
Mathematisch-Naturwissenschaftliche Fakultät

Katja Frieler | Anders Levermann | J. Elliott | J. Heinke | A. Arneth | M. 
F. P. Bierkens | P. Ciais | D.B. Clark | D. Deryng | P. Doell | P. Falloon 
| B. Fekete | C. Folberth | A. D. Friend | C. Gellhorn | S. N. Gosling | 
I. Haddeland | N. Khabarov | M. Lomas | Y. Masaki | K. Nishina | K. 
Neumann | T. Oki | R. Pavlick | A. C. Ruane | E. Schmid | C. Schmitz | 
T. Stacke | E. Stehfest | Q. Tang | D. Wisser | V. Huber | F. Piontek | L. 
Warszawski | J. Schewe | H. Lotze-Campen | H. J. Schellnhuber

A framework for the cross-sectoral 
integration of multi-model impact 
projections

land use decisions under climate impacts uncertainties

Postprint archived at the Institutional Repository of the Potsdam University in:
Postprints der Universität Potsdam
Mathematisch-Naturwissenschaftliche Reihe ; 457
ISSN 1866-8372
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407968

Suggested citation referring to the original publication:
Earth System Dynamics 6 (2015) 2, pp. 447–460 
DOI http://dx.doi.org/10.5194/esd-6-447-2015
ISSN (print) 2190-4979
ISSN (online) 2190-4987





Earth Syst. Dynam., 6, 447–460, 2015

www.earth-syst-dynam.net/6/447/2015/

doi:10.5194/esd-6-447-2015

© Author(s) 2015. CC Attribution 3.0 License.

A framework for the cross-sectoral integration of

multi-model impact projections: land use decisions

under climate impacts uncertainties

K. Frieler1, A. Levermann1,2, J. Elliott3,4, J. Heinke1, A. Arneth5, M. F. P. Bierkens6, P. Ciais7,

D. B. Clark8, D. Deryng9, P. Döll10, P. Falloon11, B. Fekete12, C. Folberth13, A. D. Friend14, C. Gellhorn1,

S. N. Gosling15, I. Haddeland16, N. Khabarov17, M. Lomas18, Y. Masaki19, K. Nishina19,

K. Neumann20,21, T. Oki22, R. Pavlick23, A. C. Ruane24, E. Schmid25, C. Schmitz1, T. Stacke26,

E. Stehfest21, Q. Tang27, D. Wisser28, V. Huber1, F. Piontek1, L. Warszawski1, J. Schewe1,

H. Lotze-Campen29,1, and H. J. Schellnhuber1,30

1Potsdam Institute for Climate Impact Research, Potsdam, Germany
2Institute of Physics, Potsdam University, Potsdam, Germany

3University of Chicago Computation Institute, Chicago, Illinois, USA
4Columbia University Center for Climate Systems Research, New York, New York, USA

5Karlsruhe Institute of Technology, IMK-sIFU, Garmisch-Partenkirchen, Germany
6Utrecht University, Utrecht, the Netherlands

7IPSL – LSCE, CEA CNRS UVSQ, Centre d’Etudes Orme des Merisiers, Gif sur Yvette, France
8Centre for Ecology & Hydrology, Wallingford, UK

9Tyndall Centre, School of Environmental Sciences, University of East Anglia, Norwich, UK
10Institute of Physical Geography, J. W. Goethe University, Frankfurt, Germany

11Met Office Hadley Centre, Exeter, UK
12Civil Engineering Department, The City College of New York, New York, USA

13Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
14Department of Geography, University of Cambridge, Cambridge, UK

15School of Geography, University of Nottingham, Nottingham, UK
16Norwegian Water Resources and Energy Directorate, Oslo, Norway

17International Institute for Applied System Analysis, Laxenburg, Austria
18Centre for Terrestrial Carbon Dynamics, University of Sheffield, Sheffield, UK

19Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan
20Wageningen University, Laboratory of Geo-information Science and Remote Sensing,

Wageningen, the Netherlands
21PBL Netherlands Environmental Assessment Agency, The Hague, the Netherlands

22The University of Tokyo, Tokyo, Japan
23Max Planck Institute for Biogeochemistry, Jena, Germany

24NASA GISS, New York, New York, USA
25University of Natural Resources and Life Sciences, Vienna, Austria

26Max Planck Institute for Meteorology, Hamburg, Germany
27Key Laboratory of Water Cycle and Related Land Surface Process, Institute of Geographic Sciences and

Natural Resources Research, Chinese Academy of Sciences, Beijing, China
28Center for Development Research, University of Bonn, Bonn, Germany

29Humboldt-Universität zu Berlin, Berlin, Germany
30Santa Fe Institute, Santa Fe, New Mexico, USA

Correspondence to: K. Frieler (katja.frieler@pik-potsdam.de)

Received: 28 July 2014 – Published in Earth Syst. Dynam. Discuss.: 26 September 2014

Published by Copernicus Publications on behalf of the European Geosciences Union.



448 K. Frieler et al.: Land use decisions under climate impacts uncertainties

Revised: 30 April 2015 – Accepted: 16 May 2015 – Published: 16 July 2015

Abstract. Climate change and its impacts already pose considerable challenges for societies that will further

increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emis-

sions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012;

Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on

societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response

for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate

change mitigation itself implies fundamental changes in, for example, the global energy system. The associated

challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of in-

creasing food demand that may draw on the same resources. For example, ensuring food security for a growing

population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for

bio-energy production. So far, available studies addressing this problem have relied on individual impact mod-

els, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision

framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-

model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project

(ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate

the information required for robust decision making.

Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production

and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop

and water model simulations are combined to explore irrigation increases as one possible measure of agricultural

intensification that could limit the expansion of cropland required in response to climate change and growing food

demand. This example shows that current impact model uncertainties pose an important challenge to long-term

mitigation planning and must not be ignored in long-term strategic decision making.

