
A Framework for the Integration of Partial
Evaluation and Abstract Interpretation of
Logic Programs

MICHAEL LEUSCHEL
University of Southampton

Recently the relationship between abstract interpretation and program specialization has received
a lot of scrutiny, and the need has been identified to extend program specialization techniques so as
to make use of more refined abstract domains and operators. This article clarifies this relationship
in the context of logic programming, by expressing program specialization in terms of abstract
interpretation. Based on this, a novel specialization framework, along with generic correctness
results for computed answers and finite failure under SLD-resolution, is developed.

This framework can be used to extend existing logic program specialization methods, such as
partial deduction and conjunctive partial deduction, to make use of more refined abstract domains.
It is also shown how this opens up the way for new optimizations. Finally, as shown in the paper,
the framework also enables one to prove correctness of new or existing specialization techniques
in a simpler manner.

The framework has already been applied in the literature to develop and prove correct spe-
cialization algorithms using regular types, which in turn have been applied to the verification of
infinite state process algebras.

Categories and Subject Descriptors: D.1.2 [Programming Techniques]: Automatic Program-
ming; D.1.6 [Programming Techniques]: Logic Programming; F.4.1 [Mathematical Logic and
Formal Languages]: Mathematical Logic—Logic and constraint programming; I.2.2 [Artificial
Intelligence]: Automatic Programming; I.2.3 [Artificial Intelligence]: Deduction and Theorem
Proving—Logic programming

General Terms: Languages, Theory, Verification

Additional Key Words and Phrases: Partial deduction, partial evaluation, program transformation,
abstract interpretation, logic programming, flow analysis

Part of the work was done while the author was Post-Doctoral Fellow of the Fund for Scien-
tific Research—Flanders Belgium (FWO) at the K.U. Leuven, Belgium as well as visiting DIKU,
University of Copenhagen, Denmark.
Author’s address: Declarative Systems and Software Engineering, Department of Electronics
and Computer Science, University of Southampton, Southampton SO171BJ, U.K.; email: mal@
ecs.soton.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0164-0925/04/0500-0413 $5.00

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004, Pages 413–463.

414 • Michael Leuschel

1. INTRODUCTION

Program specialization aims at improving the overall performance of programs
by performing source to source transformations. The central idea is to special-
ize a given source program for a particular application domain, with the goal
of obtaining a less general but more efficient program. This is (mostly) done by
a well-automated application of parts of the Burstall and Darlington [1977]
unfold/fold transformation framework. Program specialization encompasses
traditional compiler optimization techniques [Muchnick 1997], such as constant
folding (i.e., the evaluation of expressions whose arguments are constants) and
in-lining (i.e., the substitution of a procedure call by the procedure’s body), but
uses more aggressive transformations, yielding both (much) greater speedups
and more difficulty in controlling the transformation process. It is thus similar
in concept to, but in several ways stronger than highly optimizing compilers. A
common approach, known as partial evaluation is to guide the transformation
by partial knowledge about the input. In the context of pure logic programs,
partial evaluation is sometimes referred to as partial deduction.

Program analysis is about statically inferring information about dynamic
program properties. Abstract interpretation [Cousot and Cousot 1977] was de-
veloped as a very general, formal framework for specifying and validating pro-
gram analyses. The main idea of using abstract interpretation for program ana-
lysis is to interpret the programs to be analyzed over some abstract domain.
This is done in such a way as to ensure termination of the abstract interpre-
tation and to ensure that the derived results are a safe approximation of the
programs’ concrete runtime behavior(s).

Abstract Interpretation vs. Program Specialization. At first sight abstract
interpretation and program specialization might appear to be unrelated tech-
niques: abstract interpretation focusses on correct and precise analysis, while
the main goal of program specialization is to produce more efficient specialized
code (for a given task at hand). Nonetheless, it is often felt that there is a close
relationship between abstract interpretation and program specialization and,
recently, there has been a lot of interest in the integration and interplay of these
two techniques (see, e.g., Consel and Khoo [1993], Puebla and Hermenegildo
[1995], Leuschel and De Schreye [1996], Jones [1997], Puebla et al. [1997],
Puebla et al. [1999], Puebla and Hermenegildo [1999], Gallagher and Peralta
[2001]).

From Partial Deduction to Abstract Partial Deduction. In this paper we
would like to make the relationship between partial deduction and abstract
interpretation more concrete, and provide a formal framework for integrating
these two techniques. This will also pave the way for new, much more pow-
erful specialization (and analysis) techniques, for example, by using more re-
fined abstract domains. Indeed, “classical” partial deduction turns out to be
often too limited (see, e.g., Gallagher and de Waal [1992], de Waal and Gal-
lagher [1994], Leuschel and De Schreye [1996], Leuschel and Lehmann [2000]
to name just a few) and a lot of extensions have been developed to remedy its
shortcomings (such as partial deduction with characteristic trees [Gallagher

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 415

and Bruynooghe 1991; Leuschel et al. 1998], constrained partial deduction
[Leuschel and De Schreye 1998], conjunctive partial deduction [Leuschel et al.
1996; Glück et al. 1996; De Schreye et al. 1999]). However, every time such an
extension is developed, correctness has to be re-established from scratch: a very
tedious and time-consuming process. By providing a very general framework,
we want to reduce this work to a minimum (at the same time allowing more
powerful extensions): when developing a new instance of the framework one
just has to prove some basic properties of the underlying operations and can
then reapply the correctness results presented in this paper with minimal ef-
fort. Finally, the framework also allows the tupling [Chin and Khoo 1993] and
deforestation [Wadler 1990] capabilities of conjunctive partial deduction to be
added to abstract interpretation.

Overview. After introducing the essence of partial deduction in Section 2,
we investigate the relationship between partial deduction and program analy-
sis in Section 3. Then, we define the notion of abstract domains in Section 4,
we present in Section 5 the important concepts of abstract unfolding and ab-
stract resolution, which will be at the heart of our framework. In Section 6 we
then show how these concepts can be used to develop atomic abstract partial
deduction. In Section 7 we then show how this can be extended to cover abstract
conjunctions. In Section 8 we formally prove our generic correctness results. In
Section 9 we cast some existing techniques into our framework. We show how
success information propagation can be added to our framework in Section 10,
and conclude with a discussion of related and further work in Sections 11 and
12.

This article is based on the earlier conference paper Leuschel [1998b].

2. BASICS OF PARTIAL DEDUCTION

In this section we present the technique of partial deduction, which origi-
nates from Komorowski [1982]. Other introductions to partial deduction can
be found in Komorowski [1992], Gallagher [1993], Leuschel [1999]. Note that,
for clarity’s sake, we deviate slightly from the original formulation of Lloyd and
Shepherdson [1991] and use the formulation from Leuschel and Bruynooghe
[2002]. We also restrict our attention to definite logic programs and the SLD
procedural semantics.

In contrast to ordinary evaluation, partial evaluation is processing a given
program P along with only part of its input, called the static input. The re-
maining part of the input, called the dynamic input, will only be known at
some later point in time (which we call runtime). Given the static input S, the
partial evaluator then produces a specialized version PS of P which, when given
the dynamic input D, produces the same output as the original program P . The
program PS is also called the residual program.

Partial evaluation [Consel and Danvy 1993; Jones et al. 1993; Jones 1996;
Mogensen and Sestoft 1997] has been applied to many programming languages:
for example, functional programming languages, logic programming languages,
functional logic programming languages, term rewriting systems, or imperative
programming languages. In the context of logic programming [Apt 1990; Lloyd

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

416 • Michael Leuschel

1987], full input to a program P consists of a goal G and evaluation can be
seen as constructing a complete SLD-tree for P ∪ {G}. For partial evaluation,
the static input takes the form of a goal G ′ which is more general (i.e., less in-
stantiated) than a typical goal G at runtime. In contrast to other programming
languages, one can still execute P for G ′ and (try to) construct an SLD-tree for
P ∪{G ′}. So, at first sight, it seems that partial evaluation for logic programs is
almost trivial and just corresponds to ordinary evaluation. However, since G ′

is not yet fully instantiated, the SLD-tree for P ∪ {G ′} is usually infinite and
ordinary evaluation will not terminate. A technique that solves this problem is
known by the name of partial deduction. Its general idea is to construct a finite
number of finite, but possibly incomplete SLD trees and to extract from these
trees a new program that allows any instance of the goal G ′ to be executed.

Before formalizing the notion of partial deduction, we briefly recall some ba-
sics of logic programming [Apt 1990; Lloyd 1987]. Syntactically, programs are
built from an alphabet of variables (as usual in logic programming, variable
names start with a capital), function symbols (including constants) and predi-
cate symbols. Terms are inductively defined over the variables and the function
symbols. Formulas of the form p(t1, . . . , tn) with p/n a predicate symbol of arity
n ≥ 0 and t1, . . . , tn terms are atoms. A definite clause is of the form a ← B
where the head a is an atom and the body B is a conjunction of atoms. A for-
mula of the form ← B with B a conjunction of atoms is a definite goal. Definite
programs are sets composed of definite clauses. In analogy with terminology
from other programming languages, an atom in a clause body or in a goal is
sometimes referred to as a call. As we restrict our attention to definite clauses,
programs, and goals we will often drop the “definite” prefix and just refer to
clauses, programs, and goals.

As detailed in Apt [1990] and Lloyd [1987] a derivation step selects an atom
in a definite goal according to some selection rule. Using a program clause,
it first renames a part the program clause to avoid variable clashes and then
computes a most general unifier (mgu) between the selected atom and the clause
head and, if an mgu exists, derives the resolvent, a new definite goal. (We also
say that the selected atom is resolved with the program clause.) Now we are
ready to introduce our notion of SLD-derivation. As common in works on partial
deduction, it differs from the standard notion in logic programming theory by
allowing a derivation that ends in a nonempty goal where no atom is selected.

Definition 2.1. Let P be a definite program and G a definite goal. An SLD-
derivation for P ∪ {G} consists of a possibly infinite sequence G0 = G, G1, . . .

of goals, a sequence C1, C2, . . . of properly renamed clauses of P , a sequence
L0, L1 . . . of selected atoms and a sequence θ1, θ2, . . . of mgus such that each
Gi+1 is derived from Gi and Ci+1 using selected literal Li and mgu θi+1.

The initial goal of an SLD-derivation is also called the query. An SLD-
derivation is a successful derivation or refutation if it ends in the empty goal,
a failing derivation if it ends in a goal with a selected atom that does not unify
with any properly renamed clause head, an incomplete derivation if it ends in a
nonempty goal without a selected atom; if none of these, it is an infinite deriva-
tion. In examples, to distinguish an incomplete derivation from a failing one, we

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 417

will extend the sequence of a failing derivation with the atom fail. The totality
of SLD-derivations form a search space. One way to organize this search space
is to structure it in an SLD-tree. The root is the initial goal; the children of a
(non-failing) node are the resolvents obtained by selecting an atom and per-
forming all possible derivation steps (a process that we call the unfolding of the
selected atom). Each branch of the tree represents an SLD-derivation. A trivial
tree is a tree consisting of a single node—the root—without selected atom.

We now examine how specialized clauses can be extracted from SLD-
derivations and trees.

Definition 2.2. Let P be a program, G =← Q a goal, D a finite SLD-
derivation of P ∪ {G} ending in ← B, and θ the composition of the mgus in
the derivation steps. Then the formula Qθ ← B is called the resultant of D.
Also, θ restricted to the variables of Q is called the computed answer substitu-
tion (c.a.s.) of D. If D is a refutation then θ restricted to the variables of Q is
also simply called a computed answer.

