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Abstract 

As the applications of mobile robotics evolve it has become increasingly less practical for 

researchers to design custom hardware and control systems for each problem.  This research 

presents a new approach to control system design that looks beyond end-of-lifecycle performance 

and considers control system structure, flexibility, and extensibility.  Toward these ends the 

Control ad libitum philosophy is proposed, stating that to make significant progress in the real-

world application of mobile robot teams the control system must be structured such that teams 

can be formed in real-time from diverse components.  The Control ad libitum philosophy was 

applied to the design of the HAA (Host, Avatar, Agent) architecture: a modular hierarchical 

framework built with provably correct distributed algorithms. 

A control system for exploration and mapping, search and deploy, and foraging was developed to 

evaluate the architecture in three sets of hardware-in-the-loop experiments.  First, the basic 

functionality of the HAA architecture was studied, specifically the ability to: a) dynamically form 

the control system, b) dynamically form the robot team, c) dynamically form the processing 

network, and d) handle heterogeneous teams.  Secondly, the real-time performance of the 

distributed algorithms was tested, and proved effective for the moderate sized systems tested.  
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Furthermore, the distributed Just-in-time Cooperative Simultaneous Localization and Mapping 

(JC-SLAM) algorithm demonstrated accuracy equal to or better than traditional approaches in 

resource starved scenarios, while reducing exploration time significantly.  The JC-SLAM 

strategies are also suitable for integration into many existing particle filter SLAM approaches, 

complementing their unique optimizations.  Thirdly, the control system was subjected to 

concurrent software and hardware failures in a series of increasingly complex experiments.  Even 

with unrealistically high rates of failure the control system was able to successfully complete its 

tasks. 

The HAA implementation designed following the Control ad libitum philosophy proved to be 

capable of dynamic team formation and extremely robust against both hardware and software 

failure; and, due to the modularity of the system there is significant potential for reuse of assets 

and future extensibility.  One future goal is to make the source code publically available and 

establish a forum for the development and exchange of new agents.  
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Chapter 1 
Introduction 

In response to many of the fundamental challenges to the development of mobile robot teams this 

research presents a new approach to control system design.  Robots have been proven capable of 

accomplishing many useful tasks, and in many applications teams of inexpensive robots can 

accomplish tasks faster and more efficiently than a single more expensive robot.  The advantages 

of robot teams are typically listed as: cost per system, robustness through redundancy, parallel 

processing, scalability [1,2] , and the ability to service larger areas and accomplish multiple tasks 

simultaneously [3].  In [4] several successful implementations are cited in areas such as search 

and rescue, perimeter surveillance, and mapping and exploration, and many more can be found in 

the literature.  However, even these successes have their limitations and note many of the 

challenges facing the developers of robot teams.  Questions of control [4], communication [5], 

collaboration[6], task coordination[7], heterogeneity [8], and team formation [9] have no 

definitive answers, and likely never will.  Yet it is clear that as the applications of mobile robotics 

evolve it will become increasingly less practical for researchers and developers to design custom 

hardware for each problem.  Similarly, as the applications become more complex it will be 

impractical to begin each control system from scratch.  Despite this, for various reasons including 

problems of transparency, portability, and stability the near universal approach of current 

researchers is to build custom solutions for every team/task [10], redoing vast amounts of work 

and greatly hindering the growth of the field for practical real-world applications.  Thus, it 

becomes essential to have an architecture that allows teams incorporating diverse robot hardware 

and facilitates extensions to the control system which require minimal or no changes to the 

existing implementation. 

The goals of this research became to expand the conversation on control system design to include 

not just end-of-lifecycle performance but also control system structure, robustness, and 

extensibility, and to use techniques from distributed computing to develop a generic and flexible 

architecture for controlling robot teams.  Toward these ends the Control ad libitum philosophy 

was proposed, stating that in order to make significant progress in the real-world use of mobile 

robot teams the control system must be structured such that teams can be formed in real-time 

from diverse components.  This philosophy was followed in the design of the HAA (Host, 
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Avatar, Agent) architecture, which uses a modular hierarchical approach built on a distributed 

network of processors.  After implementing the architecture, using provably correct distributed 

algorithms, a fully functional control system was developed to test its performance under a 

number of common mobile team tasks: exploration and mapping, search and deploy, and 

foraging.  Since extensibility and reusability are issues close to the core of this research, one 

future goal is to make the source code for the architecture and control system publically available 

and to establish a forum for the development and exchange of new agents. 

The results from extensive Hardware-in-the-Loop experimentation show the control system to 

perform well.  The control system was capable of dynamically forming the control system based 

on the needs of the task, changing the set of active agents to adapt to the currently available 

resources.  The control system was also capable of gracefully recovering from software, 

processor, and robot failures.  The first series of experiments study the basic functionality of the 

HAA architecture, specifically its ability to: a) dynamically form the control system based on the 

task requirements, b) dynamically form the team from available robot hardware, c) dynamically 

form the processing network based on available processor resources, and d) handle heterogeneous 

teams and allocate robots between tasks based on their capabilities.  The second series of 

experiments analyze the performance of the distributed algorithms for various system sizes, and 

each algorithm demonstrated highly acceptable real-time performance and no issues of scalability 

for the small-to-moderate sized systems tested.  The Simultaneous Localization and Mapping 

(SLAM) problem is fundamental to the implementation of virtually any robot team, and so a 

distributed and scalable algorithm was developed as part of this research.  The algorithm 

demonstrated accuracy equal to or better than traditional approaches in resource constrained 

scenarios, while reducing exploration time by over 17% for the tested mapping scenarios.  The 

third and final series of experiments tested ability of the architecture to handle concurrent 

software and hardware failures, and all missions were able to successfully complete their tasks 

even with failure rates set far higher than realistic expectations, including a scenario where each 

software module was set to fail every 0.5-1.5 minutes. 

1.1 Contributions 

There are four major areas where this work has made contributions to the research community: 
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1. A structured, big-picture, look was taken at the design of robot teams throughout their 

lifecycle, leading to the Control ad libitum philosophy.  A comprehensive set of design 

motivations were identified and a series of metrics arranged to evaluate aspects of control system 

design strategy at all stages of development. 

2. The HAA architecture presents a framework that allows for the modular design of 

heterogeneous robot teams while inherently providing many advantages in terms of robustness, 

efficiency, and scalability.  The two primary components of HAA are: 

Scalable Hierarchical Control: A scalable control system that requires no prior knowledge of 

team membership in order to efficiently perform tasks.  It allows the immediate integration of 

almost any robot into the team and allows the team to continue functioning in the event of 

hardware failure. 

Dynamically Distributed Processing: A distributed system allows the transfer of agents in the 

processor network to balance the load, reduce latency between agents, or recover agents in the 

event of hardware failure.  Such a network also enables hybrid architectures with both centralized 

and distributed components without sacrificing performance or robustness. 

3. A fully-realized implementation of HAA was developed, including a foundation of 

provably correct distributed algorithms.  The control system was tested in a number of common 

mobile robot tasks and acquitted itself well even in extreme failure scenarios. 

4. Just-in-time Cooperative Simultaneous Localization and Mapping (JC-SLAM) is a real-

time, distributed, scalable implementation for heterogeneous mobile robot teams.  It uses an out-

of-order processing strategy to efficiently make use of processing resources and in 

experimentation has demonstrated a 17% reduction in exploration time compared to two 

traditional SLAM approaches for the tested mapping scenarios. 

1.2 Thesis Overview 

The thesis is broken down into eight chapters.  Chapter 2 reviews the topics related to multi-robot 

systems, including: control, collaboration, communication, resource sharing, and load balancing.  

Of particular interest were the underrepresented areas of dynamically formed teams and 

behaviour migration.  Limited hardware can be utilized effectively if correctly shared among a 

group of robots, and distributed processing can improve the performance of a control system.   
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Chapter 3 studies the team lifecycle and presents the core tenets of Control ad libitum: 

Transparency, Versatility, Adaptability, Modularity, Diversity, Persistency, and Efficiency.  The 

chapter also emphasises the importance of using the right tools to quantify aspects of a control 

system beyond simple end-of-lifecycle performance. 

Chapter 4 introduces the HAA architecture and the control system abstraction of hosts 

(processors), avatars (robot hardware), and agents (control system modules).  A distributed 

processing network is formed by the hosts and agent modules are allowed to transfer between 

hosts in order to balance load, improve communication latency, and recover from failures.  A 

complete HAA implementation is developed using provably correct distributed algorithms. 

Chapter 5 presents JC-SLAM, a distributed particle filter SLAM algorithm designed following 

the tenets of Control ad libitum.  JC-SLAM adopts a strategy of out-of-order processing to allow 

higher rates of sensor processing in constrained systems, but performs identically to traditional 

ordered approaches when resources are plentiful. 

Chapter 6 provides the details of the HAA implementation used in this research.  Many design 

choices must be made to transition from the general framework provided by HAA into a fully 

functioning implementation.  Tools were designed for logging, visualization, automated testing, 

and, perhaps most importantly, offline debugging by recording the inputs to each agent for later 

playback.  Chapter 6 also introduces the experimental scenarios that were used to evaluate the 

effectiveness of the control system: Mapping and Exploration, Congregate, and Forage.   

Chapter 7 uses a Hardware-in-the-Loop simulation to experimentally demonstrate features of the 

control system and evaluate performance.  Features such as dynamic formation, adapting to 

changing resources, agent allocation, avatar allocation, and cooperation are explored.  

Performance was evaluated for: a) the distributed algorithms, b) JC-SLAM vs. traditional SLAM 

strategies, and c) failure scenarios up to and including concurrent host, avatar, and agent failure. 

Chapter 8 closes the thesis by summarizing the findings and discussing several potential avenues 

for future research: a) an open-source agent library, b) standardization of agent interaction and 

recovery strategies, c) scalability of the distributed algorithms, and d) communication efficiency 

within the distributed database (DDB).  
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Chapter 2 
Background 

Developing and implementing a team of cooperative mobile robots is a very challenging task, yet 

the reward is an efficient and effective solution for many application problems.  These 

applications span a wide range of practical, real world, scenarios, and include: working in 

hazardous environments, surveillance, target tracking, mine field demolition, Mars exploration, 

search and rescue, guarding, cleaning, and fire detection [11].  Sometimes tasks can be carried out 

by a single robot with powerful sensors and high processing capability, however, often these 

tasks can be carried out faster, more efficiently, and more robustly using a team of simpler and 

cheaper robots [4].  Large amounts of research has been done on a multitude of aspects of  team 

development, but many fundamental questions are far from answered, and there are always new 

strategies or twists on previous techniques being studied.  This chapter is concerned with 

reviewing the key elements which must be considered when designing a cooperative team, and 

identifying potential areas that could benefit from new and innovative ideas.  Due to the size of 

the field it is impossible to mention every strategy or technique that has been developed, and so 

an effort is made to discuss either those that are representative of common approaches or those 

that present a novel and interesting take on an issue. 

2.1 Multi-robot Systems 

2.1.1 Teams vs. Single Robots 

Some robot applications demand a robot with powerful sensors and high processing capacity, 

which usually corresponds to a high cost, but in many applications it is possible use a team of 

simpler robots to accomplish the tasks faster and more efficiently.  For example, search and 

rescue, load pushing, surveillance, and mapping [4].  Depending on the structure of the team there 

may not be any inherent cost benefit, however, there are a number of other benefits that come 

with multi-robot systems: efficiency, cost per system, robustness through redundancy, parallel 

processing, and scalability[2,12].  Furthermore, larger areas can be serviced and multiple tasks 

can be accomplished simultaneously by spreading out the team [3], and there is a potential for 

self-diagnosis and self-repair of failures in robot teams [13].  One example of learning where 

teams have the advantage over individual robots is presented in [14].  In that research the problem 
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was learning to visually identify objects in the environment, and by sharing information the team 

was able to learn more quickly.   

2.1.2 Homogenous vs. Heterogeneous Teams 

When building a team of robots there are a number of possibilities regarding the homogeneity of 

its members.  Obviously, it is possible to select a number of different types of robots to form the 

team, which results in a physically heterogeneous population; but even in the case of physically 

identical robots it is possible to introduce heterogeneity in their controllers.  The concept of social 

entropy is introduced in [5], providing a way to quantitatively rate the diversity of a team based 

on factors relevant to the application.   

The heterogeneous team of robots presented in [7] is an example that takes advantage of physical 

heterogeneity.  Their team consisted of a few highly capable expensive robots equipped with 

powerful sensors and processors and a large number of simpler robots with weak sensors and 

processors.  Since the simple robots were incapable of accurate localization and navigation, once 

the environment had been mapped the powerful robots guided the simple robots into place to 

form a sensor network.  In this way the cost of the team was reduced by almost an order of 

magnitude while still providing coverage for large areas.  An example of a physically 

homogeneous team with heterogeneous controllers is discussed in [8].  Inspired by specialization 

in insect colonies, as a swarm of robots learns how to perform basic tasks related to finding and 

collecting objects they begin to develop proficiencies in different areas and the tasks are allocated 

throughout the team based on fitness. 

Diversity has other potential benefits in addition to allowing a balance of cost, capability, and 

number of robots.  As in nature, heterogeneity and diversity in a population can provide much 

needed robustness.  In experiments using robots emulating wolf-pack hunting strategies, [15] 

showed that heterogeneous teams composed of both peak and senescent “wolves” could 

outperform a team of purely peak wolves in certain scenarios.  There is also the consideration of 

scalability and utilizing all available resources.  A system that is capable of handling 

heterogeneity can potentially make use of whatever robots are on hand, which can reduce the cost 

of updating or replacing robots [16]. 
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2.1.3 Dynamically Formed Teams 

One interesting area of research that has received little study is the concept of dynamic or 

“pickup” teams [16].  Rather than planning the team membership and methods of interaction in 

advance, it is more useful to have a system that can dynamically adapt based on the available 

resources and the environment.  At the most basic level it comes down to forming a useful and 

efficient team from a set of robots given no a priori information about their capabilities.  The 

work in [16] outlines some reasons why this capacity is needed: 1) it is impractical for a single 

group to develop large teams of expensive robots simultaneously, 2) engineering coordination 

strategies by hand is time consuming and may not be acceptable in emergency situations, and 3) 

if a robot fails or is removed from the team it is necessary to replace it and a new robot of the 

same type may not be available.  A strategy for accomplishing this goal through communication 

between potential team members is outlined in [16], and a treasure hunting application using two 

types of robots is presented.  [17] also describes a need for heterogeneous “impromptu teams,” 

and proposes an ontology-based communication protocol to allow diverse team members to 

communicate physical concepts. 

The issue of dividing a group of robots into sub-teams is studied in [18] and [19].  In [18] sub-

teams are formed and broken up depending on the effectiveness of the team formation (relative 

positions).  It was found that dynamic formation improved performance except in cluttered 

environments, at which point the team spent too much time reforming and efficiency dropped.   

[19] starts from the idea that there are a number of tasks to perform and a number of robots in the 

environment, and the question becomes how to distribute the robots among the tasks.  The robots 

are rated based on their capabilities and then the working time of different combinations of robots 

is estimated.   

2.1.4 System Design 

An unfortunate trend of single-use design is prevalent in industry and academia.  More often than 

not a particular robot or control system is designed with a specific task in mind, and task 

performance becomes the only metric for success.  Though many successful applications have 

been developed, this limited approach does not lend itself to team robustness and potential for 

building on top of existing control systems.  The aptly-titled article 1,001 Robot Architectures for 
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1,001 Robots [10] highlights this issue and asks the question “Is it really impossible to subject 

robot architectures and software systems to any objective performance evaluation?”  The issue is 

also touched upon in [20], which highlights the main features of its architecture as the ability to 

use off-the-shelf software to develop and run standardized control system modules.   

2.2 Control 

There are many different strategies for controlling multi-robot systems, some cooperative, some 

competitive, some centralized, and some distributed.  Each of these areas has been explored in 

depth but there is no clearly superior strategy, and in many cases hybrid architectures such as the 

deliberative/reactive combination developed in [3] or the partially centralized control in [21] are 

used.  Another factor that is fundamentally tied to control and coordination is communication, 

which is discussed in Section 2.4. 

2.2.1 Centralized vs. Decentralized Control 

In its purest form centralized control means that every decision and resulting action passes 

through a single point, taking into account the entire state of the system.  At the opposite end of 

the spectrum, fully decentralized control executes independently on each robot with little or no 

explicit communication with the other team members.  Both methods have some advantages and 

disadvantages.  Centralized control can potentially be used to find optimal solutions; however, the 

computational requirements increase rapidly as the number of robots in a team grows [21], and it 

is not robust in the event of failure of a key component.  On the other hand, while a distributed 

system has advantages in terms of parallel computation, robustness, and fault tolerance [22], in a 

fully decentralized system each robot must be capable of satisfying all of its sensing and 

processing needs on-board, which may not be an efficient use of resources [4].  Many of these 

disadvantages can be mitigated by taking a balanced approach, for example the system in [23] 

uses a centralized task coordinator to assign tasks to a distributed team of robots, even allowing 

robots to join and leave the team at any time.  The interesting application in [22] takes the multi-

agent concepts of decentralized control and applies it to a single robot with multiple processors in 

order to take advantage of its modularity and robustness and reduce the complexity of the system.  

[24] takes the same approach of decentralized control for a single robot but also notes that such 

an approach has benefits in terms of simplification via modularization, user friendly design, 
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effective resource utilization, and future expansion of the control system.  These are all very 

important features and are central to the foundation of this work. 

2.2.2 Control Hierarchy 

Many traditional control strategies use a hierarchical structure [22], where components are broken 

up into levels which can control or override the levels below them.  This approach is common in 

controlling teams as well, often taking the form of supervisors which monitor the behaviour of 

the team and coordinates their actions.  It is also possible to implement controllers without a 

hierarchy, where each component is considered equal.  This is done in [25], by having each robot 

advertize their task suggestions and having other robots volunteer their services.  A dynamic 

approach is taken in [26], and based on the observed surroundings each robot decides whether it 

is a leader or follower.  In contrast to this distributed approach, [27] uses a hierarchical controller 

with a centralized path planner and local robot control, though they note that having a single point 

of failure is not ideal. 

2.2.3 Task Coordination 

The problem of task assignment and coordination has two facets.  First, there is the issue of 

coordinating the efforts of each robot so that they work together toward a common goal.  In a 

centralized system this can be dealt with in a straight forward manner, but the solution becomes 

less clear for decentralized control.  Depending on the level of communication between the robots 

a number of routes can be taken.  When communication is possible a common strategy is to hold 

task auctions such as in [16], [25], and [28], where tasks are put forward and each robot bids for 

contracts.  An architecture for constructing robot teams to facilitate market-based task allocation 

is presented in [29].  This architecture interestingly shares some of the ideas founding the 

architecture in this research, including modularizing control system functions into agents for each 

robot and a shared database.  However, it does not entirely abstract agents from the robot 

hardware or allow distributed processing or agent transfer.  When communication is not possible 

it is harder to prevent overlap in tasks and other strategies must be used [7].  A number of 

learning algorithms have been adapted to these ends, [30,31]. 

The second issue is that of distributing the tasks in a way that makes efficient use of available 

resources and accomplishes high priority tasks in timely manner.  This can be reduced to an 
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optimization problem, but in a system with many tasks and many robots it may not be practical to 

implement this in real-time [19].  Studies done in [19], [32], and [33] looked at different sub-

optimal algorithms that still produce good results.  

2.3 Collaboration 

Collaboration in multi-robot systems can happen either competitively or cooperatively.  

Competition and aggression appear in many animal societies as a method for assuming roles and 

coordinating groups.  This approach was used in [34] to successfully manage a team of robots in 

a transportation task where the robots would encounter bottlenecks while travelling or during 

pick-up and drop-off.  Another competitive strategy was used in [21] to coordinate the collision 

free movement of a team of robots in a dynamic environment using a partially centralized sensory 

system.  These techniques can be useful between individual robots competing for space and 

resources or between teams of robots performing tasks in close proximity, and do not preclude 

having some form of cooperation at other levels.  Cooperation can occur passively, with robots 

sharing knowledge or recognizing when other team members are carrying out tasks and assisting 

them [35].  There are many examples of this in nature, and [36] demonstrates an example of the 

“group escape” behaviour where a team of robots rapidly elude predators with no inter-robot 

communication.  Cooperation can also occur actively, where robots communicate their desires 

and make plans with other team members as in [16]. 

2.3.1 Knowledge Sharing 

Knowledge sharing can have obvious benefits to the performance of a robot team.  When 

carrying out tasks the decision making process is heavily affected by the knowledge of the 

environment, yet often a single robot’s sensors provide only a highly incomplete view of its 

surroundings [25].  By providing robots with the ability to communicate and share their 

knowledge it is possible to fill in many of the gaps and thus make more informed decisions.  This 

is particularly apparent in the collaborative map making through sensor fusion done in [25].  The 

“blackboard” communication technique used in many applications, [8,25], can be considered a 

form of knowledge sharing.  Robots post information to a global blackboard which is 

synchronized throughout the system.  [37] proposes a set of low-cost/open source middleware 

solutions to form a knowledge sharing/communication system via a shared database.  Knowledge 
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sharing can also be very useful in learning tasks where learning experiences can be broadcast to 

other robots [5] or evolved behaviours can be transferred between robots [38].  However, these 

techniques rely heavily on communication and so storage and bandwidth requirements must be 

considered. 

2.3.2 Cooperation Techniques 

A number of cooperation techniques are listed in [6], including: socially acceptable decision 

making strategies based on social welfare functions, information based exploration using the 

concepts of entropy and frontiers, cooperative motion planning using a potential field, and 

decentralized goal planning using a shared map.  A common strategy for groups of people 

performing complex tasks is to break the tasks down into smaller pieces and assign each job to a 

team member [30].  Each member may be specialized for a certain type of role or equally capable 

of completing any job.  In this situation it becomes a question how to assign the roles and when 

switching roles is advantageous [30].  This type of dynamic role switching is also discussed in 

[35], which notes the potential risks involved if no protocol is put in place to ensure that no role is 

left unfulfilled.  The Skills, Tactics, and Plays (STP) framework is applied to cooperation in 

dynamically formed heterogeneous teams in [16].  Plays consist of a set of roles, a sequence of 

actions for each role to perform, and methods for evaluating the applicability, completion, and 

selection likelihood in a given situation.  The action sequences performed by each role are tightly 

coordinated to ensure synchronization between each team member. 

Since geometric solutions to navigation are generally difficult to implement in real-time, 

particularly when the movement of many robots must be coordinated, a receding horizon strategy 

is used for coordinated navigation in [39].  At each time step every robot solves their “personal 

problem” based on available knowledge but only executes the first control action, and the next 

step the robot solves the problem again based on updated information.  The information used at 

each step only includes the actions of the neighboring robots, thus simplifying the problem and 

allowing it to be solved efficiently.  This issue of scope or level of awareness is an important 

consideration that affects the computational efficiency and effectiveness of both control and 

learning algorithms.  The balance that must be achieved is also discussed in the target tracking 

application presented in [40], which considers how increasing levels of awareness impact the 

dimensionality of the search space for learning algorithms. 
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2.4 Communication 

Communication, or lack of communication, within a team greatly affects the structure and 

capabilities of the control system.  Four different levels of communication are traditionally 

considered: no communication, state communication, goal communication, and implicit 

communication [5,40].  With no communication the robots must rely on their sensors to 

determine the action of other team members, state communication means that robots may 

detect/query the current state of other members, goal communication is when robots actively 

broadcast information about their current plans, and implicit communication where robots 

communicate through the environment [40].  The results in [5] show that state and goal 

communication can provide significantly improved performance, up to 19%, when compared to 

no communication in foraging and consuming tasks.  It is demonstrated in [40] that coordination 

can be learned using only awareness of the neighboring robots, but [40] admits that it is not 

always possible to achieve awareness without communication.   

Unfortunately, communication is not free.  The necessary hardware adds to the cost and 

complexity of the system [5], and as in the case of [32] even the physical size and power 

consumption of the components can be an issue for smaller robots.  As with any hardware 

component there is a chance of failure, but even when the communication system is working 

there are factors such as range, interference, and obstacles that can degrade the signal and reduce 

bandwidth until eventually no communication is possible [7].  Some works such as [41] and [42] 

study how robots/mobile relays can be dynamically positioned to improve network quality over 

large areas.  Robot swarms forming ad hoc wireless networks are studied in [43].  [44] takes the 

problem one step further and considers scenarios where relays have to travel back and forth to 

ferry information.  Another concern for communication is network infrastructure.  In 

heterogeneous teams different network formats may be used and require translators to allow 

robots to communicate with each other [45].   

2.5 Resource Sharing and Load Balancing 

In complex robot systems hardware considerations often limit the potential of the control system.  

Factors such as processing power, data storage, communication bandwidth, and even sensors are 
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generally limited due to cost, size, or power constraints [32].  Thus, it seems desirable to use 

these resources as efficiently as possible in order increase the effectiveness of the system.  

2.5.1 Resource Sharing 

Both [32] and [33] discuss the same team of robots, but the focus of each is on a slightly different 

aspect of resource sharing.  The work uses a team of small robots for urban exploration and 

surveillance, but due to size limitations the robots are severely limited in terms of processing 

power and communication capabilities; and so scheduling access to the communication channels 

is critical for effective operation [32].  Each resource (communication channel, processor, robot 

chassis, or sensor input) has a Resources Controller and scheduling is handled through a central 

Resource Controller Manager (RCM).  By dynamically allocating these resources at execution 

time it is possible to develop a flexible and robust system that degrades gracefully as resources 

become limited [32].  Two different scheduling algorithms are studied in [33]: the first tries to 

find an optimal solution which maximizes the number of resources in use at any time, while the 

second uses a decision tree to rank tasks based on factors such as priority and minimum run time. 

The issue of sharing sensor data among a surveillance team and their controllers is considered in 

[46].  Due to bandwidth limitations it is impossible to transfer the bulk of data to the interested 

party, and so an abstraction was developed that models the sensors as a distributed database 

which can be queried for information.  Taking the opposite approach to [32] and [33], [46] 

utilizes robots equipped with gigabytes of onboard storage and powerful processors.  Information 

and processing requests are sent out over the network, processed locally by the owner of the 

information, and the results are sent back to the client. 

2.5.2 Load Balancing 

A major challenge of resource sharing is how to balance the demand for resources across the 

system [33].  Because of the extremely limited processors available on the robots in [33] all 

image processing and high level control must be done by a network of off-board workstations.  

Because the architecture had no method for process migration it was impossible to switch tasks 

between workstations once they had begun, which led to less than optimal distribution if multiple 

tasks were started simultaneously [33].  In a similar application, [47] demonstrates a system for 

distributing image processing tasks between off-board and on-board processors. 
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In [46] each robot is equipped with a powerful processor and only responsible for a unique set of 

sensor data, any task involving that data can be shipped over the network to be processed locally 

and then the results are transmitted back.  This presents some significant advantages over a 

centralized processing station, since it allows processing to be distributed over a network of 

computers as well as greatly reducing the required communication bandwidth [46].  However, it 

also has certain drawbacks in some situations, for example if many controllers wish to utilize the 

same data simultaneously all processing must be carried out by the owner of that data and there is 

no way to take advantage of other processors that may be available. 

2.5.3 Distributed Processing 

When controlling mobile robots a number of problems must be solved in real-time, such as 

motion control, mapping, localization, and sensor processing [48].  Some of these tasks have high 

computational requirements and it may be impossible for all tasks to be handled simultaneously 

by a single processor.  In these situations a distributed network of processors can be utilized.  

Such a network has many advantages: it can be shared among a group of robots, load can be 

balanced throughout the network, processors can be added and removed depending on the 

requirements of the system, the system is robust in the case of processor failure, and as long as 

there is a common interface the underlying architecture of each processor can be different [48].  

On the other hand [48] also notes a number of new concerns that are introduced to the system.  

First, there is a potential for latency between control system components, and different modules 

can no longer be considered tightly coupled.  Second, not all processors have immediate access to 

all information, and so communication protocols must be instituted to ensure knowledge is shared 

in a timely manner.  And finally, some strategy must be used to integrate each of the components 

into a single working system.  Centralized management strategies for distribution are used in 

[48], [32], and [33]. 

A slightly different approach is used in applications such as [46] and [49], where each robot has 

an on-board processor.  As discussed previously, [46] distributes processing tasks based on the 

location of the required data, and ideally the demand for data is balanced throughout the system 

and thus the load is evenly distributed.  In [49] a solution to collision free routing is presented 

that divides the task among the onboard processors of each robot. 
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One concept in distributed processing that seems to have been overlooked is the idea that a 

processor is a processor whether it is stationary or on-board, and can be harnessed for any 

computational task regardless of its location.  Applications that consider sharing computational 

power tend to only consider stationary processors, while applications that utilize on-board 

processors limit tasks to those related to that robot or its sensors.  There is no obvious reason why 

a system that merges each of these approaches could not be implemented: tasks distributed 

between stationary and on-board processors based on available resources and the data required 

for each computation task shared throughout the system.  Such a system would require some 

framework for balancing the computational load and sharing data in a way that efficiently utilized 

limited communication resources. 

2.5.4 Behaviour Migration 

The topic of behaviour migration introduced in [38] has some very interesting potential 

applications to resource sharing.  The focus of [38] is on autonomous and semi-autonomous robot 

applications with long lived and stateful tasks.  These are not easily accomplished since the 

operating time of a typical robot is relatively short and in natural environments robots have rather 

high failure rates.  When a robot fails or is forced to retire to replenish its resources it is desirable 

that its role be taken over by another robot.  However, it is often the case that the robot’s 

controller will have gathered information and perhaps learned behaviours to improve its 

performance and so these must be transferred to the new robot in order to maintain efficiency.  

This is accomplished in [38] by using Virtual Machine (VM) techniques to freeze the software, 

transfer it to another robot, and resume operation.  Some of the limitations of this approach are 

outlined in [38]: VMs tend to be highly architecture dependant and may not function in a system 

with heterogeneous processors, transferring the entire software state might not be necessary in 

many cases, in teams of heterogeneous robots not every control system is suitable for execution 

on every robot, and finally, the time taken to transfer the VM state is dominated by the 

communication time even in high bandwidth systems. 

This approach could have potential beyond simply moving a controller from one robot to another, 

for example in a distributed processing system it could be used to move processing tasks from 

one processor to another to help balance the load.  [50] takes several steps in this direction, but 

makes a number of decisions that limit the application of their approach.  The foundation of the 
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approach is to use Java VMs and thread migration libraries to cyclically transfer a Coordinating 

Process (CP) between robots.  The CP is transferred to each robot in turn, updates its state 

information, issues control commands, and prepares for the next transfer.  If a failure occurs 

during transfer or while the CP is resident on the failed robot the system is capable of restoring 

the CP from its latest valid state.  This allows a centralized controller while eliminating the 

concern for a single point of failure.  However, this strategy also comes with some disadvantages 

that limit its usefulness:  

1. The choice of thread migration appears unnecessary since the implementation could be 

achieved more efficiently by running the thread permanently on each robot and simply passing 

the state data around the team. 

2. Since only a single thread is considered for transfer it takes no advantage of the 

distributed network.  Processors are limited to performing local tasks while the CP is not resident. 

3. Since the CP traverses the entire team each cycle, an individual robot spends a significant 

percentage of the time without access to the CP and control commands. 

4. The extremely large number of process transfers are dictated solely by the design of the 

system rather than any intelligent strategy considering the needs of the system, unnecessarily 

increasing the time spent on transfer and the risk of failure during transfer. 

5. Despite the authors’ claims that there is potential for scalability, there are core factors 

limiting this.  Good performance was achieved with a small team on an extremely low latency 

network: results showed the entire transfer process took ~4.26 ms.  A realistic wireless network 

must anticipate the latency of single messages to be of this order of magnitude or greater, leading 

to rapid degradation of performance.  Furthermore, as the team size increases the number of 

transfers grows and the percentage of time that the CP spends on each robot shrinks. 

2.6 Conclusions 

Dynamically formed teams are an important topic that has received little attention.  A technique 

to organize any group of robots into a functioning team could dramatically increase the team’s 

ability to adapt to failure and make efficient use of all available resources.  Two topics of 

research have been identified after studying the less developed areas of this field: 1) distributed 

processing through agent persistence and propagation, and 2) dynamically reforming semi-

centralized control systems. 
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The concepts of agent persistence and propagation is introduced in [38] as a method to 

accomplish long term tasks that exceed the operating time of a robot and avoid the loss of data 

and learning in the event of robot failure.  These concepts can be applied equally well to the 

transference of agents in a distributed processor network to either balance the load or reduce 

latency between an agent and the robot it is controlling.   

Semi-centralized control offers some of the coordination of centralized control by having 

supervisors that organize the actions of the team.  However, such a system is not robust in the 

event that a centralized component fails or communication channels break.  By applying the 

strategies from dynamically formed teams, knowledge sharing, and distributed processing it may 

be possible to build a semi-centralized system while avoiding the pit-falls of a single point of 

failure. 
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Chapter 3 
Control System Design Strategy: Control ad libitum 

In a time when the field of mobile robotics has seen dramatic growth and technologies have 

reached the point where many real world applications of robot teams are being realized, perhaps 

now is an opportunity to step back and consider how these teams are being designed and built.  It 

is often the case that a particular robot or control system is designed with a specific task in mind, 

and not much consideration is given to how that task is achieved as long as at the end of the day it 

works.  Although this approach has yielded many successes it seems fundamentally limited in 

terms of its robustness and potential for far reaching application in the real world.  The aptly-

titled article 1,001 Robot Architectures for 1,001 Robots [10] highlights this issue and asks the 

question “Is it really impossible to subject robot architectures and software systems to any 

objective performance evaluation?”  The review of benchmarking and standardization conducted 

in [51] lists many initiatives, but by and large their focus appears to be on after-the-fact 

performance analysis rather than strategies to assist developers design better teams.  Two 

exceptions are the Robotics Domain Task Force of the Object Management Group [52] who 

encourage designs using modular components, and the Joint Architecture for Unmanned systems 

(JAUS) which follows the five principles of vehicle platform independence, mission isolation, 

computer hardware independence, technology independence and operator use independence [53].  

In an attempt to approach the issue of robot team design from a broader “big picture” perspective, 

the Control ad libitum philosophy is introduced in [54,55], and several tenets are proposed that 

can help lead to the design of more adaptable, more efficient, and more robust teams. 

The original concept of Control ad libitum was simply a set of design ideals and goals that 

intuitively enhance robot teams.  This chapter adds more structure to the philosophy and develops 

methodologies for quantifying and evaluating key aspects of a team at all three stages of the team 

lifecycle: Design, Development, and Performance.  Considering each stage in turn, the major 

aspects of differentiation were distilled into seven tenets.  The seven tenets are intended to be 

comprehensive, though not exhaustive, and encapsulate the main aspects of existing works such 

as [52,53] and the architectural evaluation criteria proposed in [56].  Drawing from many 

different fields, a set of indexes have been developed and adapted to quantify the aspects of 

Adaptability, Diversity, Modularity, Efficiency, and Persistency.  These metrics provide a starting 
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point for the evaluation, and demonstrate how the right questions can be asked and answered, 

though of course there are many other potential criteria that may also be useful. 