1 Introduction

Climate change mitigation and rising food demand drive

competing responses (Falloon and Betts, 2010; Warren,

2011), resulting in, for example, competition for land be-

tween food and bio-energy production (Godfray et al., 2010a;

Searchinger et al., 2008; Tilman et al., 2009). Given a certain

level of global warming and CO2 concentration, the required

area of land of food production is determined by (1) food

demand driven by population growth and economic develop-

ment, (2) human management decisions influencing produc-

tion per land area, and (3) biophysical constraints limiting

crop growth and nutrients or water availability for irrigation

under the management conditions considered. Similarly, the

land area required to meet a certain climate mitigation target

depends on (1) the amount of energy to be produced as bio-

energy and the required amount of natural carbon sinks, (2)

human decisions determining the intensity of bio-energy pro-

duction per land area, and (3) bio-physical constraints regard-

ing the production of bio-energy per land area and potential

losses of natural carbon sinks under climate change. We con-

sider climate protection by bio-energy production and carbon

storage in natural vegetation as examples of additional con-

straints on land use (LU) that are relatively straightforward

to quantify. However, other ecosystem services could impose

further constraints that could be integrated if it were possible

to describe them in a quantitative manner based on available

model outputs or external sources. For example, Eitelberg et

al. (2015) showed that different assumptions with regard to

protection of natural areas can lead to a large variation of

estimates of available cropland.

Assuming certain demands for food and energy (point 1),

individual societal decisions (point 2) have to be evaluated

and adjusted in the context of the competing interests. Here,

we focus on the question of how the uncertainty in (bio-)

physical responses to societal decisions (point 3) can be rep-

resented in this evaluation. Based on an illustrative analy-

sis of multi-model impact projections from different sectors,

we show that the uncertainties associated with future crop

yield projections, changes in irrigation water availability, and

changes in natural carbon sinks are considerable and must

not be ignored in decision making with regards to climate

protection and food security. Due to the high inertia of energy

markets and infrastructure mitigation decisions are long-term

decisions that may not allow for ad hoc decisions in the light

of realized climate change impacts (e.g. Unruh, 2000).

Models already exist that couple surface hydrology,

ecosystem dynamics, crop production (Bondeau et al., 2007;

Rost et al., 2008), and agro-economic choices (Havlik et

al., 2011; Lotze-Campen et al., 2008; Stehfest et al., 2013),

which allow issues such as carbon cycle implications of LU

changes and irrigation constraints to be addressed. These

models provide possible solutions for LU under competing

interests. However, integrative analyses usually rely only on
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individual impact models, without resolving the underlying

uncertainties resulting from our limited knowledge of bio-

physical responses.

There are also a number of detailed, sector-specific stud-

ies covering a wide range of process representations and pa-

rameter settings not represented by single, integrative stud-

ies (Haddeland et al., 2011 (water); Rosenzweig et al., 2014

(crop yields); Sitch et al., 2008 (biomes)). A comprehensive

integrative assessment, as requested by the Intergovernmen-

tal Panel on Climate Change (IPCC), must cover the full

uncertainty range spanned by these models. Such an assess-

ment should not only quantify uncertainties associated with

climate model projections, but also account for the spread

across impact models. However, so far a full integration of

these sector-specific multi-model simulations has been hin-

dered by the lack of a consistent scenario design.

Owing to its cross-sectoral consistency (Warszawski et al.,

2013a), the recently launched Inter-Sectoral Impact Model

Intercomparison Project (ISI-MIP, www.isi-mip.org) pro-

vides a first opportunity to bring the dimension of multiple

impact models to the available integrative analyses of cli-

mate change impacts and response options. Here we propose

a probabilistic decision framework to explore individual so-

cietal decisions regarding agricultural management and cli-

mate change mitigation measures in the light of the remain-

ing uncertainties in biophysical constraints. In this paper we

will describe the additional steps required to provide a basis

for robust decision making in the context of uncertainties in

climate change impacts.

2 A probabilistic decision framework

Let us consider a certain greenhouse gas concentration sce-

nario and its associated climate response described by a

general circulation model (GCM); e.g. Representative Con-

centration Pathway 2.6 (RCP) (van Vuuren et al., 2011) in

HadGEM2-ES, or any other pathway or climate model. Then

a framework already exists for combining this RCP with dif-

ferent storylines of socioeconomic development (e.g. popula-

tion growth, level of cooperation, etc.), the Shared Socioeco-

nomic Pathways (SSP, van Vuuren et al., 2013), which pro-

poses different political measures, e.g. bringing high popu-

lation growth in line with a low emission scenario. Within

the decision framework, we assume that certain demands for

food, bio-energy, and natural carbon sinks have been derived

based on this process of merging an SSP with the considered

RCP. Food demand could, for example, be derived from pop-

ulation numbers and the level of economic development by

extrapolation from empirical relationships (Bodirsky et al.,

2015). Within this setting, we propose a probabilistic deci-

sion framework that allows for an evaluation of agricultural

management options determining food production (e.g. with

regard to fertilizer input, irrigation fractions, or selections

of crop varieties), in combination with decisions about the

Probability of Climate 

   Protection Failure
c

f

Exemplary Food Production Area F

Exemplary Area of Natural Carbon Sinks or 

  Bioenergy Production N = Total Area - F

P
ro

b
a

b
ility

 D
e

n
s
ity

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y

         Required Food Production Area F

Required Area of Natural Carbon Sinks or Bioenergy Production N

Figure 1. Concept of a probabilistic decision framework allowing

for an evaluation agricultural management decisions under uncer-

tainty of biophysical responses. Red PDF: uncertainty associated

with the area of cropland required to fulfil future food demand.

Blue PDF: uncertainty associated with the (natural) carbon sinks

and stocks required to ensure climate protection.

intensity of bio-energy production and protection of natural

carbon sinks. The approach is designed to account for uncer-

tainties in responses of crop yields and natural carbon sinks

to management, climate change, and increasing atmospheric

CO2 concentrations as represented by the spread of multi-

model impact projections. Within this framework, long-term

decisions could be based on the likelihood of fulfilling the

demand for bio-energy production and natural carbon sinks

while at the same time ensuring food security.

