. The decision makers in the current
approach are required to approximatively weigh the alternatives based on their opinions
of dependent belonging and non-belonging grades within [0, 1]. When used in a neutro-
sophic environment, however, where participants can autonomously express their ideas
regarding belonging, non-belonging and indeterminate grades within [0, 3], this approach
can produce more trustworthy results. Additionally, the information utilised in the form of
decision makers’ judgments is fictitious. So it is simple to use this method to discuss a case
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study that includes actual data from the concerned department. A broad range of research
fields, including artificial intelligence, soft computing (fuzzy logic), image processing and
classification, pattern recognition and data clustering may fall under the purview of this
study. By utilising suitable pseudo-codes through machine learning tools, the proposed
algorithm (i.e., the decision support system) can be used further in the classification of
brain tumours based on MRI.
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