3.1 Team Lifecycle 

Ultimately, measuring the performance of a team seems dependant on the specific 

implementation of hardware and software.  However, it is important to take a step back and 

consider the entire team lifecycle: what choices were made that led to a given implementation, 

how easy or hard was it to get there, and how do these choices impact future applications?  The 

robot team lifecycle typically progresses through three phases, Fig. 3.1-1; though of course it is 

possible at a later stage to make revisions to the design or implementation should an issue arise.  

The cyclical nature of the lifecycle applies to future implementations, which ideally are built on 

top of existing work rather than starting each new application from scratch. 

In the Design phase there are two broad choices to be made: 1) the choice of Control 

Architecture, and 2) the choice of Control Strategy.  There are various definitions of what is 

meant by control architecture, often changing slightly depending on the scope and the field.  One 

prominent definition can be found in [56]: “Robotic architecture is the discipline devoted to the 

design of highly specific and individual robots from a collection of common software building 

blocks.”  However, a more general definition is better suited to this work, and so the simpler 

definition from [57] will be used: “An architecture provides a principled way of organizing a 

control system.”  This definition highlights the strategy for organizing components of the control 

system, which is the key differentiator between architectures.  A wide variety of architectures are 

available for robot teams, such as centralized vs. decentralized, deliberative vs. reactive, strictly 

 

Fig. 3.1-1 Team Lifecycle

Design

DevelopmentPerformance
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hierarchical vs. heterarchical, and of course many combinations and hybrids can be used.  When a 

specific architecture is chosen it provides a framework to construct the control system, but it also 

introduces limitations on what control strategies can be employed and how they are implemented 

[57].  For example, a centralized architecture allows for control strategies using central planners 

but requires information about each agent, and thus a certain degree of communication, while a 

decentralized architecture can have little to no communication but must rely on control strategies 

that make decisions based only on local information [58].  The second choice of the Design phase 

is what control strategies will be used.  This includes selection of control laws, algorithms, and 

techniques, as well as the level of information exchange in the system (communication 

strategies).  The Control Strategy should map out all essential functions and interactions of the 

control system using the structured provided by the Architecture.  A proper Control Strategy 

should resemble psudo-code for the control system, answering all questions of how the system 

will work at a conceptual level. 

The Development phase begins the Implementation of the control system, specific to an 

application and installation of the team.  This includes selecting the specific type and quantity of 

hardware for both robots and processors, and a realization of the Control Strategy via functional 

code/control circuits and specifying control parameters.   Fig. 3.1-2 depicts the choices of Control 

Architecture, Control Strategy, and Implementation as a pyramid, with each level providing 

structure for the next step but at the same time limiting the available options for later choices.   

Once the implementation is complete the Performance phase can begin, and the team can be 

evaluated using traditional quality of service, efficiency, and reliability metrics.  These traditional 

metrics are the dominant form of evaluation in the field, and are the obvious way to compare or 

rank different robot teams.  However, as was shown above, performance is only the tip of the 

pyramid and heavily depends on the many choices that lead to a given implementation.  

  

A realization of the control system via 

functional code and hardware 

 

A conceptual map of the control system, 

detailing functions and interactions 

 

A coherent strategy for organizing the 

control system 

Fig. 3.1-2 Implementation Pyramid 

Implementation
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Comparing performance can tell you which team is better in what aspects, but cannot tell you 

why that is the case and does little to help designers improve their decisions during or after the 

initial Design and Development phases.   

Based on this full lifecycle approach, the breakdown in Table 3.1-1 systematically considers each 

phase, restating the key element of the phase and listing the fundamental aspects of differentiation 

and comparison in the form of questions.   Each phase is considered from both a functional and a 

usability perspective; for example, the two sides of an architecture are the capabilities of the 

architecture in terms of structure and flexibility and the process of applying the architecture from 

the designer’s standpoint.  Additionally, these questions form the basis for the seven tenets of 

Control ad libitum, discussed in the following section, and each question has been identified by 

its corresponding tenet.  These 18 questions represent a range of avenues of comparison spanning 

the entire team lifecycle, Fig. 3.1-3, many of which are often not considered during the design 

and evaluation of robot teams. 

 

Table 3.1-1 Lifecycle Breakdown 

Design Phase – Control Architecture 

The central concept of a Control Architecture is the “principled way of organizing” [57]; a set of guidelines, 

instructions, or rules that tell the designer how elements of the control system should be structured.  

1. Is the architecture easy to understand? (Transparency) 

a. Does it encourage implementations that can be properly analyzed? 

b. Does it encourage implementations that are accessible to future designers? 

2. Is the architecture simple to use? (Transparency) 

a. Are the tools/guidelines straightforward? 

b. Are the tools/guidelines well defined and comprehensive? 

3. Is the architecture flexible enough to be applied to a wide range of strategies/applications? (Versatility) 

4. Does the architecture support and encourage modular design? (Modularity) 

5. Does the architecture support and encourage robustness and failure recovery? (Persistency) 

Design Phase – Control Strategy 

A Control Strategy is a selection of control laws and algorithms and a strategy for their interactions.   

6. Is the strategy well defined and easy to understand? (Transparency) 

7. Is the strategy designed to support diverse components? (Diversity) 

8. Is the strategy designed in a modular fashion?  (Modularity) 

9. Is the strategy designed to support adaptability and learning? (Adaptability) 

10. Is the strategy designed to be reusable or retaskable? (Versatility) 

11. Is the strategy designed to be robust and recover from failures?  (Persistency) 

Development Phase – Implementation 

A realization of Control Strategy via specific code and hardware. 

12. Is the implementation easy to understand? (Transparency) 
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13. Is the implementation reusable or retaskable? (Versatility) 

14. Is the implementation modular? (Modularity) 

15. Are the selected components diverse? (Diversity) 

16. Was the implementation completed in a timely fashion given the allocated resources? (Efficiency) 

Performance Phase 

The evaluation of the real-time performance of an implementation. 

17. How efficiently does the implementation perform tasks? (Efficiency) 

a. Are tasks performed in a timely manner? 

b. What is the quality of service? 

c. What is the return on investment? 

18. How robust is the system? (Persistency) 

a. How susceptible is the system to disturbance? 

b. How susceptible is the system to failure? 
 

 

Fig. 3.1-3 Lifecycle Breakdown 
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3.2 Control ad libitum 

Control ad libitum, literally “control at the performer’s discretion,” is an approach that suggests 

that in order to make significant progress in the real-world use of mobile robot teams the control 

system must be structured such that teams can be formed in real-time from diverse components.  

From the common modern usage, ad-lib, it can be said that wide spread application of robot 

teams is only practical if a control system is able to improvise using the currently available 

resources.  In order to design such control systems these goals must be taken into consideration 

from the very first step, and attention must be paid to how the control system is constructed in 

addition to how it functions.  By considering each phase of the robot team lifecycle seven tenets 

were identified: Transparency, Versatility, Adaptability, Modularity, Diversity, Persistency, and 

Efficiency.  These tenets are outlined in Table 3.2-1, starting with a summary of each concept and 

followed by a brief discussion of how it relates to the phases of the design cycle. 

Table 3.2-1 Tenets of Control ad libitum 

Transparency (Design, Development) 

 Ease of use and simplicity of the design structure/guidelines 

 Ease of understanding during design and development 

Most reasons why robot architectures and control systems are rarely reused stem from a lack of transparency [10].  

Many designers take the stance that their time is better spent building everything from scratch than fighting with 

existing code that won’t compile, does not have the exact features they require, or is simply hard to understand.  

Quite often they are right, but this problem with how architectures and control systems are designed in results-

oriented environments is not irreparable.  If more focus is placed on how systems are designed and there is a better 

understanding of how to make components reusable and retaskable, a significant amount of effort can be saved on 

future projects.  Transparency is most important in terms of the architecture and control strategy of the Design phase, 

but is also important to the Development phase. 

Versatility (Design, Development) 

 Flexibility of the system, ease of use for different applications 

Versatility reflects the ability of a component to be applied to many uses.  Related to the Design phase, some 

architectures are designed for very specific uses or specialized tasks, while others attempt to be more general or open 

ended.  Similarly, control strategies may have different requirements in terms of specific hardware or algorithms.  In 

the Development phase, code and components of the control system can be made as flexible and independent as 

possible for reuse in the same system or other applications, drawing on the concept of decoupling from object 

oriented programming [59].  There is sometimes a tradeoff between versatility and efficiency, and in such cases there 

should be an understanding of what is being sacrificed on each side before a decision is made. 

Adaptability (Design) 

 Ability to handle changes to the system or the environment without outside intervention 

In real-world applications of mobile robotics the available resources will change not only between different 

installations, but will also change during operation due to hardware failures and recoveries.  In order to be practical 

for large-scale use the control system must be able to adapt to these changes in real-time without detriment to the 
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functions of the team.  Such functionality can be built in at the Control Strategy stage, and can be supported by 

features of the architecture. 

Modularity (Design, Development) 

 Structure of interactions and dependencies of components 

Modularity is a key element in the development of any large system.  A truly modular system reduces the complexity 

of the design, reduces the effort required to develop each module, and allows modules to be reused within the control 

system or in future control systems.  Building new functionality on top of previous control systems will be an 

essential part of realizing wide spread application of mobile robotics.  Modularity is most easily measured at the 

Development phase, though if the Control Strategy is detailed enough then modularity measures can be used at that 

level as well. 

Diversity (Design, Development) 

 Diversity of components such as hardware, software, or control parameters 

 Support for diversity  

Diversity of components at the Development phase does not necessarily correlate to improved performance [5], 

though measures of diversity are still useful to provide insight between implementations.  On the other hand, 

supporting diversity at the Control Strategy or Implementation level has no drawbacks and can be beneficial for two 

reasons.  First, procuring hardware resources can be costly, particularly for large scale applications.  Thus, it is 

desirable to be able to reuse hardware from old applications, acquire whatever hardware is currently cost effective, 

and in the future add or replace hardware without concern for finding exactly the same models[9].  Secondly, 

heterogeneity within a team can provide benefits for both team effectiveness [8] and the cost vs. capability ratio[7]. 

Persistency (Design, Performance) 

 Robustness, the ability to continue operation in the face of failure 

 Failure recovery, the ability to handle failures without losing functionality or information  

Many applications of mobile robotics require operations in inhospitable environments, and complex hardware has 

significant failure rates even in the best circumstances.  For long lived autonomous tasks it is desirable that the 

control system recover from such failures without loss of data, maintaining the knowledge and learning acquired up 

to that point [38].  To be truly robust the control system must be independent of specific hardware resources and flow 

between resources as their availability dictates.  Such features should be built into the system at the Design phase, 

relying on both the Architecture and the Control Strategy.  It is easiest to put these features to the test, however, in 

the Performance phase when the complete system implementation is available and can be evaluated under realistic 

failure scenarios. 

Efficiency (Design, Development, Performance) 

 Cost vs. Reward, how much gain is provided for an input of resources 

The issue of efficiency has two facets.  The first consideration is that the system is not designed in such a way that 

requires the duplication of resources or effort.  For example, rather than equipping each robot with a high speed 

processor to extract information from images a number of processors can be shared between the whole team [33].  

The second consideration is that the system uses resources appropriately when they are available in order to prevent 

bottlenecks.  For example, [49] utilizes the processors of each robot in a distributed algorithm to compute collision 

free routing paths when solving the routing on a single processor would have been impossible.  Both these scenarios, 

and almost any other question of efficiency, can be reduced to the problem of cost vs. reward.  All that is required is 

to define what costs are being considered, e.g., time, resources, hardware investment, and what constitutes a reward, 

e.g., tasks complete, quality of service.  Efficiency for robot teams is primarily considered in the Performance phase, 

though the same cost vs. reward analysis is equally valid throughout the Design and Development phases, 

particularly for commercial projects. 
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3.3 Design, Development, and Performance Indexes 

Considering the seven tenets of Control ad libitum and the questions they were founded on, it is 

clear that some aspects are difficult to quantify empirically and are best suited for analytical 

consideration.  However, there are also a large number of aspects that can be quantified, given the 

right tools, which can lead to better standardization and more consistent comparisons.  This work 

develops and adapts several metrics and indexes from various fields, and shows how they can be 

used to help understand differences in performance and even provide useful insight before the 

team is assembled or the first line of code is written.  The indexes are sorted according to the 

tenets of Control ad libitum and categorized by where they fall in the team lifecycle.  Most 

indexes are considered “preference indexes” because in the majority of cases a higher value in the 

index is preferable, for example efficiency or robustness.  It should also be noted that in the same 

way that performance is no longer the sole measure for comparison, improved performance is 

also not the only reason to prefer one choice over another.  Indexes for transparency or versatility 

may not correlate to performance but are beneficial in other ways, such as aiding understanding 

of the control system or streamlining the design process.  In contrast to preference indexes, it is 

also possible to have “distinction indexes,” which simply differentiate between choices without 

suggesting one is better than another.  For example, diversity can be beneficial in some cases and 

a liability in others, but quantifying diversity can still provide insight into other aspects of the 

team.   

Five indexes related to Adaptability, Diversity, Modularity, Efficiency, and Persistency are 

developed in Appendix I.  Some examples are provided there and the Modularity and Persistency 

indexes were applied to the final control system developed in Chapter 6; while Efficiency was 

used as the primary comparator between the different SLAM strategies tested in Chapter 7.2.
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Chapter 4 
Control System Architecture 

4.1 The Host, Avatar, Agent Architecture 

Based on the principles of Control ad libitum, the following HAA architecture was developed 

[54].  The system is separated into three components: Hosts, Avatars, and Agents.  Hosts are the 

physical processors, where computations are done.  Hosts can be either stationary units or 

mounted on avatars.  Avatars are the physical robots, which must be the control system’s eyes, 

ears, and hands in the world.  Agents are the software modules of the control system that run on 

the hosts.   This relationship is depicted in Fig. 4.1-1.  The hosts form a distributed processing 

network and maintain a distributed database (DDB) to share data throughout the network.  

Software agents are spawned (instantiated) as required by the control system and communicate 

with each other and the avatars via the network.  An agent consists of an internal state and a set of 

functions for manipulating that state and communicating with other agents.  By transferring the 

state of an agent between hosts it is possible for an agent to propagate throughout the network to: 

a) balance processing load, task priority, and communication latency, b) conserve power on 

mobile hosts, c) recover in the event of hardware failure, and d) share learned behaviours with 

similar agents. 

 

Fig. 4.1-1 HAA Architecture 
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Working in the HAA architecture requires three components: a) the distributed processing 

network of hosts, b) a DDB to share information, and c) a strategy or hierarchy for organising 

agent interactions.  Since there are many possible implementations for each of these components, 

they are discussed in general terms in Section 4.2.  A full implementation is then presented in 

Section 4.3, using provably correct distributed algorithms to build each piece of the architecture. 

4.2 HAA Building Blocks 

4.2.1 Distributed Processing Network 

Communication is the cornerstone of any distributed processing network and dramatically affects 

the structure of a control system.  As shown in [5] communication can improve performance, 

however, in some cases the necessary hardware can add significantly to the power consumption 

of a robot [32].  On the other hand, high speed processors required for tasks such as real-time 

image processing or other complex computations typically consume an order of magnitude more 

power than a wireless transmitter.   

4.2.2 Distributed Database 

The DDB is used to share various types of information throughout the network.  In following the 

tenets of efficiency and persistency the DDB is implemented as a highly available service, 

improving local performance of the database and preventing data loss when failures occur.  

Highly available services can be implemented using various distributed algorithms, such as the 

gossip architecture [60] that balances the amount of communication against the required 

consistency of replicas [61].   

4.2.3 Scalable Hierarchical Control 

The distributed processing network provides an extremely flexible framework in which to build a 

control system.  When designed in a modular fashion the control system can take advantage of 

the distributed resources while simultaneously implementing centralized components without 

sacrificing the robustness of the system.  Similarly, elements of both deliberative and reactive 

approaches can be used together as dictated by the task requirements.  One possibility is the 

Scalable Hierarchical Control approach presented here, which suggests an organizational 

hierarchy that dynamically scales depending on the current tasks and available resources.  As 
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shown in Fig. 4.3-1, the high-level organization of the team is coordinated by a group of 

Executive agents, mid-level Supervisor agents perform more focused roles related to a single 

function or task within the team, and the lowest level of operation is carried out by Worker 

agents.  Four different agents are outlined in Table 4.2-1 to provide examples of the different 

levels of interaction. 

4.3 HAA Implementation 

This section introduces the structure and related algorithms used to build a robust and fault 

tolerant distributed framework using the HAA architecture.  The goal of this framework is to 

create a modular and dynamic system that has provably correct behaviour under common failure 

scenarios.  To this end the basic network structure was defined and a set of distributed algorithms 

Table 4.2-1 Agent Examples 

1. Mission Executive (Task Assignment Executive): The Mission Executive decides what tasks need 

to be accomplished, when a task should be started, when a task is complete, and what tasks should 

be arranged in series or parallel to create a branching task tree.  Starting from the highest nodes on 

the task tree, sub-tasks are added and broken down as necessary based on the available resources.  

Fig. 4.3-2 shows an example task tree for a mission where the team must explore an unknown 

environment, gather any “collectibles” that are found, and return to the staging area. 

2. Avatar Executive: The Avatar Executive assigns avatar resources to fulfill the requests of 

Supervisors.  Whenever possible multiple requests are fulfilled simultaneously, allowing the 

efficiency of the team to scale proportionally with the number of avatars.  As the number of avatars 

grows it becomes impractical to find the optimal solution, but strategies such as that presented in 

[19] are able to find near-optimal solutions with significantly less work. 

3. Task Supervisor: Each Task Supervisor is designed to handle a specific task, which may be 

accomplished by completing the task directly, coordinating a group of Avatar agents, or spawning 

and coordinating lower level Task Supervisors.  For example, in Fig. 4.3-2 the Gather Supervisor 

spawns a Collect Supervisor for every object.  The Collect Supervisor then requests avatar resources 

from the Avatar Executive and coordinates their actions using Form Team and Push Object agents. 

This level of abstraction provides significant modularity and conceptual separation between tasks, 

and new tasks can be programmed without affecting the current control system. 

4. Avatar Agent (Worker): Every physical avatar has an associated agent that acts as a gateway to 

the control system.  All off-the-shelf robots come with their own specific API and require some 

customization to function with a control system.  Interpretation is necessary between this specific 

API and the generic internal interface, and the Avatar Agent consolidates these interpretations into a 

single module.  Avatar Agents select what functionality they expose, allowing the Avatar Executive 

to assign them useful tasks without knowing the details of their operation. 
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were implemented in layers in order to provide the basic functionality of the system.  These 

components are described below to provide an overall picture of the structure and list 

assumptions and failure conditions for each component, and then the following sections discuss 

each component and their related proofs in detail.  [62] relates these details of the 

implementation. 

 
Fig. 4.3-1 Scalable Hierarchical Control 

 
Fig. 4.3-2 Task Tree 
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4.3.1 Framework 

The distributed framework consists of both the physical computer and network hardware and the 

software running on top.  In general terms the physical network consists of processors connected 

by communication channels.  Processors are capable of running software processes, and for this 

framework processes are divided into two categories: Hosts and Agents.  Each processor runs one 

instance of the Host process, which manages all inter-process communication and the creation 

and allocation of the Agent processes.  This framework is depicted in Fig. 4.3-3.  These Hosts are 

responsible for all the algorithms discussed in the following sections, while the functional details 

of the Agent processes are unimportant so long as they support the basic agent functionality of 

creation, destruction, transfer, and recovery. 

The Host network relies on a series of distributed algorithms to support its functions, shown in 

Fig. 4.3-4.  These algorithms are listed in Table 4.3-1 and descriptions are provided in general 

terms that attempt to summarize their purpose, however these cannot be taken as a complete 

definition of their functionality. 

Each algorithm is reliant in various ways on those before it and thus is subject to the assumptions 

and failure conditions of the preceding algorithms.  However, they are also modular in that if 

another algorithm was found that implemented the same functionality the algorithm could be 

replaced and the system would then be subject to the assumptions and conditions of the new 

algorithm.  Detailed psudo-code for each algorithm is provided in Appendix II, along with proofs 

of algorithm correctness. 

 

Fig. 4.3-3 HAA Network Structure Fig. 4.3-4 HAA Algorithm Hierarchy 
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As a result of the current choice of algorithms the following assumptions are made about the 

network structure: 

1. The network is fully connected.  That is, every correct processor is capable of 

communication with every other correct processor. 

2. A correct communication channel is reliable and ordered, where reliability is defined by 

as: 

“validity: any message in the outgoing message buffer is eventually delivered to the 

incoming message buffer; 

integrity: the message received is identical to one sent, and no messages are delivered 

twice.” [61] 

The ordered condition means that any sent message must be delivered prior to the delivery 

of any message sent at a later time. 

A correct process or channel is defined as a process or channel that does not suffered any failure.  

The possible classes of failure are defined in Table 4.3-2.  

Each class of failure as it relates to this framework/implementation is considered as follows: 

Fail-stop: Fail-stops are not considered explicitly as there is no method to directly detect a 

halted process, instead all fail-stops can be considered crash failures. 

Table 4.3-1 Algorithm Descriptions 

Algorithm Description 

Network Layer Provides the basic network functionality of the computer hardware to the 

algorithms. 

Unreliable Failure Detector Monitors a connection and estimates whether that connection has failed. 

Totally Ordered Atomic 

Commit 

Delivers messages to a group while ensuring that a) if a message is delivered 

to one correct process the same message is delivered to all correct processes, 

and b) the order of delivered messages is consistent across all processes. 

Group Service Maintains a list of group members.  

Agent Allocation Determines which processes shall run on each processor based on processor 

usage and communication bandwidth between processes. 

Agent Transfer Facilitates the action of seamlessly halting a process on one processor and 

resuming it on another processor. 

Agent Recovery Facilitates the action of recovering a failed process on either the same 

processor or a new processor. 
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Crash: Crashes are allowed and the system must be able to handle up to f crashes before 

taking an incorrect step. 

Omission: Omissions are reduced to the case of total channel failure, i.e. all messages after a 

time t are not delivered.  The case of individual lost messages is prevented by the assumption of 

ordered message delivery that is enforced by the Network Layer.  When a channel is suspected of 

failure by the Unreliable Failure Detector the process at the other end is assumed to have crashed 

and must be handled appropriately. 

Send-omission/Receive-omission:  Both types of failure are disregarded based on the 

assumption that the Network Layer will either correctly send/receive a message, return an error, 

or crash. 

Arbitrary (Byzantine): Some types of arbitrary failure, such as message corruption or arbitrary 

stops are handled by the system, but in general this class of failure is not allowed. 

Clock: No assumption of synchrony is used in any of the algorithms, but it is assumed that a 

processors local clock has bounded drift from real time for the interval of operation.  Studies have 

shown that in practice the rate of drift is on the order of 10
-6

% for over an interval of time [63]. 

Performance (Process/Channel): No explicit bounds are made on the interval between 

process steps or duration of message transmission, however the Unreliable Failure Detector will 

suspect any channel (and thus process) that is performing below its quality of service 

specifications.  Thus, these classes of failure are handled as crashes. 

Table 4.3-2 Classes of Failure (Adapted from [61]) 

Class of failure Affects Description 

Fail-stop Process Process halts and remains halted.  Other processes may detect this 

state. 

Crash Process Process halts and remains halted.  Other processes may not be 

able to detect this state. 

Omission Channel A message inserted in an outgoing message buffer never arrives 

at the other end’s incoming message buffer. 

Send-omission Process A process completes a send, but the message is not put in its 

outgoing message buffer. 

Receive-omission Process A message is put in a process’s incoming message buffer, but that 

process does not receive it. 

Arbitrary (Byzantine) Process or 

Channel 

Process/channel exhibits arbitrary behaviour:  it may 

send/transmit arbitrary messages at arbitrary times, commit 

omissions; a process may stop or take an incorrect step. 

Clock Process A process’s local clock exceeds the bounds on its rate of drift 

from real time. 

Performance Process Process exceeds the bounds on the interval between two steps. 

Performance Channel A message’s transmission takes longer than the stated bound. 
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In summary, send-omission/receive-omission failures, general arbitrary failures, and clock 

failures are not allowed, while the other types of failure are all handled by the Unreliable Failure 

Detector as suspected crashes. 

4.4 Unreliable Failure Detector 

The purpose of a failure detector is to know when a process has failed or becomes unreachable.  

For the general case of unreliable networks the task of perfect failure detection violates the FLP 

impossibility [64], and so the notion of unreliable failure detection was introduced [65].  An 

unreliable failure detector typically provides an estimate of whether a process has failed, 

“suspected,” but is not guaranteed to be accurate at any given time.  The algorithm used in this 

work is heavily based on that found in [66].  This algorithm was selected because of its straight 

forward implementation and the ability to abstract the tuning parameters of the algorithm into 

real-world quality of service (QoS) metrics. 

In general a failure detector monitors the connection between two processes, the observer q and 

the observed p.  At all times q proposes whether p is trusted or suspected, but of course cannot be 

considered correct at any given time.  Borrowing the notation of [66], the QoS metrics that 

determine if the proposal of q is useful are broken down into three primary metrics, and four 

derived metrics: 

Primary: 

1. Detection time (TD): Elapsed time between p crashing and being permanently suspected. 

2. Mistake recurrence time (TMR): Time between two consecutive false suspicions. 

3. Mistake duration (TM): Elapsed time between making a false suspicion and correcting it. 

Derived: 

1. Average mistake rate (λM): Rate of false suspicions. 

2. Query accuracy probability (PA): Probability that q’s proposal is correct at a given time. 

3. Good period duration (TG): Time between proposing trusted and proposing suspected. 

4. Forward good period duration (TFG): Related to TG, the time between any given point in 

time and the next suspicion.  
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The relation between the primary metrics and the derived metrics is provided by Theorem 1 

below.  The notation Pr(A) represents the probability of event A occurring, E(X) is the expected 

value of random variable X, V(X) is the variance of X, and E(X
k
) is the k

th
 moment of X. 

Theorem 1 (published in [66] along with a discussion of the proofs and the selection of 

primary metrics).  For any ergodic failure detector, the following results hold: 1) . 

2) If 0 ∞ then 1/  and / . 3) If 0 ∞ 

and 0, then  is always 0. If 0 ∞ and 0, then 3a) for all 0, ∞ , Pr Pr / , 3b) / 1 . 

In particular, 3c) 1 /2. 

These metrics can be used to compare the performance of failure detectors, but are equally useful 

to specify performance bounds on a failure detector.  The authors of [66] present several 

variations on a failure detection algorithm using bounds on TD, TMR, and TM to determine the 

tuning parameters, and provide a proof that the algorithm yields the optimal query accuracy 

probability PA for failure detectors with the same rate of heartbeat messages and upper bound on 

detection time.  The basic algorithm is summarized below and then the specific implementation 

used for this work is explained in more detail; this implementation is heavily based on the 

algorithm of [66] and the text will note where augmentations have been made. 

4.4.1 Failure Assumptions 

No send-omission, receive-omission, arbitrary, or clock failures are allowed.  Omissions with a 

message loss probability of pL and message delays D in a distribution with finite E(D) and V(D) 

are allowed.  Crashes/fail-stops are allowed for p but the algorithm obviously requires q to be 

alive. 

4.4.2 Algorithm Overview 

The observed process p periodically sends numbered heartbeat messages, , to the observer q.  

Observer q knows a time, , before which it is expecting to receive .  If  arrives before  

then p remains trusted, if time  occurs before  arrives then q suspects p.  If  was delayed 
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and arrives before time  then q is allowed to trust p again, however if  is delayed beyond 

 then q must wait for  or a later message before it will trust p again.   

Algorithm 1, found in Appendix II, implements this algorithm in a system with a) 

unsynchronized clocks, and message behaviour (in terms of message loss pL and message delay 

D) that is b) unknown and c) changes over time.   

This algorithm is based on [66]’s NFD-U algorithm, with six significant changes that allow the 

tuning parameters to be updated dynamically based on current estimations of network 

performance: 

1. INITIAL_PERIOD set by the observer: In ll. 2-3 the initial period for the heartbeat 

messages is set to an initial value, selected to be smaller than the smallest  based on the possible 

QoS settings and worst case network performance.   

2. Including period and  in the heartbeat message: The current period and local time, 

, are included in the heartbeat message to assist in the calculation of . 

3. Initialization of the FD parameters: Because the performance of the network is not 

initially known the calculation of initial FD parameters must be assume a “worst case” scenario. 

4. Calculation of : Since the clocks are unsynchronized and the period can change the 

calculation of  must be different than in [66].  The inclusion of period and  in each 

heartbeat message allows for two things: 1) the direct calculation of , and 2) the estimation 

of the offset message delay, .  The delay  consists of the offset between the between the local 

clocks of p and q, which is assumed to be constant, and the actual message delay .  This 

information allows the expected time of arrival of  to be estimated for the local clock: 

 
1

 (4.4-1) 

5. Re-evaluation of the FD parameters: With the understanding that , since  

is  plus a constant, the FD parameters  and  can be calculated using the same procedure 

given in [66].  This is done every time N heartbeat messages are received in order to adapt to 

changing network performance.  In long lived applications with significant network dynamics it 

may be desirable to store only the M most recent offset message delays for use in the calculation 

of  and  above.  
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6. Introduction of the setPeriod message: After the FD parameters have been re-evaluated p 

needs to be notified of the new period, which is accomplished by a simple setPeriod message.  

The new period is adopted by p after its next heartbeat is sent so that it does not interfere with q’s 

expectation of the arrival of . 
The tuning of this algorithm is done through the selection of the QoS requirements , , and 

, and to a lesser extent to selection of constants INITIAL_PERIOD and N.  Given the three 

QoS requirements the algorithm guarantees that: 

 , ,  (4.4-2) 

The one caveat is that the upper bound on detection time  is  plus the average message delay 

, which is unknown.  An estimation of message delay would require an increase in 

complexity of the algorithm and additional messages, due to the assumption of unsynchronized 

clocks.  [66] argues that this does not impact the algorithm’s viability, since once the upper bound 

on detection time is lower than the message delay  any failure detector begins to make too 

many mistakes to be useful, and so specifying an additional buffer on top of the message delay 

(in this case ) is effectively a requirement. 

In order to understand the cost of running the algorithm the heartbeat frequency is the primary 

concern, i.e. the messages/minute cost of the algorithm.  The QoS requirements used for this 

setup ( 10 , 1 , 30 ) cost roughly 12 messages/minute and has an 

expected forward good period duration 3.5 . 

4.5 Totally Ordered Atomic Commit 

In Atomic Commit (AC), messages must be sent in such a way that all correct processes are 

guaranteed to deliver the message, and all processes must be given the option of triggering a 

unilateral abort even if they successfully receive the transaction message (for example if the 

transaction conflicts with the current state of the process/database).  For this implementation the 

non-blocking AC algorithm of [67] has been used as a base to provide totally ordered atomic 

message delivery.  The [67] algorithm was selected because it provides non-blocking AC for 

asynchronous systems using an unreliable failure detector such as that described above.  Correct 

processes are able to agree on an outcome despite false suspicions, and when no failures occur the 
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algorithm performs similarly to a three phase commit protocol [67].  The AC problem is defined 

in [67] by the four conditions: 

AC-Uniform-Agreement: If two participants decide, they decide on the same outcome. 

AC-Uniform-Validity: The outcome is commit only if all participants have voted yes. 

AC-Termination: Every correct participant eventually decides. 

AC-Non-Triviality: If all participants vote yes, and no participant has ever been suspected, the 

outcome must be commit. 

One important property the algorithm is missing is a guaranty of ordered delivery, which is 

required for some uses in this system.  In order to provide this functionality an additional 

condition, AC-Total-Order, has been defined. 

AC-Total-Order: If one correct process commits transaction m before committing transaction 

m’ then all correct processes participating in both transactions must commit m before 

committing m’. 

Proofs for these properties are developed in Appendix II. 

4.5.1 Failure Assumptions 

No send-omission, receive-omission, arbitrary, or clock failures are allowed.  Omissions are not 

strictly allowed, but in a system with potential for message loss the channel can be made reliable 

by retransmitting lost or corrupted messages [67], such as is done for the TCP/IP protocol.  

Crashes/fail-stops are allowed for up to f < n/2 participants. 

4.5.2 Algorithm Overview 

The algorithm starts when process p* proposes a transaction to a number of participants, p1 to pn, 

one of which must be p*.  Upon receiving the proposed transaction there is a voting phase where 

each participant decides locally whether it is willing to commit the transaction, and then joins 

successive rounds of the consensus phase until a decision is reached.  During the voting phase 

each process has the opportunity to evaluate the transaction and votes yes or no on whether to 

proceed with the commit.  The consensus phase uses a rotating coordinator to decide on the 

outcome, and can only decide to commit if every participant has voted yes. 
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The algorithm found in [67] provided the basic structure for Algorithm 2, however significant 

modifications were made in order to satisfy AC-Total-Order.  These modifications centre on the 

new activeTransactionsp and decidedTransactionsp lists that each process maintains, which 

record transactions that are known but not yet decided and transactions that are decided but not 

yet closed, respectively.  Closing a transaction means that no more messages relevant to that 

transaction will arrive, and therefore the transaction can be cleared from memory.  The 

requirement of total order is complicated by the fact that the sets of participants for two messages 

might differ, yet still require transaction ordering for the overlapping participants, and so 

decisions about one transaction may not be readily available to participants of the second 

transaction.  To work around this issue all participants are required to propose to an insertion 

order prior to agreeing to commit, and the highest proposal will be accepted by all correct 

participants.  Insertion order proposal and acceptance follows two rules: 1) when a participant 

first becomes aware of a transaction it must propose an order greater than that of highest open 

transaction (transactions that have not been closed, as defined above), and 2) a new order 

proposal is accepted only if it is higher than the current order of that transaction.  This strategy 

takes advantage of the fact that each participant must provide their estimate before the pre-

commit point can be reached.  Thus, by ensuring that no participant agrees to an order that 

conflicts with their committed transactions the algorithm guarantees that AC-Total-Order is 

satisfied.   

The algorithm is described block by block with reference to Algorithm 2.   

To maintain global order each participant maintains local activeTransactionsp and 

decidedTransactionsp lists (ll. 1 and 2).  As soon as a participant learns of a transaction, either 

from the initiator or another participant, it is assigned an order and added to activeTransactionsp.  

Once the transaction has been decided it is removed from activeTransactionsp and added to 

decidedTransactionsp. The transaction remains in decidedTransactionsp until all participants have 

acknowledged the decision, at which point the transaction can safely be closed.   

To propose a transaction p* calls procedure startTransaction (l. 3) and sends out a transaction 

message containing a globally unique transaction ID, the transaction details, and a list of 

participants.  At this time p* also proposes an order higher than any transaction p* is currently 

aware of (l. 4).   
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Upon receiving the transaction message (l. 6), each participant first checks their 

decidedTransactionsp list to ensure that this transaction is still relevant, and then calls the 

atomicCommit procedure.  The initialization (ll. 16-32) corresponds to the voting phase, where 

each participant has the option to declare a unilateral abort.  The participant ensures that an 

acceptable order is assigned (ll. 21-25), and if necessary notifies all other participants of the new 

order.  In order to reduce the number of order changes the transaction IDs are used as a tiebreaker 

in the case of transactions with the same order.  It is also worth noting that if there is a message 

priority associated with each transaction, priority can be used as the primary tiebreaker, and 

transaction ID as a secondary tiebreaker.  If the participant votes to abort the transaction (l. 27) 

they notify all participants of the decision (l. 29) and proceed to Task 1, otherwise they proceed to 

the consensus phase by starting Task 1 and Task 2 concurrently.   