To describe the scheme, let us first consider a simplistic

situation where the area required for food production and the

area required for bio-energy production and natural carbon

sinks are described in a one-dimensional way, i.e. by their

extent and independent of spatial patterns. Then the deci-

sion framework can be described by two probability density

functions (PDFs, see Fig. 1): the red PDF (f) in the upper

panel of Fig. 1 describes our knowledge of the required food-

production area given the management option to be assessed

under the considered RCP and climate model projection. The

width of the distribution is fully determined by uncertain-

ties in crop yield responses to the selected management and

changes in climate and CO2 concentrations. Intensification

of production, for example by increasing irrigation or fertil-

izer use, shifts the PDF to the left, since less land would be

required to meet demand.

The blue PDF (c) illustrates our knowledge of the required

land area to be maintained as natural carbon sinks, or used

for bio-energy production, in order to fulfil the prescribed

demands. In this case, the width of the distribution depends

on, for example, uncertainties regarding the capacity of natu-
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ral carbon sinks, the yields of bio-energy crops under climate

change, and the efficacy of the considered management deci-

sions. Assuming higher efficiency in bio-energy production

per land area shifts the distribution to the right.

Mitigation strategies must now consider the physical

trade-off between cropland area (F ) and the area available

for retention of natural carbon sinks and stocks or bio-energy

production (N): N = T − F, where T = total available area.

Assuming food demand will always be met, even at the ex-

pense of climate protection, the probability of climate pro-

tection failure (underproduction of bioenergy, or insufficient

carbon uptake by natural vegetation) is given by

P =

∞∞∫∫

0 T−F

c (N)dNf (F)dF.

Here, for any food production area F, the probability that

more than the remaining area N = T − F is needed to ful-

fil the demand for bioenergy and carbon sinks is described

by the inner integral and the blue area in Fig. 1. The proba-

bility of climate protection failure given that food demand

will always be fulfilled is the average of these probabili-

ties of climate protection failure weighted according to the

PDF describing the required food production area. In the case

that the probability is higher than acceptable, the agricultural

management decisions and mitigation measures must be re-

vised and re-evaluated.

Assuming that the uncertainties in projected crop yields,

bio-energy production and carbon sinks can be captured by

multi-impact model projections, the probability can be ap-

proximated in the following two step approach.

Firstly, multiple crop model simulations (i) under the con-

sidered management assumptions and climate projections are

translated into food production areas Fi , fulfilling the con-

sidered demand (see yellow bars in Fig. 2). The translation

can be done by agro-economic LU models such as MAg-

PIE (Model of Agricultural Production and its Impacts on

the Environment) (Lotze-Campen et al., 2008) or GLOBIOM

(Global Biosphere Management Model) (Havlik et al., 2011).

The diversity of these models used to determine “optimal”

LU patterns based on expected crop yields can be considered

as an additional source of uncertainty in LU patterns. It can

be implemented into the scheme by applying multiple eco-

nomic models, i.e. increasing the sample of LU patterns to

n = number of crop models × number of economic models.

However, since the differences in LU patterns introduced by

different economic models may be due to different “societal

rules” for land expansion, this component may rather be con-

sidered as belonging to the “socioeconomic decision” space.

In this case they can be handled separately from the uncer-

tainties introduced by our limited knowledge about biophys-

ical responses as represented by the crop models. Most agro-

economic models also account for feedbacks of LU changes

or costs of intensification on prices, demand, and trade (Nel-

son et al., 2013). Since in our decision framework demand

Figure 2. Implementation of the probabilistic decision framework

based on multi-model impact projections. Step 1: food demand is

translated into required food production area (F) based on multi-

crop model simulations (i) (potentially combined with multiple wa-

ter model simulations (j ) to account for irrigation water constraints)

under a fixed management assumption (yellow bars). T = total land

area available for food or bio-energy production and conservation

for natural vegetation. N = land area left for bio-energy production

or natural vegetation assuming future food demand will always be

fulfilled (green bars). Step 2: each pattern Nij is evaluated if it

is sufficient to fulfil a pre-determined demand for natural carbon

sinks and bioenergy production based on multiple crop model and

biome model simulations (green tick marks show agreement and red

crosses failure).

is considered to be externally prescribed, one could even in-

troduce much more simplified, but highly transparent, allo-

cation rules driven only by maximum yields, assumed costs

of intensification or land expansion, and intended domestic

production.

Then, each individual food production pattern leaves a

certain land area Ni for bio-energy production and conser-

vation of natural carbon sinks (Ni = T − Fi , green bars in

Fig. 2). Increased irrigation could reduce the required food

production area, leaving more area for bio-energy produc-

tion and conservation of natural carbon sinks, but potential

irrigation is limited by available irrigation water. These con-

straints can be integrated using consistent multi-water model

simulations (j ) which provide estimates of available irriga-

tion water. Combining these with the individual crop model

simulations leads to an array of individual estimates of the

required land area Fij .

Secondly, each land area Nij = Tij − Fij has to be evalu-

ated by a set of crop model and biome model simulations to

test if it allows for the required bio-energy production under

the assumed management strategy and the required uptake

of carbon. These individual evaluations (illustrated in Fig. 2

by green tick marks for success and red crosses for failure)

allow for an estimation of the probability of climate protec-

tion failure in terms of the number of failures per number of

Earth Syst. Dynam., 6, 447–460, 2015 www.earth-syst-dynam.net/6/447/2015/
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impact model combinations. Again alternative decisions on

bio-energy production could change the probabilities. Note

that the intensity of bio-energy production will also be con-

strained by the available irrigation water (van Vuuren et al.,

2009). Thus, though not indicated in Fig. 2, the evaluation

may also build on multi-water model simulations similarly

to the projected food production area.

