A Framework for Testing Safety and Effective
Computability of Extended Datalog’

Ravi Krishnamurthy
Raghu Ramakrishnan
Oded Shmueli
Computer Sciences Technical Report #774

June 1988

A shorter version of this paper appeared in Proc. SIGMOD, 1988.

A Framework for Testing Safety and Effective Computability
of Extended Datalog

Ravi Krishnamurthy (1)
Raghu Ramakrishnan (2)
Oded Shmueli (1,3)

ABSTRACT

This paper presents a methodology for testing a general logic program containing function symbols and
built-in predicates for safety and effective computability. Safety is the property that the set of answers for a
given query is finite. A related issue is whether the evaluation strategy can effectively compute all answers
and terminate. We consider these problems under the assumption that queries are evaluated using a
bottom-up fixpoint computation. We also approximate the use of function symbols, to construct complex
terms such as lists, and arithmetic operators, by considering Datalog programs with infinite base relations
over which finiteness constraints and monotonicity constraints are considered. One of the main results of
this paper is a recursive algorithm, check_clique, to test the safety and effective computability of predicates
in arbitrarily complex cliques. This algorithm takes certain procedures as parameters, and its applicability
can be strengthened by making these procedures more sophisticated. We specify the properties required of
these procedures precisely, and present a formal proof of correctness for algorithm check clique. This
work provides a framework for testing safety and effective computability of recursive programs, and is
based on a clique by clique analysis. The results reported here form the basis of the safety testing for the
LDL language, being implemented at MCC.

1. Introduction

The evaluation of recursive queries expressed as sets of Horn Clauses over a database has recently received
much attention. Consider the following program:

ancX,Y):—par(X,Y)
anc(X,Y):—par(X,Z),anc(Z,Y)

and let the query be
Query: anc (john,Y)?

Assume that a database contains a parenthood relation par. Then the program defines a derived relation
describing ancestors, and the query asks for the ancestors of john . This can be evaluated as a Prolog pro-
gram, but there are two drawbacks to doing so. First, Prolog uses a top-down backtracking strategy which
is incomplete. That is, it may not produce all answers implied by reading the rules as statements in standard
logic. For example, Prolog will loop forever without producing any answers if the same program is written
as follows:

anc(X,Y) ~par(X,Y)
anc(X,Y):~anc(X,Z),par(Z,Y)

The second problem with Prolog is that its evaluation strategy always computes joins by a nested loop join
technique which is inefficient in the presence of a large number of facts [Bancilhon and Ramakrishnan 87].

This has motivated the development of alternative evaluation methods based on bottom-up evaluation,
which is a well known strategy for evaluating logic programs. It serves to define the least fixed point
semantics, and is known to be complete [Lloyd 84]. The major problem with this approach is that it does
not restrict the computation by utilizing constants in the query. For example, in the previous query, only the

(1) MCC, Austin.
(2) University of Wisconsin-Madison. Work partly done while visiting MCC.
(3) Technion, Israel.

.2

ancestors of john are needed, but simple bottom-up evaluation would compute the entire ancestor relation
and then select john’s ancestors. Several refinements of bottom-up evaluation and other strategies have
been proposed to deal with this problem [Bancilhon and Ramakrishnan 86]. The main thrust of these stra-
tegies is to improve efficiency by restricting the computation to tuples that are related to the query. Since
these bottom-up strategies promise to be an efficient approach to evaluating recursive queries, it is impor-
tant to investigate their properties. In the context of databases, the set of answers is always finite in the
absence of recursion and negation. It is widely expected that while the addition of recursion to the query
language will make it more expressive, the typical query will still require a finite set of answers. Thus, an
important question is whether the set of answers for a given query is indeed finite. If not, the program is
probably incorrect. This is the safety problem, and has been shown to be undecidable for Horn Clause pro-
grams with function symbols [Shmueli 87, Gaifman 86]. A related issue is whether the evaluation strategy
(in particular, bottom-up evaluation, possibly after rewriting the program) computes all answers and ter-
minates.

While the questions of safety and termination are important questions for general logic programs, they are
particularly of interest for programs expressing database queries. We address these questions in this paper.
We consider programs which do not contain terms constructed using function symbols (i.e. all arguments
are constants or variables), also known as Datalog. However, we allow infinite base relations, and these
can be used to model terms constructed with function symbols and evaluable functions such as arithmetic
operations. We use the name Extended Datalog to denote Datalog with this extension.

One of the main results of this paper is a recursive algorithm, check_clique, to test the safety and effective
computability of predicates in arbitrarily complex cliques. This algorithm takes certain procedures as
parameters, and its applicability can be strengthened by making these procedures more sophisticated. We
specify the properties required of these procedures precisely, and present a formal proof of correctness for
algorithm check_clique. While the complexity of this algorithm is exponential in the size of the clique, we
believe that most cliques in practice are likely to be sufficiently small that this is acceptable.

Our framework for testing safety and effective computability is based on a simple bottom-up model of exe-
cution. We assume that the given program has already been rewritten, if necessary, according to the desired
sideways information passing strategies. Thus, in the safety testing phase, we only check the bottom-up
fixpoint computation of the given program, assuming that it will not be further transformed or otherwise
optimized. Thus, if a query is declared to be safe and effectively computable, bottom-up execution accord-
ing to our model is an effective procedure for computing it. An important aspect of our approach to testing
is that it is based on a clique by clique analysis. We develop algorithms for testing the safety of predicates
in a clique. We test a given program by topologically sorting its cliques, and then testing them in topologi-
cal order starting from the leaf cliques. This makes the analysis of large programs tractable since the com-
plexity of our algorithms is dominated by the size of recursive cliques, and we expect these to be small
independent of the size of the program.

The capture rules framework proposed in [Ullman 85] also addressed the issues of safety and effective
computability: if a query can be ‘‘captured’’ using some known capture rules, then there is an algorithm
which computes all answers. The results described in this paper allow us to detect the safety and effective
computability of all queries that can be “‘captured’’ using the capture rules described in the literature [Ull-
man 85, Sagiv and Ullman 85, Afrati et al. 86, Ullman and Van Gelder 85]. On the other hand, several of
the examples presented here cannot be handled using the previously known capture rules.

The rest of this paper is organized as follows. We present some definitions in section 2. In section 3, we
present an overview of our approach to safety analysis. In section 4, we provide an introduction to the
problems involved in testing recursive cliques for safety. In section 5, we develop algorithm check_clique
and prove its correctness. We discuss related work in section 6, and present our conclusions in section 7.

2. Definitions
In this section, we review a number of basic concepts from the literature.

A Hom Clause is a rule of the form p(t) :- q1(t1), g2(t2),...,qn(tn), where p(t) and the gi(ti)s are
literals. A literal is a predicate name followed by a list of arguments, each of which is a term. A term is a
constant, a variable, or a n-ary function symbol followed by n terms. An example of a function symbol is

-3.

the cons operator in Lisp. The literal p is called the head of the rule, and the rest of the rule is called the
body. The semantics associated with a rule is that p (¢) is true if all the gi (i)s are true, i.e., the tuple ¢ is in
the relation p if tuple ¢; is in relation g; for all i. It is well known [Lloyd 84] that such a program may be
viewed as a set of equations with a least fixpoint solution (which assigns a set of tuples to each relation). A
query is arule without a head. We will assume here that a query is a single predicate occurrence, and that
all its arguments are distinct variables. T The set of answers to a query ¢ (X)? is the set of all facts ¢(¢) in
the least fixpoint.

We only consider programs in which all arguments are variables or constants. Thus, terms constructed
using function symbols are not allowed. We approximate such terms by allowing infinite base relations. We
use the name Extended Datalog to denote this class of programs. The following example illustrates how a
program with function symbols can be approximated as an Extended Datalog program.