Note that the formula Qθ ← B is a clause when Q is a single atom, which will
always be the case for classical partial deduction. Conjunctive partial deduction
(cf. Section 7) also allows Q to be a conjunction of several atoms. The relevant
information to be extracted from an SLD-tree is the set of resolvents and the
set of atoms occurring in the literals at the non-failing leaves.

Definition 2.3. Let P be a program, G a goal, and τ a finite SLD-tree for
P ∪ {G}. Let D1, . . . , Dn be the non-failing SLD-derivations associated with
the branches of τ . Then the set of resultants, resultants(τ), is the set whose
elements are the resultants of D1, . . . , Dn and the set of leaves, leaves(τ), is the
set of atoms occurring in the final goals of D1, . . . , Dn.

With the initial goal atomic, the extracted resultants are program clauses:
the partial deduction of the atom.

Definition 2.4. Let P be a definite program, A an atom, and τ a finite non-
trivial SLD-tree for P ∪{← A}. Then the set of clauses, resultants(τ), is called a
partial deduction of A in P . If A is a finite set of atoms, then a partial deduction
of A in P is the union of the sets obtained by taking one partial deduction for
each atom in A.

In summary, the specialized program is extracted from SLD trees by con-
structing one specialized clause per nonfailing branch. This can yield a more
efficient program, as a single resolution step with a specialized clause now
corresponds to performing all the resolutions steps (using original program
clauses) on the associated branch. Also, failing branches have been completely
removed from the specialized program, which can lead to further efficiency
improvements.

Example 2.5. Let P be the following metainterpreter taken from Leuschel
[2002], which counts resolution steps:

solve([], Depth, Depth) ←
solve([Head|Tail], DSoFar, Res) ← clause(Head, Bdy),

solve(Bdy, s(DSoFar), IntD), solve(Tail, IntD, Res)

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

418 • Michael Leuschel

❄

❄

❄

✟✟✟✟✟✟✙

❍❍❍❍❍❥

�

solve([mem(X , T ′], s(D), R)

clause(mem(X , L), B), solve(B, s(D), I), solve([], I, R)

clause(mem(X , L), B), solve(B, s(D), R)

solve([], s(D), R)

solve([mem(X , L)], D, R)

Fig. 1. Incomplete SLD-tree for Example 2.5.

clause(mem(X , [X |T]), []) ←
clause(mem(X , [Y |T]), [mem(X , T)]) ←
clause(app([], L, L), []) ←
clause(app([H|X], Y , [H|Z]), [app(X , Y , Z)]) ←

Figure 1 represents an incomplete SLD-tree τ for P ∪ {← solve(mem(X , L),
D, R)}. This tree has two non-failing branches and resultants(τ) thus contains
the two clauses:

solve(mem(X , [X |L]), D, s(D)) ←
solve(mem(X , [Y |L]), D, R) ← solve(mem(X , L), s(D), R)
These two clauses are a partial deduction of A = {solve(mem(X , L), D, R)}

in P . Note that the complete SLD-tree for P ∪ {← solve(mem(X , L), D, R)} is
infinite.

Observe how one resolution step in the partial deduction corresponds to three
to four resolution steps in the original program. This results in the specialized
program being substantially faster than the original one. On a typical Prolog
system and for typical runtime queries the specialized program is more than
three times faster than the original.1

In analogy with terminology in partial evaluation, the partial deduction of
A in P is also referred to as the residual clauses of A and the partial deduction
of A in P as the residual program.

The intuition underlying partial deduction is that a program P can be re-
placed by a partial deduction of A in P and that both programs are equivalent
with respect to queries that are constructed from instances of atoms in A. Al-
most all works on partial deduction aim at preserving the procedural equiva-
lence under SLD (and SLDNF). Before defining the extra conditions required
to ensure it, we introduce a few more concepts:

1E.g., 3.4 times faster on Sicstus Prolog 3.8.7 running on a Powerbook G4 667 Mhz with 1 Gb RAM
and Mac OS X 10.1.4.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 419

Definition 2.6. Let A1, A2, A3 be three atoms, such that A3 = A1θ1 and
A3 = A2θ2 for some substitutions θ1 and θ2. Then A3 is called a common instance
of A1 and A2. Let A be a finite set of atoms and S a set containing atoms,
conjunctions, and clauses. Then S is A-closed if and only if each atom in S is
an instance of an atom in A. Furthermore we say that A is independent if and
only if no pair of atoms in A has a common instance.

The main result of Lloyd and Shepherdson [1991] about procedural equiva-
lence can be formulated as follows:

THEOREM 2.7. Let P be a definite program, A a finite, independent set of
atoms, and P ′ a partial deduction of A in P. For every goal G such that P ′ ∪ {G}
is A-closed the following holds:

(1) P ′∪{G} has an SLD-refutation with computed answer θ if and only if P ∪{G}
does.

(2) P ′ ∪ {G} has a finitely failed SLD-tree if and only if P ∪ {G} does.

The theorem states that P and P ′ are procedurally equivalent with respect
to the existence of success-nodes and associated answers for A-closed goals.
The fact that partial deduction preserves equivalence only for A-closed goals
distinguishes it from for example, unfold/fold program transformations, which
aim at preserving equivalence for all goals. Note that the theorem does not tell
us how to obtain A, an issue which is tackled by the control of partial deduction
(see, e.g., Leuschel and Bruynooghe [2002]).

Returning to Example 2.5, we have that the partial deduction of the set
A = {solve(mem(X , L), D, R)} in P satisfies the conditions of Theorem 2.7 for
the goals ← solve(mem(X , [a]), 0, R) and ← solve(mem(a, [X , Y]), s(0), R) but
not for the goal ← solve(app([], [], L), 0, R). Indeed, the latter goal succeeds in
the original program but fails in the specialized one. Intuitively, if P ′ ∪ {G} is
not A-closed, then an SLD-derivation of P ′ ∪ {G} may select a literal for which
no clauses exist in P ′ while clauses did exist in P . Hence, a query may fail while
it succeeds in the original program.

If A is not independent then a selected atom may be resolved with clauses
originating from the partial deduction of two distinct atoms. This may lead
to computed answers that, although correct, are not computed answers of the
original program. However, this can be easily remedied by a renaming trans-
formation, generating new predicate names for atoms that are not independent
[Benkerimi and Hill 1993]. To improve the efficiency of specialized programs,
all partial deduction systems we know of, perform renaming together with so-
called filtering [Gallagher and Bruynooghe 1990; Gallagher and Bruynooghe
1991; Leuschel and Sørensen 1996; Proietti and Pettorossi 1993], which filters
out constants and function symbols. For our Example 2.5, a filtered partial
deduction of A in P would be something like the following, which delivers an
additional speedup of over 1.5 compared to the partial deduction in Example 2.5:

solve 1(X , [X |L], D, s(D)) ←
solve 1(X , [Y |L], D, R) ← solve 1(X , L, s(D), R).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

420 • Michael Leuschel

In practice it is thus the A-closedness condition which is the most impor-
tant one. It is also this condition that best illustrates the link between partial
deduction and program analysis. Indeed, as we will show in the next section,
the A-closedness condition for the residual program P ′ in Theorem 2.7 ensures
that together the SLD-trees, from which the clauses in P ′ are derived, form a
complete description of all possible calls that can occur for all goals G that are
A-closed.

3. PARTIAL DEDUCTION AND PROGRAM ANALYSIS

Below we denote by 2S the power-set of some set S, by Clauses the set of all
clauses, by Atoms the set of all atoms, and by Q the set of all conjunctions.

3.1 Partial Deduction as Program Analysis

In the context of a logic program P there are plenty of program properties
that are of interest, such as, for example, the logical consequences of P or the
computed answers of P . The following property is a key concept in termination
analysis [De Schreye and Decorte 1994] and will be of interest in relating partial
deduction and program analysis.

Definition 3.1. For a program P and a conjunction Q the call set of P ∪
{← Q}, denoted by calls(P, Q), is the set of selected atoms within all possible
complete SLD-trees for P ∪ {← Q}.

We have seen in the previous section that the A-closedness condition ensures
correctness of the specialized program and the condition must thus ensure that
all possible calls that can occur when running the specialized program have
been taken into account by partial deduction. It is thus to be expected that
some relationship between partial deduction and call sets can be established.
The following proposition shows that under certain circumstances, the result
of a partial deduction can indeed be viewed as a program analysis inferring
information about various call sets.

PROPOSITION 3.2. Let P be a definite program and Q a conjunction. Let A be
a finite set of atoms, and P ′ a partial deduction of A in P such that P ′ ∪ {← Q}
is A-closed. If the SLD-trees whose resultants make up P ′ are such that every
SLD-tree has a depth of 1, that is, every tree contains just a single unfolding
step, then the following holds: calls(P, Q) ⊆ {Aθ | A ∈ A}.

In the above proposition we have restricted ourselves to very simple SLD-
trees, containing exactly one unfolding step. In fact, if one allows more than
one unfolding step, then the relationship between A and the call set becomes
more complicated, detracting from the point we are trying to make.2 Below we
will describe a procedure which, given P and Q , will construct A and P ′ such
that P ′ ∪ {← Q} is A-closed.

Let us first illustrate Proposition 3.2 using an example.

2Basically A then only contains information about calls at certain “program points” and infers
information about the calls on successful branches only, rather than about any call.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 421

Example 3.3. Let P be the following program:
mem(X , [X |L]) ←
mem(X , [Y |L]) ← mem(X , L)

The partial deduction P ′ of A = {mem(a, L)}, which we obtain by performing
just a single unfolding step for P ∪ {← mem(a, L)}, is as follows:

mem(a, [a|L]) ←
mem(a, [Y |L]) ← mem(a, L)

Note that P ′∪{← mem(a, L)θ} isA-closed for any substitution θ . As stated by
Proposition 3.2, for any substitution θ , all elements of calls(P, mem(a, L)θ) are
instances of an element of A. Partial deduction has thus “deduced” structural
information about the call set: all calls to mem have the constant ‘a’ in the first
argument position.

Having identified one relationship between partial deduction and program
analysis, we will now formalize this process more precisely in the abstract
interpretation framework. This will clarify their relationship and pave way
to an integration of abstract interpretation and partial deduction.

3.2 Abstract Interpretation

Abstract interpretation [Cousot and Cousot 1977] provides a general formal
framework for performing sound program analysis and has been successfully
applied to the analysis of logic programs [Cousot and Cousot 1992; Bruynooghe
1991; Hermenegildo et al. 1992]. To make program analysis tractable, abstract
interpretation distinguishes between a concrete domain C of program properties
and an abstract domain AD of properties. The latter contains finite, approxi-
mate representations of (sets of) concrete properties. The concrete properties
are used by a semantic function sem, which assigns to every program P and a
set of calls3 S its (concrete) semantics sem(P, S) ∈ 2C . The abstract domain is
linked to the concrete domain via a concretization function γ : AD → 2C , which
assigns to each abstract property the (possibly infinite) set of concrete proper-
ties it represents. Program analysis is then performed by abstractly executing
a program P to be analyzed in the abstract domain rather than in the concrete
one. For this, abstract counterparts of the concrete operations of P have to be
developed. These abstract operations have to be a safe approximation, in the
sense that for every concrete operation op : 2C → 2C , the corresponding abstract
operation opα : AD → AD must satisfy γ (opα(A)) ⊇ op(γ (A)).

Under certain conditions (see Cousot and Cousot [1977, 1992]) the overall
result abs sem(P, A) of the abstract execution of P for some abstract input value
A is then also a safe approximation of the concrete properties of the program,
in the sense that:

γ (abs sem(P, A)) ⊇ sem(P, γ (A)).

