
Metastasis of cancer to distal sites is associated with 
poor patient prognosis and is the foremost cause of  
cancer- related death1, with approximately 90% of 
patients who succumb to cancer dying of metastatic dis-
ease2. Despite the advent of effective immuno therapies 
within the past decade, the majority of patients with 
advanced- stage and/or high- risk cancers continue to die 
as a direct result of metastatic disease or owing to com-
plications of its treatment3. Indeed, improvements in 
the survival of patients with cancer over time have not 
equally benefited those with metastatic disease4.

Nevertheless, most standard- of-care treatments 
and new molecularly targeted therapies, including 
immunotherapies, were developed on the basis of ini-
tial evidence of anticancer activity — either direct or 
via immune system engagement — obtained in pre-
clinical studies with tumorigenesis and/or primary 

growth, not metastatic activity, as the main end points. 
Similarly, clinical drug development generally relies  
on the demonstration of tumour shrinkage accord-
ing to the radiological Response Evaluation Criteria  
for Solid Tumors (RECIST)5,6, with confirmatory improve-
ments in clinical outcomes, ignoring the ability to inhibit 
metastasis. Only after clinically meaningful tumour 
responses and/or improvements in patient survival have 
been demonstrated in the metastatic setting will the drug 
be tested in adjuvant trials, with the aim of preventing 
or delaying the development of overt metastatic disease. 
Consequently, a paucity of preclinical discovery and 
thus clinical development exists for agents targeting the 
biological mechanisms underlying the metastatic process.

An urgent need remains for novel therapeutic strat-
egies and agents that prevent the establishment of and/or  
tissue colonization by metastases, which ultimately 
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Abstract | Most cancer- related deaths are a result of metastasis, and thus the importance of this 

process as a target of therapy cannot be understated. By asking ‘how can we effectively treat 

cancer?’, we do not capture the complexity of a disease encompassing >200 different cancer 

types — many consisting of multiple subtypes — with considerable intratumoural heterogeneity , 

which can result in variable responses to a specific therapy. Moreover, we have much less 

information on the pathophysiological characteristics of metastases than is available for the 

primary tumour. Most disseminated tumour cells that arrive in distant tissues, surrounded by 

unfamiliar cells and a foreign microenvironment, are likely to die; however, those that survive can 

generate metastatic tumours with a markedly different biology from that of the primary tumour. 

To treat metastasis effectively , we must inhibit fundamental metastatic processes and develop 

specific preclinical and clinical strategies that do not rely on primary tumour responses.  

To address this crucial issue, Cancer Research UK and Cancer Therapeutics CRC Australia  

formed a Metastasis Working Group with representatives from not- for-profit, academic, 

government, industry and regulatory bodies in order to develop recommendations on how to 

tackle the challenges associated with treating (micro)metastatic disease. Herein, we describe 

the challenges identified as well as the proposed approaches for discovering and developing 

anticancer agents designed specifically to prevent or delay the metastatic outgrowth of cancer.
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lead to organ failure, morbidity and death. In addition, 
new strategies must be developed to facilitate clinical 
testing of therapeutic agents with an anti- metastatic 
mechanism of action. To assist the cancer drug discov-
ery and development community in addressing this 
critical issue, Cancer Research UK (CRUK), Cancer 
Research Technology (CRT) and Cancer Therapeutics 
CRC Australia (CTx) formed a Metastasis Working 
Group with representatives from academia, indus-
try, government and regulatory bodies in order to 
develop recommendations on how to surmount the 
challenges associated with treating metastatic disease. 
This article provides an overview of these challenges 
and describes the Metastasis Working Group recom-
mendations on best practices for the discovery and 
develop ment of anticancer agents designed specifically 

to circumvent metastasis, with consideration given to 
their implementation in clinical trials.

Challenges

The development of new effective medicines that inter-
rupt the primary causes of metastasis is a daunting but 
important challenge. Mechanistically, metastatic tumour 
cells are genetically unstable, and in most cancers no 
single dominant pathway is likely to control metastasis7.  
Indeed, the signalling pathways driving metastasis can 
vary between primary and secondary tumours and 
between metastases that arise at different sites8. The target 
of translational research efforts is often an occult pop-
ulation of tumour cells disseminating from the primary 
tumour, sitting dormant in a sanctuary site or constituting 
a micrometastasis in a distant organ. Selection for clinical 
testing of candidate anti- metastatic agents that might have 
limited or no effect on conventional preclinical outcomes, 
such as primary tumour growth, is another key challenge. 
In addition, validated biomarkers that can be used to 
increase the efficiency of mechanistic experiments and 
accelerate drug development are rarely available.

Across all cancers, the extent to which tumour cells 
have left the primary tumour and established occult 
(micro)metastases before patient diagnosis is acknowl-
edged to be poorly characterized9,10. Tumour cells 
might become invasive early in cancer development, 
and thus prevention of dissemination from a primary 
tumour is unlikely to be a clinically successful strategy 
owing to the presence of pre- existing but undetected 
metastases; however, prevention of secondary metasta-
ses is a plausible rationale for intervention. Metastatic  
dissemination is a multistage process, and various points 
of intervention have been identified and credentialed 
at the preclinical level (Fig. 1). These include targeting  
the initial steps of invasion and migration away from the  
primary tumour, entry into the circulation (intravasa-
tion) and extravasation at a distant site. As with inva-
sion, traversal of the circulatory system might also be 
an early event in cancer development, leading to the 
proposal that drug development efforts should also take 
into consideration the abrogation of metastatic coloni-
zation — that is, the outgrowth of a lesion in a foreign 
environment. Several aspects of metastatic colonization 
are distinct from primary tumour formation and could 
influence drug development. Moreover, multiple stud-
ies have revealed that tumour cells colonizing distant 
organs can differ from those of the primary tumour in 
many respects10–13, revealing potential therapeutic tar-
gets. Changes in tissue microenvironments that facilitate 
metastatic colonization are incompletely characterized 
and might begin before the arrival of metastatic tumour 
cells14,15. Several approaches for targeting such secondary 
sites have been proposed. Intervening early to disrupt 
the ‘pre- metastatic niche’ is one potential strategy, while 
therapy to either maintain dormancy or induce the death 
of cells in micrometastatic lesions is another. Whereas 
metastases that are detected before commencement of 
first- line therapy can sometimes be treated using radi-
ation therapy, new and less deleterious therapies that 
are additive or synergistic with the standards of care are 
a priority for the treatment of occult metastatic disease.

Key points

•	Metastasis	is	associated	with	a	poor	patient	prognosis	and	is	the	foremost	cause	of	
cancer-	related	death,	with	approximately	90%	of	patients	who	succumb	to	cancer	
dying	of	metastatic	disease.

•	Metastasis	is	inherently	complex,	with	different	distant	sites	having	a	distinct	and	
specific	extracellular	matrix	and	cellular	composition	compared	with	that	of	the	
originating	site,	and	therefore	metastases	must	be	considered	biologically	different	
from	the	primary	tumour.

•	The	standard	cancer	drug	discovery	and	development	pathway,	including	that	for	
molecularly	targeted	and	immunotherapies,	generally	ignores	the	ability	of	
experimental	medicines	to	inhibit	metastasis.

•	A	wealth	of	potential	preclinical	targets	for	anti-	metastatic	drug	discovery	and	
development	have	already	been	identified	but	remain	to	be	validated	using	
appropriate	preclinical	models	that	reflect	the	pathogenesis	of	metastatic	disease		
in	patients.

•	Despite	some	successes	in	the	treatment	of	bone	metastases,	following	extensive	
analyses	in	preclinical	models,	multiple	late-	stage	failures	in	clinical	development	
have	resulted	in	anti-	metastatic	drug	development	efforts	being	deprioritized	by	the	
pharmaceutical	industry.

•	Successful	development	of	effective	anti-	metastatic	therapies	will	require	the	
regulatory	agencies	to	work	together	with	researchers,	drug	developers	and	
statisticians	to	redefine	the	clinical	development	paradigm	in	order	to	encourage	
development	of	this	complex	but	high-	potential	category	of	oncology	drugs.
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The metastatic cell is a single genetic entity derived 
from a mass of cells possessing extensive genetic heteroge-
neity and consequent plasticity8. The distant tissue site will 
also have a distinct and specific extracellular matrix and 

cellular composition compared with that of the tumour tis-
sue from which the metastatic cell originated. Metastases 
must therefore be considered biologically different 
from primary tumour cells, at least in the early stages of 

NATURE REVIEWS | CLINICAL ONCOLOGY

C O N S E N S U S  S TAT E M E N T

Micrometastasis

Dormancy

Extravasation

Metastatic
colonization

Tumour 
cell death

Pre-metastatic
niche

Blood 
vessel

Primary 
tumour

Invasion

Circulation

Tumour cell

Blood vessel

MDSC or tumour- 
associated macrophage

Tumour-
secreted
factors

Platelets

Exosome

Endothelial cell

Neutrophil

Cancer-
associated
fibroblast

Epithelial
cell

T cell

Intravasation

Fig. 1 | Overview of metastasis. Metastasis is a complex multistep process, and the very concept of designing a metastasis- 

specific therapeutic must consider which part of the process is best to target. Given that metastases are derived mainly 

from invasive tumours, therapeutic efforts have often targeted the intrinsic invasive propensity of tumour cells150,151. 

