
A Framework for the Development of
Scalable Heterogeneous Robot Teams
with Dynamically Distributed Processing

 by

Adrian Martin

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

University of Toronto Institute for Aerospace Studies
University of Toronto

© Copyright by Adrian Martin 2013

ii

A Framework for the Development of
Scalable Heterogeneous Robot Teams
with Dynamically Distributed Processing

Adrian Martin

Doctor of Philosophy

University of Toronto Institute for Aerospace Studies

University of Toronto

2013

Abstract

As the applications of mobile robotics evolve it has become increasingly less practical for

researchers to design custom hardware and control systems for each problem. This research

presents a new approach to control system design that looks beyond end-of-lifecycle performance

and considers control system structure, flexibility, and extensibility. Toward these ends the

Control ad libitum philosophy is proposed, stating that to make significant progress in the real-

world application of mobile robot teams the control system must be structured such that teams

can be formed in real-time from diverse components. The Control ad libitum philosophy was

applied to the design of the HAA (Host, Avatar, Agent) architecture: a modular hierarchical

framework built with provably correct distributed algorithms.

A control system for exploration and mapping, search and deploy, and foraging was developed to

evaluate the architecture in three sets of hardware-in-the-loop experiments. First, the basic

functionality of the HAA architecture was studied, specifically the ability to: a) dynamically form

the control system, b) dynamically form the robot team, c) dynamically form the processing

network, and d) handle heterogeneous teams. Secondly, the real-time performance of the

distributed algorithms was tested, and proved effective for the moderate sized systems tested.

iii

Furthermore, the distributed Just-in-time Cooperative Simultaneous Localization and Mapping

(JC-SLAM) algorithm demonstrated accuracy equal to or better than traditional approaches in

resource starved scenarios, while reducing exploration time significantly. The JC-SLAM

strategies are also suitable for integration into many existing particle filter SLAM approaches,

complementing their unique optimizations. Thirdly, the control system was subjected to

concurrent software and hardware failures in a series of increasingly complex experiments. Even

with unrealistically high rates of failure the control system was able to successfully complete its

tasks.

The HAA implementation designed following the Control ad libitum philosophy proved to be

capable of dynamic team formation and extremely robust against both hardware and software

failure; and, due to the modularity of the system there is significant potential for reuse of assets

and future extensibility. One future goal is to make the source code publically available and

establish a forum for the development and exchange of new agents.

iv

Acknowledgments

I have relied on the support of many people during the last five years (and more) at the University

of Toronto, and would like to extend my thanks to each of them.

To my loving girlfriend Mabel, who has supported me and been patient with me in both the good

times and the bad.

To my advisor, Dr. Reza Emami, who has gone above and beyond in mentoring me during both

my M.A.Sc. and Ph.D. degrees. His dedication, experience, thoroughness, and understanding

have been critical in shaping this work and ensuring that it grew into everything it could be.

To the members of my examination committee, Dr. Gabriele D’Eleuterio and Dr. Christopher

Damaren, who gave me the feedback and helpful criticisms that kept this research on track.

To my colleagues in the Space Mechatronics group, Robin Chhabra, Jason Kereluk, Peter Martin,

and Victor Ragusila, among others, who provided a sounding board of ideas and a vent for

frustrations.

And last but not least, to my family and Mabel’s family, who never stopped supporting me and

never stopped asking if I was done yet.

v

Table of Contents

List of Tables .. viii

List of Figures .. ix

List of Appendices .. xi

List of Abbreviations ... xii

Chapter 1 Introduction ... 1

1.1 Contributions .. 2

1.2 Thesis Overview ... 3

Chapter 2 Background ... 5

2.1 Multi-robot Systems ... 5

2.1.1 Teams vs. Single Robots ... 5
2.1.2 Homogenous vs. Heterogeneous Teams ... 6
2.1.3 Dynamically Formed Teams ... 7
2.1.4 System Design ... 7

2.2 Control .. 8

2.2.1 Centralized vs. Decentralized Control ... 8
2.2.2 Control Hierarchy .. 9
2.2.3 Task Coordination ... 9

2.3 Collaboration .. 10

2.3.1 Knowledge Sharing ... 10
2.3.2 Cooperation Techniques .. 11

2.4 Communication ... 12

2.5 Resource Sharing and Load Balancing ... 12

2.5.1 Resource Sharing ... 13
2.5.2 Load Balancing .. 13
2.5.3 Distributed Processing ... 14
2.5.4 Behaviour Migration ... 15

2.6 Conclusions ... 16

Chapter 3 Control System Design Strategy: Control ad libitum ... 18

3.1 Team Lifecycle ... 19

3.2 Control ad libitum ... 23

3.3 Design, Development, and Performance Indexes ... 25

Chapter 4 Control System Architecture .. 26

4.1 The Host, Avatar, Agent Architecture .. 26

vi

4.2 HAA Building Blocks ... 27

4.2.1 Distributed Processing Network .. 27
4.2.2 Distributed Database ... 27
4.2.3 Scalable Hierarchical Control ... 27

4.3 HAA Implementation ... 28

4.3.1 Framework ... 30

4.4 Unreliable Failure Detector .. 33

4.4.1 Failure Assumptions .. 34
4.4.2 Algorithm Overview .. 34

4.5 Totally Ordered Atomic Commit .. 36

4.5.1 Failure Assumptions .. 37
4.5.2 Algorithm Overview .. 37

4.6 Host Membership Service ... 40

4.6.1 Failure Assumptions .. 42
4.6.2 Algorithm Overview .. 43

4.7 Agent Allocation ... 47

4.7.1 Failure Assumptions .. 49
4.7.2 Algorithm Overview .. 49

4.8 Agent Transfer .. 53

4.8.1 Failure Assumptions .. 53
4.8.2 Algorithm Overview .. 53

4.9 Agent Recovery .. 54

4.9.1 Failure Assumptions .. 55
4.9.2 Algorithm Overview .. 55

Chapter 5 Just-in-Time Cooperative Simultaneous Localization and Mapping 56

5.1 Background on Simultaneous Localization and Mapping .. 56

5.1.1 Localization with Particle Filters .. 58
5.1.2 Mapping with a Probabilistic Occupancy Grid ... 59
5.1.3 Prediction Step .. 60
5.1.4 Correction Step .. 60

5.2 Just-in-Time Cooperative SLAM ... 61

5.2.1 Lazy Belief Propagation .. 63
5.2.2 Example Scenario .. 67
5.2.3 Implementation of the JC-SLAM Algorithm .. 67

Chapter 6 Implementation ... 70

6.1 Host, Avatar, Agent Architecture ... 70

vii

6.1.1 AgentBase ... 70
6.1.2 AgentHost .. 71
6.1.3 Distributed Database ... 73
6.1.4 Support Blocks .. 74

6.2 Experimental Scenarios and Agent Design .. 76

6.2.1 Experimental Scenarios ... 76
6.2.2 Agent Design ... 78

Chapter 7 Hardware-in-the-Loop Experimentation and Results ... 84

7.1 Architecture Functionality .. 85

7.1.1 Experiment AF-1 – Mapping and Exploration .. 86
7.1.2 Experiment AF-2 – Congregate .. 93
7.1.3 Experiment AF-3 – Forage .. 94

7.2 Algorithm Performance .. 98

7.2.1 Experiment AP-1 – Ordered Atomic Commit ... 98
7.2.2 Experiment AP-2 – Host Membership .. 99
7.2.3 Experiment AP-3 – Agent Allocation ... 100
7.2.4 Experiment AP-4 – Agent Transfer and Recovery ... 101
7.2.5 Experiment AP-5 – JC-SLAM .. 103

7.3 Robustness .. 111

7.3.1 Experiment R-1 – Agent Failure ... 112
7.3.2 Experiment R-2 – General Failure .. 115

Chapter 8 Conclusions ... 120

8.1 Future Work .. 121

8.1.1 Open-source Agent Library ... 121
8.1.2 Standardizing Agent Interactions and Recovery Strategies 122
8.1.3 Scalability .. 122
8.1.4 Communication Efficiency of the DDB .. 123

Bibliography .. 124

viii

List of Tables

Table 3.1-1 Lifecycle Breakdown .. 21

Table 3.2-1 Tenets of Control ad libitum ... 23

Table 4.2-1 Agent Examples .. 28

Table 4.3-1 Algorithm Descriptions ... 31

Table 4.3-2 Classes of Failure (Adapted from [61]) .. 32

Table 4.6-1 Probability of Erroneous Removal .. 43

Table 4.7-1 Bid Conflict Resolution (Adapted from [69] with additions) 52

Table 6.1-1 HAA Implementation Support Blocks .. 74

Table 6.2-1 Experimental Scenarios .. 77

Table 6.2-2 Avatar Roles .. 79

Table 6.2-3 Avatar Specifications .. 79

Table 6.2-4 Sensor Specifications .. 79

Table 7.1-1 Experiment AF-1 Results Summary ... 87

Table 7.1-2 Experiment AF-2 Results Summary ... 93

Table 7.1-3 Experiment AF-3 Results Summary ... 96

Table 7.2-1 Experiment AP-5.1 Experimental Scenarios .. 103

Table 7.2-2 Experiment AP-5.1 SLAM Strategies ... 104

Table 7.2-3 Experiment AP-5.2 Savings from Delayed Weight Updates 109

Table 7.2-4 Experiment AP-5.3 SLAM Implementations ... 109

Table 7.2-5 Experiment AP-5.3 SLAM Comparison ... 110

Table 7.3-1 Experiment R-1 Results Summary .. 113

Table 7.3-2 Experiment R-2 Results Summary .. 118

ix

List of Figures

Fig. 3.1-1 Team Lifecycle .. 19

Fig. 3.1-2 Implementation Pyramid ... 20

Fig. 3.1-3 Lifecycle Breakdown ... 22

Fig. 4.1-1 HAA Architecture .. 26

Fig. 4.2-1 Scalable Hierarchical Control .. 29

Fig. 4.2-2 Task Tree ... 29

Fig. 4.3-1 HAA Network Structure .. 30

Fig. 4.3-2 HAA Algorithm Hierarchy .. 30

Fig. 5.2-1 Particle Filter Data Structure ... 62

Fig. 5.2-2 Standard vs. LIFO + OOO with Sufficient Processing Resources 65

Fig. 5.2-3 Standard vs. LIFO + OOO with Insufficient Processing Resources 65

Fig. 5.2-4 JC-SLAM Example ... 69

Fig. 5.2-5 JC-SLAM Algorithm Flow .. 69

Fig. 6.1-1 Monitoring GUI ... 76

Fig. 6.2-1 Small Arena ... 77

Fig. 6.2-2 Large Arena ... 78

Fig. 6.2-3 Agent Class Tree .. 80

Fig. 6.2-4 Agent Dependencies .. 80

Fig. 6.2-5 Control System DSM ... 82

Fig. 6.2-6 Foraging Scenario Failure Model .. 83

Fig. 6.2-7 Agent Failure Curve .. 83

Fig. 6.2-8 Critical Failure Comparisons ... 83

Fig. 7.1-1 Experiment AF-1 Mapping Result. .. 87

Fig. 7.1-2 Experiment AF-1 Agent Allocation ... 88

Fig. 7.1-3 Experiment AF-1 Mission Transcript .. 89

Fig. 7.1-4 Experiment AF-1 Hosts and Agents .. 90

Fig. 7.1-5 Experiment AF-1 Map Coverage and Accuracy ... 90

Fig. 7.1-6 Experiment AF-1 Localization Error ... 91

Fig. 7.1-7 Experiment AF-1 DDB Distribution ... 91

Fig. 7.1-8 Experiment AF-1 Processor Usage Breakdown .. 92

Fig. 7.1-9 Experiment AF-1 CPU Balancing ... 92

Fig. 7.1-10 Experiment AF-2 Mapping Result ... 94

Fig. 7.1-11 Experiment AF-2 Map Coverage and Accuracy ... 94

Fig. 7.1-12 Experiment AF-2 Localization Error ... 94

x

Fig. 7.1-13 Experiment AF-3 Mapping Result ... 95

Fig. 7.1-14 Experiment AF-3 Processor Usage Breakdown .. 96

Fig. 7.1-15 Experiment AF-3 Agent Allocation ... 97

Fig. 7.2-1 Experiment AP-1 Decision and Delivery Delay vs. # Participants 99

Fig. 7.2-2 Experiment AP-1 # Order Changes vs. # Participants ... 99

Fig. 7.2-3 Experiment AP-1 # Messages Sent vs. # Participants ... 99

Fig. 7.2-4 Experiment AP-2 Join, Leave, and Remove Delay vs. # Hosts 100

Fig. 7.2-5 Experiment AP-3 Allocation Delay vs. # Hosts vs. # Agents 101

Fig. 7.2-6 Experiment AP-3 Messages Sent vs. # Hosts vs. # Agents ... 101

Fig. 7.2-7 Experiment AP-4 Agent Transfer and Recovery Delay vs. # Hosts 102

Fig. 7.2-8 Experiment AP-5.1 Localization Accuracy ... 105

Fig. 7.2-9 Experiment AP-5.1 Observation Processing ... 107

Fig. 7.2-10 Experiment AP-5.1 Reading Processing Rate vs. Resampling Rate 108

Fig. 7.2-11 Experiment AP-5.3 Map Coverage .. 111

Fig. 7.2-12 Experiment AP-5.3 Map Accuracy .. 111

Fig. 7.2-13 Experiment AP-5.3 Reading Generation and Processing Rates 111

Fig. 7.3-1 Experiment R-1 Mean-Time-to-Failure vs. Mission Duration Increase 113

Fig. 7.3-2 Experiment R-1 Agent Allocation: No Failure .. 114

Fig. 7.3-3 Experiment R-1 Agent Allocation: Moderate Failure ... 114

Fig. 7.3-4 Experiment R-1 Agent Allocation: High Failure ... 114

Fig. 7.3-5 Experiment R-1 Agent Allocation: Extreme Failure ... 115

Fig. 7.3-6 Experiment R-1 Map Coverage and Accuracy .. 116

Fig. 7.3-7 Experiment R-1 Localization Error ... 116

Fig. 7.3-8 Experiment R-2 Mapping Result ... 117

Fig. 7.3-9 Experiment R-2 Hosts and Agents .. 118

Fig. 7.3-10 Experiment R-2 Map Coverage and Accuracy .. 118

Fig. 7.3-11 Experiment R-2 Localization Error ... 119

Fig. 7.3-12 Experiment R-2 CPU Balancing .. 119

Fig. 7.3-13 Experiment R-2 Agent Allocation ... 119

xi

List of Appendices

Appendix I Design, Development, and Performance Indexes ... 129

I.1 Adaptability .. 129

I.2 Diversity ... 129

I.3 Modularity .. 130

I.4 Efficiency.. 132

I.5 Persistency .. 133

Appendix II HAA Algorithms .. 134

Algorithm 1 Unreliable Failure Detector (HAA-UFD) ... 134

Algorithm 2 Totally Ordered Atomic Commit (HAA-OAC) .. 134

Algorithm 3 Host Membership Service (HAA-HM) ... 136

Algorithm 4 Agent Allocation (HAA-AA) .. 141

Algorithm 5 Agent Freeze (HAA-ATF) .. 143

Algorithm 6 Agent Thaw (HAA-ATT).. 144

Algorithm 7 Agent Backup (HAA-AB) ... 145

Algorithm 8 Agent Recovery (HAA-AR).. 145

Appendix III Agent Descriptions ... 146

xii

List of Abbreviations

AF-# Architecture Functionality Experiment #

AP-# Algorithm Performance Experiment #

CBBA Consensus-Based Bundle Algorithm

DDB Distributed Database

FIFO First-in-first-out

HAA Host, Avatar, Agent

HIL Hardware-in-the-Loop

JC-SLAM Just-in-time Cooperative Simultaneous Localization and Mapping

LIFO Last-in-first-out

NFP No Forward Propagation

OAC Ordered Atomic Commit

OOO Out-of-order

POG Probabilistic Occupancy Grid

R-# Robustness Experiment #

SLAM Simultaneous Localization and Mapping

TCP/IP Transmission Control Protocol/Internet Protocol

UFD Unreliable Failure Detector

1

Chapter 1
Introduction

In response to many of the fundamental challenges to the development of mobile robot teams this

research presents a new approach to control system design. Robots have been proven capable of

accomplishing many useful tasks, and in many applications teams of inexpensive robots can

accomplish tasks faster and more efficiently than a single more expensive robot. The advantages

of robot teams are typically listed as: cost per system, robustness through redundancy, parallel

processing, scalability [1,2] , and the ability to service larger areas and accomplish multiple tasks

simultaneously [3]. In [4] several successful implementations are cited in areas such as search

and rescue, perimeter surveillance, and mapping and exploration, and many more can be found in

the literature. However, even these successes have their limitations and note many of the

challenges facing the developers of robot teams. Questions of control [4], communication [5],

collaboration[6], task coordination[7], heterogeneity [8], and team formation [9] have no

definitive answers, and likely never will. Yet it is clear that as the applications of mobile robotics

evolve it will become increasingly less practical for researchers and developers to design custom

hardware for each problem. Similarly, as the applications become more complex it will be

impractical to begin each control system from scratch. Despite this, for various reasons including

problems of transparency, portability, and stability the near universal approach of current

researchers is to build custom solutions for every team/task [10], redoing vast amounts of work

and greatly hindering the growth of the field for practical real-world applications. Thus, it

becomes essential to have an architecture that allows teams incorporating diverse robot hardware

and facilitates extensions to the control system which require minimal or no changes to the

existing implementation.

The goals of this research became to expand the conversation on control system design to include

not just end-of-lifecycle performance but also control system structure, robustness, and

extensibility, and to use techniques from distributed computing to develop a generic and flexible

architecture for controlling robot teams. Toward these ends the Control ad libitum philosophy

was proposed, stating that in order to make significant progress in the real-world use of mobile

robot teams the control system must be structured such that teams can be formed in real-time

from diverse components. This philosophy was followed in the design of the HAA (Host,

2

Avatar, Agent) architecture, which uses a modular hierarchical approach built on a distributed

network of processors. After implementing the architecture, using provably correct distributed

algorithms, a fully functional control system was developed to test its performance under a

number of common mobile team tasks: exploration and mapping, search and deploy, and

foraging. Since extensibility and reusability are issues close to the core of this research, one

future goal is to make the source code for the architecture and control system publically available

and to establish a forum for the development and exchange of new agents.

The results from extensive Hardware-in-the-Loop experimentation show the control system to

perform well. The control system was capable of dynamically forming the control system based

on the needs of the task, changing the set of active agents to adapt to the currently available

resources. The control system was also capable of gracefully recovering from software,

processor, and robot failures. The first series of experiments study the basic functionality of the

HAA architecture, specifically its ability to: a) dynamically form the control system based on the

task requirements, b) dynamically form the team from available robot hardware, c) dynamically

form the processing network based on available processor resources, and d) handle heterogeneous

teams and allocate robots between tasks based on their capabilities. The second series of

experiments analyze the performance of the distributed algorithms for various system sizes, and

each algorithm demonstrated highly acceptable real-time performance and no issues of scalability

for the small-to-moderate sized systems tested. The Simultaneous Localization and Mapping

(SLAM) problem is fundamental to the implementation of virtually any robot team, and so a

distributed and scalable algorithm was developed as part of this research. The algorithm

demonstrated accuracy equal to or better than traditional approaches in resource constrained

scenarios, while reducing exploration time by over 17% for the tested mapping scenarios. The

third and final series of experiments tested ability of the architecture to handle concurrent

software and hardware failures, and all missions were able to successfully complete their tasks

even with failure rates set far higher than realistic expectations, including a scenario where each

software module was set to fail every 0.5-1.5 minutes.

1.1 Contributions

There are four major areas where this work has made contributions to the research community:

3

1. A structured, big-picture, look was taken at the design of robot teams throughout their

lifecycle, leading to the Control ad libitum philosophy. A comprehensive set of design

motivations were identified and a series of metrics arranged to evaluate aspects of control system

design strategy at all stages of development.

2. The HAA architecture presents a framework that allows for the modular design of

heterogeneous robot teams while inherently providing many advantages in terms of robustness,

efficiency, and scalability. The two primary components of HAA are:

Scalable Hierarchical Control: A scalable control system that requires no prior knowledge of

team membership in order to efficiently perform tasks. It allows the immediate integration of

almost any robot into the team and allows the team to continue functioning in the event of

hardware failure.

Dynamically Distributed Processing: A distributed system allows the transfer of agents in the

processor network to balance the load, reduce latency between agents, or recover agents in the

event of hardware failure. Such a network also enables hybrid architectures with both centralized

and distributed components without sacrificing performance or robustness.

3. A fully-realized implementation of HAA was developed, including a foundation of

provably correct distributed algorithms. The control system was tested in a number of common

mobile robot tasks and acquitted itself well even in extreme failure scenarios.

4. Just-in-time Cooperative Simultaneous Localization and Mapping (JC-SLAM) is a real-

time, distributed, scalable implementation for heterogeneous mobile robot teams. It uses an out-

of-order processing strategy to efficiently make use of processing resources and in

experimentation has demonstrated a 17% reduction in exploration time compared to two

traditional SLAM approaches for the tested mapping scenarios.

1.2 Thesis Overview

The thesis is broken down into eight chapters. Chapter 2 reviews the topics related to multi-robot

systems, including: control, collaboration, communication, resource sharing, and load balancing.

Of particular interest were the underrepresented areas of dynamically formed teams and

behaviour migration. Limited hardware can be utilized effectively if correctly shared among a

group of robots, and distributed processing can improve the performance of a control system.

4

Chapter 3 studies the team lifecycle and presents the core tenets of Control ad libitum:

Transparency, Versatility, Adaptability, Modularity, Diversity, Persistency, and Efficiency. The

chapter also emphasises the importance of using the right tools to quantify aspects of a control

system beyond simple end-of-lifecycle performance.

Chapter 4 introduces the HAA architecture and the control system abstraction of hosts

(processors), avatars (robot hardware), and agents (control system modules). A distributed

processing network is formed by the hosts and agent modules are allowed to transfer between

hosts in order to balance load, improve communication latency, and recover from failures. A

complete HAA implementation is developed using provably correct distributed algorithms.

Chapter 5 presents JC-SLAM, a distributed particle filter SLAM algorithm designed following

the tenets of Control ad libitum. JC-SLAM adopts a strategy of out-of-order processing to allow

higher rates of sensor processing in constrained systems, but performs identically to traditional

ordered approaches when resources are plentiful.

Chapter 6 provides the details of the HAA implementation used in this research. Many design

choices must be made to transition from the general framework provided by HAA into a fully

functioning implementation. Tools were designed for logging, visualization, automated testing,

and, perhaps most importantly, offline debugging by recording the inputs to each agent for later

playback. Chapter 6 also introduces the experimental scenarios that were used to evaluate the

effectiveness of the control system: Mapping and Exploration, Congregate, and Forage.

Chapter 7 uses a Hardware-in-the-Loop simulation to experimentally demonstrate features of the

control system and evaluate performance. Features such as dynamic formation, adapting to

changing resources, agent allocation, avatar allocation, and cooperation are explored.

Performance was evaluated for: a) the distributed algorithms, b) JC-SLAM vs. traditional SLAM

strategies, and c) failure scenarios up to and including concurrent host, avatar, and agent failure.

Chapter 8 closes the thesis by summarizing the findings and discussing several potential avenues

for future research: a) an open-source agent library, b) standardization of agent interaction and

recovery strategies, c) scalability of the distributed algorithms, and d) communication efficiency

within the distributed database (DDB).

5

Chapter 2
Background

Developing and implementing a team of cooperative mobile robots is a very challenging task, yet

the reward is an efficient and effective solution for many application problems. These

applications span a wide range of practical, real world, scenarios, and include: working in

hazardous environments, surveillance, target tracking, mine field demolition, Mars exploration,

search and rescue, guarding, cleaning, and fire detection [11]. Sometimes tasks can be carried out

by a single robot with powerful sensors and high processing capability, however, often these

tasks can be carried out faster, more efficiently, and more robustly using a team of simpler and

cheaper robots [4]. Large amounts of research has been done on a multitude of aspects of team

development, but many fundamental questions are far from answered, and there are always new

strategies or twists on previous techniques being studied. This chapter is concerned with

reviewing the key elements which must be considered when designing a cooperative team, and

identifying potential areas that could benefit from new and innovative ideas. Due to the size of

the field it is impossible to mention every strategy or technique that has been developed, and so

an effort is made to discuss either those that are representative of common approaches or those

that present a novel and interesting take on an issue.

2.1 Multi-robot Systems

2.1.1 Teams vs. Single Robots

Some robot applications demand a robot with powerful sensors and high processing capacity,

which usually corresponds to a high cost, but in many applications it is possible use a team of

simpler robots to accomplish the tasks faster and more efficiently. For example, search and

rescue, load pushing, surveillance, and mapping [4]. Depending on the structure of the team there

may not be any inherent cost benefit, however, there are a number of other benefits that come

with multi-robot systems: efficiency, cost per system, robustness through redundancy, parallel

processing, and scalability[2,12]. Furthermore, larger areas can be serviced and multiple tasks

can be accomplished simultaneously by spreading out the team [3], and there is a potential for

self-diagnosis and self-repair of failures in robot teams [13]. One example of learning where

teams have the advantage over individual robots is presented in [14]. In that research the problem

6

was learning to visually identify objects in the environment, and by sharing information the team

was able to learn more quickly.

2.1.2 Homogenous vs. Heterogeneous Teams

When building a team of robots there are a number of possibilities regarding the homogeneity of

its members. Obviously, it is possible to select a number of different types of robots to form the

team, which results in a physically heterogeneous population; but even in the case of physically

identical robots it is possible to introduce heterogeneity in their controllers. The concept of social

entropy is introduced in [5], providing a way to quantitatively rate the diversity of a team based

on factors relevant to the application.

The heterogeneous team of robots presented in [7] is an example that takes advantage of physical

heterogeneity. Their team consisted of a few highly capable expensive robots equipped with

powerful sensors and processors and a large number of simpler robots with weak sensors and

processors. Since the simple robots were incapable of accurate localization and navigation, once

the environment had been mapped the powerful robots guided the simple robots into place to

form a sensor network. In this way the cost of the team was reduced by almost an order of

magnitude while still providing coverage for large areas. An example of a physically

homogeneous team with heterogeneous controllers is discussed in [8]. Inspired by specialization

in insect colonies, as a swarm of robots learns how to perform basic tasks related to finding and

collecting objects they begin to develop proficiencies in different areas and the tasks are allocated

throughout the team based on fitness.

Diversity has other potential benefits in addition to allowing a balance of cost, capability, and

number of robots. As in nature, heterogeneity and diversity in a population can provide much

needed robustness. In experiments using robots emulating wolf-pack hunting strategies, [15]

showed that heterogeneous teams composed of both peak and senescent “wolves” could

outperform a team of purely peak wolves in certain scenarios. There is also the consideration of

scalability and utilizing all available resources. A system that is capable of handling

heterogeneity can potentially make use of whatever robots are on hand, which can reduce the cost

of updating or replacing robots [16].

7

2.1.3 Dynamically Formed Teams

One interesting area of research that has received little study is the concept of dynamic or

“pickup” teams [16]. Rather than planning the team membership and methods of interaction in

advance, it is more useful to have a system that can dynamically adapt based on the available

resources and the environment. At the most basic level it comes down to forming a useful and

efficient team from a set of robots given no a priori information about their capabilities. The

work in [16] outlines some reasons why this capacity is needed: 1) it is impractical for a single

group to develop large teams of expensive robots simultaneously, 2) engineering coordination

strategies by hand is time consuming and may not be acceptable in emergency situations, and 3)

if a robot fails or is removed from the team it is necessary to replace it and a new robot of the

same type may not be available. A strategy for accomplishing this goal through communication

between potential team members is outlined in [16], and a treasure hunting application using two

types of robots is presented. [17] also describes a need for heterogeneous “impromptu teams,”

and proposes an ontology-based communication protocol to allow diverse team members to

communicate physical concepts.

The issue of dividing a group of robots into sub-teams is studied in [18] and [19]. In [18] sub-

teams are formed and broken up depending on the effectiveness of the team formation (relative

positions). It was found that dynamic formation improved performance except in cluttered

environments, at which point the team spent too much time reforming and efficiency dropped.

[19] starts from the idea that there are a number of tasks to perform and a number of robots in the

environment, and the question becomes how to distribute the robots among the tasks. The robots

are rated based on their capabilities and then the working time of different combinations of robots

is estimated.

2.1.4 System Design

An unfortunate trend of single-use design is prevalent in industry and academia. More often than

not a particular robot or control system is designed with a specific task in mind, and task

performance becomes the only metric for success. Though many successful applications have

been developed, this limited approach does not lend itself to team robustness and potential for

building on top of existing control systems. The aptly-titled article 1,001 Robot Architectures for

8

1,001 Robots [10] highlights this issue and asks the question “Is it really impossible to subject

robot architectures and software systems to any objective performance evaluation?” The issue is

also touched upon in [20], which highlights the main features of its architecture as the ability to

use off-the-shelf software to develop and run standardized control system modules.

2.2 Control

There are many different strategies for controlling multi-robot systems, some cooperative, some

competitive, some centralized, and some distributed. Each of these areas has been explored in

depth but there is no clearly superior strategy, and in many cases hybrid architectures such as the

deliberative/reactive combination developed in [3] or the partially centralized control in [21] are

used. Another factor that is fundamentally tied to control and coordination is communication,

which is discussed in Section 2.4.

2.2.1 Centralized vs. Decentralized Control

In its purest form centralized control means that every decision and resulting action passes

through a single point, taking into account the entire state of the system. At the opposite end of

the spectrum, fully decentralized control executes independently on each robot with little or no

explicit communication with the other team members. Both methods have some advantages and

disadvantages. Centralized control can potentially be used to find optimal solutions; however, the

computational requirements increase rapidly as the number of robots in a team grows [21], and it

is not robust in the event of failure of a key component. On the other hand, while a distributed

system has advantages in terms of parallel computation, robustness, and fault tolerance [22], in a

fully decentralized system each robot must be capable of satisfying all of its sensing and

processing needs on-board, which may not be an efficient use of resources [4]. Many of these

disadvantages can be mitigated by taking a balanced approach, for example the system in [23]

uses a centralized task coordinator to assign tasks to a distributed team of robots, even allowing

robots to join and leave the team at any time. The interesting application in [22] takes the multi-

agent concepts of decentralized control and applies it to a single robot with multiple processors in

order to take advantage of its modularity and robustness and reduce the complexity of the system.

[24] takes the same approach of decentralized control for a single robot but also notes that such

an approach has benefits in terms of simplification via modularization, user friendly design,

9

effective resource utilization, and future expansion of the control system. These are all very

important features and are central to the foundation of this work.

2.2.2 Control Hierarchy

Many traditional control strategies use a hierarchical structure [22], where components are broken

up into levels which can control or override the levels below them. This approach is common in

controlling teams as well, often taking the form of supervisors which monitor the behaviour of

the team and coordinates their actions. It is also possible to implement controllers without a

hierarchy, where each component is considered equal. This is done in [25], by having each robot

advertize their task suggestions and having other robots volunteer their services. A dynamic

approach is taken in [26], and based on the observed surroundings each robot decides whether it

is a leader or follower. In contrast to this distributed approach, [27] uses a hierarchical controller

with a centralized path planner and local robot control, though they note that having a single point

of failure is not ideal.

2.2.3 Task Coordination

The problem of task assignment and coordination has two facets. First, there is the issue of

coordinating the efforts of each robot so that they work together toward a common goal. In a

centralized system this can be dealt with in a straight forward manner, but the solution becomes

less clear for decentralized control. Depending on the level of communication between the robots

a number of routes can be taken. When communication is possible a common strategy is to hold

task auctions such as in [16], [25], and [28], where tasks are put forward and each robot bids for

contracts. An architecture for constructing robot teams to facilitate market-based task allocation

is presented in [29]. This architecture interestingly shares some of the ideas founding the

architecture in this research, including modularizing control system functions into agents for each

robot and a shared database. However, it does not entirely abstract agents from the robot

hardware or allow distributed processing or agent transfer. When communication is not possible

it is harder to prevent overlap in tasks and other strategies must be used [7]. A number of

learning algorithms have been adapted to these ends, [30,31].

The second issue is that of distributing the tasks in a way that makes efficient use of available

resources and accomplishes high priority tasks in timely manner. This can be reduced to an

10

optimization problem, but in a system with many tasks and many robots it may not be practical to

implement this in real-time [19]. Studies done in [19], [32], and [33] looked at different sub-

optimal algorithms that still produce good results.

2.3 Collaboration

Collaboration in multi-robot systems can happen either competitively or cooperatively.

Competition and aggression appear in many animal societies as a method for assuming roles and

coordinating groups. This approach was used in [34] to successfully manage a team of robots in

a transportation task where the robots would encounter bottlenecks while travelling or during

pick-up and drop-off. Another competitive strategy was used in [21] to coordinate the collision

free movement of a team of robots in a dynamic environment using a partially centralized sensory

system. These techniques can be useful between individual robots competing for space and

resources or between teams of robots performing tasks in close proximity, and do not preclude

having some form of cooperation at other levels. Cooperation can occur passively, with robots

sharing knowledge or recognizing when other team members are carrying out tasks and assisting

them [35]. There are many examples of this in nature, and [36] demonstrates an example of the

“group escape” behaviour where a team of robots rapidly elude predators with no inter-robot

communication. Cooperation can also occur actively, where robots communicate their desires

and make plans with other team members as in [16].

2.3.1 Knowledge Sharing

Knowledge sharing can have obvious benefits to the performance of a robot team. When

carrying out tasks the decision making process is heavily affected by the knowledge of the

environment, yet often a single robot’s sensors provide only a highly incomplete view of its

surroundings [25]. By providing robots with the ability to communicate and share their

knowledge it is possible to fill in many of the gaps and thus make more informed decisions. This

is particularly apparent in the collaborative map making through sensor fusion done in [25]. The

“blackboard” communication technique used in many applications, [8,25], can be considered a

form of knowledge sharing. Robots post information to a global blackboard which is

synchronized throughout the system. [37] proposes a set of low-cost/open source middleware

solutions to form a knowledge sharing/communication system via a shared database. Knowledge

11

sharing can also be very useful in learning tasks where learning experiences can be broadcast to

other robots [5] or evolved behaviours can be transferred between robots [38]. However, these

techniques rely heavily on communication and so storage and bandwidth requirements must be

considered.

2.3.2 Cooperation Techniques

A number of cooperation techniques are listed in [6], including: socially acceptable decision

making strategies based on social welfare functions, information based exploration using the

concepts of entropy and frontiers, cooperative motion planning using a potential field, and

decentralized goal planning using a shared map. A common strategy for groups of people

performing complex tasks is to break the tasks down into smaller pieces and assign each job to a

team member [30]. Each member may be specialized for a certain type of role or equally capable

of completing any job. In this situation it becomes a question how to assign the roles and when

switching roles is advantageous [30]. This type of dynamic role switching is also discussed in

[35], which notes the potential risks involved if no protocol is put in place to ensure that no role is

left unfulfilled. The Skills, Tactics, and Plays (STP) framework is applied to cooperation in

dynamically formed heterogeneous teams in [16]. Plays consist of a set of roles, a sequence of

actions for each role to perform, and methods for evaluating the applicability, completion, and

selection likelihood in a given situation. The action sequences performed by each role are tightly

coordinated to ensure synchronization between each team member.

Since geometric solutions to navigation are generally difficult to implement in real-time,

particularly when the movement of many robots must be coordinated, a receding horizon strategy

is used for coordinated navigation in [39]. At each time step every robot solves their “personal

problem” based on available knowledge but only executes the first control action, and the next

step the robot solves the problem again based on updated information. The information used at

each step only includes the actions of the neighboring robots, thus simplifying the problem and

allowing it to be solved efficiently. This issue of scope or level of awareness is an important

consideration that affects the computational efficiency and effectiveness of both control and

learning algorithms. The balance that must be achieved is also discussed in the target tracking

application presented in [40], which considers how increasing levels of awareness impact the

dimensionality of the search space for learning algorithms.

12

2.4 Communication

Communication, or lack of communication, within a team greatly affects the structure and

capabilities of the control system. Four different levels of communication are traditionally

considered: no communication, state communication, goal communication, and implicit

communication [5,40]. With no communication the robots must rely on their sensors to

determine the action of other team members, state communication means that robots may

detect/query the current state of other members, goal communication is when robots actively

broadcast information about their current plans, and implicit communication where robots

communicate through the environment [40]. The results in [5] show that state and goal

communication can provide significantly improved performance, up to 19%, when compared to

no communication in foraging and consuming tasks. It is demonstrated in [40] that coordination

can be learned using only awareness of the neighboring robots, but [40] admits that it is not

always possible to achieve awareness without communication.

Unfortunately, communication is not free. The necessary hardware adds to the cost and

complexity of the system [5], and as in the case of [32] even the physical size and power

consumption of the components can be an issue for smaller robots. As with any hardware

component there is a chance of failure, but even when the communication system is working

there are factors such as range, interference, and obstacles that can degrade the signal and reduce

bandwidth until eventually no communication is possible [7]. Some works such as [41] and [42]

study how robots/mobile relays can be dynamically positioned to improve network quality over

large areas. Robot swarms forming ad hoc wireless networks are studied in [43]. [44] takes the

problem one step further and considers scenarios where relays have to travel back and forth to

ferry information. Another concern for communication is network infrastructure. In

heterogeneous teams different network formats may be used and require translators to allow

robots to communicate with each other [45].

2.5 Resource Sharing and Load Balancing

In complex robot systems hardware considerations often limit the potential of the control system.

Factors such as processing power, data storage, communication bandwidth, and even sensors are

13

generally limited due to cost, size, or power constraints [32]. Thus, it seems desirable to use

these resources as efficiently as possible in order increase the effectiveness of the system.

2.5.1 Resource Sharing

Both [32] and [33] discuss the same team of robots, but the focus of each is on a slightly different

aspect of resource sharing. The work uses a team of small robots for urban exploration and

surveillance, but due to size limitations the robots are severely limited in terms of processing

power and communication capabilities; and so scheduling access to the communication channels

is critical for effective operation [32]. Each resource (communication channel, processor, robot

chassis, or sensor input) has a Resources Controller and scheduling is handled through a central

Resource Controller Manager (RCM). By dynamically allocating these resources at execution

time it is possible to develop a flexible and robust system that degrades gracefully as resources

become limited [32]. Two different scheduling algorithms are studied in [33]: the first tries to

find an optimal solution which maximizes the number of resources in use at any time, while the

second uses a decision tree to rank tasks based on factors such as priority and minimum run time.

The issue of sharing sensor data among a surveillance team and their controllers is considered in

[46]. Due to bandwidth limitations it is impossible to transfer the bulk of data to the interested

party, and so an abstraction was developed that models the sensors as a distributed database

which can be queried for information. Taking the opposite approach to [32] and [33], [46]

utilizes robots equipped with gigabytes of onboard storage and powerful processors. Information

and processing requests are sent out over the network, processed locally by the owner of the

information, and the results are sent back to the client.