For this kind of evaluation, it is important for the required

impact simulations to be forced by the same climate input

data, as done in ISI-MIP. Otherwise the derived LU patterns

would be inconsistent. Furthermore, the flexible design of

the ISI-MIP simulations allows for an evaluation of differ-

ent LU patterns using a number of existing crop model and

biome model simulations, without running new simulations

(see Sect. 3). To date, the available crop model and biome

model simulations have not been translated into “required

area for food production” or “required areas for bio-energy

production and natural carbon sinks” except for a first at-

tempt to quantify food production areas based on multiple

crop and economic models (Nelson et al., 2013). However,

in that study, the settings were limited to four out of seven

crop models and to a subset of simulations where CO2 con-

centrations were held constant at present-day levels.

Here we restrict our analysis to an illustration of the

relevance of impact model uncertainties in the evaluation

of different LU patterns and management assumptions and

how this relates to crop/food production and natural carbon

sinks/stocks. We use simulations from 7 global gridded crop

models (GGCMs, Rosenzweig et al., 2014), 11 global hydro-

logical models (Schewe et al., 2014), and 7 global terrestrial

bio-geochemical models (Friend et al., 2014; Warszawski et

al., 2013) generated within ISI-MIP to address the following

questions:

1. How large is the inter-impact-model spread in pro-

jected global crop production under different levels of

global warming assuming present-day LU patterns and

present-day management (see Table S1 in the Supple-

ment)?

2. How can multi-water model projections be used to esti-

mate the potential intensification of food production due

to additional irrigation and how does the induced uncer-

tainty in runoff projections compare to the uncertainty

in crop yield projections?

3. How large is the spread in projected losses in natural

carbon sinks and stocks of an illustrative future LU pat-

tern that increases the probability of meeting future food

demand?

3 Data and methods

3.1 Input data for impact model simulations

All impact projections used within this study are forced by

the same climate input data (Warszawski et al., 2014). For

ISI-MIP, daily climate data from five general circulation

models (GCMs) from the Coupled Model Intercomparison

Project Phase 5 (CMIP5) archive (Taylor et al., 2012) were

bias-corrected to match historical reference levels (Hempel

et al., 2013). Here, we only use data from Hadley Global En-

vironment Model 2 – Earth System (HadGEM2-ES), the In-

stitut Pierre Simon Laplace model IPSL-CM5A-LR, and the

Model for Interdisciplinary Research on Climate Earth Sys-

tem Model (MIROC-ESM-CHEM) (see Table S6 in the Sup-

plement) since these models reach a global mean warming of

at least 4 ◦C with regard to 1980–2010 levels under RCP8.5

– the highest of the four RCPs (Moss et al., 2010). All model

runs accounting for changes in CO2 concentrations are based

on the relevant CO2 concentration input for the given RCP.

3.2 LU patterns and food demand

As a present-day reference for agricultural LU patterns we

apply the MIRCA2000 irrigated and rainfed crop areas (Port-

mann et al., 2010). They describe harvested areas as a frac-

tion of each grid cell. The patterns are considered to be rep-

resentative for 1998–2002. Simulated rainfed and fully irri-

gated productions within each grid cell were multiplied by

the associated fractions of harvested areas and added up to

calculate the simulated production per grid cell. Historical

LU patterns are subject to large uncertainties (Verburg et al.,

2011). Alternative maps are provided by, for example, Fritz

et al. (2015). Here, we use the MIRCA2000 patterns as they

make our estimated changes in production consistent to the

spatial maps of relative yield changes provided by Rosen-

zweig et al. (2014). In addition, the total agricultural area de-

rived from MIRCA2000 is consistent with the area of natural

vegetation as described by the MAgPIE model and used as

a reference for the analysis of the biome model projections

of changes in carbon fluxes and stocks (see last paragraph of

this section).

As an illustrative future LU pattern, we use a projection

of the agro-economic LU model MAgPIE (Lotze-Campen

et al., 2008; Schmitz et al., 2012) generated within the ISI-

MIP-AgMIP (Agricultural Model Intercomparison and Im-

provement Project) collaboration and published in Nelson

et al. (2014). The model computes LU patterns necessary

to fulfil future food demand (Bodirsky et al., 2015). Here,

food demand is calculated from future projections of pop-

ulation and economic development (gross domestic prod-

uct, GDP) under the “middle of the road” Shared Socioe-

conomic Pathway (SSP2, https://secure.iiasa.ac.at/web-apps/

ene/SspDb) (Kriegler et al., 2010). The associated LU pro-

jections are based on the historical and RCP8.5 simulations

by HadGEM2-ES and associated yields generated by the

LPJmL model (Lund-Potsdam-Jena managed Land, see Ta-

ble S1 of the Supplement) (Nelson et al., 2013). The pattern

is based on fixed CO2-concentration (370 ppm) crop model

simulations. MAgPIE accounts for technological change

leading to increasing crop yields (applied growth rates are

www.earth-syst-dynam.net/6/447/2015/ Earth Syst. Dynam., 6, 447–460, 2015
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listed in Table S4 in the Supplement), while our analysis is

based on crop model simulations accounting for increasing

levels of atmospheric CO2 concentrations but no technologi-

cal change. In the context of our study, the pattern is consid-

ered only a plausible example of a potential future evolution

of land use. However, it does not assure consistency between

food demand and production for different crop yield projec-

tions. To achieve consistency, individual crop model projec-

tions would have to be translated into individual LU patterns

as described in Sect. 2 and Fig. 2.

The present-day reference for the total area of natural veg-

etation is taken from the 1995 MAgPIE pattern. The MAg-

PIE model is calibrated with respect to the spatial pattern

of total cropland to be in line with other data sources, like

the MIRCA2000 data set (Schmitz et al., 2014). That means

that the area of natural vegetation assumed here is not in

conflict with the total area of harvested land described by

MIRCA2000 and used here to calculate crop global produc-

tion based on the crop model simulations. However, the pat-

terns of individual crops may differ, due to the underlying

land use optimization approach. Future projections of the to-

tal area of natural vegetation are taken from the MAgPIE

simulation described above.

3.3 Impact model simulations

3.3.1 Crop models

Our considered crop model ensemble (see Table 1) represents

the majority of GGCMs currently available to the scientific

community (run in partnership with the AgMIP; Rosenzweig

et al., 2012). In their complementarity, the models represent

a broad range of crop growth mechanisms and assumptions

(see Table 1 and S1 in the Supplement for more details).