Tumour cell production of angiogenic factors and TGFβ can activate endothelial cells and fibroblasts to remodel tissues and 

promote tumour cell invasion of stromal- modified spaces152. Targeting stromal elements in cancers remains an active area 

of research153–157. Intravasation of tumour cells is promoted by binding to macrophages that cause transient permeability in 

the vasculature158; thus, targeting tumour- associated macrophages might reduce the number of circulating tumour cells 

(CTCs)159. Multiple factors intrinsic to tumour cells (including epithelial- to-mesenchymal transition, production of proteases 

and migratory capacity) improve intravasation, often via effects on cell types including fibroblasts, neutrophils and 

macrophages160. Most tumour cells that enter the vasculature die as a result of hydrodynamic physical damage or leukocyte 

attack160. However, platelets can bind to and protect CTCs and improve their ability to establish secondary sites161. Platelet–

CTC aggregates settled at distant sites can release cytokines that attract granulocytes162; targeting platelets or granulocyte 

recruitment can prevent metastasis162. Additionally , abrogation of platelet–CTC binding, leading to a reduction in the 

number of circulating and potentially metastatic cells163, might explain the suppression of metastasis by aspirin in breast 

and prostate cancer models164. Survival and proliferation of newly deposited cancer cells in a metastatic site are arguably 

the most important stages of the metastatic process. Cancers with a propensity to metastasize do not grow in all organs, 

indicating that a limited number of organs provide a suitable stromal environment for their colonization. Preferred 

colonization sites, termed pre- metastatic niches, can be prepared in advance of the arrival of disseminated tumour cells 

through the actions of myeloid- derived suppressor cells (MDSCs) and tumour cell- derived extracellular vesicles (EVs), such 

as exosomes17,165. Whether this process can provide novel therapeutic targets to limit the arrest and survival of metastatic 

cells remains unclear, with development of EV- specific drugs, for example, creating a challenge166. Evidence also supports 

roles for neutrophils167,168 and MDSCs169 in metastatic colonization. Evasion of the antitumour immune response is another 

critical factor in metastatic colonization. No single tumour type seems to exhibit all these mechanisms; therefore, targeting 

any one stage of the metastatic process requires a tumour- specific understanding of the mechanisms involved.



outgrowth. Studies specifically designed to examine the 
biological development of metastases are not common, 
and if we hope to target metastases effectively, we must 
gain a more complete understanding of the underlying 
biology. This issue is complex, although some successes 
have already been achieved, for example, in understanding 
the processes of pancreatic cancer metastasis16,17.

Metastatic dormancy is defined by an unusually long 
disease- free interval (months, years or even decades 
depending on the cancer type) between removal or suc-
cessful therapy of the primary tumour and subsequent 
clinical relapse with disseminated disease. Metastatic 
dormancy can be achieved by many means. Tumour cells 
can exit from the cell cycle or balance their proliferation 
and apoptosis. Host cells can limit angiogenesis or alter 
anticancer immune responses, resulting in immuno-
editing (with an equilibrium between immune elimina-
tion and escape of tumour cells)18. Tumour cell dormancy 

also alters chemotherapeutic efficacy, either because the 
non- dividing cells are more resistant to such treatment19 
or because they are protected by cellular and extracellular 
components of their microenvironment20–22 (Fig. 2).

The optimal means of selecting patients with a pre-
dictable risk and rate of disease progression for enrolment 
in a clinical trial of an anti- metastatic agent remain largely 
unknown. This challenge is compounded by the inability 
to reliably quantify the prevalence and extent of occult 
metastatic disease at enrolment. Because adjuvant clinical 
trials are often conducted only after positive results have 
been obtained in early phase clinical studies involving 
patients with advanced- stage (metastatic) disease and 
require considerable funding, large numbers of patients 
and long follow- up durations to capture the primary out-
come measure (for example, disease- free survival (DFS)), 
new non- conventional clinical development approaches 
are needed. The clinical trial design might vary depending 
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Fig. 2 | Dormancy and the metastatic niche. Metastatic latency is more pronounced for certain types of cancer, notably 

breast and prostate cancer and melanoma170. The detection of disseminated tumour cells (DTCs) in bone marrow 

aspirates, obtained long after eradication of the primary tumour, verifies the presence of dormant tumour cells and is 

predictive of disease recurrence171–173. Dormant tumour cells are proposed to exist either as single cells in a state of cell 

cycle arrest or as small masses of cells that fail to expand into clinically detectable lesions, possibly owing to failure of 

angiogenesis, balanced rates of proliferation and apoptosis or effective immunosurveillance174. Cells derived from these 

clusters that are too small to be detected by normal clinical imaging are presumably the source of circulating tumour cells 

detected in some patients after successful treatment of the primary tumour. The metastatic niche is likely to vary between 

different organs, reflecting the tissue- specific nature of the microenvironment in which the DTC is located; extensive 

crosstalk occurs between the tumour cells, stromal cells and extracellular matrix components of the niche. Various niches 

have been proposed, including the perivascular niche associated with the vasculature22, the haematopoietic stem cell 

niche of the bone marrow175 and the osteoblastic niche in bone176. The factors that maintain tumour cell dormancy in these 

niches are starting to be unravelled, with different extracellular matrix components, cytokines and other proteins being 

implicated for different cancer types and niches. Far less is understood about how dormancy is broken, which could occur 

following failure of immunosurveillance, in response to inflammation triggered by trauma or an infection or perhaps as a 

result of ageing- related deficiencies in tissue homeostasis. With regard to therapy , the challenge is to decide whether the 

aim should be to retain the DTCs in a dormant state or, instead, to disrupt their niche and dormancy , thereby rendering 

them susceptible to apoptotic or anoikic death and/or to chemotherapy.



on the patient population, the dosing schema (maximum 
tolerated versus biologically effective dose, limited cycles 
versus maintenance therapy and scheduling in relation 
to standard- of-care therapy), the primary end points and 
the available biomarkers of activity. In most cases, such 
trials will also need to be initiated without a history of 
regulatory approval of the experimental agent.

Missteps and a home run

Several past efforts to target the mechanisms of tumour 
metastasis have resulted in failure. Matrix metallo-
proteinase (MMP) inhibitors were developed as anti- 
metastatic agents on the basis of their capacity to inhibit 
tissue invasion by tumour cells early in the metastatic 
cascade and their cytostatic activity in preclinical mod-
els23,24. Subsequent studies enabled a more nuanced 
understanding of the metastasis- promoting as well as 
the metastasis- limiting effects of the MMPs and revealed 
that several other proteases have overlapping functions25. 
The preclinical models used had limited relevance to 
the clinical testing scenario, with the experimental 
design typically involving initiation of MMP inhibitor 
treatment soon after tumour cell inoculation, to form 
either a primary tumour or experimental metastases. 
In this setting, the MMP inhibitors were shown to be 
effective26; however, in the clinic, MMP inhibitors were 
tested in patients with advanced- stage disease, usually 
with drug- resistant metastatic disease. As a result, these 
phase II and phase III clinical trials of MMP inhibitors 
failed to show strong signals of efficacy27,28. In addition, 
the early drugs had broad spectrum anti- protease activ-
ity and were characterized by serious adverse effects in 
patients26. Other examples of anti- metastatic agents for 
which promising preclinical activity has not been trans-
lated into clinical efficacy include cilengitide (targeting 
αvβ3 and αvβ5 integrins on angiogenic blood vessels)29, 
and dasatinib and saracatinib (targeting SRC and BCR–
ABL1)4. These late- stage failures in clinical development 
have resulted in major financial losses, leading to anti- 
metastatic drug development being deprioritized by the 
pharmaceutical industry.

Conversely, successes have been achieved in the treat-
ment of bone metastases, following extensive analyses in 
preclinical models, either with antibodies targeting recep-
tor activator of NF- κB ligand (RANKL; also known as 
TNFSF11) or with a class of drugs known as bisphospho-
nates. Both of these therapies interrupt the ‘vicious cycle’  
of bone metastasis. The bone metastatic vicious cycle is  
a specific example of tumour cell–microenvironment 
interactions that are likely to occur at other metastatic 
sites (albeit via differing mechanisms). In bone, tumour 
cells produce factors that activate osteoblasts to produce 
RANKL, which activates osteoclasts that subsequently 
degrade bone, releasing a host of growth factors that 
stimulate metastatic colonization by tumour cells30. 
Denosumab is a humanized monoclonal antibody tar-
geting RANKL that has been shown in preclinical experi-
ments to bind with its target in the bones of healthy 
transgenic mice expressing chimeric mouse–human 
RANKL31. In initial clinical trials in the metastatic set-
ting, traditional tumour growth inhibition or survival 
end points were not used as outcome measures with 

this cytostatic agent; instead, a reduction in skeletal- 
related events (SREs) was the primary end point32,33. 
Deleterious SREs, such as a bone fracture from expan-
sion of an existing metastasis or a new metastasis, were 
essentially direct readouts of the extent of metastatic 
burden. Accordingly, patients with breast or prostate 
cancers were enrolled because they are prone to devel-
oping bone metastases. Significant reductions in the 
incidence of SREs in patients treated with denosumab 
compared with those who received standard care were 
observed for both types of cancer34,35. In men with 
bone- metastatic castration- resistant prostate cancer 
(CRPC), the median time to first on- study SRE with 
denosumab was 20.7 months versus 17.1 months with 
the bisphosphonate zoledronic acid (HR 0.82, 95% CI 
0.71–0.95; P = 0.0002 for non- inferiority; P = 0.008 for 
superiority)34. In women with advanced- stage breast 
cancer, denosumab was superior to zoledronic acid 
in delaying the time to first on- study SRE (HR 0.82, 
95% CI 0.71–0.95; P = 0.01) and also the time to first 
and subsequent on- study SREs (rate ratio 0.77, 95% 
CI 0.66–0.89; P = 0.001)35. Denosumab was then com-
pared with placebo in adjuvant trials and delayed initial 
bone metastasis in patients with CRPC by a median of  
4.2 months36. However, in placebo- controlled trials involv-
ing patients with breast cancer, adjuvant denosumab was 
associated with only a minor37 or no38 reduction in the 
DFS or overall survival (OS). The reasons for this dis-
parity between SREs and OS outcomes are not entirely 
clear but might reflect a shift in bone metabolism that 
reduces the incidence of SREs without direct effects on 
cancer progression.

The value of bisphosphonates in reducing bone 
resorption and bone metastasis through direct targeting 
of osteoclasts has been demonstrated in many preclini-
cal studies39. In addition, bisphosphonates have broader 
anticancer activity against metastatic lesions in visceral 
organs, possibly through inhibition of angiogenesis or 
through inhibition of M2-like macrophages in other 
tissues39,40. A meta- analysis of clinical trials using bis-
phosphonates, supported by earlier preclinical data, has 
demonstrated reduced bone metastases and prolonged 
OS, at least in postmenopausal women with early stage 
breast cancer41. No benefit of bisphosphonate treatment 
was observed for premenopausal women41.

