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A FRAMEWORK FOR THE DESIGN OF PRIVACY PRESERVING PERVASIVE
HEALTHCARE

Simon Moncrieff, Svetha Venkatesh, Geoff West

Department of Computing, Curtin University of Technology
GPO Box U1987, Perth, 6845, W. Australia

ABSTRACT

Privacy is an important aspect of pervasive and ubiquitous

computing systems, and, in particular, pervasive healthcare.

With reference to previous approaches on developing privacy

sensitive pervasive healthcare applications, we detail a frame-

work for the design of such systems that aims to minimise

the impact of privacy on such systems. In reviewing previ-

ous approaches, we extract and combine common elements

in order to unify the approaches and create a more formal

methodology for designing privacy mechanisms in pervasive

healthcare applications. In doing so we also consider the man-

ner in which ubiquitous technologies impact on privacy and

methods for reducing this impact. We demonstrate how the

framework can be applied by using examples from the previ-

ous approaches. In addressing privacy issues, the framework

aims to remove a large obstacle to deployment of pervasive

healthcare systems, acceptance of the technology.

Index Terms— Privacy, Pervasive healthcare.

1. INTRODUCTION

Privacy is a vital component in the acceptance, and thus adop-

tion of pervasive healthcare [1]. Failure to implement privacy

measure in ubiquitous computing environments will lead to

either to a failure to adopt, or the complete rejection, of such

systems. Privacy is particularly salient to pervasive healthcare

due to the private nature of the environments under observa-

tion, particularly in comparison with surveillance, and due to

the sensitivity of information related to healthcare. Further,

privacy sensitivity needs to be integrated into the system at

the design stage as imposing privacy restrictions on an already

developed system has the potential to reduce the functionality,

or restrict the purpose of the system [2].

Examples of pervasive healthcare applications include as-

sisted living [3, 4], and ubiquitous hospital communication

systems [5]. To illustrate the need for privacy in pervasive

health care, we consider the case of assisted living ubiquitous

environments, which consist of a number of sensors, such as

video cameras, and infrared and pressure sensors, that collect,

process and interpret information from the environment in a

manner that is transparent (ideally) to the occupant. The aim

of assisted living environments is to monitor the occupant to

ensure their safety, enabling the aged and invalid population

to remain in their homes longer, increasing their quality of

life, and reducing the financial burden of aged care [6]. How-

ever, the monitoring of home and living environments raises

serious privacy implications due to the private nature of the

home.A lack of privacy will result in a lack of trust, which

will in turn impede the deployment of the technology.

To design privacy sensitive ubiquitous systems, it is first

necessary to consider the properties of privacy, and how ubiq-

uitous computing impacts upon these properties. The are nu-

merous papers in the field of ubiquitous computing that dis-

cuss privacy, see [2, 7, 8] for examples. From examining such

discussions, it becomes evident that no single definition of

privacy is possible [7], due to its highly subjective nature,

both with respect to people and context, encapsulated by con-

cepts such as location, culture, and situation. This difficulty

in defining privacy results in corresponding difficulty in de-

signing and implementing privacy in ubiquitous computing.

Consequently, rather than attempting to define privacy

with respect to ubiquitous computing, we examine the prop-

erties of ubiquitous computing that impact on privacy and

subsequently identify important properties necessary for the

design of privacy sensitive ubiquitous computing. We review

previous approaches to implementing privacy in pervasive,

with reference to these properties, in order to produce a

framework that unifies these approaches. In doing so, we

aim to present a design framework that can be applied to the

implementation of privacy sensitive pervasive healthcare. We

then demonstrate the properties of the framework with refer-

ence to the previous approaches. Our goal in this paper is to

demonstrate core elements necessary for introducing privacy

measures to pervasive healthcare applications.

