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Abstract—In 1999 Davis and Jedwab gave an explicit algebraic
normal form for m! - 2"™+2) ordered Golay pairs of length 2
over Zyn, involving m!/2 - 2™+ Golay sequences. In 2005
Li and Chu unexpectedly found an additional 1024 length 16
quaternary Golay sequences. Fiedler and Jedwab showed in @0
that these new Golay sequences exist because of a “cross+bve
of the aperiodic autocorrelation function of certain quaternary
length 8 sequences belonging to Golay pairs, and that they apn
further new quaternary Golay sequences and pairs of lengti2™
for m > 4 under BudiSin’s 1990 iterative construction.

The total number of Golay sequences and pairs spawned in
this way is counted, and their algebraic normal form is givenex-
plicitly. A framework of constructions is derived in which Turyn’s
1974 product construction, together with several variatims, plays
a key role. All previously known Golay sequences and pairs of
length 2™ over Z,» can be obtained directly in explicit algebraic
normal form from this framework. Furthermore, additional
quaternary Golay sequences and pairs of lengt@™ are produced
that cannot be obtained from any other known construction. The
framework generalizes readily to lengths that are not a poweof
2, and to alphabets other thanZ,n..

I ndex Terms—autocorrelation function, algebraic normal form,
complementary, construction, cross-over, Golay sequencguater-
nary, shared autocorrelation property.

I. INTRODUCTION

Let H be an even positive integer. sequence of length
n over Zy is a sequence of values = (ag,a1,...,an-1),
where eachy; € Zy. Let £ be a primitive H-th root of unity
and define theperiodic autocorrelation functionf a to be

n—1—-u
Ca(u) := Z £y %+ for integeru satisfying0 < u < n.
1=0
A pair (a,b) of sequences of length over Zy is called a
Golay complementary paifoften abbreviated t@olay pair)
of lengthn overZy if

Ca(u) + Cp(u) =0 for all integeru satisfying0 < u < n.

A sequence is called aGolay sequencd it forms a Golay
pair with some sequende The name is in honor of Golay [7],
who introduced this condition for the cagé = 2 in 1949.
This paper is concerned with Golay sequences of le2gjth
over Zy. Mostly we are interested in the cage = 2" for
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integerh > 1, and especially in thbinary caseH = 2 and the
quaternarycaseH = 4. In 1999 Davis and Jedwab [4] gave an
explicit algebraic normal form fom! - 2"("+2) ordered Golay
pairs (a, b) of length2™ over Z,, involving m!/2 - 2M(m+1)
Golay sequences. These pairs are obtained by taking 2"

in (1) (see Section II). We will call Golay pairs and sequence
of the form (1)standard

It was believed for several years that there are no non-
standard Golay sequences of length overZ,., but in 2005
Li and Chu [11] unexpectedly found 1024 length 16 non-
standard quaternary Golay sequences by computer search. Li
and Kao [12] showed that these new sequences arise from
concatenation or interleaving of quaternary length 8 Golay
pairs. In 2006 Fiedler and Jedwab [5] gave a full explanation
of the structure of the new sequences by showing that their
existence depends on a “shared autocorrelation propefty” o
certain standard quaternary length 8 Golay sequences. This
property had previously been observed in [4] but its signif-
icance had been overlooked. (In hindsight the papers [10]
and [3], which use computer search to determine the number
of non-standard quaternary ordered Golay pairs of length 8
and 16 as 512 and 8192 respectively, also contain clues as to
the existence of the new length 16 Golay sequences; see [5]
for further discussion.) Currently the only known examples
of Golay sequences of lengf* overZ,. having the shared
autocorrelation property are those described in [5].

Golay’'s foundational paper [8] shows how to construct a bi-
nary Golay pair of lengtl2n by interleaving or concatenating
the sequence elements of a binary Golay pair of length
The paper [8] also constructs a binary Golay sequence of
length 2™ directly using a generalized Boolean sum con-
struction. BudiSin [2] showed that this generalized Baole
sum construction can be realized by iterated interleavim) a
concatenation of an initial trivial binary Golay pair of gh
1, provided that “gaps” (meaning zero elements) are allowed
in the constructed sequence at intermediate steps. BigdiSi
construction [2] also applies to non-binary Golay pairs of
length 2™, in particular Golay pairs ovef,.. Paterson [14]
showed that the standard Golay sequences haking 2",
that were presented explicitly in [4] as an extension of Go-
lay’s generalized Boolean sum construction, can be oldaine
iteratively using BudiSin’s construction.

It is then natural to ask: what quaternary Golay sequences
and pairs are obtained when BudiSin’s iterative consionds
applied to the 512 non-standard length 8 quaternary ordered
Golay pairs? We know from [5] that the Golay sequences and
pairs of lengthl6, 32, 64, ... spawned in this way are non-
standard, and that the number of Golay sequences and pairs of
length 16 spawned is 1024 and 8192 respectively (matching



the counts in [11] and [3] obtained by exhaustive searchAll currently known quaternary Golay sequences and pairs
But [5] could not determine the number of quaternary Golayncluded in these counts can be obtained via the flowchart
sequences and pairs of lendgti¥ spawned form > 4, even shown in Figure 2.

when the iterative construction is restricted to just ile@ving

and concatenation (not allowing gaps in intermediate ¥teps Il. NOTATION AND DEFINITIONS

The principal objective of this paper is to determine the | this section we introduce some notation and definitions,
number of quaternary Golay sequences and pairs of leftjth particularly for algebraic normal form and the shared auto-
(m > 4) obtained by applying BudiSin's iterative constructiorsorrelation property. Throughou/ will be an even positive
to the 512 non-standard length 8 quaternary ordered Goﬁﬂyeger andt will be a primitive H-th root of unity.
pairs, and moreover to find the algebraic normal form of as pefore, a sequence of lengttoverZy; is a sequence of
the constructed sequences and pairs explicitly. Althowgh tyaluesa = (ao, a1, ..., an_1), Where eachy; € Zy. In phase
algebraic normal forms appear rather complex when writteift keying with H phases, the sequence elementepresent
out, they completely describe the constructed sequences. data to be communicated, and the sequeaceorresponds

A second objective of the paper is to identify, from the many the complex modulated sequen¢g®, ¢o1, ... £-1) of
known eXp|iCit and iterative ConStI’UCtiOI’IS, a frameworbnfr roots of unity_ Thegenerating function associated with is

which all known Golay sequences and pairs of lerijthover the polynomial

Zon can be obtained in explicit algebraic normal form. The n—1 }

explicit constructions include Golay's generalized Baole A(x) = Zﬁ‘”xl-

sum construction [8, (13)] and its extension to generalized i=0

Boolean functions by Davis and Jedwab [4]. The iterativBtraightforward manipulation shows that

constructions include: Golay's concatenation and inéeiileg 1 ne1

of a binary Golay pair [8, (9), (10)]; Golay’s block-inteséing A(x) Az 1) = n + Z Ca(u)z™ + Z Calw)z",

of two binary Golay pairs [8, (11), (12)]; BudiSin’s itenes — o=

construction using permutations and roots of unity [2]; ar\ghere bar represents complex conjugation. It follows that i

Turyn’s product construction for producing a binary GoIa¥L’b form a Golay pair of length and A(z), B(z) are the

pair from two shorter binary Golay pairs [16, Lemma 5]. We ssociated generating functions then
shall see that, once the standard Golay pairs (1) are giken, t
key construction among all of these is Turyn’s, togethehwit A(x)A(z=1) + B(z)B(z~1) = 2n.

several variations that we shall derive. These variatidiosva In this case we callA(z), B(z)) a complementary function

d pai f lenatie™ 7. that Id be obtained b %%ir. (The converse, that the sequences associated with a com-
an lpa|rsBod_§_ng O,E/ert.” it a t\.NOlIJ € obtained by plementary function pair form a Golay pair, is true provided
applying budisin's construction iteratively. that we work with complex modulated sequenag#é of arbi-

A third object|ye of _th's paper is to demonstrate that thﬁary complex numbers, and use the complex modulated defini-
framework described is powerful enough to produce furthﬁ ns Cly (1) = nflfua_ﬁ and A(z) := anl

X - v axt for
Golay sequences and pairs of length over Z,. that cannot =0 =0

be obtained b ina Budigin’ truction iterai the aperiodic autocorrelation function and generatingfion
€ obtained by applying budisin's construction iter Ve respectively. Such sequences do not in general correspond t
a non-standard length 8 quaternary Golay pair.

The rest of the paper is organized in the following wa phase shift keying, and some of their elements may even be 0.

¥Although our primary interest in this paper is Golay pairgiov
Section Il mtrod_uces further notation and def|n|t|ons,t|t_xa|ﬂ Zy, the constructions in Section IV can be generalized to these
larly for algebraic normal form and the shared autocori@tat

. . , L Golay pairs of arbitrary complex numbers.)

property. Section Il reviews Turyn’s construction in sode A sequencez = (a azm_1) of length 2 over Z
tail, because of its importance in our constructive franméwo can be described byOr’n.éé’nsQ o?lits algebraic normal foﬁrrm A
Section IV develops variations on Turyn's construction, iBeneraIized Boolean functida a functionf : Z2' — Zy. Let '
which Golay pairs are used to control the iterative intesileg < i<2m and let(i i) be the binary 2expansion of
and concatenation of other Golay pairs. Section V uses R%/_ereil is the mostls7i.g.r.1i7fi(7:7;nt bit. Lef; (21 ) =

. . . . yrrcatm ) T
constructive framework to determine which Golay sequencgg 4« indicator function fot; (which isf bit j in the bina?y

and pairs are spawned by an initial ordered Golay pajb) representation of). The indicator functionsfy,... f,, give
of length 2", and applies this result to the 512 non-standa@e t02™ monomials T

guaternary ordered Golay pairs of length 8. Section VI sum-

marizes the results of the paper, clarifies the relationghip 1,
other work, and lists some open questions. L1, T2,y Tons
Figure 1 is a Venn diagram illustrating the intersections of
L1L2, L1XL3; - -+ s Tm—1Tm;

the constructions described in this paper. For each lemma in
the diagram, the annotations describe restrictions onsiés u
Figure 2 is a flowchart showing how the constructed sets of
guaternary Golay sequences are obtained. Table | givegzoun
of the number of standard and non-standard quaternary GoMyltiplication of indicator functions corresponds to thogical
sequences and quaternary ordered Golay pairs of letijth AND operation, and addition corresponds to logical XOR.