Task 1 (ll. 33-42) waits until the outcome is received and rebroadcasts that decision.  In the 

original algorithm Task 1 can then immediately act on the decision, however to ensure total order 

additional checks must be made (l. 37).  If the decision is abort order does not matter and the 

participant can proceed, otherwise they must wait until the transaction has the lowest order of all 

active transactions (using transaction IDs to break ties) before proceeding.  Once these conditions 

are met the participant acts on the decision and moves the transaction from activeTransactionsp to 

decidedTransactionsp.  A final gate must be passed before the transaction can be cleaned up and 

removed from memory (l. 41).  This check ensures that all participants have acknowledged the 

decision and no further messages will be received on the subject. 

Task 2 (ll. 43-71) performs successive rounds of consensus and is fundamentally the same as in 

the algorithm of [67], except for the inclusion of transaction order in each message.  Each round 

of Task 2 can be considered as four steps, two that are taken by all participants (steps P1 and P2) 

and two that are taken only by the coordinator for that round (steps C1 and C2).  Overviews of 

P1, C1, P2, and C2 are provided here [67]: 

Step P1 (l. 47): The participant’s current estimate is sent to the coordinator of the round. 

Step C1 (ll. 48-56): The coordinator waits until either a) n estimates are received from the 

participants or b) at least n - f estimates are received and the remaining participants are suspected 

by the failure detector.  When these conditions are met the coordinator revises its estimate and 



40 

 

sends that as a proposal to all participants.  Note that the estimate can only become pre-commit if 

at least one coordinator has received estimates for all participants (i.e. no participant voted no). 

Step P2 (ll. 57-63): Each participant waits until either a) it receives a proposal from the 

current coordinator or b) the coordinator is suspected.  If a proposal was received the participant 

sends an acknowledgement to the coordinator, otherwise a “negative acknowledgement” is sent to 

the coordinator. 

Step C2 (ll. 64-71): The coordinator waits until it has received n - f acks or nacks from 

participants.  If n - f acks were received then the coordinator is allowed to decide the outcome and 

sends the current estimate as the decision. 

All participants monitor incoming messages (ll. 72-84) to a) learn of new transactions, and b) 

update the order of active transactions.  If a participant receives a message regarding a transaction 

they are unaware of the transaction is added to activeTransactionsp as a placeholder (l. 75).  For 

both placeholder and active transactions the new order is compared to the current order (l. 76) and 

new order is accepted if it is higher (l. 77).  For active transactions (l. 78) the new order is 

broadcast to all participants and Task 2 is reset (ll. 79-83). 

The complexity of the system makes the true performance difficult to examine analytically, and 

so experimentation was conducted to provide some insight.  These results can be found in 

Chapter 7. 

4.6 Host Membership Service 

Maintaining a list of active hosts is a requirement for several aspects of this system.  This list 

must be known to and agreed on by every host in order to ensure consistency, and must be 

accurate and available even if some hosts fail.  To accomplish this, a group membership service is 

used, where each host is a potential member of the group and can only perform their duties while 

they are accepted members.  The basic features of a group membership service are: a) providing 

an interface for adding or removing members from the group, b) monitoring members for 

suspected failures, c) notifying members when membership changes occur, and d) performing 

group address expansion [61].  The implementation of such a service can vary significantly 

depending on the specific requirements of the application and the available tools.  For this system 



41 

    

an algorithm leveraging OAC transactions and an UFD was developed.  Using OACs ensures that 

consistency is maintained, which is one of the primary challenges of a membership service.   

The developed algorithm has the following features:  

1. A globally consistent list of group members. 

2. A method to ensure new that members are consistent with the global state. 

3. A single acknowledged leader at any time. 

4. A method for processes to apply to the group. 

5. A method for members to leave the group. 

6. A method to remove suspected members from the group. 

Selecting a leader is accomplished by maintaining a ranked list of members, where rank decreases 

with the order in which they were added to the group and the leader is the highest ranked current 

member.  The algorithm also makes use of the notion of “core” process, in the form of an ordered 

list of processes with globally known addresses. The list is used during group formation and to 

allow potential applicants to contact the group.  Global state is defined as any data that must be 

consistent across all members, for example this system considers the DDB to be part of the global 

state.  This membership service algorithm is defined by the following seven conditions: 

HM-Formation:  A correct group will eventually be formed, where a correct group is defined 

as having at least one correct core member, and no incorrect group is ever formed. 

HM-Termination: All messages related to an individual event (join, suspicion/remove, leave) 

eventually subside. 

HM-Non-Triviality-Join: A correct applicant is eventually added to the group by all correct 

members. 

HM-Non-Triviality-Leave: When a member asks to leave the group they are eventually 

removed by all correct members. 

HM-Non-Triviality-Remove: When a member crashes they are eventually removed by all 

correct members. 

HM-Weak-Validity: When an attempt is made to remove a set of members M, M will not be 

removed unless every member  M also suspects every member  M. 

HM-Agreement: Every correct member of the group commits the same series of group add or 

remove transactions. 
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Proofs of the seven conditions can be found in Appendix II. 

4.6.1 Failure Assumptions 

Similar to the OAC failure assumptions, only crashes/fail-stops are allowed.  Specifically, up to /2 core processes may fail, while any number of other processes may fail.  Additionally, 

there is a condition that no correct process is erroneously removed from the group and no process 

is erroneously excluded during the formation of the group.    

In the case of erroneous removal, there is a conflict in that a) if a process fails it must be removed 

before the group can continue to function, and b) since the failure detector is unreliable it is 

possible that a process will be falsely accused.  In order to complete a) we must rely on the output 

of the UFD, however, because of b) it is possible for a process to be erroneously removed from 

the group.  The probability of this occurrence is reduced by the fact that the algorithm requires 

that all members agree on a suspicion before a process can be removed.  Therefore, given an 

appropriately tuned UFD and a group of modest size, the probability of an erroneous removal is 

extremely low.  The probability that member m will be erroneously removed from a group with n 

members during a time period of duration t, defined as , is approximately: 

 Pr · 1  (4.6-1) 

From [68] 

 Pr min ,
 (4.6-2) 

Note that for  

 Pr  (4.6-3) 

And so  

 1  (4.6-4) 

This probability is a first order estimate, since  only considers a) the possibility of a single false 

accusation in time period t while disregarding the cases of multiple false accusations of the same 

member, and b) a single erroneous removal while disregarding the cases of multiple simultaneous 

false accusations. 
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For a group of n correct processes, the probability that are no erroneous removals, , can be 

estimated as  

 1  (4.6-5) 

 1 1 , for 1 (4.6-6)

Because  decreases as n increases,  increases rapidly with n.  Thus, the parameters of the 

UFD and the minimum group size must be set such that the probability of erroneous removals is 

acceptably low.  For example, Table 4.6-1 shows  and   for several group sizes with the 

tuning parameters used in this setup. 

The case of erroneous exclusion during group formation is only relevant if the fallback formation 

is used, i.e., a group has not been formed by FORMATION_TIMEOUT.  In this case the first ,     , processes use OACs to agree on the initial member list.  The probability of a 

correct process being erroneously excluded can be estimated as 

 

Pr · 1 Pr 1 crash after 1Pr 2 crashes after 1… Pr crashes after 1  

(4.6-7) 

Where  is the time from FORMATION_TIMEOUT to the formation of a group, and     FORMATION_TIMEOUT.  As with the calculation of , this is only a first order estimation. 

4.6.2 Algorithm Overview 

The basic form of the algorithm can be understood in three parts: a) formation, b) update 

requests, and c) commitment of updates.  When group formation is triggered (either by broadcast 

or some other method of loose synchronization), each core process calls the groupJoin() 

procedure.  The first core process immediately forms a provisional group with itself as the only 

member, and once sufficient core processes have applied will form a correct group.  In the case of 

the first core process failing before a group is formed, the remaining core processes will wait until 

Table 4.6-1 Probability of Erroneous Removal  

( 10 , 1 , 30 , 10 ) 

Group size   1 -  

2 5.95E-02 0.940473 5.95E-02 

3 2.95E-06 0.999994 5.90E-06 

4 1.46E-10 1 4.39E-10 

5 7.27E-15 1 2.89E-14 
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FORMATION_TIMEOUT has elapsed and eventually form a group using 

OAC(formationFallback, ...) transactions.  Update requests can contain join, leave, and remove 

requests.  Join and leave requests are voluntary and will eventually be granted if the process is 

correct.  A joining process must meet the conditions of being connected to every member, and 

becoming consistent with the global state, which is accomplished through a sponsor system.  

Remove requests are triggered when a leader suspects another member of failing.  If all processes 

agree with the suspicion the remove request will eventually be granted.  Updates are committed 

via the leader calling the updateMembership() procedure, and may require several attempts before 

a consensus is reached and the updates are applied.  Consistency is ensured because all 

membership changes are done through OAC transactions, meaning that every member makes an 

identical series of updates.  When committing an update a two phase lock is required to ensure 

that join and leave updates occur smoothly.  Remove updates require consensus, but do not 

require a lock.  A successful update follows these steps: 

1. The leader assembles lists of members to join, leave, and remove in this update. 

2. An OAC(remove, ...) transaction is committed, removing the agreed upon members.  If 

there are join or leave updates as well and a lock is required, this transaction also incorporates a 

lock request. 

3. The leader waits until the lock has been acknowledged by every member, ensuring a lock 

has been achieved. 

4. An OAC(membership, ...) transaction is committed, updating the list of members based on 

the join and leave lists.  This transaction also releases the lock. 

The algorithm is discussed below according to Algorithm 3.   

Each process maintains a set of variables related to the membership service (ll. 1-13).  In 

summary, coreProcesses is the list of core processes, joinListp is the list of applicants who have 

sent p a join request, memberListp is the ordered list of current members, removeListp is the list of 

members p suspects, leaveListp is the list of members who have sent p a leave request.  The 

lockedp variable is used both as a flag to indicate whether the global state is locked and to store 

the current key to the lock.  The updatingMembersp flag is used to prevent simultaneous update 

attempts from the same process.  The connectionsTop and connectionsFromp lists are used prior to 

joining to track what connections p has established.  The sponsorp and sponseep lists are used in 
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the sponsor process, and the groupCorrectp flag and coreMembersp list are used in the formation 

process. 

To leave the group a member calls the groupLeave() procedure (l. 14).  This sends a leave request 

to each member, however, the member must wait until it has been removed from the member list 

(l. 16) before it stops participating in group activities to ensure a clean exit.  Upon receiving a 

leave request (l. 18) each member adds the process to their leave list, but only the leader attempts 

to act on the request. 

Remove requests are generating upon suspecting a process (l. 22).  This action occurs on all 

members, though only the leader attempts to act on these requests.  Conversely, when a process 

becomes trusted (l. 26) the remove request is rescinded; additionally, if the process is an applicant 

updateMembership() is called in case this changes the status of their application.   

To join the group a member calls the groupJoin() procedure (l. 35).  This procedure has three 

sections, the first sending join requests to each core process (ll. 36-39) while the other two relate 

group formation.  The second section (ll. 41-43) is called only by the first core process, who 

immediately forms a provisional group of one by committing an OAC(membership,...) 

transaction.  The third section (ll. 44-49) is called by the remaining core processes as a fallback if 

the first core process fails to form a group.  

Upon receiving an apply request (l. 50) from a, the process p accepts a into their join list.  p also 

introduces themselves to a, and introduces a to every member and other applicant.  Finally, if p is 

the undisputed leader then p becomes a sponsor for a and ensures that a is brought up-to-date on 

the global state.   

Upon receiving an introduction to a (l. 62), the process p performs the following actions: a) if the 

introduction is from a itself, p inserts a in connectionsFromp, b) if p has no connection to a, p 

opens a connection to a, inserts a in connectionsTop, and introduces themselves to a, and c) if p is 

an applicant themselves and has a sponsor, p sends a list of their current two-way connections to 

their sponsor. 

Relating to the sponsor process, upon receiving a sponsor message from q (l. 71) p accepts q as 

their sponsor and sends them a list of their current two-way connections, and upon receiving a 
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connections message from q (l. 74) p calls updateMembership() in case the status of q’s 

application has changed. 

Any time an event occurs that might trigger a membership change the updateMembership() 

procedure (l. 76) is called.  The process p first makes sure p does not have an update already in 

progress, and that p is not aware of any other attempted membership updates (l. 77).   p then 

decides if they are the leader or could become the leader based on their removeListp (l. 79).  If so, 

p assembles a potentialList of applicants who met the join criteria (ll. 83-87), then from that list 

decides on an acceptList from potentials who are mutually connected (ll. 88-91).  If a correct 

group has not yet formed, a check is done to ensure that accepting the new members would 

guarantee a correct group (l. 92), otherwise no members are accepted.  Finally, if there are any 

updates to make (l. 94), p attempts to commit the updates: 

(ll. 98-101) Determine if a lock is required, i.e. there are join or leave updates. 

(l. 102)  Attempt a OAC(remove, ...) transaction. 

(ll. 103-109) a) If no lock was required, wait until OAC(remove, ...) is decided, then repeat 

updateMembership() to ensure no updates are still outstanding. 

  b) If a lock was required, wait until OAC(remove, ...) is aborted or [(p has either 

received a lock acknowledgement from all q or p suspects q) and all active OACs have been 

decided].  Here “all active OACs” is the set of OAC known about at the time OAC(remove, ...) is 

committed, and must be waited on in case one of them is a OAC(membership,...) transaction from 

the previous leader.  At this point the lock has succeeded and p has received lock 

acknowledgements from all q or either the remove transaction was aborted or the lock has failed.  

In the first case, the OAC(membership, ...) transaction can be attempted, which upon either 

succeeding or failing will unlock the global state.  In the second case updateMembership() will be 

repeated to retry the updates. 

Upon receiving an OAC(remove, ...) transaction (l. 110), the process p decides whether or not to 

allow the transaction to proceed.  This mechanism is used to prevent transactions where  the 

members to be removed are not agreed upon.  Upon committing an OAC(remove, ...) transaction 

(l. 117), p removes the agreed upon members, updates removeListp and leaveListp, accepts 

responsibility as sponsor if it is the undisputed leader  (ll. 121-126), and locks if necessary.   

Upon committing an OAC(membership, ...) transaction (l. 136): 
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(ll. 137-139) If p was the leader when this transaction was sent, p stops sponsoring any 

applicants who successfully joined in this update. 

(ll. 140-143) Update joinListp, memberListp, removeListp, and leaveListp. 

(ll. 144-145) Release the global state lock and propose all held changes. 

(ll. 146-149) Check if the new members make this a correct group. 

(l. 151)  Repeat updateMembership() to process any outstanding updates. 

Upon aborting an OAC(membership, ...) transaction (l. 152), p first checks to ensure the key 

matches the current lock, then unlocks the global state and repeats updateMembership() to 

process any outstanding updates. 

Upon receiving an OAC(formationFallback, ...) transaction (l. 158), p decides whether or not to 

allow the transaction to proceed.  p will only vote yes to the transaction if it is not already part of 

a group and the proposed list of members exactly matches p’s own proposal for a group.  Upon 

committing an OAC(formationFallback, ...) transaction (l. 166), p once again ensures that they 

are not already part of a group to prevent accepting multiple formation messages.  If the group is 

accepted, joinListp, memberListp, removeListp, and leaveListp are updated.  If p is the undisputed 

leader, p accepts responsibility as sponsor for all applicants (ll. 172-177).  The 

updateMembership() procedure is then called to process outstanding updates. 

4.7 Agent Allocation 

A strategy for agent allocation is a fundamental requirement in the HAA architecture, and shares 

many similarities to the process allocation problem in distributed computing.  Since each agent is 

free to operate on any host, they can be distributed in order to optimize various attributes.  The 

most obvious angle is load balancing to evenly distribute work across hosts, however, other 

factors such as communication, stability, and priority could also be taken into account.  In 

general, computing the true optimum for process allocation is computationally complex and 

infeasible in real-time.  Therefore many near-optimal algorithms have been developed.  The 

allocation strategy presented here is based on the Consensus-Based Bundle Algorithm (CBBA) 

[69], which was originally designed as a decentralized task allocation algorithm.  With the minor 

modifications described below, the CBBA approach can be changed from a time based allocation 

of tasks to a “CPU usage” based allocation of processes.  Since the foundation of CBBA remains 
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unchanged, the desirable properties of the algorithm are maintained, specifically: distributed 

scalable asynchronous allocation, guaranteed convergence (given an appropriate reward 

function), and low message cost.  Additionally, the synchronous version of CBBA guarantees at 

least 50% optimality, and both synchronous and asynchronous versions demonstrated roughly 

90% optimality during Monte Carlo experimentation [69]. 

The developed algorithm provides allocation of agents based on four factors.  First is process 

cost, a unitless value estimated by the average CPU usage when running on a baseline processor.  

The second factor is specific hardware requirements, since in some cases agents require direct 

access to specialized hardware not available at every host.  Third is the notion of “affinity” 

between agents.  Some agents communicate more frequently and in greater volume than others, in 

many cases to the same small group of agents.  In these cases network load can be significantly 

reduced by allocating the entire group to a single host.  Affinity can be estimated based on the 

predicted behaviour of agents, or measured in real-time during operation.  The fourth factor is 

transfer penalty, which represents the cost associated with transferring an agent from one host to 

another.  This cost can vary significantly depending on the amount of state data that must be 

transferred.   

For this implementation, process costs and agent affinities are monitored in real-time, so that the 

system can adjust to changing performance and learn which agents communicate with each other.  

The allocation problem is specified as a set of agents and a set of hosts to which the agents are 

allocated.  Each agent  has properties: 

 : Estimated processing cost (normalized by the processing capacity of the host) 

 : Set of hardware requirements { , , ...} 

 : Set of affinities with other agents { , , ...} 

 : Transfer penalty [0,1] 

Each host h has the properties: 

 : Processor capacity 

 : Set of available hardware { , , ...} 

 : List of current local agents { , , ...} 
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The goal of the algorithm is to create a bundle of agents, , for each host such that every agent is 

allocated once and only once and ∑  is maximized, where  is the reward for a bundle.  

Reward calculation is based on the order of agents within the bundle and the capacity of the host. 

 
,, otherwise  (4.7-1) 

 S.T. · 1,1 , otherwise (4.7-2)

 
∑

 (4.7-3)

In other words, reward  is given for agents that are assigned within the capacity of the host 

with bonuses for assigning agents with shared affinities to the same host, while agents that exceed 

the capacity of the host are given a penalty . 

4.7.1 Failure Assumptions 

No send-omission, receive-omission, arbitrary, or clock failures are allowed.  Omissions are not 

strictly allowed, but as with the OAC algorithm, can be handled by the network layer if they 

occur.  Crashes are handled through the group membership service, and require the algorithm to 

abort the current run and begin again. 

4.7.2 Algorithm Overview 

The allocation algorithm works in three stages: initiation, multiple asynchronous rounds of 

bundle building and conflict resolution, and final consensus.  Initiation occurs when either an 

agent is added or removed or a host is added or removed, although it can also be triggered 

periodically in order to adjust to changing system usage.  Initiation is carried out by the group 

leader, who defines the properties to be used during allocation, in terms of agents, costs, and 

affinities, and broadcasts them to begin the algorithm.  Each host begins a series of asynchronous 

rounds where they greedily build their local bundle by bidding on agents, then processes all 

updates from other hosts, resolves conflicting bids, and broadcasts their latest results.  These 

rounds continue until the group leader determines that consensus has been reached, at which point 

the leader broadcasts the result and the allocation is complete.  Strategies for initiation and 
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finalization are not defined in [69], but the bundle building and conflict resolution rounds for this 

algorithm are fundamentally the same as CBBA.  Only a minor conceptual change is required in 

order to apply CBBA to process allocation.  Instead of avatars (agents in the terminology of [69]) 

creating bundles of tasks in the time domain, hosts are creating bundles of processes in the 

processor usage domain.  This transformation is possible because in the same way tasks take a 

given amount of time to execute and must be completed one after the other, processes have a 

given processor cost and can be added up one after the other to calculate total processor usage.   

The three stages are now described in more detail with reference to Algorithm 4. 

Initiation occurs on the current group leader whenever there is a change in group membership or 

agents are added or removed (l. 17).  A new session is created by incrementing the current session 

ID (l. 19), defining the parameters of the session (ll. 20-23), and attempting to commit an 

OAC(start, …) transaction (ll. 26-28).  Session IDs are guaranteed to be unique and increasing 

since for a correct group every potential leader will have committed the same series of 

OAC(start, …) transactions as every other host. 

Upon committing the OAC(start, …) transaction (l. 38), a host first verifies that the transaction is 

still valid (ll. 39-40), prepares the session data (ll. 41-48), and begins the first bundle building 

phase (l. 50).  It is possible for a host to join a new session prior to committing the start 

transaction, since update messages (l. 59) can be received out of order.  In this case the host 

prepares the new session and tracks all updates but does not make any bids of their own until the 

start transaction is committed. 

In a bundle building round (l. 51) a host greedily adds to its bundle from all the currently 

unbundled agents until it can no longer place winning bids on any agents.  The build round, rp, 

replaces the bid time concept proposed in [69] to avoid issues with unsynchronized clocks.  The 

bundle building strategy (l. 56) is not dictated by the algorithm; convergence is guaranteed so 

long as bid generation has the property of diminishing marginal gains [69].  In the time domain 

one way to satisfy this criterion is to offer time-discounted rewards, stating that the later a task is 

started the lower the reward.  After transforming to the usage domain the analogous strategy is to 

have rewards that decrease as the processor usage goes up.  One such strategy is presented below 

in Appendix II, which offers usage-discounted rewards to both individual agents and clusters of 
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agents with strong affinities.  Using this method of bid comparison bundles are built by following 

the recursive strategy outlined in Appendix II.  This strategy attempts to locally optimize the 

reward function  while ensuring that every agent has been claimed by a host.  Once a 

bundle is built the host distributes any changes to its accepted bids (l. 57) and checks to see if 

consensus has been reached (l. 58); the process of checking consensus is described after the 

discussion of processing bid updates.  

Bid updates are distributed (l. 82) through update messages.  An update message contains the 

sender, the session ID, and the list of bids that have changed since the last update was sent.  On 

receiving an update message (l. 59) the host insures that the update belongs to the current session.  

If it is from an earlier session the update is ignored (l. 60), and if it is from a later session the 

current session is abandoned and the host joins the new session (l. 62).  Each updated bid is 

processed (l. 65) as follows: 

(l. 66)  The sender’s bid is updated in the bidTablep in order to track consensus. 

(ll. 67-68) If the bid is from a round greater or equal to the current round, the round is 

incremented. 

(l. 69)  The currently accepted bid is stored for later comparison. 

(l. 70)  Conflicts are resolved via the conflict resolution rules in Table 4.7-1 and the bid 

comparison operator in Appendix II.  These rules are almost identical to the rules in [69], with the 

exception that the reset & broadcast action was changed from rebroadcasting the sender’s bid to 

broadcasting the receiver’s nil bid.  This change is necessary to allow consensus checking via the 

bidTablep, and is possible because of the condition that every host is capable of sending their 

updates to every other host.  If this condition is not met by the network then the bid update would 

have to include two parts: one containing the sender’s bid and the other containing the receiver’s 

opinion. 

(ll. 71-72) If the newly accepted bid has become worse than the bid that was previously 

accepted, the host may now have a chance of adding that agent to their bundle, and so a bundle 

building round is queued. 

(ll. 73-76) If the session is ready, i.e., the start transaction was committed, and there are 

updates to distribute then a distribution is queued.  Similarly, if the session is ready consensus is 

checked. 
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Once all bids from every currently received update message have been processed, queued bundle 

builds or distributions are carried out (ll. 77-81).  Waiting until all updates are processed ensures 

that the most current information is used when building bundles, and reduces the number of 

updates sent. 

Table 4.7-1 Bid Conflict Resolution (Adapted from [69] with additions) 

 Host q (sender) 

thinks zqj is 

Host p (receiver) 

thinks zpj is 

Receiver’s action* 

(default: leave & broadcast) 

1 

2 

3 

 p 

if yqj > ypj → trim & update & broadcast 

if yqj = ypj and zqj < zpj → trim & update & broadcast 

if yqj < ypj → update time & broadcast 

4 

5 

6 

q q 

if rqj > rpj → update & broadcast 

if rqj = rpj → leave & no broadcast 

if rqj < rpj → leave & no broadcast 

7 

8 

9 

10 

11 

 m  {p,q} 

if yqj > ypj and rqj ≥ rpj → update & broadcast 

if yqj < ypj and rqj ≤ rpj → leave & broadcast 

if yqj = ypj → leave & broadcast 

if yqj < ypj and rqj > rpj → reset & broadcast 

if yqj > ypj and rqj < rpj → reset & broadcast 

12  none update & broadcast 

13  p if rqj = rpj → leave & no broadcast 

14 p q reset & broadcast 

15  m  {p,q} leave & broadcast 

16  none leave & broadcast 

17 

18 

19 

 p 

if yqj > ypj → trim & update & broadcast 

if yqj = ypj and zqj < zpj → trim & update & broadcast 

if yqj < ypj → update time & broadcast 

20 

21 
m  {p,q} q 

if rqj ≥ rpj → update & broadcast 

if rqj < rpj → reset & broadcast 

22 

23 

24 

 m 

if rqj > rpj → update & broadcast 

if rqj = rpj → leave & no broadcast 

if rqj < rpj → leave & no broadcast 

25 

26 

27 

28 

29 

 n  {p,q,m} 

if yqj > ypj and rqj ≥ rpj → update & broadcast 

if yqj < ypj and rqj ≤ rpj → leave & broadcast 

if yqj = ypj → leave & broadcast 

if yqj < ypj and rqj > rpj → reset & broadcast 

if yqj > ypj and rqj < rpj → reset & broadcast 

30  none update & broadcast 

31  p leave & broadcast 

32 none q update & broadcast 

33  m  {p,q} If rqj > rpj → update & broadcast 

34  none leave & no broadcast 

*Bids are compared using the bid comparison operator.  The resulting actions are handled as follows: 

trim:  if j was part of a cluster bid then remove j’s cluster and every later bid from bundlep; 

  else remove j and every later bid from bundlep; 

update:  bidTablep [p][j] := bidTablep [q][j]; 

update time: bidTablep [p][j].r = rp; 

reset:  bidTablep [p][j] := { j, none, {0,-∞}, 0 }; /* nil bid */ 

broadcast: outboxp[j] := bidTablep [p][j];  

no broadcast: /* do nothing */  

leave: /* do nothing */
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Consensus is checked (l. 86) by the group leader using the bidTablep.  The table stores all bids 

that each host has currently accepted, and consensus is reached once every agent is claimed and 

every host has accepted the same set of bids.  Consensus is guaranteed from the convergence 

properties of the algorithm.  When consensus is achieved the leader flags the session as decided 

(l. 88) and attempts to commit an OAC(finish, …) transaction (ll. 89-92) until either it is 

successful or the situation changes.  Global agreement on the allocation result is guaranteed 

through the use of an OAC transaction.  Upon committing the finish transaction (l. 93), each host 

accepts the allocation result and, if the ID matches the current session, flags the session as 

decided. 

4.8 Agent Transfer 

Agent transfer is considered normal behaviour even when all processes are correct, and is 

triggered by the Agent Allocation algorithm.  In all cases, the agent a is running on one host, Hold, 

who voluntarily releases ownership and allows the agent to transfer and resume operation on a 

second host, Hnew.  Beyond the inevitable time delay, there should be no other impact on the 

operation of the transferred agent or any other agents.  This specification is formally defined as: 

AT-Transparency: The agent will be transferred without any change in behaviour required of 

any other agent. 

AT-Consistency: The agent shall not lose any relevant information, either internal data or 

incoming messages, from the transfer. 

Proofs of AT-Transparency and AT-Consistency are derived in Appendix II. 

4.8.1 Failure Assumptions 

This algorithm assumes that a does not crash prior to sending its state, and that Hold does not 

crash prior to releasing ownership of a.  If either of these events occurs the agent has failed and a 

must be recovered as described under Agent Recovery.  The algorithm also relies on OAC, a 

group membership service for the hosts, and a DDB. 

4.8.2 Algorithm Overview 

The transfer operation is a two step process: first, Hold works with a to temporarily “freeze” the 

agent in the DDB, then Hnew “thaws” the agent from the DDB and allows a to resume operation.  
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These steps happen in order but are otherwise unrelated, and an unspecified amount of time may 

elapse between freezing and thawing without complication.  The freezing and thawing processes 

are described here with reference to Algorithm 5 and Algorithm 6, respectively. 

The freezing process begins when Hold acknowledges that it has lost the bid for a after a session 

of agent allocation, and subsequently calls freezeAgent().  Hold then proceeds on two avenues: a) 

working with a to freeze the agent, and b) informing other hosts that a is being frozen.  Hold asks 

a to freeze (l. 2) and begins forwarding all messages addressed to a (a.m.a.a.) into the primary 

message queue (l. 4).   Upon receiving the freeze request, a packs its state and sends it back to 

Hold before shutting down (ll. 17-20).  Hold informs other hosts about the freeze with an 

OAC(freeze, ... ) transaction (ll. 5-8), which informs them to redirect a.m.a.a. into the secondary 

message queue (ll. 21-24).  Before finalizing the freeze, Hold must wait until it receives 

acknowledgement from each host active when the freeze transaction was committed (l. 10) so that 

Hold can be sure that it will receive no more messages addressed to a.  At this point Hold can 

submit a’s state to the DDB and safely release ownership of a (ll. 12-16). 

While a is frozen, hosts continue forwarding a.m.a.a. to the secondary queue until Hnew is ready to 

begin the thaw process by calling thawAgent().  Hnew then creates a shell process for a (l. 2), 

begins forwarding a.m.a.a. to a local message queue (l. 3), and claims ownership of a with an 

OAC(claim, ...) transaction (ll. 4-7).  When a host commits the claim transaction, if a still belongs 

to Hnew (l. 13), they begin forwarding a.m.a.a. to Hnew (l. 15).  If a no longer belongs to Hnew, the 

claim attempt is abandoned (l. 18).  Before Hnew can complete the thaw it must wait until it 

receives acknowledgement from each host active when the claim transaction was committed and 

all active OACs are decided (l. 9) so that Hnew can be sure no more messages will be added to the 

secondary queue.  Then Hnew can send a (thaw, ...) message to a and begin forwarding a.m.a.a. to 

a (ll. 10-11).  When a receives the thaw message it unpacks the state, processes each of the 

primary, secondary, and local message queues in turn, and then resumes operation (ll. 19-22). 

4.9 Agent Recovery 

Agent recovery occurs after an agent (or host managing an agent) fails.  The agent, a, is then 

assigned a host, H, through the agent allocation algorithm and recovered from the latest backup.  

This is the lossy counterpart to agent transfer, and information is lost in terms of agent state and 
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undelivered messages.  The completeness of the backup is determined by the requirements of the 

agent, and can vary between containing only basic information and containing a nearly complete 

copy of the state.  Naturally, there is a trade-off between completeness and network traffic 

necessary to maintain the backup, and the agent designer is responsible for ensuring that the agent 

recovers into a usable state.  Without restricting the completeness of the backup or the state of the 

agent upon recovery, the process is defined by: 

AR-Recovery: The agent will be recovered to the latest backup and begin receiving messages. 

Proof of AR-Recovery is provided in Appendix II. 

4.9.1 Failure Assumptions 

This algorithm assumes H does not crash prior to recovering a, and that the agent shell does not 

crash before the recovery is complete.  If either of these events occurs the recovery fails and new 

recovery run must be initiated.  The algorithm also relies on OAC, a group membership service 

for the hosts, and a DDB. 

4.9.2 Algorithm Overview 

The backup procedure is straightforward.  An agent calls backupAgent() as it deems necessary 

and sends the state backup to its local host (Algorithm 7 ll. 1-3).  Upon receiving the state 

backup, the host submits it to the DDB (Algorithm 7 ll. 4-5).  Any number of backups can occur 

before a recovery occurs, if one occurs at all. 

Agent recovery is described with reference to Algorithm 8.  The recovery process begins when a 

crashes, or if H was not already the owner, when H receives ownership of the crashed agent.  H 

then attempts to recover a from the latest backup (l. 4), and if successful notifies other hosts that 

a has been recovered (ll. 6-9).  Upon receiving the recover message for the host, a’s new shell 

recovers itself from the backup and resumes normal operation (ll. 10-12).  When the hosts are 

notified of the recovery via the OAC(recovered,...) transaction they begin forwarding all 

messages addressed to a to H (ll. 13-15).  Multiple hosts recovering the same agent is prevented 

by the Agent Allocation algorithm. 
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Chapter 5 
Just-in-Time Cooperative Simultaneous Localization and Mapping 

Although the issues of localization and mapping are not directly related to the core topic of 

control system design, they are very common problems in mobile robotics and had to be solved 

for the implementation used in the experimentation.  Simultaneous Localization and Mapping 

(SLAM) is a popular solution to the exploration and navigation problems, but many 

implementations are not suitable for large-scale applications [70], relying on powerful sensors 

and an abundance of processing power.  In addition to requiring a distributed algorithm the goals 

of this control system include adaptability and versatility, and so a new strategy, termed Just-in-

time Cooperative SLAM (JC-SLAM), was developed.  The primary feature of this strategy is the 

use of out-of-order processing that allows for greater flexibility in processing requirements, 

which typically results in a higher rate of processing for sensor readings. 

The field of SLAM has become very large, and attempting to categorize all approaches is beyond 

the scope of this thesis.  Instead, a brief overview of the basic elements of SLAM is presented to 

introduce the topic, and then several key issues are discussed as they relate to this 

implementation.  An excellent and detailed review of the topic can be found in [70].  The SLAM 

implementation discussed here was designed to be generic in terms of sensor support, robot 

hardware, and processing resources.  In processing-starved systems the method allows for sensor 

data to be selectively held and recovered later to still provide useful information to the current 

state, yet under ideal conditions it performs identically to traditional SLAM approaches.   

Furthermore, rather than competing with existing SLAM implementations, the key concepts of 

maintaining particle history and out-of-order processing can also be integrated into many existing 

particle filter SLAM algorithms to compliment their unique strategies and optimizations.  The 

foundation and implementation of JC-SLAM are developed in this chapter, and its performance is 

evaluated experimentally in Chapter 7. 

5.1 Background on Simultaneous Localization and Mapping 

For autonomous mobile robotic applications most navigation tasks require two sets of 

information.  First, some form of map that tells the robot where it is going, or at least where it has 

been, and secondly, some form of localization that tells the robot where it is relative to the map.  
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In unknown environments it can be difficult to obtain one set of information without the other, 

and so the concept of SLAM was developed.  Introduced in the late 1980s, SLAM has become a 

widely used technique in mobile robotics, and many different approaches have been developed.  