Example 2.1
The following is a program that concatenates two lists.

concat([XIY],Z,[XIU]) :- concat(Y,Z,U).
concat([1,Z,Z) :-.

We approximate it as follows in Extended Datalog:

concat(V,Z,W) :- concat(Y,Z,U)), h(X,Y,V), h(X,U,W).
concat([},Z,Z) :-.

The predicate /4 is an infinite base predicate corresponding to the function symbol I. Conceptually, it con-
tains all triples (element, list1, list2) such that list2 is the term [elementllist]]. []

‘We partition the given Extended Datalog program into a set of facts which are stored in the base predicates
(the Extensional Database or EDB), and a set of rules defining derived predicates (the Intensional Database
or IDB). A derived predicate is one which appears in the head of a rule. Without loss of generality, we
assume that the EDB and IDB are disjoint sets of predicates. In translating a Horn Clause program with
function symbols into an Extended Datalog program, there is some loss of information. In order to retain
more information, and thus improve the approximation, we allow a set of integrity constraints (IC) to be
specified over the EDB predicates. The set of facts in the EDB predicates must satisfy these constraints.
Thus a database is a triple (EDB, IDB, IC),

A ground term is a term containing no variables. The facts in the EDB are just rules with an empty right
hand side in which all arguments (of the head predicate) are ground terms. The EDB may contain predi-
cates which have an infinite number of facts. As we saw earlier, these infinite predicates are used to model
arithmetic operations and terms generated by function symbols.

We use the convention that infinite base predicates are denoted by f, g, h, ... , finite base predicates by a, b,
... and derived predicates by p, g, ... Argument places are referred to by the predicate name subscripted by
the place number. For instance, p; refers to the ith argument of predicate p. Variables are denoted by upper
case letters and constants are denoted by numerals,

Programs may contain predicates which are empty for all EDB instances. The presence of such predicates
unnecessarily complicates the safety analysis. Consider the following rule being the only rule defining p.
(i.e., no exit rule):

p(X) - p(Y), X =Y+1

The presence of such a rule would lead us to infer that this rule could generate an infinite number of tuples
for p by repeated applications of this rule. However, since this is the only rule defining p, it is empty. A
polynomial time algorithm is presented in [Ramakrishnan et al. 87] for identifying predicates, such as p,
which are empty for all instances of the EDB. Without loss of generality, we will henceforth assume that

T This is not a limitation of the methods presented here. We deal with queries containing constants by first rewriting the
program. The tests for safety and effective computability are performed on the rewritten program which is evaluated
bottom-up. This issue is discussed further at the end of section 5, and in section 6.

-4-

this algorithm has been applied to the given program to remove all rules defining such predicates.

We now consider the issue of safery. A given query is safe if it has a finite set of answers for all instances
of the EDB which satisfy all integrity constraints. Thus, a query is unsafe if there is some instance of the
EDB which satisfies the integrity constraints and is such that the query has an infinite set of answers. The
integrity constraints we consider in this paper are finiteness constraints and monotonicity constraints.

A finiteness constraint (FC) over a base predicate » is of the form X -->Y, where X and Y are sets of argu-
ments. An instance of r satisfies this constraint if and only if the following property holds: For each tuple t
inr, the set of tuples {s[Y] ! s[X] = t[X] }, is finite. Note that this definition is strictly weaker than the tradi-
tional definition of a functional dependency; it holds trivially for all finite predicates (and in particular, for
all finite EDB predicates).

Example 2.3

Consider the predicate f(X,Y). If we define f(X,Y) by Y = 2*X, then we have the finiteness constraints f;
--> foand fo--> f. If we define g(X,Y) by X <0 and Y > 0, there is no finiteness constraint between the
arguments of ’g’. If we define h(X,Y) by X >0 and Y = 0 or 5, we have the finiteness constraint h, --> h,.
{

Let r; and r; be arguments of predicate r. A monotonicity constraint is a couple r; > r;. The constraint r; >
r; holds in an instance of r if and only if the value in the ith argument is strictly greater than the value in
the jth argument in every tuple. We may also specify a monotonicity constraint r; > ¢ (resp. r; < ¢) where
’c’ is a constant. This constraint holds in an instance of r if and only if the value in the ith argument is
strictly greater (lesser than) than the constant °c’. Of course, this assumes that the values are drawn from a
domain with a partial order. Although it is possible to consider many different orders, we assume that there
is a single order. (This is only for ease of exposition, and is discussed further after Example 4.2.)

Example 2.4

Consider the predicate f(X,Y). If we define f(X,Y) by Y = 2*X, then we have the finiteness constraints f;
--> foand fo--> f. If we define f(X,Y) by Y = 2*X, X >0, Y > 0, we have the finiteness constraints f;
--> [, and f, --> f1, and the monotonicity constraint f, > f. If we define f(X,Y) by X <0 and Y > 0,
there is no finiteness constraint between the arguments of 'f’, but the monotonicity constraint f, > f
holds. If we define f(X,Y) by X >0 and Y = 0 or 5, we have the finiteness constraint f| --> f ,, but there is
no monotonicity constraint relating X and Y. []

A predicate p is defined using predicate g if there is a rule containing p in the head and ¢ in the body. We
denote this as p < g. We say that p depends on q if p is defined using g or p depends on r and r depends
on g. We denote this as p * <~ q. p is a recursive predicate if p * <— p. Two predicales p and ¢ are
mutually recursive if p ¥ <— q and g * <— p. A clique is a maximal set of mutually recursive predicates.
We assume that each non-recursive predicate forms a singleton clique.

‘We begin by introducing several concepts and definitions. For each fact that belongs to a derived predi-
cate, there exists a finite derivation tree , which describes how it is derived from base facts using rules of
the program. Let p(c) be a fact in the derived predicate p. Then the tree has p (c) at its root, the leaves are
base facts, and each internal node is labeled by a fact, and by a rule which generates this fact from the facts
labeling its children. A base fact may be viewed as a derivation tree of height one.

In order to reason with monotonicity constraints, we need the notion of an argument mapping. Our
definition is similar to the definitions presented in [Afrati et al. 86, Ramakrishnan et al. 87]. Let p be the
head and g be a derived literal occurrence in the body of a rule . An argument mapping (p, ¢, r) is a
graph with the set of nodes being the argument places of p and ¢.' For each rule, we obtain an argument
mapping between the head literal and each derived literal occurrence in the body. We draw an undirected
edge between two nodes if the same variable occurs in the corresponding argument positions. We draw an
arc from one node, say n 1, to another, say n2 if variables X and Y appear in the corresponding argument

+ Without loss of generality, we assume that each literal occurrence has been given a unique name. A simple way to do this
would be to use the rule number and the position of the literal in the rule, together, as the literal name. We also assume that
all variable names are unique. We note that the third component of an argument mapping is redundant, but we include it for
ease of exposition.

-5-

positions, and we can infer that X > Y from the monotonicity constraints in this rule.

Argument mappings (p, ¢, r 1) and (g, m, r 2) can be composed to yield a composite mapping (p, g, r 1). (g,
m, r2) by merging the corresponding nodes in g. In particular, the composite mapping (v, ¢!, r).(¢!, 92,
r1) ... (gn, p, rn) represents a cyclic composite argument mapping, and we can complete the cycle by join-
ing the corresponding nodes in the two instances of p with edges. Further, if gi <> p,i=1ton, and gi <>
qj,1i<> j, then this is a simple cycle.

Given a database DB = (EDB,IDB,IC), consider the set of all derivation trees for facts in DB. (Henceforth,
when we refer to derivation trees, it is understood that we refer to a tree in this set.) We observe that every
path in a derivation tree induces a rule sequence. In fact, every path in a derivation tree induces a compo-
site argument mapping. (In addition to the rule sequence, we must consider, at each node in the path, which
literal in the rule body was expanded.) We thus often speak of the composite mapping corresponding to a
path in a derivation tree. Also, since many paths in derivation trees may induce the same composite map-
ping, we include all such paths in the set of paths corresponding to the composite mapping.