L1 Ty



Turyn’s construction forH = 2 and
non-standard binary pairse, d)
(if such pairs exist)

Turyn’s construction for
H =2

Lemma 3
matrix M is 1 X s (concatenation),
c — d is the lifting of a binary sequence ®ry

Lemma 4
matrix M is » X 1 (interleaving),
c — dis the lifting of a binary sequence ® gy

Lemma 5
matrix M is 2t x 2m—t,
(e, d) is a standard pair

Lemma 7
matrix M is 2t x 2m—1
(e, d) is a standard pair

Fig. 1. Venn diagram for constructions of Golay pairs. Amtiohs describe restrictions on the use of each lemma.

Since AND and XOR generate all possible truth tablesye write asfg. We will sometimes write a sequence using
every Boolean function can be expressed uniquely as a lin@eashorthand definition such g6= x,z2, to mean ‘f is the
combination of the above monomials ov&p, and every sequence associated with the functiiy, . .., x,) = z122”
generalized Boolean function is a unique linear combimatigwherem will be known from context). For example, when
of the monomials oveZy. The resulting polynomial is called m = 3, we have

the algebraic normal formof f. With the function f we

associate a sequengeby listing the valuesf (i1, io, . . ., im) filzy, @2,23) =21 =(0,0,0,0,1,1,1,1),
as (i1, iz, . .. ,%,) ranges over it2™ values in lexicographic fa(@r, @2, 23) =22 = (0,0,1,1,0,0,1,1),
order. In other words, we hav¢ = (ag,ai,...,a9m_1) (f1f2)(z1,22,23) = x122= (0,0,0,0,0,0,1,1).
wherea; = f(i1,42,...,im,). This implies that the sequence

associated with the surfi + ¢ of two functions f and g is We write 1 ando to denote the all-one and all-zero sequence
the componentwise sum of the sequengeand g, which we respectively, whose length will be known from context. Note
write as f + g. Similarly, the sequence associated with ththat some authors use a different labeling convention fer th

product fg is the componentwise product ¢f andg, which &lgebraic normal form. .
We define astandard Golay pairof length2™ overZg to



non-standard length 8 Golay palrs standard lengtR®™ Golay pairs

(Theorem 2 (Theorem 1)
Y Y y
\ N\ non-standard length™ Golay se-
(a, b) (seed pairs) (controlling pairs(C7 d) ~ d .
Lemma 5 & Lemma 7 > quences and pairs
(Theorem 10
Nif e — disthe lifting of a binary sequence ®
|
Y Y VY Y further non-standard leng
(a, b) (seed pairs) (controlling pairs) (C, d) ) ~ 2m GO|ay Sequences al d
Lemma 3 & Lemma 4 | pairs
(Example 6)

Fig. 2. Flowchart for constructing quaternary lengtft Golay sequences and pairs (all inputs and outputs are qaaggr

be a pair of sequencég, d) having algebraic normal form is just the reversal of since ther0* =0 and1* = 1.) Since
Cox(u) = Cq(u) (see the proof of [5, Lemma 4]), it follows

m—1 m
H .
e=7 Z (k) T (k1) + Zem + e that all sequences in the set
H,knz_ll ol " E(a) ={a+c-1|ce€Zytu{a*+c-1|c€Zy}
— / R
d= 2 T (k) T (k1) + Z Chlk T €0 T 5 Tx(1) (which hasH elements ifa* = a+c-1 for somec € Zy, and
k=1 k=1 . . . -

(1) 2H elements otherwise) have identical aperiodic autocorrela
for some permutaton 7 of {I,...,m} and tion function. Therefore, ifa, b) is a Golay pair of lengt
eh,eo.€1,-..,em € Zp, and we define standard Golay overZy then so is every element df(a) x E(b).
sequencéo be a member of a standard Golay pair. Now, using the relations
Theorem 1. Let f = H/2 - _ZZle Ty Takrn) +  xF=x;—1 and (ziz;)" = —zix; +x +x; — 1, (2)
>, exxr, Wherer is a permutation of{1,2,...,m} and
e1, €, ...,em € Zy. Then the sequence pair it follows from (1) that a standard Golay sequercef length

2™ over Zy satisfies
(f +eo 1+ H/2 - u(®ra) + Trm))s

f+HH/2 @y +eg -1+ H/2 0 (Tr1) + Ta(m))) " =c+ H/2 (Xr) + Tr(m)) + -1 for somee € Zy,

is a standard Golay pair of lengtt™ overZy for anyey, e, ¢ SO that
Zy andu, v’ € Z.

H m—1 m

The caseHl — 2" of Theorem 1 was given by Davis =\~ {5 Z: T Trk+1) +Zekxk Teo
and Jedwab [4, Corollary 5]. Paterson [14] showed that the I h=t h=t
construction in [4] holds without modification for general —|—?u(ar,,(1) +Trmy) | €0 € Zg,u € ZQ}. 3)
(even)H.

Given a sequence = (ao, a1, .- .,a,—1) Of lengthn over Therefore Theorem 1 describes the Bét) x E(d) of Golay
Zu, we define pairs derived from a single standard Golay paird).

It is possible that two sequencasa’ of lengthn overZy
have identical aperiodic autocorrelation function, eveough
to be the negative reversal af (For the associated complexE(a) # E(a’). In this case we say that the pdit, a’) has
modulated sequendg the sequencé* is the complex con- the shared autocorrelation propertySuppose thata, b) and
jugate of the reversal di. If a is a binary sequence, thert (a’,b’) are standard Golay pairs, whefa) # E(a’) and

a’ = (_an—la —An—2,-- -, —ao)



E(b) # E(b'). If the pair (a,a’) has the shared autocorreis obtained from the matrix

lation property, then so does the palr,b’); and moreover

(a,b’) and (a’, b) both form non-standard Golay pairs by a M = [(a +o) (b+o) ]
“cross-over” of their autocorrelation functions, as ithaged (a+o) (b+2-1)
in Figure 3. The only known examples of this féf = 2" _|(

0,1,2,1) (0,1,0,3)
B (0717271) (2’37 271)

by reading the entries ofif column by column. We will
present all our constructions in matrix form, using thisdiag
convention for the constructed sequences.

can be summarized in Theorem 2.

Theorem 2 ([5]). For any ug, w1, us,us € Zs and kg, k1 €
Z4, the length8 quaternary Golay sequences

a = 2(171172 + IQSCg) + 2U0(I1 + Ig) + 2UQ£C3
+us(z3 + 2x2) + ko I1l. TURYN'S CONSTRUCTION

b= 2(x120+ x123) + T2 + 23 + 2uy (22 + 23) In this section we review Turyn's construction [16,
+2usxo + uz(x3 + 220) + ki Lemma 5] in some detail, because of its importance in our

constructive framework. We shall illustrate how to contbe
form a non-standard Golay pair, by a cross-over of theitonstruction from the form given by Turyn into the matrix
autocorrelation functions. notation described in Section II.
Let V = {vU) | 1 < j < k} be a set ofk orthonormal

. o34 -
Theorem 2 _|nvolve§ 42 24 64 distinct quaternary vectors. Turyn defined &-symbolé code of lengthm to be

sequences which form- 2% - 4° = 512 non-standard ordered .
a vector sequencd = (sg, S1,...,8m—1), With s; € V' or

Golay pairs of length 8. [5] demonstrates that all of these c V for eachi such that
Golay pairs can be derived from a single unordered pairsl b
of length 8 quaternary Golay sequences having the shared™l "

autocorrelation property, for example si ®sip, =0 forall u satisfyingd < u <m,

=0
2(x129 + xox3) and 2(xixo + x123) + 322 + 3. (4) where e represents the dot product of vectors.2Asymbol
6 code constructed from the orthonormal “symbolg™) :=

For h > 2, each quaternary Golay pair in Theorem 2; |1 a1 |1
can be mapped to a Golay pair ov&s. having the same v2 |1 and v® = V2 |—1 corresponds to a complex
complex modulated values, a process knownlifi;ig (for modulated binary Golay paifc, d). This correspondence is
example, multiplication of each sequence element by 8 givegiven by forming the complex modulated binary sequeace
Golay pair overZs,). While these liftings technically provide from the first components of the symbats)(") and+v(® in
further examples of standard Golay sequences of lepgjth the vector sequencs, and likewise forming the sequende
forming a non-standard Golay pair by a cross-over of theiom the second components. Thus, the occurrencef)
autocorrelation functions, we consider them to be esdntiacorresponds te; = d;, and the occurrence afv(® corre-
the same as the examples of Theorem 2. By Corollary 2 of [$ponds toc; # d;. For example, th@-symbols code

a Golay pair(a,b) of lengthn overZy can be mapped to S = (400, 400, 10, _p@)
another Golay pair by means of the linear transformatioemgiv ! ! ’

by adding the sequend®, c,2¢,3c,...(n — 1)c) to botha _ b (H H [ 1 ] {‘1)
andb for any ¢ € Zjy, but we likewise regard these linear V2 LT

transformations of the Golay pairs of Theorem 2 as givi
essentially the same pairs.