2.5.2 Load Balancing

A major challenge of resource sharing is how to balance the demand for resources across the

system [33]. Because of the extremely limited processors available on the robots in [33] all

image processing and high level control must be done by a network of off-board workstations.

Because the architecture had no method for process migration it was impossible to switch tasks

between workstations once they had begun, which led to less than optimal distribution if multiple

tasks were started simultaneously [33]. In a similar application, [47] demonstrates a system for

distributing image processing tasks between off-board and on-board processors.

14

In [46] each robot is equipped with a powerful processor and only responsible for a unique set of

sensor data, any task involving that data can be shipped over the network to be processed locally

and then the results are transmitted back. This presents some significant advantages over a

centralized processing station, since it allows processing to be distributed over a network of

computers as well as greatly reducing the required communication bandwidth [46]. However, it

also has certain drawbacks in some situations, for example if many controllers wish to utilize the

same data simultaneously all processing must be carried out by the owner of that data and there is

no way to take advantage of other processors that may be available.

2.5.3 Distributed Processing

When controlling mobile robots a number of problems must be solved in real-time, such as

motion control, mapping, localization, and sensor processing [48]. Some of these tasks have high

computational requirements and it may be impossible for all tasks to be handled simultaneously

by a single processor. In these situations a distributed network of processors can be utilized.

Such a network has many advantages: it can be shared among a group of robots, load can be

balanced throughout the network, processors can be added and removed depending on the

requirements of the system, the system is robust in the case of processor failure, and as long as

there is a common interface the underlying architecture of each processor can be different [48].

On the other hand [48] also notes a number of new concerns that are introduced to the system.

First, there is a potential for latency between control system components, and different modules

can no longer be considered tightly coupled. Second, not all processors have immediate access to

all information, and so communication protocols must be instituted to ensure knowledge is shared

in a timely manner. And finally, some strategy must be used to integrate each of the components

into a single working system. Centralized management strategies for distribution are used in

[48], [32], and [33].

A slightly different approach is used in applications such as [46] and [49], where each robot has

an on-board processor. As discussed previously, [46] distributes processing tasks based on the

location of the required data, and ideally the demand for data is balanced throughout the system

and thus the load is evenly distributed. In [49] a solution to collision free routing is presented

that divides the task among the onboard processors of each robot.

15

One concept in distributed processing that seems to have been overlooked is the idea that a

processor is a processor whether it is stationary or on-board, and can be harnessed for any

computational task regardless of its location. Applications that consider sharing computational

power tend to only consider stationary processors, while applications that utilize on-board

processors limit tasks to those related to that robot or its sensors. There is no obvious reason why

a system that merges each of these approaches could not be implemented: tasks distributed

between stationary and on-board processors based on available resources and the data required

for each computation task shared throughout the system. Such a system would require some

framework for balancing the computational load and sharing data in a way that efficiently utilized

limited communication resources.

2.5.4 Behaviour Migration

The topic of behaviour migration introduced in [38] has some very interesting potential

applications to resource sharing. The focus of [38] is on autonomous and semi-autonomous robot

applications with long lived and stateful tasks. These are not easily accomplished since the

operating time of a typical robot is relatively short and in natural environments robots have rather

high failure rates. When a robot fails or is forced to retire to replenish its resources it is desirable

that its role be taken over by another robot. However, it is often the case that the robot’s

controller will have gathered information and perhaps learned behaviours to improve its

performance and so these must be transferred to the new robot in order to maintain efficiency.

This is accomplished in [38] by using Virtual Machine (VM) techniques to freeze the software,

transfer it to another robot, and resume operation. Some of the limitations of this approach are

outlined in [38]: VMs tend to be highly architecture dependant and may not function in a system

with heterogeneous processors, transferring the entire software state might not be necessary in

many cases, in teams of heterogeneous robots not every control system is suitable for execution

on every robot, and finally, the time taken to transfer the VM state is dominated by the

communication time even in high bandwidth systems.

This approach could have potential beyond simply moving a controller from one robot to another,

for example in a distributed processing system it could be used to move processing tasks from

one processor to another to help balance the load. [50] takes several steps in this direction, but

makes a number of decisions that limit the application of their approach. The foundation of the

16

approach is to use Java VMs and thread migration libraries to cyclically transfer a Coordinating

Process (CP) between robots. The CP is transferred to each robot in turn, updates its state

information, issues control commands, and prepares for the next transfer. If a failure occurs

during transfer or while the CP is resident on the failed robot the system is capable of restoring

the CP from its latest valid state. This allows a centralized controller while eliminating the

concern for a single point of failure. However, this strategy also comes with some disadvantages

that limit its usefulness:

1. The choice of thread migration appears unnecessary since the implementation could be

achieved more efficiently by running the thread permanently on each robot and simply passing

the state data around the team.

2. Since only a single thread is considered for transfer it takes no advantage of the

distributed network. Processors are limited to performing local tasks while the CP is not resident.

3. Since the CP traverses the entire team each cycle, an individual robot spends a significant

percentage of the time without access to the CP and control commands.

4. The extremely large number of process transfers are dictated solely by the design of the

system rather than any intelligent strategy considering the needs of the system, unnecessarily

increasing the time spent on transfer and the risk of failure during transfer.

5. Despite the authors’ claims that there is potential for scalability, there are core factors

limiting this. Good performance was achieved with a small team on an extremely low latency

network: results showed the entire transfer process took ~4.26 ms. A realistic wireless network

must anticipate the latency of single messages to be of this order of magnitude or greater, leading

to rapid degradation of performance. Furthermore, as the team size increases the number of

transfers grows and the percentage of time that the CP spends on each robot shrinks.

2.6 Conclusions

Dynamically formed teams are an important topic that has received little attention. A technique

to organize any group of robots into a functioning team could dramatically increase the team’s

ability to adapt to failure and make efficient use of all available resources. Two topics of

research have been identified after studying the less developed areas of this field: 1) distributed

processing through agent persistence and propagation, and 2) dynamically reforming semi-

centralized control systems.

17

The concepts of agent persistence and propagation is introduced in [38] as a method to

accomplish long term tasks that exceed the operating time of a robot and avoid the loss of data

and learning in the event of robot failure. These concepts can be applied equally well to the

transference of agents in a distributed processor network to either balance the load or reduce

latency between an agent and the robot it is controlling.

Semi-centralized control offers some of the coordination of centralized control by having

supervisors that organize the actions of the team. However, such a system is not robust in the

event that a centralized component fails or communication channels break. By applying the

strategies from dynamically formed teams, knowledge sharing, and distributed processing it may

be possible to build a semi-centralized system while avoiding the pit-falls of a single point of

failure.

18

Chapter 3
Control System Design Strategy: Control ad libitum

In a time when the field of mobile robotics has seen dramatic growth and technologies have

reached the point where many real world applications of robot teams are being realized, perhaps

now is an opportunity to step back and consider how these teams are being designed and built. It

is often the case that a particular robot or control system is designed with a specific task in mind,

and not much consideration is given to how that task is achieved as long as at the end of the day it

works. Although this approach has yielded many successes it seems fundamentally limited in

terms of its robustness and potential for far reaching application in the real world. The aptly-

titled article 1,001 Robot Architectures for 1,001 Robots [10] highlights this issue and asks the

question “Is it really impossible to subject robot architectures and software systems to any

objective performance evaluation?” The review of benchmarking and standardization conducted

in [51] lists many initiatives, but by and large their focus appears to be on after-the-fact

performance analysis rather than strategies to assist developers design better teams. Two

exceptions are the Robotics Domain Task Force of the Object Management Group [52] who

encourage designs using modular components, and the Joint Architecture for Unmanned systems

(JAUS) which follows the five principles of vehicle platform independence, mission isolation,

computer hardware independence, technology independence and operator use independence [53].

In an attempt to approach the issue of robot team design from a broader “big picture” perspective,

the Control ad libitum philosophy is introduced in [54,55], and several tenets are proposed that

can help lead to the design of more adaptable, more efficient, and more robust teams.

The original concept of Control ad libitum was simply a set of design ideals and goals that

intuitively enhance robot teams. This chapter adds more structure to the philosophy and develops

methodologies for quantifying and evaluating key aspects of a team at all three stages of the team

lifecycle: Design, Development, and Performance. Considering each stage in turn, the major

aspects of differentiation were distilled into seven tenets. The seven tenets are intended to be

comprehensive, though not exhaustive, and encapsulate the main aspects of existing works such

as [52,53] and the architectural evaluation criteria proposed in [56]. Drawing from many

different fields, a set of indexes have been developed and adapted to quantify the aspects of

Adaptability, Diversity, Modularity, Efficiency, and Persistency. These metrics provide a starting

19

point for the evaluation, and demonstrate how the right questions can be asked and answered,

though of course there are many other potential criteria that may also be useful.

3.1 Team Lifecycle

Ultimately, measuring the performance of a team seems dependant on the specific

implementation of hardware and software. However, it is important to take a step back and

consider the entire team lifecycle: what choices were made that led to a given implementation,

how easy or hard was it to get there, and how do these choices impact future applications? The

robot team lifecycle typically progresses through three phases, Fig. 3.1-1; though of course it is

possible at a later stage to make revisions to the design or implementation should an issue arise.

The cyclical nature of the lifecycle applies to future implementations, which ideally are built on

top of existing work rather than starting each new application from scratch.

In the Design phase there are two broad choices to be made: 1) the choice of Control

Architecture, and 2) the choice of Control Strategy. There are various definitions of what is

meant by control architecture, often changing slightly depending on the scope and the field. One

prominent definition can be found in [56]: “Robotic architecture is the discipline devoted to the

design of highly specific and individual robots from a collection of common software building

blocks.” However, a more general definition is better suited to this work, and so the simpler

definition from [57] will be used: “An architecture provides a principled way of organizing a

control system.” This definition highlights the strategy for organizing components of the control

system, which is the key differentiator between architectures. A wide variety of architectures are

available for robot teams, such as centralized vs. decentralized, deliberative vs. reactive, strictly

Fig. 3.1-1 Team Lifecycle

Design

DevelopmentPerformance

20

hierarchical vs. heterarchical, and of course many combinations and hybrids can be used. When a

specific architecture is chosen it provides a framework to construct the control system, but it also

introduces limitations on what control strategies can be employed and how they are implemented

[57]. For example, a centralized architecture allows for control strategies using central planners

but requires information about each agent, and thus a certain degree of communication, while a

decentralized architecture can have little to no communication but must rely on control strategies

that make decisions based only on local information [58]. The second choice of the Design phase

is what control strategies will be used. This includes selection of control laws, algorithms, and

techniques, as well as the level of information exchange in the system (communication

strategies). The Control Strategy should map out all essential functions and interactions of the

control system using the structured provided by the Architecture. A proper Control Strategy

should resemble psudo-code for the control system, answering all questions of how the system

will work at a conceptual level.

The Development phase begins the Implementation of the control system, specific to an

application and installation of the team. This includes selecting the specific type and quantity of

hardware for both robots and processors, and a realization of the Control Strategy via functional

code/control circuits and specifying control parameters. Fig. 3.1-2 depicts the choices of Control

Architecture, Control Strategy, and Implementation as a pyramid, with each level providing

structure for the next step but at the same time limiting the available options for later choices.

Once the implementation is complete the Performance phase can begin, and the team can be

evaluated using traditional quality of service, efficiency, and reliability metrics. These traditional

metrics are the dominant form of evaluation in the field, and are the obvious way to compare or

rank different robot teams. However, as was shown above, performance is only the tip of the

pyramid and heavily depends on the many choices that lead to a given implementation.

A realization of the control system via

functional code and hardware

A conceptual map of the control system,

detailing functions and interactions

A coherent strategy for organizing the

control system

Fig. 3.1-2 Implementation Pyramid

Implementation

Control Strategy

Control Architecture

21

Comparing performance can tell you which team is better in what aspects, but cannot tell you

why that is the case and does little to help designers improve their decisions during or after the

initial Design and Development phases.

Based on this full lifecycle approach, the breakdown in Table 3.1-1 systematically considers each

phase, restating the key element of the phase and listing the fundamental aspects of differentiation

and comparison in the form of questions. Each phase is considered from both a functional and a

usability perspective; for example, the two sides of an architecture are the capabilities of the

architecture in terms of structure and flexibility and the process of applying the architecture from

the designer’s standpoint. Additionally, these questions form the basis for the seven tenets of

Control ad libitum, discussed in the following section, and each question has been identified by

its corresponding tenet. These 18 questions represent a range of avenues of comparison spanning

the entire team lifecycle, Fig. 3.1-3, many of which are often not considered during the design

and evaluation of robot teams.

Table 3.1-1 Lifecycle Breakdown

Design Phase – Control Architecture

The central concept of a Control Architecture is the “principled way of organizing” [57]; a set of guidelines,

instructions, or rules that tell the designer how elements of the control system should be structured.

1. Is the architecture easy to understand? (Transparency)

a. Does it encourage implementations that can be properly analyzed?

b. Does it encourage implementations that are accessible to future designers?

2. Is the architecture simple to use? (Transparency)

a. Are the tools/guidelines straightforward?

b. Are the tools/guidelines well defined and comprehensive?

3. Is the architecture flexible enough to be applied to a wide range of strategies/applications? (Versatility)

4. Does the architecture support and encourage modular design? (Modularity)

5. Does the architecture support and encourage robustness and failure recovery? (Persistency)

Design Phase – Control Strategy

A Control Strategy is a selection of control laws and algorithms and a strategy for their interactions.

6. Is the strategy well defined and easy to understand? (Transparency)

7. Is the strategy designed to support diverse components? (Diversity)

8. Is the strategy designed in a modular fashion? (Modularity)

9. Is the strategy designed to support adaptability and learning? (Adaptability)

10. Is the strategy designed to be reusable or retaskable? (Versatility)

11. Is the strategy designed to be robust and recover from failures? (Persistency)

Development Phase – Implementation

A realization of Control Strategy via specific code and hardware.

12. Is the implementation easy to understand? (Transparency)

22

13. Is the implementation reusable or retaskable? (Versatility)

14. Is the implementation modular? (Modularity)

15. Are the selected components diverse? (Diversity)

16. Was the implementation completed in a timely fashion given the allocated resources? (Efficiency)

Performance Phase

The evaluation of the real-time performance of an implementation.

17. How efficiently does the implementation perform tasks? (Efficiency)

a. Are tasks performed in a timely manner?

b. What is the quality of service?

c. What is the return on investment?

18. How robust is the system? (Persistency)

a. How susceptible is the system to disturbance?

b. How susceptible is the system to failure?

Fig. 3.1-3 Lifecycle Breakdown

23

3.2 Control ad libitum

Control ad libitum, literally “control at the performer’s discretion,” is an approach that suggests

that in order to make significant progress in the real-world use of mobile robot teams the control

system must be structured such that teams can be formed in real-time from diverse components.

From the common modern usage, ad-lib, it can be said that wide spread application of robot

teams is only practical if a control system is able to improvise using the currently available

resources. In order to design such control systems these goals must be taken into consideration

from the very first step, and attention must be paid to how the control system is constructed in

addition to how it functions. By considering each phase of the robot team lifecycle seven tenets

were identified: Transparency, Versatility, Adaptability, Modularity, Diversity, Persistency, and

Efficiency. These tenets are outlined in Table 3.2-1, starting with a summary of each concept and

followed by a brief discussion of how it relates to the phases of the design cycle.

Table 3.2-1 Tenets of Control ad libitum

Transparency (Design, Development)

 Ease of use and simplicity of the design structure/guidelines

 Ease of understanding during design and development

Most reasons why robot architectures and control systems are rarely reused stem from a lack of transparency [10].

Many designers take the stance that their time is better spent building everything from scratch than fighting with

existing code that won’t compile, does not have the exact features they require, or is simply hard to understand.

Quite often they are right, but this problem with how architectures and control systems are designed in results-

oriented environments is not irreparable. If more focus is placed on how systems are designed and there is a better

understanding of how to make components reusable and retaskable, a significant amount of effort can be saved on

future projects. Transparency is most important in terms of the architecture and control strategy of the Design phase,

but is also important to the Development phase.

Versatility (Design, Development)

 Flexibility of the system, ease of use for different applications

Versatility reflects the ability of a component to be applied to many uses. Related to the Design phase, some

architectures are designed for very specific uses or specialized tasks, while others attempt to be more general or open

ended. Similarly, control strategies may have different requirements in terms of specific hardware or algorithms. In

the Development phase, code and components of the control system can be made as flexible and independent as

possible for reuse in the same system or other applications, drawing on the concept of decoupling from object

oriented programming [59]. There is sometimes a tradeoff between versatility and efficiency, and in such cases there

should be an understanding of what is being sacrificed on each side before a decision is made.

Adaptability (Design)

 Ability to handle changes to the system or the environment without outside intervention

In real-world applications of mobile robotics the available resources will change not only between different

installations, but will also change during operation due to hardware failures and recoveries. In order to be practical

for large-scale use the control system must be able to adapt to these changes in real-time without detriment to the

24

functions of the team. Such functionality can be built in at the Control Strategy stage, and can be supported by

features of the architecture.

Modularity (Design, Development)

 Structure of interactions and dependencies of components

Modularity is a key element in the development of any large system. A truly modular system reduces the complexity

of the design, reduces the effort required to develop each module, and allows modules to be reused within the control

system or in future control systems. Building new functionality on top of previous control systems will be an

essential part of realizing wide spread application of mobile robotics. Modularity is most easily measured at the

Development phase, though if the Control Strategy is detailed enough then modularity measures can be used at that

level as well.

Diversity (Design, Development)

 Diversity of components such as hardware, software, or control parameters

 Support for diversity

Diversity of components at the Development phase does not necessarily correlate to improved performance [5],

though measures of diversity are still useful to provide insight between implementations. On the other hand,

supporting diversity at the Control Strategy or Implementation level has no drawbacks and can be beneficial for two

reasons. First, procuring hardware resources can be costly, particularly for large scale applications. Thus, it is

desirable to be able to reuse hardware from old applications, acquire whatever hardware is currently cost effective,

and in the future add or replace hardware without concern for finding exactly the same models[9]. Secondly,

heterogeneity within a team can provide benefits for both team effectiveness [8] and the cost vs. capability ratio[7].

Persistency (Design, Performance)

 Robustness, the ability to continue operation in the face of failure

 Failure recovery, the ability to handle failures without losing functionality or information

Many applications of mobile robotics require operations in inhospitable environments, and complex hardware has

significant failure rates even in the best circumstances. For long lived autonomous tasks it is desirable that the

control system recover from such failures without loss of data, maintaining the knowledge and learning acquired up

to that point [38]. To be truly robust the control system must be independent of specific hardware resources and flow

between resources as their availability dictates. Such features should be built into the system at the Design phase,

relying on both the Architecture and the Control Strategy. It is easiest to put these features to the test, however, in

the Performance phase when the complete system implementation is available and can be evaluated under realistic

failure scenarios.

Efficiency (Design, Development, Performance)

 Cost vs. Reward, how much gain is provided for an input of resources

The issue of efficiency has two facets. The first consideration is that the system is not designed in such a way that

requires the duplication of resources or effort. For example, rather than equipping each robot with a high speed

processor to extract information from images a number of processors can be shared between the whole team [33].

The second consideration is that the system uses resources appropriately when they are available in order to prevent

bottlenecks. For example, [49] utilizes the processors of each robot in a distributed algorithm to compute collision

free routing paths when solving the routing on a single processor would have been impossible. Both these scenarios,

and almost any other question of efficiency, can be reduced to the problem of cost vs. reward. All that is required is

to define what costs are being considered, e.g., time, resources, hardware investment, and what constitutes a reward,

e.g., tasks complete, quality of service. Efficiency for robot teams is primarily considered in the Performance phase,

though the same cost vs. reward analysis is equally valid throughout the Design and Development phases,

particularly for commercial projects.

25

3.3 Design, Development, and Performance Indexes

Considering the seven tenets of Control ad libitum and the questions they were founded on, it is

clear that some aspects are difficult to quantify empirically and are best suited for analytical

consideration. However, there are also a large number of aspects that can be quantified, given the

right tools, which can lead to better standardization and more consistent comparisons. This work

develops and adapts several metrics and indexes from various fields, and shows how they can be

used to help understand differences in performance and even provide useful insight before the

team is assembled or the first line of code is written. The indexes are sorted according to the

tenets of Control ad libitum and categorized by where they fall in the team lifecycle. Most

indexes are considered “preference indexes” because in the majority of cases a higher value in the

index is preferable, for example efficiency or robustness. It should also be noted that in the same

way that performance is no longer the sole measure for comparison, improved performance is

also not the only reason to prefer one choice over another. Indexes for transparency or versatility

may not correlate to performance but are beneficial in other ways, such as aiding understanding

of the control system or streamlining the design process. In contrast to preference indexes, it is

also possible to have “distinction indexes,” which simply differentiate between choices without

suggesting one is better than another. For example, diversity can be beneficial in some cases and

a liability in others, but quantifying diversity can still provide insight into other aspects of the

team.

Five indexes related to Adaptability, Diversity, Modularity, Efficiency, and Persistency are

developed in Appendix I. Some examples are provided there and the Modularity and Persistency

indexes were applied to the final control system developed in Chapter 6; while Efficiency was

used as the primary comparator between the different SLAM strategies tested in Chapter 7.2.

26

Chapter 4
Control System Architecture

4.1 The Host, Avatar, Agent Architecture

Based on the principles of Control ad libitum, the following HAA architecture was developed

[54]. The system is separated into three components: Hosts, Avatars, and Agents. Hosts are the

physical processors, where computations are done. Hosts can be either stationary units or

mounted on avatars. Avatars are the physical robots, which must be the control system’s eyes,

ears, and hands in the world. Agents are the software modules of the control system that run on

the hosts. This relationship is depicted in Fig. 4.1-1. The hosts form a distributed processing

network and maintain a distributed database (DDB) to share data throughout the network.

Software agents are spawned (instantiated) as required by the control system and communicate

with each other and the avatars via the network. An agent consists of an internal state and a set of

functions for manipulating that state and communicating with other agents. By transferring the

state of an agent between hosts it is possible for an agent to propagate throughout the network to:

a) balance processing load, task priority, and communication latency, b) conserve power on

mobile hosts, c) recover in the event of hardware failure, and d) share learned behaviours with

similar agents.

Fig. 4.1-1 HAA Architecture

27

Working in the HAA architecture requires three components: a) the distributed processing

network of hosts, b) a DDB to share information, and c) a strategy or hierarchy for organising

agent interactions. Since there are many possible implementations for each of these components,

they are discussed in general terms in Section 4.2. A full implementation is then presented in

Section 4.3, using provably correct distributed algorithms to build each piece of the architecture.

4.2 HAA Building Blocks

4.2.1 Distributed Processing Network

Communication is the cornerstone of any distributed processing network and dramatically affects

the structure of a control system. As shown in [5] communication can improve performance,

however, in some cases the necessary hardware can add significantly to the power consumption

of a robot [32]. On the other hand, high speed processors required for tasks such as real-time

image processing or other complex computations typically consume an order of magnitude more

power than a wireless transmitter.

4.2.2 Distributed Database

The DDB is used to share various types of information throughout the network. In following the

tenets of efficiency and persistency the DDB is implemented as a highly available service,

improving local performance of the database and preventing data loss when failures occur.

Highly available services can be implemented using various distributed algorithms, such as the

gossip architecture [60] that balances the amount of communication against the required

consistency of replicas [61].

4.2.3 Scalable Hierarchical Control

The distributed processing network provides an extremely flexible framework in which to build a

control system. When designed in a modular fashion the control system can take advantage of

the distributed resources while simultaneously implementing centralized components without

sacrificing the robustness of the system. Similarly, elements of both deliberative and reactive

approaches can be used together as dictated by the task requirements. One possibility is the

Scalable Hierarchical Control approach presented here, which suggests an organizational

hierarchy that dynamically scales depending on the current tasks and available resources. As

28

shown in Fig. 4.3-1, the high-level organization of the team is coordinated by a group of

Executive agents, mid-level Supervisor agents perform more focused roles related to a single

function or task within the team, and the lowest level of operation is carried out by Worker

agents. Four different agents are outlined in Table 4.2-1 to provide examples of the different

levels of interaction.

4.3 HAA Implementation

This section introduces the structure and related algorithms used to build a robust and fault

tolerant distributed framework using the HAA architecture. The goal of this framework is to

create a modular and dynamic system that has provably correct behaviour under common failure

scenarios. To this end the basic network structure was defined and a set of distributed algorithms

Table 4.2-1 Agent Examples

1. Mission Executive (Task Assignment Executive): The Mission Executive decides what tasks need

to be accomplished, when a task should be started, when a task is complete, and what tasks should

be arranged in series or parallel to create a branching task tree. Starting from the highest nodes on

the task tree, sub-tasks are added and broken down as necessary based on the available resources.

Fig. 4.3-2 shows an example task tree for a mission where the team must explore an unknown

environment, gather any “collectibles” that are found, and return to the staging area.

2. Avatar Executive: The Avatar Executive assigns avatar resources to fulfill the requests of

Supervisors. Whenever possible multiple requests are fulfilled simultaneously, allowing the

efficiency of the team to scale proportionally with the number of avatars. As the number of avatars

grows it becomes impractical to find the optimal solution, but strategies such as that presented in

[19] are able to find near-optimal solutions with significantly less work.

3. Task Supervisor: Each Task Supervisor is designed to handle a specific task, which may be

accomplished by completing the task directly, coordinating a group of Avatar agents, or spawning

and coordinating lower level Task Supervisors. For example, in Fig. 4.3-2 the Gather Supervisor

spawns a Collect Supervisor for every object. The Collect Supervisor then requests avatar resources

from the Avatar Executive and coordinates their actions using Form Team and Push Object agents.

This level of abstraction provides significant modularity and conceptual separation between tasks,

and new tasks can be programmed without affecting the current control system.

4. Avatar Agent (Worker): Every physical avatar has an associated agent that acts as a gateway to

the control system. All off-the-shelf robots come with their own specific API and require some

customization to function with a control system. Interpretation is necessary between this specific

API and the generic internal interface, and the Avatar Agent consolidates these interpretations into a

single module. Avatar Agents select what functionality they expose, allowing the Avatar Executive

to assign them useful tasks without knowing the details of their operation.

29

were implemented in layers in order to provide the basic functionality of the system. These

components are described below to provide an overall picture of the structure and list

assumptions and failure conditions for each component, and then the following sections discuss

each component and their related proofs in detail. [62] relates these details of the

implementation.

Fig. 4.3-1 Scalable Hierarchical Control

Fig. 4.3-2 Task Tree

30

4.3.1 Framework

The distributed framework consists of both the physical computer and network hardware and the

software running on top. In general terms the physical network consists of processors connected

by communication channels. Processors are capable of running software processes, and for this

framework processes are divided into two categories: Hosts and Agents. Each processor runs one

instance of the Host process, which manages all inter-process communication and the creation

and allocation of the Agent processes. This framework is depicted in Fig. 4.3-3. These Hosts are

responsible for all the algorithms discussed in the following sections, while the functional details

of the Agent processes are unimportant so long as they support the basic agent functionality of

creation, destruction, transfer, and recovery.

The Host network relies on a series of distributed algorithms to support its functions, shown in

Fig. 4.3-4. These algorithms are listed in Table 4.3-1 and descriptions are provided in general

terms that attempt to summarize their purpose, however these cannot be taken as a complete

definition of their functionality.

Each algorithm is reliant in various ways on those before it and thus is subject to the assumptions

and failure conditions of the preceding algorithms. However, they are also modular in that if

another algorithm was found that implemented the same functionality the algorithm could be

replaced and the system would then be subject to the assumptions and conditions of the new

algorithm. Detailed psudo-code for each algorithm is provided in Appendix II, along with proofs

of algorithm correctness.

Fig. 4.3-3 HAA Network Structure Fig. 4.3-4 HAA Algorithm Hierarchy

31

As a result of the current choice of algorithms the following assumptions are made about the

network structure:

1. The network is fully connected. That is, every correct processor is capable of

communication with every other correct processor.

2. A correct communication channel is reliable and ordered, where reliability is defined by

as:

“validity: any message in the outgoing message buffer is eventually delivered to the

incoming message buffer;

integrity: the message received is identical to one sent, and no messages are delivered

twice.” [61]

The ordered condition means that any sent message must be delivered prior to the delivery

of any message sent at a later time.

A correct process or channel is defined as a process or channel that does not suffered any failure.

The possible classes of failure are defined in Table 4.3-2.

Each class of failure as it relates to this framework/implementation is considered as follows:

Fail-stop: Fail-stops are not considered explicitly as there is no method to directly detect a

halted process, instead all fail-stops can be considered crash failures.

Table 4.3-1 Algorithm Descriptions

Algorithm Description

Network Layer Provides the basic network functionality of the computer hardware to the

algorithms.

Unreliable Failure Detector Monitors a connection and estimates whether that connection has failed.

Totally Ordered Atomic

Commit

Delivers messages to a group while ensuring that a) if a message is delivered

to one correct process the same message is delivered to all correct processes,

and b) the order of delivered messages is consistent across all processes.

Group Service Maintains a list of group members.

Agent Allocation Determines which processes shall run on each processor based on processor

usage and communication bandwidth between processes.

Agent Transfer Facilitates the action of seamlessly halting a process on one processor and

resuming it on another processor.

Agent Recovery Facilitates the action of recovering a failed process on either the same

processor or a new processor.

32

Crash: Crashes are allowed and the system must be able to handle up to f crashes before

taking an incorrect step.

Omission: Omissions are reduced to the case of total channel failure, i.e. all messages after a

time t are not delivered. The case of individual lost messages is prevented by the assumption of

ordered message delivery that is enforced by the Network Layer. When a channel is suspected of

failure by the Unreliable Failure Detector the process at the other end is assumed to have crashed

and must be handled appropriately.

Send-omission/Receive-omission: Both types of failure are disregarded based on the

assumption that the Network Layer will either correctly send/receive a message, return an error,

or crash.

Arbitrary (Byzantine): Some types of arbitrary failure, such as message corruption or arbitrary

stops are handled by the system, but in general this class of failure is not allowed.

Clock: No assumption of synchrony is used in any of the algorithms, but it is assumed that a

processors local clock has bounded drift from real time for the interval of operation. Studies have

shown that in practice the rate of drift is on the order of 10
-6

% for over an interval of time [63].

Performance (Process/Channel): No explicit bounds are made on the interval between

process steps or duration of message transmission, however the Unreliable Failure Detector will

suspect any channel (and thus process) that is performing below its quality of service

specifications. Thus, these classes of failure are handled as crashes.

Table 4.3-2 Classes of Failure (Adapted from [61])

Class of failure Affects Description

Fail-stop Process Process halts and remains halted. Other processes may detect this

state.

Crash Process Process halts and remains halted. Other processes may not be

able to detect this state.

Omission Channel A message inserted in an outgoing message buffer never arrives

at the other end’s incoming message buffer.

Send-omission Process A process completes a send, but the message is not put in its

outgoing message buffer.

Receive-omission Process A message is put in a process’s incoming message buffer, but that

process does not receive it.

Arbitrary (Byzantine) Process or

Channel

Process/channel exhibits arbitrary behaviour: it may

send/transmit arbitrary messages at arbitrary times, commit

omissions; a process may stop or take an incorrect step.

Clock Process A process’s local clock exceeds the bounds on its rate of drift

from real time.

Performance Process Process exceeds the bounds on the interval between two steps.

Performance Channel A message’s transmission takes longer than the stated bound.

33

In summary, send-omission/receive-omission failures, general arbitrary failures, and clock

failures are not allowed, while the other types of failure are all handled by the Unreliable Failure

Detector as suspected crashes.

4.4 Unreliable Failure Detector

The purpose of a failure detector is to know when a process has failed or becomes unreachable.

For the general case of unreliable networks the task of perfect failure detection violates the FLP

impossibility [64], and so the notion of unreliable failure detection was introduced [65]. An

unreliable failure detector typically provides an estimate of whether a process has failed,

“suspected,” but is not guaranteed to be accurate at any given time. The algorithm used in this

work is heavily based on that found in [66]. This algorithm was selected because of its straight

forward implementation and the ability to abstract the tuning parameters of the algorithm into

real-world quality of service (QoS) metrics.

In general a failure detector monitors the connection between two processes, the observer q and

the observed p. At all times q proposes whether p is trusted or suspected, but of course cannot be

considered correct at any given time. Borrowing the notation of [66], the QoS metrics that

determine if the proposal of q is useful are broken down into three primary metrics, and four

derived metrics:

Primary:

1. Detection time (TD): Elapsed time between p crashing and being permanently suspected.

2. Mistake recurrence time (TMR): Time between two consecutive false suspicions.

3. Mistake duration (TM): Elapsed time between making a false suspicion and correcting it.

Derived:

1. Average mistake rate (λM): Rate of false suspicions.

2. Query accuracy probability (PA): Probability that q’s proposal is correct at a given time.

3. Good period duration (TG): Time between proposing trusted and proposing suspected.

4. Forward good period duration (TFG): Related to TG, the time between any given point in

time and the next suspicion.

34

The relation between the primary metrics and the derived metrics is provided by Theorem 1

below. The notation Pr(A) represents the probability of event A occurring, E(X) is the expected

value of random variable X, V(X) is the variance of X, and E(X
k
) is the k

th
 moment of X.

Theorem 1 (published in [66] along with a discussion of the proofs and the selection of

primary metrics). For any ergodic failure detector, the following results hold: 1) .

2) If 0 ∞ then 1/ and / . 3) If 0 ∞

and 0, then is always 0. If 0 ∞ and 0, then 3a) for all 0, ∞ , Pr Pr / , 3b) / 1 .

In particular, 3c) 1 /2.

These metrics can be used to compare the performance of failure detectors, but are equally useful

to specify performance bounds on a failure detector. The authors of [66] present several

variations on a failure detection algorithm using bounds on TD, TMR, and TM to determine the

tuning parameters, and provide a proof that the algorithm yields the optimal query accuracy

probability PA for failure detectors with the same rate of heartbeat messages and upper bound on

detection time. The basic algorithm is summarized below and then the specific implementation

used for this work is explained in more detail; this implementation is heavily based on the

algorithm of [66] and the text will note where augmentations have been made.

4.4.1 Failure Assumptions

No send-omission, receive-omission, arbitrary, or clock failures are allowed. Omissions with a

message loss probability of pL and message delays D in a distribution with finite E(D) and V(D)

are allowed. Crashes/fail-stops are allowed for p but the algorithm obviously requires q to be

alive.

4.4.2 Algorithm Overview

The observed process p periodically sends numbered heartbeat messages, , to the observer q.

Observer q knows a time, , before which it is expecting to receive . If arrives before

then p remains trusted, if time occurs before arrives then q suspects p. If was delayed

35

and arrives before time then q is allowed to trust p again, however if is delayed beyond

 then q must wait for or a later message before it will trust p again.

Algorithm 1, found in Appendix II, implements this algorithm in a system with a)

unsynchronized clocks, and message behaviour (in terms of message loss pL and message delay

D) that is b) unknown and c) changes over time.

This algorithm is based on [66]’s NFD-U algorithm, with six significant changes that allow the

tuning parameters to be updated dynamically based on current estimations of network

performance:

1. INITIAL_PERIOD set by the observer: In ll. 2-3 the initial period for the heartbeat

messages is set to an initial value, selected to be smaller than the smallest based on the possible

QoS settings and worst case network performance.

2. Including period and in the heartbeat message: The current period and local time,

, are included in the heartbeat message to assist in the calculation of .

3. Initialization of the FD parameters: Because the performance of the network is not

initially known the calculation of initial FD parameters must be assume a “worst case” scenario.

4. Calculation of : Since the clocks are unsynchronized and the period can change the

calculation of must be different than in [66]. The inclusion of period and in each

heartbeat message allows for two things: 1) the direct calculation of , and 2) the estimation

of the offset message delay, . The delay consists of the offset between the between the local

clocks of p and q, which is assumed to be constant, and the actual message delay . This

information allows the expected time of arrival of to be estimated for the local clock:

1

 (4.4-1)

5. Re-evaluation of the FD parameters: With the understanding that , since

is plus a constant, the FD parameters and can be calculated using the same procedure

given in [66]. This is done every time N heartbeat messages are received in order to adapt to

changing network performance. In long lived applications with significant network dynamics it

may be desirable to store only the M most recent offset message delays for use in the calculation

of and above.

36

6. Introduction of the setPeriod message: After the FD parameters have been re-evaluated p

needs to be notified of the new period, which is accomplished by a simple setPeriod message.

The new period is adopted by p after its next heartbeat is sent so that it does not interfere with q’s

expectation of the arrival of .
The tuning of this algorithm is done through the selection of the QoS requirements , , and

, and to a lesser extent to selection of constants INITIAL_PERIOD and N. Given the three

QoS requirements the algorithm guarantees that:

 , , (4.4-2)

The one caveat is that the upper bound on detection time is plus the average message delay

, which is unknown. An estimation of message delay would require an increase in

complexity of the algorithm and additional messages, due to the assumption of unsynchronized

clocks. [66] argues that this does not impact the algorithm’s viability, since once the upper bound

on detection time is lower than the message delay any failure detector begins to make too

many mistakes to be useful, and so specifying an additional buffer on top of the message delay

(in this case) is effectively a requirement.

In order to understand the cost of running the algorithm the heartbeat frequency is the primary

concern, i.e. the messages/minute cost of the algorithm. The QoS requirements used for this

setup (10 , 1 , 30) cost roughly 12 messages/minute and has an

expected forward good period duration 3.5 .

4.5 Totally Ordered Atomic Commit

In Atomic Commit (AC), messages must be sent in such a way that all correct processes are

guaranteed to deliver the message, and all processes must be given the option of triggering a

unilateral abort even if they successfully receive the transaction message (for example if the

transaction conflicts with the current state of the process/database). For this implementation the

non-blocking AC algorithm of [67] has been used as a base to provide totally ordered atomic

message delivery. The [67] algorithm was selected because it provides non-blocking AC for

asynchronous systems using an unreliable failure detector such as that described above. Correct

processes are able to agree on an outcome despite false suspicions, and when no failures occur the

37

algorithm performs similarly to a three phase commit protocol [67]. The AC problem is defined

in [67] by the four conditions:

AC-Uniform-Agreement: If two participants decide, they decide on the same outcome.

AC-Uniform-Validity: The outcome is commit only if all participants have voted yes.

AC-Termination: Every correct participant eventually decides.

AC-Non-Triviality: If all participants vote yes, and no participant has ever been suspected, the

outcome must be commit.

One important property the algorithm is missing is a guaranty of ordered delivery, which is

required for some uses in this system. In order to provide this functionality an additional

condition, AC-Total-Order, has been defined.