3. Overview of the Safety Analysis

In addition to safety, we are also interested in whether the set of answers to the query is effectively comput-
able, that is, whether the evaluation strategy computes all answers and terminates, and every intermediate
relation is of finite size. Effective computability implies safety, but the converse is not true. In order to dis-
cuss effective computability, we define a stronger notion of safety.

A predicate p is strongly safe if every derived predicate ¢ such that p < g is safe. A query is strongly safe
if the query predicate is strongly safe. A program is strongly safe if every predicate in it is strongly safe.
A clique is strongly safe if every predicate in it is strongly safe. A rule is strongly safe if every predicate
which appears in the body is strongly safe.

We now present an overview of our approach to testing a program. Clique C1 is a child (resp. descen-
dant), of clique C2 if p < g (resp. * <—) for some p in C2 and ¢ in C1. We denote this as C2 < C1 (resp.
C2 *< C1). We obhserve that *< is a partial order. A clique C is a leaf clique if there is no clique C1 such
that C < C1. We test program P for strong safety according to this ordering of cliques. We begin with
cliques that are leaves. All predicates in such a clique are either base predicates or predicates that belong
to it.

Let C1 be a leaf clique, and let ¢ be a predicate in C1 which is uscd to define some predicate in another
clique C2. After analyzing clique C1, if it is strongly safe, we replace all occurrences of ¢ by a base predi-
cate. (If we cannot show this clique to be strongly safe, then we cannot show the program - which contains
predicates from this clique - to be strongly safe.) After doing this for all predicates in C1 which are used to
define predicates outside C1, we remove C1 from the set of cliques. We then consider another leaf clique,
and proceed in this way until all cliques have been considered.

In order to reason about effective computability, we must first specify the model of execution. Our model
of execution is the following: We assume that a given program P is first transformed to P™ , which is then
evaluated bottom-up. Thus, the rules are repeatedly applied (in any order) until no new tuples are produced
by the application of any rule. A rule is applied by taking the join of (the current instances of) the relations
in the body of the rule and projecting out tuples corresponding to the head. We assume a left-to-right order
in computing the join of the body relations.

We make the following important assumptions about programs:
1. Every variable in the head of a rule also appears in the body.

2. If an infinite base relation f appears in the body of a rule, Let {f;, ..., f;} be the set of argument
positions such that the variables in them appear to the left of this occurrence of f in the body of the
rule. Then, these arguments must determine all arguments of f through the FCs given to hold over f .

3. Consider an infinite base relation f withan FC f;, - - - .f; — f,. Given an assignment of constants to
argument positions f;, - - - .f;, we can compute the (finite) set of values appearing in the argument
position f, in a finite amount of time.

We conclude this section by formally presenting some important properties of this model of execution. In
particular, theorem 3.2 characterizes the effective computability of strongly safe programs.

-6-

We define an application of a rule to be effectively computable if it is possible to compute the join of the
body predicates in left-to-right order without constructing infinite intermediate results, and the set of tuples
thus produced for the head is also finite.

Lemma 3.1:

Each application of a rule produces only a finite number of tuples for the head predicate and is effectively
computable, given the three assumptions about programs.

Proof:

A rule application consists of taking the join of the body predicates in left to right order. The only potential
difficulty arises when the next predicate to be joined is an infinite base relation (since the current relation
for each derived predicate is finite at each stage, although it may be unbounded). The left to right evalua-
tion provides a vector of bindings for a non-empty subset of the arguments (let us call this subset the bound
arguments) of the infinite relation, and these arguments determine all the other arguments, by assumption 2.
Given a vector of values for the bound arguments, the corresponding vectors of values for the other argu-
ments are effectively computable by assumption 3. This gives us a finite relation for this step of the join.
Further, every variable in the head appears in the body. This ensures that the set of tuples produced for the
head is also finite, thus completing our proof. []

We now consider the notion of effective computability in the context of the left-to-right bottom-up model
of execution presented above. A query was defined to be effectively computable if its evaluation ter-
minated after computing all answers, and only constructed finite intermediate relations. For the bottom-up
model of execution, the intermediate relations are of two kinds - the derived predicates in the program, and
the temporary relations created in the application of a rule (to evaluate the joins of body predicates). From
Lemma 3.1, given our three assumptions about programs, we know that the temporary relations created in
any rule application are finite. Thus, to show a query to be effectively computable in our model of execu-
tion, we only need to show that every derived predicate is safe, and that the computation terminates after a
finite number of rule applications.

‘We have the following theorem characterizing strongly safe queries.
Theorem 3.2:

If a query is strongly safe, then it is effectively computable according to the above model of execution,
given the three assumptions about programs.

Proof:

By Lemma 3.1, each rule application is effectively computable, given the three assumptions about pro-
grams. Thus, we only need to show that the computation halts after a finite number of rule applications.

For every predicate that is used to define the query, strong safety implies that it is safe and so, by the com-
pleteness of bottom-up evaluation, all tuples in it will eventually be produced. When this has been done for
all predicates, further rule applications will not produce any new tuples, and the computation will halt.
(Recall that this is the standard termination condition for a bottom-up fixpoint computation.) []

To summarize, our approach is to test for strong safety on a clique by clique basis. Theorem 3.2 then
ensures effective computability according to our model of execution given our three assumptions about
programs.

4. An Introduction to Testing Recursive Cliques for Strong Safety

We now introduce some technical definitions used in the safety analysis, and through illustrative examples
on recursive cliques containing a single rule, we outline the safety check for such simple recursion.

Consider a property prop, defined over sequences, and a predicate p. Consider a path in a derivation tree.
We say that this path satisfies property prop over predicate p if the sequence of facts of the form p() on
this path satisfies property prop. We also say that the path satisfies (p, prop), for brevity. For example,
prop could be defined over a sequence of k-ary facts to mean that for any pair of facts, if fact 1 precedes
fact 2 in the sequence, the ith argument of fact 1 is < the ith argument of fact 2, for some i. If the ith argu-
ment in any fact is an integer, < could simply be the usual ordering defined over integers. As another exam-
ple, prop could be the property that the ith argument in any fact in a sequence of k-ary facts should be a

-7-

positive integer less than 10. For a third example, prop could be defined as the conjunction of the previous
two properties.

A property is well-founded if the following holds. Let S be a sequence which satisfies the property, and let
D be the domain of elements in S. Then: (1) We can define an ordering << such that ei << ei+1, for all
adjacent elements ei, ei+1 in the sequence S. (2) Forany ¢ 1, ¢2 in D, if ¢ 1 « ¢2, then there are only a
finite number of values ¢ inD such thatcl «< ¢ < ¢2. (3) Thereisanelement ¢ in D such that ¢ «< ¢1
forall¢c1inD.

A large class of well-founded properties can be specified by simply specifying an argument position, an
ordering, and a bound. In fact, all examples in this paper (with the exception of Example 4.2) use only a
subset of this class, with a single ordering of values. The consideration of more sophisticated orderings,
possibly over combinations of arguments, or the use of several different orderings in showing safety of a
single program, present no difficulties.

Given a rule sequence, we say that the rule sequence satisfies (p, prop) if every path in the set of paths
corresponding to this rule sequence satisfies (p, prop).

We say that a variable X is bounded if it can only take on values from a finite domain. An argument posi-
tion in a literal occurrence is bounded if it contains a constant or the variable in it is bounded. Similarly,
we say that X is bounded above (resp. below) if it can only take on values from a domain that is bounded
above (resp. below). A cycle in an argument mapping is bounded above (below) if it contains at least one
node that is bounded above (below).