3Programs are usually analyzed for a set of calls rather than for an individual call. Also, sometimes
the semantics function is goal-independent and assigns every program P its concrete semantics
sem(P).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

422 • Michael Leuschel

3.3 Partial Deduction as Abstract Interpretation

Proposition 3.2 shows that we can view the set of (concrete) atoms A of a partial
deduction also as an abstract program property, approximating the call set calls.
If we try to view this in abstract interpretation terms, we would have to choose
C = Q as concrete domain and AD = 2Q as abstract domain. The proposition
also suggests a concretization function γinst defined by

γinst(S) = {Aθ | A ∈ S ∧ θ is a substitution}.
Thus γinst({p(X , X)}) contains, for example, p(a, a), p(b, b), p(X , X), but not
p(a, b). An atom in the abstract domain thus represents all its instances in the
concrete domain (and thus also itself).

Observe that if P ′ ∪ {← Q} is A-closed then so is P ′ ∪ {← Qθ} for any sub-
stitution θ . We can thus obtain an instance of our equation γ (abs sem(P, A)) ⊇
sem(P, γ (A)) above, by using A = {Q}, sem(P, Qs) = ⋃

Q ′∈Qs calls(P, Q ′), and
by substituting abs sem(P, A) = A, yielding the equation:

γinst(A) ⊇
⋃

Q ′∈γinst({Q})
calls(P, Q ′).

In other words, the set A of atoms of a partial deduction is a safe approximation
of the call set, provided single unfolding steps are used and P

⋃{← Q} is A-
closed.

Controlling Partial Deduction. Can we also cast the process of constructing
A in an abstract interpretation manner, that is, as executing abstract coun-
terparts of concrete operations? To answer this question we first present more
details on how partial deduction is actually controlled.

We first need the following definition.

Definition 3.4. An unfolding rule is a function that, given a program P
and a conjunction Q , returns the resultants resultants(τ) of a finite, non-trivial
SLD-tree τ for P ∪ {← Q}.

We also define the operation split : 2Q → 2Atoms by

split(S) = {Ai | A1 ∧ . . . ∧ Ai ∧ . . . ∧ An ∈ S}.
Next, the operation resolve : Clauses × Q → 2Q resolves a clause with a

conjunction and is defined by

resolve(C, A1 ∧ . . . ∧ An) = {A1 ∧ . . . Ai−1 ∧ Bθ ∧ Ai+1 . . . ∧ An |
θ = mgu(H, Ai) and H ← B is a renamed apart version of C}.

The following is a typical way (see, e.g., [Gallagher 1991; Gallagher 1993;
Leuschel and Bruynooghe 2002]) of controlling classical partial deduction
[Lloyd and Shepherdson 1991].

Procedure 1 (Classical Partial Deduction)
Input: A program P and a conjunction Q
Output: A specialized program P ′ and a set of atoms Ai such that P ′ ∪ {← Q}
is Ai-closed.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 423

Initialize: i = 0, A0 = split(Q)
repeat

let Ri := {R | R ∈ resolve(C, A)∧ A ∈ Ai ∧ C ∈ unfold(P, A)};
let Ni := {N | N ∈ split(Ri)∧ N �∈ γinst(Ai)};
let Ai+1 := generalize(Ai ∪ Ni); let i := i + 1;

until Ai−1 = Ai
Let P ′ = ⋃

A∈Ai
unfold(A).

The procedure is parametrized by two operations: an unfolding rule unfold
(cf, Definition 3.4) and a generalization operation generalize. The former is usu-
ally referred to as the local control while the latter embodies the so-called global
control and must satisfy γinst(generalize(S)) ⊇ γinst(S). This guarantees that if
the procedure terminates, then P ′∪{← Q} is Ai-closed. generalize is usually de-
vised such that Procedure 1 terminates (cf, [Leuschel and Bruynooghe 2002]),
and can then be seen as a widening operator in the abstract interpretation
sense. More on that below.

The use of the split operation embodies the fact that classical partial deduc-
tion specializes individual atoms and not conjunctions.

Fixpoints. Before formally defining our concrete semantics, we need the
following concepts.

Let T be a mapping 2D �→ 2D, for some D. We then define T ↑0 (S) = S and
T ↑i+1 (S) = T (T ↑i (S)). We also define T ↑ω (S) = ⋃

i<ω T ↑i (S).
By the well known Knaster-Tarski fixpoint theorem we know that if T is

monotonic (I ⊆ J ⇒ T (I) ⊆ T (J)) then T has a least fixpoint. Another well
known fact is that if T is continuous (i.e., T is monotonic and for every sequence
I0 ⊆ I1 ⊆ . . . we have T (

⋃
n<ω In) ⊆ ⋃

n<ω T (In)) then T ↑ω (∅) is its least
fixpoint. Furthermore, it is also easy to see (by applying the above to TS(I) =
T (I) ∪ S) that T ↑ω (S) will be the least fixpoint containing S.

Concrete Semantics. We can now formalize our concrete semantics, the call
set from Definition 3.1, in terms of a least fixpoint of a concrete operator RP :
2Q → 2Q defined by

RP (S) = S ∪
⋃

Q∈S ∧ C∈P

resolve(C, Q).

RP is monotonic and continuous and RP ↑ω thus computes least fixpoints.
The least fixpoint RP ↑ω (Q) of this operator does not yet give us the call set
calls(P, Q); it computes all possible subgoals for P ∪ {← Q}, not the selected
atoms within the subgoals. To extract the selected atoms we can use the split
operation introduced above, and we can express the call set in terms of RP as
follows: calls(P, Q) = split(RP ↑ω ({Q})).

Abstract semantics. We will now try to reformulate Procedure 1 as comput-
ing a fixpoint of an abstract version of RP . Let us first define the following

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

424 • Michael Leuschel

abstract operator Rα
P : 2Atoms → 2Atoms defined by

Rα
P (S) = S ∪

⋃

A∈S ∧ C∈unfold(P, A)

resolve(C, A).

First, we would like to show that Rα
P is a sound approximation of RP and

that a fixpoint of Rα
P safely approximates the least fixpoint of RP .

It is straightforward to show (e.g., using Lemma 4.12 from Lloyd and
Shepherdson [1991]) that in the above definition and for single step unfold-
ing, we can replace the condition C ∈ unfold(P, A) simply by C ∈ P . Thus Rα

P
is actually identical to RP . However, we have to be careful as Rα

P works on the
abstract domain, where every conjunction represents all its instances. Thus, it
does not immediately follow that Rα

P is a safe approximation of RP . To establish
this, let us look at a single concrete resolution step performed by resolve(C, A).
As usual in abstract interpretation, we lift this concrete operation to sets of
atoms: resolve∗(C, S) = {resolve(C, A) | A ∈ S}. The abstract counterpart in
Rα

P is simply resolveα(C, A) = resolve(C, A), which is a sound approximation of
resolve, that is, γinst(resolveα(C, A)) ⊇ resolve∗(C, γinst(A)). This is a corollary of
Proposition 5.6 later in the paper. We have thus that

RP (γinst(A)) ⊆ γinst(Rα
P (A)).

In other words, Rα
P is a safe approximation of RP .

Observe that, in general, we do not have equality between γinst(resolveα(C, A))
and resolve∗(C, γinst(A)). Take, for example, C = p ← q(X) and A = p, and we
have q(a) ∈ γinst(resolveα(p ← q(X), p)) while resolve∗(C, γinst(A)) = {q(X)}.

In addition to Rα
P , Procedure 1 also applies the operations generalize and

split. The former has the property γinst(generalize(S)) ⊇ γinst(S) but unfortu-
nately, it is generally not the case that γinst(split(S)) ⊇ γinst(S). For example,
γinst({p(a), q(a)}) �⊇ γinst({p(a) ∧ q(a)}). In other words, we cannot view split as a
generalization operator with respect to γinst, and the output Ai of Procedure 1
is not a safe approximation of the least fixpoint of RP .

To remedy this problem we have to use a different concretization function
γ ∧

inst that acknowledges the fact that conjunctions can be split up and that is
defined by

γ ∧
inst(S) = {Q1 ∧ . . . ∧ Qn | Qi ∈ γinst(S)}

For γ ∧
inst, split is a generalization operation: γ ∧

inst(split(S)) ⊇ γ ∧
inst(S), and

so is generalize: γ ∧
inst(generalize(S)) ⊇ γ ∧

inst(S). Also, the condition N �∈ γinst(Ai)
obviously does not affect the concretizations of Ai. This means that termination
of Procedure 1 implies that Ai is a semantic fixpoint with respect to γ ∧

inst, in
the sense that: γ ∧

inst(Ai) = γ ∧
inst(R

α
P (Ai)). Even when not using Procedure 1, A-

closedness of P ′ in Theorem 2.7 ensures that A is a semantic fixpoint of Rα
P :

γ ∧
inst(A) = γ ∧

inst(R
α
P (A)).

Also, if an operation is a safe approximation with respect to γinst then it is
also a safe approximation with respect to γ ∧

inst. We have thus that

RP (γ ∧
inst(A)) ⊆ γ ∧

inst(R
α
P (A)).

In other words, Rα
P is a safe approximation of RP with respect to γ ∧

inst, and one

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 425

can establish using the abstract interpretation framework that a fixpoint of Rα
P

safely approximates the least fixpoint of RP with respect to γ ∧
inst.

From this we can thus conclude that A-closedeness of P ′ ∪ {← Q} in Propo-
sition 3.2 ensures that RP ↑ω (γ ∧

inst({Q})) ⊆ γ ∧
inst(A). As split is monotonic with

respect to γ ∧
inst, we can formally deduce Proposition 3.2 as follows: calls(P, Q) ⊆

calls(P, γ ∧
inst({Q})) = split(RP ↑ω (γ ∧

inst({Q}))) ⊆ split(γ ∧
inst(A)) = γinst(A) = {Aθ |

A ∈ A}.
In summary, we have re-formulated partial deduction as a particular abstract

interpretation, where

—the abstract domain is simply the powerset of the concrete domain,
—the concretization function simply instantiates variables,
—the concrete semantics is based on SLD resolution,
—and where we have used this to formally prove Proposition 3.2.

Extension to Conjunctive Partial Deduction. Having recast the program
analysis aspect of classical partial deduction as a safe abstract interpreta-
tion, it is actually not very difficult to extend this result to conjunctive par-
tial deduction: the only4 modification to Procedure 1 is that instead of using
split we use a partitioning function (cf., De Schreye et al. [1999]) partition
satisfying γ ∧

inst(partition(S)) ⊇ γ ∧
inst(S). Whereas split always splits conjunc-

tions into its individual atoms, partition does not have to do so. For exam-
ple, while split({q(X) ∧ p(X) ∧ r(Z)}) = {p(X), q(X), r(Z)} we could have
partition({q(X) ∧ p(X) ∧ r(Z)}) = {p(X) ∧ q(X), r(Z)}.

The result Ai of the adapted conjunctive partial deduction Procedure 1 still
safely approximates the least fixpoint of RP with respect to γ ∧

inst, but we no
longer have split(γ ∧

inst(Ai)) = γinst(Ai) as Ai now may contain conjunctions.

3.4 Discussion

Having established a strong relationship between partial deduction and ab-
stract interpretation, what sets partial deduction apart from abstract interpre-
tation in general? The major difference is linked to the use of the unfolding rule
unfold within Rα

P (see also Puebla et al. [1997, 1999]):

—First, unless we use a simple one-step unfolding rule, this hides certain pro-
gram points from the analysis. These program points are not relevant from
the point of view of partial deduction, as they disappear within the residual
program.