Our constructions are conveniently described using the c=(1,1,1,-1),
matrix notation of Borwein and Ferguson [1]; Paterson [14]
used an alternative notation. L&f be anr x s matrix where d=(1,1,-1,1),
each entry is a sequence of lengtloverZy. We regardV/ as  and (c,d) form a complex modulated binary Golay pair
anr x sn matrix with entries fronZy, which we read column (having symbols from{1, —1} rather than fromZ,). (The
by column to obtain a new sequence of length overZy. definition of a 2-symbob code and its correspondence with
Thus the new sequence is the interleaving-abws, where a complex modulated binary Golay pair was given prior
the entries in each row are the elements in the concatenatign16] by Welti [17], using the name “quaternary code”.)

"Srresponds to the sequenc%;c, %d, where

of the s sequences in that row. For example, let Turyn proved there exists Jasymbold code of lengthmn,ms
for even k, provided that there exists A-symbol § code

a=(0,1,2,1) of lengthm; and a2-symbold code of lengthms. In the

b=(0,1,0,3) casek = 2, page 320 of [16] (after settinga,b,c,d) =

(A,—B*,X,Y) and recalling thaB* represents the complex
be quaternary sequences. Then the length 16 quaternaryfhjugate of the reversal of a complex modulated sequBice
quence gives the following construction for complex modulateddrin

Golay pairs. Let(a,b) and (¢,d) be complex modulated

(0,0,1,1,2,2,1,1,0,2,1,3,0,2,3,1) binary Golay pairs of length ands respectively, and lef be



identical
autocorrelation
function

complementary ! Cross-over of :
autocorrelation | autocorrelation :
function : functions :

Fig. 3. Cross-over of autocorrelation functions for Golajre(a, b) and (a’,b’), where E(a) # E(a’) and E(b) # E(b')

the 2-symbolé code corresponding ttc, d) via the symbols form in Lemma 4. We regard both interpretations (namely the
v(M) andv(®. Construct a sequenc® consisting of vectors caseH = 2 of Lemmas 3 and 4) as “Turyn’s construction”.
1@ — g1 @ | ond4+o® — 1 b y Page 320 of [16] contains, in addition to the formula
aatbb | —p* a-atbb |ag* explained above fok = 2, an algorithmic description of the
replacing every occurrence éfo(!) (¢c; = d;) in S with +v(®),  construction fork-symbols codes for generat. In the cases
and every occurrence afv? (¢; # d;) by £v®. ThenS’is i > 2 these codes do not correspond to complex modulated
a 2-symbolé code of lengthsn. For the complex modulated Golay pairs, but we found the algorithmic description ukefu
binary example above we get in determining the form of Lemmas 3 and 4 for geneihl

S = (+,U(3), +0®) | @), _,,,(4))
IV. CONSTRUCTIVE FRAMEWORK
_ 1 a a b -b
T a-a+b-b\|=b"|"|-b"]"|a*| |-a* In this section we develop variations on Turyn’s construc-
tion, in which Golay pairs(c,d) are used to control the

%reation of new Golay pair§f,g) from an arbitrary Golay
pair (a, b). The constuctions will be presented using the matrix

Switching to theZ, form for binary sequences, this exampl
shows that if(a, b) is a binary Golay pair of lengtih over

Zy then notation introduced in Section Il. The controlling pai, d)
f= [(a +0) (a+o0) (b+o) (b+1- 1)] need not be binary; it is sufficient that- d is the lifting of a

binary sequence tdy. As throughoutH is an even positive
forms a binary Golay pair of lengthn with integer and¢ is a primitive H-th root of unity.

={(b*+1-1 b*+1-1 a*+o a*+1-1)|.
g [( ) ) ) ! )] A. Two variations on Turyn’s construction

Sinceg* +1-1 has an identical autocorrelation functiongp

LT ) N In this subsection we present two variations on Turyn’s
this implies thatf also forms a binary Golay pair with P Y

construction. We begin with the first variation, in which the
g +1-1= [(a +0) (a+1-1) (b+o) (b+ 0)] ) matrices determiningd and g have sizel x s so thatf and

) _ _ _ g are each the concatenation ©5equences.
We consider it easier to work with the paif,g* +1 - 1)

than the pair(f,g) suggested by [16]. The reason is thfat Lemma 3. Let (a,b) be a Golay pair of lengttn over Zy.
and g* + 1 - 1 are both obtained through concatenation df€t ¢ = (co,c1,...,cs—1) andd = (do,ds,...,ds—1) be a
the sequences (regarded as blocks) of the binary Golay gaplay pair of lengths overZy for which ¢ — d is the lifting
(a,b). Moreover the sequencesandd* of lengths overz, ©f & binary sequence tdy. Define lengthn sequences

can be recognized in the forms fgr and g* + 1 - 1, while ate -1 ife—d
the placement o& or b in f andg* + 1 -1 depends only on 5(i) == ! P
the positions at whicte and d coincide. This result is a key {b te1 e #d
construction for Golay pairs which we will present in more . a+d -1 ifd £
general form in Lemma 3. (i) == bt d; 1 i d:k _ C:k

The description on page 320 of [16] involves a non-
standard interpretation of the Kronecker product. With thehered; := (d*);. Then the sequencg obtained from the
standard Kronecker product, the constructed sequefiaasl 1 x s matrix
g*+1-1 involve the interleaving rather than the concatenation
of sequences. We will present this variation in more general M= [5(0) o(1) - o(s— 1)}



forms a Golay pair of lengtlkn over Zy with the sequence

g obtained from thel x s matrix Golay pair of lengthr over Zy for which ¢ — d is the lifting

of a binary sequence téd . Define lengthn sequences

M':=[&(0) &) - §(s—1)]. 505 e a+c-1 ife=d;
(2) o b—i—Ci'l if Ci#di,
Proof: f and g are clearly sequences of lengtn
over Zy. Let A(z), B(z), C(z), D(z), C*(z), and D*(x) 5(i) = {a+d’{ 1 ifdE £
denote the generating function associated witb, c, d, c*, ' b+df-1 ifd=c,
and d*, respectively. For eaclh, by assumptiond; = ¢; or .
d; = ¢;+ H/2. Therefore the coefficient of in C(z)+ D(z) where d} = (d*);. Then the sequencg obtained from the
is 2¢% if ¢; = d; and O otherwise; and the coefficient of 7 1 matrix

in C(x) — D(x) is 2¢% if ¢; # d; and 0 otherwise. So the 5(0)
generating function associated wifhis 5(1)
M =
B C(a™) + D(z™) C(z™) — D(a™) :
F(z) = A(x) 5 + B(z) 5 , 5(r—1)
and similarly the generating function associated wgtis forms a Golay pair of lengtrn over Zg with the sequence

g obtained from the' x 1 matrix

D*(a") - C*(a") D*(a") + C*(a")

Gla) = A(x) . +B(x) 5 . 5(0)
§'(1)
But for any generating functions(z), Z(x) associated with M’ = )
sequences of the same length, straightforward manipualatio ) :
shows thaty*(z)Z*(z=1) = Y (2~ 1)Z(x). It follows that §'(r—1)

Proof: The proof is similar to that of Lemma 3. The

(1) (1) =
F(2)F(271) + G(2)G(z71) = 2sn, generating functions associated wifhandg are

so (f,g) form a Golay pair. | B ~ C(x)+ D(x) - C(x) — D(x)
For example, the quaternary sequences F(z) = A@") 2 +B(') 2
_ - D () — C*(x oD () + C*(x
@ - Egigg } 5) Cl@)=A )¥+B(;€ >¥,
) o respectively, and these functions form a complementany pai

form a Golay pair, and the quaternary sequences =

c =(0,0,0,2) For example, consider again the Golay pajts b) and

¢ - e } (6) (c,d)in (5) and (6) respectively. By Lemma 4, the sequences

f/: (0707072717171737272707271717371)

form a Golay pair for whichc — d = (0, 0, 2, 2) is the lifting ,
g =1(0,2,0,0,1,3,1,1,2,0,0,0,1,3,3,3)

of a binary sequence td,. By Lemma 3, the sequences

£=1(0,1,2,1,0,1,2,1,0,1,0,3,2,3,2,1) obtained from the respective matrices
g9=1(0,1,2,1,2,3,0,3,0,1,0,3,0,1,0,3) [ (a+o0) (0,1,2,1)
A | ato) | _1(0,1,2,1)
obtained from the respective matrices | (b+o) (0,1,0,3)
((b+2-1) (2,3,2,1)
M=[(a+o0) (a+o0) (b+o) (b+2-1)] [ (a+o0) (0,1,2,1)
M =[(a+o0) (a+2:1) (b+o) (b+o0)] - [le+2-0) 1(2,3,0,3)
| (b+o) |  [(0,1,0,3)
then form a quaternary Golay pair of length 16. (b+o0) (0,1,0,3)

In the special cases = 2 andec = (0,H/2), d = ; Gol i of | h 16
(0,0) of Lemma 3, the constructed sequences gre= 'O a;]quatema:ry olay palr(()j engt ’
la (b+H/2-1)] andg = [a b]. This is Golay’s con- In the special case = 2 andc = (0, H/2), d = (0,0)
catenation construction [8, (9)]. of Lemma 4, the constructed sequengas the elementwise

We next present the second variation on Turyn’s constrd@ierleav!ng Ofa andb + H/_Z b an’dg Is the glementwse
tion, in which the matrices determining and g have size interleaving ofa andb. This is Golay'’s interleaving construc-

. . tion [8, (10)].
r x 1 so thatf andg are each the interleaving efsequences. We will refer to the pair(a, b) of Lemmas 3 and 4 (and

Lemma 4. Let (a,b) be a Golay pair of lengtln over Zy. later Lemmas 5 and 7) as tlseed pair and to(c, d) as the
Letc = (co,c1,...,¢,—1) and d = (dy,ds,...,d-—1) be a controlling pair. To emphasize that Lemmas 3 and 4 are not



restricted to Golay pairs whose length is a power of 2, fdékt step¢ + 1 (for 0 < ¢ < m), construct the complementary
example let(a,b) be the quaternary Golay pair of length JFunction pair
with @ = (0,0,2) andb = (0,1,0), and let(c,d) be the