Consider a cyclic (composite) argument mapping (p, ql, r).(gl, g2, r 1) ... (gn, p, rn). The corresponding
rule sequence is 7, r 1, ... rn. A cycle in an argument mapping is a cycle in the corresponding graph when
directions of arcs are ignored. An increasing (resp. decreasing) cycle in the argument mapping is a cycle
such that applying the sequence of rules rn, ..., r 1, r assigns increasing (resp. decreasing) values to the
nodes on the cycle in the argument mapping. (Clearly, such a cycle must contain at least one arc, and it
cannot contain two oppositely directed arcs. Our choice of directions for increasing and decreasing cycles
reflects our bottom-up application of rules.)

Note that every path corresponding to an increasing (resp. decreasing) cycle satisfies a simple increasing
(resp. decreasing) property. Further, if the cycle is bounded, then the property is well-founded. Conse-
quently, any single rule clique is safe if a well-founded property is associated with it. These observations
are made precise in section 5, but we illustrate the ideas in the following example.

Example 4.1
Consider the following program:

1. pX.Y) :- p(U.V), X=U-1, Y=V+1, b(X)
2. gX.Y):-q(U,V), X=U-1, Y=V+1, b(X)
3. p(X7Y) - C(XvY)
4. qX\Y) - d(X)Y)

There are two recursive cliques, say C1 and C2, containing ¢ and p respectively. Consider the argument
mapping corresponding to the rule cycle (1,1) in C2: p(X,Y), p(U,V). There is an arc from U to X, and one
from V to Y. Thus, we have an increasing cycle and a decreasing cycle in this argument mapping. Further,
X is bounded since it appears in a finite base relation b, and so the first cycle of rules can be applied only a
finite number of times. Each rule application can only produce a finite number of values. The clique C2 is
therefore strongly safe. A similar analysis shows C1 to be strongly safe as well. Now, let us add the follow-
ing rule:

5. pXY) - q(Y.X)

This changes the clique structure by making C2 depend on C1. However, C1 and C2 are still the only
cliques, and the previous analysis holds. Indeed, ¢ is strongly safe, and the tuples it contributes to p may
be thought of as being in a finite base relation. We now add a sixth rule to the program:

6. qU.V):-pUV)

-8-

This changes the clique structure drastically. The two cliques are merged into a single clique containing
both p and q. In addition to the two rule cycles considered before, there is the rule cycle (5,6), whose argu-
ment mapping is (p(X,Y), q(Y.X), p(Y,X)). The exchange of arguments enables repeated applications of
this rule cycle, in conjunction with rule cycles (1,1) and (2,2), to produce an infinite number of tuples. {]

Consider a vector of m arguments. It is possible to identify properties that characterize the vector (or some
sub-vector) rather than individual arguments. Examples of such properties include the sum of the argu-
ments (assuming that they are numerical arguments), and the interpretation of the argument vector as a
character string. We can also define orderings with respect to such properties. The sums of arguments can
be ordered by arithmetic *‘<’’, and argument vectors viewed as character strings can be ordered using the
lexicographic ordering over character sirings.

Example 4.2:
We illustrate the added power of considering properties over several arguments.

1. pX.Y) :-p(U,V), X=U-2, Y=V+1, X+Y >0
2. p(X:Y) - C(XaY)

c is a finite base relation. This program is safe since the sum of p’s arguments is monotonically decreasing
and is bounded below. Consider either argument position by itself does not allow us to conclude that this
program is safe since neither argument by itself is bounded. []

We note that while we have so far considered monotonicity constraints with respect to a single ordering
over the domain, it is easy to extend our definitions when several different orderings are used. (In effect,
arcs in argument mappings would be subscripted by the ordering used to define them, and similarly notions
of increasing and decreasing cycles and bounded nodes would be with respect to given orderings.) It is also
possible to define orderings over the powerset of the domain. This is necessary when we wish to specify
some well-founded property over a set of arguments rather than a single argument, as in the previous
example. (The definition of an argument mapping in this case would include arcs from sets of arguments to
sets of arguments.) Similarly, we could define orderings over cross-products of the domain if we wished to
specify some well-founded property over argument vectors. These are straightforward extensions, and
allow us to define a variety of well-founded properties over arguments or sets of arguments of a predicate
in an argument mapping.

The purpose of this section has been to give the reader some intuition into the problem of testing recursive
cliques for safety and effective computability. In the next section, we develop these ideas rigorously.

5. Testing Arbitrary Cliques for Strong Safety

In the previous section we considered how a single recursive rule cycle could be tested for strong safety. If
there are two or more such cycles involving the predicates in a clique, the problem becomes more complex
because these rule cycles could interact in such a way that the tuples produced by one of them invalidate
the assumptions made in declaring one of the others strongly safe. (We encountered this problem when we
added rule 6 to Example 4.1.)

Consider the argument mappings corresponding to two rule cycles:

1. The monotonic (increasing or decreasing) cycles considered in the two mappings may involve dif-
ferent argument positions. Thus, the application of one of these rule cycles may introduce arbitrary
values into argument positions not on the monotonic cycle in its own argument mapping (but possi-
bly on the monotonic cycle used to check one of the other rule cycles, thus invalidating that check),

2. The monotonic cycles considered in the two mappings may involve different orderings. Thus,
although the same argument positions may be involved, a rule cycle may introduce arbitrary values
into these positions with respect to any ordering other than that used in checking it.

Example 5.1
The following example illustrates the second point above:

1. pX.Y):-pUV), X=U-1,Y = V+1, b(X)
2. p(X.Y):- p(UV), X =U+1, Y = V+1, b(X)

pX.Y) :- ¢(X,Y)
¢(1,11)

¢(2,12)

b(1)

b(2)

Nownew

The two simple rule cycles are (1,1) and (2,2). The first argument is part of a decreasing cycle in rule cycle
(1,1), and part of an increasing cycle in rule cycle (2,2). In both, the first argument is bounded because X
occurs in the finite base relation b. So each of these cycles is safe if it is the only rule cycle. However,
taken together, they are unsafe. It is possible to alternate between the two cycles so that the first argument
alternates between the values 1 and 2 (which are the only values in b), and on each application the second
argument increases by 1. Thus, the second argument can be any integer greater than 10 (since the least
valueinc is 11). [}

In order to deal with arbitrary cliques, we must analyze the interactions between the simple rule cycles gen-
erated by the rules in the clique. The following theorem underlies our approach.

Theorem 5.1:

Consider a database DB = (EDB,IDB,IC). If the height of all derivation trees is bounded for all EDBs, then
every predicate is strongly safe.

Proof:

From Lemma 3.1, each application of a rule produces only a finite number of tuples. If thc height of all
derivation trees is bounded, then the maximum number of rule applications involved in producing any fact
is bounded. Thus, the number of possible facts which can be produced by rule applications is also bounded.

{

We present an algorithm to test safety, and prove its correctness by establishing that if the algorithm
certifies a program, then all derivation trees are of bounded height (Theorem 5.1). The details of the algo-
rithm are as follows.

First, we identify all the simple rule cycles in the clique and generate the corresponding (cyclic) argument
mappings. Then we test each cyclic mapping (p, _, _), ..., (_,p,_) asif it were the only cyclic mapping
in the clique. In doing this, we check that there is some property defined over the arguments of p, say
prop, , which is well-founded with respect to this argument mapping. Having done this for all mappings,
we verify that the interaction of rule cycles does not invalidate the assumptions made in checking them
individually. For example, if (p, _, _), ..., (_, p, _) is considered well-behaved because the first argu-
ment decreases on each application of this cycle of rules and is bounded below, we must check that appli-
cations of every other rule cycle either leaves the value of the first argument unchanged or decreases it.