—Second, partial deduction constructs residual code via unfold. While the ana-
lysis component of partial deduction is a safe approximation of the call set,
the requirements for the residual code are stronger: it must be totally cor-
rect. As we have seen in Theorem 2.7 the residual code preserves exactly the
computed answers (no over-approximation) and the finite failures. This is
something that the abstract interpretation framework does not provide.

4One actually also has to extend Definition 2.4 to perform a renaming from conjunctions in heads
of resultants to atoms.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

426 • Michael Leuschel

Thus, not all of partial deduction can be cast in an abstract interpretation
framework. Apart from those fundamental differences, there are further as-
pects that distinguish partial deduction from techniques commonly used to
perform abstract interpretation of logic programs.

—Partial deduction can make use of conjunctions [De Schreye et al. 1999] with
relatively little effort. This can be used to achieve optimizations such as
tupling and deforestation, and can increase precision by analyzing calls to-
gether, rather than in isolation. Logic program analysis techniques typically
do not analyze conjunctions, but analyze atoms in isolation (but have mech-
anisms of propagating some information from one call to another). However,
there are exceptions such as Boulanger and Bruynooghe [1993] and to some
extent also Marriott et al. [1990].

—The abstract domain of partial deduction is fixed and does not allow for very
precise generalization; for example, the most specific generalization possible
of p(a) and p(b) is p(X). To our knowledge, only one other abstract interpre-
tation technique [Marriott et al. 1988, 1990] uses the same abstract domain.
The abstract domain has the advantage of being close to the concrete do-
main, and we can obtain very precise results as long as we do not need gen-
eralization (in the absence of existential variables, abstract execution will be
identical to concrete execution).

—In abstract interpretation of logic programs one distinguishes between
bottom-up methods, based on approximating goal-independent, declarative
semantics (usually TP or model based) and top-down methods based on ab-
stracting a goal-dependent, top-down semantics (operational semantics or
denotational).

Partial deduction uses the SLD procedural semantics as its basis (embod-
ied within RP) and is thus top-down. However, the use of the SLD procedural
semantics is rather atypical. This makes it easier to generate residual code,
but makes it difficult or impossible to analyze certain other properties. No-
tably, no real information about the answers is derived (just about the call
set). Very few abstract interpretation techniques use the SLD procedural se-
mantics as its basis (exceptions are, e.g., Jones and Søndergaard [1987] and
Comini and Meo [1999]). A more popular semantics for top-down abstract
interpretation is based on And-Or trees [Bruynooghe 1991; Hermenegildo
et al. 1992; Janssens and Bruynooghe 1992; Muthukumar and Hermenegildo
1992; Le Charlier and Van Hentenryck 1994], where it is easier to capture
and propagate success information.

The various limitations of partial deduction have been realized by many re-
searchers (e.g., de Waal and Gallagher [1991, 1994], Gallagher and de Waal
[1992], Puebla and Hermenegildo [1995], Leuschel [1995], Leuschel and
Martens [1995], Leuschel and De Schreye [1996], Puebla et al. [1997, 1999]),
and various extensions of partial deduction have been developed over the years
(e.g., Gallagher and Bruynooghe [1991], Leuschel and De Schreye [1996, 1998],
Leuschel et al. [1998], Gallagher and Peralta [2001]) which overcome this par-
ticular limitation.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 427

We have made the link of existing partial deduction techniques to abstract
interpretation clearer, and will use this as the basis of extending partial de-
duction and conjunctive partial deduction to new abstract domains. We will
then provide generic correctness results for this new setting of abstract par-
tial deduction, and also illustrate the power of this new approach on practical
examples.

4. ABSTRACT DOMAINS FOR SPECIALIZATION

In this short section we introduce the concept of abstract domains as required
for our framework. First, we need the following definitions. An expression is
either a term, an atom or a conjunction of atoms. We use E1 � E2 to denote
that the expression E1 is an instance of the expression E2. By vars(E) we
denote the set of variables appearing in an expression E. By mgu we denote
a (deterministic) function which computes an idempotent and relevant5 most
general unifier θ of two expressions E1 and E2 (and returns fail if no such
unifier exists).

As above, we denote by Q the set of all conjunctions. As we have seen, even
when performing classical partial deductions on atoms only, conjunctions will
still appear, for example, in the leaves of the SLD-trees produced by the unfold-
ing rules. This justifies why our concrete domain for abstract partial deduction
talks about conjunctions rather than atoms.

For Q we assume that the connective ∧ is associative but not commutative
nor idempotent. In other words, for us a conjunction can also be viewed as a
list of atoms, but not as a set or multi-set of atoms. This assumption is of rele-
vance mainly for Section 7, where we deal with code generation for conjunctive
(abstract) partial deduction.

Definition 4.1. An abstract domain (AQ, γ) is a pair consisting of a set AQ
of so-called abstract conjunctions and a total concretization function γ : AQ →
2Q, providing the link between the abstract and the concrete domains, such
that ∀A ∈ AQ the following hold:

(1) ∀Q ∈ γ (A) we have {Qθ | θ is a substitution } ⊆ γ (A),
(2) ∃Q ∈ Q such that γ (A) ⊆ {Qθ | θ is a substitution }.

Property 1 expresses the requirement that the image of γ (.) is downwards
closed. This means that certain properties, such as freeness (e.g., Muthukumar
and Hermenegildo [1991]) cannot be captured, but downwards closedeness is
required for our correctness proofs.

Property 2 expresses the fact that all conjunctions in γ (A) have the same
number of conjuncts and with the same predicates at the same position. This
property is crucial to enable the construction of (correct) residual code. A con-
junction Q satisfying property 2 is called a concrete dominator of A. An abstract
conjunction such that its concrete dominators are all atoms is called an abstract
atom.

5I.e., θθ = θ and vars(θ) ⊆ vars(E1) ∪ vars(E2). There can be several most general unifiers that
satisfy that criterion; the particular choice is, not important.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

428 • Michael Leuschel

Observe that property 2 still admits the possibility of a bottom element ⊥
whose concretization is empty.

One particular abstract domain, which arises in the formalization of (clas-
sical) partial deduction [Lloyd and Shepherdson 1991] and which we have en-
countered in Section 3.3, is the PD-domain defined as follows.

Definition 4.2. The PD-domain is the abstract domain (Q, γinst) where γinst
is defined by γinst(Q) = {Q ′ | Q ′ � Q}.

In other words, we have AQ = Q (i.e. the abstract conjunctions are the
concrete ones) and an abstract conjunction denotes the set of all its instances.
For example, we can use the (concrete) conjunction p(X) ∧ q(X) as an abstract
conjunction in the PD-domain with p(a) ∧ q(a) ∈ γinst(p(X) ∧ q(X)) as well as
p(X) ∧ q(X) ∈ γinst(p(X) ∧ q(X)), but p(a) ∧ q(b) �∈ γinst(p(X) ∧ q(X)).

Using the concrete conjunctions as abstract conjunctions is potentially con-
fusing, which has probably obfuscated the relationship between partial deduc-
tion and abstract interpretation in the past.

5. ABSTRACT UNFOLDING AND RESOLUTION

Let us now try to remove one limitation of classical partial deduction in general
and Procedure 1 in particular: its limitation to the PD-domain. We will tackle
the extension to conjunctive partial deduction later in Section 7, although in
the exposition below we will (whenever there is no harm to clarity) keep the
definitions as general as possible so as to simplify the move to conjunctive
partial deduction.

The result of resolve(C, A) in Procedure 1 is actually the body of the re-
sultant C generated by unfold for P ∪ {← A}. Now, a subtle, but important
point is that the body of a resultant is thus used in two different ways: First,
it is obviously part of the residual code. Second, it is used as abstract con-
junctions in the PD-domain, representing all possible resolvents. In summary,
the body of a resultant is not only used as a concrete conjunction within the
residual code, it is also used as an abstract conjunction for a program analy-
sis of the call set (to ensure that all possible calls are covered by the residual
code).

In the more general setting we endeavor to develop, these two roles of the
bodies of resultants have to be separated out (the residual program still has
to be expressed in the concrete domain but we want to be able to use abstract
domains different from thePD-domain). This has already been prepared within
Procedure 1 by using the two functions unfold and resolve. All we have to do
now, is to generalize these two functions. In other words, if we want to specialize
an abstract atom A within a program P :

(1) we have to compute a set of resultants, to be denoted by aunfold(P, A) that
have to be “totally correct” for all possible calls in γ (A), ensuring that no
computed answers will be lost or added within the specialized program (we
will make this more precise below).

(2) we have to compute, for each resultant Ci in aunfold(P, A) an abstract
conjunction Ai, to be denoted by aresolve(Ci, A), safely approximating all

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 429

the possible resolvent goals that can occur after resolving an element of
γ (A) with C.

We will call step 1 abstract unfolding and step 2 abstract resolution, and will
formally define these concepts in Definitions 5.3 and 5.4 below. For this we need
a few auxiliary concepts.

First, we want to be able to formally define when the resultants produced by
aunfold(P, A) for a particular abstract conjunction A are correct, independently
of how the rest of the specialized program looks. In other words, we want a
local correctness criterion, just considering the resultants generated for A. The
problem is that these resultants are incomplete; they will typically refer to
other predicates defined somewhere else in the final specialized program P ′ and
we cannot execute the resultants aunfold(P, A) in isolation. We can, however,
perform single resolution steps on these resultants. Suppose, for example, that
← p(X) resolves with a resultant p(Z) ← q(Z) ∈ aunfold(P, A) giving us the
resolvent ← q(Z) and the mgu θ = {X/Z }. We cannot view θ as a computed
answer substitution for P ′ ∪ {← p(X)}, but we can view the pair 〈q(Z), θ〉 as a
conditional answer for P ′ ∪ {← p(X)}: if we manage to find a computed answer
substitution σ for P ′ ∪ {← q(Z)} then θσ restricted to the variable X will be a
computed answer substitution for P ′ ∪ {← p(X)}.

So, in order to reason about correctness of resultants individually, we need to
show that the conditional answers obtained using aunfold(P, A) can be put into
a one-to-one correspondence with conditional answers of the original program.
To be able to express this formally, we now define the concept of conditional an-
swers as obtained from possibly incomplete SLD-trees in the original program
and from resultants.

Definition 5.1 (❀τ , ❀R). Let P be a program and Q a conjunction. Given
an SLD-tree τ for P ∪ {← Q} we denote by Q❀τ 〈L, θ〉 the fact that a leaf goal
← L of τ can be reached from Q via computed answer substitution θ . 〈L, θ〉 is
also called a conditional computed answer for Q in P .

Given a resultant R and a conjunction Q we denote by Q❀R〈L, θ〉 the fact
that θ = θ ′ ↓vars(Q), L = Bθ ′ where θ ′ = mgu(Q , H), H ← B is some variant
of R that has no variables in common with Q , and θ ′ ↓vars(Q) denotes the
restriction of θ ′ to the variables in Q .