The vast majority of these approaches fall under three principle paradigms: extended Kalman 

filter (EKF) approaches, graph-based approaches, and particle filter approaches [70].  In general, 

each paradigm has certain advantages and disadvantages that are consistent for their approaches.  

The EKF implementations have been used successfully in many applications, and it can be 

applied incrementally to solve the online SLAM problem.  However, the computational 

complexity of basic EKF SLAM implementations is  where n is the number of map 

features [71], though many published implementations use strategies to improve real-time 

performance.  Graph-based approaches are built from the notion that robot poses and map 

features are nodes that can be connected by observation constraints, and SLAM can be solved by 

finding the minimal energy state of the graph.  Graphical implementations scale well to large 

problems because they are generally sparsely connected.  However, although some modifications 

can be made to support real-time usage, many graphic-based approaches are best suited to solving 

offline SLAM [70], i.e., all data is gathered and then SLAM is carried out after the fact.  In recent 

years, particle filter approaches have gained significant popularity due to their ability to model 

non-linear distributions [72], solve both online and offline SLAM, avoid some of the problems of 

data association by natively supporting multiple hypotheses for landmark/feature recognition, and 

can typically be implemented efficiently [70].  The major problems encountered by particle filter 

approaches are that i) the number of required particles increases with the dimension of the system 

state, and ii) particle diversity decays over time [72,73]. 

Beyond the basic paradigm, there are many other choices when developing a SLAM 

implementation, perhaps the most significant being the type of map.  Typically either a grid based 

[74,75] or feature based [76,77] map is used, although many other options can be found in the 

literature.  This choice is often affected by the type of sensors being used, but can also be 

influenced by the operating environment [72], the choice of path-planning and related algorithms, 

and even by the availability of communication bandwidth [78].  Depending on the complexity of 

the SLAM algorithm and the environment it must navigate, other tangential problems that require 

solutions include: uncertain data association, dynamic environments, active or passive 
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exploration, the presence of multiple robots, and merging maps from simultaneous exploration 

efforts.  Various techniques for handling these issues can be found in the literature. 

5.1.1 Localization with Particle Filters 

Particle filters are a useful way to represent arbitrary posterior distributions, and are able to track 

a clearly defined history of distributions [79].  The filter consists of n particles, each with a state 

vector, : , and a weight, , where subscript 0:  indicates the states from time 0 to time , 

subscript  indicates the weight at time , and the superscript  indicates the  particle.  The 

combination of these weighted particles gives the posterior distribution : | :  given the 

history of observations : , where subscript 0:  indicates the observations from time 0 to time .  

Each particle can the thought of as an estimate of the current state, and their associated weight 

corresponds to how believable that estimate is given the current set of observations.  Typically 

the states at each time are considered to be a first order Markov process.  That is, a state  

depends only on the previous state , and an observation taken at time  depends only on the 

state  [80].  The treatment of each particle filter can now be developed as follows.  The filter is 

initialized to a prior distribution , where each particle is randomly sampled from the prior 

and assigned an initial weight 1/ .  Note that the initial weights are equal since the density 

distribution of particles follows that of the prior.  The filter is then updated using prediction and 

correction steps [80] to obtain posterior distributions : | : .  The prediction step uses the 

transition density model, | , to predict the current state based on the previous state.  A 

correction step is used to incorporate observations into the state model, and can be seen as 

updating the weights of each particle based on how well they explain the observed data.  The 

final requirement for a particle filter is a technique for resampling, where a new sampling of 

particles is generated from the current distribution.   

Degeneracy is a common problem in particle filters, where after a number of steps only a small 

set of particles have significant weights while the others have weights close to zero [81].  In fact, 

[82] proves that the variance of the weights is strictly increasing and so there is no way to prevent 

degeneracy from accumulating.  The standard way to measure degeneracy is to calculate the 

effective number of particles .  As stated in [81] it is impossible to calculate this quantity 

exactly, but an estimate  can be found by: 
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1∑  (5.1-1) 

From (5.1-1),  and a lower   indicates higher degeneracy.  One method of reducing 

degeneracy is to periodically resample the particles, in effect discarding particles with low 

weights and creating new particles in areas where they will be useful.  Commonly a threshold 

value is set for the effective number of particles and resampling is done whenever  drops 

below this point.  There are a number of resampling algorithms available, including residual and 

stratified resampling, but both [81] and [83] recommend systematic resampling since it is simple 

to implement, and, although it is difficult to analytically evaluate its performance, it is generally 

comparable to the other resampling strategies. 

5.1.2 Mapping with a Probabilistic Occupancy Grid 

Numerous types of maps have been developed, generally either geographical, such as potential 

field maps [84] and occupancy grids [85], or topological, such as the feature based map in [86].  

Occupancy grids were chosen for this implementation since they are able to incorporate data from 

many types of sensors, do not significantly limit the type of path planning algorithms that may be 

used, and as shown in [86] can be useful in constructing other types of maps.  The map consists 

of a 2D grid of consistently sized cells.  Each cell is assigned a value between 0 and 1 to indicate 

probability it is occupied by an obstacle.  In this Bayesian approach values close to 1 mean that it 

is most likely occupied while values close to 0 mean it is most likely empty.   

When the probabilistic occupancy grid (POG) is constructed in this way a new sensor reading, , 

pertaining to a cell, , can be incorporated in the map simply by applying Bayes’ rule: 

 | | || 1 1 |  (5.1-2) 

Where  is the probability currently associated with that cell, called the prior probability of .  

The conditional probability |  is determined by the sensor model and is a measure of the 

likelihood of obtaining that sensor reading assuming  is occupied.  The prior probability of , 

, acts as a normalizing constant, and can be conveniently rewritten in terms of  and | . 
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5.1.3 Prediction Step 

The state of each particle is advanced based on the predicted behaviour of the object during that 

time interval.  Conveniently the tracked objects, the avatars, are willing participants in the system 

and are able to provide estimates of their actions, as well as a measure of the associated 

uncertainty.  This creates a simple velocity-based model with some added noise: 

 0, ∆  (5.1-3) 

where  and  are determined when each avatar calculates its velocities and uncertainties 

appropriate for the physical hardware, and ∆  can dynamically scale based on the magnitude of 

the velocity and acceleration.  This model is used by the avatar agent to generate transition 

updates of the forms ,  which are appended to the particle filter history.  The model assumes 

that the proposal distribution is equal to the transition probability, and therefore prediction steps 

do not impact the particle weights.  If a different proposal distribution is used the weights can be 

updated at this point, though clearly only observations that have already been processed can be 

used in the proposal distribution.  This weight update can happen separately from the correction 

step weight update, and if prediction and correction steps are taken in turn is mathematically 

identical to performing a single combined weight update. 

5.1.4 Correction Step 

Map Updates: The simplicity of the POG makes it possible to incorporate readings from a variety 

of sensor types.  The type of sensor determines what cells are affected and how the conditional 

probability |  is calculated.  Then (5.1-2) can be used to compute the new belief of each cell.  

When dealing with a particle filter the sensor model is simply applied at each particle and 

adjusted by the particle weight.  An example of a model for sonar sensors can be found in [85]. 

Particle Filter Updates: Almost all sensor readings yield information about the relationship 

between the state of an object and the map.  This information can be used to create an update for 

the map as discussed above and can also be used to update the weights of the particle filter.  The 

weight of each particle can be updated by the equation: 

 
|∑ |  (5.1-4) 
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which simply scales the weight of each particle based on the observation density | , a 

measure of how well the particle explains the current observation, and then normalizes so that the 

new weights sum to 1.   

5.2 Just-in-Time Cooperative SLAM 

JC-SLAM was developed as a real-time, distributed, and scalable cooperative SLAM 

implementation that works within the HAA architecture [87].  Specifically, it uses the distributed 

processing network to share both computations and information between hosts and to provide 

useful mapping and localization data in real-time.  Further, it allows historical information to be 

incorporated into the current state with minimal additional computation and delays processing of 

weight updates until they are required, which allows combining multiple observations into a 

single update to reduce computations.  This JC-SLAM implementation is built on the 

probabilistic occupancy grid and particle filters.  Due to its structure and the framework in which 

it is implemented it also provides some advantages over existing cooperative SLAM 

implementations.  In [88] robots share sensor information but require each robot to locally repeat 

all the calculations as well as introducing a phase delay with respect to when the information is 

processed by each robot, resulting in maps that are out of sync.  In [89] local maps are maintained 

by each robot and processing is not fully distributed, in addition to having a fully centralized 

feature map with which all the robots communicate.  In [90] a heterogeneous system is 

developed, consisting of master robots with significant processing power and powerful sensors 

and slave robots with poor sensors, but it is not robust against failure, and uses a Kalman filter 

approach that is unable to incorporate observations that occurred in the past.  Finally, the particle 

filter approach used in [79] is capable of integrating historical observations, however, their 

technique relies on re-simulation to reduce the effects of degeneracy.  Re-simulation requires that 

the particle filter be reset to a point in the past and then simulated again as if all the observations 

were new.  The authors admit this to be a very computationally intensive process, and state that 

future work must be done to reduce the frequency of re-simulation.  The lazy belief propagation 

technique developed here avoids the need for re-simulation, and replaces it with a process that 

requires minimal computations. 

The key feature of JC-SLAM is the ability to process observations out-of-order and to delay 

processing when resources are scarce without unnecessarily impacting the performance of other 
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tasks such as navigation and exploration.  This feature can benefit single avatar systems and for 

simplicity the approach is primarily discussed in that context in the remainder of this chapter.  

However, the discussion is equally applicable to multi-avatar systems as shown in the 

implementation in Section 5.2.3.  In fact, the benefits of out-of-order and delayed processing 

become even more important as the complexity of the system grows, since it is less likely that the 

processing demands will be evenly spread out over time. 

In this application a particle filter is stored as a series of blocks containing a set of weights and a 

time-ordered sequence of states.  These blocks are separated by resampling events that 

redistribute the particles to better reflect the sampling density.  This data structure is visualized in 

Fig. 5.2-1, which shows two blocks separated by a resampling event at time r.  In the figure the 

variables are labeled with left superscripts to indicate block, right superscript to indicate particle 

number, and right subscript to indicate time where applicable.  When new state predictions (  to 

) arrive at time t they are added to the end of the newest block.  When a resampling event 

occurs the current block is closed, but not discarded, and a new block is created, where the initial 

states are determined by the resampling algorithm and the initial weights are equal. 

Maintaining a history of particle states in this way requires more data storage that simply tracking 

the current state, but by modern computing standards this additional cost is negligible.  To give 

an example, for a particle filter with 1000 particles with state of position x, y, and rotation r, 

making one prediction a second would require roughly 12 KB/sec of storage, less 42 MB after an 

hour.  Most computers have RAM one to two orders of magnitude larger than this.  Additionally, 

Block 1 Particle 1 Particle 2  Particle n 

Weight     

Time State 0     

     

     

     

     

Block 2 Particle 1 Particle 2  Particle n 

Weight     

Time State 

     

     

     

     

Fig. 5.2-1 Particle Filter Data Structure 
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old blocks can be deleted after a given amount of time; however, this means that observations 

occurring during that block can no longer be processed. 

5.2.1 Lazy Belief Propagation 

Lazy belief propagation is founded on two principles that reduce the amount of processing that is 

required.  First, the processing of observations can be delayed but should still provide useful 

information to the current distribution, and second, updates to weights should be delayed until 

their information is required.  Consider the standard particle filter that uses fixed time steps and 

repeats the cycle of prediction and correction updates every step.  In JC-SLAM the prediction 

updates can have varying durations, and many predictions can occur before any correction 

updates are made.  Further, correction updates associated with some time in the past may occur in 

any order.  The lazy belief propagation strategy makes three claims that are sufficient to function 

under these conditions: 

Strategy 1: Delayed calculations of weight updates 

Observation densities can be accumulated between weight updates and weight calculations can be 

delayed until the weights are explicitly requested without impacting the performance of the 

particle filter. 

Reasoning: Consider any two observation density updates,  and , that are adjacent w.r.t. 

observation time.  Without loss of generality, assume  occurs before .  By definition, (5.1-4) 

can be applied recursively as follows: 

 ∑  
(5.2-1) 

 ∑  (5.2-2)

Substituting (5.2-1) into (5.2-2) yields: 

 
∑∑ ∑ ∑  (5.2-3) 
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(5.2-3) shows that not only is the order in which the observations are applied irrelevant, but the 

two observations can be combined prior to applying (5.1-4).  It can be shown by induction that 

any number of observations can be combined and the final weights calculated in a single update.  

Though the final weights given this set of observations are exactly equal to the weights had the 

observations been processed recursively, one concern is the triggering of resampling events.  

Resampling events are triggered when the effective number of particles drops below a threshold, 

and if the weights are not calculated regularly the effective number of particles will not be 

known.  In practice, since specification of the aforementioned threshold has considerable 

flexibility before it affects the particle filter performance, delaying weight updates in not an issue 

so long as the weights are calculated semi-regularly. 

Strategy 2: Out-of-order processing 

A strategy of processing observations in a last-in-first-out (LIFO) order and allowing out-of-order 

(OOO) processing of observations is more effective for real-time SLAM in resource constrained 

systems than the standard time ordered approach. 

Reasoning:  The justification for LIFO processing has two parts.  Firstly, in systems with 

sufficient resources to process all observations LIFO is exactly equivalent to the standard time 

ordered approach.  This is shown visually in Fig. 5.2-2, where a series of observations and the 

required processing time is plotted along the time axis.  Note that the order and timing of 

observation processing is the same for both Standard and LIFO.  Secondly, in systems with 

insufficient processing resources the traditional approach is to discard any readings that cannot be 

immediately processed [76], where as LIFO with OOO processing allows old observations, that 

would otherwise be discarded, to be processed and still provide useful information.   

Fig. 5.2-3 shows that a) LIFO processes a similar, though not necessarily identical, pattern of near 

current (at the time of processing) observations, which is important in maintaining the accuracy 

of the particle filter; and b) LIFO processes additional OOO observations that can contribute 

relevant map and weight updates.  In the case of a), note that the pattern of near current readings 

processed by Standard is dictated solely by the circumstances of timing and holds no innate 

advantage over a slightly different pattern such as the one resulting from LIFO.  In the case of b), 

though the observation densities generated from an old observation are different than if the 
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observation had been processed in order, they are still validly calculated based on up-to-date map 

information in the same way as any other observation.  Since the sequence of observations is 

different the timing of resampling events may also change; however, since each processed 

observation is valid there is no reason to suspect that the performance of the particle filter will be 

unduly affected. 

Strategy 3: Propagation of observations through resampling transforms 

 Observation density updates can be forward-propagated through resampling transforms via the 

relation: 

  (5.2-4) 

where the 1 and 2 left superscript indicates densities before and after resampling, respectively, 

and  is the parent of particle .   

 

Fig. 5.2-2 Standard vs. LIFO + OOO with Sufficient Processing Resources 

 

Fig. 5.2-3 Standard vs. LIFO + OOO with Insufficient Processing Resources 
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Reasoning:  This result relies on the fact that the weights of particles before and after resampling 

are independent.  That is, the change in weight of a parent particle has no relation to the change in 

weight of its children.  Once this is understood the following analogy can be constructed.  

Consider a scenario where particles progressed normally until time  when the set of parent 

particles is resampled into a set of child particles.  At some time after  an observation taken at 

time , , i.e., taken before the resampling, is processed.  Since the observation 

corresponds to a time in the history of the parent particles the question becomes: how is this 

observation related to the child particles?  Now consider the corresponding scenario where no 

resampling has occurred, instead there is a single set particles, a number of which happen to have 

overlapping histories before .  Specifically, this is the same as if each child particle simply had 

its parent’s history attached to the front.  In this case when the observation from  is processed 

the observation density of each particle can be calculated as normal, and it is clear that all 

particles with the same history have equal observation densities.  Moreover, this observation 

density is exactly equal to that of the parent particles in the first scenario.  This results in the 

simple relation given in (5.2-4).  Observation densities can still be accumulated as in Strategy 1.  

Replacing  and  in (5.2-3) with   and  , respectively, and then substituting in (5.2-4) 

results in (5.2-5), which clearly has the same properties as (5.2-3): 

 ∑  (5.2-5) 

Based on these three claims the lazy belief propagation strategy allows observation densities to be 

applied in any order and passed forward along the history of the particle filter to contribute to the 

estimate of the current state.  Further, this technique is able to delay weight updates until they are 

required and to combine accumulated density updates to reduce the amount of computation.  

Finally, in an ideal system where every observation is processed immediately, lazy belief 

propagation performs identically to a standard particle filter.   

The impact of lazy belief propagation on the triggering of resampling events and which particles 

survive each resampling is not immediately clear.  Mathematically, the order in which 

observations are processed plays a role in when resampling occurs and which particles survive, 

thus changing the performance of the particle filter.  However, in practice the impact seems 

minimal for a number of reasons.  Resampling only occurs when a significant number of particles 
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no longer match the accumulated observations and only particles that are “bad” predictions are 

discarded.  In order to significantly change the result of the resampling a theoretical set of 

observations must exist that disagree with the previously processed observations, which could 

potentially increase the weight of these bad particles to the point where they are no longer 

discarded.  If such a set of observations does exist it suggests that the bad particles were 

incorrectly labeled in the first place, and that the previous observations were overly confident in 

their weight assignment (i.e., the error associated with the readings was underestimated).  

Furthermore, if the observation error is underestimated it can result in the same performance 

problems even if the observations are processed in order.  By correctly estimating the error in the 

observations it is possible to avoid discarding particles that still have worth and prevent 

performance degradation from inadequate particle distribution.  This justification is explored 

experimentally in Chapter 7, where JC-SLAM, with its aggressive out-of-order processing 

strategy, achieves accuracy equal to or better than algorithms that process observations strictly in 

order.  These results have been submitted for publication in [91]. 

5.2.2 Example Scenario 

The following simplified example is provided to illustrate how the JC-SLAM with lazy belief 

propagation is able to converge on the path of an avatar.  The system consists of a single avatar 

moving backward and forward in front of a wall, periodically taking range measurements with 

significant uncertainty attached.  Only the dimension perpendicular to the wall is considered, and 

it is assumed that the initial displacement is known.  Fig. 5.2-4 gives a series of diagrams that 

depict the evolution of the particle histories and weights.  The particle filter shown uses only 

three particles and can hardly be expected adequately track the avatar given the noise in the 

system, it is simply used visualize the process of delayed observation updates and propagating 

through resampling events. 

5.2.3 Implementation of the JC-SLAM Algorithm 

As described at the beginning of this section, every particle filter is stored as a time series of state 

predictions for each particle, grouped into blocks separated by resampling events; thus, each 

block corresponds to a set of predicted particle paths for a period of time.  In order to implement 

lazy belief propagation two additional values are stored for each particle, the accumulated 
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observation density for that block and the observation density to be propagated to the next block.  

A “forward marker” is used to flag the earliest block with observation densities to be propagated 

forward.  There are five events that must be handled to maintain and query the particle filter, 

these events are handled as followed with reference to Fig. 5.2-5. 

(a) Initialization: The first state predictions are sent by the Avatar Agent, particle weights are 

all equal, and observation densities are set to 1. 

(b) Insertion of prediction updates: The new state predictions are appended to the state list 

and the prediction time is added to the time list.  The end time of the current block is advanced.  

Note that unlike correction updates all prediction updates must be applied in order. 

(c) Application of correction updates: The block containing the correction time is found, and 

then the accumulated observation density and forwarded observation density for each particle are 

multiplied by the new observation density.  If the forward marker is greater than the current 

region it is set to the current region. 

(d) Estimating States: The block containing the query time is found.  If the forward marker is 

less than the query block the observation densities are propagated forward to the query block.  

New particle weights are calculated using the accumulated observation density and observation 

densities are reset to 1.  The state estimate can then be calculated as a weighted sum. 

(e) Resampling:  A new block is appended to the region list.  A systematic resampling 

algorithm adapted from [81] is used to generate a new set of particle states and assign parents to 

the current set of particles. 
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(a) Starting from the initial position at time 0, the avatar 

begins moving backward and forward.  At each time 

step the avatar generates prediction updates for the 

particles using the transition density model.  Every few 

time steps the avatar takes observations using its range 

sensor, but no processing occurs at this time.  Since 

nothing is known about the true path at this time, the 

weights of all particles are equal. 

 
(b) At time 7 the observation from time 5 is processed 

(Event 1) and used to generate observation density 

updates for each particle, shown by the green circles.  

This observation gives roughly equal weights to 

particles 1 and 2, but particle 3 has almost no weight 

(Event 2).  Because the number of effective particles 

was reduced to 2 a resampling event occurs (Event 3).   

 
(c) The avatar continues on as before, generating 

prediction updates for the particles, until at time 10 the 

observation from time 3 is processed (Event 4).  

Observation density updates are generated for each 

parent particle (Event 5) and then propagated forward to 

its children (Event 6), resulting in higher weights being 

assigned to the children of particle 2. 

Fig. 5.2-4 JC-SLAM Example 
 
 

 
(a) Initialization 

 
(b) Insert Prediction 

 
(c) Apply Correction 

 
(d) Estimate State 

 
(e) Resample 

Fig. 5.2-5 JC-SLAM Algorithm Flow
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Chapter 6 
Implementation 

6.1 Host, Avatar, Agent Architecture 

The HAA architecture provides a strategy for implementation, but many design choices are still 

open when developing the code platform which one needs to build the control system.  The first 

decision is about selecting the programming language and environment, and then to choosing 

what building blocks are required for the architecture.  In this research, C++ was selected as the 

programming language, due to its object-oriented structure, the strength of the existing 

development tools and code libraries, and its compatibility with many operating systems and 

processors.  The object-oriented class features of C++ are particularly useful for this research 

since every agent shares the same basic needs for communication and agent management, and 

many groups of agents share additional functionality, for example Avatar agents or Sensor 

Processing agents. 

Several building blocks are required in order to implement HAA, but equally important are the 

support blocks to monitor, log, and debug the control system.  In scenarios with numerous hosts 

and tens of agents, interactions become very complex, and proper tools are essential to develop 

and maintain a functioning control system.  This section describes the three key blocks of the 

HAA implementation, AgentBase, AgentHost, and the DDB; and explains their requirements, 

capabilities, and, where applicable, potential alternative choices or variations.  The five 

supporting blocks, AgentMirrior, the GUI, the Logger, AgentPlayback, and RemoteStart are then 

outlined to discuss their features and usefulness in developing the control system.  

6.1.1 AgentBase 

AgentBase is the foundation class for all agents, including AgentHost, the class that is used to 

maintain the host network.  It provides basic functionality for all agents through tools such as 

timers, communication ports, and messaging infrastructure.  

The most fundamental tool of AgentBase is the Universally Unique Identifier (UUID) [92], 

which are generated every time an agent is instantiated to ensure that there is no confusion 

between agents.  A UUID is a 128-bit value that is algorithmically generated in a way that for a 
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finite set of IDs the probability of generating the same ID twice is negligible, and it can be 

estimated using the birthday paradox approximation from probability theory [93]: 

 1  (6.1-1) 

where n is the number of UUIDs in the set. 

Communication in the system is done over non-blocking Transmission Control Protocol/Internet 

Protocol (TCP/IP) sockets that guarantee packet order and integrity, which is a requirement for 

the majority of the algorithms described in Chapter 4.  There are two message formats 

implemented in AgentBase.  Regular messages contain message ID, message length, message 

data, and optionally a forwarding address and a return address.  These messages provide no 

guarantees on delivery in the event of agent or connection failure.  Ordered Atomic messages act 

as a wrapper for regular messages and provide the delivery guarantees of Algorithm 2; 

specifically that the message will either be delivered to all targets or no targets. 

A number of convenience modules are provided, including Timer, Callback, Conversation, and 

DataStream.  Timers allow agents to set timeouts when they need to perform a task at a certain 

time or at regular intervals.  Callbacks are a method of storing function pointers that can be 

passed to generic functions and called when a specific event occurs, for example after a timeout.  

Callbacks had to be specially designed in order to remain valid even if an agent is transferred to a 

different host.  Conversations are a set of tools to facilitate sending a request to another agent and 

uniquely identifying the response so that the response can be directed to the appropriate handler.  

DataStream is a class that concatenates many different data types into a single block to simplify 

the process of sending and storing data.  For example, during agent transfer an agent can pack its 

current state into a DataStream object, submit the block to the DDB, and then on the new host the 

agent can unpack the DataStream to recover its state and resume operation.  

Additionally, each agent monitors their CPU usage in real-time and reports this information for 

use in the Agent Allocation algorithm. 

6.1.2 AgentHost 

The term host in HAA refers to the processing hardware, but of course there needs to be a 

corresponding software component in order to manage and operate the network.  Each host runs 
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an instance of the AgentHost class, which provides the core of the distributed system.  AgentHost 

has five main tasks: host group management, DDB management, agent allocation, agent 

management, and message routing.  

The algorithms for maintaining the host group are described in Algorithm 3.  These include 

methodologies for joining, leaving, and removing failed members, and all guarantee consistency 

across the members.  Before a host can play a role in the control system it must successfully 

apply to the group and become consistent with the current global state. 

Although the DDB can be considered a separate entity from the host group, it is convenient to 

pass all database operations though the local host, since this eliminates the need to maintain a 

separate group of DDB clients.  This strategy of incorporating the DDB into the hosts does not 

dictate the specific implementation of the DDB, and the details of the implementation will be 

discussed in the Section 6.1.3. 

Once the host group has been established, there is only one step remaining before agents can be 

instantiated and the control system is in operation: deciding on agent allocation.  For this 

implementation the agent allocation algorithm developed in Algorithm 4 was used.  This 

algorithm is run every time a new agent is requested, whenever an agent or host fails, and at 

regular intervals in order to balance processing load. 

After deciding on the allocation, each host takes appropriate actions depending on the current 

state of the agents. 

 If the agent is requested but not yet spawned: the host spawns an instance from the agent 

template and notifies the parent when it is ready. 

 If the agent is already active: the previous host freezes the agent and the new host spawns 

an instance from the agent template, once the freeze is complete the new host gives the state data 

to the new instance to thaw and the agent resumes operation.  The complexities of these 

operations are handled by Algorithm 5 and Algorithm 6. 

 If the agent has failed: the new host spawns an instance from the agent template, provides 

the instance with the most recent backup data, and the agent resumes operation.  Backup and 

recovery are handled by Algorithm 7 and Algorithm 8, respectively. 
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All inter-agent communication is routed through the hosts.  This is convenient (and required) for 

four main reasons.  First, no agent needs to be concerned about where another agent is located; 

the message is just sent to the local host, which has the necessary information and connections to 

ensure the message arrives at its destination.  Secondly, and perhaps most importantly, it allows 

proper routing of messages to keep the agent transfer process transparent to other agents.  Agents 

do not have to worry about the current state or closing/reconnecting a socket when another agent 

is transferred, they simply send messages as normal, and if the agent does not crash it will 

eventually be delivered.  Thirdly, by routing all outside communication through the local host the 

number of active network connections is greatly reduced, which reduces network traffic by 

eliminating connection monitoring messages.  Finally, it simplifies the task of monitoring inter-

agent communication traffic, which is used to generate the agent affinities when generating agent 

allocation.  

6.1.3 Distributed Database 

The DDB is used to share various types of information throughout the network.  In following the 

tenets of efficiency and persistency, the DDB is implemented as a highly available service, 

improving local performance of the database and preventing data loss when failures occur.  

Highly available services can be implemented using various distributed algorithms, and for this 

implementation a simple full distribution strategy was employed.  The merits of full distribution 

versus alternative distribution strategies are discussed below, but here it was convenient to have 

each copy of the DDB directly managed by AgentHost.  Every host maintains a copy of the DDB 

class, and all write operations are coordinated via OAC transactions to ensure consistency.  Local 

agents are then guaranteed to have access to the most up-to-date information though the host, and 

read operations can happen independently.   

The implementation also supports a “watcher” interface, where agents can register to monitor 

specific data objects or specific types of objects.  These watchers are then notified when different 

events occur, including the basic events add, remove, and write, as well as a number of events 

specific to each object type. 

Three metrics used to judge the quality of a distributed database are bandwidth, latency, and 

fault-tolerance.  Bandwidth is a limited resource in the distributed system, and amount of data 
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that must be transferred increases with the amount of replication done by the database.  Latency, 

used here to reference to the time between an agent requesting information from the database and 

receiving a response, is a measure of quality of service and should be kept as low as possible.  

Low latencies occur when the data is already locally available when the query is received.  If the 

data must be retrieved from another host latencies can increase dramatically.  Fault-tolerance is a 

second measure of quality of service and determines how many hosts can fail before data is lost 

and a client experiences a disruption of service.  Specifically, an ƒ-tolerant service can handle ƒ 

host failures before a disruption occurs [61].  Maintaining low latency and high fault-tolerance 

has a direct cost in terms of bandwidth, and so a balance must be achieved that fits the needs of 

the application.  The distribution strategies at opposite ends of this spectrum are full distribution, 

where each site maintains an update-to-date copy of the entire DB, and on-demand distribution, 

where updates are stored locally until specifically requested.  The current implementation uses 

full distribution, but most applications use a strategy somewhere between the two extremes.  A 

logical approach to selecting the amount of replication is to pick the number of failures, ƒ, your 

system must be able to tolerate and use that as the lower baseline for replication. 

6.1.4 Support Blocks 

The five key support blocks are outlined in Table 6.1-1. 

 

Table 6.1-1 HAA Implementation Support Blocks 

Support Block Description 

Agent Mirror The AgentMirror class simply maintains a real-time replica of the DDB, along with 

the notification hooks that allow other classes to track specific events.  AgentMirror 

registers with an AgentHost, which first transmits an up-to-date copy of the DDB to 

AgentMirror and then proceeds to forward each new DDB update as they occur.  

Having a DDB replica is the basis for almost any real-time external monitoring of the 

system, since it tracks agent states and distribution, avatar states, mapping and 

localization, sensor readings, etc.  Using AgentMirror, tools such as the GUI can be 

built. 

Graphical User Interface A Graphical User Interface (GUI) is often the most important monitoring tool.  For 

this implementation the GUI, shown in Fig. 6.1-1, has four main functions: 

environment visualization, agent distribution, agent hierarchy, and DDB browser. 

1. Environment visualization is the standard monitoring tool.  It displays the 

state of the map in real-time, and can overlay information such as particle filters, 

avatar pose estimations, landmark estimations, avatar targets, planned paths, and 

sensor readings, as well as debugging information such as mission boundaries and the 

true obstacle positions. 
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2. Agent distribution visualization (not visible in Fig. 6.1-1) is the key to 

monitoring performance of the distribution algorithm and the agent transfer and 

recovery processes.  It organizes the history of each agent by host and displays 

changes in agent status, such as freezing, thawing, crashed, and recovering.  It is the 

real-time version of the agent distribution graphs presented in Chapter 7, where they 

are explained in more detail. 

3. The agent hierarchy is presented in the form of a collapsible tree with all 

child agents collected under their parent agent.  This makes it possible to monitor how 

many agents are in the system and which types of agents are being requested by 

whom.  Selecting an agent presents a summary of the agent’s properties and statistics, 

and could potentially provide an interface to change parameters and make performance 

adjustments. 

4. The DDB browser takes a similar form to the agent hierarchy, where DDB 

objects are organized in a tree based on their parentage; for example, sensor and 

particle filter objects are placed under their corresponding avatar object.  Selecting an 

object provides a summary of the object data, and again could potentially present an 

editing interface. 

Logger Each agent has a Logger class where it records important events, statistics, and 

debugging messages.  The Logger displays these messages in the console as they 

appear, but more importantly saves them to a file that can be reviewed offline.  If 

something questionable occurs during a run, the logs are the first place to check.  

However, despite extensive logging it is often difficult to determine what went wrong, 

and even harder to determine why.  For these cases more complete tracking is 

required, which led to the AgentPlayback system. 

AgentPlayback AgentPlayback was crucial to the debugging process, and made the challenging task of 

developing a complex networked system relatively tractable.  During a run of the 

hardware the agent playback system records every external input to each agent, i.e., 

communication and results from external function calls.  Using this information it is 

possible to later replay an agent, line by line of code, exactly as it occurred during the 

live run.  Combined with the debugging software in Microsoft Visual Studio© it is 

possible to analyse the agent and even test small code changes without having to re-

run the hardware.  This strategy worked particularly well due to the modular nature of 

the architecture, which naturally broke the system in to manageable chunks. 

Remote Start RemoteStart was developed to facilitate large scale experimentation.  External to the 

control system, RemoteStart is a tool that runs on every computer to allow central 

control over launching the host software, scheduling missions, and collecting log data 

after each run.  It also enabled distributing code updates whenever changes were made.  

Though a relatively simple tool, it was essential for efficient management of a system 

with 10+ computers and 100s of experimental trials. 
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6.2 Experimental Scenarios and Agent Design 

In order to confirm the functionality of the HAA implementation and evaluate various aspects of 

performance for the control system, a number of experimental scenarios and a control system 

capable of those tasks was required.  The primary purpose of these experiments is to demonstrate 

and evaluate the features of HAA rather than show a capacity for any particular task, and so the 

chosen scenarios are those typical for mobile robotics: mapping and exploration, search and 

deploy, and foraging.  Completing these tasks allows for significant options in control system 

strategy, but in following the Control ad libitum philosophy the guiding principles for the control 

system were adaptability, modularity, (support for) diversity, and persistency.  To this end a set of 

18 agents was designed and implemented.  This section presents the details of the experimental 

scenarios that are used in Chapter 7, as well as the specifications for the simulated avatar 

hardware.  An overview of the agents and a map of their interactions and dependencies is then 

provided, followed by an analysis of the control system structure using the relevant metrics from 

Chapter 3. 

6.2.1 Experimental Scenarios 

Three experimental scenarios where used: Mapping and Exploration, Congregate, and Forage.  

The scenarios, described in Table 6.2-1, are abstractions of real-world tasks that might be 

 

Fig. 6.1-1 Monitoring GUI.  Displays maps, particle filters, avatars, and landmarks 
(left), as well as current agent and DDB information (right) 
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completed by robot teams, and were chosen to present some variation in goals and complexity for 

the experiments.   

The experiments took place in two arenas that are occupied by an assortment of walls and 

obstacles.  The small arena is presented in Fig. 6.2-1, showing the locations of the five obstacles 

and 34 artificial landmarks along with the location of the optional congregation point used in the 

Table 6.2-1 Experimental Scenarios 

Scenario 1: Mapping and Exploration 

The most basic scenario, Mapping and Exploration requires the avatars to start in an unknown environment 

and explore the arena using all available sensors until the exploration threshold is reached.  The threshold 

requires that a specified percentage of the reachable cells have high enough confidence values, specifically 

greater than 0.73 or less than 0.27.  The initial start positions of the avatars are known, but subsequent 

localization occurs primarily by identifying landmarks and estimating their positions using a SLAM 

algorithm. 