._ entesn) (£ mow (1)
quaternary Golay pair of length 6 with = (0,0,2,0,1,0) CUD(z) = OO (x) + gorern D* O (z) 2
andd = (0,0, 2,2,3,2). Then the sequencg given by D (g) = 0O (z) — gomery DO () p2m T
(@a+0) (@+0) (@+2-1) (b+o0) (b+1-1) (b+o0) ()

ThenC(™)(z) and D*(™ (z) are the generating function for
— (0,0,2,0,0,2,2,2,0,0,1,0,1,2,1,0, 1,0) ¢ andd" respectively.

is a quaternary Golay sequence of length 18 by Lemma 3, and\Ve can view the sequence elementscadnd d* as being

the sequencg’ given by filed in at stepl + 1 to form sequences(‘*1) and d*(‘+1)
(a+ o) corresponding taC“+1) (z) and D*“*V)(z) respectively. In
(a + o) this process the sequence elements: afo not change once
(a+2-1) filled in, whereas the sequence elementsdbfare finalized
(b +o0) =(0,0,2,0,1,0,0,0,2,1,2,1,2,2,0,0,1,0) only at the last step. (In [2], the sequen(g&~®), ... £etm)
(b+1-1) is called thelW-vector, and the sequen¢er — 7(1),...,m —
(b + o) m(m)) is called the permutation vectd?. We have modified

_ the initial complementary function pair trivially, from ehpair
is a quaternary Golay sequence of length 18 by Lemma 1), (1)) specified in [2] to the paif(£%0), (£%)).)
Since there are binary Golay pairs of length 2, 10 [8] and £, example, take H = i om

26 [9], by repeated application of Lemmas 3 and 4 we ¢ Qr(l) 7(2),7(3),7(4)) = (3,4,1,2), (e1,e0,e3,04) =
similarly construct quaternary Golay pairs for a variety 033 0.9 1) and (’60 et) = (0 2)’ in &1) to gii/e the standard
lengths that are not powers of 2, for example lergytho3 - 24 Ier’197th’16, quatern:’;\rgl Golay7 pair
or 6-26%-10-22.

Lemma 3 can easily be modified to the case of complex ¢ =2(z3x4 + T4T1 + T122) + 371 + 223 + X4
modulated sequences, b, c,d of arbitrary complex num- =(0,1,2,1,0,1,2,1,3,2,1,2,1,0,3,0)
bers, using the complex modulated definition of aperiodic d_o 3 9
autocorrelation function and generating function merdibim = (324 + w41 + 2102) + 301 + 24 +
Section Il. The condition om, d is that, for each, ¢; = d; =(2,3,2,1,2,3,2,1,1,0,1,2,3,2,3,0)
orc; = —d;. Eachd(c) is the.n_ deflned. to b‘.a'ia. if i =dis o satisfiescy = dj. We shall now construct the pair
and¢;b if ¢; = —d;; the definition ofd’ (i) is similar. The rest (c,d") using Budisin's construction. At ste + 1 we

of the proof resembles that of Lemma 3, and in particular tté%d to (and subtract fromw(@( ) a “shift’ of the term
generating functiong’(xz) and G(z) are given by the same

er % (0) 2"" w(L+1)
equations. Lemma 4 can likewise be modified for sequenc[%e“;;luDes(ggﬂ()l) t?gm) gon. g’ewf}f’)‘:ordgg §t10 55720)Uasr:39
of arbitrary complex numbers. PR

men(l)  gm-m(2) gmom(3) gm-m(4)

The construction of Lemmas 3 and 4 is governed b&f X ,z? ? ) = (@ alatat),
matrices consisting of a single row and a single colum e obtain
respectively. In Lemma 5 we shall present a further vanmatio c 0 - )
of Turyn’s construction in which the matrices have the more d*© = o - - - )
general size! x 2™t for any integer satisfying0 < ¢t < m. c = (0 -2 . )
In exchange for this additional freedom, the controllingayo a1 = © -0 - - D)
pair (¢, d) will be restricted to be standard (and, in particular, c€® = (0121 - )
of length2™). d® = (0323. e D)

3 —
B. Budisin’s construction 023; = (o121 P32z )
. . . R . ar = ©0121--+--1030 - - )

In this subsection we describe BudiSin’s iterative carstr C:c(4) — (012101213212103 0)
tion for a standard Golay pair from an initial Golay pair of @ 012123033212321 2)
length 1, in preparation for the proof of Lemma 5. ’

Let ¢ = (Co,cl,.. Cgm_l) andd = (do,dl,.. dgm_l)
be a standard Golay pair of lengt” over Zjy, sat- C. A third variation on Turyn’s construction
isfying (1) for some permutationr of {1,...,m} and |n this subsection we give a third variation on Turyn’s
€y, €0, €1, - - -, em € Zy; assume by suitable choice ef that construction, Lemma 5, in which the matrices determining

co = dg. BudiSin's construction produces the standard Golaye constructed Golay paif(g) have size2! x 2m—* for any
pair (c, d*) of length2™ iteratively from the initial Golay pair integert satisfying0 < ¢ < m. To prove the correctness of this
((co), (o)) of length 1. At step 0, form the complementaryconstruction we shall modify Budi$in’s iterative constiion
function pair of Section IV-B, replacing the initial Golay paif(c), (co))
CO(g) = g0 by an arbitrary Gol_ay paifa + co - 1, b+co : 1). The proof
( . indicates that BudiSin’s construction can itself be rédas
D™ () = &% resemble Turyn’s construction. (At the end of this subsecti



we shall show that the conditions in Lemma 5 involving théor the binary representation of the integein the range0 <
variablei, ;) have an alternative formulation in terms of the < 2™, and define length. sequences

sequence elements and d;, similar to those appearing in

Lemmas 3 and 4.)

We firstly illustrate the construction by means of an example
with m = 4 andt = 2, which is based on the example
given in Section IV-B. This example is intended to be read

in conjunction with the proof of Lemma 5:

[ (a+o0) 1
MO — ‘
- (b+0) -
M0 — ’
- (a+0) =
M = '
b+2-1)
[ (a+o0) 7
MW = '
(b+o0)
- (at o) =
2 (@+1-1)
M® = (b+2-i)
[(b+1-1) ]
[ (a+o0) 1
(o) |(a+3-1)
M (b+2~i)
_(b—|—3-1) ]
[ (a+o0) (@+3-1) i
(a+1-1) (a+2-1)
M =1 o) (b+1-1)
((b+1-1) (b+2-1) |
[ (a+o0) : (a+1-1) |
U (a+1-1) . (a + o)
(b+2-1) : (b+3-1)
_(b—|—1-1) (b+o0) |
[ (a+0) (@a+0) (a+3-1) (a+1-1)]
u@ (a+1-1) (a+1-1) (@a+2-1) (a+o0)
b+2-1) (b+2-1) (b+1-1) (b+3-1)
((b+1-1) (b+1-1) (b+2-1) (b+o0) |
[ (@a+0) (a+2-1) (a+3-1) (a+3-1)]
M (a+1-1) (a+3-1) (@a+2-1) (a+2-1)
b+2-1) (b+o) ((b+1-1) (b+1-1)
[(b+1-1) (b+3-1) (b+2-1) (b+2-1)]

andM = M® and M’ = M'@.

Lemma 5. Let (a, b) be a Golay pair of lengtin over Zy.
Lete = (Co, Cl,y... ,Cgmfl) andd = (do, dl, e ,defl) be
a standard Golay pair of lengtB™ over Zy, satisfying(1)
for some permutatiomr of {1,...,m}. Write (i1,i2,...,%m)

b+c -1 if Zﬂ.(l):l,
6/(2) — a+di-1 If Z:W(l) =0
b+df-1 if ir1) = L.

Then, for any integet satisfying0 < ¢ < m, the sequenc¢
obtained from the?! x 2™~* matrix

5(0) 5(21) 5(2m — 2t
51) SR 41
M= : :
52— 1) 5(2-2—1) s2m —1)

forms a Golay pair of lengt@™n overZy with the sequence
g obtained from the2! x 2™~* matrix

5(0) 5'(2") 5'(2m — 2t
o 5(:1) 52+ 1) |
52 —1) (228 —1) 5'(2m — 1)

Proof: We may assume that = djj, by replacingd by
d+e-1 for somee € Zy if necessary: the paic,d+e¢-1) is
still a standard Golay pair, and the constructed pAilg—e-1)
is a Golay pair if and only if f, g) is. Let A(x), B(x), F(z),
and G(x) denote the generating function associated with
b, f, andg, respectively. We shall construct the Golay pair
(f,g) iteratively from the initial Golay paifa + ¢ - 1,b +
¢o - 1), by mimicking BudiSin’s construction of Section 1V-B
for the standard Golay paike, d*) from the initial Golay pair
((co), (co)) of length 1.

We can view the entries of the matrice® and M’
(corresponding to the sequengéandg respectively) as being
filled in by reference to (7). At step+ 1 (for 0 < ¢ < m) we
fill in all the sequence&(i) andd’(¢) for which the coefficient
of zi in C“+1)(z) (and therefore inD*“*Y(z)) is nonzero,
to form matricesM “+1) and M'*1). The entries forM
do not change once filled in, whereas the entries féf
are finalized only at the last step. We shall show that the
generating functiong(“*1 (z) and G“*1) (x) corresponding
to M+ and M'¢+1 form a complementary function pair,
and complete the proof by showing that™ (z) = F(z) and
G™(2) = G(x).