While the site-based models were developed to simulate crop

growth at the field scale, accounting for interactions among

crop, soil, atmosphere, and management, the agro-ecosystem

models are global vegetation models originally designed to

simulate global carbon, nitrogen, water, and energy fluxes.

The site-based models are often calibrated by agronomic

field experiments, while the agro-ecosystem models are usu-

ally not calibrated (LPJ-GUESS), or only on a much coarser

scale such as national yields (LPJmL). The agro-ecological

zone model (Integrated Model to Assess the Global Envi-

ronment – IMAGE) was developed to assess agricultural re-

sources and potential at regional and global scales.

The crop modelling teams provided “pure crop” runs, as-

suming that the considered crop is grown everywhere, ir-

respective of current LU patterns but only accounting for

restriction due to soil characteristics. For each crop annual

yield data are provided assuming rainfed conditions and full

irrigation not accounting for potential restrictions in wa-

ter availability. In addition modelling groups provided the

amount of water necessary to reach full irrigation except for

PEGASUS (Predicting Ecosystem Goods And Services Us-

Table 1. Short characterisation of the applied global gridded crop

models. More details are provided in Table S1 in the Supplement.

Global gridded Model type Reference level

crop model

EPIC site-based crop model potential yields

GEPIC site-based crop model present-day yields

IMAGE agro-ecological zone models present-day yields

LPJ-GUESS agro-ecosystem model potential yields

LPJmL agro-ecosystem model present-day yields

pDSSAT site-based crop model present-day yields

PEGASUS agro-ecosystem model present-day yields

Table 2. Short characterisation of the applied water models. More

details are provided in Sect. 3.5 in the Supplement.

Global water Energy Dynamic

model balance vegetation

changes

DBH Yes No

H08 Yes No

JULES Yes Yes

LPJmL No Yes

Mac-PDM.09 No No

MATSIRO Yes No

MPI-HM No No

PCR-GLOBWB No No

VIC Only for snow No

WaterGAP No No

WBM No No

ing Scenarios) and IMAGE. This design of the simulations

makes the projections highly flexible with regard to LU pat-

terns that can be applied in post-processing as described in

Sect. 3.2.

The quantity projected differs from model to model, rang-

ing from yields constrained by current management deficien-

cies to potential yields under effectively unconstrained nutri-

ent supply (Table 1 and Table S1 in the Supplement). There-

fore, we only compare relative changes in global production

to relative changes in demand. Since simulated yield changes

may strongly depend on, for example, the assumed level of

fertilizer input in the reference period, we consider this as-

pect as a critical restriction. In this way, the analysis pre-

sented here is an illustration of how the proposed decision

framework could be filled, rather than a quantitative assess-

ment.

The default configuration of most models includes an ad-

justment of the sowing dates in response to climate change,

while total heat units to reach maturity are held constant, ex-

cept for in PEGASUS and LPJ-GUESS. Three models in-

clude an automatic adjustment of cultivars.
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Table 3. Short characterisation of the applied biome models. More details are provided in Sect. 6 in the Supplement.

Global vegetation model Represented cycles Dynamic vegetation changes

LPJmL water and carbon yes

JULES carbon yes

JeDI water and carbon cycle yes

SDGVM water and carbon, below ground nitrogen no

VISIT water and carbon no

Hybrid carbon and nitrogen yes

ORCHIDEE carbon not in the configuration used for ISI-MIP
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Figure 3. Adaptive pressure on global crop production and effects of irrigation and LU adaptation. Relative changes in crop global production

(wheat, maize, rice, soy) at different levels of global warming with respect to the reference data (global production under unlimited irrigation

on currently irrigated land, averaged over the 1980–2010 reference period). Horizontal red lines indicate the relative change in demand

projections for the years 2020, 2050, and 2100 due to changes in population and GDP under SSP2. First column of each global mean

warming block: change in global production under fixed current LU patterns assuming unlimited irrigation restricted to present-day irrigated

land. Second block: relative change (with regard to reference data) in global production assuming potential expansion of irrigated land

accounting for irrigation water constraints as projected by 11 water models (for details see the Supplement). Third column: based on the

same water distribution scheme as column 2 but applied to the 2085 LU pattern provided by MAgPIE. EPIC is excluded from the LU

experiment as simulations are restricted to present-day agricultural land. Colour coding indicates the GGCM. Horizontal bars represent

results for individual climate models, RCPs, GGCMs, and hydrological models (for column 2 and 3). Coloured dots represent the GGCM-

specific means over all GCMs and RCPs (and hydrological models). Black boxes mark the inner 90 % range of all individual model runs.

The central black bar of each box represents the median over all individual results.

3.3.2 Water models

The considered water model ensemble comprises four land

surface models accounting for water and energy balances,

six global hydrological models only accounting for water

balances and one model ensuring energy balance for snow

generation (see Table 2 and Table S3 in the Supplement).

Following the ISI-MIP protocol, all modelling teams were

asked to generate naturalized simulations excluding human

influences. Here we aggregate the associated runoff pro-

jections over 1 year and so-called food production units

(FPU, Kummu et al., 2010) representing intersections be-

tween larger river basins and countries (see Fig. S7 in the

Supplement for the definition of the FPUs). In this way, we

create an approximation of the water available for irrigation

(see Sect. 3 in the Supplement for a detailed description of
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the calculation of the available crop-specific irrigation wa-

ter).

For illustrative purposes, we assume that irrigation water

(plus a minor component of water for industrial and house-

hold uses) is limited to 40 % (Gerten et al., 2011) of the an-

nual runoff integrated over the area of one FPU. In addition,

we assume a project efficiency of 60 %, where 60 % of the ir-

rigation water is ultimately available for the plant. The avail-

able water is distributed according to where it leads to the

highest yield increases per applied amount of water, as cal-

culated annually. The information is available at each grid

cell from the “pure rainfed” and “full irrigation” simulations

provided by the crop models and the information about the

irrigation water applied to reach full irrigation. To generate

probabilistic projection, each crop model projection is com-

bined with each water model projection (see the Supplement

for more details). Our approach only accounts for renewable

surface and groundwater. Model simulations account for the

CO2 fertilization effect on vegetation if this effect is imple-

mented in the models.