Scenario 2: Congregate 

The Congregate scenario begins in the same way as Mapping and Exploration and proceeds until a special 

“Congregation Point” landmark is found.  Once the congregation point is located each avatar is assigned a 

position at equally spaced intervals surrounding the congregation point.  The scenario ends when all avatars 

reach their assigned positions. 

Scenario 3: Forage 

The Forage scenario is the most complex scenario used in these experiments.  It begins in the same way as 

Mapping and Exploration, however a number of collectable landmarks are distributed throughout the arena.  

When these collectables are located an avatar must travel to the collectable, pick it up, and then deposit it in 

one of the specified collection regions.  The scenario ends once the exploration threshold has been reached 

and all identified collectables have been deposited. 

 

Legend: 
Arena Boundary 

 

Obstacle 
 

Landmark 
 

Congregation Point 

(Congregate) 

Fig. 6.2-1 Small Arena 
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Congregate scenario.  The arena is 3.4 by 7.2 meters with an explorable area of 24.2 m
2
.  The 

large arena is shown in Fig. 6.2-2, and contains 18 obstacles and 139 landmarks.  The Forage 

scenario has three optional collection regions and 20 collectables.  The large arena is 18 by 18 

meters and has an explorable area of 216 m
2
. 

Four different avatar types were used in these experiments.  The role of each avatar type is 

outlined in Table 6.2-2, while Table 6.2-3 reports more detailed specifications.  The 

specifications of the three different sensor types are provided in Table 6.2-4. 
  ]]]] 

6.2.2 Agent Design 

In order to control a team of avatars in completing the above scenarios a set of 18 agents was 

developed.  To promote adaptability and modularity the required tasks and functions were broken 

down into components with as little interdependence as possible and virtually every component 

was implemented as a separate agent.   

Legend: 
Arena Boundary 

 

Obstacle 
 

Landmark 
 

Collectable 

(Forage) 
 

Collection Region 

(Forage) 

Fig. 6.2-2 Large Arena 
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Given the basic requirements of the control system and the three scenarios above, the 

functionality breakdown was as follows: 

 Overall mission management 

 Overall avatar resource management 

 Avatar control 

o Path planning 

 SLAM control 

o Sensor processing 

 Exploration control 

 Congregation control 

 Forage control 

 

In general each area of functionality requires little to no knowledge of the inner workings of the 

other components; e.g., exploration requires map data but it does not matter how it was generated, 

Table 6.2-2 Avatar Roles 

Seeker 

The Seeker avatar is small and agile but possesses limited sensing capabilities.  They fill the basic role of 

explorers and can quickly find landmarks and collectables. 

Enhanced Seeker 

Fills the same role as the basic Seeker but is equipped with more accurate odometry and a camera with better 

range and FOV.  The Enhanced Seeker is used in the large arena due to the large distances travelled. 

Sweeper 

Sweepers are slow moving but are equipped with a large sensor array that allows them to quickly generate map 

data for their surroundings.  Their primary function is mapping and exploration, but they also have the ability to 

collect and deposit collectables. 

Carrier 

The Carrier’s function is to retrieve collectables.  It is faster than the Sweeper but lacks the array of sensors. 

Table 6.2-3 Avatar Specifications 

Avatar 
Speed 

[m/s] 

Approx. 

Linear Drift 

After 10 m 

[m] 

Approx. 

Angular Drift 

After 10 

rotations 

[rad] 

Carrying 

Capacity 

[collectables] 

Sensors 

Seeker 2  1.22 0.08 0 Basic Camera 

Enhanced Seeker 2 0.25 0.016 0 Enhanced Camera 

Sweeper 1 0.12 0.016 1 
Enhanced Camera,  

5 Sonar 

Carrier 1.5 0.12 0.016 1 Enhanced Camera 

Table 6.2-4 Sensor Specifications 

Sensor Period [s] 
Field of View 

[rad] 

Effective Range 

[m] 

Artificial 

Noise* [σ] 

Approx. Average 

Error [m] 

Basic Camera Manual 0.873 3.0 0.09 ±0.14 

Enhanced Camera Manual 1.685 4.0 0.09 ±0.18 

Sonar 1.0 0.349 2.0 0.03 ±0.03 

*In most cases artificial noise is added to each sensor reading as a percentage of the reading distance following a 

normal distribution 
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and avatars require motion commands to travel from point to point but the path planning 

component could be interchangeable. 

To meet these needs the agent classes shown in Fig. 6.2-3 were implemented.  Since parent 

classes were used when groups of agents shared functionality, 22 classes are shown in total 

though ultimately only 18 distinct agent types are used.  Additionally, the functionality of a 

number of agents were rolled into the ExecutiveMission, specifically ExecutiveAvatar and 

SupervisorCongregate.  This was done as a simplification because these agents required minimal 

additional functionality, though strictly speaking for proper modularity and expandability they 

should be separate.  An overview of each agent is provided in Appendix III, briefly describing 

their role and implementation, but more importantly outlining their interdependencies and 

recovery strategies.   

Based on the agent interactions an agent dependency graph was constructed, Fig. 6.2-4.  The 

graph allows asymmetric connections and makes a distinction between weak and strong 

 

Fig. 6.2-3 Agent Class Tree 

 

Fig. 6.2-4 Agent Dependencies 

AgentPathPlanner

SupervisorBlindTraveller

AgentSensor*Avatar*ExecutiveAvatar

ExecutiveMission

SupervisorCongregate SupervisorExplore SupervisorForage SupervisorSLAM

Strong Connection

Weak Connection
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connections.  A connection is considered strong if an agent requires in-depth knowledge of 

another agent’s behaviour, particularly if they must take action during their own recovery or the 

recovery of the other agent.  A weak connection indicates that an agent calls upon another agent 

through queries or task requests but otherwise has no extra knowledge of the agent.  

6.2.2.1 Control System Structural Analysis 

Two of the preference indexes introduced in Appendix I are used here to study the structure of the 

control system.  First, the modularity of the agents is measured using the NZF and STDnorm 

indexes, and then a failure model of the software system is constructed to identify key points of 

risk. 

To measure modularity the first step is to construct the DSM.  Here a functionality level approach 

is taken, and so the elements of the DSM are the agents.  The connections of the DSM are 

provided by the dependencies graph in Fig. 6.2-4.  Strong connections are given a value of 1, and 

weak connections a value of 0.5.  The DSM is shown in Fig. 6.2-5.  With the DSM (I-6) and 

(I-10) can be used to calculate the NZF and STDnorm, respectively.  An NZF of 0.17 shows that 

the DSM is very sparsely connected, indicating a high degree of modularity.  The STDnorm is 

0.57, which suggests the DSM has a structure between that of a bus and a chain, but leaning 

slightly closer to a chain.   

To further study the robustness of the structure a failure model can be developed.  This is done by 

identifying points of critical (non-recoverable) failure, and constructing a model of the 

dependencies that lead to those points.  This method was applied to analyse the robustness of the 

agent structure for a hypothetical foraging scenario, with the aim of identifying key risk factors 

that may warrant additional consideration.  In addition to the standard compliment of agents, this 

model assumes six Avatar* and 10 SupervisorForage agents are active.  A pessimistic estimate of 

the agent failure rate is that for every minute of operation each agent has a 0.2% chance of failing 

due to an unhandled software error.  This provides the foundation to build a simple failure model, 

though the failure model could be made more accurate if more detailed failure curves were 

available.   
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The complete failure model is shown in Fig. 6.2-6, while a sample of the individual agent failure 

continuous distribution function is shown in Fig. 6.2-7.  This model identifies three paths to 

critical failure: 

1. Any key agent suffers critical failure.  ExecutiveMission, ExecutiveAvatar, 

SupervisorExplore, or SupervisorSLAM. 

2. More than two SupervisorForage agents suffer critical failure, meaning that less than 80% 

of the collectables are gathered. 

3. All avatars (via Avatar* or AgethPathPlanner) suffer critical failure. 

It appears that the avatar failure path is low risk because of the redundancy, while the 

SupervisorForage failure path is quite significant even though up to two agents are allowed to 

fail.  In order to identify problem areas and efficiently allocate development resources, a simple 

test can be done by suppressing the failure of various agents.  Fig. 6.2-8 shows the critical failure 

continuous distributions for four scenarios: current behaviour, no avatar failure, no foraging 

failure, and no key agent failure.  Suppressing avatar failure has no distinguishable impact on the 

curve, and so development resources are likely better spent in other areas.  No foraging failure 

has less of an impact than suppressing key agent failure, but only requires focusing resources on a 

single agent.  Alternatively, focusing on the key agents could yield significant gains. 
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11 ExecutiveAvatar                  
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� Strong Connection, ○ Weak Connection

Fig. 6.2-5 Control System DSM 
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Fig. 6.2-6 Foraging Scenario Failure Model 

 

Fig. 6.2-7 Agent Failure Curve Fig. 6.2-8 Critical Failure Comparisons 
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Chapter 7 
Hardware-in-the-Loop Experimentation and Results 

Hardware-in-the-Loop (HIL) simulation is a valuable experimentation and design tool [94].  For 

this thesis, where the control system is the primary focus, the setup consists of the complete 

control system operating normally, however, instead of interfacing with a team of physical 

avatars the control system communicates with simulated avatars.  This is accomplished by simply 

replacing the standard Avatar agents, who communicate with the avatar hardware, with agents 

that communicate with a computer simulation, while virtually every other agent remains 

unchanged.  The simulation models avatars, sonar sensors, “visual sensors” that simulate 

detecting visual landmarks using a camera, and a greatly simplified collection system to 

approximate picking up and dropping objects.  An appropriate noise signal was added to most 

inputs, including the avatar odometry model, to simulate the behaviour of the real hardware, the 

full details of which were described in Chapter 6.  The HIL simulation has three major benefits 

for this research.  The first obvious benefit over full simulation is that the real control system is 

used and its true behaviour can be observed.  Secondly, experimentation avoids the complications 

of physical robot hardware, such as repositioning avatars before each run and recharging 

batteries, which makes running and repeating numerous experiments much more efficient.  

Thirdly, since the avatars are simulated the number and capabilities of the avatars are flexible, 

and thus the complexity of the experiments can be much higher than when working with physical 

hardware. 

Building from the experimental scenarios described in Chapter 6, this chapter details a series of 

10 experiments.  The experiments are ordered by increasing complexity, and each one is designed 

to explore a different aspect of the control system.  Each experiment was repeated 10 times, 

however, in most cases it is more convenient to discuss the results from a single run.  And so 

unless otherwise noted, figures present only the results from a representative run of each 

experiment and the average results over multiple runs are left for the experiment summary tables.  

The summary tables also specifically report the representative run results in order to prove that 

their performance is truly representative of the average run.  The remainder of this section details 

the experimental setup, while each subsequent section presents the results of the 10 experiments.  

The experiments are divided into three sections: 1) Architecture Functionality, where the core 



85 

    

features of the HAA architecture are demonstrated; 2) Algorithm Performance, where the 

distributed algorithms are tested with various system sizes and the JC-SLAM algorithm is 

evaluated against traditional SLAM approaches; and 3) Robustness, where robustness against 

both software and hardware failure is examined.  A selection of these results have been submitted 

for publication in [95]. 

The experimental setup consisted of 10 computers networked using a 100 Mbps router.  The 

computers had dual-core 2.0 GHz processors and 2 GB RAM, and were running Windows Server 

2003.  The average network delay under low load conditions was <1 ms.  One of the computers 

was dedicated to running the simulation of the avatar hardware, while the others were used to 

supply the number of hosts dictated by each experiment.  Each experiment began from a blank 

slate, and hosts had to start, locate other hosts to form the host group, and then launch the 

required agents.  Once the assigned tasks were finished the hosts would gracefully shut down all 

agents and exit, at which point the experiment was considered complete.  Because significant 

effort was made to ensure each agent was bug-free and hardware crashes are extremely rare, 

agent and host crashes had to be simulated.  This was done by specifying a minimum and 

maximum operating time for each agent and host, and at a random time within that window the 

agent would become unresponsive for 30 seconds and then shut down.  Though the maximum 

number of hosts in any experiment was 10, no experiment required more than eight hosts 

simultaneously, and so when additional hosts joined they were started on hosts that had already 

“crashed,” thus ensuring that hosts always had exclusive access to the computer resources.  An 

additional computer was used to run the GUI and monitor the experiments.  During each 

experiment each agent logged their operations, and hosts periodically dumped data and statistics 

for later analysis. 

7.1 Architecture Functionality 

The following experiments were conducted to demonstrate the basic functionality of the HAA 

architecture: 

1. Experiment AF-1 – Exploration and Mapping:  To demonstrate the basic functionality of 

the system: the dynamic control system, dynamic team formation, and the dynamic host network. 
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2. Experiment AF-2 – Congregate:  To demonstrate basic avatar allocation with multiple 

task supervisors in the Congregate scenario. 

3. Experiment AF-3 – Forage:  To demonstrate advanced avatar allocation and heterogeneity 

in the Forage scenario. 

7.1.1 Experiment AF-1 – Mapping and Exploration 

The purpose of Experiment AF-1 is to demonstrate the basic functionality of the control system.  

This primarily focuses on four features: 1) the ability to dynamically form the host group, 2) the 

ability to dynamically form the control system by spawning agents as they are required, 3) the 

ability to balance processor resources through agent distribution, and 4) the ability to manage 

avatar resources as they join and leave the system.  This all occurs during normal operation of the 

control system, and agent transfers and host, avatar, or agent retirements are handled gracefully 

with no loss of information.   

This experiment was conducted in the small arena.  There were initially four hosts, every odd 

minute one host gracefully retires and every even minute a host joins.  The mission started with 

three seekers, after 2 minutes one seeker retires and after 2.5 minutes two additional seekers join.  

The mission completion condition was that 95% of the reachable cells were explored, where 

“explored” is defined as a cell with a value greater than 0.73 or less than 0.27.  Fig. 7.1-1 shows 

the mapping result, where each of the five curved lines represents the path of an avatar, while 

Table 7.1-1 reports the experiment summary.  The average completion time for the mission was 

3.8 minutes, and the mapping accuracy averaged 91% with 0.793% STD.  Map coverage and map 

accuracy are calculated as percentages relative to an “ideal” map generated with zero localization 

error. 

 

 
 ∑ | 0.5|∑ | 0.5| (7.1-1) 

  1 ∑ | |#  
 (7.1-2)

where  is the value of a cell,  is the value of the corresponding cell from the ideal map, and 

the sum is taken over all cells within the mission region. 
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A visualization of the agent allocation process is presented in Fig. 7.1-2.  This visualization is 

crucial in understanding the behind the scenes activity of the control system, since the actions of 

the avatars and visible mapping/exploration activities paint only a small part of the picture.  In 

order to facilitate understanding of the agent allocation figures, the format is explained in some 

detail here, and Fig. 7.1-3 provides a step-by-step transcript of the events.   

 

Fig. 7.1-1 Experiment AF-1 Mapping Result.  True obstacle positions are indicated 
with thick lines, and avatar paths are shown with thin curved lines. 

 

Table 7.1-1 Experiment AF-1 Results Summary 

Title Representative Run Mean RMS STD 

Mission Duration [min] 3.802 3.871 3.884 0.324816 

Map Coverage [%]* 90.38 91.07 91.10 2.247400 

Map Accuracy [%]* 90.64 91.19 91.19 0.793000 

Localization Positional Err [m] 0.07414 0.05737 0.05947 0.015661 

Localization Rotational Err [rad] 0.05221 0.04665 0.05290 0.024944 

Landmark Err [m] 0.07977 0.07606 0.07646 0.007790 

Landmark Covariance [m] 0.40481 0.40241 0.41953 0.118617 

Average # Hosts 4.50 4.52 4.52 0.031171 

Average # Agents 12.83 13.00 13.01 0.396887 

Average CPU Usage [%] 29.64 28.76 28.82 1.771400 

DDB Size [MB] 9.179 9.475 9.520 0.919952 

* Relative to a fully explored map generated with no localization error 
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Fig. 7.1-2 is organized vertically by host and the horizontal axis represents time, starting from the 

moment the first host was launched and ending when the mission is complete.  Many hosts are 

active for the entirety of the mission, however some hosts can join late and/or end early, e.g., H4 

and H5 in this experiment.  Each host lists every agent it has ever instantiated, and the agents are 

labeled based on their parentage, for example, A1.1 AgentPathPlanner is a child of A1 

AvatarSimulation.   Active agents are shown in green on their current host.  Transition states such 

as spawning, freezing/thawing, or crashed, are indicated in their corresponding colour.  Grey 

areas indicate that the agent has not been requested yet or is no longer needed, and is therefore 

out of scope.  Following along with Fig. 7.1-3, Fig. 7.1-2 can be understood as follows:  
 

 At 00:01 the initial host group forms. 

 At 00:10 the mission starts and the first agents are requested based on the mission 

definition, specifically ExecutiveMission and three AvatarSimulations. 

 

 

Fig. 7.1-2 Experiment AF-1 Agent Allocation 
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 These agents request additional agents (e.g., SupervisorExplore, AgentPathPlanner, 

AgentSensorLandmark) as required and by 00:21 the control system is fully operational. 

 Around 00:51 an agent allocation session occurs and A1, A2.1, and A6.2 change hosts in 

order to balance processor load. 

 At 01:00 H4 freezes all its agents and gracefully leaves the host group. 

 At 02:01 H5 joins the group and takes responsibility for several agents. 

 At 02:13 one avatar leaves, and the corresponding agents, A1 and A1.1, are shut down. 

 At 02:40 two additional avatars become available and H1 requests two more 

AvatarSimulation agents. 

00:01 H1 joined 

00:01 H2 joined 

00:01 HX joined 

00:01 H3 joined 

00:01 H4 joined 

00:10 Mission started 

00:10 A7 (ExecutiveSimulation) requested by H1 

00:10 A6 (ExecutiveMission) requested by H1 

00:10 A2 (AvatarSimulation) requested by H1 

00:10 A3 (AvatarSimulation) requested by H1 

00:10 A1 (AvatarSimulation) requested by H1 

00:11 A3 (AvatarSimulation) spawned by H1 

00:12 A6 (ExecutiveMission) spawned by H3 

00:12 A7 (ExecutiveSimulation) spawned by HX 

00:12 A1 (AvatarSimulation) spawned by H4 

00:12 A2 (AvatarSimulation) spawned by H2 

00:12 A6.2 (SupervisorSLAM) requested by A6 (ExecutiveMission) 

00:12 A6.1 (SupervisorExplore) requested by A6 (ExecutiveMission) 

00:13 A6.2 (SupervisorSLAM) spawned by H3 

00:13 A6.1 (SupervisorExplore) spawned by H1 

00:14 A2.1 (AgentPathPlanner) requested by A2 (AvatarSimulation) 

00:14 A1.1 (AgentPathPlanner) requested by A1 (AvatarSimulation) 

00:15 A3.1 (AgentPathPlanner) requested by A3 (AvatarSimulation) 

00:16 A3.1 (AgentPathPlanner) spawned by H3 

00:16 A2.1 (AgentPathPlanner) spawned by H4 

00:16 A1.1 (AgentPathPlanner) spawned by H2 

00:18 A6.2.1 (AgentSensorLandmark) requested by A6.2 

(SupervisorSLAM) 

00:18 A6.2.2 (AgentSensorCooccupancy) requested by A6.2 

(SupervisorSLAM) 

00:19 A6.2.2 (AgentSensorCooccupancy) spawned by H4 

00:19 A6.2.1 (AgentSensorLandmark) spawned by H2 

00:20 A6.2.3 (AgentSensorFloorFinder) requested by A6.2 

(SupervisorSLAM) 

00:21 A6.2.3 (AgentSensorFloorFinder) spawned by H1 

00:51 A1 (AvatarSimulation) freezing on H4 

00:51 A6.2 (SupervisorSLAM) freezing on H3 

00:51 A2.1 (AgentPathPlanner) freezing on H4 

00:53 A1 (AvatarSimulation) thawed by H3 

00:53 A6.2 (SupervisorSLAM) thawed by H4 

00:53 A2.1 (AgentPathPlanner) thawed by H3 

01:00 A6.2 (SupervisorSLAM) freezing on H4 

01:00 A6.2.2 (AgentSensorCooccupancy) freezing on H4 

01:01 H4 removed 

01:01 A6.2.3 (AgentSensorFloorFinder) freezing on H1 

01:02 A6.2.2 (AgentSensorCooccupancy) thawed by H1 

01:02 A6.2 (SupervisorSLAM) thawed by H1 

01:02 A6.2.3 (AgentSensorFloorFinder) thawed by H3 

02:01 H5 joined 

02:03 A6.1 (SupervisorExplore) freezing on H1 

02:03 A2 (AvatarSimulation) freezing on H2 

02:03 A3.1 (AgentPathPlanner) freezing on H3 

02:03 A2.1 (AgentPathPlanner) freezing on H3 

02:03 A3 (AvatarSimulation) freezing on H1 

02:05 A3.1 (AgentPathPlanner) thawed by H5 

02:05 A2 (AvatarSimulation) thawed by H5 

02:05 A3 (AvatarSimulation) thawed by H5 

02:05 A2.1 (AgentPathPlanner) thawed by H5 

02:05 A6.1 (SupervisorExplore) thawed by H5 

02:13 A1.1 (AgentPathPlanner) removed 

02:13 A1 (AvatarSimulation) removed 

02:40 A5 (AvatarSimulation) requested by H1 

02:40 A4 (AvatarSimulation) requested by H1 

02:41 A4 (AvatarSimulation) spawned by H5 

02:41 A5 (AvatarSimulation) spawned by H5 

02:42 A4.1 (AgentPathPlanner) requested by A4 (AvatarSimulation) 

02:43 A5.1 (AgentPathPlanner) requested by A5 (AvatarSimulation) 

02:44 A4.1 (AgentPathPlanner) spawned by H5 

02:44 A5.1 (AgentPathPlanner) spawned by H2 

03:00 A4.1 (AgentPathPlanner) freezing on H5 

03:00 A4 (AvatarSimulation) freezing on H5 

03:00 A2 (AvatarSimulation) freezing on H5 

03:00 A6.1 (SupervisorExplore) freezing on H5 

03:00 A3.1 (AgentPathPlanner) freezing on H5 

03:00 A5 (AvatarSimulation) freezing on H5 

03:00 A3 (AvatarSimulation) freezing on H5 

03:00 A2.1 (AgentPathPlanner) freezing on H5 

03:02 H5 removed 

03:04 A4.1 (AgentPathPlanner) thawed by H3 

03:04 A4 (AvatarSimulation) thawed by H2 

03:04 A2 (AvatarSimulation) thawed by H3 

03:04 A5 (AvatarSimulation) thawed by H3 

03:04 A3 (AvatarSimulation) thawed by H3 

03:04 A3.1 (AgentPathPlanner) thawed by H2 

03:04 A2.1 (AgentPathPlanner) thawed by H2 

03:04 A6.1 (SupervisorExplore) thawed by H2 

03:58 Mission finished

Fig. 7.1-3 Experiment AF-1 Mission Transcript 
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 Operation continues with agents occasionally being transferred to balance load, H5 leaves 

the group at 03:02. 

 At 03:58 the mission criteria are met and the mission is complete. 

This experiment demonstrates all the basic features of the control system, including adding and 

removing hosts, adding and removing avatars, dynamically spawning agents as required by the 

mission, and transferring agents between hosts.  Several other points of interest are presented in 

the following graphs.  Fig. 7.1-4 shows how the number of hosts and agents developed over time; 

the number of agents dips at 140 s and jumps at 170 s corresponding to the removal and addition 

of avatars at those times.  Fig. 7.1-5 shows the development of map coverage and map accuracy.  

A totally blank map with no information has a nominal accuracy of 0.5 since every cell has a 

value of “unknown.”   As information is added, corresponding to increasing map coverage, the 

accuracy changes, in this case improving because the majority of the information added to the 

map is correct.   

Both positional and rotational localization error are shown in Fig. 7.1-6.  The values fluctuate as 

the avatar odometry drifts and sensor readings are processed to compensate, but remain relatively 

stable over time at 0.06 m and 0.04 rad, respectively.  Given the relatively short duration of the 

mission the increase in positional error near the end of the mission might indicate that error had 

not settled, however, the later missions with much longer duration also demonstrate eventual 

stability of the localization.   

Fig. 7.1-7 shows the growth of the DDB over time.  The figure was split into two parts because 

the size of the particle filters dominates the DDB and would make the other elements impossible 
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to distinguish.  The particle filter size grows linearly as more predictions are added to the DDB, 

and does not stabilize because the mission ends before the DDB starts discarding old predictions.  

The size of the POG stabilizes quickly once the first map updates are processed.  The size of the 

agents is also relatively stable.  The size of the sensor readings naturally grows as more readings 

are added, and the remaining items take a negligible amount of space.   

A breakdown of the system wide processor usage is shown in Fig. 7.1-8.  This figure simply adds 

the usage of all hosts and is not normalized, and so for example: a group for five hosts has a 

maximum usage of 5 and a usage of 1 would correspond to 20% average usage.  However, the 

primary interest of this figure is to understand which agents require the most processing.  The 

activities of the hosts themselves, including managing the DDB, conducting agent allocation, and 

forwarding messages, account for a significant 30-40% of the processing.  The various sensor 

processing agents are also large consumers, accounting for roughly 50% of the processing at any 

 
Fig. 7.1-6 Experiment AF-1 Localization Error 
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Fig. 7.1-7 Experiment AF-1 DDB Distribution 
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time.  Path planners are the only other notable agent at 10%, while all the remaining agents 

combined typically require less than 10%.  Fig. 7.1-9 demonstrates how a relatively even 

processor load between hosts is maintained, despite two major factors that limit the amount of 

balancing which can occur.  Specifically, i) since the usage of each agent is set and there are a 

finite number of agents, achieving perfect balance is impossible, and ii) load balancing is only 

one of the optimization criteria of the agent allocation algorithm, since network traffic and a 

transfer penalty are also taken into account.  Fig. 7.1-9(a) shows the usage of each host over time, 

while Fig. 7.1-9(b) shows the more pertinent STD in CPU usage between hosts, averaging 9% 

deviation. 
 

 
Fig. 7.1-8 Experiment AF-1 Processor Usage Breakdown 

 

(a) Total CPU Usage by Host (b) Total CPU STD 
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7.1.2 Experiment AF-2 – Congregate 

Experiment AF-2 is a straightforward demonstration of allocating avatar resources between 

multiple task supervisor agents.  The experiment takes place in the small arena with three seekers 

and four hosts.  A special landmark was placed in the arena, and when the landmark is found the 

avatars move to positions surrounding the landmark at equally spaced intervals.  The mission is 

complete once all avatars reach their designated positions.  Avatar allocation works on a task 

priority bidding system: when a supervisor requires avatar resources they place a bid on the 

desired avatar, and the supervisor with the highest bid gains control of the avatar.  In this case 

SupervisorExplore by default places a low priority bid on all avatars, but once the congregation 

point is found SupervisorCongregate places high priority bids and gains control of each avatar 

(due to the simplicity of the task, the functionality of SupervisorCongregate was implemented 

directly within ExecutiveMission).   

The results are reported in Table 7.1-2.  Map coverage drops to 59% since exploration is 

abandoned as soon as the congregation point is located.  This is readily apparent in Fig. 7.1-10, 

which shows the mapping result from one run as well as the final positions of the avatars around 

the congregation point.  Map accuracy is also lower at 79%, due to the incompleteness of the 

map, not due to any increased inaccuracy of the portions that were generated.  This is confirmed 

Table 7.1-2 Experiment AF-2 Results Summary 

Title Representative Run Mean RMS STD 

Mission Duration [min] 2.974 3.102 3.201 0.788482 

Map Coverage [%]* 57.32 58.96 59.18 4.993000 

Map Accuracy [%]* 78.34 78.87 78.89 1.775000 

Localization Positional Err [m] 0.02808 0.07489 0.07899 0.025108 

Localization Rotational Err [rad] 0.01011 0.03719 0.04106 0.017404 

Landmark Err [m] 0.04999 0.06436 0.06577 0.013556 

Landmark Covariance [m] 0.50794 0.65200 0.67516 0.175332 

Average # Hosts 5.00 5.00 5.00 0.000000 

Average # Agents 12.32 12.41 12.41 0.355753 

Average CPU Usage [%] 16.25 16.28 16.41 2.085000 

DDB Size [MB] 5.973 5.453 5.532 0.928745 

* Relative to a fully explored map generated with no localization error 
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 Legend: 
 

Congregation Point 
 

Target Location 

 

Fig. 7.1-10 Experiment AF-2 Mapping Result 

 
  

Fig. 7.1-11 Experiment AF-2 Map 
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by noting that the localization error is still within the expected range, with averages of 0.075 m 

and 0.037 rad.  The change over time of these values is shown in Fig. 7.1-11 and Fig. 7.1-12.     
 

7.1.3 Experiment AF-3 – Forage 

In the foraging scenario a number of collectables are placed at unknown locations in the arena, 

and the goal is to locate all the collectables and return them to predefined collection regions.  

When a collectable is located a SupervisorForage agent is spawned, who is charged with 

controlling an avatar to move to the collectable, pick it up, move to the nearest collection region, 
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and drop off the collectable.  Once the collectable has been dropped off the SupervisorForage 

agent is finished and retires.   
 

This scenario has dynamic integration of heterogeneous avatars and both active and passive 

cooperation.  However, instead of just two simultaneous tasks there are many simultaneous tasks 

competing for avatar resources.  This advanced avatar allocation uses the same bidding process, 

but allows SupervisorForage agents to adjust their priority based on the distance between the 

avatar and the collectable.  

The mission takes place in the large arena with 20 collectables distributed throughout the arena 

and three collection regions.  The host group always consists of eight hosts, and four sweeper and 

two carrier avatars are used.  The mission completion criteria are that 95% of the reachable cells 

are explored, and all identified collectables have been deposited.   

The mapping result from one run of the experiment is shown in Fig. 7.1-13, and the avatar paths 

  Legend: 

 

 

Collectible 
 

Collection Region

 

Fig. 7.1-13 Experiment AF-3 Mapping Result 
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exhibit much more backtracking than in the Mapping and Exploration scenario as they travel 

between collectables and the collection regions.  The results summary is provided in Table 7.1-3.  

The average mission duration was 28.6 minutes, and the map accuracy of 91% and localization 

error of 0.105 m/0.024 rad are within expectations.  In all cases every collectable was found and 

deposited.  Fig. 7.1-14 shows the typical processor usage breakdown, which is expected since 

despite the large number of SupervisorForage agents they require very little processing power.   

The activity in the agent allocation graph in Fig. 7.1-15 becomes interesting, particularly for the 

SupervisorForage agents, A7.2-A7.21.  There are frequent agent spawns and semi-regular 

retirements, with the typical SupervisorForage taking between 3 to 10 minutes to complete its 

 

Table 7.1-3 Experiment AF-3 Results Summary 

Title Representative Run Mean RMS STD 

Mission Duration [min] 28.963 28.599 28.683 2.203573 

Map Coverage [%]* 98.32 97.83 97.83 0.755300 

Map Accuracy [%]* 91.52 91.15 91.16 1.291200 

Localization Positional Err [m] 0.08069 0.10553 0.11601 0.048174 

Localization Rotational Err [rad] 0.01906 0.02403 0.02609 0.010175 

Landmark Err [m] 0.09601 0.09915 0.10426 0.032232 

Landmark Covariance [m] 0.05503 0.05333 0.05337 0.002213 

Average # Hosts 9.00 9.00 9.00 0.000000 

Average # Agents 29.95 29.48 29.49 0.822289 

Average CPU Usage [%] 55.52 53.84 53.87 1.586500 

DDB Size [MB] 26.122 25.384 25.420 1.353034 

Cargo Collected 20.00 20.00 20.00 0.000000 

* Relative to a fully explored map generated with no localization error 

 

Fig. 7.1-14 Experiment AF-3 Processor Usage Breakdown 
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task.  The variation in completion time is a result of three primary factors: i) how long it takes the 

Supervisor to win control of an avatar, ii) how well explored the map is between the avatar and 

the collectable, and iii) how much traffic there is to complicate the avatar’s path, particularly 

around busy collection regions. 
 

 

Fig. 7.1-15 Experiment AF-3 Agent Allocation 
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7.2 Algorithm Performance 

This set of experiments evaluates the relevant metrics for the specific algorithms used for this 

HAA implementation: 

1. Experiment AP-1 – Ordered Atomic Commit: To examine the performance of the 

algorithm with various numbers of participants. 

2.  Experiment AP-2 – Host Membership: To measure the time required for Join, Leave, and 

Remove actions.   

3. Experiment AP-3 – Agent Allocation:  To study the two key metrics of the algorithm: 

allocation time, and number of messages sent. 

4. Experiment AP-4 – Agent Transfer and Recovery: To measure the time required for 

Spawn, Freeze/Transfer, and Recover actions. 

5. Experiment AP-5 – JC-SLAM:  To compare the performance of JC-SLAM versus the two 

traditional SLAM approaches: Delay and Discard.   

7.2.1 Experiment AP-1 – Ordered Atomic Commit 

The Ordered Atomic Commit algorithm is used any time the system must reach consensus and 

maintain consistency.  Virtually all the later algorithms rely on OAC and it is used to synchronize 

the DDB across all hosts.  The following results were derived from the algorithm being used in 

live conditions; specifically, the samples were gathered from all the experiments run in the other 

sections.  Each graph shows the mean value from all the samples, and uses error bars to indicated 

standard deviation.  Since the samples were not explicitly controlled the number of samples 

varies from case to case, but is at minimum 124 (for the 2-3 participant cases), and averages over 

600,000.  Fig. 7.2-1 plots the variation in the time taken to decide and deliver a message with 

different numbers of participants.  The average delay appears to be stable, suggesting good 

scalability for the algorithm.  There is typically only a small delay, < 10 ms, between deciding 

and delivering the message, but it does seem to increase with the number of participants, likely 

due to the increased number of order conflicts, indicated in Fig. 7.2-2.  

The second most important metric for this algorithm is the number of messages sent in order to 

deliver each OAC.  This counts every message sent by each participant, and Fig. 7.2-3 shows the 

average number of messages vs. the participant count.  As expected, the increase in number of 
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messages is not linear, but fits well with a second order polynomial growth pattern.  This will 

eventually limit the scalability, but for most applications will only present a problem once it 

begins impacting the delivery delay discussed above.   

7.2.2 Experiment AP-2 – Host Membership 

The Host Membership service is used to maintain the Host Group and has three primary 

functions: 1) adding hosts to the group when a join request is sent, 2) removing hosts from the 

group when a leave request is sent, and 3) removing hosts from the group when a host is 

suspected of failure.  As before, the samples were gathered from all the experiments run in the 

other sections, however, since these events are much less common the number of samples is 

fewer, averaging 150 for joins, 28 for leaves, and 15 for removes.  The average join, leave, and 

Fig. 7.2-1 Experiment AP-1 Decision and 
Delivery Delay vs. # Participants 

Fig. 7.2-2 Experiment AP-1 # Order 
Changes vs. # Participants 

 

Fig. 7.2-3 Experiment AP-1 # Messages Sent vs. # Participants 
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remove delays are shown in Fig. 7.2-4, with the error bars used to indicate standard deviation.  