We make use of two procedures called check and tag_prop. We now specify them formally.

check (C ,prop):
LetcycleC=(p,q1,71).(91.92.72)s - . {q, > p, 1,). The procedure check (C prop) retums true
only if the following holds: Every path P = (p (), ¢:0, 420, ..., 4,0, p ()) in a derivation tree satisfies
. prop).

tag_prop(C ,prop .q; PROP;):
Letcycle C=(p,q1,71),(91,92,72)s . - (gn » P, Tn). The procedure tag_prop (C ,prop ,q;.prop;)
succeeds with PROP; = prop;, for j = 1 to n; where propy, prop,, ... , prop, are some n properties
such that the following holds:
Let Qi=(g;0,...,¢;0),i=1ton, be any n paths such that Qi satisfies (g;, prop;),i=1ton. LetP =
@0, 10, 420, ... , 2,0, p() be any path in a derivation tree which satisfies (p, prop). Then the
path (¢ (), 210, 220, ..., 2,0, p() also satisfies (p, prop).

For example, if prop is the property that some argument of p is increasing then there is some increasing

cycle in the argument mapping C which contains occurrences of this argument of p. If some argument of

g, appeared in this cycle, then prop; is the property that this argument of g; should increase or remain the
same. Note that this is not a well-founded property.

-10 -

We present a recursive procedure check_cligue which examines the interactions between rule cycles. We
prove that if this procedure returns true, then all paths in a derivation tree built using rules from the given
clique are bounded in length, where the bound is a function of the DB. Thus, the number of derivation trees
for facts in DB is bounded. (This implies that every predicate is safe, and it immediately follows that every
predicate is strongly safe as well. Effective computability then follows from Theorem 3.2.)

We note that a given rule cycle may be used to expand any predicate which occurs on it, and so if the cycle
contains two predicates p and ¢, the corresponding argument mapping can be denoted as either (p, _, _),
wo(_spy.dor(qg, _,_)s ., (_,q,_). While the fact that they refer to the same rule cycle should be
recognized and utilized in testing whether these mappings satisfy some property, for the purposes of the
subsequent analysis it is convenient to assume that both representations are generated. Thus, by referring to
all simple cycles of the form (p, ... , p) we are assured that indeed all simple rule cycles containing p are
considered.

The following procedure checks an arbitrary clique for strong safety.

proc check_clique: boolean /* The top-level procedure */
1. For each predicate pi in the given clique, associate a well-founded property prop;.

2.FLAG :=true;i=1;
while FLAG and i £n do /* n is the number of predicates in C */
FLAG :=FLAG & verify(pi, {pi}, prop;);
i=1+1
od.

3. return FLAG.
end. /* check_clique */
proc verify(p , IGNORE, prop): boolean

/* Does the detailed work. Checks if prop is a well-founded property for each simple composite
argument mapping (p, _,_), ..., (_,p,_). To do this, it must check for interactions with other
simple argument mappings. IGNORE is a set of predicates. In testing for interactions, we ignore
all argument mappings in which some predicate in IGNORE appears at some position other
than the endpoints. This is required for the algorithm to terminate, and is discussed later. */

/* Assumes that two subprograms, check and tag prop are given. */

1.Let {C1, ..., Cm} be the set of simple cyclic argument mappings of the form (p, _,_),...,(_.p,._).
We first verify that prop is a well-founded property for each of these cycles considered separately.

FLAG := true;
foralliin {1,..,m} do
/* Ci’ is the set of predicateson Ci =(p, _, _),...,{(_,p,_),exceptforp.*/
if Ci’ ~ IGNORE = {} then
/* check verifies that (p, prop) is preserved by the sequence of predicates
on Ci if they are not expanded further */
FLAG :=FLAG & check(Ci, prop);
Let g1, ..., gk be the recursive predicates in Ci’.
for all jin {1,...,%} do
tag_prop(Ci, prop, 4j , prop;);
od
od

-11-

2. Now, for each cycle Ci, we ensure that the other cycles preserve the well-foundedness of prop .
(That is, when these cycles are used to expand predicates on cycles for p.)

for alliin {1,...,m} do
if Ci’ ~ IGNORE = {} then
Let g1, ..., gk be the recursive predicates in Ci’.
for alljin {1, ...,k) do
IGNOREQ :=IGNORE { {qj };
/* prop; is the property with which gj is “‘tagged”’ by tag_prop(Ci, prop, qj, prop;) in Step 1. ¥/
FLAG :=FLAG & verify(qj, IGNOREQ, prop;)
od
od

3. return (FLAG).

end /* verify */

‘We now present our main theorem.
Theorem 5.2:

If check_cligue retumns true, then there is a constant L ¢ pgy such that the longest path in any derivation tree
is less than or equal t0 L ¢ pg).

Proof:

We prove that all paths to a leaf in a derivation tree are bounded in length if check_clique returns true. We
argue by induction on the number of recursive predicates which appear on such a path. Let us define
RSym(path) to be the set of recursive predicate symbols p such that there is a fact p (¢) on the path.

Induction Hypothesis: There exists a constant L ¢ pg x) such that for every path, if IRSym(path)ll < k, then
the length of the path is < L ¢ pg).

Basis: Consider a path with only one recursive predicate, say p. Let the path be ¢,0, ... , ¢, 0, p0, ... ,
p (), where the ¢; are non-recursive predicates. The segment p (), ... , p () must correspond to applications
of simple argument mappings of the form (p, _, _), ..., (_, p, _). Procedure check clique cnsured that
each application of such an argument mapping preserved the well-founded property associated with p.
(This was done through the call to verify in check_clique , and the call to check in Step 1 of (this call to)
verify .) Thus, for any two occurrences of p on this path such that there are no occurrences of p in between
(henceforth, we refer to such occurrences as adjacent occurrences), the value of the well-founded property
uniformly increases (or decreases).

Let p(c) be the first occurrence of p in the path. The vector of values ¢ is obtained from values in the
database by one or more applications of non-recursive predicates: ¢,(), ... , ¢,(). From Lemma 3.1, it fol-
fows that the set of possible values ¢ is finite. Given the well-founded property associated with the segment
pQ, ..., p(), this ensures that the length of the path is bounded by some constant L ¢ pg 1y (which depends
on the clique C and values in the database DB).

Inductive Step: Suppose the inductive hypothesis holds. Consider a path on which k recursive predicates
occur. If this path is unbounded, some predicates must appear an unbounded number of times. Let p be the
first such predicate. Consider the segment of the path between any two adjacent occurrences of p . We will
prove that this segment preserves the well-founded property associated with p. That is, in going from an
occurrence of p to an adjacent occurrence of p, the value of the well-founded property uniformly increases
(or decreases), and since these values are bounded and initially finite by the same argument as for the basis
case, the number of occurrences of p is bounded. Thus, by contradiction, we establish that each path con-
taining k recursive predicates must be bounded.

It remains to show that each segment between two adjacent occurrences of p preserves the well-founded
property for p (Lemma 5.3). By our induction hypothesis, since this segment cannot contain p and there-
fore contains fewer than k recursive predicates, it is bounded in length. We thus complete our proof of
Theorem 5.2 by establishing Lemma 5.3.]

212

The following lemma is central to the proof. The main technical difficulty is in establishing a formal
correspondence between the recursive calls in check _cligue and paths in derivation trees. We use a
transformation T to achieve this. We first prove that every path in derivation tree can be produced by
applications of this transformation (L.emma 5.4). We then prove that every path (p (), ... , p () so produced
preserves (p, prop), where prop is the property associated with p (Lemma 5.5). To prove the latter claim,
we define a structure called a transformation tree which reflects the sequence of applications of T used to
produce a given path, and establish a correspondence between this structure and the sequence of recursive
calls in check_cligue . (The role of the set IGNORE in check_clique is addressed in Lemma 5.5.)

Lemma 5.3:

If check_clique returns true, then every segment between two occurrences of p in a path of a derivation
tree preserves the well-founded property associated with p.