Preclinical drug development

Target identification

Many targets with known or proposed roles in metasta-
sis could be candidates for drug development (Table 1). 
These potential targets have been identified on the basis 
of associations between gene targets (often mutated) 
and metastasis or poor survival in patients42,43, targeted 
manipulation of genes to alter metastasis in preclinical 
models44–46, functional genomic screens47–49 and drug 
repurposing efforts50. In addition to functional preclin-
ical experiments, evidence that the target is associated 
with metastasis in the human disease is required. For 
the development of a targeted therapy, such as a small 
molecule, a peptide or an antibody, knowledge of the 
biological activity of the target is essential for support-
ing development of a functional biomarker. Targets 
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Table 1 | Selected preclinical data for potential anti-metastatic therapies

Agent Target Preclinical dataa

Antibodies

Anti- CCL2 CCL2 (chemokine) Prevented mobilization of myeloid cells from the bone marrow 
to colorectal liver metastases and thereby reduced metastasis177

Anti- BMP6 BMP6 (TGFβ superfamily cytokine) Reduced osteoblastic bone metastasis from prostate cancer178

Anti- PTHrP PTHrP (hormone involved in bone vicious cycle) Reduced liver and bone metastasis of melanoma179

Anti- N-cadherin N- cadherin (mesenchymal cadherin) Reduced prostate cancer muscle invasion and induced tumour 
cell apoptosis180

Anti- CD24 CD24 (GPI- linked sialo- glycoprotein) Reduced lung metastasis of bladder cancer181

Anti- CDCP1 Protease cleavage site of CDCP1 Prevented lung metastasis by inducing poly(ADP- ribose) 
polymerase- mediated cell death182

Anti- TSPAN8 TSPAN8 (tumour- associated tetraspanin) Reduced metastasis of epithelial ovarian cancer183

Anti- MT1-MMP Membrane type 1 MMP Reduced lung metastasis of melanoma184

Small- molecule inhibitors

BL5923 CCR1 (CCL9 and/or CCL15 chemokine signalling) Inhibited liver metastasis of CRC by blocking recruitment  
of myeloid cells185

SD208 TGFβ receptor 1 Reduced melanoma and prostate bone metastasis and 
decreased progression of established lesions186,187

CCT129254 Multiple kinases (including ROCK , PI3K and AKT) Inhibited melanoma lung metastasis188

Zibotentan Endothelin 1 Prevented lung colonization by bladder cancer cells but had no 
effect on established metastases189

Debio 0719 Lysophosphatidic acid receptor 1 (fibrosis) Decreased lung and liver metastasis in breast cancer and 
induced tumour cell dormancy11

β- Aminopropionitrile Lysyl oxidases Prevented breast cancer metastasis but had no effect on existing 
lesions190

CCT365623 Lysyl oxidases Prevented metastasis of breast cancer191

CA-074 Cathepsin B inhibitor Prevention of bone metastasis and shrinkage of existing bone 
metastases in a breast cancer model192

Napabucasin Unclear (STAT3 and cancer stem cell pathways) Reduced metastasis of pancreatic and colon cancers193

HO-3867 Unclear (STAT3 signalling and reversion of mutant 
p53 to a wild- type phenotype)

Reduced metastasis of ovarian cancer194

IRAK inhibitor and 
ginsenosides

IRAK1 Reversed paclitaxel resistance and reduced metastasis of 
TNBC195

Bafetinib LYN and BCR–ABL1 Decreased liver metastasis in a breast cancer model196

KPT-6566 PIN1 (prolyl isomerase that regulates proline- 
directed kinase signalling)

Decreased lung metastasis of TNBC197

SF2523 Dual PI3K and BRD4 inhibitor (MYC- mediating 
factors)

Reduced regional colonic lymph node metastasis and shrank 
established metastases in pancreatic carcinoma model198

Nifuroxazide Unclear (STAT3 signalling) Inhibited lung and abdomen metastasis of CRC and shrank 
existing metastases199

AECHL-1 (triterpenoid) Unclear (alters cytoskeletal dynamics and inhibits 
NF- κB-mediated MAPK activity)

Decreased lung metastasis of TNBC200

CCG-203971 Unclear (inhibits the RHO–MRTF–SRF pathway) Decreased lung metastasis in melanoma model201

Regorafenib Multiple kinases (including angiogenic receptor 
tyrosine kinases)

Decreased lung metastasis of CRC (via activation of the  
protein tyrosine phosphatase SHP1) and shrank existing 
metastases202

GW3965 Liver X receptors Inhibited brain metastasis of melanoma and shrank existing 
lesions203

Low- dose paclitaxel Tubulin Decreased lung metastasis of cholangiocarcinoma  
(via reduced nuclear import of the calcium- binding  
protein S100A4)204

Selumetinib MEK Decreased lung metastasis of TNBC205

G2 Fascin (actin- bundling protein) Decreased lung metastases of breast cancer206

Zileuton Arachidonate 5-lipoxygenase Reduced spontaneous metastasis of MMTV- PyMT cells168



with strong correlations with metastasis but not pass-
ing the functional tests might serve as biomarkers of 
a response.

Preclinical modelling

Effective candidate identification relies on preclinical 
models that accurately recapitulate the disease pathogen-
esis in patients and, specifically, the particular process 
being targeted (that is, initial invasion, extravasation, 
the development of nascent metastases or metastatic 
outgrowth). Many commonly used preclinical tumour 
models are better suited for testing agents that have a 
direct antitumour effect, often on primary tumours, 
rather than clinically relevant effects on metastasis51,52. 
For numerous cancer types, the primary lesion can be 
well controlled by standard therapies (surgery, radio-
therapy and/or chemotherapy) — the challenge is to 
control the onset and growth of secondary lesions.

No single preclinical model exists that wholly reflects 
metastasis in patients with cancer. Several different 
preclinical models of the type of cancer under study 
should be used when testing the anti- metastatic activity 
of a new drug to account for the diversity of the dis-
ease in patients52. If a molecularly targeted therapy is 
to be tested, an ideal preclinical model is one in which 

the target molecule promotes one or more steps in the 
metastatic process within that preclinical model. For 
example, inducible expression of the transcription fac-
tor Twist- related protein 1 in mice can drive epithelial- 
to-mesenchymal transition and result in increased 
metastasis of squamous cell carcinoma53. Other exam-
ples include prevention of metastases through target-
ing of SRC expression in orthotopic mouse models of 
human pancreatic adenocarcinoma54 or dual pharma-
cological inhibition of MET and VEGFR2 (reF.55) in 
various tumour models and tumour cell lines, or trans-
genic mice in which mammary tumour development 
and metastasis are driven by the expression of HER2 
(reF.56) or E545K- mutant PIK3CA57. Examining drug 
efficacy in models with complex genetics, including in 
both metastatic driver and passenger pathways, can also 
be informative by reflecting the genomic complexity of 
patient tumours.

The fact that host tissues dictate the extent to which 
a tumour can metastasize is becoming increasingly evi-
dent. The tumour microenvironment is complex, var-
ies extensively in different organs and is influenced by 
tumour–host cell interactions, physical and metabolic 
changes, and secreted cytokines, chemokines and growth 
factors58. As well as influencing tumour growth directly, 
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Agent Target Preclinical dataa

Peptides

Bone metastasis- targeting 
peptide 78

Endoplasmic reticulum chaperone BiP Reduced outgrowth of established lung and bone 
micrometastases in an advanced- stage breast cancer model207

T22 CXCR4 (SDF1 chemokine signalling) Showed synergy with anti- CTL A-4 therapy in reducing the size 
of established melanoma metastases208

Ac- PhScN-NH2 α5β1 integrin (fibronectin receptor) Inhibited bone metastasis, disease progression and lung 
colonization in a breast cancer model and shrank established 
lesions209

Immunotherapies

MTDH DNA vaccine MTDH Induced T cell responses and prevented lung metastasis in a 
breast cancer model210

LMP1 DNA vaccine LMP1 viral antigen Inhibited TC-1 lung metastasis in vivo via targeting of EBV 
LMPs211

Others

Retinoic acid Retinoic acid receptor (inhibits cell adhesion) Inhibited melanoma lung metastasis by inhibiting tumour cell 
adhesion to the vascular endothelium and subendothelium212

IGF trap IGF1R Promoted apoptosis of colon and lung cancer cells in nascent 
liver metastases213

Ad.dcn (decorin- expressing 
oncolytic adenovirus)

Various (results in downregulation of MET,  
β- catenin and VEGFA)

Systemic delivery shrank established bone metastases of 
prostate cancer214

Cellax- DTX polymer 
(docetaxel–acetylated car-
boxymethylcellulose–PEG 
conjugate nanoparticles)

Tubulin (results in selective depletion of activated, 
cancer- associated fibroblasts)

Decreased development of pancreatic metastases215

N- acetylcysteine Reactive oxygen species (antioxidant) Inhibited liver metastasis of pancreatic cancer216

NM-NP-CFZ 
(neutrophil-mimicking- 
nanoparticles containing 
carfilzomib)

Inflammatory neutrophils Prevented early lung metastases and shrank established 
metastases in mammary carcinoma models217

CDCP1, CUB domain- containing protein 1; CRC, colorectal cancer ; CTL A-4, cytotoxic T lymphocyte antigen 4; EBV, Epstein–Barr virus; GPI, glycosylphosphatidy-
linositol; LMP, latent membrane protein; MMP, matrix metalloproteinase; MRTF, myocardin- related transcription factor ; MTDH, metadherin (also known as LYRIC); 
PEG, polyethylene glycol; SRF, serum response factor ; TNBC, triple- negative breast cancer. aUnless otherwise noted, the intervention was shown to prevent or 
delay the development of metastasis.

Table 1 (cont.) | Selected preclinical data for potential anti-metastatic therapies



these changes alter the capacity of the immune system 
to recognize and attack tumour cells59. These factors 
must be taken into account when selecting preclinical 
models in order to ensure that interventions are effective 
for the tumour type and/or organ of metastatic involve-
ment58. For example, in a mouse model of prostate can-
cer, androgen ablation (by castration) was demonstrated 
to result in bone loss and enhanced the growth of dis-
seminated tumour cells (DTCs) in the bone; however, 
detrimental exacerbation of bone metastasis could be 
overcome by administering bisphosphonates together 
with androgen ablation60.