Join times are on the order of seconds for all cases, though they are significantly higher for group 

sizes more than five.  Since OAC time was shown to be similar for these group sizes this notable 

increase must be caused by other factors, likely delays in establishing connections to each group 

member and synchronizing to the group state.  Leaving a group is straightforward in that it only 

requires that you make the leave request and are removed via an updateMembership transaction, 

which is reflected in the consistent leave times averaging close to 0.6 seconds.  Removing a failed 

member from a group is a much more complex process, and requires that all members suspect the 

failed member before a successful updateMembership transaction can occur.  Despite this the 

average failed host is removed in less than 1.5 seconds after being suspected by the first member.  

Since host failures are so rare the number of samples was limited; however, 52 samples were 

available for the group size of nine, demonstrating good performance for what was theoretically 

the most complex case. 

7.2.3 Experiment AP-3 – Agent Allocation 

The performance of the agent allocation algorithm is primarily measured in terms of allocation 

time and number of messages sent.  The number of hosts participating in the allocation and the 

number agents being allocated are two degrees of freedom in this algorithm, and the following 

graphs show the results for various numbers of hosts over six agent ranges.  Because these 

samples were taken from live experiments not every case is represented, however, those that are 

present average at 324 samples and only three cases have fewer than 25 samples.  Fig. 7.2-5 

 
Fig. 7.2-4 Experiment AP-2 Join, Leave, and Remove Delay vs. # Hosts 
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shows the average time taken to reach allocation consensus.  There does not appear to be a strong 

correlation between time and the number of hosts, but there is a clear increase in time relative to 

the number of agents being allocated.  As expected, the number of messages sent during 

allocation, Fig. 7.2-6, shows a strong correlation to both number of hosts and number of agents.  

Each host must share their bids with every other host, and more agents increases the likelihood of 

bidding conflicts, resulting in more messages and more rounds of bidding. 

7.2.4 Experiment AP-4 – Agent Transfer and Recovery 

The ability to spawn agents on demand, transfer agents, and recover failed agents are all key 

features of this architecture.  Once the system is shown to function, the primary performance 

metric is the time cost of each action.  Fig. 7.2-7 shows the average delay for a ) spawning, the 

time a new agent is acknowledged by the system to the time it is ready begin performing its tasks, 

which also includes at least one session of agent allocation; b)  freezing, the time between 

deciding to transfer the agent and the agent submitting its frozen state to the DDB; c) transferring, 

the time between deciding to transfer the agent and the agent resuming activities on the new host; 

and d) recovery, the time between detecting an agent failure and restoring the agent, this time 

 

Fig. 7.2-5 Experiment AP-3 Allocation Delay vs. # Hosts vs. # Agents 

 

Fig. 7.2-6 Experiment AP-3 Messages Sent vs. # Hosts vs. # Agents 
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does not include the time taken to detect an agent failure since that is configurable using the UFD 

parameters.   

The spawn delay averages between 1-2 seconds and is not tied to the number of hosts for these 

samples.  On average agent transfer takes between 1.3-2.1 seconds, about one third to one half of 

which is taken freezing the agent.  Given the average agent state size was 111 kB and the speed 

of the network, most of this time is accounted for by obtaining locks and the OAC messages 

required to maintain consistency and allow the transfer to be transparent to the other agents.  The 

case of [50] where a single Java thread is transferred throughout the system has a transfer time of 

only 4.26 ms, which may make these transfer times seem high.  However, their system does not 

have to consider the complexity of multiple agents and inter-agent communication, and does not 

appear to make efforts to robustly maintain consistency during the transfer.  If the agent transfer 

algorithm used here only required freezing the agent state, sending the state to the next host, and 

unpacking the state, it would also perform on the order of milliseconds.  [38] presents an 

application where entire sections of the control system are packed as VM states for transfer 

between robots.  However, due to the unnecessary data stored in the complete VM state, transfers 

took between 20-120 seconds simply to transmit the state, in addition to ~5 seconds to 

save/compress and uncompress/restore the VM.  On average restoring an agent takes between 

0.7-2.9 seconds, and includes at least one session of agent allocation.  None of the delays related 

to agent transfer and recovery appear to be correlated to the number of hosts in the system. 

 

Fig. 7.2-7 Experiment AP-4 Agent Transfer and Recovery Delay vs. # Hosts 
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7.2.5 Experiment AP-5 – JC-SLAM 

When considering the performance of a SLAM algorithm there are four primary metrics: 1) 

computational cost, 2) localization accuracy, 3) mapping accuracy, and 4) mapping rate.  In 

particular, the question is how these metrics are affected by the three strategies employed by JC-

SLAM: i) delayed calculation of weight updates, ii) out-of-order processing, and iii) propagation 

of observations through resampling transforms.   

Three experiments were designed to study these questions.  The first focuses on localization 

accuracy and compares the results from a number of different variations of the JC-SLAM strategy 

in three different scenarios.  The second experiment simply monitors the number of observations 

that accumulate between each weight update to calculate the number operations saved.  The final 

experiment takes a full mapping and exploration scenario and compares the performance of JC-

SLAM against two traditional SLAM approaches. 

7.2.5.1 Experiment AP-5.1 Impact of JC-SLAM Strategies 

As shown in the discussion in Chapter 5, the strategies of JC-SLAM are theoretically grounded, 

but for practicality of implementation a number of unproven steps are made.  In order to justify 

JC-SLAM, the strategies were verified experimentally.  To accomplish this three different teams, 

Table 7.2-1, were run though mapping and exploration scenarios and the particle filter predictions 

and observations were recorded.  Then 11 variations of the SLAM algorithm were used with the 

data to analyse the impact on accuracy, required number of particles, and rate of particle decay.  

Six SLAM strategies were used under nominal and constrained processing conditions, for a total 

of 11 variations (the baseline strategy disregards processing conditions).  The SLAM strategies 

are defined in Table 7.2-2. 

The processing conditions were tuned for each experiment using the Discard strategy such that 

the nominal level was defined as processing ~90% of the readings and the constrained level 

Table 7.2-1 Experiment AP-5.1 Experimental Scenarios 

Experiment Team Explored Area [m
2
] Mission Time [mm:ss] 

Uncorrected 

Localization Error [m] 

Basic  4 Seekers 24.2  2:56 0.123 

Advanced A 4 Sweepers 216  27:05 0.804 

Advanced B 8 Sweepers 216 15:22 0.281 



104 

 

defined as processing ~50% of the readings.  These same processing conditions were then used 

for the four JC-SLAM variations.  Even though the set of observations and the avatar motion 

predictions are the same for each test there are still a significant number of random variables; and 

so each experiment was run 10 times and the average values are reported. 

Each SLAM variation was tested using 100, 250, 500, 750, and 1000 particles for each filter.  The 

questions of accuracy and required number of particles will be answered by looking at Fig. 7.2-8, 

which shows the localization accuracy for each test.  The error bars are used to show the standard 

deviation from all trials.   

The Baseline scenario shows that the SLAM algorithm is functioning as expected, demonstrating 

significant improvements over the uncorrected localization for all three scenarios, and showing 

diminishing improvement as the number of particles increases.  For the nominal tests each 

strategy is able to process most of the readings and performs close to the Baseline.  The 

significant standard deviation makes it difficult to make strong statements about relative 

performance, but from these results the JC-SLAM variations appear to have a slight advantage 

Table 7.2-2 Experiment AP-5.1 SLAM Strategies 

Strategy Description 

Baseline All readings were processed in order as soon as they became available.  This is the standard 

SLAM approach. 

Discard Readings were processed in order as soon as they became available, however, if insufficient 

processing resources were available at that time the reading was discarded.  This is a standard 

SLAM approach when resources are insufficient to process all readings. 

JC-SLAM The proposed SLAM implementation: readings were processed in LIFO (last-in-first-out) 

order, readings that could not be immediately processed were held until resources became 

available, weight updates were delayed until explicitly requested, and observation densities 

were forward propagated through resampling transforms. 

FIFO The same as the JC-SLAM implementation except the readings were processed in FIFO 

(first-in-first-out) order.  In systems where all readings can be processed the end result is very 

similar to the normal SLAM approach, however, in constrained systems this means that 

processing can fall significantly behind the newest readings. 

Random The same as the JC-SLAM implementation except the readings were randomly chosen for 

processing from the pool of available readings.  In this approach a selection of new and old 

readings were processed, even in constrained systems. 

NFP The same as the JC-SLAM implementation except that observation densities were not 

forward propagated through resampling transforms. 
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over Discard.  The constrained tests show that FIFO and Random are unable to maintain 

localization, since they rapidly fall behind on processing recent readings.  Discard, JC-SLAM, 

and NFP all perform similarly and still demonstrate a marked improvement over uncorrected 

localization.   

From these results the following statements are made: 

 JC-SLAM has equivalent accuracy to Baseline when sufficient processing resources are 

(a) Basic Nominal (b) Basic Constrained 

(c) Advanced A Nominal (d) Advanced A Constrained* 

(e) Advanced B Nominal (f) Advanced B Constrained* 

*The vertical axis of these graphs has been set to highlight the differences between Baseline, Discard, JC-SLAM, 

and NFP.  FIFO and Random are clipped because they were unable to successfully localize in these scenarios. 

Fig. 7.2-8 Experiment AP-5.1 Localization Accuracy 
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available. 

 JC-SLAM has the same or better accuracy as Discard in constrained scenarios. 

 JC-SLAM follows the same improvement as Baseline or Discard as the # of particles 

increases. 

 Forward propagating observations through resampling transforms yields no benefit for 

these scenarios.  This suggests that, though theoretically sound, forward propagation may not be a 

worthwhile addition. 

Taking the results of the Advanced B trials, Fig. 7.2-9 shows the number of readings processed, 

the processing order, and the average delay between when the observation is generated and when 

it is processed.  By definition Discard is able to process ~90% of the readings for the nominal test 

and ~50% of the readings for the constrained test.  In both cases the JC-SLAM variations are able 

to take advantage of the stored observations and process roughly 10% more of the readings 

during lulls in observation generation.  By design Baseline, Discard, and FIFO never process any 

readings out-of-order (OOO).  JC-SLAM and NFP use the same strategy and therefore have the 

same results, largely keeping up with only 2.5% of readings processed OOO during the nominal 

test, but processing 30% of the readings OOO for the constrained tests.  From the accuracy results 

above it can be seen that this OOO processing has no noticeable impact on performance.  This 

can be explained in part by observing that even though the readings are being processed OOO, 

the average delay between when a reading was generated and processing the reading is relatively 

small, 52 ms for the nominal test and 1,212 ms for the constrained test.  The average delay in 

processing is much larger for the constrained FIFO and Random tests, 337 seconds and 240 

seconds, respectively.  Since these strategies fall behind as they continue to process old readings 

their accuracy is greatly affected.  The results show that: 

 JC-SLAM is able to take advantage of available processing resources to process 

additional observations, even in severely constrained scenarios. 

 The OOO processing strategy does not affect accuracy so long as new readings are given 

priority. 

To study the impact of JC-SLAM on particle diversity decay the average rate of resampling was 

recorded for each test.  Fig. 7.2-10 plots the rate of resampling against the reading processing 

rate, and shows that there is a strong correlation for each scenario.  With the exception of the 
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constrained FIFO and Random tests, which have poor localization and therefore reduced rates of 

resampling, the remaining tests are linear.  This demonstrates that by itself JC-SLAM has 

minimal impact on particle diversity decay, and the primary factor is the reading processing rate. 

 

(a) % Readings Processed Nominal (b) % Readings Processed Constrained 

(c) % Readings Out of Order Nominal (d) % Readings Out of Order Constrained 

(e) Average Processing Delay Nominal (f) Average Processing Delay Constrained 

Fig. 7.2-9 Experiment AP-5.1 Observation Processing 
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7.2.5.2 Experiment AP-5.2 Operations Saved from Delayed Calculation 
of Weight Updates 

From Strategy 1, JC-SLAM accumulates observation densities and delays weight updates until 

particle weights are explicitly requested.  As discussed in Chapter 5, this approach has only 

minimal impact on SLAM performance since all observations that have be processed up to that 

point are included when the weights are calculated, it simply changes how and when the 

calculations are done.  Studying (5.1-4), for a particle filter with N particles a standard weight 

update requires N multiplications, N additions, and N divisions.  It follows that M observations, 

when calculating the weights after each observation, require MN multiplications, MN additions, 

and MN divisions.  If the delayed weight calculation strategy (5.2-3) is used these calculations 

can be reduced to MN multiplications, N additions, and N divisions.  Depending on the number of 

observations accumulated between each weight update this could result in significant savings.  To 

study the impact in a real scenario the average number of observations between each weight 

request was measured during the mapping and exploration scenarios of the previous experiments 

and the number of saved operations was calculated.  These results are shown in Table 7.2-3. 

7.2.5.3 Experiment AP-5.3 Cooperative Exploration and Mapping 

This experiment studies the rate of map generation of JC-SLAM compared to the two traditional 

SLAM approaches, Discard and Delay, which are used when processing resources are 

constrained.  Available processing resources are a significant concern since results must be 

available in real-time, and quite often the rate at which new data are collected surpasses the rate 

that the data can be processed.  When this occurs the two basic options are either discarding the 

Fig. 7.2-10 Experiment AP-5.1 Reading Processing Rate vs. Resampling Rate 

0.00

0.02

0.04

0.06

0.08

0 1 2 3 4

R
es

a
m

p
le

s/
s

Readings Processed/s

Basic *

Basic FIFO & Random Const

Adv A *

Adv A FIFO & Random Const

Adv B *

Adv B FIFO & Random Const



109 

    

extra readings or delaying exploration until processing is finished [76].  With JC-SLAM a third 

option is possible: unprocessed readings can be stored until processing resources become 

available and then integrated into the SLAM solution.  All three approaches were implemented in 

the HAA control system.  Each approach used the same particle filter, map, and sensor processing 

implementation, and the sole differences between implementations are described in Table 7.2-4. 
 

For this experiment six Sweeper avatars were used in the large 18 x 18 m arena.  To approximate 

changing processing resources six hosts were used at the beginning of the experiment, two hosts 

Table 7.2-3 Experiment AP-5.2 Savings from Delayed Weight Updates 

Experiment 

# of 

Particles 

(N) 

Average 

Observations 

between 

Weight 

Updates (M) 

Standard Weight 

Update Cost  

(MN x, MN +, MN /) 

JC-SLAM 

Weight Update 

Cost  

(MN x, N +, N /) 

Computational 

Savings (% 

operations) 

Basic 500 2.93 1465, 1465, 1465 1465, 500, 500 44% 

Advanced A 500 3.97 1985, 1985, 1985 1985, 500, 500 50% 

Advanced B 500 4.89 2445, 2445, 2445 2445, 500, 500 53% 

Table 7.2-4 Experiment AP-5.3 SLAM Implementations 

Implementation Description 

JC-SLAM Sensor readings are added to a stack by SupervisorSLAM as they are generated.  

Readings are assigned to sensor processing agents one at a time in LIFO order.  Once a 

reading is processed the processing agent is assigned the next reading.  If more readings 

accumulate than can be readily processed by the current sensor processing agents 

additional agents are requested, limited by the available processing power of the hosts 

and up to a maximum of one sensor processing agent of each type (Cooccupancy, Sonar, 

Landmark, FloorFinder) per host.  Avatar path planning and movement is independent of 

the sensor processing activities, though ultimately path planning is influenced by the 

generated map. 

Discard Sensor processing agents of each type are started on every host, meaning that Discard 

always has the maximum number of processing agents possible for the JC-SLAM 

implementation, and for this experiment had double the number of agents of JC-SLAM.  

As sensor readings are generated SupervisorSLAM assigns them to any available sensor 

processing agent, if no processing agents are immediately available the reading is 

discarded.  Avatar path planning and movement is independent of the sensor processing 

activities, though ultimately path planning is influenced by the generated map. 

Delay Each Avatar agent is responsible for handling its own sensor readings, and requests a 

dedicated sensor processing agent of each type.  Depending on the ratio of hosts to 

avatars this may result in more or less processing agents than the Discard 

implementation (and maximum of the JC-SLAM implementation), but in this experiment 

there were two times more than the JC-SLAM implementation.  When sensor readings 

are generated the avatar halts activity until all readings are processed, at which point the 

avatar is free to move and generate more sensor readings. 
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left after 5 minutes, and two hosts joined after 10 minutes.  The mission completion condition 

was that 95% of the reachable cells were explored, where “explored” is defined as a cell with a 

value greater than 0.73 or less than 0.27.  Each experiment was repeated 10 times, and Table 

7.2-5 reports the results from the three SLAM approaches.   

Map coverage and map accuracy remained consistent across all approaches, averaging 95% and 

91%, respectively.  The development of map coverage and map accuracy over time for a typical 

trial of each approach is shown in Fig. 7.2-11 and Fig. 7.2-12, respectively; and, while the final 

values are similar, JC-SLAM reaches them more quickly.  This results in a significant difference 

in mission duration, where on average JC-SLAM finishes 17% (3.8 minutes) faster than Discard 

and 33% (9.1 minutes) faster than Delay.  The improved performance is a direct result of JC-

SLAM’s ability to process sensor readings at a higher rate (though note that the processing time 

per reading was the same for all approaches).  The rates of reading generation and processing are 

shown in Fig. 7.2-13, and the advantage of JC-SLAM is clear.  JC-SLAM is able to keep up with 

the high rate of reading generation, averaging 24.0 readings/s for both generation and processing. 

Discard has a slightly lower average generation rate of 22.8 readings/s, and only has an average 

processing rate of 18.4 readings/s; meaning Discard must throw away roughly four readings per 

second.  Delay has a reduced reading generation rate because it must wait for processing to 

complete before generating more readings, averaging 16.7 readings/s for both generation and 

processing.  Delaying actions while readings are being processed is also the reason why Delay 

has a longer mission duration.   

Table 7.2-5 Experiment AP-5.3 SLAM Comparison 

Title 
Mean RMS STD 

JC-SLAM Discard Delay JC-SLAM Discard Delay JC-SLAM Discard Delay 

Mission Duration [min] 18.42 22.18 27.49 18.44 22.19 27.87 0.74 0.69 4.53 

Map Coverage [%]* 0.951 0.949 0.958 0.951 0.949 0.959 0.0063 0.0095 0.0068 

Map Accuracy [%]* 0.906 0.907 0.909 0.906 0.907 0.909 0.0033 0.0072 0.0075 

Localization Err Pos [m] 0.086 0.097 0.107 0.087 0.101 0.114 0.0172 0.0299 0.0398 

*Relative to a fully explored map generated with no localization error 
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7.3 Robustness 

Two experiments were conducted to evaluate the performance of the system under various failure 

scenarios: 

1. Experiment R-1 – Agent Failure:  To explore the impact of increasing rates of agent 

failure. 

 

Fig. 7.2-11 Experiment AP-5.3 Map 
Coverage 

Fig. 7.2-12 Experiment AP-5.3 Map 
Accuracy 

 

 
 

(a) JC-SLAM (b) Discard (c) Delay 

Fig. 7.2-13 Experiment AP-5.3 Reading Generation and Processing Rates 
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2. Experiment R-2 – General Failure:  To demonstrate the ability to handle concurrent host, 

agent, and avatar failures. 

7.3.1 Experiment R-1 – Agent Failure 

One of the most important features of the control system is the ability to detect and recover from 

agent failures.  Experiment R-1 was designed to not only show that detection and recovery work 

as prescribed, but to study the impact of failure on key performance metrics.  The Mapping and 

Exploration scenario in the small arena was chosen to reduce the performance variables and 

generate the fairest comparisons.  Three hosts were used, along with four seeker avatars.  The 

mission completion criterion was that 95% of reachable cells were explored.  Artificial failures 

were introduced into the system, and were controlled by specifying a minimum and maximum 

operating time for each agent.  The failure would then occur at a random time in that interval.  

Four different failure rates were tested: 1) No Failure, 2) Moderate Failure, agent life expectancy 

1-10 minutes, 3) High Failure, agent life expectancy 1-3 minutes, and 4) Extreme Failure, agent 

life expectancy 0.5-1.5 minutes.  All of the tested failure rates are much higher than any realistic 

scenario, yet the performance impacts were minimal.  The summary of results is presented in 

Table 7.3-1.  The primary performance metric is mission duration, and clearly differences are 

expected since the minimum possible impact is the delay in detecting an agent failure and 

recovering the agent.  Two other main factors that impact mission duration are: i) agent backups 

are incomplete by design (a trade-off is made between completeness and network usage in 

creating backups),which means redoing some work or retrieving that information from the DDB 

or other agents, and ii) many agents have interdependencies and so one agent failing can delay 

multiple agents.  In these experiments all cases were able to successfully complete the mission, 

though the moderate, high, and extreme failure rates increased the duration by 10%, 27%, and 

52%, respectively.  The increase to mission duration can be predicted by this first order model: 

 ∆ MTFMTF  (7.3-1) 

where ∆  gives the ratio of the mission duration to the mission duration with no failures, MTF is 

the mean-time-to-failure for the agents, and  is a constant related to the time cost of agent 

failure.  Fig. 7.3-1 plots the experimental results alongside the first order model with  = 0.55.  

This suggests that, for this scenario, for every MTF that elapses the mission duration increases by 
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0.55 minutes.  This constant will be different for each scenario and setup since it is heavily 

dependent on the number of agents and the complexity of their interactions; and so it is difficult 

to predict what the constant will be without experimental testing. 

The agent allocation graphs for each failure rate, Fig. 7.3-2 to Fig. 7.3-5, show the pattern of 

agent failures and recoveries.  The No Failure case in Fig. 7.3-2 of course shows no failures and 

only normal agent transfers.  The Moderate Failure case in Fig. 7.3-3 shows that three agent 

failures occurred: two AvatarSimulation agents and one AgentPathPlanner.  Despite the agents 

being recovered within seconds of discovering the failures, these few failures were enough to 

have a noticeable impact on mission duration.  Fig. 7.3-4 and Fig. 7.3-5 show 17 and 46 failures 

for the High and Extreme Failure cases, respectively.  Even with these highly unrealistic rates of 

Table 7.3-1 Experiment R-1 Results Summary 

Title 
Mean STD 
No 

Failure Moderate High Extreme 

No 

Failure Moderate High Extreme 

Mission Duration [min] 2.573 2.842 3.261 3.900 0.2606 0.3476 0.4108 0.4927 

Map Coverage [%]* 88.00 88.88 88.49 87.80 2.3483 1.5553 1.9932 1.9850 

Map Accuracy [%]* 90.58 90.43 90.27 89.86 0.8154 0.3783 0.9082 0.9449 

Localization Pos Err [m] 0.0602 0.0676 0.0774 0.1016 0.0203 0.0192 0.0261 0.0377 

Localization Rot Err [rad] 0.0370 0.0576 0.0394 0.0828 0.0095 0.0257 0.0204 0.0412 

Landmark Err [m] 0.0801 0.0933 0.0860 0.1136 0.0159 0.0201 0.0190 0.0483 

Landmark Cov [m] 0.4445 0.4133 0.3578 0.3739 0.1318 0.1528 0.0804 0.0831 

Average # Hosts 4.00 4.00 4.00 4.00 0.0000 0.0000 0.0000 0.0000 

Average # Agents 14.20 14.32 15.14 16.37 0.2970 0.3454 0.5694 0.4536 

Average CPU Usage 40.60 38.99 35.67 28.79 1.7048 1.9236 2.4381 2.2266 

DDB Size [MB] 8.434 9.075 9.304 9.225 0.9787 1.0661 0.9106 0.8870 

*Relative to a fully explored map generated with no localization error 

 
Fig. 7.3-1 Experiment R-1 Mean-Time-to-Failure vs. Mission Duration Increase 
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failure the control system is able to successfully recover each agent and continue operating 

without significant sacrifices to anything but mission duration.  

 

 

 

 

 

Fig. 7.3-2 Experiment R-1 Agent Allocation: 
No Failure 

Fig. 7.3-3 Experiment R-1 Agent Allocation: 
Moderate Failure 

 

 

 

Fig. 7.3-4 Experiment R-1 Agent Allocation: High Failure 
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Differences in final map coverage and map accuracy between cases were not significant, with 

means of 88% and 90%, respectively, though map accuracy appears to follow a slowly decreasing 

trend.  The rate of growth for these values corresponded to the increased mission durations, as 

shown in Fig. 7.3-6. The coverage and accuracy curves also display a “roughness” that increases 

noticeably with higher rates of failure, explained by frequent exploration delays as agents crash 

and are recovered.  From the comparisons of localization error in Fig. 7.3-7, error does appear to 

climb more rapidly with increased number of failures, but still appears to stabilize at an 

acceptable level and has only minimal affect on map accuracy.  

7.3.2 Experiment R-2 – General Failure 

The next step after agent failure is the ability to handle general failures, which is demonstrated in 

this experiment.  Host failures in particular present a greater challenge, since not only do they 

impact the host group functions, but all agents running on a failed host must be considered failed 

as well.  When a host fails it must be removed from the host group, all outstanding atomic 

 

 
Fig. 7.3-5 Experiment R-1 Agent Allocation: Extreme Failure 
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messages aborted, and the failed agents recovered.  Host and avatar failure are also likely to be 

the dominant forms of failure in a well established control system, since they may result from 

many physical factors such as loss of communication, loss of power, or hardware damage.   

Experiment R-2 takes on the challenge of demonstrating every feature of the control system in the 

most difficult scenario: Foraging in the large arena.  This includes i) dynamic host group 

formation, ii) dynamic control system construction, iii) balancing processing resources through 

agent distribution, iv) completing multiple simultaneous tasks, v) adding hosts and avatars after 

the mission starts, and vi) host, avatar, and agent failure.  20 collectables were distributed within 

the large arena, as well as three collection regions.  Eight hosts formed the initial host group and 

(a) Map Coverage (b) Map Accuracy 

Fig. 7.3-6 Experiment R-1 Map Coverage and Accuracy 

(a) Positional (b) Rotational 

Fig. 7.3-7 Experiment R-1 Localization Error 
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additional hosts joined at 6 and 12 minutes.  Hosts were given life expectancies and simulated 

pseudo-random failures.  10 avatars were used in total, two sweepers, four enhanced seekers, one 

of which crashed after two minutes and one who retired after five minutes, two carriers, and 

finally two additional carriers who joined after five minutes.  Agent life expectancy was set to 1-

10 minutes.  The mission completion criteria were that the 95% of reachable cells had been 

explored and that all discovered collectables were deposited.  The mission completed successfully 

for all runs, demonstrating that the HAA architecture makes a strong foundation for a control 

system, particularly in unfavourable operating conditions. 

Fig. 7.3-8 shows a typical mapping result and the back and forth travel of the avatars as they 

collect their cargo.  The results summary is presented in Table 7.3-2, reporting an average 

mission duration of 28.4 minutes.  This is comparable to the 28.5 minute mission duration for the 

similar Experiment AF-3, even though fewer avatars with carrying capacity were used.  Map 

accuracy of 91% and localization error of 0.123 m/0.025 rad are also comparable to the other 

experiments.  The number of hosts and agents is given in Fig. 7.3-9, demonstrating the numerous 

host failures and the large variation of agents typical in a foraging scenario.  Map coverage and 

accuracy, Fig. 7.3-10, both develop more linearly than normal, as expected in a foraging scenario, 

  Legend: 
 

Collectible 
 

Collection Region 

 

Fig. 7.3-8 Experiment R-2 Mapping Result 
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and exhibit the roughness caused by agent failure.  Fig. 7.3-11 shows that localization error is 

stable at normal levels, and finally, load balancing is without issue, as shown in Fig. 7.3-12.  The 

agent allocation graph, Fig. 7.3-13, presents the difficult struggle of the scenario with four host 

failures and a total of 67 agents that each experienced multiple crashes, yet the control system 

was able to recover and continue operation.   

 

Table 7.3-2 Experiment R-2 Results Summary 

Title Representative Run Mean RMS STD 

Mission Duration [min] 28.218 28.427 28.448 1.099075 

Map Coverage [%]* 97.40 97.56 97.56 0.418900 

Map Accuracy [%]* 91.73 91.16 91.16 1.252300 

Localization Positional Err [m] 0.12305 0.12362 0.13595 0.056564 

Localization Rotational Err [rad] 0.02084 0.02590 0.02822 0.011209 

Landmark Err [m] 0.10291 0.11792 0.12692 0.046930 

Landmark Covariance [m] 0.04004 0.03760 0.03765 0.002012 

Average # Hosts 7.03 6.89 6.90 0.351378 

Average # Agents 38.61 39.06 39.13 2.458903 

Average CPU Usage [%] 60.13 61.71 61.89 4.787600 

DDB Size [MB] 32.892 33.089 33.162 2.203648 

Cargo Collected 20.00 19.90 19.90 0.300000 

* Relative to a fully explored map generated with no localization error 
 

 

Fig. 7.3-9 Experiment R-2 Hosts and 
Agents 

Fig. 7.3-10 Experiment R-2 Map Coverage 
and Accuracy 
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Fig. 7.3-11 Experiment R-2 Localization 
Error 

Fig. 7.3-12 Experiment R-2 CPU 
Balancing 
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Fig. 7.3-13 Experiment R-2 Agent Allocation 
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Chapter 8 
Conclusions 

Transparency and reusability are key factors in improving the process of developing control 

systems for real-world robot teams.  A new approach is necessary in order to break the cycle of 

throwing away previous work and starting each team from scratch, and that requires an 

understanding of the how’s and why’s of control systems beyond simple end-of-lifecycle 

performance.  To encourage asking the right questions and provide some guidelines the Control 

ad libitum philosophy was developed, promoting the tenets of Transparency, Versatility, 

Adaptability, Modularity, Diversity, Persistency, and Efficiency.  The author asserts that by 

considering these tenets during each phase of the team lifecycle great strides can be made toward 

the reusability and extensibility of control systems.  Following this approach the generic, 

dynamic, versatile, robust, and extensible HAA architecture is proposed.  HAA lays a foundation 

on which virtually any type of control system can be built, while providing features such as a 

distributed processing network, a distributed database, and failure recovery.  HAA also 

encourages modularity as a way to simplify the design process and allow for greater reusability 

between applications.   

The viability of the HAA architecture is demonstrated with a fully developed implementation, 

constructed with provably correct distributed algorithms.  In computer science a provably correct 

algorithm is one where logical proofs can be constructed for each of the specifications of the 

algorithm.  This guarantees that within these specifications no incorrect step will ever be taken.  

A control system was designed to complete tasks including exploration and mapping, search and 

deploy, and foraging.  Each of these tasks builds on those preceding it and shows the high degree 

of reusability of agent modules.  Additionally, the JC-SLAM algorithm was developed following 

the Control ad libitum approach as a versatile and distributed solution to the mapping and 

localization problem. 

Using HIL simulation the control system was extensively tested to demonstrate its features and 

performance under different conditions.  Three sets of experiments were conducted.  In the first 

series of experiments the fundamental features of the HAA architecture were studied, specifically 

the ability to: a) dynamically form the control system based on the task requirements, b) 
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dynamically form the team from available avatars, c) dynamically form the host network based 

on available processor resources, and d) handle heterogeneous teams and allocate avatars between 

tasks based on their capabilities.  The second series of experiments evaluated the performance of 

the distributed algorithms for various system sizes, and each algorithm demonstrated highly 

acceptable real-time performance and no issues of scalability for the small-to-moderate sized 

systems tested.  The SLAM problem is fundamental to the implementation of virtually any robot 

team, and so JC-SLAM was developed as a distributed and scalable solution.  JC-SLAM 

demonstrated accuracy equal to or better than traditional SLAM approaches in resource 

constrained scenarios, and reduced exploration time by over 17% for the mapping scenarios 

tested.  The JC-SLAM strategies are also suitable for integration into existing particle filter 

SLAM approaches, complementing their unique optimizations.  The last series of experiments 

focused on robustness against concurrent agent, avatar, and host failure.  Multiple scenarios were 

tested with artificial failure rates set far higher than realistic expectations, and in all cases every 

task was successfully completed, even when each agent was given a life expectancy of only 0.5-

1.5 minutes. 

In conclusion, the tenets of the Control ad libitum philosophy proved to be sound guidelines for 

developing a versatile and robust control architecture.  Built using provably correct algorithms, 

the HAA implementation achieved all of its goals: dynamic formation of the initial team, run-

time adaptability to changing resources in terms of host and avatars, and robustness against both 

hardware and software failure.  And finally, due to the modularity of the system there appears to 

be significant potential for reuse of assets and future extensibility. 

8.1 Future Work 

Four potential avenues for future research have been identified: 1) making the framework 

available for open-source development, 2) standardizing agent interactions and recovery 

strategies, 3) exploring the issue of scalability, and 4) improving communication efficiency 

through learned database optimization. 

8.1.1 Open-source Agent Library 

One of the main goals of the framework is to be extensible and facilitate the reuse of control 

elements in order to allow future research to focus on new areas rather than retread existing work.  
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By making the source code available to everyone and providing a forum to exchange ideas and 

agent modules, the HAA implementation could become an ever growing repository of control 

systems for robotic teams.  Researchers and developers would be able to take existing agents to 

quickly form a functioning control system, and then spend their efforts on creating the new agents 

required for their specific tasks/research.  The first steps toward such a library would be a) 

cleaning up the code base to make it more transparent and streamline the process of running 

missions, b) providing documentation for the code, the functionality of each agent, and the 

process for creating new agents, c) replacing the custom simulation interface with one or more 

industry standard simulations, e.g., Microsoft® Robotics Developer Studio[96] or Player/Stage 

[97], and d) providing a web interface to facilitate the development and exchange of new agents.  

Standardizing agent interactions and recovery strategies, discussed below, would also be of great 

benefit to this initiative. 

8.1.2 Standardizing Agent Interactions and Recovery Strategies 

The HAA architecture does not specify any standard for the internal workings of agents or for 

their interactions.  In Chapter 6 it can be seen that considerable effort must be devoted to 

designing recovery strategies for each agent, a process that is sometimes complicated by their 

interactions with other agents.  However, during the design of the 18 agents developed for this 

research it became apparent that many agents have similar components and require similar 

recovery strategies.  A method of standardizing agent interactions could be very useful in both 

designing the agent network and developing recovery strategies of individual agents. 

8.1.3 Scalability 

The performance of distributed algorithms almost always degrades with the size of the network.  

This was not apparent in the experiments in Chapter 7, where the performance of the atomic 

messaging, host membership service, and agent allocation algorithms scaled well to the system 

sizes tested, but ultimately there will be a point where scalability becomes a concern.  