If Q and the head of R are atoms Q❀R〈L, θ〉 is equivalent to saying that
← Q resolves with the clause R via computed answer substitution θ yielding
← L as resolvent. For example, p(X , b)❀p(a,Z)←q(Z)〈q(b), {X /a}〉. The above def-
inition can also be applied if Q is a conjunction and R is a resultant that is not
a clause. Take for example, R = p1(a) ∧ p2(Z) ← q(Z) and Q = p1(X) ∧ p2(b).
We then obtain Q❀R〈q(b), {X /a}〉. This will be of relevance mainly when we
consider conjunctive partial deduction. Intuitively this treatment does not in-
troduce a new computation paradigm; it just corresponds to renaming conjunc-
tions into atoms and general resultants into Horn clauses and then applying
ordinary resolution. In the above example, if we rename Q into Q ′ = p′(X , b)
and R into R ′ = p′(a, Z) ← q(Z) we obtain the same partial computed answer
Q ′❀R ′ 〈q(b), {X /a}〉.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

430 • Michael Leuschel

❄

❄ ❄

. . .
θ

❆❆
❆
❆

.
❅

❅
❅

❅❘

✠

← L′

〈L, θ〉 ≈Q 〈L′, θ ′〉

C1 Cn

Ci

← Q

← L

An SLD-tree τ for P ∪ {← Q} Resolving Q with aunfold(P, A) = {C1, . . . , Cn}

❍❍❍❥

✂
✂✂✌

✚
✚❂

← Q

θ ′

Fig. 2. One-to-one correspondence of conditional computed answers for abstract unfolding .

Observe that Q❀τ 〈L, θ〉 implies that ∃R ∈ resultants(τ) such that
Q❀R〈L, θ〉.

In order to define correctness criteria, we have to reason about equivalence
of conditional computed answers and computed answer substitutions in the
original program and in the residual program. However, substitutions (and
renaming substitutions) within SLD-trees are notoriously difficult to handle
(see Ko and Nadel [1991] or Doets [1993]), and proving identity of computed
answer substitutions is often very tricky or impossible to achieve. To avoid these
technical problems we introduce the following notion, characterizing when two
conditional computed answers are equivalent (in the context of a particular
goal Q).

Definition 5.2 (≈Q). Given three conjunctions Q , L, L′ and two substitu-
tions θ , θ ′ we say that 〈L, θ〉 ≈Q 〈L′, θ ′〉 if and only if Qθ ← L is a variant of
Qθ ′ ← L′.

For example, we have 〈q(Z), {X/Z }〉 ≈p(X) 〈q(V), {X/V , Z/V }〉 as p(Z) ←
q(Z) is a variant of p(V) ← q(V).

We can now formalize the notion of abstract unfolding and resolution.

Definition 5.3. Let (Q, γ) be an abstract domain. An abstract unfolding
operation aunfold for a program P and (Q, γ) maps abstract conjunctions to
finite sets of resultants and has the property that for all A ∈ AQ and Q ∈ γ (A)
there exists a non-trivial SLD-tree τ for P ∪ {← Q} such that:

Q❀τ s1 ⇒ ∃Ci ∈ aunfold(P, A) | Q❀Ci s2 ∧ s1 ≈Q s2 (1)

Q❀Ci s2 ∧ Ci ∈ aunfold(P, A) ⇒ ∃s1 | Q❀τ s1 ∧ s1 ≈Q s2 (2)

Point 1 requests that the code generated by aunfold is complete in the sense
that every conditional computed answer s1 can be reproduced by at least one of
the resultants in aunfold(P, A). Point 2 additionally requests soundness (as we
want to have residual code that is totally correct and not just a safe approxima-
tion), in the sense that every conditional computed answer s2 can be achieved
within the original program as well. Together, Points 1 and 2, thus express that
there must be a one-to-one correspondence between conditional computed an-
swers in the original program and the resultants aunfold(P, A). Some of these
points are illustrated in Figure 2 below (where s1 = 〈L, θ〉 and s2 = 〈L′, θ ′〉).
ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 431

Definition 5.4. Let (Q, γ) be an abstract domain. An abstract resolution
operation aresolve for (Q, γ) maps abstract conjunctions and concrete resul-
tants to abstract conjunctions such that for all A ∈ AQ, Ci ∈ aunfold(P, A),
and Q ∈ γ (A):

Q❀Ci 〈L′, θ ′〉 ⇒ L′ ∈ γ (aresolve(A, Ci)). (3)

Point 3 requires that Ai = aresolve(A, Ci) is a safe approximation of the
possible resolvents of Ci, in the sense that every possible resolvent of Q ∈ γ (A)
with Ci is a concretization of Ai (but not necessarily vice-versa).

Unless explicitly stating otherwise, we suppose that the abstract unfolding
aunfold and abstract resolution operators aresolve, along with the abstract
domain (Q, γ), are fixed.

How to construct abstract unfoldings. aresolve is thus basically a safe
approximation of a resolution step, and we can thus develop aresolve by
reusing abstract interpretation techniques. We will thus not discuss this is-
sue in much detail here, but refer the reader to the abstract interpretation
literature.

The development of a correct abstract unfolding operation is another issue,
and is not something that can be found within the abstract interpretation
literature.

Note that the definition of aunfold does not stipulate how the resultants are
to be obtained; it just describes how a “correct” set of resultants should look.
In particular, in contrast to classical partial deduction, the resultants do not
necessarily have to be extracted from SLD-trees. In classical partial deduction,
we have aunfold(P, A) = resultants(τ ′) where τ ′ is an SLD-tree for P ∪ {← A},
and the conditions of Definition 5.3 are thus trivially met (we have to choose
as τ for P ∪ {← Q} and “adapted” version of τ ′ where some branches may be
removed as Q is an instance of A).

Many unfolding techniques have been developed in the context of clas-
sical partial deduction. Issues for concern are [Leuschel and Bruynooghe
2002]: termination (i.e., building finite SLD-trees), achieving good specializa-
tion and avoiding slowdowns. To ensure termination, well-founded measures
[Bruynooghe et al. 1992; Martens and De Schreye 1996] and well-quasi-orders
can be used [Sahlin 1993; Bol 1993]. The well-quasi orders based on the home-
omorphic embedding relation [Sørensen and Glück 1995; Leuschel 1998a] have
recently been very popular. To avoid slowdowns, determinacy [Gallagher and
Bruynooghe 1991; Gallagher 1991], only selecting atoms that unify with a
single clause head, has been successful. The strategy can be refined with a
so-called “look-ahead” to detect failure at a deeper level. We refer the inter-
ested reader to Leuschel and Bruynooghe [2002] for a recent survey of these
techniques.

For abstract partial deduction, we can always do a similar thing: given A
chose a concrete dominator A of A (cf., Point 2 of Definition 4.1), construct an
SLD-tree τ for P ∪ {← A} and simply set aunfold(P, A) = resultants(τ). This
always satisfies Definition 5.3. The following example illustrates this on the
PD-domain.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

432 • Michael Leuschel

τ :τ2:τ1:

❄fail

{Z /[a|Y], T/X , H/a}

← eq(X , Y)

{Y /[a|Y ′′]}

← eq([b], Y ′′)
❄

← eq([a|T], Z)← eq([a], [b]) ← eq([a, b], Y)

Fig. 3. SLD-trees for Example 5.5.

Example 5.5. Let P be the following program checking equality of lists:
eq([], []) ←
eq([H|X], [H|Y]) ← eq(X , Y).

Let A = eq([a|T], Z) in the PD-domain and let τ be the SLD-tree depicted in
Figure 3 for P ∪ {← eq([a|T], Z)} (i.e., we use A as a concrete dominator of
itself). Let us perform abstract unfolding in a classical manner, by taking the
resultants of τ :

—aunfold(P, A) = resultants(τ) = {C1}, where C1 = eq([a|X], [a|Y]) ←
eq(X , Y),

—aresolve(A, C1) = eq(X , Y).

These two definitions satisfy all points of Definitions 5.3 and 5.4 for A. For
example, let us examine the 2 concretizations A1 = eq([a], [b]) ∈ γinst(A) and
A2 = eq([a, b], Y) ∈ γinst(A) of A. Figure 3 shows that for each of those we
can construct SLD-trees that satisfy Definition 5.3. For example, A1 has a
failed SLD-tree and A1 does not unify with the head eq([a|X], [a|Y]) of C1
either. We thus trivially have the required one-to-one correspondence of con-
ditional answers (and satisfy Definition 5.4 as well). For A3 we have A3❀C1

〈eq([b], Y ′), {Y /[a|Y ′]}〉 and A3❀τ3〈eq([b], Y ′′), {Y /[a|Y ′′]}〉
We have 〈eq([b], Y ′), {Y /[a|Y ′]}〉 ≈A3 〈eq([b], Y ′′), {Y /[a|Y ′′]}〉 and thus again
the required one-to-one correspondence.

While computing aunfold by taking the resultants from SLD-trees of con-
crete dominators is correct, it does not yet make much use of the information
within A. One can use the information within A to further instantiate those
resultants, inspired by the more specific resolution steps [Gallagher 1991] or
the most specific versions of Marriott et al. [1988, 1990]. For example, replacing
C1 in Example 5.5 by eq([H|X], [H|Y]) ← eq(X , Y) is also correct. Also, even
replacing C1 by eq([Z |X], [a|Y]) ← eq(X , Y) is still correct. But note that this
resultant is no longer sound for calls that are not concretizations of A (e.g.,
the call ← eq([b], [a]) yields a conditional computed answer 〈eq([], []), {}〉 that
cannot be matched by the original program). We will return to this issue in
Section 10.

One further possible improvement, is to remove from resultants(τ) all those
resultants Aθ ← B that, although they resolve with A, cannot resolve with any
concretization of A. This again, always satisfies Definition 5.3, as the following
proposition shows.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 433

PROPOSITION 5.6. Let Q be an abstract conjunction and let Q be a concrete
dominator for Q. Let τ be a SLD-tree for P ∪ {← Q} and let R ⊆ resultants(τ)
be a set of resultants such that for all resultants Qθ ← B ∈ (resultants(τ) \ R)
we have that no instance of Qθ is in γ (Q). Then aunfold(P, Q) = R satisfies
Definition 5.3.

PROOF. (Sketch) Let us first assume that R = resultants(τ), that is,
aunfold(P,Q) = {Qθ1 ← B1, . . . , Qθk ← Bk} are the resultants of a finite SLD-
tree τQ for P ∪ {← Q}. Now take Qσ ∈ γ (Q) and build the SLD-tree τ for
P ∪{← Qσ } according to τQ (i.e., selecting the same literals, to the same depth;
some branches might be missing in τ because of failed unifications). All the
requirements of Definitions 5.3 and 7.1 are met:

—Point 1: This is a direct corollary of Lemma 4.12 in Lloyd and Shepherdson
[1991].

—Point 2: This is a direct corollary of Lemma 4.9 in Lloyd and Shepherdson
[1991] (cf., proof of Lemma 8.3 for more details).

—Point 4: Take Q ′ = Q . This will unify with all Qθi via mgu σ and we thus
have Q❀Ci 〈Biσ, σ 〉.

body trivially satisfies Definition 5.4: if some Qγ resolves with H via mgu θ we
get the resolvent Bθ which is a concretization of B.

Now, if R ⊂ resultants(τ) we only have to re-check Point 1. We can deduce
that the head H of every resultant C ∈ (resultants(τ) \ R) does not unify with
Qσ , because any instance of H is not in γ (Q) while any instance of Qσ is.
Hence, again by Lemma 4.12 in Lloyd and Shepherdson [1991] we can deduce
that the branch corresponding to C in τ is finitely failed.

The following simple example illustrates this possibility. (Note that we de-
note by � the empty goal as well as the empty conjunction.)

Example 5.7. Let P be the following program:
(C1) p(a) ←
(C2) p(f (X)) ← p(X)
(C3) p(g (X)) ← p(X).