AC-Total-Order: If one correct process commits transaction m before committing transaction

m’ then all correct processes participating in both transactions must commit m before

committing m’.

Proofs for these properties are developed in Appendix II.

4.5.1 Failure Assumptions

No send-omission, receive-omission, arbitrary, or clock failures are allowed. Omissions are not

strictly allowed, but in a system with potential for message loss the channel can be made reliable

by retransmitting lost or corrupted messages [67], such as is done for the TCP/IP protocol.

Crashes/fail-stops are allowed for up to f < n/2 participants.

4.5.2 Algorithm Overview

The algorithm starts when process p* proposes a transaction to a number of participants, p1 to pn,

one of which must be p*. Upon receiving the proposed transaction there is a voting phase where

each participant decides locally whether it is willing to commit the transaction, and then joins

successive rounds of the consensus phase until a decision is reached. During the voting phase

each process has the opportunity to evaluate the transaction and votes yes or no on whether to

proceed with the commit. The consensus phase uses a rotating coordinator to decide on the

outcome, and can only decide to commit if every participant has voted yes.

38

The algorithm found in [67] provided the basic structure for Algorithm 2, however significant

modifications were made in order to satisfy AC-Total-Order. These modifications centre on the

new activeTransactionsp and decidedTransactionsp lists that each process maintains, which

record transactions that are known but not yet decided and transactions that are decided but not

yet closed, respectively. Closing a transaction means that no more messages relevant to that

transaction will arrive, and therefore the transaction can be cleared from memory. The

requirement of total order is complicated by the fact that the sets of participants for two messages

might differ, yet still require transaction ordering for the overlapping participants, and so

decisions about one transaction may not be readily available to participants of the second

transaction. To work around this issue all participants are required to propose to an insertion

order prior to agreeing to commit, and the highest proposal will be accepted by all correct

participants. Insertion order proposal and acceptance follows two rules: 1) when a participant

first becomes aware of a transaction it must propose an order greater than that of highest open

transaction (transactions that have not been closed, as defined above), and 2) a new order

proposal is accepted only if it is higher than the current order of that transaction. This strategy

takes advantage of the fact that each participant must provide their estimate before the pre-

commit point can be reached. Thus, by ensuring that no participant agrees to an order that

conflicts with their committed transactions the algorithm guarantees that AC-Total-Order is

satisfied.

The algorithm is described block by block with reference to Algorithm 2.

To maintain global order each participant maintains local activeTransactionsp and

decidedTransactionsp lists (ll. 1 and 2). As soon as a participant learns of a transaction, either

from the initiator or another participant, it is assigned an order and added to activeTransactionsp.

Once the transaction has been decided it is removed from activeTransactionsp and added to

decidedTransactionsp. The transaction remains in decidedTransactionsp until all participants have

acknowledged the decision, at which point the transaction can safely be closed.

To propose a transaction p* calls procedure startTransaction (l. 3) and sends out a transaction

message containing a globally unique transaction ID, the transaction details, and a list of

participants. At this time p* also proposes an order higher than any transaction p* is currently

aware of (l. 4).

39

Upon receiving the transaction message (l. 6), each participant first checks their

decidedTransactionsp list to ensure that this transaction is still relevant, and then calls the

atomicCommit procedure. The initialization (ll. 16-32) corresponds to the voting phase, where

each participant has the option to declare a unilateral abort. The participant ensures that an

acceptable order is assigned (ll. 21-25), and if necessary notifies all other participants of the new

order. In order to reduce the number of order changes the transaction IDs are used as a tiebreaker

in the case of transactions with the same order. It is also worth noting that if there is a message

priority associated with each transaction, priority can be used as the primary tiebreaker, and

transaction ID as a secondary tiebreaker. If the participant votes to abort the transaction (l. 27)

they notify all participants of the decision (l. 29) and proceed to Task 1, otherwise they proceed to

the consensus phase by starting Task 1 and Task 2 concurrently.

Task 1 (ll. 33-42) waits until the outcome is received and rebroadcasts that decision. In the

original algorithm Task 1 can then immediately act on the decision, however to ensure total order

additional checks must be made (l. 37). If the decision is abort order does not matter and the

participant can proceed, otherwise they must wait until the transaction has the lowest order of all

active transactions (using transaction IDs to break ties) before proceeding. Once these conditions

are met the participant acts on the decision and moves the transaction from activeTransactionsp to

decidedTransactionsp. A final gate must be passed before the transaction can be cleaned up and

removed from memory (l. 41). This check ensures that all participants have acknowledged the

decision and no further messages will be received on the subject.

Task 2 (ll. 43-71) performs successive rounds of consensus and is fundamentally the same as in

the algorithm of [67], except for the inclusion of transaction order in each message. Each round

of Task 2 can be considered as four steps, two that are taken by all participants (steps P1 and P2)

and two that are taken only by the coordinator for that round (steps C1 and C2). Overviews of

P1, C1, P2, and C2 are provided here [67]:

Step P1 (l. 47): The participant’s current estimate is sent to the coordinator of the round.

Step C1 (ll. 48-56): The coordinator waits until either a) n estimates are received from the

participants or b) at least n - f estimates are received and the remaining participants are suspected

by the failure detector. When these conditions are met the coordinator revises its estimate and

40

sends that as a proposal to all participants. Note that the estimate can only become pre-commit if

at least one coordinator has received estimates for all participants (i.e. no participant voted no).

Step P2 (ll. 57-63): Each participant waits until either a) it receives a proposal from the

current coordinator or b) the coordinator is suspected. If a proposal was received the participant

sends an acknowledgement to the coordinator, otherwise a “negative acknowledgement” is sent to

the coordinator.

Step C2 (ll. 64-71): The coordinator waits until it has received n - f acks or nacks from

participants. If n - f acks were received then the coordinator is allowed to decide the outcome and

sends the current estimate as the decision.

All participants monitor incoming messages (ll. 72-84) to a) learn of new transactions, and b)

update the order of active transactions. If a participant receives a message regarding a transaction

they are unaware of the transaction is added to activeTransactionsp as a placeholder (l. 75). For

both placeholder and active transactions the new order is compared to the current order (l. 76) and

new order is accepted if it is higher (l. 77). For active transactions (l. 78) the new order is

broadcast to all participants and Task 2 is reset (ll. 79-83).

The complexity of the system makes the true performance difficult to examine analytically, and

so experimentation was conducted to provide some insight. These results can be found in

Chapter 7.

4.6 Host Membership Service

Maintaining a list of active hosts is a requirement for several aspects of this system. This list

must be known to and agreed on by every host in order to ensure consistency, and must be

accurate and available even if some hosts fail. To accomplish this, a group membership service is

used, where each host is a potential member of the group and can only perform their duties while

they are accepted members. The basic features of a group membership service are: a) providing

an interface for adding or removing members from the group, b) monitoring members for

suspected failures, c) notifying members when membership changes occur, and d) performing

group address expansion [61]. The implementation of such a service can vary significantly

depending on the specific requirements of the application and the available tools. For this system

41

an algorithm leveraging OAC transactions and an UFD was developed. Using OACs ensures that

consistency is maintained, which is one of the primary challenges of a membership service.

The developed algorithm has the following features:

1. A globally consistent list of group members.

2. A method to ensure new that members are consistent with the global state.

3. A single acknowledged leader at any time.

4. A method for processes to apply to the group.

5. A method for members to leave the group.

6. A method to remove suspected members from the group.

Selecting a leader is accomplished by maintaining a ranked list of members, where rank decreases

with the order in which they were added to the group and the leader is the highest ranked current

member. The algorithm also makes use of the notion of “core” process, in the form of an ordered

list of processes with globally known addresses. The list is used during group formation and to

allow potential applicants to contact the group. Global state is defined as any data that must be

consistent across all members, for example this system considers the DDB to be part of the global

state. This membership service algorithm is defined by the following seven conditions:

HM-Formation: A correct group will eventually be formed, where a correct group is defined

as having at least one correct core member, and no incorrect group is ever formed.

HM-Termination: All messages related to an individual event (join, suspicion/remove, leave)

eventually subside.

HM-Non-Triviality-Join: A correct applicant is eventually added to the group by all correct

members.

HM-Non-Triviality-Leave: When a member asks to leave the group they are eventually

removed by all correct members.

HM-Non-Triviality-Remove: When a member crashes they are eventually removed by all

correct members.

HM-Weak-Validity: When an attempt is made to remove a set of members M, M will not be

removed unless every member M also suspects every member M.

HM-Agreement: Every correct member of the group commits the same series of group add or

remove transactions.

42

Proofs of the seven conditions can be found in Appendix II.

4.6.1 Failure Assumptions

Similar to the OAC failure assumptions, only crashes/fail-stops are allowed. Specifically, up to /2 core processes may fail, while any number of other processes may fail. Additionally,

there is a condition that no correct process is erroneously removed from the group and no process

is erroneously excluded during the formation of the group.

In the case of erroneous removal, there is a conflict in that a) if a process fails it must be removed

before the group can continue to function, and b) since the failure detector is unreliable it is

possible that a process will be falsely accused. In order to complete a) we must rely on the output

of the UFD, however, because of b) it is possible for a process to be erroneously removed from

the group. The probability of this occurrence is reduced by the fact that the algorithm requires

that all members agree on a suspicion before a process can be removed. Therefore, given an

appropriately tuned UFD and a group of modest size, the probability of an erroneous removal is

extremely low. The probability that member m will be erroneously removed from a group with n

members during a time period of duration t, defined as , is approximately:

 Pr · 1 (4.6-1)

From [68]

 Pr min ,
 (4.6-2)

Note that for

 Pr (4.6-3)

And so

 1 (4.6-4)

This probability is a first order estimate, since only considers a) the possibility of a single false

accusation in time period t while disregarding the cases of multiple false accusations of the same

member, and b) a single erroneous removal while disregarding the cases of multiple simultaneous

false accusations.

43

For a group of n correct processes, the probability that are no erroneous removals, , can be

estimated as

 1 (4.6-5)

 1 1 , for 1 (4.6-6)

Because decreases as n increases, increases rapidly with n. Thus, the parameters of the

UFD and the minimum group size must be set such that the probability of erroneous removals is

acceptably low. For example, Table 4.6-1 shows and for several group sizes with the

tuning parameters used in this setup.

The case of erroneous exclusion during group formation is only relevant if the fallback formation

is used, i.e., a group has not been formed by FORMATION_TIMEOUT. In this case the first , , processes use OACs to agree on the initial member list. The probability of a

correct process being erroneously excluded can be estimated as

Pr · 1 Pr 1 crash after 1Pr 2 crashes after 1… Pr crashes after 1

(4.6-7)

Where is the time from FORMATION_TIMEOUT to the formation of a group, and FORMATION_TIMEOUT. As with the calculation of , this is only a first order estimation.

4.6.2 Algorithm Overview

The basic form of the algorithm can be understood in three parts: a) formation, b) update

requests, and c) commitment of updates. When group formation is triggered (either by broadcast

or some other method of loose synchronization), each core process calls the groupJoin()

procedure. The first core process immediately forms a provisional group with itself as the only

member, and once sufficient core processes have applied will form a correct group. In the case of

the first core process failing before a group is formed, the remaining core processes will wait until

Table 4.6-1 Probability of Erroneous Removal

(10 , 1 , 30 , 10)

Group size 1 -

2 5.95E-02 0.940473 5.95E-02

3 2.95E-06 0.999994 5.90E-06

4 1.46E-10 1 4.39E-10

5 7.27E-15 1 2.89E-14

44

FORMATION_TIMEOUT has elapsed and eventually form a group using

OAC(formationFallback, ...) transactions. Update requests can contain join, leave, and remove

requests. Join and leave requests are voluntary and will eventually be granted if the process is

correct. A joining process must meet the conditions of being connected to every member, and

becoming consistent with the global state, which is accomplished through a sponsor system.

Remove requests are triggered when a leader suspects another member of failing. If all processes

agree with the suspicion the remove request will eventually be granted. Updates are committed

via the leader calling the updateMembership() procedure, and may require several attempts before

a consensus is reached and the updates are applied. Consistency is ensured because all

membership changes are done through OAC transactions, meaning that every member makes an

identical series of updates. When committing an update a two phase lock is required to ensure

that join and leave updates occur smoothly. Remove updates require consensus, but do not

require a lock. A successful update follows these steps:

1. The leader assembles lists of members to join, leave, and remove in this update.

2. An OAC(remove, ...) transaction is committed, removing the agreed upon members. If

there are join or leave updates as well and a lock is required, this transaction also incorporates a

lock request.

3. The leader waits until the lock has been acknowledged by every member, ensuring a lock

has been achieved.

4. An OAC(membership, ...) transaction is committed, updating the list of members based on

the join and leave lists. This transaction also releases the lock.

The algorithm is discussed below according to Algorithm 3.

Each process maintains a set of variables related to the membership service (ll. 1-13). In

summary, coreProcesses is the list of core processes, joinListp is the list of applicants who have

sent p a join request, memberListp is the ordered list of current members, removeListp is the list of

members p suspects, leaveListp is the list of members who have sent p a leave request. The

lockedp variable is used both as a flag to indicate whether the global state is locked and to store

the current key to the lock. The updatingMembersp flag is used to prevent simultaneous update

attempts from the same process. The connectionsTop and connectionsFromp lists are used prior to

joining to track what connections p has established. The sponsorp and sponseep lists are used in

45

the sponsor process, and the groupCorrectp flag and coreMembersp list are used in the formation

process.

To leave the group a member calls the groupLeave() procedure (l. 14). This sends a leave request

to each member, however, the member must wait until it has been removed from the member list

(l. 16) before it stops participating in group activities to ensure a clean exit. Upon receiving a

leave request (l. 18) each member adds the process to their leave list, but only the leader attempts

to act on the request.

Remove requests are generating upon suspecting a process (l. 22). This action occurs on all

members, though only the leader attempts to act on these requests. Conversely, when a process

becomes trusted (l. 26) the remove request is rescinded; additionally, if the process is an applicant

updateMembership() is called in case this changes the status of their application.

To join the group a member calls the groupJoin() procedure (l. 35). This procedure has three

sections, the first sending join requests to each core process (ll. 36-39) while the other two relate

group formation. The second section (ll. 41-43) is called only by the first core process, who

immediately forms a provisional group of one by committing an OAC(membership,...)

transaction. The third section (ll. 44-49) is called by the remaining core processes as a fallback if

the first core process fails to form a group.

Upon receiving an apply request (l. 50) from a, the process p accepts a into their join list. p also

introduces themselves to a, and introduces a to every member and other applicant. Finally, if p is

the undisputed leader then p becomes a sponsor for a and ensures that a is brought up-to-date on

the global state.

Upon receiving an introduction to a (l. 62), the process p performs the following actions: a) if the

introduction is from a itself, p inserts a in connectionsFromp, b) if p has no connection to a, p

opens a connection to a, inserts a in connectionsTop, and introduces themselves to a, and c) if p is

an applicant themselves and has a sponsor, p sends a list of their current two-way connections to

their sponsor.

Relating to the sponsor process, upon receiving a sponsor message from q (l. 71) p accepts q as

their sponsor and sends them a list of their current two-way connections, and upon receiving a

46

connections message from q (l. 74) p calls updateMembership() in case the status of q’s

application has changed.

Any time an event occurs that might trigger a membership change the updateMembership()

procedure (l. 76) is called. The process p first makes sure p does not have an update already in

progress, and that p is not aware of any other attempted membership updates (l. 77). p then

decides if they are the leader or could become the leader based on their removeListp (l. 79). If so,

p assembles a potentialList of applicants who met the join criteria (ll. 83-87), then from that list

decides on an acceptList from potentials who are mutually connected (ll. 88-91). If a correct

group has not yet formed, a check is done to ensure that accepting the new members would

guarantee a correct group (l. 92), otherwise no members are accepted. Finally, if there are any

updates to make (l. 94), p attempts to commit the updates:

(ll. 98-101) Determine if a lock is required, i.e. there are join or leave updates.

(l. 102) Attempt a OAC(remove, ...) transaction.

(ll. 103-109) a) If no lock was required, wait until OAC(remove, ...) is decided, then repeat

updateMembership() to ensure no updates are still outstanding.

 b) If a lock was required, wait until OAC(remove, ...) is aborted or [(p has either

received a lock acknowledgement from all q or p suspects q) and all active OACs have been

decided]. Here “all active OACs” is the set of OAC known about at the time OAC(remove, ...) is

committed, and must be waited on in case one of them is a OAC(membership,...) transaction from

the previous leader. At this point the lock has succeeded and p has received lock

acknowledgements from all q or either the remove transaction was aborted or the lock has failed.

In the first case, the OAC(membership, ...) transaction can be attempted, which upon either

succeeding or failing will unlock the global state. In the second case updateMembership() will be

repeated to retry the updates.

Upon receiving an OAC(remove, ...) transaction (l. 110), the process p decides whether or not to

allow the transaction to proceed. This mechanism is used to prevent transactions where the

members to be removed are not agreed upon. Upon committing an OAC(remove, ...) transaction

(l. 117), p removes the agreed upon members, updates removeListp and leaveListp, accepts

responsibility as sponsor if it is the undisputed leader (ll. 121-126), and locks if necessary.

Upon committing an OAC(membership, ...) transaction (l. 136):

47

(ll. 137-139) If p was the leader when this transaction was sent, p stops sponsoring any

applicants who successfully joined in this update.

(ll. 140-143) Update joinListp, memberListp, removeListp, and leaveListp.

(ll. 144-145) Release the global state lock and propose all held changes.

(ll. 146-149) Check if the new members make this a correct group.

(l. 151) Repeat updateMembership() to process any outstanding updates.

Upon aborting an OAC(membership, ...) transaction (l. 152), p first checks to ensure the key

matches the current lock, then unlocks the global state and repeats updateMembership() to

process any outstanding updates.

Upon receiving an OAC(formationFallback, ...) transaction (l. 158), p decides whether or not to

allow the transaction to proceed. p will only vote yes to the transaction if it is not already part of

a group and the proposed list of members exactly matches p’s own proposal for a group. Upon

committing an OAC(formationFallback, ...) transaction (l. 166), p once again ensures that they

are not already part of a group to prevent accepting multiple formation messages. If the group is

accepted, joinListp, memberListp, removeListp, and leaveListp are updated. If p is the undisputed

leader, p accepts responsibility as sponsor for all applicants (ll. 172-177). The

updateMembership() procedure is then called to process outstanding updates.

4.7 Agent Allocation

A strategy for agent allocation is a fundamental requirement in the HAA architecture, and shares

many similarities to the process allocation problem in distributed computing. Since each agent is

free to operate on any host, they can be distributed in order to optimize various attributes. The

most obvious angle is load balancing to evenly distribute work across hosts, however, other

factors such as communication, stability, and priority could also be taken into account. In

general, computing the true optimum for process allocation is computationally complex and

infeasible in real-time. Therefore many near-optimal algorithms have been developed. The

allocation strategy presented here is based on the Consensus-Based Bundle Algorithm (CBBA)

[69], which was originally designed as a decentralized task allocation algorithm. With the minor

modifications described below, the CBBA approach can be changed from a time based allocation

of tasks to a “CPU usage” based allocation of processes. Since the foundation of CBBA remains

48

unchanged, the desirable properties of the algorithm are maintained, specifically: distributed

scalable asynchronous allocation, guaranteed convergence (given an appropriate reward

function), and low message cost. Additionally, the synchronous version of CBBA guarantees at

least 50% optimality, and both synchronous and asynchronous versions demonstrated roughly

90% optimality during Monte Carlo experimentation [69].

The developed algorithm provides allocation of agents based on four factors. First is process

cost, a unitless value estimated by the average CPU usage when running on a baseline processor.

The second factor is specific hardware requirements, since in some cases agents require direct

access to specialized hardware not available at every host. Third is the notion of “affinity”

between agents. Some agents communicate more frequently and in greater volume than others, in

many cases to the same small group of agents. In these cases network load can be significantly

reduced by allocating the entire group to a single host. Affinity can be estimated based on the

predicted behaviour of agents, or measured in real-time during operation. The fourth factor is

transfer penalty, which represents the cost associated with transferring an agent from one host to

another. This cost can vary significantly depending on the amount of state data that must be

transferred.

For this implementation, process costs and agent affinities are monitored in real-time, so that the

system can adjust to changing performance and learn which agents communicate with each other.

The allocation problem is specified as a set of agents and a set of hosts to which the agents are

allocated. Each agent has properties:

 : Estimated processing cost (normalized by the processing capacity of the host)

 : Set of hardware requirements { , , ...}

 : Set of affinities with other agents { , , ...}

 : Transfer penalty [0,1]

Each host h has the properties:

 : Processor capacity

 : Set of available hardware { , , ...}

 : List of current local agents { , , ...}

49

The goal of the algorithm is to create a bundle of agents, , for each host such that every agent is

allocated once and only once and ∑ is maximized, where is the reward for a bundle.

Reward calculation is based on the order of agents within the bundle and the capacity of the host.

,, otherwise (4.7-1)

 S.T. · 1,1 , otherwise (4.7-2)

∑

 (4.7-3)

In other words, reward is given for agents that are assigned within the capacity of the host

with bonuses for assigning agents with shared affinities to the same host, while agents that exceed

the capacity of the host are given a penalty .

4.7.1 Failure Assumptions

No send-omission, receive-omission, arbitrary, or clock failures are allowed. Omissions are not

strictly allowed, but as with the OAC algorithm, can be handled by the network layer if they

occur. Crashes are handled through the group membership service, and require the algorithm to

abort the current run and begin again.

4.7.2 Algorithm Overview

The allocation algorithm works in three stages: initiation, multiple asynchronous rounds of

bundle building and conflict resolution, and final consensus. Initiation occurs when either an

agent is added or removed or a host is added or removed, although it can also be triggered

periodically in order to adjust to changing system usage. Initiation is carried out by the group

leader, who defines the properties to be used during allocation, in terms of agents, costs, and

affinities, and broadcasts them to begin the algorithm. Each host begins a series of asynchronous

rounds where they greedily build their local bundle by bidding on agents, then processes all

updates from other hosts, resolves conflicting bids, and broadcasts their latest results. These

rounds continue until the group leader determines that consensus has been reached, at which point

the leader broadcasts the result and the allocation is complete. Strategies for initiation and

50

finalization are not defined in [69], but the bundle building and conflict resolution rounds for this

algorithm are fundamentally the same as CBBA. Only a minor conceptual change is required in

order to apply CBBA to process allocation. Instead of avatars (agents in the terminology of [69])

creating bundles of tasks in the time domain, hosts are creating bundles of processes in the

processor usage domain. This transformation is possible because in the same way tasks take a

given amount of time to execute and must be completed one after the other, processes have a

given processor cost and can be added up one after the other to calculate total processor usage.

The three stages are now described in more detail with reference to Algorithm 4.

Initiation occurs on the current group leader whenever there is a change in group membership or

agents are added or removed (l. 17). A new session is created by incrementing the current session

ID (l. 19), defining the parameters of the session (ll. 20-23), and attempting to commit an

OAC(start, …) transaction (ll. 26-28). Session IDs are guaranteed to be unique and increasing

since for a correct group every potential leader will have committed the same series of

OAC(start, …) transactions as every other host.

Upon committing the OAC(start, …) transaction (l. 38), a host first verifies that the transaction is

still valid (ll. 39-40), prepares the session data (ll. 41-48), and begins the first bundle building

phase (l. 50). It is possible for a host to join a new session prior to committing the start

transaction, since update messages (l. 59) can be received out of order. In this case the host

prepares the new session and tracks all updates but does not make any bids of their own until the

start transaction is committed.

In a bundle building round (l. 51) a host greedily adds to its bundle from all the currently

unbundled agents until it can no longer place winning bids on any agents. The build round, rp,

replaces the bid time concept proposed in [69] to avoid issues with unsynchronized clocks. The

bundle building strategy (l. 56) is not dictated by the algorithm; convergence is guaranteed so

long as bid generation has the property of diminishing marginal gains [69]. In the time domain

one way to satisfy this criterion is to offer time-discounted rewards, stating that the later a task is

started the lower the reward. After transforming to the usage domain the analogous strategy is to

have rewards that decrease as the processor usage goes up. One such strategy is presented below

in Appendix II, which offers usage-discounted rewards to both individual agents and clusters of

51

agents with strong affinities. Using this method of bid comparison bundles are built by following

the recursive strategy outlined in Appendix II. This strategy attempts to locally optimize the

reward function while ensuring that every agent has been claimed by a host. Once a

bundle is built the host distributes any changes to its accepted bids (l. 57) and checks to see if

consensus has been reached (l. 58); the process of checking consensus is described after the

discussion of processing bid updates.

Bid updates are distributed (l. 82) through update messages. An update message contains the

sender, the session ID, and the list of bids that have changed since the last update was sent. On

receiving an update message (l. 59) the host insures that the update belongs to the current session.

If it is from an earlier session the update is ignored (l. 60), and if it is from a later session the

current session is abandoned and the host joins the new session (l. 62). Each updated bid is

processed (l. 65) as follows:

(l. 66) The sender’s bid is updated in the bidTablep in order to track consensus.

(ll. 67-68) If the bid is from a round greater or equal to the current round, the round is

incremented.

(l. 69) The currently accepted bid is stored for later comparison.

(l. 70) Conflicts are resolved via the conflict resolution rules in Table 4.7-1 and the bid

comparison operator in Appendix II. These rules are almost identical to the rules in [69], with the

exception that the reset & broadcast action was changed from rebroadcasting the sender’s bid to

broadcasting the receiver’s nil bid. This change is necessary to allow consensus checking via the

bidTablep, and is possible because of the condition that every host is capable of sending their

updates to every other host. If this condition is not met by the network then the bid update would

have to include two parts: one containing the sender’s bid and the other containing the receiver’s

opinion.

(ll. 71-72) If the newly accepted bid has become worse than the bid that was previously

accepted, the host may now have a chance of adding that agent to their bundle, and so a bundle

building round is queued.

(ll. 73-76) If the session is ready, i.e., the start transaction was committed, and there are

updates to distribute then a distribution is queued. Similarly, if the session is ready consensus is

checked.

52

Once all bids from every currently received update message have been processed, queued bundle

builds or distributions are carried out (ll. 77-81). Waiting until all updates are processed ensures

that the most current information is used when building bundles, and reduces the number of

updates sent.

Table 4.7-1 Bid Conflict Resolution (Adapted from [69] with additions)

 Host q (sender)

thinks zqj is

Host p (receiver)

thinks zpj is

Receiver’s action*

(default: leave & broadcast)

1

2

3

 p

if yqj > ypj → trim & update & broadcast

if yqj = ypj and zqj < zpj → trim & update & broadcast

if yqj < ypj → update time & broadcast

4

5

6

q q

if rqj > rpj → update & broadcast

if rqj = rpj → leave & no broadcast

if rqj < rpj → leave & no broadcast

7

8

9

10

11

 m {p,q}

if yqj > ypj and rqj ≥ rpj → update & broadcast

if yqj < ypj and rqj ≤ rpj → leave & broadcast

if yqj = ypj → leave & broadcast

if yqj < ypj and rqj > rpj → reset & broadcast

if yqj > ypj and rqj < rpj → reset & broadcast

12 none update & broadcast

13 p if rqj = rpj → leave & no broadcast

14 p q reset & broadcast

15 m {p,q} leave & broadcast

16 none leave & broadcast

17

18

19

 p

if yqj > ypj → trim & update & broadcast

if yqj = ypj and zqj < zpj → trim & update & broadcast

if yqj < ypj → update time & broadcast

20

21
m {p,q} q

if rqj ≥ rpj → update & broadcast

if rqj < rpj → reset & broadcast

22

23

24

 m

if rqj > rpj → update & broadcast

if rqj = rpj → leave & no broadcast

if rqj < rpj → leave & no broadcast

25

26

27

28

29

 n {p,q,m}

if yqj > ypj and rqj ≥ rpj → update & broadcast

if yqj < ypj and rqj ≤ rpj → leave & broadcast

if yqj = ypj → leave & broadcast

if yqj < ypj and rqj > rpj → reset & broadcast

if yqj > ypj and rqj < rpj → reset & broadcast

30 none update & broadcast

31 p leave & broadcast

32 none q update & broadcast

33 m {p,q} If rqj > rpj → update & broadcast

34 none leave & no broadcast

*Bids are compared using the bid comparison operator. The resulting actions are handled as follows:

trim: if j was part of a cluster bid then remove j’s cluster and every later bid from bundlep;

 else remove j and every later bid from bundlep;

update: bidTablep [p][j] := bidTablep [q][j];

update time: bidTablep [p][j].r = rp;

reset: bidTablep [p][j] := { j, none, {0,-∞}, 0 }; /* nil bid */

broadcast: outboxp[j] := bidTablep [p][j];

no broadcast: /* do nothing */

leave: /* do nothing */

53

Consensus is checked (l. 86) by the group leader using the bidTablep. The table stores all bids

that each host has currently accepted, and consensus is reached once every agent is claimed and

every host has accepted the same set of bids. Consensus is guaranteed from the convergence

properties of the algorithm. When consensus is achieved the leader flags the session as decided

(l. 88) and attempts to commit an OAC(finish, …) transaction (ll. 89-92) until either it is

successful or the situation changes. Global agreement on the allocation result is guaranteed

through the use of an OAC transaction. Upon committing the finish transaction (l. 93), each host

accepts the allocation result and, if the ID matches the current session, flags the session as

decided.

4.8 Agent Transfer

Agent transfer is considered normal behaviour even when all processes are correct, and is

triggered by the Agent Allocation algorithm. In all cases, the agent a is running on one host, Hold,

who voluntarily releases ownership and allows the agent to transfer and resume operation on a

second host, Hnew. Beyond the inevitable time delay, there should be no other impact on the

operation of the transferred agent or any other agents. This specification is formally defined as:

AT-Transparency: The agent will be transferred without any change in behaviour required of

any other agent.

AT-Consistency: The agent shall not lose any relevant information, either internal data or

incoming messages, from the transfer.

Proofs of AT-Transparency and AT-Consistency are derived in Appendix II.

4.8.1 Failure Assumptions

This algorithm assumes that a does not crash prior to sending its state, and that Hold does not

crash prior to releasing ownership of a. If either of these events occurs the agent has failed and a

must be recovered as described under Agent Recovery. The algorithm also relies on OAC, a

group membership service for the hosts, and a DDB.

4.8.2 Algorithm Overview

The transfer operation is a two step process: first, Hold works with a to temporarily “freeze” the

agent in the DDB, then Hnew “thaws” the agent from the DDB and allows a to resume operation.

54

These steps happen in order but are otherwise unrelated, and an unspecified amount of time may

elapse between freezing and thawing without complication. The freezing and thawing processes

are described here with reference to Algorithm 5 and Algorithm 6, respectively.

The freezing process begins when Hold acknowledges that it has lost the bid for a after a session

of agent allocation, and subsequently calls freezeAgent(). Hold then proceeds on two avenues: a)

working with a to freeze the agent, and b) informing other hosts that a is being frozen. Hold asks

a to freeze (l. 2) and begins forwarding all messages addressed to a (a.m.a.a.) into the primary

message queue (l. 4). Upon receiving the freeze request, a packs its state and sends it back to

Hold before shutting down (ll. 17-20). Hold informs other hosts about the freeze with an

OAC(freeze, ...) transaction (ll. 5-8), which informs them to redirect a.m.a.a. into the secondary

message queue (ll. 21-24). Before finalizing the freeze, Hold must wait until it receives

acknowledgement from each host active when the freeze transaction was committed (l. 10) so that

Hold can be sure that it will receive no more messages addressed to a. At this point Hold can

submit a’s state to the DDB and safely release ownership of a (ll. 12-16).

While a is frozen, hosts continue forwarding a.m.a.a. to the secondary queue until Hnew is ready to

begin the thaw process by calling thawAgent(). Hnew then creates a shell process for a (l. 2),

begins forwarding a.m.a.a. to a local message queue (l. 3), and claims ownership of a with an

OAC(claim, ...) transaction (ll. 4-7). When a host commits the claim transaction, if a still belongs

to Hnew (l. 13), they begin forwarding a.m.a.a. to Hnew (l. 15). If a no longer belongs to Hnew, the

claim attempt is abandoned (l. 18). Before Hnew can complete the thaw it must wait until it

receives acknowledgement from each host active when the claim transaction was committed and

all active OACs are decided (l. 9) so that Hnew can be sure no more messages will be added to the

secondary queue. Then Hnew can send a (thaw, ...) message to a and begin forwarding a.m.a.a. to

a (ll. 10-11). When a receives the thaw message it unpacks the state, processes each of the

primary, secondary, and local message queues in turn, and then resumes operation (ll. 19-22).

4.9 Agent Recovery

Agent recovery occurs after an agent (or host managing an agent) fails. The agent, a, is then

assigned a host, H, through the agent allocation algorithm and recovered from the latest backup.

This is the lossy counterpart to agent transfer, and information is lost in terms of agent state and

55

undelivered messages. The completeness of the backup is determined by the requirements of the

agent, and can vary between containing only basic information and containing a nearly complete

copy of the state. Naturally, there is a trade-off between completeness and network traffic

necessary to maintain the backup, and the agent designer is responsible for ensuring that the agent

recovers into a usable state. Without restricting the completeness of the backup or the state of the

agent upon recovery, the process is defined by:

AR-Recovery: The agent will be recovered to the latest backup and begin receiving messages.

Proof of AR-Recovery is provided in Appendix II.

4.9.1 Failure Assumptions

This algorithm assumes H does not crash prior to recovering a, and that the agent shell does not

crash before the recovery is complete. If either of these events occurs the recovery fails and new

recovery run must be initiated. The algorithm also relies on OAC, a group membership service

for the hosts, and a DDB.

4.9.2 Algorithm Overview

The backup procedure is straightforward. An agent calls backupAgent() as it deems necessary

and sends the state backup to its local host (Algorithm 7 ll. 1-3). Upon receiving the state

backup, the host submits it to the DDB (Algorithm 7 ll. 4-5). Any number of backups can occur

before a recovery occurs, if one occurs at all.

Agent recovery is described with reference to Algorithm 8. The recovery process begins when a

crashes, or if H was not already the owner, when H receives ownership of the crashed agent. H

then attempts to recover a from the latest backup (l. 4), and if successful notifies other hosts that

a has been recovered (ll. 6-9). Upon receiving the recover message for the host, a’s new shell

recovers itself from the backup and resumes normal operation (ll. 10-12). When the hosts are

notified of the recovery via the OAC(recovered,...) transaction they begin forwarding all

messages addressed to a to H (ll. 13-15). Multiple hosts recovering the same agent is prevented

by the Agent Allocation algorithm.

56

Chapter 5
Just-in-Time Cooperative Simultaneous Localization and Mapping

Although the issues of localization and mapping are not directly related to the core topic of

control system design, they are very common problems in mobile robotics and had to be solved

for the implementation used in the experimentation. Simultaneous Localization and Mapping

(SLAM) is a popular solution to the exploration and navigation problems, but many

implementations are not suitable for large-scale applications [70], relying on powerful sensors

and an abundance of processing power. In addition to requiring a distributed algorithm the goals

of this control system include adaptability and versatility, and so a new strategy, termed Just-in-

time Cooperative SLAM (JC-SLAM), was developed. The primary feature of this strategy is the

use of out-of-order processing that allows for greater flexibility in processing requirements,

which typically results in a higher rate of processing for sensor readings.

The field of SLAM has become very large, and attempting to categorize all approaches is beyond

the scope of this thesis. Instead, a brief overview of the basic elements of SLAM is presented to

introduce the topic, and then several key issues are discussed as they relate to this

implementation. An excellent and detailed review of the topic can be found in [70]. The SLAM

implementation discussed here was designed to be generic in terms of sensor support, robot

hardware, and processing resources. In processing-starved systems the method allows for sensor

data to be selectively held and recovered later to still provide useful information to the current

state, yet under ideal conditions it performs identically to traditional SLAM approaches.

Furthermore, rather than competing with existing SLAM implementations, the key concepts of

maintaining particle history and out-of-order processing can also be integrated into many existing

particle filter SLAM algorithms to compliment their unique strategies and optimizations. The

foundation and implementation of JC-SLAM are developed in this chapter, and its performance is

evaluated experimentally in Chapter 7.

5.1 Background on Simultaneous Localization and Mapping

For autonomous mobile robotic applications most navigation tasks require two sets of

information. First, some form of map that tells the robot where it is going, or at least where it has

been, and secondly, some form of localization that tells the robot where it is relative to the map.

57

In unknown environments it can be difficult to obtain one set of information without the other,

and so the concept of SLAM was developed. Introduced in the late 1980s, SLAM has become a

widely used technique in mobile robotics, and many different approaches have been developed.

The vast majority of these approaches fall under three principle paradigms: extended Kalman

filter (EKF) approaches, graph-based approaches, and particle filter approaches [70]. In general,

each paradigm has certain advantages and disadvantages that are consistent for their approaches.

The EKF implementations have been used successfully in many applications, and it can be

applied incrementally to solve the online SLAM problem. However, the computational

complexity of basic EKF SLAM implementations is where n is the number of map

features [71], though many published implementations use strategies to improve real-time

performance. Graph-based approaches are built from the notion that robot poses and map

features are nodes that can be connected by observation constraints, and SLAM can be solved by

finding the minimal energy state of the graph. Graphical implementations scale well to large

problems because they are generally sparsely connected. However, although some modifications

can be made to support real-time usage, many graphic-based approaches are best suited to solving

offline SLAM [70], i.e., all data is gathered and then SLAM is carried out after the fact. In recent

years, particle filter approaches have gained significant popularity due to their ability to model

non-linear distributions [72], solve both online and offline SLAM, avoid some of the problems of

data association by natively supporting multiple hypotheses for landmark/feature recognition, and

can typically be implemented efficiently [70]. The major problems encountered by particle filter

approaches are that i) the number of required particles increases with the dimension of the system

state, and ii) particle diversity decays over time [72,73].

Beyond the basic paradigm, there are many other choices when developing a SLAM

implementation, perhaps the most significant being the type of map. Typically either a grid based

[74,75] or feature based [76,77] map is used, although many other options can be found in the

literature. This choice is often affected by the type of sensors being used, but can also be

influenced by the operating environment [72], the choice of path-planning and related algorithms,

and even by the availability of communication bandwidth [78]. Depending on the complexity of

the SLAM algorithm and the environment it must navigate, other tangential problems that require

solutions include: uncertain data association, dynamic environments, active or passive

58

exploration, the presence of multiple robots, and merging maps from simultaneous exploration

efforts. Various techniques for handling these issues can be found in the literature.

5.1.1 Localization with Particle Filters

Particle filters are a useful way to represent arbitrary posterior distributions, and are able to track

a clearly defined history of distributions [79]. The filter consists of n particles, each with a state

vector, : , and a weight, , where subscript 0: indicates the states from time 0 to time ,

subscript indicates the weight at time , and the superscript indicates the particle. The

combination of these weighted particles gives the posterior distribution : | : given the

history of observations : , where subscript 0: indicates the observations from time 0 to time .