Fortunately, with few exceptions, such as the failure detector, the system is designed without 

timeouts and therefore has significant flexibility it terms of latency.  Thus, an interesting area of 

research would be to explore what those limits are, identify the primary bottlenecks, and develop 

strategies to work around these issues. 
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8.1.4 Communication Efficiency of the DDB 

Related to the issue of scalability, there is a concern for communication efficiency, both in terms 

of latency and required bandwidth.  In order to provide robustness some redundancy in the 

database is required, which has an unavoidable bandwidth cost.  However, one of the major costs 

of executing queries is the data transfer cost between sites in the network [98], and so allocating 

the redundancy effectively can improve performance without increasing bandwidth costs.  This 

shares many similarities to the data allocation problem that has been well treated for standard 

DDBs, which typically focus on reducing storage/transfer costs and minimizing response time 

[99].  The exact solution to this problem is NP-complete and therefore most of the work in this 

area is devoted to finding efficient near-optimal solutions [100,101].  Few papers in the field of 

robot teams mention the issue of data allocation at all, and those that do discuss only strategies 

where the data needed at each site is already known or can be computed based on knowledge of 

the system [37,102].  To the author’s knowledge there is no research that attempts to study the 

dynamic data allocation problem under the unique demands of a distributed robot team.  The 

determining factor that differentiates data allocation for a robot team from a standard distributed 

database is that data rapidly loses relevance as it ages.  This leads to a scenario where it is critical 

that the initial allocation as data is created is optimal, and periodically redistributing data at a later 

time is unlikely to provide significant gains. 
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Appendix I 
Design, Development, and Performance Indexes 

I.1 Adaptability 

Adaptability is used here to represent the ability of the 

system to respond to changes in resource availability in 

real-time while continuing to achieve its goals.  There 

are two major factors contributing to resource changes.  

The first is failure, hardware or software, planned or 

unplanned, which can occur at a disconcerting frequency 

in complex systems operating in real-world 

environments.  The study in [38] reported a mean time 

between hardware failures in a robot team to be as low 

as 8 hours.  The second factor is differences between 

installations.  For large scale applications it may not be 

possible or practical to have the exact same setup across 

all installations. 

An adaptability scorecard has been developed as a tool 

to score different system options or identify weaknesses 

in a system.  The strategy is to first construct a checklist 

that is appropriate to the system and tasks it will be 

performing, then rate the adaptability in response to each 

item.  The final score can be used to compare system 

options and low scores for individual items could 

indicate weaknesses in the system that could be 

remedied.   

A list of common points of evaluation is provided here: 

 Single/Few hardware failure/change/unavailability 

o Sensor, Communication, Processor, Mobility, Task 

specific hardware 

 Multiple/Many hardware failure/change/unavailability  

o Sensor, Communication, Processor, Mobility, Task 

specific hardware 

 Software failure 

o Non-critical component, Multiple non-critical 

components, Critical component, Multiple critical 

components 

 Information failure 

o Data disagreement, Data corruption, Data 

uncertainty 

I.2 Diversity 

The concept of diversity can be applied to a number of 

areas of a robot team, including behavioural differences 

between team members[5].  As previously mentioned, 

these metrics are not meant to be exhaustive but merely 

to provide useful and interesting tools of evaluation, and 

so only five facets of diversity relating to the control 

system and robot hardware are considered here.  A 

combined diversity index is developed below that 

considers robot hardware, population size, team 

structure, hardware flexibility, and population 

flexibility; it is also shown how the index can be 

customized to focus on any subset of the above facets.  

This distinction index can be applied to either fully 

realized team after the Implementation phase or to 

speculative teams after the Control Strategy phase.   

This team diversity index is defined using the concept of 

Hierarchic Social Entropy (HSE), and follows the 

techniques developed in [103].  The HSE index builds 

on the concept of “simple” social entropy from 

Shannon’s work in information theory [104], and 

maintains its six key properties, being: continuous, 

monotonic, recursive, lower bounded, globally maximal 

when diversity is evenly distributed, and lacking local 

maxima.  The HSE index overcomes the inability of 

simple social entropy to account for the degree of 

difference between elements of a society, and provides a 

continuous and uniform measure of diversity.  HSE can 

also distinguish differences in diversity between two 

systems regardless of scale [103]. 

We first define: 

 R ≡ a set of N elements; r1, r2, …, rN 

C ≡ a set of M possibly overlapping subsets of 

the elements of R; c1, c2, …, cM 

  ≡ the proportion of elements in the ith subset 

 | |        
 

| |∑  (I-1)  

 1 (I-2)  

The simple social entropy of system X can then be 

calculated using Shannon’s formula [104]: 
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 log p  (I-3)  

where  is a positive constant that defines the scale of 

the measure, typically 1.  In order for HSE to reflect the 

degree of diversity between elements, each element is 

represented as a point in A-dimensional space, where 

axes are defined to represent each of A relevant potential 

differences.    Although it is not discussed in [103], it 

may be necessary to normalize and/or weight each axis 

in order to balance the diversity represented by that 

attribute.  This is accomplished using normalizing and 

weight factors, ηa  and wa respectively, and applying 

them at each axis. 

 For each axis :   |  |  (I-4)  

There is no fixed procedure for determining the correct 

normalization and weight factors since it depends on the 

axes and how important their influence on diversity is 

considered.  An intuitive starting point is to normalize 

each axis so that the distance between the minimum and 

maximum values of the expected range is approximately 

1, and then weight the axis according to the priorities of 

the application.  [103] then uses the clustering algorithm 

Cu, with a variable cluster level h to group the elements 

into subsets, ci.  The cluster level h is increased from 0 

to infinity, and the simple social entropy calculated for 

the corresponding system, , .  The HSE is then 

defined in [103] as: 

 ,  (I-5)  

For this application each robot is considered as a 

separate element/point, thus considering population size 

of different robot types, and axes typically represent a 

feature of the robot hardware, such as mass, 

acceleration, or number of sonar sensors.   

I.3 Modularity 

Modularity is generally considered as a desirable trait 

for any complex system.  It can reduce the complexity of 

the design, reduce the effort required to develop each 

module, and allow modules to be reused within the 

system or in future systems.  Proponents of behavioural 

control also put forward robustness and incremental 

design as other benefits of modularity [105].  Beyond 

hardware modularity, which can improve robustness and 

simplify repairs, developers of robot teams are more 

concerned about modularity of the software of the 

control system.  In particular, this means identifying the 

fundamental modules of a control system and their 

connections to other modules, noting that the 

connections are not necessarily bidirectional.  Once the 

modules and their connections are known it is 

convenient to form them into a Design Structure Matrix 

(DSM), which is popular for its use in a number of 

design and analysis methodologies [106].  Of interest 

here is using the DSM to quantify modularity, which can 

be done through several methods including, [107] and 

[108], among others.  Each method has certain 

advantages and disadvantages, many of which are 

summarized in [108], and a combination of [107] and a 

modified version of [108] will be used here.  The 

reasoning for this choice will be discussed below when 

the methodologies are explained. 

Breaking a control system into its fundamental modules 

is not an obvious task, though two basic strategies stand 

out: 

1. Code Level (analogous to an Architecture DSM 

[106]) – Treat each function in the code as a module and 

any function that calls this module is connected to it.  

Very basic functions might be ignored, and tightly knit 

groups of small functions might be combined into a 

single module. 

2. Functionality Level (analogous to an 

Organization DSM [106]) – Instead of looking at 

functions in the code consider modules as areas of 

functionality.  For example a basic mapping control 

system might have the modules mapping, exploring, 

sensor processing, path planning, and navigating.  

Whatever module breakdown strategy is chosen, one 

should apply it consistently in order to allow 

comparisons between multiple control systems.  In 

general, multiple instances of the same module should 

be considered as one, even if their connections appear 

different.  Any change to that module could potentially 

impact all of the instances, and therefore the modules 

should be considered as a single entry with the 

combined connections of all instances.  This may lead to 

seemingly counterintuitive results, for example it is 

possible to implement a centralized control algorithm in 

a more modular fashion than a distributed one. 
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Once the DSM has been constructed, modularity indexes 

can be calculated. [108] propose a two step process, first 

calculating a “Modularity Performance” (MP) index 

based on the number of connections in the DSM, and 

then calculating a “Modularity Type” standard deviation 

(STD) index that indicates whether the structure is 

closer to a bus-modular or chain-modular configuration.  

However, the MP index they describe is only suitable 

for symmetric binary DSMs and ultimately not 

significantly different than the non-zero fraction (NZF) 

index proposed in [107].  Both indexes measure the 

sparsity of the DSM, which is tied to modularity but 

does not paint the whole picture.  The singular value 

modularity index (SMI) proposed in [107] claims to 

measure the degree of modularity and claims the 

following desirable properties: 

1. SMI is theoretically bounded between 0 and 1. 

2. SMI is independent of subjective module 

boundaries and ordering of rows and columns in the 

DSM. 

3. SMI is largely scale-free, it can be calculated 

for systems of different sizes with the same architecture 

and will return nearly the same value. (In a series of 

simple experiments the authors observed that this is only 

true for moderate to large systems, N > 15, and appears 

to converge as N approaches infinity) 

However, [108] points out a basic inconsistency where 

the SMI for an idealized bus-modular system is lower 

than that of a fully connected “integral” system.  There 

are also inconsistencies when non-binary connections 

are used, for example a chain modular system with 

mixed weak and strong connections has a lower SMI 

than a chain modular system with either all strong or all 

weak connections.  Despite these inconsistencies, [107] 

present a significant number of test cases that seem to 

validate SMI for moderate sized, real-world systems.  

The STD index developed by [108] also has all three 

properties listed above and yields the expected results in 

the case of idealized systems.  Because of this the STD 

index will be used as the primary differentiator between 

systems with similar NZF, and SMI will be used to 

corroborate the results.   

The following paragraphs explain how NZF, SMI and 

STD are calculated, using the formulation found in [107] 

and [108], respectively. 

The NZF index is simply a measure of the sparsity of the 

DSM, with a value of 1 indicating all modules are 

connected to all other modules and a value of 0.29 being 

the minimum value for a binary system that has a 

connected graph, meaning a path can be found between 

any two modules [109].  Values lower than 0.29 are 

possible if non-binary connections or unidirectional 

connections are used.  NZF can be calculated as 

 NZF ∑ ∑ DSM1  (I-6)  

where DSMij represents the i,j element of the DSM and 

 is the number of modules. 

The SMI approximates the decay rate of the singular 

values of the DSM.  Taking the set of sorted singular 

values σ1 to σN, SMI is calculated by finding the α factor 

that minimizes the difference between the singular 

values and the exponential decay function / . 

 SMI 1 arg min /  (I-7)  

The STD index measures the standard deviation of the 

number of connections of each module, then normalizes 

it based on the maximum and minimum standard 

deviation achievable for the total number of connections 

in the system, STDmax and STDmin, respectively.  The 

base STD is calculated by 

 STD 1
 (I-8)  

where pi is the weighted number of connections of 

module i and  is the average weighted number of 

connections in the system.  [108] consider only 

bidirectional connections, and so in the case of DSMs 

with unidirectional connections the DSM should be 

made symmetric prior to calculating STD using 

 DSM DSM DSMT2  (I-9)  

STDmax and STDmin can be found by arranging the 

connections in the symmetric DSM into configurations 

DSMmax and DSMmin, where they are most condensed 

and most evenly distributed, respectively.  [108] 

describes a general procedure that works well for binary 

DSMs, however in the non-binary case a more 
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complicated algorithm is required.  Since the DSM is 

forced to be symmetric consider only the lower triangle 

of the matrix.  Let A be an array of all elements in the 

triangle ordered highest to lowest.  DSMmax can be 

constructed by filling each element column by column 

from the entries in A.  The construction of DSMmin is 

much more complex due to the restriction of symmetry.  

A brute-force solution is computationally intractable for 

all but the smallest systems and no provable algorithmic 

solution presents itself.  However, a strategy of taking 

alternating high-low-high-low elements of A and filling 

DSMmin starting with the innermost diagonal and 

moving outward has achieved the smallest STD in all 

tested cases.  As long as STDmin is close to the true 

minimum the impact on the results is insignificant.  

Once STDmax and STDmin are known the normalized 

STD value can be calculated: 

 STD 1 STD STDSTD STD  (I-10)  

As a control set a number of test cases are presented in 

Table I-1, where STD demonstrates the expected results 

in all cases and the inconsistencies of SMI discussed 

above are apparent.  A selection of DSMs from the 

control set is visualized in Fig. I-1.  

I.4 Efficiency 

Cost-return analysis and Return on Investment (ROI) are 

commonly used in business and financial analysis to 

judge the quality of investments or compare different 

project proposals.  The same techniques can be applied 

to quantify the efficiency of a robot team.  Depending on 

the nature of the application it may be possible to apply 

the techniques directly in terms of dollar value cost of 

the purchasing and operating the robot hardware and the 

monetary return of tasks they perform, or abstractions 

can be made to measure other factors.  For example, if 

energy efficiency is the primary concern the cost can be 

measured in Joules and the return is the number and 

quality of tasks performed.  A more efficient team is one 

that completes more tasks with the same or lower energy 

expenditure, and this is reflected in a higher ROI. 

ROI is a ratio measure, calculated as  

 ROI returncost  (I-11)  

Whereas Gross Profit (GP) measures the absolute size of 

the return 

 GP return cost (I-12)  

Table I-1  
Control Set Modularity Indexes 

Case N SMI NZF MP STDnorm 

Integral 7 0.16 1 0 0 

Bus 7 0.12 0.29 1 0 

Chain 7 0.81 0.29 1 1 

One-way Bus 7 0.11 0.14 1.2 0 

One-way Chain 7 0.81 0.14 1.2 1 

Weak Bus 7 0.11 0.14 1.2 0 

Weak Chain 7 0.81 0.14 1.2 1 

Mixed Bus 7 0.11 0.21 1.1 0 

Mixed Chain 7 0.53 0.21 1.1 1 

Big Bus 14 0.06 0.14 1 0 

Big Chain 14 0.96 0.14 1 1 

Strong Chain 

Weak Bus  
7 0.5 0.4 0.83 0.81 

Weak Chain 

Strong Bus 
7 0.3 0.4 0.83 0.11 

Desk Phone* 14 0.45 0.22 0.91 0.91 

Mobile Phone* 11 0.23 0.29 0.87 0.33 

Desk PC* 23 0.24 0.15 0.93 0.63 

Mobile PC* 16 0.2 0.18 0.93 0.26 

* Original DSM breakdown from [107] 

 

 
     * Original DSM breakdown from [107] 

Fig. I-1 Control Set DSMs 
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Both values can be useful in different situations, and are 

easily calculated once the definitions for cost and return 

are in place.  How cost and return are defined depends 

on the priorities of the application and can vary greatly 

in complexity.  Costs typically fall into four categories: 

1. Initial Costs: hardware, infrastructure, and setup. 

2. Operating Costs: energy/fuel consumption and 

operator salaries. 

3. Repair Costs: replacing and repairing hardware 

between missions. 

4. Opportunity Costs: penalties for missing critical 

tasks, or downtime for a facility while the team working. 

Returns are simply the value of each task performed, 

either monetary or a value abstraction.  However, these 

values need not be constant and can be modified by 

various factors, such as: quality of service, time taken to 

complete the task, or when the task was completed if a 

time window was specified.   

I.5 Persistency 

Persistency is not about avoiding or eliminating failures, 

because for any complex system operating in real 

environments failures are inevitable.  A truly robust 

control system should be able to recover from failures 

with minimal loss of data, maintaining the knowledge 

and learning acquired up to that point [38].  The 

question becomes what types of failures can occur, how 

are they handled, and when do they become critical 

failures where the system loses its ability to function.  

Mean time between critical failures (MTBCF) is a useful 

tool to evaluate persistency.  As the name implies, 

MTBCF is simply the average uptime of the system 

before it suffers a critical failure.  If the system is 

repaired and continues operation the downtime during 

repairs is not counted towards the next sample, only 

uptime is considered.  It is also possible, indeed 

desirable, that the system does not encounter a critical 

failure during a mission, in which case the uptime 

continues accumulating over subsequent missions until a 

critical failure does occur.   

As a comparator MTBCF is easy to apply: first define 

what constitutes a critical failure and then simply record 

the MTBCF over the lifetime of the system.  MTBCF 

can then be compared between multiple systems and 

used as an indicator of robustness and persistency.  

When used as a predictor the goal is different.  Rather 

than attempting to predict what the MTBCF will be, the 

goal is to identify the most probable causes for critical 

failure so that they can be planned for and handled more 

robustly.  Detailed methodologies for constructing 

reliability models are beyond the scope of this thesis but 

many techniques can be found in reliability handbooks 

and textbooks [110,111].  The general premise is to 

break the system into components and construct a 

network of their relationships.  Then the failure 

probabilities of each component can be used to generate 

a failure probability for the entire system.  This process 

can be used at the system implementation level to 

identify weaknesses and areas for improvement, or at the 

system architecture or strategies levels to compare 

different approaches and identify fundamental 

limitations.  An example of persistency analysis can be 

found in Section 6.2.2.1. 
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Appendix II 
HAA Algorithms 

Algorithm 1 Unreliable Failure Detector 
(HAA-UFD) 

Process p (Observed): 
1 Initialization: 
2      period := INITIAL_PERIOD; 
3      nextPeriod := INITIAL_PERIOD; 
4        := the local time; 
5        := 0; 
 
6 upon   = the local time:  
7      period := nextPeriod; 
8      send heartbeat   := {  , period,   };   
9        :=   + period; 
10        :=   + 1; 
     
11 upon receive message setPeriod = { newPeriod } 
12      nextPeriod := newPeriod; 
 

Process q (Observer): 
13 Initialization:   
14      initialize PF parameters {  ,   }; 
15        := the local time; 
16        := ‐1; 
 
17 upon   = the local time: 
18      proposal := SUSPECTED; 
 
19 upon receive message   = {  , period,   } at time  : 
20      If   >   then 
21             :=  ; 
22             :=  ; 
23           If t <   then 
24                proposal := TRUSTED; 
 
25 after every N heartbeat messages received: 
26      re‐evaluate PF parameters {  ,   }; 
27      send setPeriod message := {   }; 

Algorithm 2 Totally Ordered Atomic 
Commit (HAA-OAC) 

Note: the notation ◊Sp indicates the set of processes 

suspected by p’s failure detector. 

1 activeTransactionsp : list; /* List of transactions that the 
local process is participating in that are undecided */ 

2 decidedTransactionsp: list; /* List of transactions that have 
been decided */ 

3 procedure startTransaction( id, transaction, participants ): 

4     order := highest order of (activeTransactionsp U 
decidedTransactionsp) + 1; /* move to back of queue */ 

5     send( id, transaction, participants, order ) to all 
participants; 

 
6 upon receive ( id, transaction, participants, order ): 
7     if ( decidedTransactionsp[id] = NULL ) then  
8         atomicCommit( id, transaction, participants, order ); 
 
9 procedure atomicCommit( id, transaction, participants, 

order ): 
10     outcome : { commit, abort }; 
11     statep : { decided, undecided }; 
12     estp : { pre‐abort, pre‐commit }; /* Estimate */ 
13     rp : integer; /* Round */ 
14     tsp : integer; /* Timestamp */ 
15     orderp : integer; /* Commit order */ 
 
16     Initialization: 
17         statep := undecided; 
18         estp := pre‐abort; 
19         rp := ‐1; 
20         tsp := 0; 
21         if (activeTransactionsp[id] = NULL) then order := 

activeTransactionsp[id].order; /* Have updated order */ 
22         if  [(order, id) < highest in (activeTransactionsp U 

decidedTransactionsp)] then  /* Confirm order */ 
23             orderp := highest order of (activeTransactionsp U 

decidedTransactionsp) + 1; /* back of queue */  
24             send( id, p, orderp ) to all participants;  
25         else orderp := order; 
26         activeTransactionsp[id] := { id, transaction, 

participants, orderp }; /* Add to active transactions */   
27         vote := evaluateTransaction( transaction );   
28         if vote = no then    /* Unilateral abort */ 
29             send( id, p, ‐1, rp, abort, decide) to all participants; 
30             begin Task 1; 
31         else  
32             cobegin Task 1|| Task 2  coend; /* Concurrent */ 
 
33     Task 1: 
34         wait until receive ( id, ‐, order, ‐, outcome, decide ); 
35             statep := decided; 
36             send( id, p, order, ‐, outcome, decide ) to all 

participants;   /* Notify all of decision */ 
37         wait until [(order, id) is lowest in activeTransactionsp 

or outcome = abort]; 
38             decide( transaction, outcome ); 
39             activeTransactionsp[id] := NULL; 
40             decidedTransactionsp[id] := { id, order }; 
41         wait until [for n participants q: received ( id, q, ‐, ‐, 

outcome, decide) from q or q is permanently � ◊Sp]; 
42             decidedTransactionsp[id] := NULL;  
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43     Task 2: 
44         while statep = undecided 
45             rp := rp + 1; 
46             coord := p(rp mod n) + 1; 
47             send( id, p, orderp, rp, estp, tsp) to coord; /* P1 */ 
48             if ( p = coord ) then /* Step C1 */ 
49                 wait until [(for n –f participants q: received (id, q, 

orderp, rp, estq, tsq) from q) and (for n participants q: 
received (id, q, orderp, rp, estq, tsq) from q or q � ◊Sp)]; 

50                     msgsp[rp] = {(id, q, orderp, rp, estq, tsq) such that 
p received (id, q, orderp, rp, estq, tsq) from q}; 

51                     if |msgsp[rp]| = n then 
52                         estp := pre‐commit; 
53                     else 
54                         t := largest tsq such that (id, q, orderp, rp, estq, 

tsq) � msgsp[rp]; 
55                         estp := select one estq such that (id, q, orderp, 

rp, estq, t) � msgsp[rp]; 
56                     send (id, p, orderp, rp, estp) to all participants; 
57             wait until [received (id, coord, orderp, rp, estcoord) 

from coord or coord � ◊Sp]; /* Step P2 */ 
58                 if received (id, coord, orderp, rp, estcoord) then 
59                     estp := estcoord; 
60                     tsp := rp; 
61                     send (id, p, orderp, rp, ack) to coord; 
62                 else 
63                     send (id, p, orderp, rp, nack) to coord; 
64             if p = coord then   /* Step C2 */ 
65                 wait until [for n ‐ f participants q: received (id, q, 

orderp, rp, ack) or (q, orderp, rp, nack)]; 
66                     if [for n – f participants q: received (id, q, 

orderp, rp, ack)] then 
67                         statep := decided; 
68                         if outcome = pre‐commit then 
69                             send (id, p, orderp, rp, commit, decide) to 

all participants; 
70                         else 
71                             send (id, p, ‐1, rp, abort, decide) to all 

participants; 
 
72     upon receive( id, q, orderq, …); /* Check the order */ 
73         if ( activeTransactionsp[id] = NULL and 

decidedTransactionsp[id] = NULL ) then 
74             orderp := orderq; 
75             activeTransactionsp[id] := { id, orderp}; /* add */ 
76         if orderq > orderp then 
77             orderp := orderq; /* accept new order */  
78             if Task 2 is active then 
79                 send( id, p, orderp ) to all participants; 
80                 estp := pre‐abort; 
81                 rp := ‐1; 
82                 tsp := 0; 
83                 abort Task 2; /* Reset Task 2 */ 
84                 begin Task 2; 

 

Proofs for HAA-OAC 

Proof that, for f < n/2, the original algorithm satisfies the 

conditions AC-Uniform-Agreement, AC-Uniform-

Validity, AC-Termination, and AC-Non-Triviality is 

provided in [67], along with the note that if f ≥ n/2 the 

algorithm fails to terminate but still prevents participants 

from reaching different decisions.  It can readily be 

observed that none of the modifications affect AC-

Uniform-Agreement, AC-Uniform-Validity, or AC-

Non-Triviality.  However, a short proof is provided to 

show that AC-Termination still holds and then a proof 

for AC-Total-Order is derived. 

Lemma OAC-1: Every correct participant eventually 

reaches l. 37 of Task 1. 

Since the behaviour of Tasks 1 and 2 is the same as [67] 

until l. 37 of Task 1, the previous proof of AC-

Termination guarantees that for transaction m every 

correct participant will eventually reach l. 37 of Task 1. 

Proof of AC-Termination: 

There always exists a transaction mlow that is the lowest 

order of activeTransactionsp and by Lemma OAC-1 

every correct participant of mlow will eventually reach l. 

37 of Task 1.  Since mlow has the lowest order of 

activeTransactionsp it is free to proceed immediately no 

matter what the outcome, at which point mlow is removed 

from activeTransactionsp and the next transaction in line 

becomes mlow.  Since no participant will add a new 

transaction with lower order than any of its current 

transactions, for correct participant p with an active 

transaction m waiting at l. 37 of Task 1 there are a finite 

number of current transactions with lower order and so 

m will eventually become mlow and terminate. 

Lemma OAC-2: Once a transaction m has reached 

the pre-commit stage its order o will never change. 

Proof:  Each participant proposes an order when and 

only when they first learn of the transaction (ll. 23-25 or 

76-79), and there exists a participant p+ who proposes an 

order o+ ≥ all proposed orders.  From (l. 78), p+ will 

never change its proposal since all other proposals must 

be ≤ o+.  To reach the pre-commit stage (l. 52) every 

participant must agree on an order o, and so it follows 

that if the pre-commit stage is reached o must equal o+, 

the highest proposed order. 
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Proof of AC-Total-Order: 

Proof by contradiction.  Assume correct process p 

commits transaction m and then commits transaction m’, 

while correct process q commits transaction m’ and then 

commits transaction m.  Without loss of generality, 

assume that p commits m (Event 1) before q commits m’ 

(Event 2), and that q committing m (Event 3) can occur 

before or after p commits m’.  For m to reach the pre-

commit stage (l. 52) there must exist an order o that both 

p and q agreed to, and by Lemma OAC-2 o will never 

change after reaching this point.  Similarly, for m’ to 

reach the pre-commit stage there must exist an order o’ 

than both p and q agreed to that will never change.  

There are four possible conflict cases: 

1. p and q believe m and m’ conflict. 

Contradiction: Since p believes m and m’ conflict it 

follows that o < o’.  Since q also agreed to o and o’ it 

cannot commit m’ before committing m. 

2. p believes that m and m’ conflict, but q does not. 

Contradiction: For Event 1 to occur q must have agreed 

to commit m and thus be aware of m prior to Event 1.  

Since Event 2 occurs after Event 1, at the time of Event 

2 it is impossible for q to believe m and m’ do not 

conflict. 

3. q believes that m and m’ conflict, but p does not. 

Contradiction: In order to commit m’ q must have 

received agreement from p.  For p to believe that m and 

m’ do not conflict p must have committed m (Event 1) 

and discarded all knowledge of m (l. 42) before learning 

about m’ (which must occur before Event 2).  In order to 

reach l. 42 p must have received a message from q 

stating that q has committed m (l. 41).  Since Event 3 

happens after Event 2, at the time of Event 2 it is 

impossible for p to think m and m’ do not conflict.   

4. p and q believe m and m’ do not conflict. 

Contradiction: For p to believe that m and m’ do not 

conflict p must have committed m before learning about 

m’.  Conversely, for q to believe that m and m’ do not 

conflict q must have committed m’ before learning about 

m.  This is impossible, since Event 1 occurs before 

Event 2, q must know about m before committing m’. 

Algorithm 3 Host Membership Service 
(HAA-HM) 

Note: the notation ◊Sp indicates the set of processes 

suspected by p’s failure detector. 

1 coreProcesses : list /* list of “core” processes */ 
2 joinListp : list /* list of applicants waiting to join */ 
3 memberListp : ordered list /* list of members, ordered by 

insertion order */ 
4 removeListp : list /* list of members who are suspected */ 
5 leaveListp : list /* list of members who wish to leave */ 
6 lockedp : universally unique id /* flags whether the lock is 

set and stores the current key */ 
7 updatingMembersp : boolean (FALSE) /* flags whether p is 

currently trying to update membership */ 
8 connectionsTop : list /* processes p has connections to */ 
9 connectionsFromp : list /* processes p has connections 

from */ 
10 sponsorp : id /* id of p’s sponsor */ 
11 sponseep : list /* list of applicants p is sponsoring */ 
12 groupCorrectp : boolean (FALSE) /* group formed */ 
13 coreMembersp : list /* list of all core members that have 

been part of the group */ 
 
14 procedure groupLeave(): /* Leave request */ 
15     send (leave, p) to memberListp; 
16     wait until p is removed from memberListp; 
17         stop participating in all group activities; 
 
18 upon receiving (leave, q):  
19     if (q   memberListp   joinListp) then 
20         insert q into leaveListp;  
21         updateMembership(); 
 
22 upon suspecting process q: /* Remove request */ 
23     if (q   memberListp) then 
24         insert q into removeListp;     
25         updateMembership(); 
 
26 upon trusting process q: 
27     if (q   joinListp) then 
28         updateMembership(); 
29     else if (q   removeListp) then 
30         remove q from removeListp; 
31         updateMembership(); 
 
32 upon permanently suspecting process q: 
33     if (q   joinListp) then 
34         remove q from joinListp; 
 
35 procedure groupJoin(): /* Join request */ 
36     for each q in coreProcesses 
37         open connection to q; 
38         insert q into connectionsTop; 
39         send (apply, p) to q; 
40     coreHead := first   elements of coreProcesses; 
41     if (p = front(coreProcesses)) then 
42         lockedp := key := unique id; 
43         OAC (membership, key, p, p) to p; /* group of one */ 
44     else if (p � coreHead) then 
45         wait until FORMATION_TIMEOUT has elapsed; 
46             while (p   memberListp) 
47                 newMemberList := coreHead ‐ (coreHead   ◊Sp); 
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48                 OAC(formationFallback, p, newMemberList) to 
newMemberList; 

49                 wait until OAC(formationFallback, p, 
newMemberList) is decided; 

 
50 upon receiving (apply, a):             
51     insert a into joinListp; 
52     insert a into connectionsFromp; 
53     open connection to a; 
54     insert a into connectionsTop; 
55     send (introduce, p, p) to a; 
56     send (introduce, a, p) to memberListp   joinListp; 
57     if ( p = front(memberListp) ) then /* we are the 

undisputed leader */ 
58         insert a into sponseep; 
59         send (sponsor, p) to a; 
60         send current global state to a; 
61         begin forwarding global state changes to a; 
 
62 upon receiving (introduce, a, q): 
63     if ( a = q ) then 
64         insert q into connectionsFromp; 
65     if (a   connectionsTop) then 
66         open connection to a; 
67         insert a into connectionsTop; 
68         send (introduce, p, p) to a; 
69     if (p   memberListp and sponsorp != NULL) then 
70         send (connections, p, connectionsTop   

connectionsFromp) to sponsorp; 
 
71 upon receiving (sponsor, q): 
72     sponsorp := q; 
73     send (connections, p, connectionsTop   

connectionsFromp) to sponsorp; 
 
74 upon receiving (connections, q, connectionList ): 
75     updateMembership(); 
 
76 procedure updateMembership(): 
77     if (updatingMembersp = TRUE or OAC(remove, …) in 

progress or OAC(membership, …) in progress) then 
78         return; 
79     if (p = front(memberListp ‐ removeListp)) then /* we 

think we could be the leader */ 
80         acceptList := EMPTY; /* applicants to accept */ 
81         potentialList := EMPTY; /* applicants who are ready */ 
82         curMemberList := memberListp ‐ (removeListp   

leaveListp); 
83         for each applicant a in joinListp: 
84             if [a   ◊Sp or a   sponseep or (groupCorrectp = 

FALSE and a   coreProcesses)] then /* disqualified */ 
85                 continue;  
86             if (connections of a   curMemberList = 

curMemberList) then 
87                 insert a into potentialList; 
88         for each applicant a in potentialList: 
89             if (connections of a   acceptList = acceptList) then 

/* a is connected to everyone already accepted */ 

90                 potentialList := potentialList    (a   connections 
of a); /* remove anyone a is not connected to */ 

91                 insert a into acceptList; 
92         if (groupCorrectp = FALSE and count(acceptList) <  ) 

then /* make sure we can form a correct group */ 
93             acceptList := EMPTY; 
94         if (acceptList   removeListp   leaveListp != EMPTY) 

then 
95             activeList := memberListp ‐ removeListp; /* members 

we expect a response from */ 
96             removalList := removeListp;  
97             updatingMembersp := TRUE; 
98             if (acceptList   leaveListp = EMPTY) then /* only 

removal, don’t need to lock */ 
99                  key := NULL; 
100             else  
101                 key := unique id; 
102             OAC (remove, key, p, removalList) to activeList;  
103             wait until (OAC(remove, NULL, p, removalList) is 

decided or OAC(remove, key, p, removalList) is aborted 
or [(received (locked, key, q) or q � ◊Sp) for all q � 
activeList and all active OACs are decided]); 

104                 if (key != NULL and received (locked, key, q) for 
all q � activeList) then 

105                     newMemberList := (memberListp   acceptList) 
‐ leaveListp; 

106                     OAC (membership, key, p, newMemberList) to 
activeList   acceptList; 

107                 else  
108                     updatingMembersp := FALSE; 
109                     updateMembership(); 
 
110 upon receiving OAC(remove, key, q, removalList): 
111     if (q != front(memberListp ‐ removeListp)) then  
112         vote no; /* unilateral abort: not accepted leader */ 
113     else if (removalList != removeListp   removalList) then 
114         vote no; /* unilateral abort: don’t agree with list */ 
115     else   
116         vote yes;  /* can proceed */ 
 
117 upon committing OAC (remove, key, q, removalList): 
118     memberListp := memberListp ‐ removalList; 
119     removeListp := memberListp   ◊Sp; /* reset */ 
120     leaveListp := memberListp   leaveListp; /* reset */  
121     if (p = front(memberListp)) then /* leader */ 
122         for each applicant a in joinListp ‐ (joinListp   

sponseep): 
123             insert a into sponseep; 
124             send (sponsor, p) to a; 
125             send current global state to a; 
126             begin forwarding global state changes to a; 
127     lockedp := key; 
128     if (key != NULL) then /* we need to lock */ 
129         hold all future global state changes; 
130         send (locked, key, p) to q; 
131     else  
132         propose held global state changes; 
133     updateMembership(); 
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134 upon aborting OAC (remove, key, q, removalList): 
135     updateMembership(); 
 
136 upon committing OAC(membership, key, q, 

newMemberList):  
137     if ( q = p ) then 
138         stop forwarding global state changes to all a � 

(newMemberList   sponseep); 
139         sponseep:= sponseep ‐ (newMemberList   sponseep); 
140     joinListp := joinListp ‐ (newMemberList   joinListp);  
141     memberListp := newMemberList; 
142     removeListp := memberListp   ◊Sp; /* reset */ 
143     leaveListp := memberListp   leaveListp; /* reset */  
144     lockedp := NULL; 
145     propose held global state changes; 
146     if (groupCorrectp = FALSE) then 
147         coreMembersp:= coreMembersp   memberListp; 
148         if (count(coreMembersp)  ) then 
149             groupCorrectp:= TRUE; 
150     updatingMembersp := FALSE; 
151     updateMembership(); 
 
152 upon aborting OAC(membership, key, q, 

newMemberList): 
153     if (lockedp = key ) then 
154         lockedp := NULL; 
155         propose held global state changes; 
156         updatingMembersp := FALSE; 
157         updateMembership(); 
 
158 upon receiving OAC(formationFallback, q, 

newMemberList): 
159     coreHead := first   elements of coreProcesses; 
160     if (memberListp != EMPTY) then 
161         vote no; /* unilateral abort: group already exists */ 
162     else if (newMemberList != coreHead ‐ (coreHead   

◊Sp)) then  
163         vote no; /* unilateral abort: don’t agree with list */ 
164     else   
165         vote yes;  /* can proceed */ 
 
166 upon committing OAC(formationFallback, q, 

newMemberList): 
167    if (memberListp = EMPTY) then /* only accept one 

formation message */ 
168          joinListp := joinListp ‐ (newMemberList   joinListp);  
169         memberListp := newMemberList; 
170         removeListp := memberListp   ◊Sp; /* reset */ 
171         leaveListp := memberListp   leaveListp; /* reset */  
172         if (p = front(memberListp)) then /* we are the 

undisputed leader */ 
173             for each applicant a in joinListp ‐ (joinListp   

sponseep): 
174                 insert a into sponseep; 
175                 send (sponsor, p) to a; 
176                 send current global state to a; 
177                 begin forwarding global state changes to a; 
178         groupCorrectp:= TRUE; 
179         updateMembership(); 

Proofs for HAA-HM 

First a proof of HM-Formation is provided.  This 

guarantees that a correct group is eventually formed, 

which is necessary for many of the remaining proofs. 