2. INFORMATION FLOW AND PRIVACY

In ubiquitous computing, privacy can be thought of in terms

of the flow of information, or, more specifically, the control

of the flow of information. This view of privacy is perhaps

best encapsulated by the Privacy Regulation theory proposed

by social psychologist Irwin Altman [9]. Altman proposed

that privacy is a dynamic and subjective process in which an
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individual obtains an optimal level of privacy by controlling

interactions with others. This optimal, or desired, level of pri-

vacy is dynamic, and changes with respect to both the individ-

ual and the context; that is an individual attempts to regulate

privacy in accordance with their desire for social interaction

(open), or social isolation (closed). The desired privacy is

communicated using a set of social tools, including verbal and

non-verbal conversation. If an individual fails, or is unable, to

attain the desired privacy level, the result is either social iso-
lation resulting from an excess of privacy, or crowding, which

occurs when an individual receives more input than is desired

due to a low level of privacy.

Thus, Altman viewed privacy as the control of the com-

munication of information between two or more parties. Con-

sequently, privacy regulation theory can be extended to ubiq-

uitous computing environments by extending this communi-

cation to include sensors within the environment [8]. How-

ever, due to the unique properties of ubiquitous computing

environments, i.e. the collection of information from the en-

vironment in a manner transparent to, and not requiring in-

teraction from, the occupant. The occupant no longer con-

trols all the information that is being communicated about

themselves. That is, the occupant has no control of the in-

formation they reveal to the environment. Traditional Privacy

Regulation theory considers the negative impact of too much

information input, crowding. However, the theory does not

consider the case of excessive information output. This was

addressed by Lehikoinen [8], who introduced the concept of

Leaking, which is the state of privacy that that occurs due

to the information leak caused by the uncontrolled, or unin-

tentional, flow of information from an individual within the

environment to the sensors, i.e. the inadvertent disclosure of

information. This impacts on the privacy of an occupant of the

environment due to the sensors storing and potentially shar-
ing information with other users, comprising either observers,

in the case of assisted living and surveillance for example, or

other users within the environment, such as in the case of me-

dia spaces, in which information is shared.

Employing the concepts of information flow and infor-
mation leak in conjunction with Privacy Regulation theory

enables us to examine the impact of ubiquitous computing

environments on privacy. The asymmetric flow of informa-

tion [10] causes an intrusion into the users experienced pri-

vacy as they are no longer able to control their own informa-

tion flow. Therefore, to maximise the privacy, the unknown,

or inadvertent information flow from the user to the sensor

should be minimised. Minimal information leak corresponds

to collecting no data from the environment (maximum pri-

vacy). However, this would invalidate the functionality of

the ubiquitous environment, i.e. the purpose of the observer.

Consequently, we can view privacy in ubiquitous computing

as an optimisation problem, balancing the privacy of the user,

with the functionality of the system.

Control over what information is captured, and feedback

on this information have previously been identified as impor-

tant to the implementation of privacy in ubiquitous comput-

ing, particularly within private environments [7]. These con-

cepts can be included in the Privacy Regulation theory ap-

proach to privacy in ubiquitous computing. Control enables

a user to control the information flow, reducing information

leak and enabling the user to attain a closer approximation

to the desired level of privacy. Feedback reduces inadvertent

information flow by providing the user with details of the in-

formation that is communicated to the environment, which in

turn decreases the asymmetric information flow.

For complex ubiquitous environments, the optimisation

between the privacy and functionality will require a dynamic

approach due to the multiple, and changing situations that are

present in complicated, real world situations. That is, a sin-

gle privacy policy would not suffice as the situation, or con-

text within the environment, does not influence what an ob-

server is able to view. This approach is inflexible, and partic-

ularly unsuited to to the real-time, active monitoring of com-

plex environments due to the different contexts that can occur.