At step 0 we set

FO(z) := A(a?) - £%0
GO (z) := B(a?') - £,

Since(a+co-1,b+cy-1) is a Golay pair(F©) (z), G (x))

is a complementary function pair. At step 1 we mimic the
operations that yielded®) (z) and D*™ (z) in Section IV-B,

by adding to (and subtracting fronf(®)(z) an appropriate
“shift” of the term ¢¢~ G (z) by somez’. The resulting
functions areF(V(z) and GM (z). The shift byz2"""" in
the construction ofC™ () and D*Y)(z) corresponds to a

shift to the entry in rowk and columnj of the matrices\/



and M’ for which 2m~7(1) = 25 1+ £, and the adjusted shift
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For example, consider once again the Golay p&drsh)

for F(z) and G (z) is 22 "% since each matrix entry and (c,d) in (5) and (6) respectively. The pair, d) can be

contains a sequence of lengih By c9nstruction ofc andd*
from (7), F() (z) and¢e~ GO (x)z? ™7 +* have no common
support, and we obtain the two generating functions
FM(z) := FO(z) 4 ¢ GO (x)x2'nj+k
G (z) := FO (z) — £ GO ()2 "+,
Routine calculation shows that

FO @) TG ) + 6O @G0 (@ 1)
2 (FO@FO @) + 6O @G0 ),

and so(FM(z), GM(x)) is a complementary function pair.

Since bitr(1) of 0 is 0, and bitr(1) of 2~7(1) is 1, we have

000)=a+cy-1
5(217’7,—71'(1)) — b + Com—n(1) * 1

by definition of §(i). Thus, 6(0) matchesA(z2') - ¢ =
FO) (z) in FO)(z), ands(2m~ ")) matches the ternB(z2")-
gem—r) = B(a?') - gootes = ¢x0 GO () in FO)(2)
(using the casé = 0 of (7) to show thato+e.(1) = cam-rm)).

obtained by takingd = 4, m = 2, (x(1),7(2)) = (1,2),
(e1,e2) = (0,0), and (eg,ep) = (0,0) in (1). By Lemma 5
with m = 2 andt = 1, the sequences
f” = (070717172727171707271737072737 1)
g"=1(0,2,1,3,2,0,1,3,0,0,1,1,0,0,3,3)

obtained from the respective matrices

fato) (b+o) ] [(0,1,2,1) (0,1,0,3)
M= [(a+0) (b+2~1)] = [(0,1,2,1) (2,3,2,1)}
, [(a+0) (+o)] [(0,1,21) (0,1,0,3)
]V[_[(a+2~1) (b+o)]—[(,3,o,3 (0,1,0,3)]

form a quaternary Golay pair of length 16.

The intersections of Lemmas 3, 4 and 5 are shown in
Figure 1. We claim that, givemy = ¢; in (1), Lemma 5
becomes a special case of Lemma 3 when0, and a special
case of Lemma 4 when = m. To establish this we need
to show that, for a standard Golay péit, d) of length 2™
over Zy, the conditions controlling the choice of sequence
elements in the three lemmas are equivalent, which follows
from the equivalence of the following statements;;) = 0,

The iterative definition of*(") (z) therefore coincides with that ¢; = d;, andd* # ¢¢. Given thatey = ¢}, from (1) we have

obtained directly froms.

This gives the pattern for an inductive proof. The inductive

c—d=H/2 -z, (8)

hypothesis is that, after stefy F(“)(z) and G)(z) form  pecall from Section I thatr,(;) is the indicator function

a complementary function pair; the iterative definition
F®)(z) coincides with that obtained directly froni;, and
the placement ofA(22) and B(z2") in G)(z) matches
the placement ofa and b respectively in the definition
of 6. Define j and k in the range0 < j < 2™! and
0 < k < 2 so that2m—7(+1) = 2tj 4 k. Then F)(x)
andge=e+n GO (z)z2 "It have no common support and

F(Hl)(z) —r® (z) + geﬂHl)G(@)(x)I?tnj-i-k
G (z) = FO (z) — gomiern GO ()2 I Hh

for ir1y (Which is bit 7(1) in the binary representation

of i), so that(z,(1))i = ix1). Therefore (8) implies that
c; —di = (H/2)ir1), and taking negative reversals of (8)
likewise implies thatd; — ¢; = (H/2)(ir(1) — 1). This gives
the required equivalences.

D. An interesting example

As described in Section I, our principal objective is to cbun
and to construct explicitly all quaternary Golay sequeraes
pairs of length2™ obtained by applying BudiSin’s iterative

form a complementary function pair, by a similar argument toonstruction to the non-standard Golay pairs of Theoreme2. W

that used above.

For any: in the ranged < i < 2™, suppose(i) has been
filled from matrix M at stepl + 1. Therefore, bitr(1) in
the binary representation of, — (¢ + 1) must be zero, and
m — (1) # m — (€ + 1). Hence(i + 2m~™(¢+1) ) =

will achieve this using Lemma 5 and its variation Lemma 7

(to be introduced in Section IV-E). However we note here

an interesting example obtained using Lemmas 3 and 5 that
achieves another of our objectives, by constructing length
2™ quaternary Golay sequences and pairs that cannot be

ir(1), and by the inductive hypothesis the iterative definitionbtained by iterative application of BudiSin's constiant

of F+1)(z) coincides with that obtained directly frofiy and
the placement ofi(z2) and B(#2") in the iterative definition
of G+ (z) matches the placement af and b respectively
in the definition ofd. This completes the induction.

The case/ = m — 1 then shows that("™)(z) = F(x)
and G (z) = G(z) form a complementary function pair
where F("™)(z) corresponds to the complete matiX. Since
§'(i) = 6(i) — (c; — d¥) - 1, the placements ofi(z2') and
B(z22") in G(z) correspond to the placements afand b,
respectively, ind’. And since the iterative definition of (x)
and G(z) is based on the iterative construction @f, d*),
G(z) corresponds to the complete matrix’. [ |

to a non-standard Golay pair specified in Theorem 2. This

will demonstrate that Lemma 3 (and, by a similar example,

Lemma 4) is not a special case of Lemma 5, even when its
controlling pair is restricted to have leng®f.

Example 6. Leta = (ag, a1, ...,a7) andb = (bg, by, ..., br)

'be the non-standard length quaternary Golay pair

a =2(x129 + xox3)
=(0,0,0,2,0,0,2,0)

b=2(zi1z0 + x123) + T2 + T3
=(0,1,1,2,0,3,3,2),



11

specified in Theorerd. Then the lengtli6 quaternary Golay E. Negative reversals

pair In this subsection we complete the framework of construc-
c=[(a+o0) (b+2-1)] tions by modifying Lemma 5 to use the negative reveradls
d = [(a o) (b+ 0)} ’ andb* of the seed pair sequences, as well as the sequances

andb themselves. This allows the construction of Golay pairs
obtained from Lemma (or Lemma3) using the seed pair that cannot be obtained with Lemma 5.
(a,b) and the controlling pair((0, 2), (0,0)), is non-standard  We then indicate by example that this modification corre-
(and the algebraic normal form of each efandd is a cubic sponds to replacing some intermediate sequence in thétera
polynomial [5]). Furthermorec — d = [(0) (2-1)] is the proof of Lemma 5 by its negative reversal. Since the apeciodi
lifting of a binary sequence té,. autocorrelation function of a sequence does not changerunde

So we can apply Lemntawith controlling pair (c, d) and negative reversal, the remaining iterations of the cortitm

seed pair(a,b) to obtain a lengthl6 - 8 = 128 quaternary stjll produce a Golay pair. This modification of Lemma 5,

Golay pair presented as Lemma 7, is not needed to produce the standard
f= [(a+ap-1) - (a+ar-1) Golay pairz(;)f Ien?;hzml oveerH, but v(;/illdbe require(;ato
' o ' construct additional families of non-standard quateritzoiay
( . (IH)_ (bo + 22 l)b ) (b+ (b7 +2) - 1)] pairs of length2™ in Section V.
g — a — 7. 1 “ e a — 0 * 1
(b—ar-1) - (b—ao-1)] Lemma 7. Let (a,b) be a Golay pair of lengtln over Zy.

Letec = (Co, Clyevny Cgm_l) andd = (do, dy,..., dgm_l) be a
(and the algebraic normal form of each gfandg is a cubic standard Golay pair of lengtB™ over Zy;, satisfying(1) for
polynomial,) and the elements of the sequence some permutationr of {1,...,m} and e, eg,e1,...,em €
f—g= [((ag+br)-1) - ((ar+bo)-1) Zy . Write (i1, 49, . . ., i,) for the binary representation of the
integer: in the range0 < i < 2™, and let¢ be an integer in
(a7 +b0+2)-1) - ((ao+br+2)-1)] 0 range2 < ¢ < m. Define lengthn sequences
take all four values irZ,.

o ] a+c -1 f ine—1) =0 and ixey =0
Now suppose, for a contradiction, that the Golay pgirg) . ' btcio1 ifing_y)=1andi.g =0
of Example 6 is the output of Lemma 5 for some seed pair 0(i) := b _ if i _0andi 1
(a,b) and standard controlling paifc, d). In the notation *+Cl 1 . er(é—l) = Z'w(t’) =
of that lemma, all elements of — g must then belong to a*+ci-1 ifingoyy =1andizg =1,
sequenceﬁ(z‘) -8 = (e —_d*)i ‘1 for varying ¢. Since a+di-1 iz 1y =0andi =0
(e,d) is a standard Golay pair, the relations (2) show that 56) btdi-1 g1y =1andiyg =0
* 1) = .
c—d"=H/2 x4, +e-1 forsomeeecZg. (9) b*+di -1 ifige1y=0andiy =1
Therefore the elements g¢f — g take values only infe, e + a* +d; -1 ifize_y=1andiry, =1
g(/qu;?é gomee € Zpy. This contradicts the conclusion OfThen, for any integet satisfying0 < ¢ < m, the sequence
. i t m—t H
Therefore the Golay paiff,g) of Example 6 is not just obtained from the” x 2 matrix
non-standard: it cannot be the output of Lemma 5, nor of 5(0) 5(2) S §(2m =2t
Lemma 7 by a similar argument, nor of any other published 4(1) 5(28+1)

construction for Golay sequences of which we are aware. (ItM =
is also easily verified by computer that there is no length
128 quaternary sequengg forming a Golay pair with the

sequencef of Example 6 such thaf — g’ is a two-valued forms a Golay pair of lengtB™n overZy with the sequence