Proof:
We begin by defining a transformation T.

The transformation T consists of choosing a node, say ¢, from the input segment (p, ..., p), where ¢ is dis-
tinct from p, or ¢ is the occurrence of p at the right end of the sequence, and replacing it with a simple
cycle (g, ... , ¢). There are two restrictions:

1. Once we choose a node, no node to the left (that is, higher in the derivation tree) is subsequently
chosen for replacement.

2. Consider the node ¢ chosen for expansion. If it was produced from the initial simple cycle (p, ..., p)
by first replacing a node g, then replacing a node ¢, from the simple cycle used to replace ¢, and
so omn, before finally replacing ¢,, to produce ¢, then the simple cycle used to replace ¢ should not
contain any of the predicates p, g1, 4, ... , g, €xcept at the endpoints. (Of course, the endpoints of
this simple cycle are nodes ¢, and it is possible that ¢ is identical to ¢,,.)

We prove Lemma 5.3 in two steps. We first show that each bounded length segment (p, ..., p) can be gen-
erated by starting with some simple cycle (p, ... , p) and repeatedly applying T (Lemma 5.4). We then
show that any segment (p, ... , p) produced by applying T repeatedly to a simple cycle (p, ..., p) preserves
the well-founded property associated with p (Lemma 5.5). This concludes the proof of Lemma 5.3. (]

Lemma 5.4:

Each bounded segment (p, ... , p) in a path of a derivation tree can be generated by starting with a simple
cycle (p, ... , p) and repeatedly applying transformation T.

Proof:
‘We prove the claim by induction on the length of the given segment.
Induction Hypothesis: The claim is true for all segments of length less than k.

Basis: If the length is 1 (excluding the endpoints), this must be a simple cycle, and the claim holds trivi-
ally. (If there is no simple cycle of length 1, the basis is on the length of the shortest simple cycle.)

Inductive Step: Consider a segment (p, ... , p) of length k. Scanning from right to left, let g 1 be the first
predicate which appears again later in the segment. Consider the subsequence from the leftmost occurrence
of ¢ 1 to the rightmost occurrence of ¢ 1 in the given segment, and denote this sequence as Q 1. Let the next
predicate (following the rightmost occurrence of g 1) which repeats be ¢2. Define the subsequence Q2 as
before, and so on for all repeating predicates. It is easy to see that the given segment (p, ... , p) can be
represented as (p, N1,01,N2, 02, ..., p), where Ni is a subsequence of predicates that do not appear
anywhere else in the given segment (p, ..., p). Further, it follows that there must be a simple cycle (p, g 1,
N1, g2,N2, .., p). (By construction, no node in any segment Ni appears anywhere else, and each gi
appears only once. Thus, this is a simple cycle.) Since Q1 denotes a segment (g 1, ... , ¢ 1) of length less
than k, by the inductive hypothesis, it can be generated by starting with g1 and repeatedly applying
transformation T. We can similarly generate the segments Qi in order, by expanding the corresponding gi .
In doing so, no nodes to the left of gi are replaced again. Thus, we have shown how the given segment of
length k can be generated by repeated applications of T (which obey the two restrictions in the definition of
T). This concludes the proof of Lemma 5.4. []

-13 -

Lemma 5.5:

Suppose that check_clique returns true. If a segment (p, ..., p) is generated from p by applications of T,
then the segment preserves the well-founded property for p.

Proof:

To prove this claim, we must establish a correspondence between the applications of transformation T
which produce a rule sequence and the recursive calls of procedure check_clique. We do this by defining a
structure called a transformation tree.

A transformation tree rooted at p 19F7 is a tree whose leaves from left to right correspond to a rule
sequence constructed by a sequence of steps of transformation T starting from p 1.

A sequence of steps of transformation T starting from p induces a transformation tree as follows:

1. For the empty sequence of steps, it is the node p(??*”, where Pr is the property associated with
predicate p.

2. Let T be the transformation tree associated with the first k steps of the sequence. Let step k+1 expand
(a leaf) ¢ by arule cycle C; = (q, ... g¢i ..., ¢). The transformation tree T" associated with the first
k+1 steps of the sequence is obtained from T by making (q¥F0), ..., gi%ePrad - 4Ua.Prady iy that
order, the children of (the leaf in T) ¢¥¢*"®, where Igi = Iq_ {gi }, and Prqi is obtained using the
procedure call tag_prop(C,, Prq, qi , Prqi).

We actually prove a slightly stronger claim:

1. If a segment (p, ..., p) is produced from p by applications of T, then the segment preserves the
well-founded property (say prop,) for p, and

2. Consider the transformation tree for these applications. For each node ¢¥4"%, there is a call
verify(q,1q, Prq) in the execution of the goal verify (p, {p}, prop,).

The proof is by induction.

Inductive Hypothesis: Let the claim hold for all segments (p, ... , p) produced from a simple cycle by less
than k+1 applications of T.

Basis : Consider the simple cycle C = (p, ..., p) used initially. This corresponds to the call verify (p, {p},
prop,). The call check(C;, prop) in Step 1 of verify ensures that this cycle preserves the well-founded pro-
perty associated with p. This proves part (1) of the claim for the basis case. There is a call tag_prop(C,
propy, q, propg) in Step 1 of verify which associates the tag prop,, for each node ¢ on this cycle. Also,
the tag for node ¢ in the transformation tree is ({p }, prop,). There is a call verify (¢, {p }, prop,) is Step 2
of verify , proving part (2) of the claim for the basis case.

Inductive Step: Every segment produced by k+1 applications of T must be produced by replacing some
node in a segment produced by k applications. Consider a segment (p, ... , p) produced by k applications
of T. By the hypothesis, it preserves the well-founded property for p. Further, in the corresponding
transformation tree, nodes are correctly tagged (with ignore sets and properties) as in the hypothesis.

Let a node g (tagged with (Ig, prop,)) in the segment be replaced by a simple cycle C1 = (g, ..., ¢).
There is a call verify (¢, 1q , prop,), according to the hypothesis. This generates a call check (C2, prop,) for
every simple cycle C2 of the form (g, ... ,¢) which does not contain any node in /g. Since C1, by definition
of transformation T, cannot contain nodes in Iq, there is a call check (C1, prop,), and thus, the segment C1
preserves (g , prop,). From the specification of tag_prop, this ensures that the segment C, after the replace-
ment of ¢ by Cl1, still preserves (p, prop,). This proves part (1) of the claim.

For each node ¢ 1 in C1, the call to tag_prop in Step 1 of the call verify (¢, Iq, prop,) associates a property
prop,1, and the corresponding node in the transformation tree has the tag (Ig U ¢, prop,1). The call
verify (¢ ,1q, prop,) in Step 2 generates the call verify (g 1,1q _J q, prop,1), proving part (2) of the claim.

This completes our proof of Lemma 5.5. []
The following result summarizes our approach.
Corollary 5.6:

214 -

Consider a clique C in a database DB = (EDB,IDB,IC). If check clique returns true, then every predicate
in the clique is strongly safe.

Proof:

This follows immediately from Theorems 5.1 and 5.2. []

We now consider some limitations of Theorem 5.2 and show how it can be strengthened to overcome them.
Example 5.2:

Theorem 5.2 sometimes fails to determine that certain well-founded properties hold, and we present two
illustrative programs:

1. p(X,Y) - q1(X,Y), g2(X.Y)
2. q1(X,Y) :- b(X.Y)
3' QZ(X,Y) - f(X?U)’ p([J’Y)

b is a finite base predicate and f is an infinite base predicate. The first argument of p is bounded since it
can only take values in b. However, check_clique considers whether this property is preserved by the rule
cycle (1,3) corresponding to the argument mapping (p, g2, p). Since this cycle considered alone does not
preserve boundedness of the first argument of p, using Theorem 5.2 we cannot show that the first argument
of p is bounded.