3.3.3 Biome models

Similar to the crop model, the biome modelers provided

“pure natural vegetation” runs without accounting for cur-

rent or future LU patterns but assuming that the complete

land area is covered by natural vegetation wherever possi-

ble given soil characteristics. In this way, potential LU pat-

terns can be applied and tested in post-processing. The main

characteristics of the considered models are listed in Table 3

(and Table S5 in the Supplement for some more detail). Here,

we use the ecosystem–atmosphere carbon flux and vegetation

carbon as two of the main output variables provided by the

models. Both are aggregated over the area of natural vege-

tation as described by the MAgPIE projection introduced in

Sect. 3.2. To quantify the pure LU-induced changes the an-

nual carbon stocks and fluxes under fixed 1995 LU are com-

pared to the associated values assuming an expansion of agri-

cultural land as described by MAgPIE.

Biophysical simulations are based on HadGEM2-ES and

RCP8.5. All simulations account for the CO2 fertilization ef-

fect. Results for the simulations where CO2 is held constant

at year 2000 levels are shown in the Supplement. Our ap-

proach does not account for the carbon released from soil

after LU changes (Smith, 2008). While agricultural land can

be considered as carbon neutral to the first order (cultivated

plants are harvested and consumed), the conversion process

emits carbon to the atmosphere as soil carbon stocks typi-

cally degrade after deforestation (Müller et al., 2007).

3.4 Partitioning of the uncertainty budget associated

with crop production changes

To separate the climate-model-induced uncertainty from the

impact model uncertainty, the GGCM-specific spread of

the relative crop production changes at different levels of

global warming is estimated by the standard deviation of the

GGCM-specific mean values. These are calculated over all

climate-model-specific (and RCP-specific) individual values

(e.g. coloured dots in Fig. 3), or all water-model-specific in-

dividual values, in the case of the production under maxi-

mum irrigation. The climate-model-induced or water-model-

induced spread is estimated as the standard deviation over the

individual deviation from these GGCM means.

4 Results and Discussion

4.1 Adaptive pressure on future food production

GGCMs project a wide range of relative changes in global

wheat, maize, rice, and soy production at different levels of

global warming and associated CO2 concentrations (first col-

umn of each global mean warming box in Fig. 3). At 4 ◦C,

the GGCM spread is more than a factor of 5 larger than the

spread due to the different climate models (see Table 4, esti-

mated as described in Sect. 3). This is partly due to the bias

correction of the climate projections, which includes a cor-

rection of the historical mean temperature to a common ob-

servational data set (Hempel et al., 2013), and may depend on

the selection of the three GCMs. However, the results suggest

that the inter-crop-model spread will also be a major compo-

nent of the uncertainty distribution associated with the area

of cropland required to meet future food demand.

Despite considerable uncertainty, it is evident that even

if global production increases arise from optimistic assump-

tions about CO2 fertilization, this effect alone is unlikely to

balance demand increases driven by population growth and

economic development (assuming that the observed relation-

ship between per capita consumption patterns and incomes

holds in the future and ignoring demand-side measures; Fo-

ley et al., 2011; Parfitt et al., 2010). All GGCMs show a

quasi-linear dependence on global mean temperature across

the three different climate models, considered scenarios, and

range of global mean temperature changes (Figs. S5–S6 in

the Supplement). Values range from −3 to +7 % ◦C−1 for

wheat, −8 to +6 % ◦C−1 for maize, −4 to +19 % ◦C−1 for

rice, and −8 to +12 % ◦C−1 for soy (Table S2 in the Supple-

ment, see Rosenzweig et al., 2014, for an update of the IPCC-

AR4 Table 5.2; Easterling and et al., 2007). It is not neces-

sarily clear that crop-production changes can be expressed in

a path-independent way as a function of global mean tem-

perature change. In particular, CO2 concentrations are ex-

pected to modify the relationship with global mean tempera-

ture. However, for the seven GGCMs and the RCP scenarios

considered here, the path dependence is weak (Figs. S1–S4

in the Supplement). This suggests that the red PDFs shown

in Fig. 1, or the associated sample of LU patterns, could also

be determined for specific global warming (and CO2) levels,

but relatively independent of the specific pathway.
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Table 4. Comparison of the crop-model-induced spread in global crop production to the climate-model-induced spread at different levels

of global warming in comparison to the 1980–2010 reference level. Global production is calculated based on present-day LU and irrigation

patterns not accounting for constraints on water availability (MIRCA2000; Portmann et al., 2010).

1 ◦C 2 ◦C 3 ◦C 4 ◦C

wheat

crop-model-induced spread of global production 3 % 6 % 10 % 13 %

climate-model-induced spread of global production 2 % 2 % 2 % 2 %

maize

crop-model-induced spread of global production 4 % 9 % 14 % 18 %

climate-model-induced spread of global production 2 % 2 % 2 % 2 %

rice

crop-model-induced spread of global production 7 % 16 % 26 % 33 %

climate-model-induced spread of global production 2 % 1 % 2 % 2 %

soy

crop-model-induced spread of global production 8 % 14 % 22 % 28 %

climate-model-induced spread of global production 4 % 4 % 3 % 4 %

Table 5. Comparison of the crop-model-induced spread in global crop production to the water-model-induced spread at different levels of

global warming in comparison to the 1980–2010 reference level. Global production is calculated based on present day LU (Portmann et al.,

2010) and extended irrigation patterns according to water availability described by the water models (Sect. 3.3 and Sect. 3 in the Supplement).