520 —1) 6(2-20—1) - §(2m—1)

sequence.) obtained from the! x 27—t matrix
Example 6 can be generalized in several ways to give
further examples of quaternary Golay pais, g) for which 4'(0) 8'(2%) s d(2m =2t

the elements of —g take more than two values. Lemma 4 can 8'(1) 82"+ 1)
be used instead of Lemma 3. The seed paib) used in the M = : : :
final application of Lemma 3 can be replaced by a different trot y " ' ! rom
non-standard pair specified in Theorem 2, by the output of -1 F2-2 1) e SRT )
Theorem 10, or even by these further examples themselves. Proof: The proof is similar to that of Lemma 5. =
The controlling pair(c,d) used in the final application of For example, take H = 4, m = ,
Lemma 3 can be of lengthi™ - 16 for anym > 0, by applying (7(1),7(2),7(3),7(4)) = (4,3,1,2), (e1,eq,e3,e4) =
Lemma 5 iteratively with controlling paif(0, 2), (0,0)) and (0,0,2,1), and (ep,ep) = (0,1) in (1) to give the standard
initial seed pait(a, b). In this way we obtain quaternary Golaylength 16 quaternary Golay pair

pa?rs of length2™ - 16 - 8 = 2_’”+7 for all m > 0, and these_ c=(0,1,2,1,0,1,2,1,0,1,0,3,2,3,2, 1)

pairs cannot be produced using any other known constrigction
Figure 2 illustrates these generalizations of Example 6. d=(1,0,3,0,1,0,3,0,1,0,1,2,3,2,3,0),

S
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and use this standard pair in Lemma 7 with- 3 andt = 2to Then we can show that in general the resulting Golay pair
obtain the sequencef g of a Golay pair from the respective(f, g) can also be obtained from Lemma 5 using the permu-

matrices tation 7(¢) := w(o(¢)) and constantsy, €1, . . ., ey, Where
[ (a+o0) (a+ o) (b*+0) (b*+2-1)] _ :
v_l@+1:1) (@+1-1) (BT +1-1) (b +3-1) eri) = expy foriZ 4
“|b+2-1) (b+2-1) (a*+0) (a*+2-1) Ex(0) = 52t om—n(@d — Com—=(®)
((b+1-1) (b+1-1) (a*+3-1) (a*+1-1)] éo = €o,
[ (a+o a+2-1 b*+o b* +0) |
((5 +1 ,)1) Ea +3 1; (lf* +1- )1) (IE* +1 .)1) by replacing the sequenc&(‘~)(z) corresponding to

M'= (b+2-1)  (b+o0) (a* +0) (a*+o0) | M;(’“}_l) by its negative reversal prior to step (in which
(b+1-1) (b+3-1) (a*+3-1) (a*+3-1) FO () andG“)(_:c) are determined). We can also show that at
~  most one negative reversal is sufficient for construction pu
We now show that the same Golay pgjf, g) can alterna- poses: introducing further negative reversals of inteiiated
tively be obtained from the iterative construction giverthie  sequences in the iterative construction does not lead to any
proof of Lemma 5 (using a different permutati@, by re- more Golay pairs. These two statements imply that Lemma 7
placing the intermediate sequence corresponding to thexmakncapsulates the effect of taking arbitrary negative salsrof
M'®) in that construction by its negative reversal. Tdke=  intermediate sequences in the iterative constructionribest
4, m = 4, andt = 2 again, and let7 (1), 7(2),7(3),7(4)) = in the proof of Lemma 5. We omit the proofs as they are rather
(3,4,1,2), (€1, €2, €3,¢€1) = (3,0,2,1), and(ép, €') = (0,2). involved, and are not required in the construction of fagsili
This produces the standard length 16 quaternary Golay pgir(;o|ay sequences and pairs in Section V.
(c, d) previously given as an example in Section IV-B and, as For g fixed value ofm, the sequences obtained from
seen in Section IV-C, steps 1 and 2 of the iterative constmict | emma 5 are identical to those obtained from Lemma 7 in

lead to the intermediate matrices some cases (for example whém, b) varies over all standard

[ (a+o0) . . . 1 pairs of a given length andc, d) varies over all standard
M@ _ (a+1-1) . . . pairs of length2™), but are disjoint in others (for example

| (b+2-1) . . . the sequences constructed in Theorem 10, which arise from

[(b+1-1) . . . | certain non-standard paitg, b)).

[ (a+0) i
ue ((a +3- 1)) : : : V. SPAWNED SEQUENCES AND PAIRS

b+2-1 . . . '
| (b+3-1) . . ) | In this section we determine explicitly the algebraic norma

form of the Golay sequences and pairs of lengjth™ (m >
We now replace the sequence correspondingfé® by its 1) that are spawned by an arbitrary seed pairb) of length

negative reversal, so that’(® is replaced by 2" under either of Lemmas 5 and 7. We then apply this result to
the non-standard quaternary Golay pairs given in Theorem 2.
(b*+1-1) : : : Throughout this section we take the seed pairb) to have
(b*+2-1) : ‘ ' ~length2”. We begin by determining the algebraic normal form
(@ +1-1) : : ' of the Golay pairg f, g) that can be constructed from the case
(a*+o0) : : : t =0 of Lemma5 or 7.
Proceeding with the iterative construction, we now find apst Lemma 8. Let (a,b) be a Golay pair of lengtl2” over Zy
3 that and letc be a standard Golay sequence of lengthoverZy
- - tisfyi 1) f tati f{1,2,... . Let
o 0 e e
(a+1-1) . (b*+11) 1, 2.5"'5 ) 12500yl )y la_ 2y dm
M® = . algebraic normal form oti, b, ¢ respectively, and let be an
(b+2-1) : (a* +o) . ,
N integer in the range < ¢ < m. Then, for anye € Zy, the
(b+1-1) . (@ +3-1) :
- 4 sequence pair
(a+o0) : (b*+2-1)
VO ICEREEY : (b* +3-1) f(x1, 22, Tmyr)
| (b+2-1) . (" +2-1) ’ H
[(b+1-1) . (a*+1-1) l f(xlvx%---’f”mwﬂ'7xw(m)+e

and at step 4 we obtain/® = M and M’ = M’ as is a Golay pair of lengtl2™" overZy, where
claimed.

For given H, m and ¢, suppose the permutation and f(xy, w2, Tgr) =
constantgg, e, ..., e, are used in Lemma 7 with the valde W Tomg 1, Tty s Tmgr) - (1= Zr(1))

Define the permutation by DL, Tt 2s - -+ Toncpr) - T (1)

o= (1L0—-1)(2,6-2)---([(£=1)/2],[ (¢ +1)/2]). +e(zr, 22,0, Tm)
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is produced by the case= 0 of Lemmab, or alternatively — of My, and in row k and column¢ of M. Since each
sequencei(i) has length2”, it follows that entryp of the

f(xl’m’(' coTmr) = " " ) sequence(2t/ + k) occurs in
UTm+1, Tm42y -+ s Tm+r) * 1- Lre-1)) " 1- T (e) .. . .
+ (Tt 1, Tty - Tmgr)  Tre—1) - (1= Tr(p) positioni := (216 + k)2" +p of f (D
+ 0" (T 1 Tma2s - o Tmr) - (1= Zro—1y) - e and in
O Tt Tz, Fmr) Tne-) T positioni’ := (2:4)2" + (2')p + k of . (12)
+e(xr, T, .0y ) _ _
_ Let (i1,i9,...,im+r) be the binary representation of=
is produced by the case= 0 of Lemmar. ST emHr=ii;, which by (11) we can depict in block form
Proof: We give the proof for the cage= 0 of Lemma 5; aS:
the proof for Lemma7 is similar. For ar_1y66_ € Zpu, the 4, m—tt1 Il ot
sequencec forms a standard Golay pair with a sequencel l l l
d satisfying (1). By (9), we can choosey so that the
algebraic normal form ofl* is given byd*(z1,z2, ..., zm) = 12 | k | p ‘
c(x1, T2,y Tm) + (H/Q)xﬁ(m) +e. We then a}pply the case (m —t) bits ¢ bits  bits
t =0 of Lemma 5, usinda, b) as the seed pair an@, d) as
the controlling pair, to produce the Golay pay, g). Similarly, by (12) we can depict the binary representation
Let (i1,42,...,%,) be the binary representation of theys;/ g4
integer ¢ in the range0 < i < 2™. The sequencef is "y . .
formed by placing a copy ot wheneveri ;) = 0 and “ m—t+1 m—ttr41 bmtr
a copy of b wheneveri,;, = 1, and then adding the l l l l
sequencécy-1,¢1-1,...,com_1-1). Sincex; is the indicatorm‘ ’ | D | 2 ‘
function for i;, this gives the claimed algebraic normal form .
f(@1,22,. .., Zmar) Of . (m —t) bits 7 bits ¢ bits
The same analysis holds fgr, except that the sequence _ _ )
(ds-1,d5-1,....d5m 1) is added instead ofco - 1,¢; - 1N which the two rightmost blocks of bits of have been
1o Com_1-1). m interchanged.
We next relate the algebraic normal form of the Golay pairs Since ; is the indicator function fori; and ;, and
(f,g) that can be constructed from Lemma50r7forgeneralf(xlvx%---’$m+r) is the algebraic normal form of, it

(satisfying0 < ¢ < m) to the form for the case = 0 follows that the algebraic normal form g¢f is

determined in Lemma 8. F(@p1), Tp2)s - - - » Tp(mtr))