Consequently, such environments require a more dynamic ap-

proach to privacy to achieve the trade off between minimising

the intrusion into the privacy of those monitored, and retain-

ing the purpose of the system. A single privacy policy would

be either too invasive for the occupant, or too restrictive for

those monitoring the environment. For example, in an as-

sisted living smart home, a carer observer may not be able

to verify an occupant status in the case of an injury (e.g. a

fall), if they are not given access to sufficient information.

However, revealing too much information to an observer is

likely to cause embarrassment, and a subsequent rejection, or

resentment, of the monitoring. Consider the example of the

bathroom, which is associated both with sensitive and private

activities, but also potential hazards that require monitoring.

3. APPROACHES TO PRIVACY IN PERVASIVE
HEALTHCARE

While privacy is important to the long term success of perva-

sive healthcare, addressing privacy remains relatively unex-

plored. There are potentially three perspectives on privacy;

1. Approaches that recognise the need for privacy, but do not

deal with it explicitly, e.g. Vemuri and Bender [11] (a per-

sonal memory for recording conversations), and de Silva et
al. [12] (an assisted living environment), both recognised the

need for privacy measures in order for the proposed technolo-

gies to be accepted, but did not address privacy.

2. Approaches that avoid the issue of privacy by limiting

the information collected, e.g. [13] limit the information gath-

ered by using simpler sensors, such as binary infrared motion

sensors. The main drawback of this approach results from

limiting information, which in turn reduces the functionality

of the system. For example, verifying whether an alert is a

false positive in an assisted living smart home environment is
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costly without the presence of cameras.

3. Approaches that actively address privacy. These works

form the major part of our review and are discussed in the

next section.

4. PRIVACY SENSITIVE COMPUTING

4.1. Framework

To put the previous approaches in perspective, it is necessary

to construct a common framework in which the approaches

can be analysed. The design of such a privacy sensitive sys-

tem has to account for both the observer, the observed, and the

relationship between the observer and the observed. A design

framework to achieve this is proposed in Figure 1 and is built

with reference to the information process flow discussed in

Section 2.1 In broad terms, the context or user preferences

accounts for the user of the environment (observed), while

the rule set represents the influence of the observer on the

privacy filter. The context incorporates the observed into the

privacy system by enabling the privacy filter to be changed

according to the situation within the environment. The feed-

back and control incorporate the observed/observer relation-

ship, and reduce information leak. It should be noted that

there are a number of design factors that can be considered

when implementing privacy in ubiquitous computing, such as

the balancing of risk with benefit [7], and trust. These fac-

1An early version of this framework was introduced in [3]
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Data
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Control
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Fig. 1. Design framework for privacy sensitive ubiquitous comput-

ing applications in pervasive healthcare.

tors are not mutually exclusive from design framework, but

are factors that can be considered in implementing instances

of framework.

4.2. Active Approaches to Privacy

A number of methods have been proposed that actively ad-

dress privacy in a number of pervasive healthcare applica-

tions. These applications include; assisted living, both within

a nursing home [4] and a smart home environment [3], a ubiq-

uitous mobile hospital information system [5], hospital secu-

rity [14], the privacy preserving sharing of videos containing

medical information [15], and access to medical databases for

surveillance [16]. Privacy policies are generally implemented

using data hiding techniques on the sensor data in order to

obscure, or remove, privacy sensitive information. The use-

fulness of the proposed framework presented in Section 4.1,

is now demonstrated through a survey of the above methods.

The input to the framework is the data collected from the en-

vironment, corresponding to both contextual data (e.g. time,

date), and sensor data. Examples of sensor input include

video [3, 14, 4], binary sensors and audio [3].

The next module interprets the environmental contextual in-

formation present in the sensor data, or determines the user

preference that should apply, in certain cases the meta-data

will influence the preference. For example, Moncrieff et
al. [3] determined the environmental context using indicators

of the activity present within the environment. Wickrama-

suriya et al [14] and Chen et al. [4] used identity of the

context, either determining whether or not an individual was

authorised to enter the environment [14], or the identity of

residents in a nursing home [4]. Examples of using prefer-

ences include [15], in which the level of data hiding applied

was based on the video owner’s assessment of the risk versus

benefit of sharing the video, and Tentori et al. [5], who ad-

justed user preferences according to contextual information

such as location.