Each particle can the thought of as an estimate of the current state, and their associated weight

corresponds to how believable that estimate is given the current set of observations. Typically

the states at each time are considered to be a first order Markov process. That is, a state

depends only on the previous state , and an observation taken at time depends only on the

state [80]. The treatment of each particle filter can now be developed as follows. The filter is

initialized to a prior distribution , where each particle is randomly sampled from the prior

and assigned an initial weight 1/ . Note that the initial weights are equal since the density

distribution of particles follows that of the prior. The filter is then updated using prediction and

correction steps [80] to obtain posterior distributions : | : . The prediction step uses the

transition density model, | , to predict the current state based on the previous state. A

correction step is used to incorporate observations into the state model, and can be seen as

updating the weights of each particle based on how well they explain the observed data. The

final requirement for a particle filter is a technique for resampling, where a new sampling of

particles is generated from the current distribution.

Degeneracy is a common problem in particle filters, where after a number of steps only a small

set of particles have significant weights while the others have weights close to zero [81]. In fact,

[82] proves that the variance of the weights is strictly increasing and so there is no way to prevent

degeneracy from accumulating. The standard way to measure degeneracy is to calculate the

effective number of particles . As stated in [81] it is impossible to calculate this quantity

exactly, but an estimate can be found by:

59

1∑ (5.1-1)

From (5.1-1), and a lower indicates higher degeneracy. One method of reducing

degeneracy is to periodically resample the particles, in effect discarding particles with low

weights and creating new particles in areas where they will be useful. Commonly a threshold

value is set for the effective number of particles and resampling is done whenever drops

below this point. There are a number of resampling algorithms available, including residual and

stratified resampling, but both [81] and [83] recommend systematic resampling since it is simple

to implement, and, although it is difficult to analytically evaluate its performance, it is generally

comparable to the other resampling strategies.

5.1.2 Mapping with a Probabilistic Occupancy Grid

Numerous types of maps have been developed, generally either geographical, such as potential

field maps [84] and occupancy grids [85], or topological, such as the feature based map in [86].

Occupancy grids were chosen for this implementation since they are able to incorporate data from

many types of sensors, do not significantly limit the type of path planning algorithms that may be

used, and as shown in [86] can be useful in constructing other types of maps. The map consists

of a 2D grid of consistently sized cells. Each cell is assigned a value between 0 and 1 to indicate

probability it is occupied by an obstacle. In this Bayesian approach values close to 1 mean that it

is most likely occupied while values close to 0 mean it is most likely empty.

When the probabilistic occupancy grid (POG) is constructed in this way a new sensor reading, ,

pertaining to a cell, , can be incorporated in the map simply by applying Bayes’ rule:

 | | || 1 1 | (5.1-2)

Where is the probability currently associated with that cell, called the prior probability of .

The conditional probability | is determined by the sensor model and is a measure of the

likelihood of obtaining that sensor reading assuming is occupied. The prior probability of ,

, acts as a normalizing constant, and can be conveniently rewritten in terms of and | .

60

5.1.3 Prediction Step

The state of each particle is advanced based on the predicted behaviour of the object during that

time interval. Conveniently the tracked objects, the avatars, are willing participants in the system

and are able to provide estimates of their actions, as well as a measure of the associated

uncertainty. This creates a simple velocity-based model with some added noise:

 0, ∆ (5.1-3)

where and are determined when each avatar calculates its velocities and uncertainties

appropriate for the physical hardware, and ∆ can dynamically scale based on the magnitude of

the velocity and acceleration. This model is used by the avatar agent to generate transition

updates of the forms , which are appended to the particle filter history. The model assumes

that the proposal distribution is equal to the transition probability, and therefore prediction steps

do not impact the particle weights. If a different proposal distribution is used the weights can be

updated at this point, though clearly only observations that have already been processed can be

used in the proposal distribution. This weight update can happen separately from the correction

step weight update, and if prediction and correction steps are taken in turn is mathematically

identical to performing a single combined weight update.

5.1.4 Correction Step

Map Updates: The simplicity of the POG makes it possible to incorporate readings from a variety

of sensor types. The type of sensor determines what cells are affected and how the conditional

probability | is calculated. Then (5.1-2) can be used to compute the new belief of each cell.

When dealing with a particle filter the sensor model is simply applied at each particle and

adjusted by the particle weight. An example of a model for sonar sensors can be found in [85].

Particle Filter Updates: Almost all sensor readings yield information about the relationship

between the state of an object and the map. This information can be used to create an update for

the map as discussed above and can also be used to update the weights of the particle filter. The

weight of each particle can be updated by the equation:

|∑ | (5.1-4)

61

which simply scales the weight of each particle based on the observation density | , a

measure of how well the particle explains the current observation, and then normalizes so that the

new weights sum to 1.

5.2 Just-in-Time Cooperative SLAM

JC-SLAM was developed as a real-time, distributed, and scalable cooperative SLAM

implementation that works within the HAA architecture [87]. Specifically, it uses the distributed

processing network to share both computations and information between hosts and to provide

useful mapping and localization data in real-time. Further, it allows historical information to be

incorporated into the current state with minimal additional computation and delays processing of

weight updates until they are required, which allows combining multiple observations into a

single update to reduce computations. This JC-SLAM implementation is built on the

probabilistic occupancy grid and particle filters. Due to its structure and the framework in which

it is implemented it also provides some advantages over existing cooperative SLAM

implementations. In [88] robots share sensor information but require each robot to locally repeat

all the calculations as well as introducing a phase delay with respect to when the information is

processed by each robot, resulting in maps that are out of sync. In [89] local maps are maintained

by each robot and processing is not fully distributed, in addition to having a fully centralized

feature map with which all the robots communicate. In [90] a heterogeneous system is

developed, consisting of master robots with significant processing power and powerful sensors

and slave robots with poor sensors, but it is not robust against failure, and uses a Kalman filter

approach that is unable to incorporate observations that occurred in the past. Finally, the particle

filter approach used in [79] is capable of integrating historical observations, however, their

technique relies on re-simulation to reduce the effects of degeneracy. Re-simulation requires that

the particle filter be reset to a point in the past and then simulated again as if all the observations

were new. The authors admit this to be a very computationally intensive process, and state that

future work must be done to reduce the frequency of re-simulation. The lazy belief propagation

technique developed here avoids the need for re-simulation, and replaces it with a process that

requires minimal computations.

The key feature of JC-SLAM is the ability to process observations out-of-order and to delay

processing when resources are scarce without unnecessarily impacting the performance of other

62

tasks such as navigation and exploration. This feature can benefit single avatar systems and for

simplicity the approach is primarily discussed in that context in the remainder of this chapter.

However, the discussion is equally applicable to multi-avatar systems as shown in the

implementation in Section 5.2.3. In fact, the benefits of out-of-order and delayed processing

become even more important as the complexity of the system grows, since it is less likely that the

processing demands will be evenly spread out over time.

In this application a particle filter is stored as a series of blocks containing a set of weights and a

time-ordered sequence of states. These blocks are separated by resampling events that

redistribute the particles to better reflect the sampling density. This data structure is visualized in

Fig. 5.2-1, which shows two blocks separated by a resampling event at time r. In the figure the

variables are labeled with left superscripts to indicate block, right superscript to indicate particle

number, and right subscript to indicate time where applicable. When new state predictions (to

) arrive at time t they are added to the end of the newest block. When a resampling event

occurs the current block is closed, but not discarded, and a new block is created, where the initial

states are determined by the resampling algorithm and the initial weights are equal.

Maintaining a history of particle states in this way requires more data storage that simply tracking

the current state, but by modern computing standards this additional cost is negligible. To give

an example, for a particle filter with 1000 particles with state of position x, y, and rotation r,

making one prediction a second would require roughly 12 KB/sec of storage, less 42 MB after an

hour. Most computers have RAM one to two orders of magnitude larger than this. Additionally,

Block 1 Particle 1 Particle 2 Particle n

Weight

Time State 0

Block 2 Particle 1 Particle 2 Particle n

Weight

Time State

Fig. 5.2-1 Particle Filter Data Structure

63

old blocks can be deleted after a given amount of time; however, this means that observations

occurring during that block can no longer be processed.

5.2.1 Lazy Belief Propagation

Lazy belief propagation is founded on two principles that reduce the amount of processing that is

required. First, the processing of observations can be delayed but should still provide useful

information to the current distribution, and second, updates to weights should be delayed until

their information is required. Consider the standard particle filter that uses fixed time steps and

repeats the cycle of prediction and correction updates every step. In JC-SLAM the prediction

updates can have varying durations, and many predictions can occur before any correction

updates are made. Further, correction updates associated with some time in the past may occur in

any order. The lazy belief propagation strategy makes three claims that are sufficient to function

under these conditions:

Strategy 1: Delayed calculations of weight updates

Observation densities can be accumulated between weight updates and weight calculations can be

delayed until the weights are explicitly requested without impacting the performance of the

particle filter.

Reasoning: Consider any two observation density updates, and , that are adjacent w.r.t.

observation time. Without loss of generality, assume occurs before . By definition, (5.1-4)

can be applied recursively as follows:

 ∑
(5.2-1)

 ∑ (5.2-2)

Substituting (5.2-1) into (5.2-2) yields:

∑∑ ∑ ∑ (5.2-3)

64

(5.2-3) shows that not only is the order in which the observations are applied irrelevant, but the

two observations can be combined prior to applying (5.1-4). It can be shown by induction that

any number of observations can be combined and the final weights calculated in a single update.

Though the final weights given this set of observations are exactly equal to the weights had the

observations been processed recursively, one concern is the triggering of resampling events.

Resampling events are triggered when the effective number of particles drops below a threshold,

and if the weights are not calculated regularly the effective number of particles will not be

known. In practice, since specification of the aforementioned threshold has considerable

flexibility before it affects the particle filter performance, delaying weight updates in not an issue

so long as the weights are calculated semi-regularly.

Strategy 2: Out-of-order processing

A strategy of processing observations in a last-in-first-out (LIFO) order and allowing out-of-order

(OOO) processing of observations is more effective for real-time SLAM in resource constrained

systems than the standard time ordered approach.

Reasoning: The justification for LIFO processing has two parts. Firstly, in systems with

sufficient resources to process all observations LIFO is exactly equivalent to the standard time

ordered approach. This is shown visually in Fig. 5.2-2, where a series of observations and the

required processing time is plotted along the time axis. Note that the order and timing of

observation processing is the same for both Standard and LIFO. Secondly, in systems with

insufficient processing resources the traditional approach is to discard any readings that cannot be

immediately processed [76], where as LIFO with OOO processing allows old observations, that

would otherwise be discarded, to be processed and still provide useful information.

Fig. 5.2-3 shows that a) LIFO processes a similar, though not necessarily identical, pattern of near

current (at the time of processing) observations, which is important in maintaining the accuracy

of the particle filter; and b) LIFO processes additional OOO observations that can contribute

relevant map and weight updates. In the case of a), note that the pattern of near current readings

processed by Standard is dictated solely by the circumstances of timing and holds no innate

advantage over a slightly different pattern such as the one resulting from LIFO. In the case of b),

though the observation densities generated from an old observation are different than if the

65

observation had been processed in order, they are still validly calculated based on up-to-date map

information in the same way as any other observation. Since the sequence of observations is

different the timing of resampling events may also change; however, since each processed

observation is valid there is no reason to suspect that the performance of the particle filter will be

unduly affected.

Strategy 3: Propagation of observations through resampling transforms

 Observation density updates can be forward-propagated through resampling transforms via the

relation:

 (5.2-4)

where the 1 and 2 left superscript indicates densities before and after resampling, respectively,

and is the parent of particle .

Fig. 5.2-2 Standard vs. LIFO + OOO with Sufficient Processing Resources

Fig. 5.2-3 Standard vs. LIFO + OOO with Insufficient Processing Resources

66

Reasoning: This result relies on the fact that the weights of particles before and after resampling

are independent. That is, the change in weight of a parent particle has no relation to the change in

weight of its children. Once this is understood the following analogy can be constructed.

Consider a scenario where particles progressed normally until time when the set of parent

particles is resampled into a set of child particles. At some time after an observation taken at

time , , i.e., taken before the resampling, is processed. Since the observation

corresponds to a time in the history of the parent particles the question becomes: how is this

observation related to the child particles? Now consider the corresponding scenario where no

resampling has occurred, instead there is a single set particles, a number of which happen to have

overlapping histories before . Specifically, this is the same as if each child particle simply had

its parent’s history attached to the front. In this case when the observation from is processed

the observation density of each particle can be calculated as normal, and it is clear that all

particles with the same history have equal observation densities. Moreover, this observation

density is exactly equal to that of the parent particles in the first scenario. This results in the

simple relation given in (5.2-4). Observation densities can still be accumulated as in Strategy 1.

Replacing and in (5.2-3) with and , respectively, and then substituting in (5.2-4)

results in (5.2-5), which clearly has the same properties as (5.2-3):

 ∑ (5.2-5)

Based on these three claims the lazy belief propagation strategy allows observation densities to be

applied in any order and passed forward along the history of the particle filter to contribute to the

estimate of the current state. Further, this technique is able to delay weight updates until they are

required and to combine accumulated density updates to reduce the amount of computation.

Finally, in an ideal system where every observation is processed immediately, lazy belief

propagation performs identically to a standard particle filter.

The impact of lazy belief propagation on the triggering of resampling events and which particles

survive each resampling is not immediately clear. Mathematically, the order in which

observations are processed plays a role in when resampling occurs and which particles survive,

thus changing the performance of the particle filter. However, in practice the impact seems

minimal for a number of reasons. Resampling only occurs when a significant number of particles

67

no longer match the accumulated observations and only particles that are “bad” predictions are

discarded. In order to significantly change the result of the resampling a theoretical set of

observations must exist that disagree with the previously processed observations, which could

potentially increase the weight of these bad particles to the point where they are no longer

discarded. If such a set of observations does exist it suggests that the bad particles were

incorrectly labeled in the first place, and that the previous observations were overly confident in

their weight assignment (i.e., the error associated with the readings was underestimated).

Furthermore, if the observation error is underestimated it can result in the same performance

problems even if the observations are processed in order. By correctly estimating the error in the

observations it is possible to avoid discarding particles that still have worth and prevent

performance degradation from inadequate particle distribution. This justification is explored

experimentally in Chapter 7, where JC-SLAM, with its aggressive out-of-order processing

strategy, achieves accuracy equal to or better than algorithms that process observations strictly in

order. These results have been submitted for publication in [91].

5.2.2 Example Scenario

The following simplified example is provided to illustrate how the JC-SLAM with lazy belief

propagation is able to converge on the path of an avatar. The system consists of a single avatar

moving backward and forward in front of a wall, periodically taking range measurements with

significant uncertainty attached. Only the dimension perpendicular to the wall is considered, and

it is assumed that the initial displacement is known. Fig. 5.2-4 gives a series of diagrams that

depict the evolution of the particle histories and weights. The particle filter shown uses only

three particles and can hardly be expected adequately track the avatar given the noise in the

system, it is simply used visualize the process of delayed observation updates and propagating

through resampling events.

5.2.3 Implementation of the JC-SLAM Algorithm

As described at the beginning of this section, every particle filter is stored as a time series of state

predictions for each particle, grouped into blocks separated by resampling events; thus, each

block corresponds to a set of predicted particle paths for a period of time. In order to implement

lazy belief propagation two additional values are stored for each particle, the accumulated

68

observation density for that block and the observation density to be propagated to the next block.

A “forward marker” is used to flag the earliest block with observation densities to be propagated

forward. There are five events that must be handled to maintain and query the particle filter,

these events are handled as followed with reference to Fig. 5.2-5.

(a) Initialization: The first state predictions are sent by the Avatar Agent, particle weights are

all equal, and observation densities are set to 1.

(b) Insertion of prediction updates: The new state predictions are appended to the state list

and the prediction time is added to the time list. The end time of the current block is advanced.

Note that unlike correction updates all prediction updates must be applied in order.

(c) Application of correction updates: The block containing the correction time is found, and

then the accumulated observation density and forwarded observation density for each particle are

multiplied by the new observation density. If the forward marker is greater than the current

region it is set to the current region.

(d) Estimating States: The block containing the query time is found. If the forward marker is

less than the query block the observation densities are propagated forward to the query block.

New particle weights are calculated using the accumulated observation density and observation

densities are reset to 1. The state estimate can then be calculated as a weighted sum.

(e) Resampling: A new block is appended to the region list. A systematic resampling

algorithm adapted from [81] is used to generate a new set of particle states and assign parents to

the current set of particles.

69

(a) Starting from the initial position at time 0, the avatar

begins moving backward and forward. At each time

step the avatar generates prediction updates for the

particles using the transition density model. Every few

time steps the avatar takes observations using its range

sensor, but no processing occurs at this time. Since

nothing is known about the true path at this time, the

weights of all particles are equal.

(b) At time 7 the observation from time 5 is processed

(Event 1) and used to generate observation density

updates for each particle, shown by the green circles.

This observation gives roughly equal weights to

particles 1 and 2, but particle 3 has almost no weight

(Event 2). Because the number of effective particles

was reduced to 2 a resampling event occurs (Event 3).

(c) The avatar continues on as before, generating

prediction updates for the particles, until at time 10 the

observation from time 3 is processed (Event 4).

Observation density updates are generated for each

parent particle (Event 5) and then propagated forward to

its children (Event 6), resulting in higher weights being

assigned to the children of particle 2.

Fig. 5.2-4 JC-SLAM Example

(a) Initialization

(b) Insert Prediction

(c) Apply Correction

(d) Estimate State

(e) Resample

Fig. 5.2-5 JC-SLAM Algorithm Flow

70

Chapter 6
Implementation

6.1 Host, Avatar, Agent Architecture

The HAA architecture provides a strategy for implementation, but many design choices are still

open when developing the code platform which one needs to build the control system. The first

decision is about selecting the programming language and environment, and then to choosing

what building blocks are required for the architecture. In this research, C++ was selected as the

programming language, due to its object-oriented structure, the strength of the existing

development tools and code libraries, and its compatibility with many operating systems and

processors. The object-oriented class features of C++ are particularly useful for this research

since every agent shares the same basic needs for communication and agent management, and

many groups of agents share additional functionality, for example Avatar agents or Sensor

Processing agents.

Several building blocks are required in order to implement HAA, but equally important are the

support blocks to monitor, log, and debug the control system. In scenarios with numerous hosts

and tens of agents, interactions become very complex, and proper tools are essential to develop

and maintain a functioning control system. This section describes the three key blocks of the

HAA implementation, AgentBase, AgentHost, and the DDB; and explains their requirements,

capabilities, and, where applicable, potential alternative choices or variations. The five

supporting blocks, AgentMirrior, the GUI, the Logger, AgentPlayback, and RemoteStart are then

outlined to discuss their features and usefulness in developing the control system.

6.1.1 AgentBase

AgentBase is the foundation class for all agents, including AgentHost, the class that is used to

maintain the host network. It provides basic functionality for all agents through tools such as

timers, communication ports, and messaging infrastructure.

The most fundamental tool of AgentBase is the Universally Unique Identifier (UUID) [92],

which are generated every time an agent is instantiated to ensure that there is no confusion

between agents. A UUID is a 128-bit value that is algorithmically generated in a way that for a

71

finite set of IDs the probability of generating the same ID twice is negligible, and it can be

estimated using the birthday paradox approximation from probability theory [93]:

 1 (6.1-1)

where n is the number of UUIDs in the set.

Communication in the system is done over non-blocking Transmission Control Protocol/Internet

Protocol (TCP/IP) sockets that guarantee packet order and integrity, which is a requirement for

the majority of the algorithms described in Chapter 4. There are two message formats

implemented in AgentBase. Regular messages contain message ID, message length, message

data, and optionally a forwarding address and a return address. These messages provide no

guarantees on delivery in the event of agent or connection failure. Ordered Atomic messages act

as a wrapper for regular messages and provide the delivery guarantees of Algorithm 2;

specifically that the message will either be delivered to all targets or no targets.

A number of convenience modules are provided, including Timer, Callback, Conversation, and

DataStream. Timers allow agents to set timeouts when they need to perform a task at a certain

time or at regular intervals. Callbacks are a method of storing function pointers that can be

passed to generic functions and called when a specific event occurs, for example after a timeout.

Callbacks had to be specially designed in order to remain valid even if an agent is transferred to a

different host. Conversations are a set of tools to facilitate sending a request to another agent and

uniquely identifying the response so that the response can be directed to the appropriate handler.

DataStream is a class that concatenates many different data types into a single block to simplify

the process of sending and storing data. For example, during agent transfer an agent can pack its

current state into a DataStream object, submit the block to the DDB, and then on the new host the

agent can unpack the DataStream to recover its state and resume operation.

Additionally, each agent monitors their CPU usage in real-time and reports this information for

use in the Agent Allocation algorithm.

6.1.2 AgentHost

The term host in HAA refers to the processing hardware, but of course there needs to be a

corresponding software component in order to manage and operate the network. Each host runs

72

an instance of the AgentHost class, which provides the core of the distributed system. AgentHost

has five main tasks: host group management, DDB management, agent allocation, agent

management, and message routing.

The algorithms for maintaining the host group are described in Algorithm 3. These include

methodologies for joining, leaving, and removing failed members, and all guarantee consistency

across the members. Before a host can play a role in the control system it must successfully

apply to the group and become consistent with the current global state.

Although the DDB can be considered a separate entity from the host group, it is convenient to

pass all database operations though the local host, since this eliminates the need to maintain a

separate group of DDB clients. This strategy of incorporating the DDB into the hosts does not

dictate the specific implementation of the DDB, and the details of the implementation will be

discussed in the Section 6.1.3.

Once the host group has been established, there is only one step remaining before agents can be

instantiated and the control system is in operation: deciding on agent allocation. For this

implementation the agent allocation algorithm developed in Algorithm 4 was used. This

algorithm is run every time a new agent is requested, whenever an agent or host fails, and at

regular intervals in order to balance processing load.

After deciding on the allocation, each host takes appropriate actions depending on the current

state of the agents.

 If the agent is requested but not yet spawned: the host spawns an instance from the agent

template and notifies the parent when it is ready.

 If the agent is already active: the previous host freezes the agent and the new host spawns

an instance from the agent template, once the freeze is complete the new host gives the state data

to the new instance to thaw and the agent resumes operation. The complexities of these

operations are handled by Algorithm 5 and Algorithm 6.

 If the agent has failed: the new host spawns an instance from the agent template, provides

the instance with the most recent backup data, and the agent resumes operation. Backup and

recovery are handled by Algorithm 7 and Algorithm 8, respectively.

73

All inter-agent communication is routed through the hosts. This is convenient (and required) for

four main reasons. First, no agent needs to be concerned about where another agent is located;

the message is just sent to the local host, which has the necessary information and connections to

ensure the message arrives at its destination. Secondly, and perhaps most importantly, it allows

proper routing of messages to keep the agent transfer process transparent to other agents. Agents

do not have to worry about the current state or closing/reconnecting a socket when another agent

is transferred, they simply send messages as normal, and if the agent does not crash it will

eventually be delivered. Thirdly, by routing all outside communication through the local host the

number of active network connections is greatly reduced, which reduces network traffic by

eliminating connection monitoring messages. Finally, it simplifies the task of monitoring inter-

agent communication traffic, which is used to generate the agent affinities when generating agent

allocation.

6.1.3 Distributed Database

The DDB is used to share various types of information throughout the network. In following the

tenets of efficiency and persistency, the DDB is implemented as a highly available service,

improving local performance of the database and preventing data loss when failures occur.

Highly available services can be implemented using various distributed algorithms, and for this

implementation a simple full distribution strategy was employed. The merits of full distribution

versus alternative distribution strategies are discussed below, but here it was convenient to have

each copy of the DDB directly managed by AgentHost. Every host maintains a copy of the DDB

class, and all write operations are coordinated via OAC transactions to ensure consistency. Local

agents are then guaranteed to have access to the most up-to-date information though the host, and

read operations can happen independently.

The implementation also supports a “watcher” interface, where agents can register to monitor

specific data objects or specific types of objects. These watchers are then notified when different

events occur, including the basic events add, remove, and write, as well as a number of events

specific to each object type.

Three metrics used to judge the quality of a distributed database are bandwidth, latency, and

fault-tolerance. Bandwidth is a limited resource in the distributed system, and amount of data

74

that must be transferred increases with the amount of replication done by the database. Latency,

used here to reference to the time between an agent requesting information from the database and

receiving a response, is a measure of quality of service and should be kept as low as possible.

Low latencies occur when the data is already locally available when the query is received. If the

data must be retrieved from another host latencies can increase dramatically. Fault-tolerance is a

second measure of quality of service and determines how many hosts can fail before data is lost

and a client experiences a disruption of service. Specifically, an ƒ-tolerant service can handle ƒ

host failures before a disruption occurs [61]. Maintaining low latency and high fault-tolerance

has a direct cost in terms of bandwidth, and so a balance must be achieved that fits the needs of

the application. The distribution strategies at opposite ends of this spectrum are full distribution,

where each site maintains an update-to-date copy of the entire DB, and on-demand distribution,

where updates are stored locally until specifically requested. The current implementation uses

full distribution, but most applications use a strategy somewhere between the two extremes. A

logical approach to selecting the amount of replication is to pick the number of failures, ƒ, your

system must be able to tolerate and use that as the lower baseline for replication.

6.1.4 Support Blocks

The five key support blocks are outlined in Table 6.1-1.

Table 6.1-1 HAA Implementation Support Blocks

Support Block Description

Agent Mirror The AgentMirror class simply maintains a real-time replica of the DDB, along with

the notification hooks that allow other classes to track specific events. AgentMirror

registers with an AgentHost, which first transmits an up-to-date copy of the DDB to

AgentMirror and then proceeds to forward each new DDB update as they occur.

Having a DDB replica is the basis for almost any real-time external monitoring of the

system, since it tracks agent states and distribution, avatar states, mapping and

localization, sensor readings, etc. Using AgentMirror, tools such as the GUI can be

built.

Graphical User Interface A Graphical User Interface (GUI) is often the most important monitoring tool. For

this implementation the GUI, shown in Fig. 6.1-1, has four main functions:

environment visualization, agent distribution, agent hierarchy, and DDB browser.

1. Environment visualization is the standard monitoring tool. It displays the

state of the map in real-time, and can overlay information such as particle filters,

avatar pose estimations, landmark estimations, avatar targets, planned paths, and

sensor readings, as well as debugging information such as mission boundaries and the

true obstacle positions.

75

2. Agent distribution visualization (not visible in Fig. 6.1-1) is the key to

monitoring performance of the distribution algorithm and the agent transfer and

recovery processes. It organizes the history of each agent by host and displays

changes in agent status, such as freezing, thawing, crashed, and recovering. It is the

real-time version of the agent distribution graphs presented in Chapter 7, where they

are explained in more detail.

3. The agent hierarchy is presented in the form of a collapsible tree with all

child agents collected under their parent agent. This makes it possible to monitor how

many agents are in the system and which types of agents are being requested by

whom. Selecting an agent presents a summary of the agent’s properties and statistics,

and could potentially provide an interface to change parameters and make performance

adjustments.

4. The DDB browser takes a similar form to the agent hierarchy, where DDB

objects are organized in a tree based on their parentage; for example, sensor and

particle filter objects are placed under their corresponding avatar object. Selecting an

object provides a summary of the object data, and again could potentially present an

editing interface.

Logger Each agent has a Logger class where it records important events, statistics, and

debugging messages. The Logger displays these messages in the console as they

appear, but more importantly saves them to a file that can be reviewed offline. If

something questionable occurs during a run, the logs are the first place to check.

However, despite extensive logging it is often difficult to determine what went wrong,

and even harder to determine why. For these cases more complete tracking is

required, which led to the AgentPlayback system.

AgentPlayback AgentPlayback was crucial to the debugging process, and made the challenging task of

developing a complex networked system relatively tractable. During a run of the

hardware the agent playback system records every external input to each agent, i.e.,

communication and results from external function calls. Using this information it is

possible to later replay an agent, line by line of code, exactly as it occurred during the

live run. Combined with the debugging software in Microsoft Visual Studio© it is

possible to analyse the agent and even test small code changes without having to re-

run the hardware. This strategy worked particularly well due to the modular nature of

the architecture, which naturally broke the system in to manageable chunks.

Remote Start RemoteStart was developed to facilitate large scale experimentation. External to the

control system, RemoteStart is a tool that runs on every computer to allow central

control over launching the host software, scheduling missions, and collecting log data

after each run. It also enabled distributing code updates whenever changes were made.

Though a relatively simple tool, it was essential for efficient management of a system

with 10+ computers and 100s of experimental trials.

76

6.2 Experimental Scenarios and Agent Design

In order to confirm the functionality of the HAA implementation and evaluate various aspects of

performance for the control system, a number of experimental scenarios and a control system

capable of those tasks was required. The primary purpose of these experiments is to demonstrate

and evaluate the features of HAA rather than show a capacity for any particular task, and so the

chosen scenarios are those typical for mobile robotics: mapping and exploration, search and

deploy, and foraging. Completing these tasks allows for significant options in control system

strategy, but in following the Control ad libitum philosophy the guiding principles for the control

system were adaptability, modularity, (support for) diversity, and persistency. To this end a set of

18 agents was designed and implemented. This section presents the details of the experimental

scenarios that are used in Chapter 7, as well as the specifications for the simulated avatar

hardware. An overview of the agents and a map of their interactions and dependencies is then

provided, followed by an analysis of the control system structure using the relevant metrics from

Chapter 3.

6.2.1 Experimental Scenarios

Three experimental scenarios where used: Mapping and Exploration, Congregate, and Forage.

The scenarios, described in Table 6.2-1, are abstractions of real-world tasks that might be

Fig. 6.1-1 Monitoring GUI. Displays maps, particle filters, avatars, and landmarks
(left), as well as current agent and DDB information (right)

77

completed by robot teams, and were chosen to present some variation in goals and complexity for

the experiments.

The experiments took place in two arenas that are occupied by an assortment of walls and

obstacles. The small arena is presented in Fig. 6.2-1, showing the locations of the five obstacles

and 34 artificial landmarks along with the location of the optional congregation point used in the

Table 6.2-1 Experimental Scenarios

Scenario 1: Mapping and Exploration

The most basic scenario, Mapping and Exploration requires the avatars to start in an unknown environment

and explore the arena using all available sensors until the exploration threshold is reached. The threshold

requires that a specified percentage of the reachable cells have high enough confidence values, specifically

greater than 0.73 or less than 0.27. The initial start positions of the avatars are known, but subsequent

localization occurs primarily by identifying landmarks and estimating their positions using a SLAM

algorithm.

Scenario 2: Congregate

The Congregate scenario begins in the same way as Mapping and Exploration and proceeds until a special

“Congregation Point” landmark is found. Once the congregation point is located each avatar is assigned a

position at equally spaced intervals surrounding the congregation point. The scenario ends when all avatars

reach their assigned positions.

Scenario 3: Forage

The Forage scenario is the most complex scenario used in these experiments. It begins in the same way as

Mapping and Exploration, however a number of collectable landmarks are distributed throughout the arena.

When these collectables are located an avatar must travel to the collectable, pick it up, and then deposit it in

one of the specified collection regions. The scenario ends once the exploration threshold has been reached

and all identified collectables have been deposited.

Legend:
Arena Boundary

Obstacle

Landmark

Congregation Point

(Congregate)

Fig. 6.2-1 Small Arena

78

Congregate scenario. The arena is 3.4 by 7.2 meters with an explorable area of 24.2 m
2
. The

large arena is shown in Fig. 6.2-2, and contains 18 obstacles and 139 landmarks. The Forage

scenario has three optional collection regions and 20 collectables. The large arena is 18 by 18

meters and has an explorable area of 216 m
2
.

Four different avatar types were used in these experiments. The role of each avatar type is

outlined in Table 6.2-2, while Table 6.2-3 reports more detailed specifications. The

specifications of the three different sensor types are provided in Table 6.2-4.
]]]]

6.2.2 Agent Design

In order to control a team of avatars in completing the above scenarios a set of 18 agents was

developed. To promote adaptability and modularity the required tasks and functions were broken

down into components with as little interdependence as possible and virtually every component

was implemented as a separate agent.

Legend:
Arena Boundary

Obstacle

Landmark

Collectable

(Forage)

Collection Region

(Forage)

Fig. 6.2-2 Large Arena

79

Given the basic requirements of the control system and the three scenarios above, the

functionality breakdown was as follows:

 Overall mission management

 Overall avatar resource management

 Avatar control

o Path planning

 SLAM control

o Sensor processing

 Exploration control

 Congregation control

 Forage control

In general each area of functionality requires little to no knowledge of the inner workings of the

other components; e.g., exploration requires map data but it does not matter how it was generated,

Table 6.2-2 Avatar Roles

Seeker

The Seeker avatar is small and agile but possesses limited sensing capabilities. They fill the basic role of

explorers and can quickly find landmarks and collectables.

Enhanced Seeker

Fills the same role as the basic Seeker but is equipped with more accurate odometry and a camera with better

range and FOV. The Enhanced Seeker is used in the large arena due to the large distances travelled.

Sweeper

Sweepers are slow moving but are equipped with a large sensor array that allows them to quickly generate map

data for their surroundings. Their primary function is mapping and exploration, but they also have the ability to

collect and deposit collectables.

Carrier

The Carrier’s function is to retrieve collectables. It is faster than the Sweeper but lacks the array of sensors.

Table 6.2-3 Avatar Specifications

Avatar
Speed

[m/s]

Approx.

Linear Drift

After 10 m

[m]

Approx.

Angular Drift

After 10

rotations

[rad]

Carrying

Capacity

[collectables]

Sensors

Seeker 2 1.22 0.08 0 Basic Camera

Enhanced Seeker 2 0.25 0.016 0 Enhanced Camera

Sweeper 1 0.12 0.016 1
Enhanced Camera,

5 Sonar

Carrier 1.5 0.12 0.016 1 Enhanced Camera

Table 6.2-4 Sensor Specifications

Sensor Period [s]
Field of View

[rad]

Effective Range

[m]

Artificial

Noise* [σ]

Approx. Average

Error [m]

Basic Camera Manual 0.873 3.0 0.09 ±0.14

Enhanced Camera Manual 1.685 4.0 0.09 ±0.18

Sonar 1.0 0.349 2.0 0.03 ±0.03

*In most cases artificial noise is added to each sensor reading as a percentage of the reading distance following a

normal distribution

80

and avatars require motion commands to travel from point to point but the path planning

component could be interchangeable.

To meet these needs the agent classes shown in Fig. 6.2-3 were implemented. Since parent

classes were used when groups of agents shared functionality, 22 classes are shown in total

though ultimately only 18 distinct agent types are used. Additionally, the functionality of a

number of agents were rolled into the ExecutiveMission, specifically ExecutiveAvatar and

SupervisorCongregate. This was done as a simplification because these agents required minimal

additional functionality, though strictly speaking for proper modularity and expandability they

should be separate. An overview of each agent is provided in Appendix III, briefly describing

their role and implementation, but more importantly outlining their interdependencies and

recovery strategies.

Based on the agent interactions an agent dependency graph was constructed, Fig. 6.2-4. The

graph allows asymmetric connections and makes a distinction between weak and strong

Fig. 6.2-3 Agent Class Tree

Fig. 6.2-4 Agent Dependencies

AgentPathPlanner

SupervisorBlindTraveller

AgentSensor*Avatar*ExecutiveAvatar

ExecutiveMission

SupervisorCongregate SupervisorExplore SupervisorForage SupervisorSLAM

Strong Connection

Weak Connection

81

connections. A connection is considered strong if an agent requires in-depth knowledge of

another agent’s behaviour, particularly if they must take action during their own recovery or the

recovery of the other agent. A weak connection indicates that an agent calls upon another agent

through queries or task requests but otherwise has no extra knowledge of the agent.

6.2.2.1 Control System Structural Analysis

Two of the preference indexes introduced in Appendix I are used here to study the structure of the

control system. First, the modularity of the agents is measured using the NZF and STDnorm

indexes, and then a failure model of the software system is constructed to identify key points of

risk.

To measure modularity the first step is to construct the DSM. Here a functionality level approach

is taken, and so the elements of the DSM are the agents. The connections of the DSM are

provided by the dependencies graph in Fig. 6.2-4. Strong connections are given a value of 1, and

weak connections a value of 0.5. The DSM is shown in Fig. 6.2-5. With the DSM (I-6) and

(I-10) can be used to calculate the NZF and STDnorm, respectively. An NZF of 0.17 shows that

the DSM is very sparsely connected, indicating a high degree of modularity. The STDnorm is

0.57, which suggests the DSM has a structure between that of a bus and a chain, but leaning

slightly closer to a chain.

To further study the robustness of the structure a failure model can be developed. This is done by

identifying points of critical (non-recoverable) failure, and constructing a model of the

dependencies that lead to those points. This method was applied to analyse the robustness of the

agent structure for a hypothetical foraging scenario, with the aim of identifying key risk factors

that may warrant additional consideration. In addition to the standard compliment of agents, this

model assumes six Avatar* and 10 SupervisorForage agents are active. A pessimistic estimate of

the agent failure rate is that for every minute of operation each agent has a 0.2% chance of failing

due to an unhandled software error. This provides the foundation to build a simple failure model,

though the failure model could be made more accurate if more detailed failure curves were

available.

82

The complete failure model is shown in Fig. 6.2-6, while a sample of the individual agent failure

continuous distribution function is shown in Fig. 6.2-7. This model identifies three paths to

critical failure:

1. Any key agent suffers critical failure. ExecutiveMission, ExecutiveAvatar,

SupervisorExplore, or SupervisorSLAM.

2. More than two SupervisorForage agents suffer critical failure, meaning that less than 80%

of the collectables are gathered.

3. All avatars (via Avatar* or AgethPathPlanner) suffer critical failure.

It appears that the avatar failure path is low risk because of the redundancy, while the

SupervisorForage failure path is quite significant even though up to two agents are allowed to

fail. In order to identify problem areas and efficiently allocate development resources, a simple

test can be done by suppressing the failure of various agents. Fig. 6.2-8 shows the critical failure

continuous distributions for four scenarios: current behaviour, no avatar failure, no foraging

failure, and no key agent failure. Suppressing avatar failure has no distinguishable impact on the

curve, and so development resources are likely better spent in other areas. No foraging failure

has less of an impact than suppressing key agent failure, but only requires focusing resources on a

single agent. Alternatively, focusing on the key agents could yield significant gains.