Lemma 9. Let (f(z1,%2, ., Zmir), 9(21,22,.. ., Tmir))  (so, for example, each occurrence of bit— ¢ + 1 in i is
be a Golay pair of lengtl2™*" produced by the case= 0 replaced by bitn — ¢+ + 1 in ). -
of Lemma5 or 7, using a seed pair(a,b) of length 2" For example, consider again the constructed Golay pairs

ovng{H and a controlling pair(c, d) of Iength2m overZy (f.9), (f.g"), and(f",g") given directly after the proof of
satisfying(1). Let (f’,g’) be the Golay pair produced under| emmas 3, 4 and 5 respectively, all of which can be obtained
the same conditions, but for generabatisfyingd <t < m. fom Lemma5 with m = r — 2 and witht — 0,t=1, and

Then the algebraic normal form gf’, g’ is respectively ¢ = 2 respectively. The case= 0 is given by
f(I¢(1)’ I¢(2)7 e 7x¢(m+r))a f = (07 17 27 17 07 17 27 17 07 17 07 37 27 37 2’ 1)7
9(Tg(1)s Tp(2)s -+ » Top(mr))s
. . ) so that
where ¢ is the permutation of1,2,...,m + r} given by
i ifl1<i<m-—t f(x1, 22,23, 24) = 2(x122 + 2123 + T374) + 223 + 24.
(i) =qi+r fm—t+1<i<m (10) The case = 1 is given by

i—t fm+1<i<m-+r. .
f"=1(0,0,1,1,2,2,1,1,0,2,1,3,0,2,3,1)

Proof: We give the proof forf’; the proof forg’ is very — (2124 + T172 + Taws) + 2o + T3

similar. There is nothing to prove far = 0 so fix ¢t > 0,

and fix integers, ¢, p satisfyingd < k < 2%, 0 < £ < 2™, = [(z1, 24,22, 73),
0<p<2. L
- : . and the caseé = 2 is given b
Let My be thel x 2™ matrix corresponding tof and ¢ 4
let My be the2' x 2™~ matrix corresponding tof’, as £ '=1(0,0,0,2,1,1,1,3,2,2,0,2,1,1,3,1)

in Lemmab or 7. The sequenceg and f' are obtained by
reading the entries of these matrices column by column, and
so the sequencE2'/+k) occurs in row 0 and columef ¢+ k = [z, 24,210, 22),

= 2(1‘3$4 + x311 + .%'1,%2) + 221 4+ 22
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in accordance with Lemma 9. Similarly we havend

+ 2z, and

g(Il,I2,$3,$4) f(Il,IQ,I3,$4)
g// = g($1,$4,$2,173), g/ = g(Ig,iE4,$1,$2).

We have now assembled all the ingredients needed to

achieve our principal objective, namely to determine exihyi
the quaternary Golay sequences and pairs of lergth3
(m > 1) obtained by applying Lemmas and 7 to the 512
non-standard quaternary ordered Golay seed fair$) of
length 8 described in Theorem 2.

Theorem 10. Let m > 1 be an integer, and let and ¢ be
integers in the rang® <t <m and2 </ <m. Lett be a
bijection betweerd1,...,m} and{1,... m+3}\{m —t+
1,m—t+2,m—t+3}. Then, for any, eg, e1,...,em € Zy
and ug, u1, us, ug € Zs, the sequence pair

{

is a non-standard quaternary Golay pair of lengff*3,
where f(z1, 22, ..., zm+3) takes any one of the four forms:

f(‘rla‘rQa' --7xm+3)

flwi, 20,0 2my3) +22,(0m) + €

fi(@, 22, Tmgs) + 28— 2Tm—143

+ 2U0Tm—t4+1 + 2U3Tm—t+2 + (2up + 2ug + U3) T —43;
(13)

fi(m1, 22, g 3) + 2T 41Tt 43 + 2Tt 12T (1)

+ 2T 13T (1) + (2ur + 2u2 + 2uz + 1)@y _t42

+ (2u1 + uz + 1)Tm—t43; (14)

(@1, 22, s Tmg3) + 2T — 42T m—143

+ 2T m— 141 + 2u3Tm—42 + (2uo + 2uz + U3) Ty —i43;
(15)

fa(@y, @2, ..

+ 2T —t43Tr(0—1) + 2Tim—t+1T7(0) T 2Tm—1+3T+(0)

+ (2U1 + 2U2 + 2U3 + 1)$m,t+2 + (2U1 + us + 1)Im7t+37
(16)

Sy Tmg3) F 2Tt 18— t43 F 2Tt 2T (4—1)

where

filzr, e, .. Tmgs) ==

2Zm—t+1Tm—t+3T7(1) T 2Tm—t4+2Tm—t+3%+(1)
+ 2Zm—t41Tm—t+2 + 2U0Tm—t+1T7(1)
+ (2u1 + 2uz + 1)@t 277(1)

+ (2uo + 2uy + 2uz + 1) Tt 13T-(1)

m—1 m
+2 Z Tr(k)Tr(k+1) T Z €kTr(k) + €0
k=1 k=1

fo(xr,@a, .. Tmys) =
2T —t41Tm—t+3T7(0—1) T 2Tm—t4+2Tm—t4+3Tr(0—1)
+ 2T —t4+1Tm— 43T (0) T 2Tm—t42Tm—143T+(¢)
+ 28—t 41T 7 (0-1)Tr(0) T 2Tm—t43%r(0-1)Tr(0)
+ 2Zm—t41Tm—t+2 + 2U0Tm—t+1%7(0—1)
+ (2u1 + 2uz + 1) Tyt 227 (0—1)
+ (2uo + 2uy + 2uz + 1) Ty 13T(0—1)
+ 2U0Tm—t41%r(0) + (2u1 + 2u2 + 3) Tyt 12T (g
+ (2uo + 2uy + 2u2 + 3)Trm— 43T (0

m—1 m
+2 Z Tr(k)Tr(kt1) T Z ELTr (k) T €o-
k=1 k=1
ktl—1

Proof: Fix e, ep,e1,...,em € Zy and ug, uy, us,us €

Zs. Let (a,b) be the non-standard quaternary Golay pair of

length 8 given by

2019 + 2x9x3 + 2upr1 + 2U3T2
+(2UO + 2ug + U3)JJ3,

2I1$2 + 2$1$3

—I—(2u1 —|— 2UQ —|— 2U3 + 1)172
+(2u1 +ug + 1)z3

a($1,$2,$3) =

b(xlv €2, .’,Ug) =

(17)
respectively, which is the casgy = k; = 0 of Theorem 2.
Define the mappingr(i) := ¢~ '((i)), where ¢ is the
permutation of{1,2,...,m + 3} given by the case = 3
of (10). This mappingr is a permutation of1,2,...,m}, so
by (1) there is a standard Golay pait, d) for which ¢ has
the form

m—1

c(r1,22,...,0m) =2 Z T (k) T (kg1) + Zek%(k) + €0
k=1 k=1

(18)
(settingey in (1) to be the fixed value, -1 for 1 < k < m).
The form (13) forf (x1, za, . . ., xm3) arises from application
of Lemma 5 with seed paifa,b); the form (14) from
Lemma 5 with seed paifb, a); the form (15) from Lemm&
with seed paif{a, b); and the form (16) from Lemma with
seed pair(b, a). In all four cases the controlling pair used is
(e, d). We give the proof for the form (13) in detail; the proof
for the form (14) is very similar.

We wish to construct a quaternary Golay péajf,g) of
length 2m*3 from Lemma 5, using seed paiia,b) and
controlling pair (¢,d). Whent = 0, by Lemma 8 this pair
(f,g) is given by

Fx1, 22, 0 Tmyg) 1=
a(xm-l—laxm-l—% xm+3) : (1 - xrr(l))

+ b(xm-i—la Tm+2, xm+3) . xw(l)

+e(xr, 22,y Tm),
g/($1,$2, s ,Im+3) =
f/(xla:E?a s 7$m+3) + 2:E7'r(m) +e

respectively. Therefore, for generain the ranged < ¢ < m,
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by Lemma 9 the paif f, g) is given by 4m+2 . 16 non-standard quaternary ordered Golay pairs of

, length2m+3,
Fl@g0), o(2), - > Tp(m+3)) = o
(T4 1, Tret42> Tm—t43) - (1 = Tg(m1y)) Proof: Each form (13), (14), (15), (16) gives rise to a
+ b - . ) a set of sequences as the parameterg, 7, eg,e1,...,€em,
m—ttl) Em—t+2, Tm—t43) " Le(n (1)) uo, U1, u2, us Vary over their ranges. By comparison of cubic
T c(@g(1), To(2) -+ 5 To(m)); terms, all sequences in the sets arising from (13) and (¥4) ar
G (Ty(1)s Tp(2)s - - > Top(mt3)) = distinct from those in the sets arising from (15) and (16). By

comparison of quadratic terms, all sequences in the séa@ris

T (Ta1) To2)y - - Th(maz)) + 2Tp(n(m)) + €-
e plmts) prm) from (13) are distinct from those arising from (14), and #hos

Set f(x1,22,...,Tmy3) = Ji'(%(l),%(z), .-, Te(m+3))  arising from (15) are distinct from those arising from (16).

and g_(wl,wz,---,:vm+3) =g (%(1)’%(2)’---a%(f_n_w))- We firstly count the sequences in the sets arising from

Substitute from (17) and (18), and use the definitionmof (13) and (14). There are:! choices forr; m + 1 choices

to show that for ¢; 4™+ choices foreg, e1,...,en; and 2* choices for
F(@1, 20, Tmss) = ug, U1, u2, us. Sincer is a bijection betweeR1,...,m} and