No in vitro test adequately models the entire meta-
static process; therefore, in vivo modelling is essential. 
Generally, metastasis models consist of either mouse 
tumours in a syngeneic host, thereby allowing for full 
engagement of the immune system, or human tumours 
engrafted into immunosuppressed hosts52,61. Mammals 
other than mice, such as rats62, are used occasionally, as are 
non- mammalian hosts such as zebrafish63, Drosophila64 
and the chick embryo chorioallantoic membrane65.

Genetically engineered mouse models (GEMMs) 
use mice bearing oncogenes that initiate a primary 
tumour (quite often, multiple primary tumours), which 
in some cases progress to metastatic disease (for exam-
ple, the LSL- KrasG12D/+; LSL- Tp53R172H/+; Pdx1-Cre KPC 
GEMM used for preclinical studies of both pancreatic 
cancer prevention and therapy66). When murine trans-
plantable tumour models are used, cells can be intro-
duced, preferably at orthotopic sites, to initiate primary 
tumour growth and subsequent spontaneous metastasis. 
A major advantage of such mouse metastasis models is 
the presence of matched stromal tissues that can recapit-
ulate growth factor signalling and anticancer immune 
responses. Given the obvious and critical role of the host 
immune system in regulating metastasis58,59,67, models of 
murine tumours in immunocompetent syngeneic hosts 
should be included in the preclinical testing of any new 
therapeutic whenever possible.

Metastasis assays can also involve established can-
cer cell lines or tissues recovered directly from patients 
undergoing tumour biopsy sampling or resection. As 
opposed to a cell line that has drifted genomically during 
long- term culturing, patient- derived xenografts (PDXs) 
have the important advantage of more closely reflect-
ing the genomic profile of the original tumour. PDXs 
are also reported to metastasize to the same organs as 
metastases in the donor patient68–70. However, xenograft 
models obviously lack competent immune regulation 
(owing to the need to avoid immune- mediated destruc-
tion of the transplanted allogeneic tumour cells). The 
advent of even more severely immunocompromised 
mice, such as non- obese diabetic–severe combined 
immunodeficient (NOD–SCID) and NOD–SCID–
IL-2-receptor γ- chain-mutant (NSG) mice, has enabled 
a higher proportion of tumours to be established in such 
models, with more circulating tumour cells (CTCs) and 
metastases. However, in patients, tumours develop 
despite the presence of a competent immune system 
by evolving mechanisms to escape immune detection 
and/or destruction; therefore, various methods of incor-
porating a human immune system into these severely 

immunocompromised mice are the subject of active 
research61. CTCs isolated from 10 ml of blood have also 
been used to generate patient- derived CTC xenograft 
models (CDXs) and have several advantages over PDX 
models generated using tumour biopsy samples. These 
advantages include the development of tumours with a 
molecular profile generally similar to that of the primary 
tumour and single CDXs that respond to chemotherapy 
in the same way as the donor patient’s tumour; the ability 
to generate models for patients with tumours that are 
not amenable to biopsy sampling or surgery; and the use 
of a population of tumour cells that has already gained 
an invasive behaviour, reflecting intra- patient hetero-
geneity, and that can be used as a surrogate to study 
metastasis (reviewed in reF.71). Nevertheless, CDXs do 
have drawbacks, such as lack of a functional immune 
system, and can be challenging to establish for some 
tumour types.

Cell lines and dissociated murine tumours can also be 
injected haematogenously, intraperitoneally, intrasplen-
ically or by other routes to circumvent primary tumour 
formation. This scenario might be justified for types of 
cancer in which initial seeding of tumour cells at distant 
sites commonly occurs before diagnosis. Such ‘experi-
mental metastasis’ models offer the advantages of rapid 
metastatic progression and greater numbers of tumours, 
which can accelerate study throughput. However, these 
models might fail to recapitulate the aforementioned 
capacity of the primary tumour to fashion the pre- 
metastatic niche by releasing growth factors, cytokines, 
proteases and extracellular vesicles14,72,73 (Fig. 2).

Models with different sites of spontaneous metastatic 
dissemination that reflect the patterns of metastasis in 
patients are a further necessity for preclinical testing. 
The 4T1.2 mammary cancer model is an example of 
a mouse model that recapitulates the pattern of meta-
static spread of its human counterpart, with the primary 
tumour generating spontaneous metastases in the lymph 
nodes, lungs and bones — major sites of metastasis in 
patients with breast cancer45. Clearly, therapies will need 
to be tailored for metastatic lesions in different organs 
because the microenvironments of bone, liver and brain, 
for example, are very different and therefore confer dif-
ferent properties to the tumour cells that successfully 
colonize these organs. For example, treatment with the 
RANKL antagonist osteoprotegerin effectively controls 
bone metastases, but not metastasis to the lungs in a 
mouse model of metastatic breast cancer74.

In general, too few preclinical metastasis models are 
available to adequately replicate the substantial hetero-
geneity of metastases in patients. Ideal models should 
be orthotopic, immunocompetent and able to produce 
metastases within a few months. Several common types 
of cancer, including melanoma, breast cancer and pros-
tate cancer, can have a long latency — up to two decades 
between the initial treatment of the primary tumour 
and the development of distant metastases. For these 
cancers, evidence exists for very early dissemination 
of the tumour cells, even before diagnosis, followed by 
long periods of dormancy after extravasation into other 
tissues22,75–80 (Fig. 2). These findings and those of other 
similar studies emphasize the importance of developing 
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therapies that can prevent the outgrowth of DTCs or that 
result in the death of very slowly cycling cells. Preclinical 
models that mimic this metastatic dormancy phenotype 
need to be developed to facilitate testing of such thera-
pies and should incorporate current adjuvant treatments, 
such as hormone therapy for breast or prostate cancer. 
Current models involve the use of transplantable tumour 
cell lines with much delayed development of metastatic 
disease that becomes evident only after an extended time 
following successful resection of the primary tumour. 
Examples include the mammary tumour lines D2.OR81 
and D2.A1-GFP82 and HEp3 cells isolated from the 
lymph node of a patient with head and neck squamous 
cell carcinoma83. Thus, various important features need 
to be considered when developing preclinical models 

of metastasis suitable to evaluation of experimental  
anti- metastatic agents (box 1).

Preclinical outcome measures

Development of metastases in preclinical models can 
be monitored by non- invasive imaging methods (for 
example, bioluminescence or MRI), enabling kinetic 
studies of their development. Standard metastasis mod-
els use imaging, histological counts and/or a quanti-
tative measure of metastatic burden45 as primary end 
points, with survival as a secondary end point. Less 
often, other potentially important end points, such as 
rates of cell proliferation and apoptosis, microenviron-
mental alterations or immune infiltration are reported. 
This approach enables investigation of novel therapies 
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Box 1 | Validating a potential anti- metastatic agent using preclinical in vivo models

Animal	models	are	required	to	provide	mechanistic	insights	into	the	effects	of	experimental	agents	on	the	entire	
metastatic	process	and	are	conducted	primarily	in	mice.	Multiple	factors	are	important	to	consider	when	establishing	the	
experimental	design	if	a	translational	goal	is	anticipated.

Prevention of metastasis versus shrinkage of existing lesion
Most	preclinical	metastasis	experiments	are	focused	on	preventing	the	initial	formation	of	a	metastasis	—	tumour	cells	
are	injected	into	mice,	and	the	experimental	agent	is	delivered	soon	after	and	continuously,	with	the	number	and	sizes	of	
metastases	quantified	at	the	end	point.	The	findings	of	such	studies	are	more	relevant	to	adjuvant	trial	designs	given	the	
close	alignment	of	aims	between	the	clinical	setting	and	these	models	—	that	is,	avoiding	relapse	owing	to	undetectable	
disease.	Even	so,	metastatic	tumours	can	be	allowed	to	grow	to	reflect	a	more	advanced-	stage	cancer	setting.

Spontaneous versus experimental metastasis
Metastasis	models	in	which	neoplastic	cells	form	a	primary	tumour	and	subsequently	metastasize	are	the	gold	standard,	
but	the	low	number	of	lesions	produced	over	long	periods	of	time	is	an	important	limitation;	few	such	models	exist. Other	
experimental	models	use	haematogenous	or	other	routes	of	tumour	cell	delivery	and	enable	interrogation	of	the	final	
stage	of	metastasis:	metastatic	colonization.

The source of tumour cells
Cell	lines	are	easier	to	use,	but	long-	term	culture	can	result	in	cell	lines	that	do	not	accurately	recapitulate	the	actual	
clinical	disease	biology.	Genetically	engineered	models	generally	have	low	frequencies	of	metastases	and	might	not	
reproduce	the	genomic	diversity	of	human	tumours.	By	contrast,	patient-	derived	xenografts	and	spheroids	have	been	
reported	to	closely	replicate	the	tumour	heterogeneity	and	evolution	and	the	clinical	course70,149.	Ultimately,	the	use	of	
multiple	models	is	always	preferable.

The animal (typically mice)
Given	the	increasing	importance	of	immunotherapy,	and	the	immune	contributions	to	responses	to	standard	therapies,	
use	of	syngeneic,	immune-	proficient	mice	is	advisable.	Indeed,	multiple	aspects	of	the	microenvironment	are	
contributors	to	the	metastatic	cascade	and	ideally	should	be	considered	in	preclinical	models.

Site of injection

Subcutaneous	models	should	be	avoided.	For	models	of	spontaneous	metastasis,	orthotopic	injection	of	tumour	cells		
is	mandatory.

Site of metastasis
The	sites	of	metastasis	in	the	mouse	model	should	reflect	the	characteristic	sites	of	dissemination	associated	with	the	
human	disease	being	studied.

Prior chemotherapy or radiation therapy, or concurrent therapy

Any	new	therapeutic	must	be	given	in	the	context	of	approved	standard	treatments.	The	model	can	be	used	to	assess	
whether	the	new	therapy	should	replace	the	standard	treatment,	be	combined	with	it	or	be	used	sequentially.

Likely combination therapies
The	functional	redundancy	of	the	metastatic	process	ultimately	mandates	that	drug	combinations	be	developed.

Oral or intravenous dosing
When	long-	term	drug	administration	is	required,	as	in	most	metastasis	prevention	studies,	oral	dosing	is	imperative	
unless	agents	with	long	half-	lives,	such	as	monoclonal	antibodies,	are	under	development.	Other	routes	of	administration	
should	be	considered	only	if	they	are	used	clinically	for	the	cancer	type	under	study.