Let A be an abstract atom within some abstract domain (Q, γ) such that
γ (A) = {p(a), p(g (a)), p(g (g (a))), . . .}. Then aunfold(P, A) = {C1, C3} ,
aresolve(A, C1) = � and aresolve(A, C3) = A is correct with respect to Defi-
nitions 5.3 and 5.4. We were thus able to safely remove the redundant clause
C2, in the style of de Waal and Gallagher [1991, 1994], Gallagher and de Waal
[1992], (which detects and removes redundant clauses as a post-processing).

Gallagher and Peralta [2000, 2001] and Leuschel and Gruner [2001] show
how such abstract unfoldings can be developed for a particular abstract domain
based upon regular types. Leuschel and Gruner [2001] also show how resultants
can be instantiated using the regular type information.

But even more exotic abstract unfoldings are possible. Suppose for example
that the computed instances of some concrete dominator A of A are a superset

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

434 • Michael Leuschel

{}

{}

{}

�

�
��✴

�
��✴

�

← eq([], [])

❄

← eq([a], [a])

← eq([], [])

τ1 : τ2 :

Fig. 4. SLD-trees for Example 5.8.

of γ (A). One can then just create a single fact for aunfold(P, A); for example, if
A = p(f (X), Z) simply produce aunfold(P, A) = {p(X , Y) ←}.

Observe, that in Definition 5.3 above, nothing forces one to use the same
structure (i.e. same selected literal positions, same clauses) for all the con-
cretizations of A. Indeed, this enables some very powerful optimizations not
achievable within existing “classical” specialization frameworks. For instance,
in the example below we are able to completely eliminate a type-like check from
the residual program.

Example 5.8. Let P be the program from Example 5.5 and A be the set
of all calls eq(t, t) where t is a bounded list—a list whose skeleton is fixed but
whose individual elements can be variables or contain variables. For example,
eq([], []) and eq([X], [X]) are in γ (A) but not eq([], [a]) nor eq([X |T], [X |T]). This
obviously cannot be represented in the PD-domain.

Then aunfold(P, A) = C1 = {eq(X , Y) ←} and aresolve(A, C1) = � are cor-
rect according to the above definition! Take the concretizations A1 = eq([], [])
and A2 = eq([a], [a]). We have A1❀C1〈�, {}〉 and A2❀C1〈�, {}〉 As can be seen in
Figure 4 we can produce for each of them an SLD-tree (with a different struc-
ture) that satisfies Definitions 5.3 and 5.4.
One can thus generate the residual program:

eq(X , Y) ←
Observe that this residual code is only sound for concretizations of A but not,
for example, for the call eq(a, []).

To our knowledge, these powerful optimizations are not possible within ex-
isting partial deduction or partial evaluation techniques. It is related to the
notion of abstract executability used in Puebla and Hermenegildo [1995, 1996,
1999]. In practice, such optimizations can be very useful and have already been
implemented, for example, in the static assertion checker of the Ciao Prolog
preprocessor Puebla et al. [2000a, 2000b].

One can extend this approach to cover built-ins as well. If we know that a
given variable X represents an integer we can, for example, specialize both
atomic(X) or number(X) into true. One can imagine various other optimiza-
tions not possible in conventional techniques based upon the PD-domain, like
specializing arg or functor calls based upon type information of the arguments.
A similar idea has been used in Puebla and Hermenegildo [1996, 1999] to re-
move redundant tests and calls to builtins from the residual program, which

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 435

analysis information allows abstractly executing to true, false, or error. This
technique has been applied to optimizing automatically parallelized programs.

In summary, we believe that our framework is very general, and has the
potential to cover many new, specialization techniques. While it is still far from
trivial to develop those, proving the correctness of such new specialization meth-
ods should now be much easier.

6. ATOMIC ABSTRACT PARTIAL DEDUCTION

The definition of an abstract partial deduction is now very straightforward:

Definition 6.1 (Abstract Atomic Partial Deduction). Let P be a program, A
a set of abstract atoms and aunfold is an abstract unfolding rule. We then define
the abstract atomic partial deduction of P with respect to A and aunfold to be
the program P ′ = {C | C ∈ aunfold(P, A)∧ A ∈ A}. We also call P ′ an abstract
atomic partial deduction of P with respect to A.

6.1 Correctness of Atomic Abstract Partial Deduction

If we have an abstract unfolding aunfold at our disposal, all we have to figure
out is which set A of abstract atoms we should use in the above definition, so as
to obtain a correct partial deduction. What we need is the abstract counterpart
of the A-closedness condition in Theorem 2.7. In other words, we have to find a
condition that ensures that every possible call R that can occur when running
the residual program is covered by an appropriate abstract atom A ∈ A such
that R ∈ γ (A). In Section 3.3 we have seen that the A-closedness of classical
partial deduction could be reformulated asA being a fixpoint of the operator Rα

P ,
which is a safe approximation of the concrete operator RP computing subgoals
and calls. We will use that approach here.

We build upon aunfold and aresolve to extend the Rα
P operator from Sec-

tion 3.3 into an operator R A
P mapping sets of abstract conjunctions to sets of

abstract conjunctions in the following way:

R A
P (S) = S ∪ {aresolve(A, C) | A ∈ S ∧ C ∈ aunfold(P, A)}.

Intuitively, R A
P (A) is a safe approximation of all resolvents that can arise

after a single resolution step of a concretization of A with a clause in the atomic
partial deduction of P with respect to A using aunfold.

We could now say that we have A-closedness for abstract partial deductions
if and only if γ (R A

P (A)) ⊆ γ ∧(A), where, as in Section 3.3 we extend the con-
cretization function γ into γ ∧(S) = {Q1 ∧ . . . ∧ Qn | Qi ∈ γ (S)} so as to take
into account that conjunctions can be split up by partial deduction.

From an abstract interpretation perspective this is sufficient, as it would
ensure that A covers all possible subgoals that can occur when executing any
concretization of A using the partial deduction of P with respect to A and
aunfold. However, it is a bit too liberal in a partial deduction setting as it
would allow the concretizations of a single abstract atom or conjunction within
R A

P (A) to be covered by several abstract atoms within A. This would cause
problems when applying a renaming transformation, which, as we have seen
at the end of Section 2, helps overcome the “independence” condition, improves

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

436 • Michael Leuschel

performance, and is unavoidable for conjunctive partial deduction. Suppose, for
example, that A = {A1, A2}, R A

P (A) = {A1}, with aunfold(P, A1) = {p(f (X)) ←
p(X)} and aunfold(P, A2) = {p(g (X)) ←} and that γ (A1) ⊆ γ (A2) ∪ γ (A3) while
γ (A1) �⊆ γ (A2) and γ (A1) �⊆ γ (A3). We do have γ (A) = γ (R A

P (A)) but it would be
impossible to perform a renaming transformation in the classical sense, as we
cannot decide whether the call p(X) within aunfold(P, A1) should be mapped
to the renamed version of A1 or A2.

In order to circumvent these problems, we introduce the following concepts.

Definition 6.2. Let (AQ, γ) be an abstract domain. First, we extend γ to
sequences of abstract conjunctions by defining

γ (〈Q1, . . . , Qn〉) = {Q1 ∧ . . . ∧ Qn | 1 ≤ i ≤ n ⇒ Qi ∈ γ (Qi)}.
Let A be a set of abstract conjunctions. We say that an abstract conjunction

Q is covered by A if and only if there exists a sequence 〈Q1, . . . , Qn〉 of abstract
conjunctions such that ∀1 ≤ i ≤ n we have Qi ∈ A and γ (Q) ⊆ γ (〈Q1, . . . , Qn〉).
A set A′ of abstract conjunctions is covered by A if and only if every element of
A′ is covered by A.

For example, in the PD-domain, both p(a)∧q(a)∧ p(b) and p(b)∧ p(a)∧q(a)∧
p(c)∧q(c) are covered by {p(X) ∧ q(X), p(b)} but not p(a) nor p(a)∧ p(b)∧q(a).
Here it is of relevance that we treat ∧ as associative, but not as commutative
nor idempotent.

We can now define the abstract version of the A-closedness condition, which
ensures that renaming can always be performed. We also define the abstract
version of the independence condition from Definition 2.6 and Theorem 2.7.

Definition 6.3. We say that a set A of abstract conjunctions is covered with
respect to P and aunfold if and only if R A

P (A) is covered by A.
We say that A is independent if and only if ∀A1, A2 ∈ A with A1 �= A2 we

have γ (A1) ∩ γ (A2) = ∅.

We need one more definition before formulating our first correctness theorem.

Definition 6.4. Given two expressions L and L′, we write L ≈ L′ to denote
that L is a variant of L.

THEOREM 6.5. Let P ′ be an abstract atomic partial deduction of P with re-
spect to an independent set of abstract atoms A. Let A be covered with respect
to P and aunfold and let Q ∈ γ (A). Then

(1) If P∪{← Q} has an SLD-refutation with computed answer θ then P ′∪{← Q}
has an SLD-refutation with computed answer θ ′ such that Qθ ≈ Qθ ′.

(2) If P ′ ∪ {← Q} has an SLD-refutation with computed answer θ ′ then P ∪
{← Q} has an SLD-refutation with computed answer θ such that Qθ ≈ Qθ ′.

(3) If P ′ ∪ {← Q} has a finitely-failed SLD-tree then so does P ∪ {← Q}.
(4) If P ∪ {← Q} has a finitely-failed SLD-tree then so does P ′ ∪ {← Q}.

This theorem is a special case of the Theorems 8.2 and 8.7, which we present
and prove later.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 437

6.2 A Generic Procedure for Abstract Partial Deduction

We now define a generalization operator for abstract conjunctions, suitable for
our framework:

Definition 6.6. A generalization operator is a function6 ageneralize : 2AQ �→
2AQ such that A is covered by ageneralize(A)) for all A ∈ 2AQ.

A generalization operator is called atomic if for every S ∈ 2AQ, ageneralize(S)
is a set of abstract atoms.

An atomic generalization operator thus embodies the functions of both split
and generalize from Section 3.3. If A is a fixpoint of U (S) = ageneralize(R A

P (S))
then this ensures that A is covered.

Based upon the notions introduced above, we can now present a generic pro-
cedure for top-down program specialization, which tries to find such fixpoints,
in a very concise manner:

Procedure 2 (Abstract Partial Deduction)
Input: A program P and an abstract conjunction A
Output: A specialized program P ′

Initialize: i = 0, A0 = {A}
repeat

let Ai+1 := ageneralize(R A
P (Ai)); let i := i + 1;

until Ai−1 = Ai
Let P ′ be an abstract partial deduction with respect to Ai

It is obvious that if the above algorithm terminates, Ai is covered and hence,
for example, Theorem 8.2 can be applied. By combining widening operators
from the abstract interpretation literature with generalization operators from
the partial deduction literature, it is now possible to ensure termination of this
procedure.

One of the earliest [Martens et al. 1994] widenings for partial deduction for
the PD-domain was based on the most specific generalization or least general
generalization of a finite set of expressions E, denoted by msg(E), is the most
specific expression M such that all expressions in E are instances of M . The
msg can be effectively computed [Lassez et al. 1988] and given an expression
A, there are no infinite chains of strictly more general expressions [Huet 1980].
More refined widenings, are based upon well-founded orders, well-quasi orders
and characteristic trees (see, e.g, Gallagher and Bruynooghe [1991], Leuschel
et al. [1998], Leuschel [1998a], see also Leuschel and Bruynooghe [2002]).

Gallagher and Peralta [2000, 2001] and Leuschel and Gruner [2001] present
non-trivial generalization operators for abstract domains based upon regular
types.