1 ◦C 2 ◦C 3 ◦C 4 ◦C

wheat

crop-model-induced spread of global production 8 % 10 % 13 % 17 %

water-model-induced spread of global production 4 % 4 % 4 % 4 %

maize

crop-model-induced spread of global production 7 % 11 % 16 % 21 %

water-model-induced spread of global production 3 % 3 % 3 % 3 %

rice

crop-model-induced spread of global production 9 % 18 % 27 % 36 %

water-model-induced spread of global production 1 % 2 % 2 % 2 %

soy

crop-model-induced spread of global production 23 % 30 % 35 % 41 %

water-model-induced spread of global production 3 % 3 % 4 % 3 %

The disagreement in the sign of the change in crop pro-

duction in Fig. 3 arises predominantly from differences in

the strength of the CO2 fertilization effect. Projections based

on fixed CO2 levels show a smaller spread and a general de-

crease in global production with increasing global warming

(Table S2 and Fig. S6 in the Supplement). Given the ongoing

debate about the efficiency of CO2 fertilization, in particular

under field conditions (Leakey et al., 2009; Long et al., 2006;

Tubiello et al., 2007), and the fact that most models do not

account for nutrient constraints of this effect, projections are

likely to be optimistic about the growth-promoting effects of

increased atmospheric CO2 concentrations.

4.2 Irrigation potential

Using different means of intensifying crop production on ex-

isting cropland, the red uncertainty distributions in Fig. 1 can

be shifted to the left. As an example, we show how multi-

water-model simulations could be combined with crop model

simulations forced by the same climate input to estimate the

uncertainties in the potential production increase due to ex-
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pansion of irrigated areas, using only present-day agricultural

land. The effect is constrained by (1) biophysical limits of

yield response to irrigation and (2) water availability.

While potential expansion of irrigation (or reduction, in

the case of insufficient water availability for full irrigation of

currently irrigated areas) could compensate for the climate-

induced adaptive pressure projected by some GGCMs (sec-

ond column of each global mean warming level in Fig. 3),

the feasible increase in global production is insufficient to

balance the relative increase in demand by the end of the

century. In the case of rice, which is to a large extent already

irrigated (Fig. S3 in the Supplement), the imposed water lim-

itation reduces production in comparison to full irrigation on

currently irrigated areas for some of the GGCMs (see Elliott

et al. (2014) for a more detailed discussion of limits of irri-

gation on currently irrigated land). In terms of Fig. 1, addi-

tional irrigation shifts the red uncertainty distributions to the

left. However, even with this shift, it remains unlikely that

the currently cultivated land will be sufficient to fulfil future

food demand.

The spread of projections of global crop production un-

der additional irrigation is dominated by the differences be-

tween GGCMs rather than the projections of available water

(see Table 5) (the partitioning of uncertainty is described in

Sect. 3.4). Based on the HadGEM2-ES and RCP8.5 climate

projections, the GGCM-induced spread (five models provide

the necessary information) at 4 ◦C is at least a factor of 4

larger than the spread induced by the hydrological models

(see Table 2).

The production levels shown in Fig. 3 do not reveal

whether the increase is mainly biophysically limited by po-

tential yields under full irrigation, or by water availability.

Further analysis (see Supplement and Figs. S8 and S9) shows

that production under the highly optimistic assumptions re-

garding water distribution is relatively close to production

under unlimited irrigation on present-day crop areas with the

exception of wheat.

4.3 Effect of LU changes on global crop production

Intensification options are certainly not exhausted by addi-

tional irrigation. For example, other possibilities include im-

proved fertilizer application, switching to higher yielding va-

rieties, or implementing systems of multiple cropping per

year. Historically, most of the long-term increase in crop de-

mand was met by a variety of intensification strategies (God-

fray et al., 2010b; Tilman et al., 2011). However, the expan-

sion of arable land may become more important in light of

further increasing demand and possibly saturating increases

in crop yields (Alston et al., 2009; Lin and Huybers, 2012).

A recent study (Ray et al., 2013) suggests that observed in-

creases in yields will not be sufficient to meet future demand.

To illustrate the potential to increase yields via LU change,

we apply a LU pattern generated by the agro-economic LU

model MAgPIE for the year 2085 (see Sect. 3) in combi-

Table 6. Maximal loss of carbon sinks and the vegetation carbon

stock as estimated for the illustrative LU change scenario (based

on coloured lines in panel (a) and (b) of Fig. 4). The maximum of

the transient changes (column 2 and 4) is compared to mean values

of the C fluxes and the C stock averaged over the reference period

1980–2010 (column 3 and 5).

Model Max 1C sink Ref Max 1 Cveg Ref

(Pg yr−1) (Pg yr−1) (Pg) (Pg)

LPJmL 0.5 −1.4 86 201

JULES 0.1 −0.6 67 148

JeDI 0.4 −0.7 89 141

SDGVM 0.3 −0.6 89 161

VISIT 0.3 −0.7 57 126

ORCHIDEE 0.5 −0.7 121 224

Hybrid 0.0 −0.6 32 137

nation with the water distribution scheme discussed above

(see third column of each global mean warming bin in

Fig. 3). There is a very large spread in the relative changes

in crop production with regard to 1980–2010 reference val-

ues, reaching standard deviations of 31 % for wheat, 84 % for

maize, 80 % for rice, and 79 % for soy at 4 ◦C. In one case

there is even a reduction in production. This may be due to

the fact that MAgPIE’s optimization scheme results in highly

concentrated agricultural patterns by 2085, exaggerating re-

gional features of the GGCM simulations (Figs. S10–S13 in

the Supplement) and means at the same time that optimal LU

pattern derived from individual crop models may strongly

differ. In terms of Fig. 1, these results indicate a very wide

uncertainty distribution associated with the area required for

food production.

The relative increase in production by some crop models

exceeds the projected demand increase. However, in spite of

the strong expansion of cultivated land, with particularly high

losses in the Amazon rainforest (see Fig. S15 in the Supple-

ment), the lower ends of the samples still do not balance the

projected demand increase in 2050 (except for wheat).