Pharmacokinetics
Collaborate	with	a	pharmacologist,	collect	serum	samples	and	generate	pharmacokinetic	data.

Other end points
Whenever	possible,	use	end	points	in	animal	studies	that	closely	reflect	clinically	relevant	end	points,	such	as	disease-	free	
survival,	quality	of	life	and	overall	survival,	rather	than	tumour	growth	curves	alone.



but also the development of drug resistance that is 
associated with metastasis. Chemoresistance is often 
considered to be caused by gene mutations that negate 
the cytotoxic effects of therapy. Surprisingly, diverse 
metastasis pathways have been functionally implicated 
in chemoresistance in mouse models (Supplementary 
Box S1). Mechanistically, reductions in chemosen-
sitivity have often been associated with activation 
of metastatic pathways that provide survival cues to 
the tumour cells, enhance proliferative signalling or 
counter DNA damage84–86. These findings uncover an 
unexpected intersection between metastasis and drug 
resistance that could lead to rational combinations of 
anti- metastatic agents and chemotherapies or other 
cytotoxic agents in clinical trials. These studies offer a 
provocative translational hypothesis, although careful 
studies using clinically achievable drug doses, sched-
ules and combinations are needed in multiple preclinical 
model systems, including both chemotherapy- naive and 
chemoresistant models.

Another consideration when developing anti- 
metastatic therapies is whether to target tumour cells 
directly or indirectly by modifying the tumour micro-
environment to be more suppressive to tumour growth.  
A common argument for targeting host cells is their greater  
genomic stability, which might make the development 
of drug resistance mechanisms less likely. However, 
the tumour microenvironment is complex and differs 
between each organ in which metastases have been 
established. Although not always adequate to predict 
metastatic events, preclinical models can help to under-
stand the different host microenvironments and can be 
used to test therapies focused on site- specific metastasis. 
The unique microenvironment of bone provides the best 
example, relating to the aforementioned application of 
bisphosphonates and denosumab. In preclinical models 
of breast cancer bone metastasis, responses to bisphos-
phonates were found to be dependent on menopausal 
status: ovariectomized mice (mimicking a postmeno-
pausal state) had a greater tumour burden in bone than 
control mice (mimicking a premenopausal state) but 
responded well to the therapy, whereas tumour burden in 
control mice was unaffected87. Likewise, in patients with 
breast cancer participating in the AZURE trial (zole-
dronic acid in combination with standard adjuvant ther-
apy), a significant improvement in DFS (HR 0.75, 95% 
CI 0.59–0.96; P = 0.02) and OS (HR = 0.74, 95% CI 0.55–
0.98; P = 0.04) was obtained only in women who had  
been postmenopausal for >5 years at the commencement 
of the trial88.

Development of pharmacodynamic markers indica-
tive of drug activity must also be incorporated into pre-
clinical testing. In clinical trials, traditional end points of 
radiological tumour responses and survival are increas-
ingly inadequate. Thus, knowledge of whether the 
drug hits its intended target and how the tumour cells  
and/or tumour microenvironment respond is of growing 
importance. When designing experiments in animals, 
adequate consideration should be given to analyses that 
are achievable in patients — that is, liquid and/or tumour 
biopsy- based assessments and imaging. Circulating cell- 
free tumour DNA (ctDNA), tumour- derived exosomes 

or CTCs are increasingly common sources of phar-
macodynamic markers that can be tested in mice and 
patients89–94.

Comparisons with human tissues

Evidence of the activity of a prospective target using pre-
clinical models is necessary but is not sufficient: assess-
ment of relevance using clinical samples is imperative. 
Clinical evidence can be obtained retrospectively by 
analysing publicly available databases for the transcript 
of interest and assessing its prognostic and/or predictive 
value in a specified cohort of patients with cancer that 
has appropriate follow- up data. Such databases could 
also be used to identify potential predictive biomarkers 
for later study in clinical trials. Supplementing analyses 
with additional information, such as data on inactivation 
or mutations in genes specifically associated with meta-
stasis, could also help build evidence for a particular tar-
get. If adopted, this approach must be used with caution, 
given that genetic alterations recorded in large databases 
might provide less robust targets for anti- metastatic 
agents than for other anticancer therapies because many 
metastasis pathways involve alterations in gene expres-
sion rather than mutations95. Any correlations must be 
confirmed at the protein level in tumour samples from 
a large number of patients, typically using tissue micro-
arrays. For example, in preclinical models of spontane-
ous mammary tumour metastasis to bone, restoration of 
interferon regulatory factor 7 (IRF7) expression in the 
tumour cells did not alter primary tumour growth but 
did inhibit bone metastasis44. In a retrospective analysis 
of data from 855 samples from primary breast cancers, 
high expression of an IRF7 pathway gene signature was 
associated with reduced bone metastasis of breast cancer 
(HR 0.63, 95% CI 0.42–0.93; P = 0.021) but had no prog-
nostic value in predicting metastasis to visceral organs44. 
In tissue array analyses, IRF7 protein was detected in 
56% of primary tumours compared with 17% of dis-
tant metastases and in only 11% of bone metastases44. 
Prospective analyses can provide very strong evidence 
for potential therapeutic targets or biomarkers, but in the 
absence of the relevant cohorts for prospective analysis,  
appropriately designed prospective retrospective  
analyses can also generate good levels of evidence96.

Associations with non- coding RNA species can 
be assessed similarly through in situ hybridization in 
tissue samples. Metastatic biopsy samples are rarer 
than primary tumour specimens but are important for 
analyses of biomarker expression in the development 
of anti- metastatic therapies. Data must be interpreted 
with consideration of the patient’s prior treatments  
(or lack thereof ) in terms of consistency with the 
proposed clinical setting in which the therapy will  
be developed.

Drug properties

The desired pharmacological profile used to guide drug 
screening necessitates a shift from that typically accepted 
in an acute tumour shrinkage model to one of chronic, 
ideally oral administration — with the exception of a 
monoclonal antibody, for which monthly infusions 
might be considered feasible — with an appropriate 
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risk–benefit profile. Optimization of structure–activity 
relationships can be used to select lead drug candidates 
with a pharmacokinetic profile appropriate for chronic 
use. For example, drugs that have good oral absorption 
characteristics and effective distribution to target tis-
sues and are poor substrates for metabolic (cytochrome 
P450) enzymes in the liver (to avoid potential drug–
drug interactions) are suited to simple once daily oral 
administration over months or years.

In the cancer setting, specific characteristics of the 
target disease, such as the frequency of metastasis to  
the brain, must also be considered97–99. For the example 
of brain metastasis, drug properties that increase blood–
brain barrier permeability and reduce the potential for 
membrane efflux transporter elimination might be 
a priority. Toxicological structure alerts (toxicophores) 
need to be avoided in the development of any drug that 
is to be dosed chronically, particularly in elderly or frail 
patients who are likely to present with comorbidities, 
including reduced renal and liver function, or in patients 
who have previously been treated with multiple lines of 
anticancer therapy and are therefore likely to have a poor 
performance status. Avoidance of drugs that have high 
risk of hERG voltage- gated potassium channel blockade, 
which is associated with potentially fatal cardiotoxicity, 
is a special case in point100. Other pharmacological fea-
tures associated with on- target and off- target toxicities 
also need to be avoided, particularly the generation of 
reactive metabolites that can cause carcinogenicity and 
nonspecific cytotoxicity.

Clinical drug development

Overview

Designing clinical trials and identifying end points that 
reflect the prevention of metastatic disease and can 
meet regulatory authority expectations for evidence of 
clinically significant benefit are arguably the most crit-
ical barrier to the development of new anti- metastatic 
agents. Measuring a clinically meaningful outcome in a 
realistic time frame, without requiring the recruitment 
of overwhelming patient numbers, is a key aim. The 
paucity of putative anti- metastatic agents being tested 
in clinical trials bears testament to these barriers.

Chemotherapies, hormone therapies, molecularly 
targeted agents, immunotherapies and various combi-
nations thereof have produced responses and prolonged 
progression- free survival (PFS) and OS in the meta-
static setting but are insufficient to achieve cure in most 
patients. Some of these same treatments have prevented 
or delayed the development of overt metastatic disease in 
some (but not all) patients when administered to those 
without detectable metastases but in whom micro-
metastases are suspected. Examples include the use of 
combination chemotherapy in the perioperative set-
ting for bladder cancer101,102 and adjuvant tamoxifen for 
breast cancer103. This scenario has led to a drug develop-
ment pathway in which therapies likely to be effective in 
eliminating micrometastases are progressed to the adju-
vant setting only after they first demonstrate antitumour 
effects in patients with advanced- stage disease. Such an 
approach also assumes that the biology of the metastases 
is similar to that of the primary tumour, which is not 

universally true. This drug development paradigm is 
further reinforced by the need to manage the very large 
risks associated with trials in the adjuvant setting (for 
example, relating to the need for large cohorts, healthier 
populations and long durations for data maturity; the 
high costs; and the lack of safety data in patients with 
anticipated long- term survival) by first demonstrating 
activity and acceptable toxicity in trials involving smaller 
numbers of patients with more rapidly attainable end 
points. In other words, demonstrated efficacy in patients 
with pre- existing metastases has traditionally been the 
obligate gateway to adjuvant trials of interventions for 
metastasis prevention.

The ability to delay or prevent metastases has the 
potential to enormously improve the survival durations 
of patients with cancer and could even lead to cures. 
However, the opportunity presented by anti- metastatic 
drugs cannot be explored adequately using conventional 
drug development pathways because drugs without 
cytotoxic or clinically meaningful cytostatic effects in the 
patients with overt metastatic disease will never advance 
to adjuvant trials. This point is central to the rethinking 
of clinical trial designs for metastasis prevention, with 
the clinical use of potential anti- metastatic drugs falling 
into three possible scenarios.