6It is of course possible to give extra parameters to ageneralize, e.g., so that it can take the special-
ization history into account.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

438 • Michael Leuschel

7. CONJUNCTIVE ABSTRACT PARTIAL DEDUCTION

Classical partial deduction, as defined in Definition 2.4 specializes a set of atoms
A. Even though conjunctions of atoms may appear within the SLD-trees con-
structed for these atoms, only atoms are allowed to appear within A. A similar
picture holds for atomic abstract partial deduction, introduced in the previ-
ous Section 6, where only abstract atoms are allowed to appear within A of
Definition 6.1. In other words, when we stop unfolding, every conjunction at
the leaf is automatically split into its atomic constituents, which are then spe-
cialized (and possibly further abstracted) separately. This restriction often con-
siderably restricts the potential power of partial deduction, for example, pre-
venting the elimination of unnecessary variables [Proietti and Pettorossi 1991]
(also called deforestation and tupling).

To overcome this limitation in the setting of classical partial deduction,
De Schreye et al. [1999] present a relatively small extension of partial deduc-
tion, called conjunctive partial deduction. This technique extends the standard
partial deduction approach by considering sets S = {C1, . . . , Cn} where the ele-
ments Ci are now conjunctions of atoms instead of just single atoms. Conjunctive
partial deduction also solves a dilemma of classical partial deduction related
to efficiency and precision and makes the local control much easier (see, e.g.,
Leuschel and Bruynooghe [2002]).

All the definitions related to the abstract unfolding and abstract resolution
operations (5.1, 5.2, 5.3, 5.4) already cater for abstract conjunctions. Defini-
tions 6.6 and 6.3 also already cater for sets of abstract conjunctions. Thus, to
perform conjunctive partial deduction using Procedure 2 we just have to remove
the restriction that ageneralize is atomic. Of course, this raises a new termina-
tion problem: in addition to having to worry about infinitely many atomic atoms
ageneralize now also has to worry about an infinite number of growing abstract
conjunctions. In other words, the generalization operation ageneralize has to
be more refined. It has been well studied how to devise such generalization
operators for the PD-domain [Glück et al. 1996; De Schreye et al. 1999]. For
abstract conjunctive partial deduction, this has to be combined with widenings
from the abstract interpretation literature. Leuschel and Gruner [2001] show
how to do this for an abstract domain based upon regular types.

There is also the issue of code generation, which becomes more involved.
Indeed, the resultants C = Hi ← Bi in Definition 6.1 are not necessarily Horn
clauses (because Hi can be a conjunction). To transform such resultants back
into standard clauses, conjunctive partial deduction De Schreye et al. [1999]
employ a renaming transformation, from conjunctions to atoms, which practical
partial deduction systems already perform anyway. We will do the same here,
and present the full details in Section 7.1.

7.1 Generating Residual Code for Conjunctive Partial Deduction

All that is missing to present a generic abstract specialization algorithm is a way
of generating executable residual code from the resultants Hi ← Bi produced by
the abstract unfolding. For this we have to transform the resultants into Horn
clauses. This can be achieved by mapping the abstract conjunctions produced

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 439

by the flow analysis to concrete atoms and then appropriately renaming the
heads Hi and the bodies Bi.

Definition 7.1. An abstract unfolding operation aunfold is said to have the
no-garbage property if and only if the following equation holds:

∀A ∈ AQ ∀R ∈ aunfold(P, A) : ∃s∃Q ′ ∈ γ (A) | Q ′
❀Rs. (4)

This property prevents aunfold from producing garbage resultants, which
unify with no concretization. From now on we suppose that all abstract unfold-
ing operations satisfy this property. This obvious requirement will simplify the
code generation but it is not strictly necessary.

Before formalizing the whole renaming process, let us first examine, on a
simple example, how it can be achieved.

Example 7.2. Suppose we have the set A = {A1, A2} of abstract conjunc-
tions in the PD-domain with A1 = p(a, X) and A2 = p(b, Z)∧ p(Z , d). Suppose
that a resultant for A2 is

p(b, c) ∧ p(c, d) ← p(a, b) ∧ p(b, e) ∧ p(e, d).

In order to translate this resultant into a Horn clause we have to rename all
concretizations of A2 to atoms. For this we can chose an atom, say pp(Z), that
contains all the variables in A2 (viewed as a concrete conjunction). Now we can
rename the head of the resultant into pp(c) by instantiating Z to the proper
value. We now have a Horn clause, but we still have to rename the body so that
its conjunctions are renamed to call the proper residual predicates. For this
we split up the body into subconjunctions p(a, b), p(b, e) ∧ p(e, d) so that each
subconjunction is a concretization of an element in A. We can now rename each
subconjunction to obtain:

pp(c) ← p(a, b) ∧ pp(e).

In the above example we had to chose an atom (pp(Z)) with the same vari-
ables as the abstract conjunction A2 viewed as a concrete conjunction. Now, in
general, an abstract conjunction cannot be viewed as a concrete conjunction.
Hence we introduce the following concept, which allows us to derive for every
abstract conjunction a concrete one that covers all its concretizations.

Definition 7.3. Recall that a concrete dominator of an abstract conjunction
A is a concrete conjunction Q such that all Q ′ ∈ γ (A) are instances of Q . A skele-
ton for an abstract conjunction A is a maximally general concrete dominator of
A.

A skeleton for A2 in Example 7.2 is p(X 1, X 2) ∧ p(X 3, X 4). By Definition 4.1
of abstract domains we know that a concrete dominator (and thus skeleton)
exists for all abstract conjunctions.7 By &A' we denote some skeleton for A.

7There actually also exists a most specific concrete dominator (by existence of a most specific
generalization msg of two terms [Lassez et al. 1988] and the fact that the strictly more general
relation is a well-founded order [Huet 1980], i.e., the msg of all elements in γ (A) exists). In the
PD-domain this is the conjunction itself (viewed as a concrete conjunction).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

440 • Michael Leuschel

Definition 7.4. An atomic renaming ρ for a set of abstract conjunctions A
returns for every A ∈ A an atom A, denoted by ρA, such that vars(&A') =
vars(A). Also, for any Q � &A' we define ρA(Q) = Aθ where θ is such that
Q = &A'θ .

For A2 = p(b, Z)∧ p(Z , d), of Example 7.2 we might have &A2' = p(X 1, X 2)∧
p(X 3, X 4), ρA2 = pp(X 1, X 2, X 3, X 4). For Q = p(b, c) ∧ p(c, d) we then have
ρA2 (Q) = pp(b, c, c, d).

Observe that for all Q � &A' we have ρA(Qθ) = ρA(Q)θ , vars(Q) =
vars(ρA(Q)), and for all Q ′ � &A' we can also assume that mgu(Q , Q ′) =
mgu(ρA(Q), ρA(Q ′)) (see Lemma 8.5). Also, to avoid name clashes, we will al-
ways suppose that for any A �= A′ the predicate symbols used by ρA and ρA′ are
different.

Given a resultant Hi ← Bi ∈ aunfold(P, A) we can now produce an actual
Horn clause by renaming Hi and Bi. Renaming Hi is easy: we just calculate
ρA(Hi) (which is always defined as Hi � &A' by the Point 4 of Definition 7.1
of aunfold). If our flow analysis also contains Ai = aresolve(A, Hi ← Bi) (and
thus code for Ai will be generated) then renaming Bi is just as easy: we just
calculate ρAi (Bi). However, suppose that we have used generalization and that
we actually did not specialize Ai itself but rather the abstract conjunctions
G1, . . . , Gn such that Ai is covered by 〈G1, . . . , Gn〉 (just like in Example 7.2). In
that case Bi has to be split up and then renamed using the renaming functions
of the abstraction. We thus extend our atomic renaming function so that it
accomplishes this:

Definition 7.5. Given a concrete conjunction B, an abstract conjunction A,
and a set A of abstract conjunctions we define:

ρA,A(B) = ρG1 (B1) ∧ · · · ∧ ρGn (Bn)

where A is covered by 〈G1, . . . , Gn〉 and B = B1 ∧ · · · ∧ Bn is one possible way to
split up B such that Gi ∈ A and Bi � &Gi'. If no such partitioning exists then
we leave ρA,A(B) undefined.

Note, by Point 4 of Definition 7.1, we know that if we can find a sequence
〈G1, . . . , Gn〉 that covers A, then we can also find a partitioning of B such that
Bi � &Gi'. Also observe that Definition 6.2 of the “covers concept” and the fact
that we do not consider ∧ commutative, imply that we do not allow re-ordering
of conjunctions within B.8 It would be, however, relatively straightforward to do
so. One just has to be careful to use the same reordering for all concretizations
of A (otherwise it will be impossible to synchronize the code generation with
the abstract resolution).

We can now define how to map resultants to Horn clauses so as to construct
abstract partial deductions:

8Nor removal of duplicate calls. In general this does not preserve computed answers (but will
produce more general answers) but is, for example, required for tupling the Fibonacci function. It
is quite straightforward to add this possibility to the framework.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 441

Definition 7.6 (Abstract Partial Deduction). Let A be a covered set of ab-
stract conjunctions. We then define an abstract partial deduction of P with
respect to A to be the set of clauses:
{ρA(H)←ρA,A′ (B) | H ← B ∈ aunfold(P, A)∧ A′ = aresolve(A, H ← B)∧A ∈ A}.

It is easy to see that, because A is covered, the renamings of the bodies B
will always be defined.

Observe that, a skeleton always has distinct variables as its only terms. In
other words, contrary to Example 7.2, we perform no filtering (i.e. p(f (a)) might
get renamed into p′(f (a)) but never into p′(a) or p′; cf., Section 2). Filtering
could be achieved by using a concrete dominator, ideally msg(γ (A)), instead of
the skeleton &A' for the definition of ρA. This, however, makes the exposition
more tricky9 and would detract from the main points of the article. Anyway, one
can always apply the technique of Gallagher and Bruynooghe [1990] (as well
as the one from Leuschel and Sørensen [1996]) as a post-processing.

8. GENERIC CORRECTNESS RESULTS

In this section we will present and prove two general correctness results
(Theorems 8.2 and 8.7).

8.1 Correctness for Computed Answers

For technical reasons we have to introduce the concept of admissible renamings
(as in Leuschel and De Schreye [1998]).

Definition 8.1. Let Q , Q ′ be two conjunctions, A a set of abstract conjunc-
tions, and ρ an atomic renaming forA. Then Q ′ is called an admissible renaming
of Q with respect to A if and only if there exist conjunctions Q1, . . . , Qn and
abstract conjunctions A1, . . . , An such that:

1. Q =← Q1, . . . , Qn

2. Ai ∈ A
3. Qi ∈ γ (Ai)
4. Q ′ =← ρA1 (Q1), . . . , ρAn(Qn).

Any variant of Q ′ is called an admissible renamed variant of Q with respect
to A. A conjunction Q for which an admissible renaming exists is said to be
covered by A.

THEOREM 8.2. Let P ′ be an abstract partial deduction of P with respect to
a covered set of abstract conjunctions A and let Q ′ be an admissible renamed
variant of Q with respect to A. Then

(1) If P ∪ {← Q} has an SLD-refutation with computed answer θ then P ′ ∪ {←
Q ′} has an SLD-refutation with computed answer θ ′ such that Qθ ≈ Q ′θ ′.

9Indeed, although all concretizations of A will be an instance of msg(γ (A)), this does not necessarily
hold for the heads H and bodies B generated by the abstract unfolding.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

442 • Michael Leuschel

(2) If P ′ ∪ {← Q ′} has an SLD-refutation with computed answer θ ′ then P ∪{←
Q} has an SLD-refutation with computed answer θ such that Qθ ≈ Q ′θ ′.