1

2

3

4

5

6

7

8

9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1 AgentPathPlanner � ● ● ● ● ○

2 AgentSensorCooccupancy

3 AgentSensorFloorFinder

4 AgentSensorLandmark

5 AgentSensorSonar

6 AvatarER1 ● ●

7 AvatarPioneer ● ●

8 AvatarSimulation ● ●

9 AvatarSurveyor ● ●

10 AvatarX80H ● ●

11 ExecutiveAvatar

12 ExecutiveMission ● ● ● ● ●

13 SupervisorBlindTraveller ● ● ● ● ● ○

14 SupervisorCongregate ● ● ● ● ● ○

15 SupervisorExplore ● ● ● ● ● ○

16 SupervisorForage ● ● ● ● ● ○

17 SupervisorSLAM ● ● ● ● ○

� Strong Connection, ○ Weak Connection

Fig. 6.2-5 Control System DSM

83

Fig. 6.2-6 Foraging Scenario Failure Model

Fig. 6.2-7 Agent Failure Curve Fig. 6.2-8 Critical Failure Comparisons

AgentPathPlanner1Avatar1

ExecutiveAvatarExecutiveMission SupervisorExplore

SupervisorForage1

SupervisorSLAM

2 3 4 5 6

2 3 4 5 6 7 8 9 10

Critical Failure

>=1

>=6

>=3

>=1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0

0.5

1

0 1200

P
ro

b
a

b
il

it
y

 o
f

F
a

il
u

re

Time [min]

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600P
ro

b
a

b
il

it
y

 o
f

F
a

il
u

re

Time [min]

Normal No Avatar Failure

No Foraging Failure No Key Failure

84

Chapter 7
Hardware-in-the-Loop Experimentation and Results

Hardware-in-the-Loop (HIL) simulation is a valuable experimentation and design tool [94]. For

this thesis, where the control system is the primary focus, the setup consists of the complete

control system operating normally, however, instead of interfacing with a team of physical

avatars the control system communicates with simulated avatars. This is accomplished by simply

replacing the standard Avatar agents, who communicate with the avatar hardware, with agents

that communicate with a computer simulation, while virtually every other agent remains

unchanged. The simulation models avatars, sonar sensors, “visual sensors” that simulate

detecting visual landmarks using a camera, and a greatly simplified collection system to

approximate picking up and dropping objects. An appropriate noise signal was added to most

inputs, including the avatar odometry model, to simulate the behaviour of the real hardware, the

full details of which were described in Chapter 6. The HIL simulation has three major benefits

for this research. The first obvious benefit over full simulation is that the real control system is

used and its true behaviour can be observed. Secondly, experimentation avoids the complications

of physical robot hardware, such as repositioning avatars before each run and recharging

batteries, which makes running and repeating numerous experiments much more efficient.

Thirdly, since the avatars are simulated the number and capabilities of the avatars are flexible,

and thus the complexity of the experiments can be much higher than when working with physical

hardware.

Building from the experimental scenarios described in Chapter 6, this chapter details a series of

10 experiments. The experiments are ordered by increasing complexity, and each one is designed

to explore a different aspect of the control system. Each experiment was repeated 10 times,

however, in most cases it is more convenient to discuss the results from a single run. And so

unless otherwise noted, figures present only the results from a representative run of each

experiment and the average results over multiple runs are left for the experiment summary tables.

The summary tables also specifically report the representative run results in order to prove that

their performance is truly representative of the average run. The remainder of this section details

the experimental setup, while each subsequent section presents the results of the 10 experiments.

The experiments are divided into three sections: 1) Architecture Functionality, where the core

85

features of the HAA architecture are demonstrated; 2) Algorithm Performance, where the

distributed algorithms are tested with various system sizes and the JC-SLAM algorithm is

evaluated against traditional SLAM approaches; and 3) Robustness, where robustness against

both software and hardware failure is examined. A selection of these results have been submitted

for publication in [95].

The experimental setup consisted of 10 computers networked using a 100 Mbps router. The

computers had dual-core 2.0 GHz processors and 2 GB RAM, and were running Windows Server

2003. The average network delay under low load conditions was <1 ms. One of the computers

was dedicated to running the simulation of the avatar hardware, while the others were used to

supply the number of hosts dictated by each experiment. Each experiment began from a blank

slate, and hosts had to start, locate other hosts to form the host group, and then launch the

required agents. Once the assigned tasks were finished the hosts would gracefully shut down all

agents and exit, at which point the experiment was considered complete. Because significant

effort was made to ensure each agent was bug-free and hardware crashes are extremely rare,

agent and host crashes had to be simulated. This was done by specifying a minimum and

maximum operating time for each agent and host, and at a random time within that window the

agent would become unresponsive for 30 seconds and then shut down. Though the maximum

number of hosts in any experiment was 10, no experiment required more than eight hosts

simultaneously, and so when additional hosts joined they were started on hosts that had already

“crashed,” thus ensuring that hosts always had exclusive access to the computer resources. An

additional computer was used to run the GUI and monitor the experiments. During each

experiment each agent logged their operations, and hosts periodically dumped data and statistics

for later analysis.

7.1 Architecture Functionality

The following experiments were conducted to demonstrate the basic functionality of the HAA

architecture:

1. Experiment AF-1 – Exploration and Mapping: To demonstrate the basic functionality of

the system: the dynamic control system, dynamic team formation, and the dynamic host network.

86

2. Experiment AF-2 – Congregate: To demonstrate basic avatar allocation with multiple

task supervisors in the Congregate scenario.

3. Experiment AF-3 – Forage: To demonstrate advanced avatar allocation and heterogeneity

in the Forage scenario.

7.1.1 Experiment AF-1 – Mapping and Exploration

The purpose of Experiment AF-1 is to demonstrate the basic functionality of the control system.

This primarily focuses on four features: 1) the ability to dynamically form the host group, 2) the

ability to dynamically form the control system by spawning agents as they are required, 3) the

ability to balance processor resources through agent distribution, and 4) the ability to manage

avatar resources as they join and leave the system. This all occurs during normal operation of the

control system, and agent transfers and host, avatar, or agent retirements are handled gracefully

with no loss of information.

This experiment was conducted in the small arena. There were initially four hosts, every odd

minute one host gracefully retires and every even minute a host joins. The mission started with

three seekers, after 2 minutes one seeker retires and after 2.5 minutes two additional seekers join.

The mission completion condition was that 95% of the reachable cells were explored, where

“explored” is defined as a cell with a value greater than 0.73 or less than 0.27. Fig. 7.1-1 shows

the mapping result, where each of the five curved lines represents the path of an avatar, while

Table 7.1-1 reports the experiment summary. The average completion time for the mission was

3.8 minutes, and the mapping accuracy averaged 91% with 0.793% STD. Map coverage and map

accuracy are calculated as percentages relative to an “ideal” map generated with zero localization

error.

 ∑ | 0.5|∑ | 0.5| (7.1-1)

 1 ∑ | |#
 (7.1-2)

where is the value of a cell, is the value of the corresponding cell from the ideal map, and

the sum is taken over all cells within the mission region.

87

A visualization of the agent allocation process is presented in Fig. 7.1-2. This visualization is

crucial in understanding the behind the scenes activity of the control system, since the actions of

the avatars and visible mapping/exploration activities paint only a small part of the picture. In

order to facilitate understanding of the agent allocation figures, the format is explained in some

detail here, and Fig. 7.1-3 provides a step-by-step transcript of the events.

Fig. 7.1-1 Experiment AF-1 Mapping Result. True obstacle positions are indicated
with thick lines, and avatar paths are shown with thin curved lines.

Table 7.1-1 Experiment AF-1 Results Summary

Title Representative Run Mean RMS STD

Mission Duration [min] 3.802 3.871 3.884 0.324816

Map Coverage [%]* 90.38 91.07 91.10 2.247400

Map Accuracy [%]* 90.64 91.19 91.19 0.793000

Localization Positional Err [m] 0.07414 0.05737 0.05947 0.015661

Localization Rotational Err [rad] 0.05221 0.04665 0.05290 0.024944

Landmark Err [m] 0.07977 0.07606 0.07646 0.007790

Landmark Covariance [m] 0.40481 0.40241 0.41953 0.118617

Average # Hosts 4.50 4.52 4.52 0.031171

Average # Agents 12.83 13.00 13.01 0.396887

Average CPU Usage [%] 29.64 28.76 28.82 1.771400

DDB Size [MB] 9.179 9.475 9.520 0.919952

* Relative to a fully explored map generated with no localization error

88

Fig. 7.1-2 is organized vertically by host and the horizontal axis represents time, starting from the

moment the first host was launched and ending when the mission is complete. Many hosts are

active for the entirety of the mission, however some hosts can join late and/or end early, e.g., H4

and H5 in this experiment. Each host lists every agent it has ever instantiated, and the agents are

labeled based on their parentage, for example, A1.1 AgentPathPlanner is a child of A1

AvatarSimulation. Active agents are shown in green on their current host. Transition states such

as spawning, freezing/thawing, or crashed, are indicated in their corresponding colour. Grey

areas indicate that the agent has not been requested yet or is no longer needed, and is therefore

out of scope. Following along with Fig. 7.1-3, Fig. 7.1-2 can be understood as follows:

 At 00:01 the initial host group forms.

 At 00:10 the mission starts and the first agents are requested based on the mission

definition, specifically ExecutiveMission and three AvatarSimulations.

Fig. 7.1-2 Experiment AF-1 Agent Allocation

89

 These agents request additional agents (e.g., SupervisorExplore, AgentPathPlanner,

AgentSensorLandmark) as required and by 00:21 the control system is fully operational.

 Around 00:51 an agent allocation session occurs and A1, A2.1, and A6.2 change hosts in

order to balance processor load.

 At 01:00 H4 freezes all its agents and gracefully leaves the host group.

 At 02:01 H5 joins the group and takes responsibility for several agents.

 At 02:13 one avatar leaves, and the corresponding agents, A1 and A1.1, are shut down.

 At 02:40 two additional avatars become available and H1 requests two more

AvatarSimulation agents.

00:01 H1 joined

00:01 H2 joined

00:01 HX joined

00:01 H3 joined

00:01 H4 joined

00:10 Mission started

00:10 A7 (ExecutiveSimulation) requested by H1

00:10 A6 (ExecutiveMission) requested by H1

00:10 A2 (AvatarSimulation) requested by H1

00:10 A3 (AvatarSimulation) requested by H1

00:10 A1 (AvatarSimulation) requested by H1

00:11 A3 (AvatarSimulation) spawned by H1

00:12 A6 (ExecutiveMission) spawned by H3

00:12 A7 (ExecutiveSimulation) spawned by HX

00:12 A1 (AvatarSimulation) spawned by H4

00:12 A2 (AvatarSimulation) spawned by H2

00:12 A6.2 (SupervisorSLAM) requested by A6 (ExecutiveMission)

00:12 A6.1 (SupervisorExplore) requested by A6 (ExecutiveMission)

00:13 A6.2 (SupervisorSLAM) spawned by H3

00:13 A6.1 (SupervisorExplore) spawned by H1

00:14 A2.1 (AgentPathPlanner) requested by A2 (AvatarSimulation)

00:14 A1.1 (AgentPathPlanner) requested by A1 (AvatarSimulation)

00:15 A3.1 (AgentPathPlanner) requested by A3 (AvatarSimulation)

00:16 A3.1 (AgentPathPlanner) spawned by H3

00:16 A2.1 (AgentPathPlanner) spawned by H4

00:16 A1.1 (AgentPathPlanner) spawned by H2

00:18 A6.2.1 (AgentSensorLandmark) requested by A6.2

(SupervisorSLAM)

00:18 A6.2.2 (AgentSensorCooccupancy) requested by A6.2

(SupervisorSLAM)

00:19 A6.2.2 (AgentSensorCooccupancy) spawned by H4

00:19 A6.2.1 (AgentSensorLandmark) spawned by H2

00:20 A6.2.3 (AgentSensorFloorFinder) requested by A6.2

(SupervisorSLAM)

00:21 A6.2.3 (AgentSensorFloorFinder) spawned by H1

00:51 A1 (AvatarSimulation) freezing on H4

00:51 A6.2 (SupervisorSLAM) freezing on H3

00:51 A2.1 (AgentPathPlanner) freezing on H4

00:53 A1 (AvatarSimulation) thawed by H3

00:53 A6.2 (SupervisorSLAM) thawed by H4

00:53 A2.1 (AgentPathPlanner) thawed by H3

01:00 A6.2 (SupervisorSLAM) freezing on H4

01:00 A6.2.2 (AgentSensorCooccupancy) freezing on H4

01:01 H4 removed

01:01 A6.2.3 (AgentSensorFloorFinder) freezing on H1

01:02 A6.2.2 (AgentSensorCooccupancy) thawed by H1

01:02 A6.2 (SupervisorSLAM) thawed by H1

01:02 A6.2.3 (AgentSensorFloorFinder) thawed by H3

02:01 H5 joined

02:03 A6.1 (SupervisorExplore) freezing on H1

02:03 A2 (AvatarSimulation) freezing on H2

02:03 A3.1 (AgentPathPlanner) freezing on H3

02:03 A2.1 (AgentPathPlanner) freezing on H3

02:03 A3 (AvatarSimulation) freezing on H1

02:05 A3.1 (AgentPathPlanner) thawed by H5

02:05 A2 (AvatarSimulation) thawed by H5

02:05 A3 (AvatarSimulation) thawed by H5

02:05 A2.1 (AgentPathPlanner) thawed by H5

02:05 A6.1 (SupervisorExplore) thawed by H5

02:13 A1.1 (AgentPathPlanner) removed

02:13 A1 (AvatarSimulation) removed

02:40 A5 (AvatarSimulation) requested by H1

02:40 A4 (AvatarSimulation) requested by H1

02:41 A4 (AvatarSimulation) spawned by H5

02:41 A5 (AvatarSimulation) spawned by H5

02:42 A4.1 (AgentPathPlanner) requested by A4 (AvatarSimulation)

02:43 A5.1 (AgentPathPlanner) requested by A5 (AvatarSimulation)

02:44 A4.1 (AgentPathPlanner) spawned by H5

02:44 A5.1 (AgentPathPlanner) spawned by H2

03:00 A4.1 (AgentPathPlanner) freezing on H5

03:00 A4 (AvatarSimulation) freezing on H5

03:00 A2 (AvatarSimulation) freezing on H5

03:00 A6.1 (SupervisorExplore) freezing on H5

03:00 A3.1 (AgentPathPlanner) freezing on H5

03:00 A5 (AvatarSimulation) freezing on H5

03:00 A3 (AvatarSimulation) freezing on H5

03:00 A2.1 (AgentPathPlanner) freezing on H5

03:02 H5 removed

03:04 A4.1 (AgentPathPlanner) thawed by H3

03:04 A4 (AvatarSimulation) thawed by H2

03:04 A2 (AvatarSimulation) thawed by H3

03:04 A5 (AvatarSimulation) thawed by H3

03:04 A3 (AvatarSimulation) thawed by H3

03:04 A3.1 (AgentPathPlanner) thawed by H2

03:04 A2.1 (AgentPathPlanner) thawed by H2

03:04 A6.1 (SupervisorExplore) thawed by H2

03:58 Mission finished

Fig. 7.1-3 Experiment AF-1 Mission Transcript

90

 Operation continues with agents occasionally being transferred to balance load, H5 leaves

the group at 03:02.

 At 03:58 the mission criteria are met and the mission is complete.

This experiment demonstrates all the basic features of the control system, including adding and

removing hosts, adding and removing avatars, dynamically spawning agents as required by the

mission, and transferring agents between hosts. Several other points of interest are presented in

the following graphs. Fig. 7.1-4 shows how the number of hosts and agents developed over time;

the number of agents dips at 140 s and jumps at 170 s corresponding to the removal and addition

of avatars at those times. Fig. 7.1-5 shows the development of map coverage and map accuracy.

A totally blank map with no information has a nominal accuracy of 0.5 since every cell has a

value of “unknown.” As information is added, corresponding to increasing map coverage, the

accuracy changes, in this case improving because the majority of the information added to the

map is correct.

Both positional and rotational localization error are shown in Fig. 7.1-6. The values fluctuate as

the avatar odometry drifts and sensor readings are processed to compensate, but remain relatively

stable over time at 0.06 m and 0.04 rad, respectively. Given the relatively short duration of the

mission the increase in positional error near the end of the mission might indicate that error had

not settled, however, the later missions with much longer duration also demonstrate eventual

stability of the localization.

Fig. 7.1-7 shows the growth of the DDB over time. The figure was split into two parts because

the size of the particle filters dominates the DDB and would make the other elements impossible

Fig. 7.1-4 Experiment AF-1 Hosts and
Agents

Fig. 7.1-5 Experiment AF-1 Map
Coverage and Accuracy

0

5

10

15

20

0 100 200

#

Time [s]

Hosts # Agents

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200

%

Time [s]
Map Coverage Map Accuracy

91

to distinguish. The particle filter size grows linearly as more predictions are added to the DDB,

and does not stabilize because the mission ends before the DDB starts discarding old predictions.

The size of the POG stabilizes quickly once the first map updates are processed. The size of the

agents is also relatively stable. The size of the sensor readings naturally grows as more readings

are added, and the remaining items take a negligible amount of space.

A breakdown of the system wide processor usage is shown in Fig. 7.1-8. This figure simply adds

the usage of all hosts and is not normalized, and so for example: a group for five hosts has a

maximum usage of 5 and a usage of 1 would correspond to 20% average usage. However, the

primary interest of this figure is to understand which agents require the most processing. The

activities of the hosts themselves, including managing the DDB, conducting agent allocation, and

forwarding messages, account for a significant 30-40% of the processing. The various sensor

processing agents are also large consumers, accounting for roughly 50% of the processing at any

Fig. 7.1-6 Experiment AF-1 Localization Error

(a) (b)

Fig. 7.1-7 Experiment AF-1 DDB Distribution

0.00

0.05

0.10

0.15

0 50 100 150 200 250

P
o

s
E

rr
 [

m
],

 R
o

t
E

rr
 [

ra
d

]

Time [s]

Localization Pos Err Localization Rot Err

0

2

4

6

8

10

1
0

3
0

5
0

7
0

9
0

1
1

0

1
3

0

1
5

0

1
7

0

1
9

0

2
1

0

2
3

0

S
iz

e
[M

B
]

Time [s]

Particle Filters

0.00

0.10

0.20

0.30

1
0

3
0

5
0

7
0

9
0

1
1

0

1
3

0

1
5

0

1
7

0

1
9

0

2
1

0

2
3

0

S
iz

e
[M

B
]

Time [s]
POGs Agents Sensors

Landmarks Avatars Regions

92

time. Path planners are the only other notable agent at 10%, while all the remaining agents

combined typically require less than 10%. Fig. 7.1-9 demonstrates how a relatively even

processor load between hosts is maintained, despite two major factors that limit the amount of

balancing which can occur. Specifically, i) since the usage of each agent is set and there are a

finite number of agents, achieving perfect balance is impossible, and ii) load balancing is only

one of the optimization criteria of the agent allocation algorithm, since network traffic and a

transfer penalty are also taken into account. Fig. 7.1-9(a) shows the usage of each host over time,

while Fig. 7.1-9(b) shows the more pertinent STD in CPU usage between hosts, averaging 9%

deviation.

Fig. 7.1-8 Experiment AF-1 Processor Usage Breakdown

(a) Total CPU Usage by Host (b) Total CPU STD

Fig. 7.1-9 Experiment AF-1 CPU Balancing

0.0

0.5

1.0

1.5

2.0

2.5

3.0

10 30 50 70 90 110 130 150 170 190 210 230

U
sa

g
e
 [

%
 *

 #
 H

o
st

s]

Time [s]

Host Sensor Path Planner Misc

0.00

0.20

0.40

0.60

0.80

1.00

0 100 200

U
sa

g
e

[%
]

Time [s]

H1 H2 H3

H4 H5

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 100 200

U
sa

g
e

S
T

D
 [

%
]

Time [s]

CPU STD

93

7.1.2 Experiment AF-2 – Congregate

Experiment AF-2 is a straightforward demonstration of allocating avatar resources between

multiple task supervisor agents. The experiment takes place in the small arena with three seekers

and four hosts. A special landmark was placed in the arena, and when the landmark is found the

avatars move to positions surrounding the landmark at equally spaced intervals. The mission is

complete once all avatars reach their designated positions. Avatar allocation works on a task

priority bidding system: when a supervisor requires avatar resources they place a bid on the

desired avatar, and the supervisor with the highest bid gains control of the avatar. In this case

SupervisorExplore by default places a low priority bid on all avatars, but once the congregation

point is found SupervisorCongregate places high priority bids and gains control of each avatar

(due to the simplicity of the task, the functionality of SupervisorCongregate was implemented

directly within ExecutiveMission).

The results are reported in Table 7.1-2. Map coverage drops to 59% since exploration is

abandoned as soon as the congregation point is located. This is readily apparent in Fig. 7.1-10,

which shows the mapping result from one run as well as the final positions of the avatars around

the congregation point. Map accuracy is also lower at 79%, due to the incompleteness of the

map, not due to any increased inaccuracy of the portions that were generated. This is confirmed

Table 7.1-2 Experiment AF-2 Results Summary

Title Representative Run Mean RMS STD

Mission Duration [min] 2.974 3.102 3.201 0.788482

Map Coverage [%]* 57.32 58.96 59.18 4.993000

Map Accuracy [%]* 78.34 78.87 78.89 1.775000

Localization Positional Err [m] 0.02808 0.07489 0.07899 0.025108

Localization Rotational Err [rad] 0.01011 0.03719 0.04106 0.017404

Landmark Err [m] 0.04999 0.06436 0.06577 0.013556

Landmark Covariance [m] 0.50794 0.65200 0.67516 0.175332

Average # Hosts 5.00 5.00 5.00 0.000000

Average # Agents 12.32 12.41 12.41 0.355753

Average CPU Usage [%] 16.25 16.28 16.41 2.085000

DDB Size [MB] 5.973 5.453 5.532 0.928745

* Relative to a fully explored map generated with no localization error

94

 Legend:

Congregation Point

Target Location

Fig. 7.1-10 Experiment AF-2 Mapping Result

Fig. 7.1-11 Experiment AF-2 Map
Coverage and Accuracy

Fig. 7.1-12 Experiment AF-2 Localization
Error

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200

%

Time [s]

Map Coverage

Map Accuracy

0.00

0.02

0.04

0.06

0.08

0.10

0 50 100 150 200

P
o

s
E

rr
 [

m
],

 R
o

t
E

rr
 [

ra
d

]

Time [s]

Localization Pos Err

Localization Rot Err

by noting that the localization error is still within the expected range, with averages of 0.075 m

and 0.037 rad. The change over time of these values is shown in Fig. 7.1-11 and Fig. 7.1-12.

7.1.3 Experiment AF-3 – Forage

In the foraging scenario a number of collectables are placed at unknown locations in the arena,

and the goal is to locate all the collectables and return them to predefined collection regions.

When a collectable is located a SupervisorForage agent is spawned, who is charged with

controlling an avatar to move to the collectable, pick it up, move to the nearest collection region,

95

and drop off the collectable. Once the collectable has been dropped off the SupervisorForage

agent is finished and retires.

This scenario has dynamic integration of heterogeneous avatars and both active and passive

cooperation. However, instead of just two simultaneous tasks there are many simultaneous tasks

competing for avatar resources. This advanced avatar allocation uses the same bidding process,

but allows SupervisorForage agents to adjust their priority based on the distance between the

avatar and the collectable.

The mission takes place in the large arena with 20 collectables distributed throughout the arena

and three collection regions. The host group always consists of eight hosts, and four sweeper and

two carrier avatars are used. The mission completion criteria are that 95% of the reachable cells

are explored, and all identified collectables have been deposited.

The mapping result from one run of the experiment is shown in Fig. 7.1-13, and the avatar paths

 Legend:

Collectible

Collection Region

Fig. 7.1-13 Experiment AF-3 Mapping Result

96

exhibit much more backtracking than in the Mapping and Exploration scenario as they travel

between collectables and the collection regions. The results summary is provided in Table 7.1-3.

The average mission duration was 28.6 minutes, and the map accuracy of 91% and localization

error of 0.105 m/0.024 rad are within expectations. In all cases every collectable was found and

deposited. Fig. 7.1-14 shows the typical processor usage breakdown, which is expected since

despite the large number of SupervisorForage agents they require very little processing power.

The activity in the agent allocation graph in Fig. 7.1-15 becomes interesting, particularly for the

SupervisorForage agents, A7.2-A7.21. There are frequent agent spawns and semi-regular

retirements, with the typical SupervisorForage taking between 3 to 10 minutes to complete its

Table 7.1-3 Experiment AF-3 Results Summary

Title Representative Run Mean RMS STD

Mission Duration [min] 28.963 28.599 28.683 2.203573

Map Coverage [%]* 98.32 97.83 97.83 0.755300

Map Accuracy [%]* 91.52 91.15 91.16 1.291200

Localization Positional Err [m] 0.08069 0.10553 0.11601 0.048174

Localization Rotational Err [rad] 0.01906 0.02403 0.02609 0.010175

Landmark Err [m] 0.09601 0.09915 0.10426 0.032232

Landmark Covariance [m] 0.05503 0.05333 0.05337 0.002213

Average # Hosts 9.00 9.00 9.00 0.000000

Average # Agents 29.95 29.48 29.49 0.822289

Average CPU Usage [%] 55.52 53.84 53.87 1.586500

DDB Size [MB] 26.122 25.384 25.420 1.353034

Cargo Collected 20.00 20.00 20.00 0.000000

* Relative to a fully explored map generated with no localization error

Fig. 7.1-14 Experiment AF-3 Processor Usage Breakdown

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1
0

1
0

0

1
9

0

2
8

0

3
7

0

4
6

0

5
5

0

6
4

0

7
3

0

8
2

0

9
1

0

1
0

0
0

1
0

9
0

1
1

8
0

1
2

7
0

1
3

6
0

1
4

5
0

1
5

4
0

1
6

3
0

U
sa

g
e
 [

%
 *

 #
 H

o
st

s]

Time [s]

Host Sensor Path Planner Misc

97

task. The variation in completion time is a result of three primary factors: i) how long it takes the

Supervisor to win control of an avatar, ii) how well explored the map is between the avatar and

the collectable, and iii) how much traffic there is to complicate the avatar’s path, particularly

around busy collection regions.

Fig. 7.1-15 Experiment AF-3 Agent Allocation

98

7.2 Algorithm Performance

This set of experiments evaluates the relevant metrics for the specific algorithms used for this

HAA implementation:

1. Experiment AP-1 – Ordered Atomic Commit: To examine the performance of the

algorithm with various numbers of participants.

2. Experiment AP-2 – Host Membership: To measure the time required for Join, Leave, and

Remove actions.

3. Experiment AP-3 – Agent Allocation: To study the two key metrics of the algorithm:

allocation time, and number of messages sent.

4. Experiment AP-4 – Agent Transfer and Recovery: To measure the time required for

Spawn, Freeze/Transfer, and Recover actions.

5. Experiment AP-5 – JC-SLAM: To compare the performance of JC-SLAM versus the two

traditional SLAM approaches: Delay and Discard.

7.2.1 Experiment AP-1 – Ordered Atomic Commit

The Ordered Atomic Commit algorithm is used any time the system must reach consensus and

maintain consistency. Virtually all the later algorithms rely on OAC and it is used to synchronize

the DDB across all hosts. The following results were derived from the algorithm being used in

live conditions; specifically, the samples were gathered from all the experiments run in the other

sections. Each graph shows the mean value from all the samples, and uses error bars to indicated

standard deviation. Since the samples were not explicitly controlled the number of samples

varies from case to case, but is at minimum 124 (for the 2-3 participant cases), and averages over

600,000. Fig. 7.2-1 plots the variation in the time taken to decide and deliver a message with

different numbers of participants. The average delay appears to be stable, suggesting good

scalability for the algorithm. There is typically only a small delay, < 10 ms, between deciding

and delivering the message, but it does seem to increase with the number of participants, likely

due to the increased number of order conflicts, indicated in Fig. 7.2-2.

The second most important metric for this algorithm is the number of messages sent in order to

deliver each OAC. This counts every message sent by each participant, and Fig. 7.2-3 shows the

average number of messages vs. the participant count. As expected, the increase in number of

99

messages is not linear, but fits well with a second order polynomial growth pattern. This will

eventually limit the scalability, but for most applications will only present a problem once it

begins impacting the delivery delay discussed above.

7.2.2 Experiment AP-2 – Host Membership

The Host Membership service is used to maintain the Host Group and has three primary

functions: 1) adding hosts to the group when a join request is sent, 2) removing hosts from the

group when a leave request is sent, and 3) removing hosts from the group when a host is

suspected of failure. As before, the samples were gathered from all the experiments run in the

other sections, however, since these events are much less common the number of samples is

fewer, averaging 150 for joins, 28 for leaves, and 15 for removes. The average join, leave, and

Fig. 7.2-1 Experiment AP-1 Decision and
Delivery Delay vs. # Participants

Fig. 7.2-2 Experiment AP-1 # Order
Changes vs. # Participants

Fig. 7.2-3 Experiment AP-1 # Messages Sent vs. # Participants

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

T
im

e
[m

s]

Participants

Decision Delay Delivery Delay

0.0

0.5

1.0

1.5

2.0

2.5

3.0

2 3 4 5 6 7 8 9A
v

g
 #

 O
rd

er
 C

h
a

n
g

es

Participants

Order Changes

y = 2.9626x2 + 2.8403x

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

#
 M

es
sa

g
es

Participants

Messages Sent

100

remove delays are shown in Fig. 7.2-4, with the error bars used to indicate standard deviation.

Join times are on the order of seconds for all cases, though they are significantly higher for group

sizes more than five. Since OAC time was shown to be similar for these group sizes this notable

increase must be caused by other factors, likely delays in establishing connections to each group

member and synchronizing to the group state. Leaving a group is straightforward in that it only

requires that you make the leave request and are removed via an updateMembership transaction,

which is reflected in the consistent leave times averaging close to 0.6 seconds. Removing a failed

member from a group is a much more complex process, and requires that all members suspect the

failed member before a successful updateMembership transaction can occur. Despite this the

average failed host is removed in less than 1.5 seconds after being suspected by the first member.

Since host failures are so rare the number of samples was limited; however, 52 samples were

available for the group size of nine, demonstrating good performance for what was theoretically

the most complex case.

7.2.3 Experiment AP-3 – Agent Allocation

The performance of the agent allocation algorithm is primarily measured in terms of allocation

time and number of messages sent. The number of hosts participating in the allocation and the

number agents being allocated are two degrees of freedom in this algorithm, and the following

graphs show the results for various numbers of hosts over six agent ranges. Because these

samples were taken from live experiments not every case is represented, however, those that are

present average at 324 samples and only three cases have fewer than 25 samples. Fig. 7.2-5

Fig. 7.2-4 Experiment AP-2 Join, Leave, and Remove Delay vs. # Hosts

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

1 2 3 4 5 6 7 8 9

T
im

e
[s

]

Hosts

Join Delay Leave Delay Remove Delay

101

shows the average time taken to reach allocation consensus. There does not appear to be a strong

correlation between time and the number of hosts, but there is a clear increase in time relative to

the number of agents being allocated. As expected, the number of messages sent during

allocation, Fig. 7.2-6, shows a strong correlation to both number of hosts and number of agents.

Each host must share their bids with every other host, and more agents increases the likelihood of

bidding conflicts, resulting in more messages and more rounds of bidding.

7.2.4 Experiment AP-4 – Agent Transfer and Recovery

The ability to spawn agents on demand, transfer agents, and recover failed agents are all key

features of this architecture. Once the system is shown to function, the primary performance

metric is the time cost of each action. Fig. 7.2-7 shows the average delay for a) spawning, the

time a new agent is acknowledged by the system to the time it is ready begin performing its tasks,

which also includes at least one session of agent allocation; b) freezing, the time between

deciding to transfer the agent and the agent submitting its frozen state to the DDB; c) transferring,

the time between deciding to transfer the agent and the agent resuming activities on the new host;

and d) recovery, the time between detecting an agent failure and restoring the agent, this time

Fig. 7.2-5 Experiment AP-3 Allocation Delay vs. # Hosts vs. # Agents

Fig. 7.2-6 Experiment AP-3 Messages Sent vs. # Hosts vs. # Agents

0

500

1000

1500

2000

2500

A < 10 A < 20 A < 30 A < 40 A < 50 A >= 50

T
im

e
[m

s]

Agents

Hosts = 4
5
6
7
8
9

0

500

1000

1500

A < 10 A < 20 A < 30 A < 40 A < 50 A >= 50

#
 M

es
sa

g
es

Agents

Hosts = 4
5
6
7
8
9

102

does not include the time taken to detect an agent failure since that is configurable using the UFD

parameters.

The spawn delay averages between 1-2 seconds and is not tied to the number of hosts for these

samples. On average agent transfer takes between 1.3-2.1 seconds, about one third to one half of

which is taken freezing the agent. Given the average agent state size was 111 kB and the speed

of the network, most of this time is accounted for by obtaining locks and the OAC messages

required to maintain consistency and allow the transfer to be transparent to the other agents. The

case of [50] where a single Java thread is transferred throughout the system has a transfer time of

only 4.26 ms, which may make these transfer times seem high. However, their system does not

have to consider the complexity of multiple agents and inter-agent communication, and does not

appear to make efforts to robustly maintain consistency during the transfer. If the agent transfer

algorithm used here only required freezing the agent state, sending the state to the next host, and

unpacking the state, it would also perform on the order of milliseconds. [38] presents an

application where entire sections of the control system are packed as VM states for transfer

between robots. However, due to the unnecessary data stored in the complete VM state, transfers

took between 20-120 seconds simply to transmit the state, in addition to ~5 seconds to

save/compress and uncompress/restore the VM. On average restoring an agent takes between

0.7-2.9 seconds, and includes at least one session of agent allocation. None of the delays related

to agent transfer and recovery appear to be correlated to the number of hosts in the system.

Fig. 7.2-7 Experiment AP-4 Agent Transfer and Recovery Delay vs. # Hosts

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

4 5 6 7 8 9

T
im

e
[s

]

Hosts

Spawn Delay

Freeze Delay

Transfer Delay

Recovery Delay

103

7.2.5 Experiment AP-5 – JC-SLAM

When considering the performance of a SLAM algorithm there are four primary metrics: 1)

computational cost, 2) localization accuracy, 3) mapping accuracy, and 4) mapping rate. In

particular, the question is how these metrics are affected by the three strategies employed by JC-

SLAM: i) delayed calculation of weight updates, ii) out-of-order processing, and iii) propagation

of observations through resampling transforms.

Three experiments were designed to study these questions. The first focuses on localization

accuracy and compares the results from a number of different variations of the JC-SLAM strategy

in three different scenarios. The second experiment simply monitors the number of observations

that accumulate between each weight update to calculate the number operations saved. The final

experiment takes a full mapping and exploration scenario and compares the performance of JC-

SLAM against two traditional SLAM approaches.

7.2.5.1 Experiment AP-5.1 Impact of JC-SLAM Strategies

As shown in the discussion in Chapter 5, the strategies of JC-SLAM are theoretically grounded,

but for practicality of implementation a number of unproven steps are made. In order to justify

JC-SLAM, the strategies were verified experimentally. To accomplish this three different teams,

Table 7.2-1, were run though mapping and exploration scenarios and the particle filter predictions

and observations were recorded. Then 11 variations of the SLAM algorithm were used with the

data to analyse the impact on accuracy, required number of particles, and rate of particle decay.

Six SLAM strategies were used under nominal and constrained processing conditions, for a total

of 11 variations (the baseline strategy disregards processing conditions). The SLAM strategies

are defined in Table 7.2-2.

The processing conditions were tuned for each experiment using the Discard strategy such that

the nominal level was defined as processing ~90% of the readings and the constrained level

Table 7.2-1 Experiment AP-5.1 Experimental Scenarios

Experiment Team Explored Area [m
2
] Mission Time [mm:ss]

Uncorrected

Localization Error [m]

Basic 4 Seekers 24.2 2:56 0.123

Advanced A 4 Sweepers 216 27:05 0.804

Advanced B 8 Sweepers 216 15:22 0.281

104

defined as processing ~50% of the readings. These same processing conditions were then used

for the four JC-SLAM variations. Even though the set of observations and the avatar motion

predictions are the same for each test there are still a significant number of random variables; and

so each experiment was run 10 times and the average values are reported.

Each SLAM variation was tested using 100, 250, 500, 750, and 1000 particles for each filter. The

questions of accuracy and required number of particles will be answered by looking at Fig. 7.2-8,

which shows the localization accuracy for each test. The error bars are used to show the standard

deviation from all trials.

The Baseline scenario shows that the SLAM algorithm is functioning as expected, demonstrating

significant improvements over the uncorrected localization for all three scenarios, and showing

diminishing improvement as the number of particles increases. For the nominal tests each

strategy is able to process most of the readings and performs close to the Baseline. The

significant standard deviation makes it difficult to make strong statements about relative

performance, but from these results the JC-SLAM variations appear to have a slight advantage

Table 7.2-2 Experiment AP-5.1 SLAM Strategies

Strategy Description

Baseline All readings were processed in order as soon as they became available. This is the standard

SLAM approach.

Discard Readings were processed in order as soon as they became available, however, if insufficient

processing resources were available at that time the reading was discarded. This is a standard

SLAM approach when resources are insufficient to process all readings.

JC-SLAM The proposed SLAM implementation: readings were processed in LIFO (last-in-first-out)

order, readings that could not be immediately processed were held until resources became

available, weight updates were delayed until explicitly requested, and observation densities

were forward propagated through resampling transforms.

FIFO The same as the JC-SLAM implementation except the readings were processed in FIFO

(first-in-first-out) order. In systems where all readings can be processed the end result is very

similar to the normal SLAM approach, however, in constrained systems this means that

processing can fall significantly behind the newest readings.

Random The same as the JC-SLAM implementation except the readings were randomly chosen for

processing from the pool of available readings. In this approach a selection of new and old

readings were processed, even in constrained systems.

NFP The same as the JC-SLAM implementation except that observation densities were not

forward propagated through resampling transforms.

105

over Discard. The constrained tests show that FIFO and Random are unable to maintain

localization, since they rapidly fall behind on processing recent readings. Discard, JC-SLAM,

and NFP all perform similarly and still demonstrate a marked improvement over uncorrected

localization.

From these results the following statements are made:

 JC-SLAM has equivalent accuracy to Baseline when sufficient processing resources are

(a) Basic Nominal (b) Basic Constrained

(c) Advanced A Nominal (d) Advanced A Constrained*

(e) Advanced B Nominal (f) Advanced B Constrained*

*The vertical axis of these graphs has been set to highlight the differences between Baseline, Discard, JC-SLAM,

and NFP. FIFO and Random are clipped because they were unable to successfully localize in these scenarios.