Occult micrometastatic disease. A practical definition 
of micrometastatic disease is that which is suspected 
to be present at the time of treatment of the primary 
tumour but is not evident using conventional imaging 
and clinical examination. Micrometastases can some-
times be detected by other methods, such as in bone 
marrow aspirates using flow cytometry104, biochemical 
techniques (such as rising serum PSA levels in patients 
with prostate cancer105) or molecular assays for tumour- 
derived DNA (typically ctDNA in blood samples106). 
However, the predictive power of some of these tests 
is debatable, with questions remaining regarding their 
sensitivity and specificity107. Prospective randomized 
clinical studies in specific disease settings are required 
to examine the utility of these detection methods and 
thereby validate their use in guiding treatment deci-
sions. Patients with micrometastasis can be identified 
across many, if not most, types of cancer, providing 
important new opportunities for anti- metastatic ther-
apy. Occult micrometastatic disease might either be 
actively growing or dormant and how this difference 
might affect the choice and timing of therapy remains 
unclear. The detection of rising PSA levels in patients 
with no other evidence of disease after prior treatment 
of prostate cancer can be used as a platform for meta-
stasis prevention (NCT03119857), although many tri-
als simply use PSA metrics as a primary end point of 
treatment efficacy.

Tumours that cannot be removed surgically. In gen-
eral, the aim of cancer surgery is to remove the primary 
tumour in order to obtain optimal local disease control 
and prevent the subsequent development of metastatic 
disease. Often, however, tumour resection is not feasible 
— despite the absence of metastatic disease — because 
of the anatomical location of the tumour or the likely 
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inability of the individual patient to tolerate the pro-
posed surgery (for example, owing to an insufficient 
respiratory reserve to endure pneumonectomy or insuf-
ficient fitness for prolonged anaesthesia). In practice, 
management of these patients presents a substantial 
clinical challenge. The use of drugs to prevent meta-
static spread in addition to therapy to achieve local dis-
ease control (for example, by chemoradiation of locally 
advanced pancreatic cancer) is a potential approach to 
overcoming this challenge. This strategy could also be an 
alternative to tumour resection for patients in whom the 
morbidity and mortality associated with surgery would 
be better avoided. Another option for such patients arises 
from the emerging realization of the abscopal effects 
of radiotherapy — that local radiotherapy can lead to 
immune- mediated destruction of tumours outside the 
irradiated field108. Several clinical trials (NCT03323424, 
NCT03396471 and NCT02992912) are now testing the 
combination of local radiotherapy with immunotherapy 
to exacerbate the damage to overt metastatic lesions out-
side the radiation field109,110. If this hypothesis is proven, 
then the abscopal effect could potentially be harnessed 
for the management of micrometastatic disease to effect 
cures in future trials.

Patients at high risk of invasive malignancy. Metastasis 
is rare in the absence of an invasive primary tumour; 
thus, a strong clinical rationale exists for eliminating 
cancer in its pre- invasive state to prevent disseminated 
disease. Patients with discrete pre- invasive lesions might 
undergo major local therapy; for example, patients with 
non- invasive tumours of the bladder often undergo 
cystectomy111, and those with breast ductal carcinoma 
in  situ can undergo mastectomy112. Even for some 
pre- cancerous conditions, the established organ- wide 
risk of pre- invasive disease (and thus malignant trans-
formation) can warrant preventive surgery (such as 
pan- colectomy for familial polyposis) or regular sur-
veillance with a view to major surgery (such as Barrett 
oesophagus). In some cases, complete removal of all 
at- risk tissue is not possible (for example, in patients 
with urothelial carcinoma in situ). Indeed, existing 
treatments are already used to reduce the risk of pro-
gression in patients with pre- invasive neoplasia (such as 
intra- vesical Bacillus Calmette–Guerin (BCG) immuno-
therapy for those with urothelial carcinoma in situ) or a 
known risk of developing cancer (for example, tamoxifen 
for women with an inherited risk of breast cancer owing 
to BRCA mutations). However, these approaches often 
have a disappointing effect on survival outcomes113,114, 
and the agents themselves might not target the path-
ways that most potently drive the invasive phenotype. 
Furthermore, continuous long- term administration of 
potentially toxic agents can be required to maintain 
the chemopreventive effect, which might not be fea-
sible; for example, chemoprevention with retinoids in 
patients with pre- malignant head and neck tumours 
has been limited by poor tolerability (with the majority 
experiencing cheilitis, dry skin and conjunctivitis)115. 
Consequently, the opportunity to develop rationally 
targeted, more efficacious and better tolerated sys-
temic therapies in such patient populations is attractive.  

In this scenario, anti- invasion therapies might be the most  
useful anti- metastatic approach.

Challenges in clinical trial design

A dominant problem in each of the preceding scenar-
ios is that intervention is likely to be required years in 
advance of the clinically important event (predom-
inantly metastatic relapse or death). This latency pre-
sents substantial challenges for the design of statistically 
powered clinical trials that meet the regulatory standards 
for evidence. The main implications are both economic 
and clinical. Economically, the costs of trials with large 
cohorts and long follow- up durations are prohibitive, 
and the predicted return on investment is restricted 
by the potentially limited time remaining on a patent. 
Indeed, many current adjuvant therapies have come into 
routine use only after or near the time of patent expiry. 
For this reason, such studies are rarely industry funded. 
Clinically, the imperative is to make more rapid progress 
than this scenario allows.

The end points traditionally used in oncology clin-
ical trials present an additional challenge. End points 
for determining antitumour efficacy in patients with 
advanced- stage disease continue to be based on con-
ventional outcome measures including the objective 
response rate (ORR) based on reductions in tumour 
dimensions on cross- sectional imaging of established 
metastases, PFS and/or OS. Adjuvant trials typically have 
a primary end point of DFS. These indicators of efficacy 
either present a specific challenge to the timely devel-
opment of anti- metastatic therapy or are not applicable 
in the absence of lesions that are detectable on imaging. 
Biomarkers that enable the detection of disease pro-
gression earlier than is possible through imaging of new 
metastatic lesions are clearly desirable; however, the use 
of such markers might require prospective validation, 
compounding the time and financial requirements.

With these challenges in mind, several ways for-
ward are discernible. Owing to the plethora of potential 
drug candidates and the high costs of late- phase clinical 
studies, early clinical development must be maximized 
as follows. Anti- metastatic agents are unlikely to be sub-
stantially different from any other candidate anticancer 
drug in this regard, but early go versus no- go decisions 
will need to be based on robust mechanistic and other 
pharmacodynamic biomarkers rather than on the typical 
evidence of objective tumour responses in patients with 
advanced- stage disease. Given the essential favourable 
safety profile of these anti- metastatic drugs, efficient 
early phase clinical studies could feasibly be conducted 
in healthy volunteers; thus, the identification of bio-
markers that are evaluable in non- malignant tissues will 
be of crucial importance.

The appropriateness of the novel end points will need 
to be supported by community- derived data providing 
compelling evidence that regulatory authority require-
ments will be met. By their nature, the novel end points 
are likely to be context- specific. Nevertheless, exam-
ples are available of accepted surrogate end points that 
have been used successfully in clinical development of 
drugs targeting pre- invasive pathways. These examples 
include the use of progression from early stage to stage 
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T2 disease in establishing the role of intravesical BCG for 
the treatment of high- risk non- muscle-invasive bladder 
cancer113 and the use of a reduction in the numbers of 
polyps in the development of celecoxib for chemopre-
vention in patients with familial polyposis coli116. Early 
approval, on the basis on surrogate end points, will 
then need to be followed by confirmation of the clinical  
benefit in registry- type post- marketing studies.

In February 2018, the FDA also accepted the sur-
rogate end point of metastasis- free survival in the 
first registration of apalutamide for the treatment of 
non- metastatic CRPC117. However, this end point was 
controversial118 because the use of conventional imag-
ing (with isotope bone scans and CT) to establish the 
metastasis- free state will certainly result in failures 
to identify metastases that might be detectable using 
novel imaging modalities, such as whole- body MRI119 
or 68Ga- prostate-specific membrane antigen- PET120. 
The use of these novel imaging techniques is unlikely 
to have changed the outcome of the trial (an imbalance 
between the arms in the incidence of MRI- detectable 
or PET- detectable metastatic disease seems unlikely); 
however, if patients had disease staging using these 
alternative, more sensitive imaging modalities, the con-
trol intervention (placebo alone) would have been inap-
propriate for the subset of patients with upstaging to 
metastatic disease, and thus the true therapeutic value 
of apalutamide might have been overstated. Hence, 
completion of dedicated studies to identify the true 
incidence of metastatic disease in particular patient 
populations might be necessary before such end points 
can be used to explore drugs with the specific aim of 
preventing metastasis.

Secondary prevention studies of metastasis are 
ongoing. In one such study (NCT03190967), patients 
with brain- metastatic breast cancer are being randomly 
assigned to receive metastasis prevention with the anti-
body–drug conjugate trastuzumab emtansine alone or 
in combination with metronomic temozolomide, with 
the primary objective of extending survival without 
new brain metastasis121. Similar end points are being 
explored in patients randomly assigned to a meta-
stasis preventive strategy or control treatment after sur-
gery for liver- limited metastatic colorectal cancer (for 
example, NCT03326791 and NCT00394992). Novel 
liquid biopsy assays of circulating tumour components, 
including ctDNA and CTCs, could also offer important 
opportunities for the development of biomarkers as new 
surrogate end points or intermediate markers to reduce 
the risk and accelerate the progress of anti- metastatic 
drug development (see the ‘Regulatory and registration 
pathways’ section)91,122–126.

Selecting populations at particularly high risk of hav-
ing an early clinical event at a somewhat predictable rate 
for inclusion in first proof- of-concept trials — similar 
to the enrolment of patients at high risk of metastatic 
recurrence in the aforementioned studies of secondary 
metastasis prevention strategies — is a key approach to 
accelerating the development of anti- metastatic drugs. 
A wealth of literature is available describing prognos-
tic factors that can help to identify such patients127,128; 
however, few studies have been completed prospectively, 

have incorporated independent validation cohorts  
or have used methodologies that can be accurately repeated  
and certified in diagnostic laboratories. The magnitude 
of metastatic risk is also an important consideration. 
Whether clinicians will feel comfortable designing a 
trial in a population with a 30% or 50% risk of meta-
stasis over a defined period is debatable. The discovery 
of novel biomarkers that can be used to estimate the 
risk of micrometastases is a research area that has not 
been adequately addressed to date, although the use of 
ctDNA- based approaches to molecularly define minimal 
residual disease (MRD) might provide opportunities in 
this regard. Subgroups of patients with an especially high 
risk of early distant metastases are clearly identifiable. 
Examples include those with limited- stage small- cell 
lung carcinoma129, locally advanced pancreatic ductal 
adenocarcinoma130 or colorectal cancer and resectable 
liver metastases131. These disease settings are attractive 
both commercially and clinically, although reliance on 
such populations for early go versus no- go decisions 
holds the risk that effective anti- metastatic drugs will 
be prematurely discarded. Specifically, these high- risk 
populations might not display any degree of micro-
metastatic dormancy. Furthermore, these patients do 
not present an opportunity to explore drugs targeting 
pre-invasive targets.

Another way to improve the efficiency of late- stage 
drug development is to include only patients with disease 
in which the aberrant pathway being targeted is known 
to be active. This approach has other clear advantages to 
patients in that it avoids exposure to the toxicities of such 
drugs in those who are unlikely to benefit and enables 
their prioritization to receive other treatments. Indeed, 
this concept of precision medicine is rapidly becoming 
mainstream in all areas of anticancer drug development. 
To enable application of these principles to the develop-
ment of anti- metastatic drugs, a full understanding of 
the link between the therapeutic target and the relevant 
subpopulation is vital, given that metastases are likely 
to have more complex and different drivers than those 
of the primary tumour. Heterogeneity between individ-
ual metastases adds an additional layer of complexity. 
Moreover, clinically applicable diagnostics should be 
developed in parallel with the drugs themselves. For 
some patients, however, time is of the essence in decid-
ing on the next therapy; thus, a requirement to schedule 
biopsy sampling and evaluate the specimen in an accred-
ited laboratory might present difficulties, particularly in 
the secondary metastatic setting, in which the oncologist 
and patient want to decide quickly on the next line of 
therapy (or trial participation). Conversely, in the post-
operative adjuvant setting, this time delay might not 
be clinically relevant while the patient recovers from 
the primary surgical management. Similarly, when the 
aim is to evaluate the novel agent in a maintenance set-
ting, the patient first needs to complete conventional  
postoperative systemic anticancer therapy.

Drugs that specifically target the processes of meta-
stasis have the potential to transform the care of the 
majority of patients with solid tumours, although such 
agents are unlikely to be used as their sole therapy. One 
can envisage that treatment of the primary tumour and 
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standard- of-care adjuvant therapy will remain the initial 
interventions, followed by potentially lifelong mainte-
nance therapy to prevent the growth of pre- existing 
(micro)metastases and/or to prevent further spread 
of metastases. Thus, one challenging but necessary aim of  
clinical trials will be to establish the optimal combina-
tion and sequencing of these therapies with other modal-
ities including surgery, radiotherapy, chemo therapy, 
molecularly targeted therapy and/or immunotherapy. 
The need to address the long- term toxicities of these 
drugs given the likely chronic duration of therapy is  
also essential.

Regulatory and registration pathways

Many promising mechanistic biological targets exist 
for metastasis prevention strategies (Table 1); however, 
clear and feasible regulatory pathways for anti- metastatic 
agents are lacking. Specifically, the lack of surrogate end 
points appropriate for determining clinical efficacy at an 
early stage of drug development makes anti- metastatic 
agents unattractive to developers when compared 
with drug classes with rapid and proven pathways  
to registration.

A primary disincentive for anti- metastatic agents is 
the de facto use of time- to-event end points, such as PFS 
or OS, to assess efficacy in early stage clinical research. 
These end points present a far greater logistical and 
financial hurdle than the short- term ORR end points 
used to assess almost all newly registered oncology 
agents. In the period of 2006–2016, the FDA approved 
180 oncology drugs (new and supplemental registra-
tions), including 41 accelerated approvals: most accel-
erated approvals (n = 37) were based on ORRs, with the 
remaining 4 approvals based on PFS using assessment 
criteria defined by indication- specific working groups132. 
The RECIST alone were used in the majority of stud-
ies that led to accelerated approvals. The RECIST and 
working group- derived criteria are standardized, well- 
defined and provide a rapid readout of objective tumour 
responses or disease progression5, whereas assessment 
criteria appropriate for anti- metastatic treatments are 
not standardized or clearly defined. These limitations 
are particularly problematic because the existing criteria 
designed for assessing objective responses or progression 
of solid tumours are unlikely to be of any use in assess-
ing anti- metastatic agents that might have little effect 
on primary tumours; additionally, in most cases, the 
patient will not have any detectable disease at the time of  
treatment with such drugs.

In the absence of regulatory precedent or standardi-
zation, individual product developers will be required to 
explore new surrogate end points without certainty that 
regulators will accept their clinical relevance. Fortune 
rarely favours the brave in drug development. Even 
with a significant increase in biologically relevant bone- 
metastasis-free survival durations (4.2 month prolon-
gation versus placebo, HR 0.85; P = 0.028) in 1,432 men 
with CRPC at high risk of developing bone metastases, 
the FDA denied an application for expansion of deno-
sumab use to an anti- metastatic indication in this dis-
ease133. The regulator cited that it was “unclear whether 
an improvement in bone- metastasis-free survival alone 

in patients with CRPC at high risk of bone metastases is 
an adequate measure of clinical benefit in support of new 
labelling claims for a new patient population” (ODAC 
Briefing Document BLA 125320/28 Denosumab 
(XGEVA), 2012, FDA)133. This example underscores the 
risk involved in developing anti- metastatic agents and 
highlights the need to complete robust validation of 
putative new end points concurrently with the clinical 
development of such agents134,135.

Many other surrogate end points and biomarkers 
specific to metastatic progression have been consid-
ered, including the use of time- to-metastasis end points 
in patients at high risk of metastasis121, residual CTCs, 
ctDNA, DTCs and circulating tumour exosomes91. 
However, turning these end points and biomarkers into 
validated surrogates that regulators will endorse as the 
basis for accelerated approvals will require a collabora-
tive approach to overcome the limitations of novel end 
points proposed by individual sponsors on an ad hoc 
basis125. These limitations include the high cost of bio-
marker development, the work required for refinement 
and standardization of test methods and the requirement 
for validation across comparable data sets and in suffi-
ciently large numbers of the target population to support 
statistically robust conclusions136.

Plasma ctDNA profiling has demonstrated prom-
ise in detecting MRD and discriminating patients with 
and without eventual clinical recurrence following 
surgery and/or adjuvant therapy, notably in breast can-
cer123,124,126,137 and non- small-cell lung cancer122. These 
findings emphasize the potential use of ctDNA profiling 
to select patients at high risk of relapse following comple-
tion of adjuvant therapy for add- on anti- metastatic strat-
egies, although these approaches remain in the research 
setting. Monitoring treatment response to immuno-
therapy using ctDNA- based liquid biopsy approaches 
might also be feasible93. Prospective, randomized trials 
are required to test whether persistent or rising ctDNA 
can be used as a surrogate for adjuvant therapy, along-
side development of standardized workflows enabling 
clinical implementation. The implementation of such a 
strategy is illustrated by the accelerated FDA approval of 
blinatumomab in 2018 for the treatment of patients with 
B cell precursor acute lymphoblastic leukaemia who are 
in first or second complete remission but have an MRD 
burden ≥0.1%, which occurred on the basis of an end 
point relating to the achievement of undetectable MRD 
using a high- sensitivity detection assay after one cycle 
of treatment138,139. In addition, a Clinical Laboratory 
Improvement Amendments (CLIA)-registered duplex 
ctDNA blood test for colorectal cancer recurrence has 
been available in the USA since 2016 for surveillance of 
patients after tumour resection140.

The lack of fixed criteria for drug developers is an 
unacceptable disincentive, the effects being sadly evi-
dent in the lack of any new chemical entity initially 
registered for the prevention of metastasis. We urge 
regulatory agencies to work with researchers, drug 
developers and statisticians to identify and define 
guidelines for surrogate end points in order to encour-
age development of this under- represented category of  
oncology drugs.
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Given that some anti- metastasis agents might be 
used in a preventive setting, the safety profile of such 
an Investigational Medicinal Product (IMP) will have 
to be much cleaner than those of standard anticancer 
agents. Proceeding to clinical trials even in the absence 
of adequate preclinical efficacy models might be accept-
able, although a strong rationale will be needed to sup-
port long- term administration of the IMP in a healthier 
population of patients with cancer. The acceptable safety 
profile will be different for IMPs aimed at suppressing 
and/or eradicating established metastatic lesions. The 
benefit–risk assessment should include a detailed dis-
cussion of standard treatments, the temporal relation-
ship with standard therapy (neoadjuvant, adjuvant or 
other applications), proposed safety monitoring and 

risk- minimization strategies; the potential for drug–
drug interactions and risks associated with possible 
delaying of standard therapy should be addressed.

Development of new biomarkers as surrogate end 
points should be guided by correlations with previously 
validated end points and/or clinically relevant parame-
ters (reviewed in reF.141). Companion diagnostics can 
be developed in parallel to the IMP and used for explor-
atory purposes. Once validated, the diagnostic can be 
used to dictate patient eligibility for trial participation 
and/or treatment assignment. In the USA, the FDA has 
provided guidance on validation of biomarkers for use 
in clinical development142, and in the European Union 
(EU), the European Medicines Agency has released guid-
ance for biomarker analysis of clinical trial samples143. 
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Box 2 | Summary of recommendations for the development of anti- metastatic therapies

Target identification and preclinical models

•	Clear	evidence	and	understanding	of	the	functional	relevance	and	
biological	activity	of	the	proposed	target	in	metastasis	in	humans		
are	essential.

•	Preclinical	models	must	reflect	the	disease	pathogenesis	in	patients;	for	
example,	the	sites	of	metastasis	should	encompass	the	same	or	similar	
organs,	and	the	target	(or	equivalent	target	in	the	model)	must	have	the	
same	role	as	in	the	human	setting.	Multiple	models	should	be	used.

•	Experimental	conditions	should	be	designed	to	reflect	the	standard	of	
care	in	the	clinical	setting	and	the	desired	route	of	treatment	
administration.

•	Careful	consideration	should	be	given	to	the	involvement	of	the	immune	
system	and	role	of	chemoresistance	within	the	models	used.

Drug discovery and preclinical development

•	Anti-	metastatic	drugs	are	likely	to	be	given	via	the	oral	route	repeatedly	
over	a	prolonged	period	of	time	(perhaps	years),	necessitating	a	shift	
from	the	risk–benefit	profile	of	traditional	anticancer	agents	towards		
one	with	a	considerably	lower	level	of	risk;	the	absorption,	distribution,	
metabolism	and	excretion	(ADME)	profile	of	the	drug	should	reflect		
this	necessity.

•	Drugs	that	have	liver	metabolism	liabilities	and/or	common	drug–drug	
interactions,	undergo	enzymatic	hydrolysis	or	are	substrates	of	
membrane	efflux	transporters	should	be	avoided.

•	The	pharmacokinetic	parameters	of	the	drug	must	be	optimized	to	
enable	high	levels	of	target	exposure,	including	a	high	dissolution	rate	
and	good	solubility	and	permeability.

•	Lead	clinical	drug	candidates	should	be	tested	in	several	different	and,	
ideally,	genomically	complex	models	to	account	for	diversity	of	the	
disease	in	patients.

•	Pharmacodynamic	markers	need	to	be	developed	that	reflect	drug	
activity	and	can	be	translated	to	the	clinical	setting.

•	Toxicology	readouts	should	generally	be	cleaner	than	that	often	
accepted	for	anticancer	agents;	for	example,	the	drug	should	not	result	
in	blockade	of	hERG	voltage-	gated	potassium	channels	nor	generate	
reactive	metabolites	that	can	lead	to	downstream	carcinogenicity	or	
nonspecific	toxicity.

Clinical development

•	Given	the	potential	ethical	issues	surrounding	the	testing	of	
experimental	agents	with	an	anti-	metastatic	mechanism,	specifically	
relating	to	the	very	limited	possibility	of	clinical	benefit	in	patients	with	
advanced-	stage	cancer,	studies	involving	healthy	volunteers	should	be	
considered	as	a	first	step	in	clinical	testing.

•	Early	clinical	development	(ideally	phase	I	expansion	cohorts)	should	be	
focused	on	demonstrating	proof	of	biological	concept	using	validated	

pharmacodynamic	markers	relevant	to	the	target	and	drug	being	tested;	
if	healthy	volunteers	are	enrolled	in	clinical	trials,	these	markers	must	be	
measurable	in	non-	malignant	tissues	and/or	in	blood.

•	Any	companion	diagnostics	that	might	have	to	be	developed		
in	parallel	to	the	experimental	therapeutic	and	Conformité	Européene	
(CE)	marked	(indicating	a	product	that	meets	European	Union	(EU)		
safety,	health	or	environmental	requirements	and	complies	with	EU		
legislation)	can	be	used	to	guide	treatment	and/or	trial	enrolment	
decisions.

•	Depending	on	the	mechanism	of	action	of	the	agent	being	tested,	
window	of	opportunity	studies	could	also	be	considered	during	early	
phase	clinical	development	to	enable	direct	assessment	of	the	biological	
mechanism	in	established	primary	or	metastatic	tumours.

•	Alternate	surrogate	measures	of	clinical	benefit,	beyond	traditional	
radiological	criteria	based	on	tumour	shrinkage,	are	needed	and	will	be	
dependent	on	the	disease	and	setting	being	investigated;	potential	
examples	include	end	points	based	on	time	to	appearance	of	new	lesions	
and/or	secondary	lesions	or	levels	of	circulating	tumour	cells	or	cell-	free	
tumour	DNA.

•	Initial	proof-	of-concept	clinical	studies	can	be	conducted	in	selected	
patient	populations	at	high	risk	of	an	early	clinical	event,	such	as	a	new	
metastasis.	Thus,	before	and	during	clinical	development,	expert	advice	
from	oncologists	with	experience	working	with	such	patient	groups	
should	be	sought.	Moreover,	the	aberrant	pathway	under	assessment	
should	be	confirmed	as	being	active	in	this	population.

•	In	light	of	the	points	above,	clinical	development	timelines	longer	than	
those	associated	with	traditional	anticancer	drugs	should	be	anticipated;	
early	approval	based	on	surrogate	outcomes	should	be	a	key	goal,		
when	possible.

Regulatory pathways

•	Ensure	that	a	strong	rationale	is	provided	in	regulatory	submissions	to	
support	the	long-	term	administration	of	the	anti-	metastatic	agent	in	a	
population	of	healthier	patients	with	cancer.

•	Given	the	current	absence	of	regulatory	precedent	or	standardization,	
exploration	of	new	surrogate	end	points	should	be	discussed	with	the	
appropriate	regulator	before	embarking	on	and	during	clinical	drug	
development.

•	If	approval	is	given	on	the	basis	of	short-	term	surrogate	end	points,	a	
requirement	to	complete	‘sales	revenue-	funded’	phase	IV	confirmatory	
studies	with	larger	cohorts,	longer	follow-	up	durations	and	more	
traditional	end	points,	such	as	overall	survival,	should	be	anticipated.

•	We	urge	regulatory	agencies	to	work	together	with	researchers,	drug	
developers	and	statisticians	to	define	guidelines	on	surrogate	end	points	
to	encourage	development	of	this	complex	but	high-	potential	category	
of	oncology	drugs.



For marketing any test in the EU, Conformité Européene 
(CE) marking is required, indicating that the product 
meets EU safety, health or environmental requirements 
and compliance with EU legislation.

Conclusions

Survival outcomes of patients with cancer have steadily 
improved since the advent of treatments including sur-
gery, chemotherapy, radiotherapy, molecularly targeted 
therapies and immunotherapy. Nevertheless, in most 
patients who die of cancer, death is directly attributa-
ble to metastasis and not to the primary tumour.  

We have highlighted that development of effective thera-
pies to treat and/or prevent metastatic disease requires 
a marked shift from the standard drug discovery and 
development paradigm.

Crucially, drug discovery programmes aimed at 
developing agents that specifically target metastasis 
should take into consideration the challenges and recom-
mendations proposed herein; to facilitate such studies, 
we have provided summaries of our recommendations 
(box 2) and overall development pathway (Fig. 3). Careful 
application of these lessons, learned from past failures, 
should maximize the probability of success in the 
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Fig. 3 | Development pathway for anti- metastatic agents. The general process for development of anti- metastatic 

agents has the same fundamental basis as that used in the development of drugs with a direct antitumour mechanism of 

action, with some special considerations as highlighted in the figure and described as follows. In target identification and 

preclinical development, special consideration must be given to the functional relevance of the models being used, which 

should reflect human metastatic disease as much as possible; the role of the immune system in metastasis is a critical 

factor. The experimental conditions should also mimic those of the clinical setting. Drug discovery and subsequent 

preclinical testing strategies need to be designed to account for the fact that, in most cases, the anti- metastatic therapy 

under development will be given chronically in a healthier population of patients, such as those that have been cured of 

their primary disease but are at high risk of developing secondary tumours, necessitating oral administration and a risk–

benefit profile lacking key toxicity liabilities. Other considerations, such as activity in several different preclinical models, 

an optimized pharmacokinetic (PK) profile and development of pharmacodynamic (PD) markers suitable for use in the 

clinic, are common to all cancer drug discovery and development programmes. Given the favourable risk–benefit profile 

necessary for anti- metastatic agents, an accelerated development approach can be taken by conducting initial phase I 

studies in healthy volunteers rather than the classical populations with advanced- stage cancer. The key aims of  

these studies are to determine the safety , PK profile and PD characteristics (ensuring the putative biomarkers developed 

can be measured in non- malignant tissues) in order to provide an early go or no- go decision point and ensure that  

the drug has the intended biological effects. To gain rapid biological proof of concept in patients with cancer, window- 

of-opportunity studies, in which a dose of the anti- metastatic agent is given before surgery to examine PD effects, can  

be considered. If validated surrogate end points of clinical efficacy are available, these can be used to substantially  

reduce development timelines and, provided agreement has been reached with appropriate regulatory bodies, support 

provisional approval. If successfully executed, this regulatory strategy will avoid the protracted clinical development 

timelines that are one of the greatest barriers to the development of anti- metastatic drugs. Provided that provisional 

approval is given, regulatory bodies will require further in- use continuous assessment, typically in confirmatory phase IV 

studies that can be funded using ongoing sales revenue. The aim of these larger- cohort and much longer duration clinical 

trials is to confirm that a pre- defined level of clinical benefit is achieved according to more traditional outcomes, such as 

overall survival. If provisional approval has not been given by regulators, then costly (in terms of both finance and time) 

randomized controlled phase III studies in large cohorts will be necessary to gain approval on the basis of standard clinical 

outcome measures. CE, Conformité Européene.



development of this drug class. Regardless, continued  
discussion of these issues is warranted.

Indeed, considerable challenges remain, not least 
regarding the currently limited ability to detect pre- 
existing micrometastatic disease at first diagnosis. 
Establishment of new detection methods such as the 
Metas- Chip approach144, which uses a microelectronic 
biochip to detect micrometastasis using small- volume 
tumour and lymph node samples, will be needed. This 
method requires biopsy samples consisting of live cells 
and is based on the principle of detecting the migra-
tory behaviour of tumour cells via their invasive capac-
ity to retract single human umbilical vein endothelial 
cells from electrical sensing traps. Clear limitations of 
such assays include the logistical challenges associated 
with obtaining high- quality live biopsy material in 
the standard hospital setting and the high probability 
of no tumour cells being present in the tissue sample. 
The development of enhanced imaging techniques 

with greater resolution and sensitivity than those cur-
rently available, and their translation to widespread 
clinical application, will also be vital. Some examples 
under investigation include high- contrast fluorescence 
detection145, multispectral optoacoustic tomography146, 
shortwave infrared emitting nanoprobes147 and novel 
MRI contrast agents148. An ability to detect micro meta-
stases, in addition to primary tumours and macro-
metastases, using these and other approaches will 
ensure that patients can be enrolled in clinical trials and 
assigned to appropriate treatment regimens.

Given the inherent additional complexity, timelines 
and potential cost of developing anti- metastatic agents, 
the support of regulators and the pharmaceutical indus-
try will be crucial for future success. If this support can 
be provided, the potential improvements in the welfare 
of patients with cancer cannot be understated.
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