The data filter then determines the correct privacy policy to

apply given the preference, or environmental context, and the

applied rule. The rule represents the influence of the observer

on the privacy, while, conversely, the preference and context

adjusts the privacy with respect to the user (observed). The

sensor data is then filtered according to the privacy policy.

This is achieved by applying the data hiding technique cor-

responding to the privacy policy to the data, resulting in the

Data View, which represents the input data, transformed by

the privacy filter. Fan et al [15] applied the data hiding tech-

nique corresponding the video owner’s set preference level. A

number of data hiding techniques techniques were used to ob-

scure data at different levels, for example blurring the video,

or replacing people within the video with virtual objects, or

avatars. Moncrieff et al [3] used multiple data hiding methods

representing different levels of privacy, determining the ap-

propriate data hiding method according to the context and the

1698



rule input, which was encapsulated by the role of the observer.

For example, for a carer observer, privacy measures were re-

duced if an abnormal activity was detected, enabling the carer

to determine if an alarm needed to be raised. In [4], images of

residents of the nursing home were replaced with an edge mo-

tion history image, revealing details of the residents activities,

but not identifying information. Sweeney [16] used the detec-

tion of unusual activity in a medical database as a mechanism

to lower the level of anonymity in the visualisation applied to

the database, i.e. data was presented at a higher resolution if

an unusual set of data occurred. The rule imposed can vary

in complexity. For example, Moncrieff et al [3] used multiple

levels of data hiding, and thus privacy, for each sensor present

(audio, video and binary sensors), using a decision tree was to

generate the rules mapping the context to the appropriate data

hiding level. In [14], the rule is encapsulated in authorisation

level required to enter the environment.

The data view is then presented to the observer, and to the

user (observed), representing feedback, who can then con-
trol the privacy level by adjusting either the context or the

applied preference accordingly. Although not always imple-

mented, there is a provision within the framework providing

feedback on the observer to the observed. While not viable in

surveillance applications, in applications such as assisted liv-

ing smart homes, giving the occupant access to information

concerning both who is observing and what they are observ-

ing reduces asymmetric information flow, and will in turn in-

crease trust in the system [3]. The feedback and control can be

implicit within the environment. For example, in the method

proposed by Wickramasuriya et al [14], feedback and con-

trol is provided to people with authorised access a priori, as

they are informed of the surveillance, and that authorised per-

sonal are removed from the video and given the opportunity

to select the data hiding method applied to them. Feedback

to unauthorised people within the environment can be given

in the form of warning signs. In private environments, such

as an assisted living smart home, a more robust approach to

feedback is possible, and indeed necessary given the private

nature of the home environment. Moncrieff et al. [3] pro-

posed a number of feedback mechanisms suitable for a smart

home. Detailed feedback was given in the form of logs in-

dicating what information each observer accessed, and when;

while instantaneous low level feedback was given to enable

the occupant to adjust the context, i.e. the occupant was given

the ability to influence the privacy by controlling the context.

For example, if a false abnormal event is detected, the oc-

cupant can indicate that the actual context within the house

should register as normal, this interaction in turn verifies the

status of the occupant. Consequently, the privacy can then be

adjusted to the appropriate level for a normal context. This

limited control was necessary due to the reduction in func-

tionality of the system that would result if the occupant was

given control to adjust preferences on the fly (i.e. the option

of turning the monitoring off).

5. CONCLUSION

In this paper we have presented a design framework for imple-

menting privacy measures in ubiquitous computing environ-

ments, and demonstrated its application to pervasive health-

care. Given the sensitivity of healthcare environments, and

the associated data, addressing privacy issues will play a large

part in the adoption of pervasive healthcare applications.
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