Fig. 7.2-8 Experiment AP-5.1 Localization Accuracy

0.00

0.02

0.04

0.06

0.08

0.10

100 250 500 750 1000A
cc

u
ra

cy
 P

o
s

[m
]

Particles

0.00

0.10

0.20

0.30

100 250 500 750 1000A
cc

u
ra

cy
 P

o
s

[m
]

Particles

0.00

0.05

0.10

0.15

0.20

100 250 500 750 1000A
cc

u
ra

cy
 P

o
s

[m
]

Particles

0.00

0.10

0.20

0.30

100 250 500 750 1000A
cc

u
ra

cy
 P

o
s

[m
]

Particles

0.00

0.05

0.10

0.15

0.20

0.25

100 250 500 750 1000A
cc

u
ra

cy
 P

o
s

[m
]

Particles

Baseline Discard JC-SLAM

FIFO Random NFP

0.00

0.10

0.20

0.30

100 250 500 750 1000A
cc

u
ra

cy
 P

o
s

[m
]

Particles

Baseline Discard Const

JC-SLAM Const FIFO Const

Random Const NFP Const

106

available.

 JC-SLAM has the same or better accuracy as Discard in constrained scenarios.

 JC-SLAM follows the same improvement as Baseline or Discard as the # of particles

increases.

 Forward propagating observations through resampling transforms yields no benefit for

these scenarios. This suggests that, though theoretically sound, forward propagation may not be a

worthwhile addition.

Taking the results of the Advanced B trials, Fig. 7.2-9 shows the number of readings processed,

the processing order, and the average delay between when the observation is generated and when

it is processed. By definition Discard is able to process ~90% of the readings for the nominal test

and ~50% of the readings for the constrained test. In both cases the JC-SLAM variations are able

to take advantage of the stored observations and process roughly 10% more of the readings

during lulls in observation generation. By design Baseline, Discard, and FIFO never process any

readings out-of-order (OOO). JC-SLAM and NFP use the same strategy and therefore have the

same results, largely keeping up with only 2.5% of readings processed OOO during the nominal

test, but processing 30% of the readings OOO for the constrained tests. From the accuracy results

above it can be seen that this OOO processing has no noticeable impact on performance. This

can be explained in part by observing that even though the readings are being processed OOO,

the average delay between when a reading was generated and processing the reading is relatively

small, 52 ms for the nominal test and 1,212 ms for the constrained test. The average delay in

processing is much larger for the constrained FIFO and Random tests, 337 seconds and 240

seconds, respectively. Since these strategies fall behind as they continue to process old readings

their accuracy is greatly affected. The results show that:

 JC-SLAM is able to take advantage of available processing resources to process

additional observations, even in severely constrained scenarios.

 The OOO processing strategy does not affect accuracy so long as new readings are given

priority.

To study the impact of JC-SLAM on particle diversity decay the average rate of resampling was

recorded for each test. Fig. 7.2-10 plots the rate of resampling against the reading processing

rate, and shows that there is a strong correlation for each scenario. With the exception of the

107

constrained FIFO and Random tests, which have poor localization and therefore reduced rates of

resampling, the remaining tests are linear. This demonstrates that by itself JC-SLAM has

minimal impact on particle diversity decay, and the primary factor is the reading processing rate.

(a) % Readings Processed Nominal (b) % Readings Processed Constrained

(c) % Readings Out of Order Nominal (d) % Readings Out of Order Constrained

(e) Average Processing Delay Nominal (f) Average Processing Delay Constrained

Fig. 7.2-9 Experiment AP-5.1 Observation Processing

0.00

0.20

0.40

0.60

0.80

1.00

R
ea

d
in

g
s

P
ro

ce
ss

ed

[%
]

Strategy
0.00

0.20

0.40

0.60

0.80

1.00

R
ea

d
in

g
s

P
ro

ce
ss

ed

[%
]

Strategy

0.00

0.01

0.02

0.03

R
ea

d
in

g
s

P
ro

ce
ss

ed

O
O

O
 [

%
]

Strategy
0.00

0.20

0.40

0.60
R

ea
d

in
g

s
P

ro
ce

ss
ed

O
O

O
 [

%
]

Strategy

1

10

100

A
v

g
 P

ro
ce

ss
in

g
 D

el
a

y
 [

m
s]

Strategy

Baseline Discard JC-SLAM

FIFO Random NFP

1

100

10000

1000000

A
v

g
 P

ro
ce

ss
in

g
 D

el
a

y
 [

m
s]

Strategy

Baseline Discard Const

JC-SLAM Const FIFO Const

Random Const NFP Const

108

7.2.5.2 Experiment AP-5.2 Operations Saved from Delayed Calculation
of Weight Updates

From Strategy 1, JC-SLAM accumulates observation densities and delays weight updates until

particle weights are explicitly requested. As discussed in Chapter 5, this approach has only

minimal impact on SLAM performance since all observations that have be processed up to that

point are included when the weights are calculated, it simply changes how and when the

calculations are done. Studying (5.1-4), for a particle filter with N particles a standard weight

update requires N multiplications, N additions, and N divisions. It follows that M observations,

when calculating the weights after each observation, require MN multiplications, MN additions,

and MN divisions. If the delayed weight calculation strategy (5.2-3) is used these calculations

can be reduced to MN multiplications, N additions, and N divisions. Depending on the number of

observations accumulated between each weight update this could result in significant savings. To

study the impact in a real scenario the average number of observations between each weight

request was measured during the mapping and exploration scenarios of the previous experiments

and the number of saved operations was calculated. These results are shown in Table 7.2-3.

7.2.5.3 Experiment AP-5.3 Cooperative Exploration and Mapping

This experiment studies the rate of map generation of JC-SLAM compared to the two traditional

SLAM approaches, Discard and Delay, which are used when processing resources are

constrained. Available processing resources are a significant concern since results must be

available in real-time, and quite often the rate at which new data are collected surpasses the rate

that the data can be processed. When this occurs the two basic options are either discarding the

Fig. 7.2-10 Experiment AP-5.1 Reading Processing Rate vs. Resampling Rate

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4

R
es

a
m

p
le

s/
s

Readings Processed/s

Basic *

Basic FIFO & Random Const

Adv A *

Adv A FIFO & Random Const

Adv B *

Adv B FIFO & Random Const

109

extra readings or delaying exploration until processing is finished [76]. With JC-SLAM a third

option is possible: unprocessed readings can be stored until processing resources become

available and then integrated into the SLAM solution. All three approaches were implemented in

the HAA control system. Each approach used the same particle filter, map, and sensor processing

implementation, and the sole differences between implementations are described in Table 7.2-4.

For this experiment six Sweeper avatars were used in the large 18 x 18 m arena. To approximate

changing processing resources six hosts were used at the beginning of the experiment, two hosts

Table 7.2-3 Experiment AP-5.2 Savings from Delayed Weight Updates

Experiment

of

Particles

(N)

Average

Observations

between

Weight

Updates (M)

Standard Weight

Update Cost

(MN x, MN +, MN /)

JC-SLAM

Weight Update

Cost

(MN x, N +, N /)

Computational

Savings (%

operations)

Basic 500 2.93 1465, 1465, 1465 1465, 500, 500 44%

Advanced A 500 3.97 1985, 1985, 1985 1985, 500, 500 50%

Advanced B 500 4.89 2445, 2445, 2445 2445, 500, 500 53%

Table 7.2-4 Experiment AP-5.3 SLAM Implementations

Implementation Description

JC-SLAM Sensor readings are added to a stack by SupervisorSLAM as they are generated.

Readings are assigned to sensor processing agents one at a time in LIFO order. Once a

reading is processed the processing agent is assigned the next reading. If more readings

accumulate than can be readily processed by the current sensor processing agents

additional agents are requested, limited by the available processing power of the hosts

and up to a maximum of one sensor processing agent of each type (Cooccupancy, Sonar,

Landmark, FloorFinder) per host. Avatar path planning and movement is independent of

the sensor processing activities, though ultimately path planning is influenced by the

generated map.

Discard Sensor processing agents of each type are started on every host, meaning that Discard

always has the maximum number of processing agents possible for the JC-SLAM

implementation, and for this experiment had double the number of agents of JC-SLAM.

As sensor readings are generated SupervisorSLAM assigns them to any available sensor

processing agent, if no processing agents are immediately available the reading is

discarded. Avatar path planning and movement is independent of the sensor processing

activities, though ultimately path planning is influenced by the generated map.

Delay Each Avatar agent is responsible for handling its own sensor readings, and requests a

dedicated sensor processing agent of each type. Depending on the ratio of hosts to

avatars this may result in more or less processing agents than the Discard

implementation (and maximum of the JC-SLAM implementation), but in this experiment

there were two times more than the JC-SLAM implementation. When sensor readings

are generated the avatar halts activity until all readings are processed, at which point the

avatar is free to move and generate more sensor readings.

110

left after 5 minutes, and two hosts joined after 10 minutes. The mission completion condition

was that 95% of the reachable cells were explored, where “explored” is defined as a cell with a

value greater than 0.73 or less than 0.27. Each experiment was repeated 10 times, and Table

7.2-5 reports the results from the three SLAM approaches.

Map coverage and map accuracy remained consistent across all approaches, averaging 95% and

91%, respectively. The development of map coverage and map accuracy over time for a typical

trial of each approach is shown in Fig. 7.2-11 and Fig. 7.2-12, respectively; and, while the final

values are similar, JC-SLAM reaches them more quickly. This results in a significant difference

in mission duration, where on average JC-SLAM finishes 17% (3.8 minutes) faster than Discard

and 33% (9.1 minutes) faster than Delay. The improved performance is a direct result of JC-

SLAM’s ability to process sensor readings at a higher rate (though note that the processing time

per reading was the same for all approaches). The rates of reading generation and processing are

shown in Fig. 7.2-13, and the advantage of JC-SLAM is clear. JC-SLAM is able to keep up with

the high rate of reading generation, averaging 24.0 readings/s for both generation and processing.

Discard has a slightly lower average generation rate of 22.8 readings/s, and only has an average

processing rate of 18.4 readings/s; meaning Discard must throw away roughly four readings per

second. Delay has a reduced reading generation rate because it must wait for processing to

complete before generating more readings, averaging 16.7 readings/s for both generation and

processing. Delaying actions while readings are being processed is also the reason why Delay

has a longer mission duration.

Table 7.2-5 Experiment AP-5.3 SLAM Comparison

Title
Mean RMS STD

JC-SLAM Discard Delay JC-SLAM Discard Delay JC-SLAM Discard Delay

Mission Duration [min] 18.42 22.18 27.49 18.44 22.19 27.87 0.74 0.69 4.53

Map Coverage [%]* 0.951 0.949 0.958 0.951 0.949 0.959 0.0063 0.0095 0.0068

Map Accuracy [%]* 0.906 0.907 0.909 0.906 0.907 0.909 0.0033 0.0072 0.0075

Localization Err Pos [m] 0.086 0.097 0.107 0.087 0.101 0.114 0.0172 0.0299 0.0398

*Relative to a fully explored map generated with no localization error

111

7.3 Robustness

Two experiments were conducted to evaluate the performance of the system under various failure

scenarios:

1. Experiment R-1 – Agent Failure: To explore the impact of increasing rates of agent

failure.

Fig. 7.2-11 Experiment AP-5.3 Map
Coverage

Fig. 7.2-12 Experiment AP-5.3 Map
Accuracy

(a) JC-SLAM (b) Discard (c) Delay

Fig. 7.2-13 Experiment AP-5.3 Reading Generation and Processing Rates

0.0

0.2

0.4

0.6

0.8

1.0

0 1000

M
a

p
 C

o
v

er
a

g
e

[%
]

Time [s]

JC-SLAM Discard Delay

0.5

0.6

0.7

0.8

0.9

1.0

0 1000

M
a

p
 A

cc
u

ra
cy

 [
%

]

Time [s]

JC-SLAM Discard Delay

0

5

10

15

20

25

30

35

0 500 1000

R
ea

d
in

g
s

[r
/s

]

Time [s]

0

5

10

15

20

25

30

35

0 500 1000

Time [s]

Generation Rate

Processing Rate

0

5

10

15

20

25

30

35

0 500 1000

Time [s]

112

2. Experiment R-2 – General Failure: To demonstrate the ability to handle concurrent host,

agent, and avatar failures.

7.3.1 Experiment R-1 – Agent Failure

One of the most important features of the control system is the ability to detect and recover from

agent failures. Experiment R-1 was designed to not only show that detection and recovery work

as prescribed, but to study the impact of failure on key performance metrics. The Mapping and

Exploration scenario in the small arena was chosen to reduce the performance variables and

generate the fairest comparisons. Three hosts were used, along with four seeker avatars. The

mission completion criterion was that 95% of reachable cells were explored. Artificial failures

were introduced into the system, and were controlled by specifying a minimum and maximum

operating time for each agent. The failure would then occur at a random time in that interval.

Four different failure rates were tested: 1) No Failure, 2) Moderate Failure, agent life expectancy

1-10 minutes, 3) High Failure, agent life expectancy 1-3 minutes, and 4) Extreme Failure, agent

life expectancy 0.5-1.5 minutes. All of the tested failure rates are much higher than any realistic

scenario, yet the performance impacts were minimal. The summary of results is presented in

Table 7.3-1. The primary performance metric is mission duration, and clearly differences are

expected since the minimum possible impact is the delay in detecting an agent failure and

recovering the agent. Two other main factors that impact mission duration are: i) agent backups

are incomplete by design (a trade-off is made between completeness and network usage in

creating backups),which means redoing some work or retrieving that information from the DDB

or other agents, and ii) many agents have interdependencies and so one agent failing can delay

multiple agents. In these experiments all cases were able to successfully complete the mission,

though the moderate, high, and extreme failure rates increased the duration by 10%, 27%, and

52%, respectively. The increase to mission duration can be predicted by this first order model:

 ∆ MTFMTF (7.3-1)

where ∆ gives the ratio of the mission duration to the mission duration with no failures, MTF is

the mean-time-to-failure for the agents, and is a constant related to the time cost of agent

failure. Fig. 7.3-1 plots the experimental results alongside the first order model with = 0.55.

This suggests that, for this scenario, for every MTF that elapses the mission duration increases by

113

0.55 minutes. This constant will be different for each scenario and setup since it is heavily

dependent on the number of agents and the complexity of their interactions; and so it is difficult

to predict what the constant will be without experimental testing.

The agent allocation graphs for each failure rate, Fig. 7.3-2 to Fig. 7.3-5, show the pattern of

agent failures and recoveries. The No Failure case in Fig. 7.3-2 of course shows no failures and

only normal agent transfers. The Moderate Failure case in Fig. 7.3-3 shows that three agent

failures occurred: two AvatarSimulation agents and one AgentPathPlanner. Despite the agents

being recovered within seconds of discovering the failures, these few failures were enough to

have a noticeable impact on mission duration. Fig. 7.3-4 and Fig. 7.3-5 show 17 and 46 failures

for the High and Extreme Failure cases, respectively. Even with these highly unrealistic rates of

Table 7.3-1 Experiment R-1 Results Summary

Title
Mean STD
No

Failure Moderate High Extreme

No

Failure Moderate High Extreme

Mission Duration [min] 2.573 2.842 3.261 3.900 0.2606 0.3476 0.4108 0.4927

Map Coverage [%]* 88.00 88.88 88.49 87.80 2.3483 1.5553 1.9932 1.9850

Map Accuracy [%]* 90.58 90.43 90.27 89.86 0.8154 0.3783 0.9082 0.9449

Localization Pos Err [m] 0.0602 0.0676 0.0774 0.1016 0.0203 0.0192 0.0261 0.0377

Localization Rot Err [rad] 0.0370 0.0576 0.0394 0.0828 0.0095 0.0257 0.0204 0.0412

Landmark Err [m] 0.0801 0.0933 0.0860 0.1136 0.0159 0.0201 0.0190 0.0483

Landmark Cov [m] 0.4445 0.4133 0.3578 0.3739 0.1318 0.1528 0.0804 0.0831

Average # Hosts 4.00 4.00 4.00 4.00 0.0000 0.0000 0.0000 0.0000

Average # Agents 14.20 14.32 15.14 16.37 0.2970 0.3454 0.5694 0.4536

Average CPU Usage 40.60 38.99 35.67 28.79 1.7048 1.9236 2.4381 2.2266

DDB Size [MB] 8.434 9.075 9.304 9.225 0.9787 1.0661 0.9106 0.8870

*Relative to a fully explored map generated with no localization error

Fig. 7.3-1 Experiment R-1 Mean-Time-to-Failure vs. Mission Duration Increase

100

120

140

160

180

200

0 2 4 6 8 10%
 M

is
si

o
n

 D
u

ra
ti

o
n

Mean-Time-to-Failure [min]

Experimental Data (MTF+k)/MTF, k=0.55

114

failure the control system is able to successfully recover each agent and continue operating

without significant sacrifices to anything but mission duration.

Fig. 7.3-2 Experiment R-1 Agent Allocation:
No Failure

Fig. 7.3-3 Experiment R-1 Agent Allocation:
Moderate Failure

Fig. 7.3-4 Experiment R-1 Agent Allocation: High Failure

115

Differences in final map coverage and map accuracy between cases were not significant, with

means of 88% and 90%, respectively, though map accuracy appears to follow a slowly decreasing

trend. The rate of growth for these values corresponded to the increased mission durations, as

shown in Fig. 7.3-6. The coverage and accuracy curves also display a “roughness” that increases

noticeably with higher rates of failure, explained by frequent exploration delays as agents crash

and are recovered. From the comparisons of localization error in Fig. 7.3-7, error does appear to

climb more rapidly with increased number of failures, but still appears to stabilize at an

acceptable level and has only minimal affect on map accuracy.

7.3.2 Experiment R-2 – General Failure

The next step after agent failure is the ability to handle general failures, which is demonstrated in

this experiment. Host failures in particular present a greater challenge, since not only do they

impact the host group functions, but all agents running on a failed host must be considered failed

as well. When a host fails it must be removed from the host group, all outstanding atomic

Fig. 7.3-5 Experiment R-1 Agent Allocation: Extreme Failure

116

messages aborted, and the failed agents recovered. Host and avatar failure are also likely to be

the dominant forms of failure in a well established control system, since they may result from

many physical factors such as loss of communication, loss of power, or hardware damage.

Experiment R-2 takes on the challenge of demonstrating every feature of the control system in the

most difficult scenario: Foraging in the large arena. This includes i) dynamic host group

formation, ii) dynamic control system construction, iii) balancing processing resources through

agent distribution, iv) completing multiple simultaneous tasks, v) adding hosts and avatars after

the mission starts, and vi) host, avatar, and agent failure. 20 collectables were distributed within

the large arena, as well as three collection regions. Eight hosts formed the initial host group and

(a) Map Coverage (b) Map Accuracy

Fig. 7.3-6 Experiment R-1 Map Coverage and Accuracy

(a) Positional (b) Rotational

Fig. 7.3-7 Experiment R-1 Localization Error

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300

%

Time [s]

No Failure Moderate

High Extreme

0.0

0.2

0.4

0.6

0.8

1.0

0 100 200 300

%

Time [s]

No Failure Moderate

High Extreme

0.00

0.05

0.10

0.15

0.20

0 100 200 300

P
o

s
E

rr
 [

m
]

Time [s]

No Failure Moderate

High Extreme

0.00

0.02

0.04

0.06

0.08

0.10

0 100 200 300

R
o

t
E

rr
 [

ra
d

]

Time [s]

No Failure Moderate

High Extreme

117

additional hosts joined at 6 and 12 minutes. Hosts were given life expectancies and simulated

pseudo-random failures. 10 avatars were used in total, two sweepers, four enhanced seekers, one

of which crashed after two minutes and one who retired after five minutes, two carriers, and

finally two additional carriers who joined after five minutes. Agent life expectancy was set to 1-

10 minutes. The mission completion criteria were that the 95% of reachable cells had been

explored and that all discovered collectables were deposited. The mission completed successfully

for all runs, demonstrating that the HAA architecture makes a strong foundation for a control

system, particularly in unfavourable operating conditions.

Fig. 7.3-8 shows a typical mapping result and the back and forth travel of the avatars as they

collect their cargo. The results summary is presented in Table 7.3-2, reporting an average

mission duration of 28.4 minutes. This is comparable to the 28.5 minute mission duration for the

similar Experiment AF-3, even though fewer avatars with carrying capacity were used. Map

accuracy of 91% and localization error of 0.123 m/0.025 rad are also comparable to the other

experiments. The number of hosts and agents is given in Fig. 7.3-9, demonstrating the numerous

host failures and the large variation of agents typical in a foraging scenario. Map coverage and

accuracy, Fig. 7.3-10, both develop more linearly than normal, as expected in a foraging scenario,

 Legend:

Collectible

Collection Region

Fig. 7.3-8 Experiment R-2 Mapping Result

118

and exhibit the roughness caused by agent failure. Fig. 7.3-11 shows that localization error is

stable at normal levels, and finally, load balancing is without issue, as shown in Fig. 7.3-12. The

agent allocation graph, Fig. 7.3-13, presents the difficult struggle of the scenario with four host

failures and a total of 67 agents that each experienced multiple crashes, yet the control system

was able to recover and continue operation.

Table 7.3-2 Experiment R-2 Results Summary

Title Representative Run Mean RMS STD

Mission Duration [min] 28.218 28.427 28.448 1.099075

Map Coverage [%]* 97.40 97.56 97.56 0.418900

Map Accuracy [%]* 91.73 91.16 91.16 1.252300

Localization Positional Err [m] 0.12305 0.12362 0.13595 0.056564

Localization Rotational Err [rad] 0.02084 0.02590 0.02822 0.011209

Landmark Err [m] 0.10291 0.11792 0.12692 0.046930

Landmark Covariance [m] 0.04004 0.03760 0.03765 0.002012

Average # Hosts 7.03 6.89 6.90 0.351378

Average # Agents 38.61 39.06 39.13 2.458903

Average CPU Usage [%] 60.13 61.71 61.89 4.787600

DDB Size [MB] 32.892 33.089 33.162 2.203648

Cargo Collected 20.00 19.90 19.90 0.300000

* Relative to a fully explored map generated with no localization error

Fig. 7.3-9 Experiment R-2 Hosts and
Agents

Fig. 7.3-10 Experiment R-2 Map Coverage
and Accuracy

0

10

20

30

40

50

0 500 1000 1500 2000

#

Time [s]

Hosts # Agents

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

%

Time [s]

Map Coverage Map Accuracy

119

Fig. 7.3-11 Experiment R-2 Localization
Error

Fig. 7.3-12 Experiment R-2 CPU
Balancing

0.00

0.05

0.10

0.15

0.20

0 500 1000 1500 2000

P
o

s
E

rr
 [

m
],

 R
o

t
E

rr
 [

ra
d

]

Time [s]

Localization Pos Err

Localization Rot Err

0.00

0.10

0.20

0.30

0.40

0.50

0 500 1000 1500 2000

U
sa

g
e

S
T

D
 [

%
]

Time [s]

CPU STD

Fig. 7.3-13 Experiment R-2 Agent Allocation

120

Chapter 8
Conclusions

Transparency and reusability are key factors in improving the process of developing control

systems for real-world robot teams. A new approach is necessary in order to break the cycle of

throwing away previous work and starting each team from scratch, and that requires an

understanding of the how’s and why’s of control systems beyond simple end-of-lifecycle

performance. To encourage asking the right questions and provide some guidelines the Control

ad libitum philosophy was developed, promoting the tenets of Transparency, Versatility,

Adaptability, Modularity, Diversity, Persistency, and Efficiency. The author asserts that by

considering these tenets during each phase of the team lifecycle great strides can be made toward

the reusability and extensibility of control systems. Following this approach the generic,

dynamic, versatile, robust, and extensible HAA architecture is proposed. HAA lays a foundation

on which virtually any type of control system can be built, while providing features such as a

distributed processing network, a distributed database, and failure recovery. HAA also

encourages modularity as a way to simplify the design process and allow for greater reusability

between applications.

The viability of the HAA architecture is demonstrated with a fully developed implementation,

constructed with provably correct distributed algorithms. In computer science a provably correct

algorithm is one where logical proofs can be constructed for each of the specifications of the

algorithm. This guarantees that within these specifications no incorrect step will ever be taken.

A control system was designed to complete tasks including exploration and mapping, search and

deploy, and foraging. Each of these tasks builds on those preceding it and shows the high degree

of reusability of agent modules. Additionally, the JC-SLAM algorithm was developed following

the Control ad libitum approach as a versatile and distributed solution to the mapping and

localization problem.

Using HIL simulation the control system was extensively tested to demonstrate its features and

performance under different conditions. Three sets of experiments were conducted. In the first

series of experiments the fundamental features of the HAA architecture were studied, specifically

the ability to: a) dynamically form the control system based on the task requirements, b)

121

dynamically form the team from available avatars, c) dynamically form the host network based

on available processor resources, and d) handle heterogeneous teams and allocate avatars between

tasks based on their capabilities. The second series of experiments evaluated the performance of

the distributed algorithms for various system sizes, and each algorithm demonstrated highly

acceptable real-time performance and no issues of scalability for the small-to-moderate sized

systems tested. The SLAM problem is fundamental to the implementation of virtually any robot

team, and so JC-SLAM was developed as a distributed and scalable solution. JC-SLAM

demonstrated accuracy equal to or better than traditional SLAM approaches in resource

constrained scenarios, and reduced exploration time by over 17% for the mapping scenarios

tested. The JC-SLAM strategies are also suitable for integration into existing particle filter

SLAM approaches, complementing their unique optimizations. The last series of experiments

focused on robustness against concurrent agent, avatar, and host failure. Multiple scenarios were

tested with artificial failure rates set far higher than realistic expectations, and in all cases every

task was successfully completed, even when each agent was given a life expectancy of only 0.5-

1.5 minutes.

In conclusion, the tenets of the Control ad libitum philosophy proved to be sound guidelines for

developing a versatile and robust control architecture. Built using provably correct algorithms,

the HAA implementation achieved all of its goals: dynamic formation of the initial team, run-

time adaptability to changing resources in terms of host and avatars, and robustness against both

hardware and software failure. And finally, due to the modularity of the system there appears to

be significant potential for reuse of assets and future extensibility.

8.1 Future Work

Four potential avenues for future research have been identified: 1) making the framework

available for open-source development, 2) standardizing agent interactions and recovery

strategies, 3) exploring the issue of scalability, and 4) improving communication efficiency

through learned database optimization.

8.1.1 Open-source Agent Library

One of the main goals of the framework is to be extensible and facilitate the reuse of control

elements in order to allow future research to focus on new areas rather than retread existing work.

122

By making the source code available to everyone and providing a forum to exchange ideas and

agent modules, the HAA implementation could become an ever growing repository of control

systems for robotic teams. Researchers and developers would be able to take existing agents to

quickly form a functioning control system, and then spend their efforts on creating the new agents

required for their specific tasks/research. The first steps toward such a library would be a)

cleaning up the code base to make it more transparent and streamline the process of running

missions, b) providing documentation for the code, the functionality of each agent, and the

process for creating new agents, c) replacing the custom simulation interface with one or more

industry standard simulations, e.g., Microsoft® Robotics Developer Studio[96] or Player/Stage

[97], and d) providing a web interface to facilitate the development and exchange of new agents.

Standardizing agent interactions and recovery strategies, discussed below, would also be of great

benefit to this initiative.

8.1.2 Standardizing Agent Interactions and Recovery Strategies

The HAA architecture does not specify any standard for the internal workings of agents or for

their interactions. In Chapter 6 it can be seen that considerable effort must be devoted to

designing recovery strategies for each agent, a process that is sometimes complicated by their

interactions with other agents. However, during the design of the 18 agents developed for this

research it became apparent that many agents have similar components and require similar

recovery strategies. A method of standardizing agent interactions could be very useful in both

designing the agent network and developing recovery strategies of individual agents.

8.1.3 Scalability

The performance of distributed algorithms almost always degrades with the size of the network.

This was not apparent in the experiments in Chapter 7, where the performance of the atomic

messaging, host membership service, and agent allocation algorithms scaled well to the system

sizes tested, but ultimately there will be a point where scalability becomes a concern.

Fortunately, with few exceptions, such as the failure detector, the system is designed without

timeouts and therefore has significant flexibility it terms of latency. Thus, an interesting area of

research would be to explore what those limits are, identify the primary bottlenecks, and develop

strategies to work around these issues.

123

8.1.4 Communication Efficiency of the DDB

Related to the issue of scalability, there is a concern for communication efficiency, both in terms

of latency and required bandwidth. In order to provide robustness some redundancy in the

database is required, which has an unavoidable bandwidth cost. However, one of the major costs

of executing queries is the data transfer cost between sites in the network [98], and so allocating

the redundancy effectively can improve performance without increasing bandwidth costs. This

shares many similarities to the data allocation problem that has been well treated for standard

DDBs, which typically focus on reducing storage/transfer costs and minimizing response time

[99]. The exact solution to this problem is NP-complete and therefore most of the work in this

area is devoted to finding efficient near-optimal solutions [100,101]. Few papers in the field of

robot teams mention the issue of data allocation at all, and those that do discuss only strategies

where the data needed at each site is already known or can be computed based on knowledge of

the system [37,102]. To the author’s knowledge there is no research that attempts to study the

dynamic data allocation problem under the unique demands of a distributed robot team. The

determining factor that differentiates data allocation for a robot team from a standard distributed

database is that data rapidly loses relevance as it ages. This leads to a scenario where it is critical

that the initial allocation as data is created is optimal, and periodically redistributing data at a later

time is unlikely to provide significant gains.

124

Bibliography

[1] L. Geunho and N. Young Chong, "Decentralized Formation Control for a Team of Anonymous Mobile Robots," in

6th Asian Control Conference 2006, 2006, pp. 990-995.

[2] T. Yasuda, K. Ohkura, and K. Ueda, "A Homogeneous Mobile Robot Team That is Fault-tolerant," Advanced

Engineering Informatics, vol. 20, no. 3, pp. 301-311, 2006.

[3] M.K. Hajjawi and A. Shirkhodaie, "Cooperative Visual Team Working and Target Tracking of Mobile Robots," in

Proceedings of the Thirty-Fourth Southeastern Symposium on System Theory, 2002, pp. 376-380.

[4] C.C. Gava, R.F. Vassallo, F. Roberti, R. Carelli, and T.F. Bastos-Filho, "Nonlinear Control Techniques and

Omnidirectional Visoin for Team Formation on Cooperative Robotics," in 2007 IEEE International Conference on

Robotics and Automation, 2007, p. 6.

[5] T. Balch, "Communication, Diveristy, and Learning: Cornerstones of Swarm Behavior," in Swarm Robotics. SAB

2004 International Workshop, 2005, pp. 21-30.

[6] L. Giannetti and P. Valigi, "Collaboration among Members of a Team: a Heuristic Strategy for Multi-Robot

Exploration," in Proceedings of the 14th Mediterranean Conference on Control and Automation, 2006, p. 6.

[7] A. Howard, L.E. Parker, and G.S. Sukhatme, "Experiments with a Large Heterogeneous Mobile Robot Team:

Exploration, Mapping, Deployment and Detection," International Journal of Robotics Research, vol. 25, no. 5-6, pp.

431-447, 2006.

[8] L. Wang, D. Zhang, G. Xie, and J. Yu, "Adaptive Task Assignment for Multiple Mobile Robots via Swarm

Intelligence Approach," Robotics and Autonomous Systems, vol. 55, no. 7, pp. 572-588, July 2007.

[9] E. Jones et al., "Dynamically Formed Heterogenous Robot Teams Performing Tightly Coordinated Tasks," in 2006

Conference on International Robotics and Automation, 2006, pp. 570-575.

[10] E. Prassler and K. Nilson, "1,001 Robot Architectures for 1,001 Robots," IEEE Robotics & Automation Magazine,

vol. 16, no. 1, p. 113, March 2009.

[11] A. Tsalatsanis, A. Yalcin, and K.P. Valavanis, "Automata-based Supervisory Controller for a Mobile Robot Team,"

in 2006 IEEE 3rd Latin American Robotics Symposium, 2006, p. 7.

[12] G. Lee and N. Y. Chong, "Decentralized Formation Control for a Team of Anonymous Mobile Robots," in 6th Asian

Control Conference 2006, 2006, pp. 990-995.

[13] M. Kutzer, M. Armand, D. Scheid, E. Lin, and G. Chirikjian, "Toward Cooperative Team-Diagnosis in Multi-Robot

Systems," International Journal of Robotics Research, vol. 27, no. 9, pp. 1069-1090, September 2008.

[14] A. Palacios-Garcia, A. Munoz-Melendez, and E. Morales, "Collective Learning of Concepts using a Robot Team," in

Proceedings of the 7th International Conference on Informatics in Control, Automation and Robotics, 2010, pp. 79-

88.

[15] J. Madden and R. Arkin, "Modeling the Effects of Mass and Age Variation in Wolves to Explore the Effects of

Heterogeneity in Robot Team Composition," in 2011 IEEE International Conference on Robotics and Biomimetics,

2011, pp. 663-670.

[16] E. Gil Jones et al., "Dynamically Formed Heterogenous Robot Teams Performing Tightly Coordinated Tasks," in

Proceedings. 2006 International Conference on Robotics and Automation, 2006, pp. 570-575.

[17] R. Mead and J. Weinberg, "Impromptu Teams of Heterogeneous Mobile Robots," in Proceedings of the National

Conference on Artificial Intelligence, 2007, pp. 1890-1891.

[18] P. Dasgupta, K. Cheng, and L. Fan, "Flocking-Based Distributed Terrain Coverage with Dynamically-Formed Teams

of Mobile Mini-Robots," in Proceedings of the 2009 IEEE Swarm Intelligence Symposium, 2009, pp. 96-103.

[19] W. Iida and K. Ohnishi, "Mobile Robot Teamwork for Cooperated Task," in Proceedings of the Industrial

Electronics Conference (IECON), 2002, pp. 1561-1566.

[20] E. Cervera, J. Sales, L. Nomdedeu, R. Marin, and V. Gazi, "Agents at play: Off-the-Shelf Software for Practical

Multi-Robot Applications," in 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008, pp.

2719-2720.

[21] K. Skrzypczyk, "Control of a Team of Mobile Robots Based on Non-cooperative Equilibria with Partial

Coordination," International Journal of Applied Mathematics and Computer Science, vol. 15, no. 1, pp. 89-97, 2005.

[22] J. Wen, H. Xing, X. Luo, and J. Yan, "Multi-agent Based Disributed Control System for an Intelligent Robot," in

Proceedings. 2004 IEEE International Conference on Services Computing, 2004, pp. 633-637.

125

[23] S. Hasgul, I. Saricicek, M. Ozkan, and O. Parlaktuna, "Project-Oriented task Scheduling for Mobile Robot Team,"

Journal of Intelligent Manufacturing, vol. 20, no. 2, pp. 151-158, April 2009.

[24] A. Vlasov and A. Yudin, "Distributed Control System in Mobile Robot Applicaiton: General Approach, Realization

and Usage," in International Conference on Research and Education in Robotics, 2011, pp. 180-192.

[25] A. Kasinski and P. Skrzypczynski, "Perception Network for the Team of Indoor Mobile Robots: Concept,

Architecture, Implementation," Engineering Applications of Artificial Intelligence, vol. 14, no. 2, pp. 125-127, April

2001.

[26] K. Xu and P. Song, "A Coordination Framework for Weakly Centralized Mobile Robot Teams," in 2010 IEEE

International conference on Information and Automation, 2010, pp. 77-82.

[27] H. Mehrjerdi, M. Saad, and J. Ghommam, "Hierarchical Fuzzy Cooperative Control and Path Following for a Team

of Mobile Robots," IEEE/ASME Transactions on Mechatronics, vol. 16, no. 5, pp. 907-917, October 2011.

[28] J. Nicolas and Y. Zhi, "Improved Trade-Based Multi-Robot Coordination," in Proceedings of the 2011 6th IEEE

Joint International Information Technology and Artificial Intelligence Conference, 2011, pp. 500-503.

[29] U. Gurel and O. Parlaktuna, "A New Architecture for Multi-Robot Teams in Market-Based Applications," in

Proceedings of the 7th International Conference on Electrical and Electronics Engineering, 2011, pp. 11430-11433.

[30] E. Martinson and R.C. Arkin, "Learning to Role-Switch in Multi-Robot Systems," in 2003 IEEE International

Conference on Robotics and Automation, 2003, pp. 2727-2734.

[31] Y. Wang and C. De Silva, "Multi-robot Box-pushing: Single-Agent Q-Learning vs. Team Q-Learning," in IEEE

International Conference on Intelligent Robots and Systems, 2006, pp. 3694-3699.

[32] P.E. Rybski, S.A. Stoeter, M. Gini, D.F. Hougen, and N.P. Papanikolopoulos, "Performance of a Distributed Robotic

System Using Shared Communications Channels," IEEE Transactions on Robotics and Automation, vol. 18, no. 5,

pp. 713-727, October 2002.

[33] C. McMillen et al., "Resource Scheduling and Load Balancing in Distributed Robotic Control Systems," Robotics

and Autonomous Systems, vol. 44, no. 3-4, pp. 251-259, September 2003.

[34] S. Brown, M. Zuluaga, Y. Zhang, and R. Vaughan, "Rational Aggressive Behaviour Reduces Interference in a

Mobile Robot Team," in 2005 12th International Conference on Advanced Robotics, 2005, pp. 741-748.

[35] R. Emery, K. Sikorski, and T. Balch, "Protocols for Collaboration, Coordination and Dynamic Role Assignment in a

Robot Team," in Proceedings 2002 IEEE International Conference on Robotics and Automation, 2002, pp. 3008-

3015.

[36] H. Min and Z. Wang, "Group Escape Behavior of Multiple Mobile Robot System by Mimicking Fish Schools," in

2010 IEEE International Conference on Robotics and Biomimetics, 2010, pp. 320-326.

[37] F. Santos, L. Almeida, P. Pedreiras, and L. Lopes, "A real-time distributed software infrastructure for cooperating

mobile autonomous robots," in International Conference on Advanced Robotics, 2009, p. 6.

[38] H. Raj et al., "Spirits: Using Virtualization and Pervasiveness to Manage Mobile Robot Software Systems," in

Proceedings Second IEEE International Workshop Self-Managed Network Systems and Services, 2006, pp. 116-129.

[39] M. Aicardi, "Coordination and Control of a Team of Moblie Robots," WSEAS Transactions on Systems, vol. 6, no. 6,

pp. 1116-1123, June 2007.

[40] C.F. Touzet, "Robot Awareness in Cooperative Mobile Robot Learning," Autonomous Robots, vol. 8, no. 1, pp. 87-

97, January 2000.

[41] E. Stump, A. Jadbabaie, and V. Mumar, "Connectivity Management in Mobile Robot Teams," in Proceedings of the

IEEE International Conference on Robotics and Automation, 2008, pp. 1525-1530.

[42] J. Fink, A. Ribeiro, and V. Kumar, "Robust Control for Mobility and Wireless Communication in Cyber-Physical

Systems with Application to Robot Teams," Proceedings of the IEEE, vol. 100, no. 1, pp. 164-178, 2012.

[43] M. Li et al., "Architecture and Protocol Design for a Pervasive Robot Swarm Communication Networks," Wireless

Communications and Mobile Computing, vol. 11, no. 8, pp. 1092-1106, August 2011.