4.4 Effect of LU changes on natural carbon sinks and

stocks

The increase in production by LU changes comes at the cost

of natural vegetation. The considered illustrative reduction

of the area of natural vegetation reaches 480 Mha in 2085

compared to 1995 levels. This corresponds roughly to the

land area spared due to obtained yield increases in wheat and

maize during the last 50 years (Huber et al., 2014). For all

but one vegetation model (Hybrid) the reduction of the area

of natural vegetation (Fig. S15 in the Supplement) means

a loss of carbon sinks. There is a wide spread in losses, in

some cases reaching 50 % compared to the reference period

(see Table 6). For the Hybrid model, natural vegetation actu-

ally turns into a carbon source (Friend et al., 2014) by mid-

century (Fig. S16 in the Supplement), which means that a
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Figure 4. (a) Loss of carbon sinks (ecosystem–atmosphere C

flux) due to reduction of natural vegetation and (b) associated

changes in the vegetation C stock (Cveg). Coloured lines repre-

sent 20-year running means of the differences of these variables

between the LU change scenario and the reference scenario (fixed

1995 area of natural vegetation). Positive values indicate higher

ecosystem–atmosphere C fluxes and a reduction in Cveg under

LU change. Colour coding indicates the different bio-geochemical

models. Solid (dashed) lines represent simulations based on dy-

namic (static) vegetation patterns. Results are based on the historical

and RCP8.5 simulations by HadGEM2-ES. Dashed vertical lines:

years where the global mean temperature change with respect to

1980–2010 reaches 1, 2, 3, and 4 ◦C.

reduction in natural vegetation leads to an increase in the

global carbon sink. Overall the models show a spread in the

reduction in carbon sinks from 0 to 0.5 Pg yr−1 (see Table 6

and Fig. 4a). The direct reduction of the vegetation carbon

stock reaches a multi-model median of about 85 Pg (about

8.5 years of current CO2 emissions) by the end of the cen-

tury compared to a simulated increase in vegetation carbon

of about 100 to 400 Pg in pure natural vegetation runs under

the same climate change scenario (Friend et al., 2013). The

multi-model spread of maximum LU-change-induced reduc-

tions reaches 32 to 121 Pg (see Table 6 and Fig. 4b).

5 Conclusions

The competition between food security for a growing popu-

lation and the protection of ecosystems and climate poses a

dilemma. This dilemma is fundamentally cross-sectoral, and

its analysis requires an unprecedented cross-sectoral, multi-

impact model analysis of the adaptive pressures on global

food production and possible response strategies. So far, un-

certainties in biophysical impact projections have not been

included in integrative studies addressing the above dilemma

because of a lack of cross-sectorally consistent multi-impact

model projections. Here we propose a decision framework

that allows for the addition of the multi-impact-model di-

mension to the available analyses of climate change impacts

and response options. The concept allows for an evaluation

of different (agricultural) management decisions in terms of

the probability of meeting a pre-determined amount of car-

bon stored in natural vegetation and bio-energy production

under the constraint of a pre-determined food demand that

have to be fulfilled. The probability is determined by the un-

certainty of the biophysical responses to the considered man-

agement decision, climate change, and increasing levels of

atmospheric CO2 concentrations. The proposed framework

allows for an evaluation of selected management option but

does not include an optimization to find a best solution in

view of conflicting interests as provided by usual integrated

assessment studies. In this regard it is similar to the integrated

framework to assess climate, LU, energy, and water strategies

(CLEWS) (Howells et al., 2013), while the approach consid-

ered here does not include an economic assessment.

To date, a quantification of this probability has been inhib-

ited by the lack of cross-sectorally consistent multi-impact-

model projections. Here, simulations generated within ISI-

MIP were used to illustrate the first steps in addressing the

gap. The spread across different impact models is shown to

be a major component of the uncertainty of climate impact

projections. In the case of multiple interests and conflict-

ing response measures, this uncertainty represents a dilemma

since ensuring one target with high certainty means putting

another one at particularly high risk.

For a full quantification of the probability distributions il-

lustrated in Fig. 1, multiple crop model simulations have to

be translated into a PDF of the “required food production

area” given certain demands accounting for changing trade

patterns, for example (Nelson et al., 2014). This translation

has already started within the ISI-MIP-AgMIP collaboration

and will enable the generation of a probability distribution

of the required food production area. However, current es-

timates (Nelson et al., 2014) are based on crop model runs

that do not account for the CO2-fertilization effect and only

a limited number of models provide explicit LU patterns in

addition to the aggregated area. In addition, not all models

are adjusted to reproduce present-day observed yields, ren-

dering the analysis presented here illustrative rather than a

robust quantitative assessment.

To estimate the associated probability of climate protec-

tion failure, carbon emissions due to the loss of natural

carbon sinks and stocks, particularly including effects of

soil degradation, must be quantified. Therefore, the set of

demand-fulfilling LU patterns has to be provided as input for

multi-model biome simulations. ISI-MIP is designed to facil-

itate this kind of cross-sectoral integration, which can then be

employed to fulfil the urgent demand for a comprehensive as-

sessment of the impacts of climate change, and our options to

respond to these impacts and socioeconomic developments,

along with the corresponding trade-offs.

Our illustration of the uncertainty dilemma is by no means

complete. In addition to the irrigation scheme considered

here, a more comprehensive consideration of management

options for increasing crop yields on a given land area is re-

quired. To this end, the representation of management within

the crop model simulations needs to be harmonized to quan-

tify the effect of different management assumptions on crop

model projections. For example, similar to the rainfed vs.
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full irrigation scenarios, low fertilizer vs. high fertilizer in-

put scenarios could be considered allowing for a scaling of

the yields according to the assumed fertilizer input. However,

not all crop models explicitly account for fertilizer input.

In the longer term, initiatives such as ISI-MIP will con-

tribute to filling the remaining gaps and finally allow for

a probabilistic assessment of cross-sectoral interactions be-

tween climate change impacts. For example, the current sec-

ond round of ISI-MIP will include biome and water model

simulations accounting for LU changes generated based on

different crop model projections (see ISI-MIP2 protocol,

www.isi-mip.org).

The Supplement related to this article is available online

at doi:10.5194/esd-6-447-2015-supplement.
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