Lemma HM-1: When a member calls 

updateMembership() it will be called iteratively until the 

member is satisfied that all updates are complete or the 

member crashes. 

Proof: A call to updateMembership() has four return 

paths:  

a) In progress abort (l. 78).  This means that another 

call to updateMembership() is in progress along return 

path d, or that the member is currently participating in 

either a remove or membership transaction.  For the 

second case, all possible outcomes of remove and 

membership transactions include calls to 

updateMembership(). 

b) Not leader abort (l. 79).  The member does not 

consider itself to be the leader and is not responsible for 

updates. 

c) No updates abort (l. 94).  The member does not 

have any updates to make.  It is possible that a join 

request may be temporarily denied due to suspicions (l. 

84) or incomplete connections (l.86), and in either case 

updateMembership() is called when those conditions 

change, l. 26 and l. 74, respectively. 

d) Attempt updates (ll. 95-109).  The member 

attempts to make the updates and eventually calls 

updateMembership() (l. 109), or obtains a lock with 

key* and sends an OAC(membership, key*, ...) message.  

To obtain a lock the member must be the acknowledged 

leader, and therefore the member will never accept a 

lock from another member.  Thus, upon deciding OAC( 

membership, key*, ...) the member will call 

updateMembership() (l. 151 or l. 157). 

Lemma HM-2: The probability that update attempts 

from a member calling updateMembership() will fail 

indefinitely approaches 0 with increasing time, and 

therefore if the member does not crash every individual 

update from that member will either eventually be 

committed or rescinded. 

Proof: Update attempts can fail for three reasons: 

a) A process crashes, thus preventing OAC( remove, 

...) or OAC( membership, ...) from being committed, or 

preventing a (locked, ...) message from being delivered.  
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In this case the process will eventually be suspected and 

be added to the remove update or removed from the 

membership update. 

b) A member disagrees with the proposed 

removalList (l. 113).  This may happen if the leader has 

falsely suspected a member, or the dissenting member 

has not yet suspected a crashed process.  Both situations 

are temporary and will eventually be corrected by their 

respective members. 

c) A member does not accept the proposer as leader 

(l. 111).  This may happen if the proposer has 

incorrectly assumed leadership due to false suspicions, 

or the dissenting member has not yet suspected crashed 

processes that would lead to the promotion of the 

proposer.  Both situations are temporary and will 

eventually be corrected by their respective members. 

Since all three situations are resolved with time, no 

individual cause for failure can prevent updates 

indefinitely.  Thus, for updates to be prevented 

indefinitely there must be an unending chain of 

overlapping (or closely packed) causes.  Since the 

number of current group members is finite, the number 

of potential crashed processes is also finite, and every 

crashed process will eventually be suspected by every 

correct process.  Therefore the unending chain of causes 

must be built with false suspicions of a leader.  

Considering each instant when the leader attempts an 

update, the probability that it will have no false 

suspicions is .  The probability that there is a false 

suspicion at each time the leader attempts an update 

rapidly approaches 0 with time. 

Lemma HM-3: No incorrect group is ever formed. 

Proof:  Groups can be formed in two ways:  

1. Formed by the first core process via an 

OAC(membership, ...) transaction.  This first 

membership transaction must include at least  

applicants (l. 92), and so including the first core process 

there are at least 1 members.  Therefore the group 

cannot be incorrect. 

2. Formed via an OAC(formation, ...) transaction.  

All formation transactions propose a list of unsuspected 

processes out of the first  core processes, the “core 

head,” which must be agreed on by every process in the 

list in order to be committed.  For an incorrect group to 

be formed at least  correct processes must be 

erroneously excluded from a successful formation 

transaction.  As discussed above, the probability of an 

erroneous exclusion, , is insignificant and is one of 

the failure conditions for the algorithm.  Therefore no 

incorrect group will be formed during a valid run. 

Lemma HM-4: If the first core process, c*, is correct 

then the first core process eventually forms a correct 

group. 

Proof:  Since c* is correct it will eventually form two-

way connections with every other correct core process, 

of which there are at least .  From Lemma HM-1, c* 

will continue calling updateMembership() and 

eventually form an acceptList with at least  applicants 

(l. 92).  From Lemma HM-2, the join update will 

eventually be committed.  Thus, a group with more than 

 members will be formed, which is by definition a 

correct group. 

Lemma HM-5: If the first core process is incorrect 

and fails in forming a correct group then the first 1 

processes eventually form a correct group. 

Proof:  If the first core process has failed to form a 

correct group by FORMATION_TIMEOUT, the first  

processes begin sending OAC(formation,...) 

transactions.  Each transaction proposes a complete list 

of unsuspected processes in the core head.  Eventually 

all crashed processes are suspected by every correct 

process, and since formation transactions are repeated 

until one is committed, false suspicions cannot prevent 

formation indefinitely.  Therefore a group is eventually 

formed, and from Lemma HM-3, this group must be 

correct. 

Proof of HM-Formation: From Lemmas HM-3, 

HM-4, and HM-5. 

The remaining proofs are provided under the assumption 

that a correct group has been formed. 

Lemma HM-6: If a leader crashes another member 

will assume leadership. 

Proof: When the leader crashes it is eventually suspected 

by all correct members.  Upon suspecting a process a 

member will attempt to assume leadership if every 

member of higher rank in the group is suspected.  If 

those suspicions are correct the new leader will 

eventually succeed in removing those members by 
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Lemma HM-2 and be acknowledged as the leader.  

Since we know there is at least one correct core member, 

there will always be a leader. 

Lemma HM-7: If a correct process becomes the 

leader it will remain the leader. 

Proof:  Since no erroneous removals occur, a leader can 

only be removed if it crashes.  Therefore once a correct 

process becomes the leader it will not be removed. 

Lemma HM-8: If every alive member up to and 

including the highest ranked correct core member is 

aware of an update that update will eventually be 

committed. 

Proof:  The set of potential leaders is the highest ranked 

correct core member, m*, and every higher ranked 

member, since there is always a leader (Lemma HM-6) 

and if every higher ranked member crashes m* 

eventually becomes the leader and remains the leader 

(Lemma HM-7).  Every potential leader is aware of the 

update and that leader will either eventually commit the 

update or crash (Lemma HM-2).  If every higher ranked 

member crashes, m* will eventually commit the update. 

Lemma HM-9: When a leader suspects a member, if 

the leader does not crash, either that member will 

eventually be removed or the member will become 

trusted again. 

Proof: Upon suspecting a member the leader calls 

updateMembership().  From Lemma HM-1 

updateMembership() iterates until all updates are 

complete.  From Lemma HM-2, individual updates are 

eventually committed during a call to 

updateMembership(), therefore either the suspect is 

removed and the update is completed or the suspect 

becomes trusted and the update is rescinded. 

Proof of HM-Non-Triviality-Remove:  When a 

member crashes it is eventually permanently suspected 

by every alive member, notably including the highest 

ranked correct core member and every member of higher 

rank.  Suspecting a member is equivalent to being aware 

of a remove update, and therefore by Lemma HM-9 the 

remove update will eventually be committed. 

Proof of HM-Non-Triviality-Leave:  When a correct 

member asks to leave the group they notify all current 

members, notably including the highest ranked correct 

core member and every member of higher rank.  By 

Lemma HM-8 the leave update will eventually be 

committed.  When an incorrect member asks to leave 

they will either be removed by the same path as a correct 

member, or crash and be removed by HM-Non-

Triviality-Remove. 

Lemma HM-10: A leader will eventually be 

satisfied that each correct applicant is ready to join, or 

crash. 

Proof:  In order to join an applicant a must meet three 

conditions (l. 84): 

1. a must have received all pre-lock data. 

To ensure this the leader takes responsibility for sending 

pre-lock data to all applicants.  Upon accepting 

leadership the leader becomes a sponsor to all current 

applicants and sends them the pre-lock data (ll. 122-126, 

173-177).  Similarly, when a new applicant applies the 

leader becomes their sponsor and sends them the prelock 

data (ll. 58-61).   

2. a must have two-way connections to all other 

members and applicants that will be added at the time of 

their acceptance. 

To ensure this every member who receives an 

application introduces the new applicant to every 

member and every current applicant.  Every process that 

receives an introduction will connect to the applicant or 

crash, in which case they will be removed from the 

group/applicant pool.  Similarly, every later applicant 

will be introduced to a and a will connect to each of 

these processes.  In this way a establishes connections to 

every member and every other applicant, and notifies the 

leader of their connection status (l. 74). 

3. a must not be suspected. 

Since a is correct it will eventually be trusted. 

If the leader does not crash they will eventually be 

convinced the applicant is ready to join. 

Proof of HM-Non-Triviality-Join: When a correct 

applicant asks to join the group they notify all core 

members, including the highest ranked correct core 

member, m*.  Since m* forwards the application to 

every higher ranked non-core member, every member of 

higher rank than m* is aware of the join request.  Being 

aware of the join request is not sufficient to be 

considered for a join update, since there are three other 

join conditions that must be met.  Lemma HM-10 
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guarantees that each potential leader will either 

eventually be satisfied these join conditions are met or 

crash, and therefore by Lemma HM-8 the join update 

will eventually be committed. 

Proof of HM-Weak-Validity: To remove a member 

the leader must successfully commit an OAC(remove, 

..., removalList) transaction, where removalList is the set 

of members being removed.  One of the conditions of 

committing this transaction is that each participating 

member also suspects the members being removed (l. 

113).  This result is a key component in ensuring that the 

probability of violating the NER failure condition is 

insignificant. 

Proof of HM-Termination:  There are three types of 

events that trigger messages: 

1. Join requests: A join request has three phases.  

First in the application phase, application messages are 

sent to all core members, and each of these core 

members may forward the application to a subset of 

non-core members.  Next in the preparation phase, each 

member receiving an application message broadcasts 

introduction messages to each member and current 

applicants, who in turn introduce themselves to the new 

applicant.  The leader and applicant then exchange 

messages relating to the join conditions until the 

applicant joins the group.  The number of application 

and introduction messages is finite and determined by 

the number of members and other applicants at the time 

of application, while the join condition messages 

continue until either the applicant joins the group or 

crashes.  Finally, in the join phase, messages relating to 

the commitment of the join update are sent until either 

the applicant joins the group or crashes and is suspected 

by the leader.  Via HM-Non-Triviality a correct 

applicant will eventually join the group, and an incorrect 

process will eventually crash.  In either case the 

messages related to this join event subside. 

2. Leave requests: A leave request begins with 

sending leave messages to all current members.  Once 

these messages arrive, messages relating to the 

commitment of the leave update are sent until the 

member is removed.  From HM-Non-Triviality-Leave 

the member is eventually removed from the group. 

3. Suspicions: A suspicion is equivalent to a 

remove update, and initiates messages relating to the 

commitment of the remove update.  If the suspicion is 

correct then from HM-Non-Triviality-Remove the 

member will eventually be removed, if the suspicion is 

false then eventually the suspicion will be corrected and 

the remove update rescinded.  In either case the 

messages related to this suspicion event subside. 

Proof of HM-Agreement:  Group add and remove 

transactions occur only through OAC( remove, ...) and 

OAC( membership, ...) transactions.  Since all members 

of the group, excluding those that are removed by the 

remove transactions, are participants in each transaction, 

if OAC( remove, ...) or OAC( membership, ...) is 

committed by any member it must be committed by all 

members. 

Algorithm 4 Agent Allocation (HAA-AA) 

1 hostGroup : list /* List of host group member, maintained 
by the membership service */ 

2 agentList : list /* List of agents, maintained by hosts */ 
 
3 sesIdp : integer /* Id of the current session */ 
4 sesGroupp : list /* List of hosts involved in the session */ 
5 sesAgentsp : list /* List of agents,  , in the session */ 
6 sesCostsp : list /* List of agent processing costs,   */ 
7 sesAffinityp : list /* List of agent affinities,   */ 
 
8 bundlep  : list /* List of agents in host p’s bundle */ 
9 bidTablep : table /* Table of accepted bids indexed by host 

and agent */ 
10 outboxp : list /* List of bid updates to distribute */ 
11 rp : integer /* Current round number */ 
12 lastBuildRoundp : integer /* Round number at the time of 

last build */ 
13 buildQueuedp : boolean /* Flags whether a build is 

required once the current updates are processed */ 
14 distributeQueuedp : boolean /* Flags whether a distribute 

is required once the updates are processed */ 
15 decidedp : boolean /* Flags whether the session has 

finished */ 
16 sesReadyp : boolean /* Flags whether bundle building can 

start for the session */ 
 
17 upon [hostGroup membership change or agentList 

change]: 
18     if ( p = front(hostGroup) ) then /* undisputed leader */ 
19         sesIdp := sesIdp + 1; /* id of the current session */ 
20         sesGroupp := hostGroup; /* current host group */ 
21         sesAgentsp := agentList; /* current agents */ 
22         sesCostsp := agent costs; /* agent processing costs */ 
23         sesAffinityp := agent affinities; /* agent affinities */ 
24         newSession(); /* prepare new session */ 
25         do 
26             OAC(start, p, sesIdp, sesGroupp, sesAgentsp, 

sesCostsp, sesAffinityp) to sesGroupp; 
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27             wait until OAC(start, p, sesIdp, sesGroupp, 
sesAgentsp, sesCostsp, sesAffinityp) is decided; 

28         while [OAC(start, p, sesIdp, sesGroupp, sesAgentsp, 
sesCostsp, sesAffinityp) is not committed and sesGroupp = 
hostGroup and sesAgentsp = agentList] /* give up if the 
situation changes */ 

 
29 procedure newSession(): 
30     bidTablep := EMPTY;  
31     outboxp := EMPTY; 
32     buildQueuedp := FALSE; 
33     distributeQueuedp := FALSE;  
34     decidedp := FALSE; 
35     sesReadyp := FALSE; 
36     rp := 0; 
37     lastBuildRoundp := ‐1; 
 
38 upon committing OAC(start, q, sesIdq, sesGroupq, 

sesAgentsq, sesCostsq, sesAffinityq): 
39     if (q != front(hostGroup) or sesGroupq != hostGroup or 

sesAgentsq!= agentList ) 
40         return; /* expired session */ 
41     if (sesIdq >= sesIdp ) then 
42         if (sesIdq > sesIdp ) then 
43             sesIdp := sesIdq;  
44             newSession(); /* prepare new session */ 
45         sesGroupp := hostGroup; 
46         sesAgentsp := agentList; 
47         sesCostsp := sesCostsq; 
48         sesAffinityp := sesAffinityq; 
49         sesReadyp:= TRUE; 
50         buildBundle(); 
 
51 procedure buildBundle(): 
52     buildQueuedp:= FALSE; 
53     if (rp = lastBuildRoundp ) then 
54         rp := rp + 1; /* increment round */ 
55     lastBuildRoundp := rp; 
56     build bundlep according to chosen strategy; 
57     distribute(); 
58     checkConsensus(); 
 
59 upon receiving (update, q, sesIdq, for each updated bid j: 

{j, zqj, yqj, rqj}): 
60     if (sesIdq < sesIdp) then /* old message, ignore */ 
61         return;  
62     else if (sesIdq > sesIdp) then /* higher session id */  
63         sesIdp := sesIdq; /* join session */ 
64         newSession(); /* prepare new session */ 
65     for each updated bid j: 
66         bidTablep [q][j] = {j, zqj, yqj, rqj} 
67         if (rqj   rp) then 
68             rp := rqj + 1; /* keep round up to date */ 
69         oldBid := bidTablep [p][j]; 
70         resolve conflicts via Table 4.7‐1 (bidTablep [q][j] vs. 

bidTablep [p][j] ); 
71         if ( oldBid.y > bidTablep [p][j].y ) then /* got worse */ 
72             buildQueuedp := TRUE;  

73         if (sesReadyp = TRUE and buildQueuedp   FALSE and 
outboxp   EMPTY ) then 

74             distributeQueuedp := TRUE; 
75         if (sesReadyp = TRUE ) then 
76             checkConsensus(); 
77     wait until [all messages currently in the inbox are 

processed or sesGroupp   hostGroup or sesAgentsp   
agentList]; 

78     if (sesReadyp = TRUE and buildQueuedp = TRUE ) then 
79         buildBundle(); 
80     if (distributeQueuedp = TRUE ) then 
81         distribute(); 
 
82 procedure distribute(): 
83     distributeQueuedp := FALSE; 
84     send (update, p, sesIdp, outboxp) to hostGroup; 
85     outboxp := EMPTY; 
 
86 procedure checkConsensus(): 
87     if ( p = front(sesGroupp) and decidedp   TRUE and (for 

all j   agentList: bidTablep [p][j].z   none) and (for all h   
sesGroupp: bidTablep [h] = bidTablep [p])) then 

88         decidedp := TRUE; 
89         do 
90             OAC(finish, p, sesIdp, bidTablep [p]) to sesGroupp; 
91             wait until OAC(finish, p, sesIdp, bidTablep [p]) is 

decided; 
92         while [OAC(finish, p, sesIdp, bidTablep [p]) is not 

committed and sesGroupp = hostGroup and sesAgentsp = 
agentList] /* give up if the situation changes */ 

 

93 upon committing OAC(finish, q, sesIdq, agentAllocation):  
94     accept agentAllocation; 
95     if (sesIdp = sesIdq) then 
96         decidedp := TRUE; 

HAA-AA Bid Comparison Operator 

Bids are composed of three parts: agents, reward, and 

support.  Agents is simply a list of the agents involved in 

the bid, while reward and support are used when 

comparing two bids.  Reward indicates how desirable 

the agent or cluster is, and is based on the cost of the 

agent plus bonuses from other agents in the bundle who 

share affinity.  Cost is used as the base of the reward to 

encourage that high cost agents are bundled first, leaving 

lower cost agents to be distributed after.  Support 

indicates how well the host can meet the costs of the 

agent/cluster, and is calculated as: 

 ∑ ∑ .
 

(II-1) 
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In this way, support starts at 1 and decreases as the cost 

of the bundle grows; support < 0 means that the host is 

over capacity. 

Two competing bids, A and B, are then ranked according 

to the criteria depicted in Fig. II-1.  If necessary, ties can 

be broken by taking the bidder with the lower ID. 

HAA-AA Bundle Building Strategy 

Bundles are greedily built using the following strategy: 

1. Calculate rewards for all unbundled agents: 

reward[i] := ∑  S.T. ; 

if then reward[i] := reward[i] * (1- ); 

2. Identify clusters of unbundled agents that have 

mutual affinity bonuses using a recursive algorithm. 

3. Iteratively add to the bundle by identifying the 

winning bid with the highest return.  A winning bid 

is defined as a bid that is strictly greater than the 

currently accepted bid (bidTablep [p][j]) according 

to the bid comparison operator described above. 

a. Check all permutations of clusters to find the 

bid with highest return.  The reward and 

support for a cluster bid are calculated by 

summing the individual rewards for each agent 

in the cluster plus all affinity bonuses from the 

cluster and summing the individual costs, 

respectively.  For a successful cluster bid, the 

entire cluster must fit within the capacity of the 

host and the bid must beat the current bids for 

every agent in the cluster. 

b. Check all unbundled agents individually to find 

the bid with highest return. 

c. Select the highest bid, yhigh.  If no winning bid 

was found then the bundle building process is 

complete, otherwise: 

i.  Add all agents associated with the bid to 

the bundle: 

for each i in yhigh.agents: append i to bundlep; 

ii.  Update the accepted bids: 

 for each i in yhigh.agents: bidTablep [p][i] := {i, 

p, {yhigh.reward, yhigh.support}, rp }; 

iii. Prepare to distribute the updates: 

 for each i in yhigh.agents: outboxp [i] := {i, p, 

{yhigh.reward, yhigh.support}, rp };  

iv. Repeat Step 3. 

 

Algorithm 5 Agent Freeze (HAA-ATF) 

1 procedure freezeAgent( a ): /* current host */ 
2     send (freeze, p) to a; 
3     DDB.agents[a].queue1 := DDB.agents[a].queue2 := 

EMPTY; /* clear message queues */ 
4     begin forwarding all messages addressed to a to 

DDB.agents[a].queue1; 
5     do 
6         OAC (freeze, a, p) to hostGroup; 
7         wait until OAC (freeze, a, p) is decided; 
8     while [OAC (freeze, a, p) has not been committed]; 
9     commitGroup := hostGroup; /* hostGroup at time of 

commit */ 
10     wait until [received (state) from a and for each h   

commitGroup: received (freezeAck, a) from h or h is 
removed from hostGroup] 

11         begin forwarding all messages addressed to a to 
DDB.agents[a].queue2; 

12         DDB.agents[a].state := state; /* submit state */ 
13         do 
14             OAC (release, a) to hostGroup; /* release agent */ 
15             wait until OAC (release, a) is decided; 
16         while [OAC (release, a) has not been committed]; 
 

17 upon receiving (freeze, q): /*agent */ 
18     state := writeState(); /* pack state */ 
19     send (state) to q; 
20     shutdown; 
 

21 upon committing OAC (freeze, a, q): /* other hosts */ 
22     if ( p   q ) then 
23         begin forwarding all messages addressed to a to 

DDB.agents[a].queue2; 
24     send (freezeAck, a) to q; 

Fig. II-1 Bid Comparison Operator 
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Algorithm 6 Agent Thaw (HAA-ATT) 

1 procedure thawAgent( a ): /* new host */ 
2     spawn shell for a; /* new agent thread */ 
3     begin forwarding all messages addressed to a to 

localQueue; 
4     do 
5         OAC (claim, a, p) to hostGroup; /* claim ownership */ 
6         wait until OAC (claim, a, p) is decided; 
7     while [OAC (claim, a, p) has not been committed]; 
8     commitGroup := hostGroup; /* hostGroup at time of 

commit */ 
9     wait until [for each h   commitGroup: received 

(claimAck, a) from h or h is removed from hostGroup) and 
all active OACs are decided] 

10         send (thaw, DDB.agents[a].state, 
DDB.agents[a].queue1, DDB.agents[a].queue2, 
localQueue) to a; 

11         begin forwarding all messages addressed to a to a; 
 

12 upon committing OAC(claim, a, q): /* all hosts */ 
13     if ( a   q’s agent allocation and a is frozen ) then 
14         if ( p   q ) then 
15             begin forwarding all messages addressed to a to q; 
16         send (claimAck, a) to q; 
17     else if ( p = q ) then 
18         abandon claim attempt; 
 

19 upon receiving (thaw, state, queue1, queue2, queue3 ): /* 
new agent */ 

20     readState( state ); /* unpack state */ 
21     process messages from queue1, queue2, and queue3 in 

that order; 
22     resume normal agent behaviour; 

Proofs for HAA-ATF and HAA-ATT 

Proof of AT-Transparency is trivial from the fact that 

nothing in the algorithm impacts the behaviour of other 

agents.  AT-Consistency can be proven as follows. 

Lemma AT-1: No message addressed to a is lost. 

Proof: All messages addressed to a (m.a.a.) are 

forwarded through the host network.  Consider the 

freezing and thawing process in three stages: freezing, 

frozen, and thawing.  Prior to the freezing stage all hosts 

forward m.a.a through Hold.  During the freezing stage 

each host behaves as follows, with reference to 

Algorithm 5: 

 Hold forwards m.a.a. to a until reaching l. 2, when it 

sends the freeze message to a.  Messages up to this point 

are received and proceed by a, and thus integrated into 

a’s state prior to receiving the freeze message.  After l. 

4, Hold forwards m.a.a. to the primary queue in the DDB 

until Hold reaches l. 11.  At this point Hold is ensured that 

it will receive no more m.a.a. from other hosts, because 

all other hosts are now forwarding m.a.a. to the 

secondary queue in the DDB.  Hold can then forward 

m.a.a. to the secondary queue in the DDB and end the 

freezing stage. 

 All other hosts forward m.a.a. to Hold until they 

commit the freeze transaction (l. 21), at which point they 

forward m.a.a. to the secondary queue in the DDB.  

Note that a new host joining after the freeze transaction 

will already be aware that a is freezing/frozen and so 

will automatically forward m.a.a. to the secondary 

queue. 

Upon reaching and throughout the frozen stage, all hosts 

forward m.a.a. to the secondary queue in the DDB.  

During the thawing stage each host behaves as follows, 

with reference to Algorithm 6: 

 Hnew begins the thawing stage by calling 

thawAgent(), at which point it begins forwarding m.a.a. 

to a local message queue (l.3).  When Hnew reaches l. 10, 

it is ensured that no more m.a.a. will be added to the 

secondary queue in the DDB and Hnew can complete the 

thawing process.  Hnew forwards the primary, secondary, 

and local queues to a, and forwards any new m.a.a. to a. 

 All other hosts continue forwarding m.a.a. to the 

secondary queue in the DDB until they commit the 

claim transaction and reach l. 15.  At this point the hosts 

forward m.a.a. to Hnew, who handles the messages 

appropriately.  Note that a new host joining after the 

claim transaction was committed will automatically 

know to forward m.a.a. to Hnew. 

In this way, every m.a.a. reaches a prior to freezing, or is 

directed to the primary, secondary, or local queue and 

later processed by a upon thawing. 

Lemma AT-2: Sender order is preserved for all 

messages sent to a. 

Proof:  Since all agents’ messages are directed through 

their local host, it is sufficient to show that order is 

preserved for all messages sent by an individual host.  

Consider the behaviour of each host: 

 All hosts  {Hold, Hnew} prior to committing the 

freeze transaction forward m.a.a. to Hold, after which 

they forward m.a.a. to the secondary queue in the DDB 

until committing the thaw transaction, at which point 

they forward m.a.a. to Hnew.  All m.a.a. received by Hold 

are processed in order and either forwarded to a if they 

arrives before the freeze message is sent to a or placed 
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in the primary queue.  All m.a.a. received by Hnew are 

processed in order and either forwarded to the local 

queue if they arrive before the thaw message is sent to a 

or are forwarded to a. 

 All m.a.a. originating from Hold are forwarded to a 

until the freeze message is sent to a, forwarded to the 

primary queue until a is ready for release (Algorithm 5 l. 

11), after which Hold behaves the same way as any other 

host. 

 Hnew behaves the same was as any other host until it 

initiates the thaw process.  At this point all m.a.a. 

originating from Hnew are forwarded to the local queue 

until the thaw message is sent to a, after which m.a.a. 

are forwarded to a. 

Thus any m.a.a. has a possible destination of: a, DDB 

primary queue, DDB secondary queue, Hnew local queue, 

or a, in that sequence, and so order is maintained. 

Proof of AT-Consistency: From Lemmas AT-1 and 

AT-2, upon thawing a receives all messages sent to it, in 

correct sender order.  Internal data is preserved when the 

agent freezes and thaws its state. 

Algorithm 7 Agent Backup (HAA-AB) 

1 procedure backupAgent():  /* agent */ 
2     b := backupState(); /* backup critical portion of state */ 
3     send (backup, a, b) to host; /* submit to local host */ 
 

4 upon receiving (backup, a, b): /* current host */ 
5     DDB.agents[a].backup := b; 

Algorithm 8 Agent Recovery (HAA-AR) 

1 procedure recoverAgent( a ): /* new host */ 
2     spawn shell for a; /* new agent thread */ 
3     wait until [all active OACs are decided] 
4         send (recover, DDB.agents[a].backup) to a; 
5         begin forwarding all messages addressed to a to a; 
6         do 
7             OAC (recovered, a, p) to hostGroup; /* claim */ 
8             wait until OAC (recovered, a, p) is decided; 
9         while  [OAC  (recovered,  a,  p)  has  not  been 

committed]; 
 

10 upon receiving (recover, b): /* new agent */ 
11     recoverState( b ); /* recover from backup */ 
12     resume normal agent behaviour; 
 

13 upon committing OAC (recovered, a, q): /* other hosts */ 
14     if ( p   q and a   q’s agent allocation ) then 
15         begin forwarding all messages addressed to a to q; 

Proof for HAA-AB and HAA-AR 

Proof of AR-Recovery:  The use of the latest backup 

is ensured by waiting for all OACs to be committed 

before using the backup (Algorithm 8 l. 3).  H begins 

forwarding m.a.a to a as soon as the recover message is 

sent (Algorithm 8 l. 4), and if the recovery is valid all 

other hosts will begin forwarding m.a.a. to H (Algorithm 

8 l. 15).  
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Appendix III 
Agent Descriptions 

AgentPathPlanner 

Accepts a target position and orientation and attempts to 

plan a path through clear spaces using the available map 

data.  The path uses a weighted distance algorithm that 

penalizes routes that are too close to obstacles.   

Interactions: 

Avatar* → Configure and assign targets 

Avatar* ← Send action commands 

Avatar*→ Send action updates 

ExecutiveAvatar ← Request list of avatars 

Recovery Strategy: 

Restore configuration and wait for instructions. 

AgentSensorCooccupancy 

Uses avatar position information to generate map 

updates, following the logic that if the area is occupied 

by the avatar it is not occupied by an obstacle. 

Interactions: 

SupervisorSLAM → Assign processing requests 

SupervisorSLAM ← Report success or failure of 

processing 

Recovery Strategy: 

Restore configuration and wait for instructions. 

AgentSensorFloorFinder 

Extracts the floor from an image by colour matching 

with an area sampled directly in front of the avatar, 

following the strategy in [112].  The floor region is then 

transformed from image space to map space using a 

planar homography transformation and used to generate 

a belief template for JC-SLAM. 

Interactions: 

SupervisorSLAM → Assign processing requests 

SupervisorSLAM ← Report success or failure of 

processing 

Recovery Strategy: 

Restore configuration and wait for instructions. 

AgentSensorLandmark 

Scans images to locate landmarks building on the 

algorithm described in [113].  Landmarks are then used 

to generate localization updates. 

Interactions: 

SupervisorSLAM → Assign processing requests 

SupervisorSLAM ← Report success or failure of 

processing 

Recovery Strategy: 

Restore configuration and wait for instructions. 

AgentSensorSonar 

Generates belief templates from sonar readings.  The 

belief templates are used create map and observation 

density updates for JC-SLAM. 

Interactions: 

SupervisorSLAM → Assign processing requests 

SupervisorSLAM ← Report success or failure of 

processing 

Recovery Strategy: 

Restore configuration and wait for instructions. 

Avatar* (ER1, Pioneer, Simulation, SRV-1, X80H) 

Builds on AvatarBase, which provides the basic 

functionality for all avatar agents.  In particular 

AvatarBase provides the basic action interface exposed 

by all avatar agents.  This interface allows other agents 

to control all avatars through commands such as wait, 

move, rotate, capture image, etc. without knowledge of 

an avatar specific API.   

Interactions: 

AgentPathPlanner ← Configure and assign targets 

AgentPathPlanner → Send action commands 

AgentPathPlanner ← Send action updates 

Supervisor* → Assign targets 

Supervisor* ← Report target status 

ExecutiveAvatar ← Register avatar 

Recovery Strategy: 

Restore configuration and retrieve AgentPathPlanner 

status.  Reassign target for AgentPathPlanner if 

appropriate. 

Agent Status Monitoring: 

AgentPathPlanner ← If failure occurs reassign target 

ExecutiveAvatar ← If failure occurs re-register 

ExecutiveAvatar 

Controls the distribution of avatar resources using a 

bidding algorithm.  Task supervisors place bids for 

resources and the ExecutiveAvatar assigns resources to 

the highest bidders.  Resource assignments are stored in 

the DDB so that they are independent of agent failures. 
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Interactions: 

Supervisor* → Place bids on avatar resources 

Recovery Strategy: 

Restore configuration. 

ExecutiveMission 

Defines mission parameters and controls when tasks are 

started.  When a new task begins the ExecutiveMission 

spawns the appropriate task supervisor and supporting 

agents. 

Interactions: 

Supervisor* ← Spawn and configure agents 

Recovery Strategy: 

Restore configuration, confirm that appropriate 

Supervisor agents are active. 

ExecutiveSimulation 

Handles the simulation of avatars, sensors, and 

environment during HILS experiments.  

Interactions: 

AvatarSimulation → Send action commands 

AvatarSimulation ← Send action updates 

SupervisorCongregate 

When the congregation point is identified 

SupervisorCongregate requests control of all avatars and 

assigns them targets at equally spaced intervals around 

the congregation point. 

Interactions:  

ExecutiveMission → Configure 

ExecutiveAvatar ← Request control of avatars 

Avatar* ← Assign target 

Avatar* → Send target updates 

Recovery Strategy: 

Restore configuration and retrieve Avatar* statuses, 

reassign targets if appropriate. 

Agent Status Monitoring: 

Avatar* ← If failure occurs reassign target 

SupervisorExplore 

Carries out the exploration task by directing avatars to 

unexplored regions.  Unexplored cells are divided 

between avatars using an Expectation-Maximization 

(EM) algorithm.  Once the cells are divided each avatar 

is assign a target within their area.  

Interactions: 

ExecutiveMission → Configure 

ExecutiveAvatar ← Request avatar resources 

Avatar* ← Assign target 

Avatar* → Send target updates 

Recovery Strategy: 

Restore configuration and retrieve Avatar* statuses, 

reassign targets if appropriate. 

Agent Status Monitoring: 

Avatar* ← If failure occurs reassign target 

SupervisorForage 

Each SupervisorForage agent is assigned a single 

collectible to pick up and deposit in a collection region.  

The SupervisorForage bids on suitable avatar resources 

until it gains control of an avatar. 

Interactions: 

ExecutiveMission → Configure 

ExecutiveAvatar ← Request avatar resources 

Avatar* ← Assign target and collection actions 

Avatar* → Send action updates 

Recovery Strategy: 

Restore configuration and retrieve Avatar* status, 

reassign target if appropriate. 

Agent Status Monitoring: 

Avatar* ← If failure occurs reassign target 

SupervisorSLAM 

Monitors the DDB for new sensor readings and assigns 

them to sensor processing agents.  The SLAM 

supervisor also maintains the active set of sensor 

processing agents and spawns new agents as required.   

Interactions: 

ExecutiveMission → Configure 

AgentSensor* ← Spawn and configure agents, assign 

readings 

AgentSensor* → Report processing success or failure 

Recovery Strategy: 

Restore configuration and retrieve AgentSensor* 

statuses, reassign readings if appropriate.  Confirm that 

reading list is up to date. 

Agent Status Monitoring: 

AgentSensor* ← If failure occurs reassign reading 