{1,....m+3}\{m—-t+1,m—t+2,m—t+ 3}, each
choice of parameters yields a distinct sequence (for exampl
+ 2U0Tm—t4+1 + 2U3Tim—t42 we can considefuo, 2u; + 2ug + 1,us,2uo + 2us + uz}
+ (2U0 + 2us + U3)xm,t+3] . (1 — xT(l)) and {UO, 2uq + 2us + 3, 2u1 + 2uo + 2uz + 1, 2ui + usg + 1}
to form a linearly independent set when considering (13)
and (14) respectively). We therefore obtain exaety(m +
1) -4m+1. 24 .2 distinct sequences from (13) and (14). No

[2xm—t+lxm—t+2 + 2xm—t+2xm—t+3

+ 2T 11T m—t42 + 2T 41T —143
+ (2U1 + 2us 4+ 2ug + 1)xm—t+2

+ (2u1 + uz + D)Tm—t43] - 271) further sequences are obtained by considering the sequence
m-1 m f(w1,20,..., 2mi3) + 22y + e that forms a Golay pair
+2 Z Tr(k)Tr(k+1) + Z ekTr(k) T €0, with the sequencg(xy,za, ..., Tmyis)-
k=1 k=1 We next count the sequences in the sets arising from (15)
9(@1, 225 Tmys) = and (16). Each sequence in the set arising from (15) is cdunte
fwi, 20,00 Zmys) + 22,0 + 6. exactly twice as the parameters vary: the mapgirg m +

. . / (s -
. . — — — = —_
The claimed form (13) for the constructed sequence (aig) 2= L = un ot 1r e, wherer'(i) i= r(m + 1 1),
o ; : leavesy "z, (x)2, (k1) iNVariant but interchanges¢ —1)
is given by collecting terms. The algebraic normal forms . oo

. . andr(¢), and interchange®u; + 1 and2u; + 3. Similarly each
contain cubic terms and so both constructed sequences are . g : .
non-standard sequence in the set arising from (16) is counted exactlyetwic
) L : by considering the mapping+— m + 2 — ¢; ug — wug + 1;
The proof for the forms (15) and (16) is similar, noting from ;oo .
(2) that T — 7'. Since there aren — 1 choices for¢, we therefore

obtain exactlym!(m + 1)(m — 1) - 4™+ . 24 . 2/2 distinct

a*(xy, w2, x3) = a(xy, x2, x3) + 221 + 223 + 2u2 + us, sequences from (15) and (16), and no further sequences by
b* (21, w2, x3) = b(x1, T2, x3) + 202 + 223 + 2z + uz + 2. consideringf (w1, T2, . .., Tm13) + 2T(m) + €.

o ] Summing the two counts gives the stated minimum number
(The calculated forms for (15) and (16) |n|t|al_ly contaimnes ¢ - <iondard quaternary Golay sequences of leBigth.
(2u2 +uz+2)x,(p) and(2uz +us)x, (s respectively but these

¢ h b bsorbed into the I We finally count the minimum number of Golay pairs
erms have been absorbed Into the linear Wzlekx“’@’ ormed from these sequences. Inspection of the algebraic
which corresponds in each case to an adjustment of

Srmal forms shows, for each constructed sequeficthat

constante;.) . o i # f+c-1 foranyc € Z,. Therefore we can partition
The quaternary Golay sequences and pairs constructeqp . hstructed sequences into sets of the fai) U E(g),

Theorem 10 use the seed pdia,b) given by the case h h ; -
’ . t I -8 = 16 , h that
(ko, k1) = (0,0) of Theorem 2, as stated in (17). We do no%aC such set Involving Sequences, sue a

. . . E isess?-2 = 128 ordered Gol i
obtain further quaternary Golay sequences or pairs by usgéf) x Elg) comprise ordered Golay pairs (see

- ction 11). The minimum number of Golay pairs formed from
the seed pair given by_any cage, k1) # (0,0) of Thgorem 2. the constructed sequences is therefore given by multiglyin
For example, application of Lemma 5 to the resulting seed p

. fhe sequence count by 8 (and the true number will exceed this
(a+ko-1,b+ki-1)instead of ta, b) replaces the constructed, ;i im if two constructed sequences at smaller lengthe hav

pair (£, £ +2n) +e-1) by the pair(f”, £+ 22, +e1) he shared autocorrelation property). [

g B . X AT
yvheref T f+(.k1 o)1) + ko1, but this pair is already Table | lists the known number of standard and non-standard
included in the first form of Theorem 10. m . :
Ierg;th 2™ quaternary Golay sequences and pairs, using the
We now count the number of quaternary sequences and pair L .
. counts from Corollary 11. The minimum values given for
constructed in Theorem 10. : - R
m > 7 are both strict minima, because of the generalization
Corollary 11. For each integerm > 1 there are at least of Example 6 described at the end of Section IV. The values
(m 4+ 1)!(m + 1) - 4™+ . 16 non-standard quaternary Golay given for m < 4 are exact counts, by exhaustive computer

sequences of lengt?™ 3 and at least2(m + 1)!(m + 1) - search. But we do not currently know whether the minimum
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# quaternary Golay sequences # quaternary ordered Golay pairs

Length standard non-standard  standard non-standard

4 64 0 512 0

8 768 0 6,144 512

16 12,288 1,024 98,304 8,192

32 245,760 >18,432| 1,966,080 > 147,456
64 5,898,240 >393,216| 47,185,920 > 3,145,728

2™ (m >7) | ml/2-4m | > (m—2)I(m —2)-4™ | m! 42 | > 2(m —2)!(m —2) - 4mT!

TABLE |
NUMBER OF LENGTH2™ QUATERNARY GOLAY SEQUENCES AND ORDEREDGOLAY PAIRS

values given for lengths 32 and 64 are exact counts. Whiler Golay sequences of lengi’, wherem > 3". However
we know that no two standard quaternary Golay sequencesther [15] nor [13] gives details of the resulting sequesc
of length 32 have the shared autocorrelation property {5],and moreover carrying out the indicated procedure would lea
is possible that one of the non-standard quaternary Golagly to the forms (13) and (14) of Theorem 10 (corresponding
sequences of length 32 constructed in Theorem 10 has theéhe application of Lemma 5) and not to the forms (15) and
shared autocorrelation property with a standard quatg@ar (16) (corresponding to Lemma 7, in which arbitrary negative
lay sequence or with another non-standard quaternary Gotayersals of intermediate sequences are allowed).
sequence constructed in Theorem 10. In that case we coul®orwein and Ferguson [1] considered the Golay sequences
construct further non-standard quaternary Golay sequenaad pairs that can be obtained from an arbitrary initial @ola
and pairs of length 64 and higher via the resulting cross-olve pair (a,b) by the iterative use of BudiSin's construction,
autocorrelation functions (see Figure 3). It is also pdeditiat including the effect of (negative) reversal of intermediat
there are non-standard quaternary Golay sequences ohlerggiquences. Indeed, we have adopted their matrix notation to
32 or 64 that are not contained in Theorem 10. describe constructed sequences. However [1] deals exelysi
For h > 2, the non-standard Golay sequences and paikéth binary sequences, and the only known binary lerzjth
constructed in Theorem 10 and Example 6 (and its ge@olay pairs are standard pairs. In that case (negativejsave
eralizations) give non-standard Golay sequences and paifsintermediate sequences does not produce any additional
over Z,» under lifting and linear transformation (see the enGolay sequences or pairs, as noted at the start of Secti@n IV-
of Section II). Theorem 4.6 of [1] counts the number of binary ordered Golay
pairs of lengtl2™n that can be derived from an initial binary
Golay pair of lengthn, but does not give an explicit algebraic

In this section we summarize the main results of the papgprmal form for the case = 2" and once again deals only

clarify the relationship to other work, and list some opeWi’th the binary case, which is considerably less compler tha
questions. the quaternary case considered here. (Strictly, the cdyit o

We firstly summarize the main results of the paper. |hN€orem 4.6]is an upper bound since it is not proved there
Theorem 10 and Corollary 11 we have determined explicitﬂ?alt the counf[ed. sequences or pairs are d|§t|nct.)
and counted the quaternary Golay sequences and pairs dhfter submission of the original manuscript we were able
length 2™ (m > 4) obtained by applying Lemmas and 7 to obtain more detailed results on the generalizations of
to the 512 non-standard quaternary ordered Golay seed p&¥@mple 6 discussed in Section IV-D. These are reported
(a,b) of length 8 described in Theorem 2. These lemmas dft[6]- _ _
equivalent to the iterative use of Budiin's constructiasth We conclude with some open questions:
arbitrary negative reversals of intermediate sequentesed.

VI. CONCLUSION

1) Are the minimum counts of non-standard length 32 and
In Figure 2 we have identified a framework of constructions 64 quaternary Golay sequences and pairs in Table | exact
from which all known Golay sequences and pairs of lerijth (see the discussion at the end of Section V)?
over Zs» can be obtained explicitly, and have shown the 2) What underlies the shared autocorrelation property of
key importance of Turyn’s construction and its variations. the quaternary Golay sequences (4)? Are there further
In Example 6 and its generalizations we have demonstrated examples of Golay sequences of len@th over Zsn
that this framework is sufficiently powerful to produce fust having the shared autocorrelation property (apart from
guaternary Golay sequences and pairs of ler2gth(m > 7) trivial liftings and linear transformations of (4))? If so,
that cannot be obtained by any other known construction. this would allow the construction of further infinite
We next describe the relationship to other work. Schmidt  families of non-standard Golay sequences and pairs via
[15, Theorem 7] recently gave an algebraic normal form  a new cross-over of autocorrelation functions (see the
construction for “near-complementary sequences”, based i procedure of Section V).
part on earlier work of Parker and Tellambura [13], and 3) Are there any non-standard binary lengtff Golay
remarked [15, p. 3230] that it could be applied to the Golay  pairs, arising either from a shared autocorrelation prop-
sequences of Theorem 2 “to obtain an explicit construction erty of standard binary Golay sequences or in some other



way?
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