The following example is similar:

L pXY) - q1(X.Y), @2(X,Y), X >0
2.q1(X,Y) :- g(X.U), p(U,Y)
3. 2X,Y) - f(X,U), p(U.Y)

g and f are infinite base predicates, and all FCs hold over their arguments. Further, g, < g, holds. By exa-
mining the argument mapping (p, q 1, p), we see that the first argument of p is monotonically decreasing.
Theorem 5.2 cannot show this because it considers the argument mapping (p, ¢2, p) and the correspond-
ing simple rule cycle (1,3) which does not preserve this property. []

The previous example brought out a limitation of Theorem 5.2. The intuition behind this can be explained
as follows. The theorem can establish that no derivation tree constructed using the rules in the clique con-
tains an infinite path, which is sufficient to ensure that no rule can be applied an unbounded number of
times. This in turn ensures that the predicate labeling the root is safe. However, a weaker condition is
sufficient to establish safety: in every derivation tree, there is a set of leaves such that they collectively con-
tain all values which appear in the fact labeling the root, and such that the paths from these leaves to the
root are finite. (Recall that we establish strong safety by establishing the safety of every predicate. That is,
we consider all derivation trees.) We now use this intuition to present a stronger form of Theorem 5.2. This
stronger version can easily be used to refine algorithm check_clique, as we later explain.

Let us define the head of a rule to be covered by the body if every variable in the head also appears in the
body.

Theorem 5.6: Let P be a program containing a rule r, which is of the form: p(Q :-
310,920, ..., gn(). Therefore, there is an argument mapping (p,qi,») generated from each literal
occurrence gi in the body. Let prop be a well-founded property associated with p

IF there is some subset of body literals which covers the head, and further is such that for every literal ¢i ()
in this subset, every simple cycle (p, gi,r),(_, p,_) satisfies property prop,

THEN we may ignore all simple cycles (v, ¢j,7), ... , (_, P, _), gj notin the subset, in verifying whether
prop is preserved.

Proof: Replace rule 7 by a rule in which the only body predicates are those in the subset mentioned in the
hypothesis. Let us denote the program after this change as P’. Since every rule head is still covered,
assumption 1) about programs is not violated by P’. By the correctness of check_clique, P’ is strongly safe
if check_clique returns true after ignoring the indicated simple cycles (since these cycles do not appear in
P’). Thus, every predicate in P’ is safe.

-15-

Every predicate in P also appears in P°. Further every rule of P is either a rule of P’, or a rule of P’ with
some additional body literals. The additional literals can only restrict the set of computed tuples further.
Since every predicate in P’ is safe, it follows that every predicate in P is also safe. That is, P is strongly
safe. []

Thus, we can make the following modification to the verify procedure. As we test simple cycles, if we find
a subset satisfying Theorem 5.6, we can ignore the indicated simple cycles. (This is similar to the way we
ignore simple cycles which contain a node in the set IGNORE.) On the other hand, we may encounter one
of the other simple cycles (of the form (p, gj,r),..., (_,p,_), for which the test fails) before we have
tested all simple cycles of the form (p,qi,r),..., (_.p,_), where gi is in the covering subset (assum-
ing that some such ’good’ subset exists). So if verify fails for a simple cycle, rather than aborting, this
should be recorded and verify should continue testing other simple cycles till all candidate gi’s (from the
corresponding rule) have been checked. If a *good’ subset is found, verify succeeds, and otherwise, it fails.
The details of the modification are left to the reader. (Recording the failure of verify for a simple cycle
allows us to avoid repeating the test if it is required again subsequently.)

We remark that Theorem 5.6 is not only more powerful than Theorem 5.2, it is often considerably more
efficient. For example, consider the case when the body literals covering the head are non-recursive. The
safety test then becomes trivial, since, given our three assumptions about programs, non-recursive pro-
grams are always safe and effectively computable.

We would like to emphasize the extensible nature of this approach. As we noted earlier, two programs,
check and tag_prop are assumed to be given as inputs to check_clique, and using more sophisticated ver-
sions of these programs that can deal with a richer class of well-founded orderings clearly increases the
scope of check_clique. Also, we have not addressed the issue of how to infer monotonicity constraints.
Some work in this direction has been presented in [Ullman and Van Gelder 85], and we can take advantage
of those (and other, similar) results to infer constraints. A more subtle point is that we need to identify
bounded arguments to check whether orderings are well-founded. There are some obvious ways of doing
this. For example, the literal X < 10 in a rule tells us that X is bounded below, and b(X), where b is a finite
base relation, tells us that X is bounded (equivalently, safe). Recall that the methods presented in this paper
focus on strong safety. Other methods for inferring safety, for example, those presented in [Ramakrishnan
et al. 87] for inferring safety using only FCs, can be used in our analysis to identify arguments that are
bounded.

In concluding this section, we observe a weakness of the framework which represents a direction for future
work. The clique by clique approach, which is necessary to deal efficiently with large programs, may fail
to detect (strong) safety of some (strongly) safe programs. Intuitively, this happens when a (sub)goal is
(strongly) safe, but the corresponding predicate is not. {This is also a problem with other approaches, such
as capture rules for instance.) For example, consider the query p (X,X)_? where p is defined as follows:

pX.Y) :- f(X), b(Y)

f is an infinite base predicate and b is a finite base predicate. The predicate p is unsafe since the rule gen-
erates an infinite number of tuples for p. However, the query is safe since the rule can generate at most N
tuples with the same value in each argument, where N is the number of tuples in the finite relation b. The
reason we cannot deal with such an example has to do partly with the rewriting strategies. These strategies
are used to propagate bindings in the query into the rules defining the query, but, as presented in [Beeri and
Ramakrishnan 87), they cannot propagate equalitics between unbound variables, for example. The given
query can be shown safe using the following extension to our framework. In considering p, although it is
not safe, we can see that the second argument is bounded. This information can be propagated into the
clique in which the query p (X,X)_? appeared by adding a literal finite (X) to the rule containing the literal
p (X, X)_? Unfortunately, this is not a complete solution, as the following change to the definition of p
demonstrates:

p(X.Y) - £(X), b(Y)
pX.Y) - f(Y), b(X)

The query p (X,X)_? is still safe, but we cannot show this, even with the extension suggested above. (Since
neither argument of p is a-priori bounded, we cannot add a literal finite ().)

-16 -

6. Related Work

Some results relating to these problems have been presented in the context of testing the applicability top-
down capture rules [Sagiv and Ullman 84, Ullman and Van Gelder 85, Afrati et al. 86]. These problems
were also addressed in [Ramakrishnan et al. 87]. In this paper, we make use of, and extend, this earlier
work.

This work can be seen as providing a framework for testing safety and effective computability of recursive
programs, in some ways analoguous to the capture rules framework of Ullman [Ullman 85]. The capture
rules framework considers the program represented as a rule/goal graph, and allows the design of capture
rules which describe how nodes in the graph can be ‘‘captured’’. Intuitively, a node can be captured if an
effective procedure can be constructed to compute the predicate (or rule) denoted by that node. A capture
rule states that a given node may be captured if certain other nodes in the graph have already been cap-
tured, and is substantiated by a procedure which computes the node given procedures for capturing these
other nodes. Thus, if the query node in the rule/goal graph can be captured, we know that it is safe and
effectively computable.

Thus, our framework is similar to the capture rules framework in the following sense: if a query is declared
to be safe and effectively computable (analoguous to ‘‘captured’’), there is a known way to effectively
compute it. The analogy goes further. Both frameworks must be supplemented by specific procedures in
practice. In the capture rules framework, these procedures are the list of known capture rules, and auxiliary
procedures for inferring monotonicity constraints etc. [Ullman and Van Gelder 85]. In our framework,
these procedures include algorithm check clique, the two auxiliary procedures called check clique, and
other procedures for inferring monotonicity constraints and boundedness of predicates.