(3) If P ′ ∪ {← Q ′} has a finitely-failed SLD-tree then so does P ∪ {← Q}.
To prove the theorem, we first have to establish a series of lemmas and some

useful notations.
We define, for a substitution θ = {X 1/t1, . . . , X n/tn}, the domain dom(θ) =

{X 1, . . . , X n} and the range ran(θ) = vars(t1) ∪ . . . vars(tn). We also define
vars(θ) = ran(θ) ∪ dom(θ).

We start out with a useful lemma.

LEMMA 8.3. Let Q ≈ Q ′ and let τ be an SLD-tree for P ∪ {← Q}. Also, let
X be an arbitrary finite set of variables. Then there exists an SLD-tree τ ′ for
P ∪ {← Q ′} such that

— Q❀τ 〈L, θ〉 ⇒ Q ′❀τ ′ 〈L′, θ ′〉 with Qθ ← L ≈ Q ′θ ′ ← L′

— Q ′❀τ ′ 〈L′, θ ′〉 ⇒ Q❀τ 〈L, θ〉 with Qθ ← L ≈ Q ′θ ′ ← L′

—and all the variants of clauses of P used in τ ′ have no variables in common
with X .

PROOF. This is an obvious consequence from Lemma 4.9 in Lloyd and
Shepherdson [1991] which states that:

Let R be the resultant of an SLDNF-derivation D from a normal goal
← Q , and α a substitution. If there is a corresponding derivation D′

from ← Qα then its resultant R ′ is an instance of R.

We apply this Lemma 4.9 twice, once for Q and Qα = Q ′ and then for Q ′ and
Qα′ = Q . We know that a “corresponding derivation” exists by (correct versions
of) the lifting lemma (e.g., Lemma 4.1 in Lloyd and Shepherdson [1991]).

COROLLARY 8.4. Let Q❀τ 〈L, θ〉. Also, let X be an arbitrary finite set of vari-
ables. Then there exists a τ ′ such that Q❀τ ′ 〈L′, θ ′〉 with 〈L, θ〉 ≈Q 〈L′, θ ′〉 and
all the variants of clauses of P used in τ ′ have no variables in common with X .
This also implies vars(θ ′) ∩ X ⊆ vars(Q).

LEMMA 8.5. Let ρ be an atomic renaming for A and let A ∈ A, H � &A', Q �
&A'. Then mgu(H, Q) ≈H∧Q mgu(ρA(H), ρA(Q)). We also have that vars(H) =
vars(ρA(H)) and ρA(H)σ = ρA(Hσ) for any substitution σ .

PROOF. vars(H) = vars(ρA(H)) is obvious from Definition 7.4, as ρA(H) =
Aθ , H = &A'θ , and vars(A) = vars(&A').

ρA(H)σ = ρA(Hσ) is again obvious from Definition 7.4. Indeed, we have
ρA(Hσ) = Aθ ′, with Hσ = &A'θ ′. From this follows &A'θ ′ = (&A'θ)σ , and thus,
as vars(A) = vars(&A'), we have that Aθ ′ = Aθσ , i.e., ρA(H)σ = ρA(Hσ).

By the point above we have that every unifier σ of H and Q must also be
a unifier of ρA(H) and ρA(Q) (indeed, ρA(H)σ = ρA(Hσ) = ρA(Qσ) = ρA(Q)σ)
and vice versa. By uniqueness of the mgu up to variable renaming we must
thus have mgu(H, Q) ≈H∧Q mgu(ρA(H), ρA(Q)).

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 443

P ′ :P :

admissible renaming

✠

✒variant ❅

❅❅�❅
❅❅❘

R̃ =← Q1σθ1 ∧ . . . Bθ1 Qnσθ1

R ′ =← ρA1 (Q1σθ1) ∧ . . . ρA,B(B)θ1 . . . ρAn (Qnσθ1)R =← Q1θ
′′ ∧ . . . B′′ ∧ . . . Qnθ

′′ ❄τ ′
❄C

← Q ′ = ρA1 (Q1σ) ∧ . . . ρAi (Qiσ) . . . ρAn (Qnσ)← Q =← Q1 ∧ . . . Qi . . . Qn

Fig. 5. Illustrating the proof of Theorem 8.2.

To simplify the presentation of the proofs below, we will from now on assume
that the mgu is devised so that (this can always be achieved):

mgu(H, Q) = mgu(ρA(H), ρA(Q)). (5)

We are now in a position to prove our theorem.

PROOF OF THEOREM 8.2. Both the proof of soundness and completeness are by
induction on the length of the refutations.

First let Q1, . . . , Qn and A1, . . . , An be the concrete and abstract conjunctions
that satisfy Definition 8.1 for Q and a variant Q ′′ of Q ′. In particular we have
Q = Q1 ∧ . . . Qn with Qi ∈ γ (Ai). We know that for some renaming substitution
σ we have: Q ′ = Q ′′σ = ρA1 (Q1)σ ∧ . . . ρAn (Qn)σ = ρA1 (Q1σ) ∧ . . . ρAn (Qnσ) (by
Lemma 8.5).

Point 2. (soundness of P ′):
We proceed by induction on the length of the refutation δ for P ′∪{← ρA1 (Q1)∧

. . . ρAn (Qn)}.
Base Case:
The base case (len = 0 and thus n = 0 and ← Q =← Q ′ = �) is trivial.
Induction Step:
For the induction step let us examine the first resolution step of δ resolving a
selected atom ρAi (Qiσ) in Q ′ with a clause ρAi (H) ← ρA,B(B) via mgu θ1 and
where C ∈ aunfold(P, Ai) with C ≈ H ← B and B = aresolve(Ai, C) (and where
H ← B is renamed apart with respect to Q ′). The resolvent R ′ of Q ′ in P ′ is
thus (c.f., Figure 5):

R ′ = ← ρA1 (Q1σ)θ1 ∧ . . . ρA,B(B)θ1 ∧ . . . ρAn (Qnσ)θ1

= ← ρA1 (Q1σθ1) ∧ . . . ρA,B(B)θ1 ∧ . . . ρAn (Qnσθ1)

Step 1. We will now show that R ′ is an admissible renaming of

R̃ = ← Q1σθ1 ∧ . . . Bθ1∧ . . . Qnσθ1

Below, in step 2., we will show that we can produce a resolvent R in P which
is a variant of R̃. This will allow us to apply the induction hypothesis.

Let us first examine the structure of ρA,B(B)θ1. We have by Definition 7.5:

ρA,B(B)θ1 = (ρG1 (B1) ∧ . . . ρGk (Bk))θ1 = ρG1 (B1θ1) ∧ . . . ρGk (Bkθ1))

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

444 • Michael Leuschel

where B = B1 ∧ . . . Bk , B is covered by 〈G1, . . . , Gk〉 with Gi ∈ A and Bi � &Gi'.
Let us now verify that the 4 points of Definition 8.1 are satisfied for R and R̃:

1. R̃ =← Q1σθ1 ∧ . . . B1θ1∧ . . . Bkθ1 ∧ . . . Qnσθ1 is a valid partitioning of R̃ into
subconjunctions.

2. We have Ai ∈ A from the fact that Q ′′ is an admissible renaming of Q .
We have Gi ∈ A from Definition 7.5.

3. We have Qiσθ1 ∈ γ (Ai) by downwards-closure of γ (.) and as Qiσ ∈ γ (Ai)
from the fact that Q ′′ is an admissible renaming of Q .

We have Biθ1 ∈ γ (Gi) by downwards-closure of γ (.) and as Bi ∈ γ (Gi)
because by correctness of aresolve we have B ∈ γ (B) (by Definition 7.6 we
have B = aresolve(Ai, C) and we know Qi ∈ γ (Ai) from the fact that Q ′′ is
an admissible renaming of Q).

4. R ′ = ← ρA1 (Q1σθ1) ∧ . . . ρG1 (B1θ1) ∧ . . . ρGk (Bkθ1)) . . . ρAn (Qnσθ1).

Step 2. We will now show that a variant R of R̃ is a resolvent of Q in P .
We know, by Lemma 8.5, that θ1 is also an mgu of Qiσ and H. Hence, by our

assumption (5) we know that Qiσ❀C〈Bθ1, θ̄1〉, where θ̄1 = θ1‖vars(Qiσ .
As we have Qiσ❀C〈Bθ1, θ̄1〉, Point 2 of Definition 5.3 (defining aunfold) there-

fore ensures that we can find an SLD-tree τ for P ∪ {← Qiσ } such that

Qiσ❀τ 〈B′, θ ′〉 with Qiσθ1 ← Bθ1 ≈ Qiσθ ′ ← B′. (6)

Now, as Qi ≈ Qiσ , by Lemma 8.3, we can deduce that we can find another
SLD-tree τ ′ for P ∪ {← Qi} such that

Qi❀τ ′ 〈B′′, θ ′′〉 with Qiθ
′′ ← B′′ ≈ Qiσθ ′ ← B′. (7)

By, Lemma 8.3, we can also always construct τ ′ such that the clauses of P have
not only been renamed apart with respect to Qi but with respect to the entire Q .
Hence, we can generate a resolvent R in P that has the following form (because
we renamed apart with respect to the entire Q and by the subderivation lemma
[Lloyd and Shepherdson 1991]):

R =← Q1θ
′′ ∧ . . . B′′ ∧ . . . Qnθ ′′.

Let us now prove that R is a variant of R̃:

—By transitivity of ≈ we know that Qiθ
′′ ← B′′ ≈ Qiσθ1 ← Bθ1. Hence,

we can find substitutions γ and γ −1 such that (Qiθ
′′)γ = Qiσθ1, (B′′)γ =

Bθ1, Qiθ
′′ = (Qiσθ1)γ −1 and B′′ = (Bθ1)γ −1. We can also choose γ , γ −1 so

that there are no superfluous bindings, that is, dom(γ) ⊆ vars(Qiθ
′′ ← B′′),

ran(γ) ⊆ vars(Qiσθ1 ← Bθ1), dom(γ −1) ⊆ vars(Qiσθ1 ← Bθ1), ran(γ −1) ⊆
vars(Qiθ

′′ ← B′′).
—We know that Q = Q1 ∧ . . . Qn is a variant of Qσ = Q1σ ∧ . . . Qnσ . Hence

we can find a substitution σ−1 such that (Qσ)σ−1 = Q .
—We will now define two substitutions γ ′ ⊇ γ and γ ′−1 ⊇ γ −1 such that Rγ ′ =

R̃ and R̃γ ′−1 = R.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 445

i. By construction of γ and γ −1 we already have (B′′)γ = Bθ1 B′′ = (Bθ1)γ −1

ii. We now have to examine the conjunctions Q j σ and Q j , for j �= i∧1 ≥ j ≥
n, in R̃ and R respectively. As Q j σ and Q j are variants we only have
to examine the variable positions in Q j σ and Q j . Let X be a variable
at some position in Q j σ and Y the corresponding variable at the same
position in Q j . We have to show that we can map X θ1 to Y θ ′′ and vice-
versa. There are two possibilities:
a) X ∈ vars(Qiσ) As we know that (Qiθ

′′)γ = Qiσθ1 Qiθ
′′ = (Qiσθ1)γ −1

we can deduce that (Y θ ′′)γ = X θ1 Y θ ′′ = (X θ1)γ −1.
b) X �∈ vars(Qiσ) In that case we know that Y �∈ vars(Qi) (otherwise Q
is not a variant of Qσ). Hence we can set γ ′ = γ ