
A Framework for Testing Distributed Systems
Daniel Hughes

Computing Department
Lancaster University

Lancaster, UK.
+44 (0) 1524 594117

d.r.hughes@lancaster.ac.uk

Phil Greenwood
Computing Department

Lancaster University
Lancaster, UK.

+44 (0) 1524 592789
p.greenwood@lancaster.ac.uk

Geoff Coulson
Computing Department

Lancaster University
Lancaster, UK.

+44 (0) 1524 593054
geoff@comp.lancs.ac.uk

ABSTRACT
Thorough testing of distributed systems, particularly peer-to-peer
systems can prove difficult due to the problems inherent in
deploying, controlling and monitoring many nodes
simultaneously. This problem will only increase as the scale of
distributed systems continues to grow. This framework
implements a test bed environment using a semi-centralized peer-
to-peer network as a substrate for sharing resources made
available from standard PCs. This framework automates the
process of test-case deployment using a combination of Reflection
and Aspect Oriented Programming. This allows ‘point-and-click’
publishing of software onto the test-bed. Our framework also
provides a common monitoring, control and logging interface for
all nodes running on the network. Together, these features greatly
reduce deployment-time for real-world test scenarios. Automated
insertion and removal of test code also ensures that the testing
process does not compromise the correctness of the final system.

1. Introduction
 This paper discusses a Java based testing environment
that facilitates the testing of distributed applications with
easy publication, monitoring and control of prototype
systems on a peer-to-peer test-bed. Manual creation and
maintenance of such tests is an extremely time consuming
activity, especially where nodes are required to change
their behavior dynamically. Such tests may require the
creation of specialist control and monitoring tools.
Furthermore, monitoring code must often be inserted
throughout such prototype systems. The addition and
removal of such code is time-consuming and error-prone.
Our framework uses a combination of Reflection [1] and
Aspect Oriented Programming [2] to automatically insert
and remove code that is required for applications to
interface with the testing framework’s central monitoring
and control interface.

2. Aspect Oriented Programming
 Aspect-Oriented Programming is an emerging
programming paradigm which extends Object-Oriented
Programming (OOP). With OOP, some concerns cannot be
cleanly captured in a single object and so become scattered
across several objects. For example, an application

monitoring concern such as the one discussed previously
may require code to log specific method invocations or
communicate them to a monitoring interface. It would be
necessary for the said code to be scattered throughout the
application, in each method the user wishes to monitor.
 Such crosscutting concerns may be implemented in
units of code known as aspects. Within the aspects,
sections of code are created that are known as advice, these
pieces of advice implement the concern. The advice is then
woven into OO base-code at defined joinpoints. However,
this still leaves the problem of identifying suitable join-
points within the application where logging/monitoring
code should be applied.

3. Reflection
 We use Reflection to examine and extract information
regarding the structure of the component being tested in
order to facilitate the selection of joinpoints. Once the
structure of the component is exposed to the user through a
GUI, they can select the elements of the component they
wish to monitor, and insert the appropriate monitoring
aspect using the point-and-click interface. For example:
 A peer-to-peer file-sharing system exists in which a
developer desires to monitor the number of concurrent
downloads in progress on each node. In this hypothetical
system, a method ‘initiateDownload’ is called when
a new download begins and an integer variable ‘D’ which
represents the number of concurrent downloads is updated.
Using framework tools on this component will expose a list
of available methods. By selecting the
‘initiateDownload’ method as the joinpoint and a
variable-monitoring aspect for ‘D’, a large-scale, real-
world test can be published in just a few clicks so that each
time a new download is initiated from any node it will be
reported to the central monitoring/logging interface.

4. Peer-to-Peer Networking
 A semi-centralised peer-to-peer network, using a
single index server is used as the communications substrate
for the framework. This is similar to Napster [3]. Nodes

participating in the test-bed network are typically standard
general-purpose workstations. Each runs a small client
application which allows it to host distributed applications.
 The client registers with the index server that it is
available to host a test process. When the developer
publishes a process to the test-bed, they are informed by
the server of the current number of nodes willing to host a
new test. From this pool of nodes, the developer selects an
appropriate test size, and ‘publishes’ the modified system
to the network. The modified software is sent to each test-
host using a simple peer-to-peer HTTP file transfer. When
the software transfer is complete, the hosts execute the test-
software and the inserted monitoring code will relay the
status of each node on the network back to the server. The
user can access this information in a dynamic graphical
form via an associated Java applet or as text logs.

[Figure 1 – Graphical Monitoring Interface]

 Following testing, framework tools are used to remove
all communications code that was added for the test,
ensuring that the correctness of the final application is not
compromised by un-removed test code. The whole
publication and testing process occurs without the
developer having to access the source-code.

5. Implementation
 Our Framework is currently implemented entirely in
Java and only supports the testing of Java components.
Java was chosen as the development language because of
its inherent support for reflection and because several Java-
based test candidates already exist in the department.
 There are several Java AOP technologies, including
AspectJ[4], JAC[5] and Hyper/J[6]. We chose to
implement the system using AspectJ, as its joinpoint model
closely follows our requirements and unlike JAC or

Hyper/J, it does not introduce unnecessary overhead or
constraints.
 We chose to implement this system using a semi-
centralised peer-to-peer model as it significantly reduced
the complexity of the communication code that must be
added to test processes.

6. Summary and Future Work
 There have been a number of significant projects
which have explored the creation of large-scale distributed
test-beds [7], [8]; however, there has been very little
progress on tool support for such large-scale testing.
Furthermore, these existing test-bed implementations
require specialist infrastructure, whereas our framework
can be deployed over any existing network and makes use
of the processing power available on regular workstations.
 Our framework facilitates the deployment, monitoring
and control of software on an extensible distributed test-
bed. This is provided using a semi-centralized peer-to-peer
network and the spare CPU-cycles of regular workstations.
The automated insertion and removal of test code enables
more rapid deployment of test scenarios and reduces the
potential for test code to compromise the integrity of the
final system.
 There remain several open issues for the framework,
these include: dealing with node-failure, protecting host
nodes from the effects of malicious or poorly-written code,
providing test code security and supporting programming
languages other than Java.

5. References

[1] Coulson, G., “What is Reflection?”,
http://dsonline.computer.org/middleware/, 2003.
[2] Elrad, T. et al, “Discussing aspects of AOP”,
Communications of the ACM Vol. 44 No. 10 pp 33-38, 2001.
[3] Napster. www.napster.com.
[4] Kiczales, G. et al, “Getting Started with AspectJ”,
Communications of the ACM Vol. 44 No. 10 2001.
[5] Pawlak, R. et al, “JAC: A Flexible Solution for Aspect-
Oriented Programming in Java”, Reflection 2001, 2001.
[6] Ossher, H., Tarr, P., “Multi-Dimensional Separation of
Concerns using Hyperspaces”, IBM Research Report, 1999.
[7] L. Peterson, D. Culler, and T. Anderson. PlanetLab: A
Testbed for Developing and Deploying Network Services,
June 2002. Technical white paper, available at
http://www.planetlab. org/pubs/vision.pdf.
[8] A. Avizienis et al, "The UCLA DEDIX System: A
Distributed Testbed for Multiple-Version Software," Digest of
15th Annual International Symposium on Fault-Tolerant
Computing, pp. 126-134, Ann Arbor, Michigan, June 1985