[44] J. De Hoog, S. Cameron, A. Jimenez-Gonzalez, J. De-Dios, and A. Ollero, "Using Mobile Relays in Multi-Robot

Exploration," in Proceedings of the 2011 Australasian Conference on Robotics and Automation, 2011, p. 8.

[45] G. Stambolov, T. Sperauskas, and R. Simutis, "Holonic Communication Structure in the Team of Cooperative

Autonomous Mobile Robots," in 2008 Conference on Human System Interaction, 2008, pp. 458-463.

[46] A. Cowley, H.-C. Hsu, and C.J. Taylor, "Distributed Sensor Databases for Multi-Robot Teams," in 2004 IEEE

International Conference on Robotics and Automation, 2004, pp. 691-696.

[47] H. Bistry and J. Zhang, "A Cloud Computing Approach to Complex Robot Vision Tasks using Smart Camera

126

Systems," in IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, 2010, pp. 3195-3200.

[48] A.A. Loukianov, H. Kimura, and M. Sugisaka, "Implementing Distributed Control System for Intelligent Mobile

Robot," Artificial Life and Robotics, vol. 8, no. 2, pp. 159-162, 2004.

[49] T. Nishi, Y. Mori, M. Konishi, and J. Imai, "An Asynchronous Distributed Routing System for Multi-robot

Cooperative Transportation," in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005,

pp. 1730-1735.

[50] R. Quitadamo et al., "The PIM: An Innovative Robot Coordination Model Based on Java Thread Migration," in

Proceedings of the 6th International Conference on Principles and Practice of Programming in Java, 2008, pp. 43-

51.

[51] R. Madhavan, R. Lakaemper, and T. Kaimar-Nagy, "Benchmarking and Standardization of Intelligent Robotic

Systems ," in Proceedings of the International Conference on Advanced Robotics, 2009, p. 7.

[52] OMG®. (2012, August) Robotics Domain Task Force. [Online]. http://robotics.omg.org/

[53] SAE International. (2012, August) SAE Standards. [Online]. http://standards.sae.org

[54] A. Martin and M. R. Emami, "Control ad libitum: an approach to real-time construction of control systems for

unstructured robotic teams," in The 14th IASTED International Conference on Robotics and Applications, 2009.

[55] A. Martin and M. R. Emami, "Exploration and Mapping for Unstructured Robot Teams," in 8th IEEE International

Symposium on Computational Intelligents in Robotics and Automation, Korea, 2009, p. 6.

[56] R. Arkin, Behavior-Based Robotics. United States of America: The MIT Press, 1998.

[57] M. Mataric, "Behavior-Based Systems: Main Properties and Implications," in Proceedings of the IEEE International

Conference on Robotics and Automation, 1992, pp. 46-54.

[58] S. Waslander, G. Inalhan, and C. Tomlin, "Decentralized Optimization via Nash Bargaining," in Theory and

Algorithms for Cooperative Systems, D. Grundel, R. Murphey, and P. Pardalos, Eds. Singapore: World Scientific

Publishing, 2004, ch. 25, pp. 565-585.

[59] M. Weisfeld, Object Oriented Thought Process, 3rd ed. United States of America: Pearson Education, 2008.

[60] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat, "Providing High Availability using Lazy Replication," ACM

Transactions on Computer Systems (TOCS), vol. 10, no. 4, pp. 360-391, November 1992.

[61] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems: Concepts and Design, 4th ed. Harlow, England:

Pearson Education Limited, 2005.

[62] A. Martin and M. R. Emami, "A Dynamically Distributed Control Framework for Robot Teams," Autonomous

Agents and Multi-Agent Systems, 2012, Submitted.

[63] F. Cristian, "Probabilistic Clock Synchronization," Distributed Computing, vol. 3, no. 3, pp. 146-158, 1988.

[64] M. Fischer, N. Lynch, and M. Paterson, "Impossibility of Distributed Consensus with One Faulty Process," Journal

of the ACM, vol. 32, no. 2, pp. 374-382, April 1985.

[65] T. Chandra and S. Toueg, "Unreliable Failure Detectors for Reliable Distributed Systems," Journal of the ACM, vol.

43, no. 2, pp. 225-267, March 1996.

[66] W. Chen, S. Toueg, and M. Aguilera, "On the Quality of Service of Failure Detectors," IEEE Transactions on

Computers, vol. 51, no. 5, pp. 561-580, May 2002.

[67] R. Guerrauoi, M. Lerrea, and A. Schiper, "Non Blocking Atomic Commitment with an Unreliable Failure Detector,"

in Proceedings of the 14th Symposium on Reliable Distributed Systems, 1995, pp. 41-50.

[68] W. Chen, "On the Quality of Service of Failure Detectors," Cornell University, United States of America, PhD

Thesis 2000.

[69] L. Johnson, S. Ponda, H.-L. Choi, and J. How, "Improving the Efficiency of a Decentralized Tasking Algorithm for

UAV Teams with Asynchronous Communications," in AIAA Guidance, Navigation, and Control Conference, 2010,

p. 22.

[70] S. Thrun, "Simultaneous Localization and Mapping," in Robotics and Cognitive Approaches to Spatial Mapping, M.

E. Jefferies and W-K. Yeap, Eds. Berlin: Springer-Verlag, 2008, pp. 13-41.

[71] D. Rodriguez-Losada, F. Matia, A. Jimenez, and R. Galan, "Local Map Fusion for Real-time Indoor Simultaneous

Localization and Mapping," Journal of Field Robotics, vol. 23, no. 5, pp. 291-309, April 2006.

[72] D. Rodriguez-Losada, P. San Segundo, F. Matia, and L. Pedraza, "Dual FastSLAM: Dual Factorization of the

Particle Filter Based Solution of the Simultaneous Localization and Mapping Problem," Journal of Intelligent and

Robotic Systems, vol. 55, no. 2-3, pp. 109-134, July 2009.

[73] T. Bailey, J. Nieto, and E. Nebot, "Consistency of the FastSLAM Algorithm," in Robotics and Automation 2006.

127

ICRA 2006, Orlando, 2006, pp. 424-429.

[74] H. Liu, L. Gao, Y. Gai, and S. Fu, "Simultaneous Localization and Mapping for Mobile Robots Using Sonar Range

Finder and Monocular Vision," in IEEE International Conference on Automation and Logistics, Jinan, 2007, pp.

1602-1607.

[75] H.J. Chang, C.S.G. Lee, Y.H. Lu, and Y.C. Hu, "P-SLAM: Simultaneous Localization and Mapping With

Environmental-Structure Prediction," IEEE Transactions on Robotics, vol. 23, no. 2, pp. 281-293, April 2007.

[76] A. Gil, O. Reinoso, M. Ballesta, and M. Julia, "Multi-robot visual SLAM using a Rao-Blackwellized particle filter,"

Robotics and Autonomous Systems, vol. 58, no. 1, pp. 68-80, January 2010.

[77] M. Wu, F. Huang, L. Wang, and J. Sun, "Cooperative Multi-Robot Monocular-SLAM using Salient Landmarks," in

International Asia Conference on Informatics in Control, Automation and Robotics, 2009, pp. 151-155.

[78] M. Pfingsthorn and A. Birk, "Efficiently Communicating Map Updates with the Pose Graph," in IEEE/RSJ

International Conference on Intelligent Robotics and Systems (IROS), Nice, 2008, pp. 2519-2524.

[79] M. Rosencrantz, G. Gordon, and S. Thrun, "Decentralized sensor fusion with distributed particle filters," in

Uncertainty in Artificial Intelligence, 2003.

[80] O. Cappe, S. Godsill, and E. Moulines, "An overview of existing methods and recent advances in sequential Monte

Carlo ," Proceedings of the IEEE, vol. 95, no. 5, pp. 899-924, 2007.

[81] M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, "A Tutorial on Particle Filters for Online Nonlinear/Non-

Gaussian Bayesian Tracking," IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174-188, 2002.

[82] A. Doucet, S. Godsill, and C. Andrieu, "On Sequential Monte Carlo Sampling Methods for Bayesian Filtering ,"

Statistics and Computing, vol. 10, pp. 197-208, 2000.

[83] R. Douc, O. Cappe, and E. Moulines, "Comparison of resampling schemes for particle filtering," in 4th International

Symposium on Image and Signal Processing and Analysis, 2005, pp. 64-69.

[84] J. Liu, J.-B. Wu, and D. Maluf, "Evolutionary Self-organization of an Artificial Potential Field Map with a Group of

Autonomous Robots," in 1999 Congress on Evolutionary Computation, 1999.

[85] A. Howard and L. Kitchen, "Generating sonar maps in highly specular environments ," in Fourth International

Conference on Control Automation Robotics and Vision, 1996, pp. 1870-1874.

[86] S.-J. Lee et al., "Evaluation of Features through Grid Association for Building a Sonar Map," in 2006 IEEE

International Conference on Robotics and Automation, 2006, pp. 2615-2620.

[87] A. Martin and M. R. Emami, "Just-in-time Cooperative Simultaneous Localization and Mapping," in International

conference on Control, Automation, Robotics and Vision, 2010, pp. 1-6.

[88] A. Howard, "Multi-robot Simultaneous Localization and Mapping using Particle Filters," The International Journal

of Robotics Research, vol. 25, no. 12, pp. 1243-1256, 2006.

[89] M. Bryson and S. Sukkarieh, "Co-operative Localisation and Mapping for Multiple UAVs in Unknown

Environments," in 2007 IEEE Aerospace Conference, 2007, pp. 1-12.

[90] M. Walter and J. Leonard, "An Experimental Investigation of Cooperative SLAM," in Fifth IFAC Symposium on

Intelligent Autonomous Vehicles, 2004.

[91] A. Martin and M. R. Emami, "Just-in-time Cooperative Simultaneous Localization and Mapping: A Robust and

Efficient Particle Filter Approach," International Journal of Robotics and Automation, 2012, Submitted.

[92] Microsoft Corp. (2012, March) UUID structure (Windows). [Online]. http://msdn.microsoft.com/en-

us/library/windows/desktop/aa379358(v=vs.85).aspx

[93] Wolfram Research Inc. (2012, August) Birthday Problem. [Online].

http://mathworld.wolfram.com/BirthdayProblem.html

[94] D. Maclay, "Simualiton gets into the Loop," IEE Review, vol. 43, no. 3, pp. 109-112, 1997.

[95] A. Martin and M. R. Emami, "A Fault-tolerant Approach to Robot Teams," Robotics and Autonomous Systems, 2012,

Submitted.

[96] Microsoft®. (2012, October) Microsoft Robotics Developer Studio. [Online]. http://www.microsoft.com/robotics/

[97] Player Project. (2012, October) Player Project. [Online]. http://playerstage.sourceforge.net/

[98] A. S. Mamaghani, M. Mahi, M. R. Meybodi, and M. H. Moghaddam, "A Novel Evolutionary Algorithm for Solving

Static Data Allocation Problem in Distributed Database Systems," in 2010 Second international Conference on

Network Applications, Protocols and Services, 2010, pp. 14-19.

[99] S. Rahmani, V. Torkzaban, and A. Haghighat, "A New Method of genetic Algorithm for Data Allocation in Distribed

Database Systems," in 2009 First International Workshop on Education Technology and Computer Science, 2009,

128

pp. 1037-1041.

[100] I. Hababeh, "Improving network systems performance by clustering distributed database sites," Journal of

Supercomputing, p. 19, 2010, Article In Press.

[101] R. Mahmoudie and S. Parsa, "Data Allocation in Distributed Data Base in the Network Using Modularization

Algorithm," in 12th International Conference on Computer Modelling and Simulation, 2010, pp. 503-508.

[102] E. Nerurkar, S. Roumeliotis, and A. Martinelli, "Distributed Maximum A Posteriori Estimation for Multi-robot

Cooperative Localization," in IEEE International Conference on Robotics and Automation, Kobe, 2009, pp. 1402-

1409.

[103] T. Balch, "Hierarchic Social Entropy: An Information Theoretic Measure of Robot Group Diversity," Autonomous

Robots, vol. 8, no. 3, pp. 209-238, June 2000.

[104] C.E. Shannon, "The Mathematical Theory of Communication," Bell System Technical Journal , vol. 27, no. 3, pp.

379-423, 1949.

[105] M. Perez, "An overview of Behavioural-based Robotics with simulated implementations on an Underwater Vehicle,"

Institut d’Informàtica i Aplicacions Universitat de Girona, Girona, PhD Thesis 2000.

[106] T. Browning, "Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review

and New Directions," IEEE Transactions on Engineering Management, vol. 48, no. 3, pp. 292-306, August 2001.

[107] K. Holtta-Otto and O. Weck, "Degree of Modularity in Engineering Systems and Products with Technical and

Business Constraints," Concurrent Engineering: Research and Applications, vol. 15, no. 2, pp. 113-126, June 2007.

[108] J. Pandremenos, C. Chatzikomis, and G. Chryssolouris, "On the Quantification of Interface Design Architectures,"

Asian International Journal of Science and Technology in Production and Manufacturing Engineering (AIJSTPME),

vol. 2, no. 3, pp. 41-48, 2009.

[109] J. Bondy and U. Murty, Graph Theory, S. Axler and K. Ribet, Eds. New York, USA: Springer, 2008.

[110] M. Lazzaroni, L. Cristaldi, L. Peretto, P. Rinaldi, and M. Catelani, Reliability Engineering: Basic Concepts and

Applictions in ICT. Berlin: Springer-Verlag, 2011.

[111] J. Nachlas, Reliability Engineering: Probabilistic Models and Maintenance Methods. United States of America:

Taylor & Francis, 2005.

[112] J. Hoffmann, M. Jungel, and M. Lotzsch, "A Vision Based System for Goal-Directed Obstacle Avoidance," in

RoboCup 2004: Robot Soccer World Cup VIII, D. Nardi et al., Eds.: Springer, 2004, pp. 418-425.

[113] D. Scharstein and A. Briggs, "Real-time Recognition of Self-Similar Landmarks," Image and Vision Computing, vol.

19, pp. 763-772, 2000.

129

Appendix I
Design, Development, and Performance Indexes

I.1 Adaptability

Adaptability is used here to represent the ability of the

system to respond to changes in resource availability in

real-time while continuing to achieve its goals. There

are two major factors contributing to resource changes.

The first is failure, hardware or software, planned or

unplanned, which can occur at a disconcerting frequency

in complex systems operating in real-world

environments. The study in [38] reported a mean time

between hardware failures in a robot team to be as low

as 8 hours. The second factor is differences between

installations. For large scale applications it may not be

possible or practical to have the exact same setup across

all installations.

An adaptability scorecard has been developed as a tool

to score different system options or identify weaknesses

in a system. The strategy is to first construct a checklist

that is appropriate to the system and tasks it will be

performing, then rate the adaptability in response to each

item. The final score can be used to compare system

options and low scores for individual items could

indicate weaknesses in the system that could be

remedied.

A list of common points of evaluation is provided here:

 Single/Few hardware failure/change/unavailability

o Sensor, Communication, Processor, Mobility, Task

specific hardware

 Multiple/Many hardware failure/change/unavailability

o Sensor, Communication, Processor, Mobility, Task

specific hardware

 Software failure

o Non-critical component, Multiple non-critical

components, Critical component, Multiple critical

components

 Information failure

o Data disagreement, Data corruption, Data

uncertainty

I.2 Diversity

The concept of diversity can be applied to a number of

areas of a robot team, including behavioural differences

between team members[5]. As previously mentioned,

these metrics are not meant to be exhaustive but merely

to provide useful and interesting tools of evaluation, and

so only five facets of diversity relating to the control

system and robot hardware are considered here. A

combined diversity index is developed below that

considers robot hardware, population size, team

structure, hardware flexibility, and population

flexibility; it is also shown how the index can be

customized to focus on any subset of the above facets.

This distinction index can be applied to either fully

realized team after the Implementation phase or to

speculative teams after the Control Strategy phase.

This team diversity index is defined using the concept of

Hierarchic Social Entropy (HSE), and follows the

techniques developed in [103]. The HSE index builds

on the concept of “simple” social entropy from

Shannon’s work in information theory [104], and

maintains its six key properties, being: continuous,

monotonic, recursive, lower bounded, globally maximal

when diversity is evenly distributed, and lacking local

maxima. The HSE index overcomes the inability of

simple social entropy to account for the degree of

difference between elements of a society, and provides a

continuous and uniform measure of diversity. HSE can

also distinguish differences in diversity between two

systems regardless of scale [103].

We first define:

 R ≡ a set of N elements; r1, r2, …, rN

C ≡ a set of M possibly overlapping subsets of

the elements of R; c1, c2, …, cM

 ≡ the proportion of elements in the ith subset

 | |

| |∑ (I-1)

 1 (I-2)

The simple social entropy of system X can then be

calculated using Shannon’s formula [104]:

130

 log p (I-3)

where is a positive constant that defines the scale of

the measure, typically 1. In order for HSE to reflect the

degree of diversity between elements, each element is

represented as a point in A-dimensional space, where

axes are defined to represent each of A relevant potential

differences. Although it is not discussed in [103], it

may be necessary to normalize and/or weight each axis

in order to balance the diversity represented by that

attribute. This is accomplished using normalizing and

weight factors, ηa and wa respectively, and applying

them at each axis.

 For each axis : | | (I-4)

There is no fixed procedure for determining the correct

normalization and weight factors since it depends on the

axes and how important their influence on diversity is

considered. An intuitive starting point is to normalize

each axis so that the distance between the minimum and

maximum values of the expected range is approximately

1, and then weight the axis according to the priorities of

the application. [103] then uses the clustering algorithm

Cu, with a variable cluster level h to group the elements

into subsets, ci. The cluster level h is increased from 0

to infinity, and the simple social entropy calculated for

the corresponding system, , . The HSE is then

defined in [103] as:

 , (I-5)

For this application each robot is considered as a

separate element/point, thus considering population size

of different robot types, and axes typically represent a

feature of the robot hardware, such as mass,

acceleration, or number of sonar sensors.

I.3 Modularity

Modularity is generally considered as a desirable trait

for any complex system. It can reduce the complexity of

the design, reduce the effort required to develop each

module, and allow modules to be reused within the

system or in future systems. Proponents of behavioural

control also put forward robustness and incremental

design as other benefits of modularity [105]. Beyond

hardware modularity, which can improve robustness and

simplify repairs, developers of robot teams are more

concerned about modularity of the software of the

control system. In particular, this means identifying the

fundamental modules of a control system and their

connections to other modules, noting that the

connections are not necessarily bidirectional. Once the

modules and their connections are known it is

convenient to form them into a Design Structure Matrix

(DSM), which is popular for its use in a number of

design and analysis methodologies [106]. Of interest

here is using the DSM to quantify modularity, which can

be done through several methods including, [107] and

[108], among others. Each method has certain

advantages and disadvantages, many of which are

summarized in [108], and a combination of [107] and a

modified version of [108] will be used here. The

reasoning for this choice will be discussed below when

the methodologies are explained.

Breaking a control system into its fundamental modules

is not an obvious task, though two basic strategies stand

out:

1. Code Level (analogous to an Architecture DSM

[106]) – Treat each function in the code as a module and

any function that calls this module is connected to it.

Very basic functions might be ignored, and tightly knit

groups of small functions might be combined into a

single module.

2. Functionality Level (analogous to an

Organization DSM [106]) – Instead of looking at

functions in the code consider modules as areas of

functionality. For example a basic mapping control

system might have the modules mapping, exploring,

sensor processing, path planning, and navigating.

Whatever module breakdown strategy is chosen, one

should apply it consistently in order to allow

comparisons between multiple control systems. In

general, multiple instances of the same module should

be considered as one, even if their connections appear

different. Any change to that module could potentially

impact all of the instances, and therefore the modules

should be considered as a single entry with the

combined connections of all instances. This may lead to

seemingly counterintuitive results, for example it is

possible to implement a centralized control algorithm in

a more modular fashion than a distributed one.

131

Once the DSM has been constructed, modularity indexes

can be calculated. [108] propose a two step process, first

calculating a “Modularity Performance” (MP) index

based on the number of connections in the DSM, and

then calculating a “Modularity Type” standard deviation

(STD) index that indicates whether the structure is

closer to a bus-modular or chain-modular configuration.

However, the MP index they describe is only suitable

for symmetric binary DSMs and ultimately not

significantly different than the non-zero fraction (NZF)

index proposed in [107]. Both indexes measure the

sparsity of the DSM, which is tied to modularity but

does not paint the whole picture. The singular value

modularity index (SMI) proposed in [107] claims to

measure the degree of modularity and claims the

following desirable properties:

1. SMI is theoretically bounded between 0 and 1.

2. SMI is independent of subjective module

boundaries and ordering of rows and columns in the

DSM.

3. SMI is largely scale-free, it can be calculated

for systems of different sizes with the same architecture

and will return nearly the same value. (In a series of

simple experiments the authors observed that this is only

true for moderate to large systems, N > 15, and appears

to converge as N approaches infinity)

However, [108] points out a basic inconsistency where

the SMI for an idealized bus-modular system is lower

than that of a fully connected “integral” system. There

are also inconsistencies when non-binary connections

are used, for example a chain modular system with

mixed weak and strong connections has a lower SMI

than a chain modular system with either all strong or all

weak connections. Despite these inconsistencies, [107]

present a significant number of test cases that seem to

validate SMI for moderate sized, real-world systems.

The STD index developed by [108] also has all three

properties listed above and yields the expected results in

the case of idealized systems. Because of this the STD

index will be used as the primary differentiator between

systems with similar NZF, and SMI will be used to

corroborate the results.

The following paragraphs explain how NZF, SMI and

STD are calculated, using the formulation found in [107]

and [108], respectively.

The NZF index is simply a measure of the sparsity of the

DSM, with a value of 1 indicating all modules are

connected to all other modules and a value of 0.29 being

the minimum value for a binary system that has a

connected graph, meaning a path can be found between

any two modules [109]. Values lower than 0.29 are

possible if non-binary connections or unidirectional

connections are used. NZF can be calculated as

 NZF ∑ ∑ DSM1 (I-6)

where DSMij represents the i,j element of the DSM and

 is the number of modules.

The SMI approximates the decay rate of the singular

values of the DSM. Taking the set of sorted singular

values σ1 to σN, SMI is calculated by finding the α factor

that minimizes the difference between the singular

values and the exponential decay function / .

 SMI 1 arg min / (I-7)

The STD index measures the standard deviation of the

number of connections of each module, then normalizes

it based on the maximum and minimum standard

deviation achievable for the total number of connections

in the system, STDmax and STDmin, respectively. The

base STD is calculated by

 STD 1
 (I-8)

where pi is the weighted number of connections of

module i and is the average weighted number of

connections in the system. [108] consider only

bidirectional connections, and so in the case of DSMs

with unidirectional connections the DSM should be

made symmetric prior to calculating STD using

 DSM DSM DSMT2 (I-9)

STDmax and STDmin can be found by arranging the

connections in the symmetric DSM into configurations

DSMmax and DSMmin, where they are most condensed

and most evenly distributed, respectively. [108]

describes a general procedure that works well for binary

DSMs, however in the non-binary case a more

132

complicated algorithm is required. Since the DSM is

forced to be symmetric consider only the lower triangle

of the matrix. Let A be an array of all elements in the

triangle ordered highest to lowest. DSMmax can be

constructed by filling each element column by column

from the entries in A. The construction of DSMmin is

much more complex due to the restriction of symmetry.

A brute-force solution is computationally intractable for

all but the smallest systems and no provable algorithmic

solution presents itself. However, a strategy of taking

alternating high-low-high-low elements of A and filling

DSMmin starting with the innermost diagonal and

moving outward has achieved the smallest STD in all

tested cases. As long as STDmin is close to the true

minimum the impact on the results is insignificant.

Once STDmax and STDmin are known the normalized

STD value can be calculated:

 STD 1 STD STDSTD STD (I-10)

As a control set a number of test cases are presented in

Table I-1, where STD demonstrates the expected results

in all cases and the inconsistencies of SMI discussed

above are apparent. A selection of DSMs from the

control set is visualized in Fig. I-1.

I.4 Efficiency

Cost-return analysis and Return on Investment (ROI) are

commonly used in business and financial analysis to

judge the quality of investments or compare different

project proposals. The same techniques can be applied

to quantify the efficiency of a robot team. Depending on

the nature of the application it may be possible to apply

the techniques directly in terms of dollar value cost of

the purchasing and operating the robot hardware and the

monetary return of tasks they perform, or abstractions

can be made to measure other factors. For example, if

energy efficiency is the primary concern the cost can be

measured in Joules and the return is the number and

quality of tasks performed. A more efficient team is one

that completes more tasks with the same or lower energy

expenditure, and this is reflected in a higher ROI.

ROI is a ratio measure, calculated as

 ROI returncost (I-11)

Whereas Gross Profit (GP) measures the absolute size of

the return

 GP return cost (I-12)

Table I-1
Control Set Modularity Indexes

Case N SMI NZF MP STDnorm

Integral 7 0.16 1 0 0

Bus 7 0.12 0.29 1 0

Chain 7 0.81 0.29 1 1

One-way Bus 7 0.11 0.14 1.2 0

One-way Chain 7 0.81 0.14 1.2 1

Weak Bus 7 0.11 0.14 1.2 0

Weak Chain 7 0.81 0.14 1.2 1

Mixed Bus 7 0.11 0.21 1.1 0

Mixed Chain 7 0.53 0.21 1.1 1

Big Bus 14 0.06 0.14 1 0

Big Chain 14 0.96 0.14 1 1

Strong Chain

Weak Bus
7 0.5 0.4 0.83 0.81

Weak Chain

Strong Bus
7 0.3 0.4 0.83 0.11

Desk Phone* 14 0.45 0.22 0.91 0.91

Mobile Phone* 11 0.23 0.29 0.87 0.33

Desk PC* 23 0.24 0.15 0.93 0.63

Mobile PC* 16 0.2 0.18 0.93 0.26

* Original DSM breakdown from [107]

 * Original DSM breakdown from [107]

Fig. I-1 Control Set DSMs

133

Both values can be useful in different situations, and are

easily calculated once the definitions for cost and return

are in place. How cost and return are defined depends

on the priorities of the application and can vary greatly

in complexity. Costs typically fall into four categories:

1. Initial Costs: hardware, infrastructure, and setup.

2. Operating Costs: energy/fuel consumption and

operator salaries.

3. Repair Costs: replacing and repairing hardware

between missions.

4. Opportunity Costs: penalties for missing critical

tasks, or downtime for a facility while the team working.

Returns are simply the value of each task performed,

either monetary or a value abstraction. However, these

values need not be constant and can be modified by

various factors, such as: quality of service, time taken to

complete the task, or when the task was completed if a

time window was specified.

I.5 Persistency

Persistency is not about avoiding or eliminating failures,

because for any complex system operating in real

environments failures are inevitable. A truly robust

control system should be able to recover from failures

with minimal loss of data, maintaining the knowledge

and learning acquired up to that point [38]. The

question becomes what types of failures can occur, how

are they handled, and when do they become critical

failures where the system loses its ability to function.

Mean time between critical failures (MTBCF) is a useful

tool to evaluate persistency. As the name implies,

MTBCF is simply the average uptime of the system

before it suffers a critical failure. If the system is

repaired and continues operation the downtime during

repairs is not counted towards the next sample, only

uptime is considered. It is also possible, indeed

desirable, that the system does not encounter a critical

failure during a mission, in which case the uptime

continues accumulating over subsequent missions until a

critical failure does occur.

As a comparator MTBCF is easy to apply: first define

what constitutes a critical failure and then simply record

the MTBCF over the lifetime of the system. MTBCF

can then be compared between multiple systems and

used as an indicator of robustness and persistency.

When used as a predictor the goal is different. Rather

than attempting to predict what the MTBCF will be, the

goal is to identify the most probable causes for critical

failure so that they can be planned for and handled more

robustly. Detailed methodologies for constructing

reliability models are beyond the scope of this thesis but

many techniques can be found in reliability handbooks

and textbooks [110,111]. The general premise is to

break the system into components and construct a

network of their relationships. Then the failure

probabilities of each component can be used to generate

a failure probability for the entire system. This process

can be used at the system implementation level to

identify weaknesses and areas for improvement, or at the

system architecture or strategies levels to compare

different approaches and identify fundamental

limitations. An example of persistency analysis can be

found in Section 6.2.2.1.

134

Appendix II
HAA Algorithms

Algorithm 1 Unreliable Failure Detector
(HAA-UFD)

Process p (Observed):
1 Initialization:
2 period := INITIAL_PERIOD;
3 nextPeriod := INITIAL_PERIOD;
4 := the local time;
5 := 0;

6 upon = the local time:
7 period := nextPeriod;
8 send heartbeat := { , period, };
9 := + period;
10 := + 1;

11 upon receive message setPeriod = { newPeriod }
12 nextPeriod := newPeriod;

Process q (Observer):
13 Initialization:
14 initialize PF parameters { , };
15 := the local time;
16 := ‐1;

17 upon = the local time:
18 proposal := SUSPECTED;

19 upon receive message = { , period, } at time :
20 If > then
21 := ;
22 := ;
23 If t < then
24 proposal := TRUSTED;

25 after every N heartbeat messages received:
26 re‐evaluate PF parameters { , };
27 send setPeriod message := { };

Algorithm 2 Totally Ordered Atomic
Commit (HAA-OAC)

Note: the notation ◊Sp indicates the set of processes

suspected by p’s failure detector.

1 activeTransactionsp : list; /* List of transactions that the
local process is participating in that are undecided */

2 decidedTransactionsp: list; /* List of transactions that have
been decided */

3 procedure startTransaction(id, transaction, participants):

4 order := highest order of (activeTransactionsp U
decidedTransactionsp) + 1; /* move to back of queue */

5 send(id, transaction, participants, order) to all
participants;

6 upon receive (id, transaction, participants, order):
7 if (decidedTransactionsp[id] = NULL) then
8 atomicCommit(id, transaction, participants, order);

9 procedure atomicCommit(id, transaction, participants,

order):
10 outcome : { commit, abort };
11 statep : { decided, undecided };
12 estp : { pre‐abort, pre‐commit }; /* Estimate */
13 rp : integer; /* Round */
14 tsp : integer; /* Timestamp */
15 orderp : integer; /* Commit order */

16 Initialization:
17 statep := undecided;
18 estp := pre‐abort;
19 rp := ‐1;
20 tsp := 0;
21 if (activeTransactionsp[id] = NULL) then order :=

activeTransactionsp[id].order; /* Have updated order */
22 if [(order, id) < highest in (activeTransactionsp U

decidedTransactionsp)] then /* Confirm order */
23 orderp := highest order of (activeTransactionsp U

decidedTransactionsp) + 1; /* back of queue */
24 send(id, p, orderp) to all participants;
25 else orderp := order;
26 activeTransactionsp[id] := { id, transaction,

participants, orderp }; /* Add to active transactions */
27 vote := evaluateTransaction(transaction);
28 if vote = no then /* Unilateral abort */
29 send(id, p, ‐1, rp, abort, decide) to all participants;
30 begin Task 1;
31 else
32 cobegin Task 1|| Task 2 coend; /* Concurrent */

33 Task 1:
34 wait until receive (id, ‐, order, ‐, outcome, decide);
35 statep := decided;
36 send(id, p, order, ‐, outcome, decide) to all

participants; /* Notify all of decision */
37 wait until [(order, id) is lowest in activeTransactionsp

or outcome = abort];
38 decide(transaction, outcome);
39 activeTransactionsp[id] := NULL;
40 decidedTransactionsp[id] := { id, order };
41 wait until [for n participants q: received (id, q, ‐, ‐,

outcome, decide) from q or q is permanently � ◊Sp];
42 decidedTransactionsp[id] := NULL;

135

43 Task 2:
44 while statep = undecided
45 rp := rp + 1;
46 coord := p(rp mod n) + 1;
47 send(id, p, orderp, rp, estp, tsp) to coord; /* P1 */
48 if (p = coord) then /* Step C1 */
49 wait until [(for n –f participants q: received (id, q,

orderp, rp, estq, tsq) from q) and (for n participants q:
received (id, q, orderp, rp, estq, tsq) from q or q � ◊Sp)];

50 msgsp[rp] = {(id, q, orderp, rp, estq, tsq) such that
p received (id, q, orderp, rp, estq, tsq) from q};

51 if |msgsp[rp]| = n then
52 estp := pre‐commit;
53 else
54 t := largest tsq such that (id, q, orderp, rp, estq,

tsq) � msgsp[rp];
55 estp := select one estq such that (id, q, orderp,

rp, estq, t) � msgsp[rp];
56 send (id, p, orderp, rp, estp) to all participants;
57 wait until [received (id, coord, orderp, rp, estcoord)

from coord or coord � ◊Sp]; /* Step P2 */
58 if received (id, coord, orderp, rp, estcoord) then
59 estp := estcoord;
60 tsp := rp;
61 send (id, p, orderp, rp, ack) to coord;
62 else
63 send (id, p, orderp, rp, nack) to coord;
64 if p = coord then /* Step C2 */
65 wait until [for n ‐ f participants q: received (id, q,

orderp, rp, ack) or (q, orderp, rp, nack)];
66 if [for n – f participants q: received (id, q,

orderp, rp, ack)] then
67 statep := decided;
68 if outcome = pre‐commit then
69 send (id, p, orderp, rp, commit, decide) to

all participants;
70 else
71 send (id, p, ‐1, rp, abort, decide) to all

participants;

72 upon receive(id, q, orderq, …); /* Check the order */
73 if (activeTransactionsp[id] = NULL and

decidedTransactionsp[id] = NULL) then
74 orderp := orderq;
75 activeTransactionsp[id] := { id, orderp}; /* add */
76 if orderq > orderp then
77 orderp := orderq; /* accept new order */
78 if Task 2 is active then
79 send(id, p, orderp) to all participants;
80 estp := pre‐abort;
81 rp := ‐1;
82 tsp := 0;
83 abort Task 2; /* Reset Task 2 */
84 begin Task 2;

Proofs for HAA-OAC

Proof that, for f < n/2, the original algorithm satisfies the

conditions AC-Uniform-Agreement, AC-Uniform-

Validity, AC-Termination, and AC-Non-Triviality is

provided in [67], along with the note that if f ≥ n/2 the

algorithm fails to terminate but still prevents participants

from reaching different decisions. It can readily be

observed that none of the modifications affect AC-

Uniform-Agreement, AC-Uniform-Validity, or AC-

Non-Triviality. However, a short proof is provided to

show that AC-Termination still holds and then a proof

for AC-Total-Order is derived.

Lemma OAC-1: Every correct participant eventually

reaches l. 37 of Task 1.

Since the behaviour of Tasks 1 and 2 is the same as [67]

until l. 37 of Task 1, the previous proof of AC-

Termination guarantees that for transaction m every

correct participant will eventually reach l. 37 of Task 1.

Proof of AC-Termination:

There always exists a transaction mlow that is the lowest

order of activeTransactionsp and by Lemma OAC-1

every correct participant of mlow will eventually reach l.

37 of Task 1. Since mlow has the lowest order of

activeTransactionsp it is free to proceed immediately no

matter what the outcome, at which point mlow is removed

from activeTransactionsp and the next transaction in line

becomes mlow. Since no participant will add a new

transaction with lower order than any of its current

transactions, for correct participant p with an active

transaction m waiting at l. 37 of Task 1 there are a finite

number of current transactions with lower order and so

m will eventually become mlow and terminate.

Lemma OAC-2: Once a transaction m has reached

the pre-commit stage its order o will never change.

Proof: Each participant proposes an order when and

only when they first learn of the transaction (ll. 23-25 or

76-79), and there exists a participant p+ who proposes an

order o+ ≥ all proposed orders. From (l. 78), p+ will

never change its proposal since all other proposals must

be ≤ o+. To reach the pre-commit stage (l. 52) every

participant must agree on an order o, and so it follows

that if the pre-commit stage is reached o must equal o+,

the highest proposed order.

136

Proof of AC-Total-Order:

Proof by contradiction. Assume correct process p

commits transaction m and then commits transaction m’,

while correct process q commits transaction m’ and then

commits transaction m. Without loss of generality,

assume that p commits m (Event 1) before q commits m’

(Event 2), and that q committing m (Event 3) can occur

before or after p commits m’. For m to reach the pre-

commit stage (l. 52) there must exist an order o that both

p and q agreed to, and by Lemma OAC-2 o will never

change after reaching this point. Similarly, for m’ to

reach the pre-commit stage there must exist an order o’

than both p and q agreed to that will never change.

There are four possible conflict cases:

1. p and q believe m and m’ conflict.

Contradiction: Since p believes m and m’ conflict it

follows that o < o’. Since q also agreed to o and o’ it

cannot commit m’ before committing m.

2. p believes that m and m’ conflict, but q does not.

Contradiction: For Event 1 to occur q must have agreed

to commit m and thus be aware of m prior to Event 1.

Since Event 2 occurs after Event 1, at the time of Event

2 it is impossible for q to believe m and m’ do not

conflict.

3. q believes that m and m’ conflict, but p does not.

Contradiction: In order to commit m’ q must have

received agreement from p. For p to believe that m and

m’ do not conflict p must have committed m (Event 1)

and discarded all knowledge of m (l. 42) before learning

about m’ (which must occur before Event 2). In order to

reach l. 42 p must have received a message from q

stating that q has committed m (l. 41). Since Event 3

happens after Event 2, at the time of Event 2 it is

impossible for p to think m and m’ do not conflict.

4. p and q believe m and m’ do not conflict.

Contradiction: For p to believe that m and m’ do not

conflict p must have committed m before learning about

m’. Conversely, for q to believe that m and m’ do not

conflict q must have committed m’ before learning about

m. This is impossible, since Event 1 occurs before

Event 2, q must know about m before committing m’.

Algorithm 3 Host Membership Service
(HAA-HM)

Note: the notation ◊Sp indicates the set of processes

suspected by p’s failure detector.