We now examine the relative merits of the two approaches briefly. Different capture rules can be
expressed in terms of a set of sideways information passing strategies (sips) which are implemented by
rewriting the program [Beeri and Ramakrishnan 87]. The applicability of a capture rule must be shown by
presenting a substantiation, that is, a program which computes the (sub)query according to the capture rule.
The bottom-up evaluation of the rewritten program provides a potential substantiation. The correctness of
the rewriting transformations implies that the set of answers is correctly computed by the bottom-up
evaluation, but we must still establish safety of all intermediate results and termination. This is the focus of
the present paper. Thus, in our framework, the range of sideways information passing strategies (sips)
describes the set of possible capture rules, and there is a single procedure (based on check_clique) which
tests for the applicablility of all capture rules by testing the rewritten program for safety and effective com-
putability. Further, the substantiation is always a program which is evaluated bottom-up. In contrast, in the
capture rules framework, each new capture rule must be explicitly represented along with its substantiation.
Testing applicability is specific to a given capture rule, and the substantiation need not always be a program
which is evaluated bottom-up.

As we remarked earlier, the results here can be used to show the *‘applicability’” of capture rules in the
literature, and can also be used to show the safety and effective computability of some programs which
cannot be “‘captured’’ using known capture rules.

We now consider the testing of programs produced by rewriting algorithms like the Magic Sets algorithm.
The Magic Sets strategy [Bancilhon et al. 86] restricts computation by rewriting the program so that it only
computes facts relevant to the query. The original version achieved this restriction only for certain kinds of
rules (essentially, linear recursive rules). An extended version, Generalized Magic Sets, which is based on
the notion of sideways information passing graphs, achieves this restriction for all programs in which vari-
ables that appear in the head of a rule also appear in the body [Beeri and Ramakrishnan 87].

Conceptually, we first rewrite the program and then test it for safety and effective computability. A poten-
tial problem is that the rewritten program typically has much larger cliques than the original program since
the rewriting introduces rules which often combine cliques in the original program. Thus, even if the origi-
nal program has relatively small cliques (as we expect), it is likely that the rewritten program has large
cliques. Given the complexity of algorithm check_clique, the cost of directly analyzing the rewritten pro-
gram could be prohibitive. However, we can take advantage of the structure of the transformation to
efficiently test rewritten programs for safety and effective computability. The adorned program is an inter-
mediate program produced by the Magic sets algorithm, and has a clique structure which is similar to that

-17-

of the given program. We show how the rewritten program can be analyzed by considering the cliques in
the adorned program, and without directly considering the cliques in the rewritten program [Krishnamurthy
et al. 87]. We have not presented these results here due to space constraints, but they suggest that the
framework here is robust and can provide the basis for a practical system.

In this paper, we do not consider the problem of how to establish that a node is bounded. That is, our algo-
rithms test for safety in conjunction with effective computability, but they cannot be used to determine if a
query is simply safe (but, possibly, not effectively computable). Our results clearly provide sufficient con-
ditions for safety, but it is possible to devise weaker conditions if only safety is of interest. (We note that
some of the results in the literature for detecting safety, for example [Ramakrishnan et al. 87, Zaniolo 85,
Van Gelder and Topor 87], could be used for this purpose.)

7. Conclusions

The important contribution of this paper is an algorithm (check clique) for checking safety and effective
computability in a bottom-up model of execution of an arbitrary recursive clique using monotonicity and
finiteness constraints. This algorithm provides the central component of a framework for testing programs.
The framework makes the testing of large programs tractable by organizing programs into cliques and per-
mitting a clique by clique analysis. The check_clique algorithm is parameirized by procedures which are
assumed to be available, such as check, tag_prop, and auxiliary procedures for inferring boundedness and
monotonicity constraints, The procedures check and tag_prop represent abstractions of operations that are
implicit in any safety analysis involving monotonicity constraints, and in this paper they are isolated and
specified rigorously. By providing more sophisticated versions of these procedures, the results presented
here can be used to show safety and effective computability of a larger class of programs.

Further work is needed in inferring monotonicity constraints, possibly interacting with the programmer.
There are two aspects to this problem. In general, if we cannot show a clique to be strongly safe, it is not
clear whether additional constraints will help us to do so, and if so, exactly what these additional con-
straints are. Also, once we identify a potentially useful constraint, we need to determine whether this con-
straint holds. A first step in these directions is taken in [Ullman and Van Gelder 85]. We also need to
explore well-founded orderings that can be used in testing the safety of cliques, in order to find orderings
that are easy to test, and widely applicable. Finally, we emphasize that the framework presented here can
be used to test safety and effective computability under various sideways information passing strategies by
suitably rewriting the program and then analyzing the rewritten program.

8. References

[Afrati et al. 86]
“Convergence of Sideways Query Evaluation’’, F. Afrati, C. Papadimitriou, G. Papageorgiou, A.
Roussou, Y. Sagiv and J.D. Ullman, Proc. 5th ACM SIGMOD-SIGACT Symposium on Principles of
Database Systems, 1986, pp 24-30.

[Bancilhon et al. 86]
““Magic Sets and Other Strange Ways to Implement Logic Programs’’, F. Bancithon, D. Maier, Y.
Sagiv and J. Ullman, Proc. 5th ACM SIGMOD-SIGACT Symposium on Principles of Database Sys-
tems, 1986, pp 1-16.

[Bancilhon and Ramakrishnan 86]
““An Amateur’s Introduction to Recursive Query Processing Strategies’’, F. Bancilhon and R.
Ramakrishnan, Proc. SIGMOD 86, pp 16-52.

[Bancilhon and Ramakrishnan 87]
‘“Performance Evaluation of Data Intensive Logic Programs”’, F. Bancilhon and R. Ramakrishnan,
To appear in Foundations of Deductive Databases and Logic Programming, Ed. J. Minker, Morgan

Kaufman.
[Gaifman 86]
Personal communication, reported by Y. Sagiv.

-18 -

[Krishnamurthy et al. 87]
““Testing Safety and Effective Computability of Magic Programs’’, R. Krishnamurthy, R. Ramak-
rishnan and O. Shmueli, Manuscript.

[Lloyd 84]
‘‘Foundations of Logic Programming,”” J. W. Lloyd, Springer-Verlag, 1984.

[Ramakrishnan et al. 87]
‘‘Safety of Horn Clauses with Infinite Relations’’, R. Ramakrishnan, F. Bancilhon and A. Silber-
schatz, Proc. 6th ACM SIGMOD-SIGACT Symposium on Principles of Database Systems, 1987, pp
328-339.

[Sagiv and Ullman 84]
““Complexity of a Top-Town Capture Rule’’ Y. Sagiv and J.D. Ullman, STAN-CS-84-1009, Depart-
ment of Computer Science, Stanford University, 1984.

[Shmueli 87]
““Decidability and Expressiveness Aspects of Logic Queries’”, O. Shmueli, Proc. 6th ACM
SIGMOD-SIGACT Symposium on Principles of Database Systems, 1987, pp 237-249.

[Ullman 85]
“Implementation of Logical Query Languages for Databases,”” J. Ullman, TODS, Vol. 10, No. 3,
pp. 289-321, 1985.

(Ullman and Van Gelder 85]
““Testing Applicability of Top-Down Capture Rules”’, J.D. Ullman and A. Van Gelder, Technical
Report, Stanford University, STAN-CS-85-1046, 1985.

[Zaniolo 86]
‘“‘Safety and Compilation of Non-Recursive Horn Clauses’’, C. Zaniolo, Proc. First Intl. Confer-
ence on Expert Database Systems, Charleston, 1986.