1 coreProcesses : list /* list of “core” processes */
2 joinListp : list /* list of applicants waiting to join */
3 memberListp : ordered list /* list of members, ordered by

insertion order */
4 removeListp : list /* list of members who are suspected */
5 leaveListp : list /* list of members who wish to leave */
6 lockedp : universally unique id /* flags whether the lock is

set and stores the current key */
7 updatingMembersp : boolean (FALSE) /* flags whether p is

currently trying to update membership */
8 connectionsTop : list /* processes p has connections to */
9 connectionsFromp : list /* processes p has connections

from */
10 sponsorp : id /* id of p’s sponsor */
11 sponseep : list /* list of applicants p is sponsoring */
12 groupCorrectp : boolean (FALSE) /* group formed */
13 coreMembersp : list /* list of all core members that have

been part of the group */

14 procedure groupLeave(): /* Leave request */
15 send (leave, p) to memberListp;
16 wait until p is removed from memberListp;
17 stop participating in all group activities;

18 upon receiving (leave, q):
19 if (q memberListp joinListp) then
20 insert q into leaveListp;
21 updateMembership();

22 upon suspecting process q: /* Remove request */
23 if (q memberListp) then
24 insert q into removeListp;
25 updateMembership();

26 upon trusting process q:
27 if (q joinListp) then
28 updateMembership();
29 else if (q removeListp) then
30 remove q from removeListp;
31 updateMembership();

32 upon permanently suspecting process q:
33 if (q joinListp) then
34 remove q from joinListp;

35 procedure groupJoin(): /* Join request */
36 for each q in coreProcesses
37 open connection to q;
38 insert q into connectionsTop;
39 send (apply, p) to q;
40 coreHead := first elements of coreProcesses;
41 if (p = front(coreProcesses)) then
42 lockedp := key := unique id;
43 OAC (membership, key, p, p) to p; /* group of one */
44 else if (p � coreHead) then
45 wait until FORMATION_TIMEOUT has elapsed;
46 while (p memberListp)
47 newMemberList := coreHead ‐ (coreHead ◊Sp);

137

48 OAC(formationFallback, p, newMemberList) to
newMemberList;

49 wait until OAC(formationFallback, p,
newMemberList) is decided;

50 upon receiving (apply, a):
51 insert a into joinListp;
52 insert a into connectionsFromp;
53 open connection to a;
54 insert a into connectionsTop;
55 send (introduce, p, p) to a;
56 send (introduce, a, p) to memberListp joinListp;
57 if (p = front(memberListp)) then /* we are the

undisputed leader */
58 insert a into sponseep;
59 send (sponsor, p) to a;
60 send current global state to a;
61 begin forwarding global state changes to a;

62 upon receiving (introduce, a, q):
63 if (a = q) then
64 insert q into connectionsFromp;
65 if (a connectionsTop) then
66 open connection to a;
67 insert a into connectionsTop;
68 send (introduce, p, p) to a;
69 if (p memberListp and sponsorp != NULL) then
70 send (connections, p, connectionsTop

connectionsFromp) to sponsorp;

71 upon receiving (sponsor, q):
72 sponsorp := q;
73 send (connections, p, connectionsTop

connectionsFromp) to sponsorp;

74 upon receiving (connections, q, connectionList):
75 updateMembership();

76 procedure updateMembership():
77 if (updatingMembersp = TRUE or OAC(remove, …) in

progress or OAC(membership, …) in progress) then
78 return;
79 if (p = front(memberListp ‐ removeListp)) then /* we

think we could be the leader */
80 acceptList := EMPTY; /* applicants to accept */
81 potentialList := EMPTY; /* applicants who are ready */
82 curMemberList := memberListp ‐ (removeListp

leaveListp);
83 for each applicant a in joinListp:
84 if [a ◊Sp or a sponseep or (groupCorrectp =

FALSE and a coreProcesses)] then /* disqualified */
85 continue;
86 if (connections of a curMemberList =

curMemberList) then
87 insert a into potentialList;
88 for each applicant a in potentialList:
89 if (connections of a acceptList = acceptList) then

/* a is connected to everyone already accepted */

90 potentialList := potentialList (a connections
of a); /* remove anyone a is not connected to */

91 insert a into acceptList;
92 if (groupCorrectp = FALSE and count(acceptList) <)

then /* make sure we can form a correct group */
93 acceptList := EMPTY;
94 if (acceptList removeListp leaveListp != EMPTY)

then
95 activeList := memberListp ‐ removeListp; /* members

we expect a response from */
96 removalList := removeListp;
97 updatingMembersp := TRUE;
98 if (acceptList leaveListp = EMPTY) then /* only

removal, don’t need to lock */
99 key := NULL;
100 else
101 key := unique id;
102 OAC (remove, key, p, removalList) to activeList;
103 wait until (OAC(remove, NULL, p, removalList) is

decided or OAC(remove, key, p, removalList) is aborted
or [(received (locked, key, q) or q � ◊Sp) for all q �
activeList and all active OACs are decided]);

104 if (key != NULL and received (locked, key, q) for
all q � activeList) then

105 newMemberList := (memberListp acceptList)
‐ leaveListp;

106 OAC (membership, key, p, newMemberList) to
activeList acceptList;

107 else
108 updatingMembersp := FALSE;
109 updateMembership();

110 upon receiving OAC(remove, key, q, removalList):
111 if (q != front(memberListp ‐ removeListp)) then
112 vote no; /* unilateral abort: not accepted leader */
113 else if (removalList != removeListp removalList) then
114 vote no; /* unilateral abort: don’t agree with list */
115 else
116 vote yes; /* can proceed */

117 upon committing OAC (remove, key, q, removalList):
118 memberListp := memberListp ‐ removalList;
119 removeListp := memberListp ◊Sp; /* reset */
120 leaveListp := memberListp leaveListp; /* reset */
121 if (p = front(memberListp)) then /* leader */
122 for each applicant a in joinListp ‐ (joinListp

sponseep):
123 insert a into sponseep;
124 send (sponsor, p) to a;
125 send current global state to a;
126 begin forwarding global state changes to a;
127 lockedp := key;
128 if (key != NULL) then /* we need to lock */
129 hold all future global state changes;
130 send (locked, key, p) to q;
131 else
132 propose held global state changes;
133 updateMembership();

138

134 upon aborting OAC (remove, key, q, removalList):
135 updateMembership();

136 upon committing OAC(membership, key, q,

newMemberList):
137 if (q = p) then
138 stop forwarding global state changes to all a �

(newMemberList sponseep);
139 sponseep:= sponseep ‐ (newMemberList sponseep);
140 joinListp := joinListp ‐ (newMemberList joinListp);
141 memberListp := newMemberList;
142 removeListp := memberListp ◊Sp; /* reset */
143 leaveListp := memberListp leaveListp; /* reset */
144 lockedp := NULL;
145 propose held global state changes;
146 if (groupCorrectp = FALSE) then
147 coreMembersp:= coreMembersp memberListp;
148 if (count(coreMembersp)) then
149 groupCorrectp:= TRUE;
150 updatingMembersp := FALSE;
151 updateMembership();

152 upon aborting OAC(membership, key, q,

newMemberList):
153 if (lockedp = key) then
154 lockedp := NULL;
155 propose held global state changes;
156 updatingMembersp := FALSE;
157 updateMembership();

158 upon receiving OAC(formationFallback, q,

newMemberList):
159 coreHead := first elements of coreProcesses;
160 if (memberListp != EMPTY) then
161 vote no; /* unilateral abort: group already exists */
162 else if (newMemberList != coreHead ‐ (coreHead

◊Sp)) then
163 vote no; /* unilateral abort: don’t agree with list */
164 else
165 vote yes; /* can proceed */

166 upon committing OAC(formationFallback, q,

newMemberList):
167 if (memberListp = EMPTY) then /* only accept one

formation message */
168 joinListp := joinListp ‐ (newMemberList joinListp);
169 memberListp := newMemberList;
170 removeListp := memberListp ◊Sp; /* reset */
171 leaveListp := memberListp leaveListp; /* reset */
172 if (p = front(memberListp)) then /* we are the

undisputed leader */
173 for each applicant a in joinListp ‐ (joinListp

sponseep):
174 insert a into sponseep;
175 send (sponsor, p) to a;
176 send current global state to a;
177 begin forwarding global state changes to a;
178 groupCorrectp:= TRUE;
179 updateMembership();

Proofs for HAA-HM

First a proof of HM-Formation is provided. This

guarantees that a correct group is eventually formed,

which is necessary for many of the remaining proofs.

Lemma HM-1: When a member calls

updateMembership() it will be called iteratively until the

member is satisfied that all updates are complete or the

member crashes.

Proof: A call to updateMembership() has four return

paths:

a) In progress abort (l. 78). This means that another

call to updateMembership() is in progress along return

path d, or that the member is currently participating in

either a remove or membership transaction. For the

second case, all possible outcomes of remove and

membership transactions include calls to

updateMembership().

b) Not leader abort (l. 79). The member does not

consider itself to be the leader and is not responsible for

updates.

c) No updates abort (l. 94). The member does not

have any updates to make. It is possible that a join

request may be temporarily denied due to suspicions (l.

84) or incomplete connections (l.86), and in either case

updateMembership() is called when those conditions

change, l. 26 and l. 74, respectively.

d) Attempt updates (ll. 95-109). The member

attempts to make the updates and eventually calls

updateMembership() (l. 109), or obtains a lock with

key* and sends an OAC(membership, key*, ...) message.

To obtain a lock the member must be the acknowledged

leader, and therefore the member will never accept a

lock from another member. Thus, upon deciding OAC(

membership, key*, ...) the member will call

updateMembership() (l. 151 or l. 157).

Lemma HM-2: The probability that update attempts

from a member calling updateMembership() will fail

indefinitely approaches 0 with increasing time, and

therefore if the member does not crash every individual

update from that member will either eventually be

committed or rescinded.

Proof: Update attempts can fail for three reasons:

a) A process crashes, thus preventing OAC(remove,

...) or OAC(membership, ...) from being committed, or

preventing a (locked, ...) message from being delivered.

139

In this case the process will eventually be suspected and

be added to the remove update or removed from the

membership update.

b) A member disagrees with the proposed

removalList (l. 113). This may happen if the leader has

falsely suspected a member, or the dissenting member

has not yet suspected a crashed process. Both situations

are temporary and will eventually be corrected by their

respective members.

c) A member does not accept the proposer as leader

(l. 111). This may happen if the proposer has

incorrectly assumed leadership due to false suspicions,

or the dissenting member has not yet suspected crashed

processes that would lead to the promotion of the

proposer. Both situations are temporary and will

eventually be corrected by their respective members.

Since all three situations are resolved with time, no

individual cause for failure can prevent updates

indefinitely. Thus, for updates to be prevented

indefinitely there must be an unending chain of

overlapping (or closely packed) causes. Since the

number of current group members is finite, the number

of potential crashed processes is also finite, and every

crashed process will eventually be suspected by every

correct process. Therefore the unending chain of causes

must be built with false suspicions of a leader.

Considering each instant when the leader attempts an

update, the probability that it will have no false

suspicions is . The probability that there is a false

suspicion at each time the leader attempts an update

rapidly approaches 0 with time.

Lemma HM-3: No incorrect group is ever formed.

Proof: Groups can be formed in two ways:

1. Formed by the first core process via an

OAC(membership, ...) transaction. This first

membership transaction must include at least

applicants (l. 92), and so including the first core process

there are at least 1 members. Therefore the group

cannot be incorrect.

2. Formed via an OAC(formation, ...) transaction.

All formation transactions propose a list of unsuspected

processes out of the first core processes, the “core

head,” which must be agreed on by every process in the

list in order to be committed. For an incorrect group to

be formed at least correct processes must be

erroneously excluded from a successful formation

transaction. As discussed above, the probability of an

erroneous exclusion, , is insignificant and is one of

the failure conditions for the algorithm. Therefore no

incorrect group will be formed during a valid run.

Lemma HM-4: If the first core process, c*, is correct

then the first core process eventually forms a correct

group.

Proof: Since c* is correct it will eventually form two-

way connections with every other correct core process,

of which there are at least . From Lemma HM-1, c*

will continue calling updateMembership() and

eventually form an acceptList with at least applicants

(l. 92). From Lemma HM-2, the join update will

eventually be committed. Thus, a group with more than

 members will be formed, which is by definition a

correct group.

Lemma HM-5: If the first core process is incorrect

and fails in forming a correct group then the first 1

processes eventually form a correct group.

Proof: If the first core process has failed to form a

correct group by FORMATION_TIMEOUT, the first

processes begin sending OAC(formation,...)

transactions. Each transaction proposes a complete list

of unsuspected processes in the core head. Eventually

all crashed processes are suspected by every correct

process, and since formation transactions are repeated

until one is committed, false suspicions cannot prevent

formation indefinitely. Therefore a group is eventually

formed, and from Lemma HM-3, this group must be

correct.

Proof of HM-Formation: From Lemmas HM-3,

HM-4, and HM-5.

The remaining proofs are provided under the assumption

that a correct group has been formed.

Lemma HM-6: If a leader crashes another member

will assume leadership.

Proof: When the leader crashes it is eventually suspected

by all correct members. Upon suspecting a process a

member will attempt to assume leadership if every

member of higher rank in the group is suspected. If

those suspicions are correct the new leader will

eventually succeed in removing those members by

140

Lemma HM-2 and be acknowledged as the leader.

Since we know there is at least one correct core member,

there will always be a leader.

Lemma HM-7: If a correct process becomes the

leader it will remain the leader.

Proof: Since no erroneous removals occur, a leader can

only be removed if it crashes. Therefore once a correct

process becomes the leader it will not be removed.

Lemma HM-8: If every alive member up to and

including the highest ranked correct core member is

aware of an update that update will eventually be

committed.

Proof: The set of potential leaders is the highest ranked

correct core member, m*, and every higher ranked

member, since there is always a leader (Lemma HM-6)

and if every higher ranked member crashes m*

eventually becomes the leader and remains the leader

(Lemma HM-7). Every potential leader is aware of the

update and that leader will either eventually commit the

update or crash (Lemma HM-2). If every higher ranked

member crashes, m* will eventually commit the update.

Lemma HM-9: When a leader suspects a member, if

the leader does not crash, either that member will

eventually be removed or the member will become

trusted again.

Proof: Upon suspecting a member the leader calls

updateMembership(). From Lemma HM-1

updateMembership() iterates until all updates are

complete. From Lemma HM-2, individual updates are

eventually committed during a call to

updateMembership(), therefore either the suspect is

removed and the update is completed or the suspect

becomes trusted and the update is rescinded.

Proof of HM-Non-Triviality-Remove: When a

member crashes it is eventually permanently suspected

by every alive member, notably including the highest

ranked correct core member and every member of higher

rank. Suspecting a member is equivalent to being aware

of a remove update, and therefore by Lemma HM-9 the

remove update will eventually be committed.

Proof of HM-Non-Triviality-Leave: When a correct

member asks to leave the group they notify all current

members, notably including the highest ranked correct

core member and every member of higher rank. By

Lemma HM-8 the leave update will eventually be

committed. When an incorrect member asks to leave

they will either be removed by the same path as a correct

member, or crash and be removed by HM-Non-

Triviality-Remove.

Lemma HM-10: A leader will eventually be

satisfied that each correct applicant is ready to join, or

crash.

Proof: In order to join an applicant a must meet three

conditions (l. 84):

1. a must have received all pre-lock data.

To ensure this the leader takes responsibility for sending

pre-lock data to all applicants. Upon accepting

leadership the leader becomes a sponsor to all current

applicants and sends them the pre-lock data (ll. 122-126,

173-177). Similarly, when a new applicant applies the

leader becomes their sponsor and sends them the prelock

data (ll. 58-61).

2. a must have two-way connections to all other

members and applicants that will be added at the time of

their acceptance.

To ensure this every member who receives an

application introduces the new applicant to every

member and every current applicant. Every process that

receives an introduction will connect to the applicant or

crash, in which case they will be removed from the

group/applicant pool. Similarly, every later applicant

will be introduced to a and a will connect to each of

these processes. In this way a establishes connections to

every member and every other applicant, and notifies the

leader of their connection status (l. 74).

3. a must not be suspected.

Since a is correct it will eventually be trusted.

If the leader does not crash they will eventually be

convinced the applicant is ready to join.

Proof of HM-Non-Triviality-Join: When a correct

applicant asks to join the group they notify all core

members, including the highest ranked correct core

member, m*. Since m* forwards the application to

every higher ranked non-core member, every member of

higher rank than m* is aware of the join request. Being

aware of the join request is not sufficient to be

considered for a join update, since there are three other

join conditions that must be met. Lemma HM-10

141

guarantees that each potential leader will either

eventually be satisfied these join conditions are met or

crash, and therefore by Lemma HM-8 the join update

will eventually be committed.

Proof of HM-Weak-Validity: To remove a member

the leader must successfully commit an OAC(remove,

..., removalList) transaction, where removalList is the set

of members being removed. One of the conditions of

committing this transaction is that each participating

member also suspects the members being removed (l.

113). This result is a key component in ensuring that the

probability of violating the NER failure condition is

insignificant.

Proof of HM-Termination: There are three types of

events that trigger messages:

1. Join requests: A join request has three phases.

First in the application phase, application messages are

sent to all core members, and each of these core

members may forward the application to a subset of

non-core members. Next in the preparation phase, each

member receiving an application message broadcasts

introduction messages to each member and current

applicants, who in turn introduce themselves to the new

applicant. The leader and applicant then exchange

messages relating to the join conditions until the

applicant joins the group. The number of application

and introduction messages is finite and determined by

the number of members and other applicants at the time

of application, while the join condition messages

continue until either the applicant joins the group or

crashes. Finally, in the join phase, messages relating to

the commitment of the join update are sent until either

the applicant joins the group or crashes and is suspected

by the leader. Via HM-Non-Triviality a correct

applicant will eventually join the group, and an incorrect

process will eventually crash. In either case the

messages related to this join event subside.

2. Leave requests: A leave request begins with

sending leave messages to all current members. Once

these messages arrive, messages relating to the

commitment of the leave update are sent until the

member is removed. From HM-Non-Triviality-Leave

the member is eventually removed from the group.

3. Suspicions: A suspicion is equivalent to a

remove update, and initiates messages relating to the

commitment of the remove update. If the suspicion is

correct then from HM-Non-Triviality-Remove the

member will eventually be removed, if the suspicion is

false then eventually the suspicion will be corrected and

the remove update rescinded. In either case the

messages related to this suspicion event subside.

Proof of HM-Agreement: Group add and remove

transactions occur only through OAC(remove, ...) and

OAC(membership, ...) transactions. Since all members

of the group, excluding those that are removed by the

remove transactions, are participants in each transaction,

if OAC(remove, ...) or OAC(membership, ...) is

committed by any member it must be committed by all

members.

Algorithm 4 Agent Allocation (HAA-AA)

1 hostGroup : list /* List of host group member, maintained
by the membership service */

2 agentList : list /* List of agents, maintained by hosts */

3 sesIdp : integer /* Id of the current session */
4 sesGroupp : list /* List of hosts involved in the session */
5 sesAgentsp : list /* List of agents, , in the session */
6 sesCostsp : list /* List of agent processing costs, */
7 sesAffinityp : list /* List of agent affinities, */

8 bundlep : list /* List of agents in host p’s bundle */
9 bidTablep : table /* Table of accepted bids indexed by host

and agent */
10 outboxp : list /* List of bid updates to distribute */
11 rp : integer /* Current round number */
12 lastBuildRoundp : integer /* Round number at the time of

last build */
13 buildQueuedp : boolean /* Flags whether a build is

required once the current updates are processed */
14 distributeQueuedp : boolean /* Flags whether a distribute

is required once the updates are processed */
15 decidedp : boolean /* Flags whether the session has

finished */
16 sesReadyp : boolean /* Flags whether bundle building can

start for the session */

17 upon [hostGroup membership change or agentList

change]:
18 if (p = front(hostGroup)) then /* undisputed leader */
19 sesIdp := sesIdp + 1; /* id of the current session */
20 sesGroupp := hostGroup; /* current host group */
21 sesAgentsp := agentList; /* current agents */
22 sesCostsp := agent costs; /* agent processing costs */
23 sesAffinityp := agent affinities; /* agent affinities */
24 newSession(); /* prepare new session */
25 do
26 OAC(start, p, sesIdp, sesGroupp, sesAgentsp,

sesCostsp, sesAffinityp) to sesGroupp;

142

27 wait until OAC(start, p, sesIdp, sesGroupp,
sesAgentsp, sesCostsp, sesAffinityp) is decided;

28 while [OAC(start, p, sesIdp, sesGroupp, sesAgentsp,
sesCostsp, sesAffinityp) is not committed and sesGroupp =
hostGroup and sesAgentsp = agentList] /* give up if the
situation changes */

29 procedure newSession():
30 bidTablep := EMPTY;
31 outboxp := EMPTY;
32 buildQueuedp := FALSE;
33 distributeQueuedp := FALSE;
34 decidedp := FALSE;
35 sesReadyp := FALSE;
36 rp := 0;
37 lastBuildRoundp := ‐1;

38 upon committing OAC(start, q, sesIdq, sesGroupq,

sesAgentsq, sesCostsq, sesAffinityq):
39 if (q != front(hostGroup) or sesGroupq != hostGroup or

sesAgentsq!= agentList)
40 return; /* expired session */
41 if (sesIdq >= sesIdp) then
42 if (sesIdq > sesIdp) then
43 sesIdp := sesIdq;
44 newSession(); /* prepare new session */
45 sesGroupp := hostGroup;
46 sesAgentsp := agentList;
47 sesCostsp := sesCostsq;
48 sesAffinityp := sesAffinityq;
49 sesReadyp:= TRUE;
50 buildBundle();

51 procedure buildBundle():
52 buildQueuedp:= FALSE;
53 if (rp = lastBuildRoundp) then
54 rp := rp + 1; /* increment round */
55 lastBuildRoundp := rp;
56 build bundlep according to chosen strategy;
57 distribute();
58 checkConsensus();

59 upon receiving (update, q, sesIdq, for each updated bid j:

{j, zqj, yqj, rqj}):
60 if (sesIdq < sesIdp) then /* old message, ignore */
61 return;
62 else if (sesIdq > sesIdp) then /* higher session id */
63 sesIdp := sesIdq; /* join session */
64 newSession(); /* prepare new session */
65 for each updated bid j:
66 bidTablep [q][j] = {j, zqj, yqj, rqj}
67 if (rqj rp) then
68 rp := rqj + 1; /* keep round up to date */
69 oldBid := bidTablep [p][j];
70 resolve conflicts via Table 4.7‐1 (bidTablep [q][j] vs.

bidTablep [p][j]);
71 if (oldBid.y > bidTablep [p][j].y) then /* got worse */
72 buildQueuedp := TRUE;

73 if (sesReadyp = TRUE and buildQueuedp FALSE and
outboxp EMPTY) then

74 distributeQueuedp := TRUE;
75 if (sesReadyp = TRUE) then
76 checkConsensus();
77 wait until [all messages currently in the inbox are

processed or sesGroupp hostGroup or sesAgentsp
agentList];

78 if (sesReadyp = TRUE and buildQueuedp = TRUE) then
79 buildBundle();
80 if (distributeQueuedp = TRUE) then
81 distribute();

82 procedure distribute():
83 distributeQueuedp := FALSE;
84 send (update, p, sesIdp, outboxp) to hostGroup;
85 outboxp := EMPTY;

86 procedure checkConsensus():
87 if (p = front(sesGroupp) and decidedp TRUE and (for

all j agentList: bidTablep [p][j].z none) and (for all h
sesGroupp: bidTablep [h] = bidTablep [p])) then

88 decidedp := TRUE;
89 do
90 OAC(finish, p, sesIdp, bidTablep [p]) to sesGroupp;
91 wait until OAC(finish, p, sesIdp, bidTablep [p]) is

decided;
92 while [OAC(finish, p, sesIdp, bidTablep [p]) is not

committed and sesGroupp = hostGroup and sesAgentsp =
agentList] /* give up if the situation changes */

93 upon committing OAC(finish, q, sesIdq, agentAllocation):
94 accept agentAllocation;
95 if (sesIdp = sesIdq) then
96 decidedp := TRUE;

HAA-AA Bid Comparison Operator

Bids are composed of three parts: agents, reward, and

support. Agents is simply a list of the agents involved in

the bid, while reward and support are used when

comparing two bids. Reward indicates how desirable

the agent or cluster is, and is based on the cost of the

agent plus bonuses from other agents in the bundle who

share affinity. Cost is used as the base of the reward to

encourage that high cost agents are bundled first, leaving

lower cost agents to be distributed after. Support

indicates how well the host can meet the costs of the

agent/cluster, and is calculated as:

 ∑ ∑ .

(II-1)

143

In this way, support starts at 1 and decreases as the cost

of the bundle grows; support < 0 means that the host is

over capacity.

Two competing bids, A and B, are then ranked according

to the criteria depicted in Fig. II-1. If necessary, ties can

be broken by taking the bidder with the lower ID.

HAA-AA Bundle Building Strategy

Bundles are greedily built using the following strategy:

1. Calculate rewards for all unbundled agents:

reward[i] := ∑ S.T. ;

if then reward[i] := reward[i] * (1-);

2. Identify clusters of unbundled agents that have

mutual affinity bonuses using a recursive algorithm.

3. Iteratively add to the bundle by identifying the

winning bid with the highest return. A winning bid

is defined as a bid that is strictly greater than the

currently accepted bid (bidTablep [p][j]) according

to the bid comparison operator described above.

a. Check all permutations of clusters to find the

bid with highest return. The reward and

support for a cluster bid are calculated by

summing the individual rewards for each agent

in the cluster plus all affinity bonuses from the

cluster and summing the individual costs,

respectively. For a successful cluster bid, the

entire cluster must fit within the capacity of the

host and the bid must beat the current bids for

every agent in the cluster.

b. Check all unbundled agents individually to find

the bid with highest return.

c. Select the highest bid, yhigh. If no winning bid

was found then the bundle building process is

complete, otherwise:

i. Add all agents associated with the bid to

the bundle:

for each i in yhigh.agents: append i to bundlep;

ii. Update the accepted bids:

 for each i in yhigh.agents: bidTablep [p][i] := {i,

p, {yhigh.reward, yhigh.support}, rp };

iii. Prepare to distribute the updates:

 for each i in yhigh.agents: outboxp [i] := {i, p,

{yhigh.reward, yhigh.support}, rp };

iv. Repeat Step 3.

Algorithm 5 Agent Freeze (HAA-ATF)

1 procedure freezeAgent(a): /* current host */
2 send (freeze, p) to a;
3 DDB.agents[a].queue1 := DDB.agents[a].queue2 :=

EMPTY; /* clear message queues */
4 begin forwarding all messages addressed to a to

DDB.agents[a].queue1;
5 do
6 OAC (freeze, a, p) to hostGroup;
7 wait until OAC (freeze, a, p) is decided;
8 while [OAC (freeze, a, p) has not been committed];
9 commitGroup := hostGroup; /* hostGroup at time of

commit */
10 wait until [received (state) from a and for each h

commitGroup: received (freezeAck, a) from h or h is
removed from hostGroup]

11 begin forwarding all messages addressed to a to
DDB.agents[a].queue2;

12 DDB.agents[a].state := state; /* submit state */
13 do
14 OAC (release, a) to hostGroup; /* release agent */
15 wait until OAC (release, a) is decided;
16 while [OAC (release, a) has not been committed];

17 upon receiving (freeze, q): /*agent */
18 state := writeState(); /* pack state */
19 send (state) to q;
20 shutdown;

21 upon committing OAC (freeze, a, q): /* other hosts */
22 if (p q) then
23 begin forwarding all messages addressed to a to

DDB.agents[a].queue2;
24 send (freezeAck, a) to q;

Fig. II-1 Bid Comparison Operator

144

Algorithm 6 Agent Thaw (HAA-ATT)

1 procedure thawAgent(a): /* new host */
2 spawn shell for a; /* new agent thread */
3 begin forwarding all messages addressed to a to

localQueue;
4 do
5 OAC (claim, a, p) to hostGroup; /* claim ownership */
6 wait until OAC (claim, a, p) is decided;
7 while [OAC (claim, a, p) has not been committed];
8 commitGroup := hostGroup; /* hostGroup at time of

commit */
9 wait until [for each h commitGroup: received

(claimAck, a) from h or h is removed from hostGroup) and
all active OACs are decided]

10 send (thaw, DDB.agents[a].state,
DDB.agents[a].queue1, DDB.agents[a].queue2,
localQueue) to a;

11 begin forwarding all messages addressed to a to a;

12 upon committing OAC(claim, a, q): /* all hosts */
13 if (a q’s agent allocation and a is frozen) then
14 if (p q) then
15 begin forwarding all messages addressed to a to q;
16 send (claimAck, a) to q;
17 else if (p = q) then
18 abandon claim attempt;

19 upon receiving (thaw, state, queue1, queue2, queue3): /*
new agent */

20 readState(state); /* unpack state */
21 process messages from queue1, queue2, and queue3 in

that order;
22 resume normal agent behaviour;

Proofs for HAA-ATF and HAA-ATT

Proof of AT-Transparency is trivial from the fact that

nothing in the algorithm impacts the behaviour of other

agents. AT-Consistency can be proven as follows.

Lemma AT-1: No message addressed to a is lost.

Proof: All messages addressed to a (m.a.a.) are

forwarded through the host network. Consider the

freezing and thawing process in three stages: freezing,

frozen, and thawing. Prior to the freezing stage all hosts

forward m.a.a through Hold. During the freezing stage

each host behaves as follows, with reference to

Algorithm 5:

 Hold forwards m.a.a. to a until reaching l. 2, when it

sends the freeze message to a. Messages up to this point

are received and proceed by a, and thus integrated into

a’s state prior to receiving the freeze message. After l.

4, Hold forwards m.a.a. to the primary queue in the DDB

until Hold reaches l. 11. At this point Hold is ensured that

it will receive no more m.a.a. from other hosts, because

all other hosts are now forwarding m.a.a. to the

secondary queue in the DDB. Hold can then forward

m.a.a. to the secondary queue in the DDB and end the

freezing stage.

 All other hosts forward m.a.a. to Hold until they

commit the freeze transaction (l. 21), at which point they

forward m.a.a. to the secondary queue in the DDB.

Note that a new host joining after the freeze transaction

will already be aware that a is freezing/frozen and so

will automatically forward m.a.a. to the secondary

queue.

Upon reaching and throughout the frozen stage, all hosts

forward m.a.a. to the secondary queue in the DDB.

During the thawing stage each host behaves as follows,

with reference to Algorithm 6:

 Hnew begins the thawing stage by calling

thawAgent(), at which point it begins forwarding m.a.a.

to a local message queue (l.3). When Hnew reaches l. 10,

it is ensured that no more m.a.a. will be added to the

secondary queue in the DDB and Hnew can complete the

thawing process. Hnew forwards the primary, secondary,

and local queues to a, and forwards any new m.a.a. to a.

 All other hosts continue forwarding m.a.a. to the

secondary queue in the DDB until they commit the

claim transaction and reach l. 15. At this point the hosts

forward m.a.a. to Hnew, who handles the messages

appropriately. Note that a new host joining after the

claim transaction was committed will automatically

know to forward m.a.a. to Hnew.

In this way, every m.a.a. reaches a prior to freezing, or is

directed to the primary, secondary, or local queue and

later processed by a upon thawing.

Lemma AT-2: Sender order is preserved for all

messages sent to a.

Proof: Since all agents’ messages are directed through

their local host, it is sufficient to show that order is

preserved for all messages sent by an individual host.

Consider the behaviour of each host:

 All hosts {Hold, Hnew} prior to committing the

freeze transaction forward m.a.a. to Hold, after which

they forward m.a.a. to the secondary queue in the DDB

until committing the thaw transaction, at which point

they forward m.a.a. to Hnew. All m.a.a. received by Hold

are processed in order and either forwarded to a if they

arrives before the freeze message is sent to a or placed

145

in the primary queue. All m.a.a. received by Hnew are

processed in order and either forwarded to the local

queue if they arrive before the thaw message is sent to a

or are forwarded to a.

 All m.a.a. originating from Hold are forwarded to a

until the freeze message is sent to a, forwarded to the

primary queue until a is ready for release (Algorithm 5 l.

11), after which Hold behaves the same way as any other

host.

 Hnew behaves the same was as any other host until it

initiates the thaw process. At this point all m.a.a.

originating from Hnew are forwarded to the local queue

until the thaw message is sent to a, after which m.a.a.

are forwarded to a.

Thus any m.a.a. has a possible destination of: a, DDB

primary queue, DDB secondary queue, Hnew local queue,

or a, in that sequence, and so order is maintained.

Proof of AT-Consistency: From Lemmas AT-1 and

AT-2, upon thawing a receives all messages sent to it, in

correct sender order. Internal data is preserved when the

agent freezes and thaws its state.

Algorithm 7 Agent Backup (HAA-AB)

1 procedure backupAgent(): /* agent */
2 b := backupState(); /* backup critical portion of state */
3 send (backup, a, b) to host; /* submit to local host */

4 upon receiving (backup, a, b): /* current host */
5 DDB.agents[a].backup := b;

Algorithm 8 Agent Recovery (HAA-AR)

1 procedure recoverAgent(a): /* new host */
2 spawn shell for a; /* new agent thread */
3 wait until [all active OACs are decided]
4 send (recover, DDB.agents[a].backup) to a;
5 begin forwarding all messages addressed to a to a;
6 do
7 OAC (recovered, a, p) to hostGroup; /* claim */
8 wait until OAC (recovered, a, p) is decided;
9 while [OAC (recovered, a, p) has not been

committed];

10 upon receiving (recover, b): /* new agent */
11 recoverState(b); /* recover from backup */
12 resume normal agent behaviour;

13 upon committing OAC (recovered, a, q): /* other hosts */
14 if (p q and a q’s agent allocation) then
15 begin forwarding all messages addressed to a to q;

Proof for HAA-AB and HAA-AR

Proof of AR-Recovery: The use of the latest backup

is ensured by waiting for all OACs to be committed

before using the backup (Algorithm 8 l. 3). H begins

forwarding m.a.a to a as soon as the recover message is

sent (Algorithm 8 l. 4), and if the recovery is valid all

other hosts will begin forwarding m.a.a. to H (Algorithm

8 l. 15).

146

Appendix III
Agent Descriptions

AgentPathPlanner

Accepts a target position and orientation and attempts to

plan a path through clear spaces using the available map

data. The path uses a weighted distance algorithm that

penalizes routes that are too close to obstacles.

Interactions:

Avatar* → Configure and assign targets

Avatar* ← Send action commands

Avatar*→ Send action updates

ExecutiveAvatar ← Request list of avatars

Recovery Strategy:

Restore configuration and wait for instructions.

AgentSensorCooccupancy

Uses avatar position information to generate map

updates, following the logic that if the area is occupied

by the avatar it is not occupied by an obstacle.

Interactions:

SupervisorSLAM → Assign processing requests

SupervisorSLAM ← Report success or failure of

processing

Recovery Strategy:

Restore configuration and wait for instructions.

AgentSensorFloorFinder

Extracts the floor from an image by colour matching

with an area sampled directly in front of the avatar,

following the strategy in [112]. The floor region is then

transformed from image space to map space using a

planar homography transformation and used to generate

a belief template for JC-SLAM.

Interactions:

SupervisorSLAM → Assign processing requests

SupervisorSLAM ← Report success or failure of

processing

Recovery Strategy:

Restore configuration and wait for instructions.

AgentSensorLandmark

Scans images to locate landmarks building on the

algorithm described in [113]. Landmarks are then used

to generate localization updates.

Interactions:

SupervisorSLAM → Assign processing requests

SupervisorSLAM ← Report success or failure of

processing

Recovery Strategy:

Restore configuration and wait for instructions.

AgentSensorSonar

Generates belief templates from sonar readings. The

belief templates are used create map and observation

density updates for JC-SLAM.

Interactions:

SupervisorSLAM → Assign processing requests

SupervisorSLAM ← Report success or failure of

processing

Recovery Strategy:

Restore configuration and wait for instructions.

Avatar* (ER1, Pioneer, Simulation, SRV-1, X80H)

Builds on AvatarBase, which provides the basic

functionality for all avatar agents. In particular

AvatarBase provides the basic action interface exposed

by all avatar agents. This interface allows other agents

to control all avatars through commands such as wait,

move, rotate, capture image, etc. without knowledge of

an avatar specific API.

Interactions:

AgentPathPlanner ← Configure and assign targets

AgentPathPlanner → Send action commands

AgentPathPlanner ← Send action updates

Supervisor* → Assign targets

Supervisor* ← Report target status

ExecutiveAvatar ← Register avatar

Recovery Strategy:

Restore configuration and retrieve AgentPathPlanner

status. Reassign target for AgentPathPlanner if

appropriate.

Agent Status Monitoring:

AgentPathPlanner ← If failure occurs reassign target

ExecutiveAvatar ← If failure occurs re-register

ExecutiveAvatar

Controls the distribution of avatar resources using a

bidding algorithm. Task supervisors place bids for

resources and the ExecutiveAvatar assigns resources to

the highest bidders. Resource assignments are stored in

the DDB so that they are independent of agent failures.

147

Interactions:

Supervisor* → Place bids on avatar resources

Recovery Strategy:

Restore configuration.

ExecutiveMission

Defines mission parameters and controls when tasks are

started. When a new task begins the ExecutiveMission

spawns the appropriate task supervisor and supporting

agents.

Interactions:

Supervisor* ← Spawn and configure agents

Recovery Strategy:

Restore configuration, confirm that appropriate

Supervisor agents are active.

ExecutiveSimulation

Handles the simulation of avatars, sensors, and

environment during HILS experiments.

Interactions:

AvatarSimulation → Send action commands

AvatarSimulation ← Send action updates

SupervisorCongregate

When the congregation point is identified

SupervisorCongregate requests control of all avatars and

assigns them targets at equally spaced intervals around

the congregation point.

Interactions:

ExecutiveMission → Configure

ExecutiveAvatar ← Request control of avatars

Avatar* ← Assign target

Avatar* → Send target updates

Recovery Strategy:

Restore configuration and retrieve Avatar* statuses,

reassign targets if appropriate.

Agent Status Monitoring:

Avatar* ← If failure occurs reassign target

SupervisorExplore

Carries out the exploration task by directing avatars to

unexplored regions. Unexplored cells are divided

between avatars using an Expectation-Maximization

(EM) algorithm. Once the cells are divided each avatar

is assign a target within their area.

Interactions:

ExecutiveMission → Configure

ExecutiveAvatar ← Request avatar resources

Avatar* ← Assign target

Avatar* → Send target updates

Recovery Strategy:

Restore configuration and retrieve Avatar* statuses,

reassign targets if appropriate.

Agent Status Monitoring:

Avatar* ← If failure occurs reassign target

SupervisorForage

Each SupervisorForage agent is assigned a single

collectible to pick up and deposit in a collection region.

The SupervisorForage bids on suitable avatar resources

until it gains control of an avatar.

Interactions:

ExecutiveMission → Configure

ExecutiveAvatar ← Request avatar resources

Avatar* ← Assign target and collection actions

Avatar* → Send action updates

Recovery Strategy:

Restore configuration and retrieve Avatar* status,

reassign target if appropriate.

Agent Status Monitoring:

Avatar* ← If failure occurs reassign target

SupervisorSLAM

Monitors the DDB for new sensor readings and assigns

them to sensor processing agents. The SLAM

supervisor also maintains the active set of sensor

processing agents and spawns new agents as required.

Interactions:

ExecutiveMission → Configure

AgentSensor* ← Spawn and configure agents, assign

readings

AgentSensor* → Report processing success or failure

Recovery Strategy:

Restore configuration and retrieve AgentSensor*

statuses, reassign readings if appropriate. Confirm that

reading list is up to date.

Agent Status Monitoring:

AgentSensor* ← If failure occurs reassign reading

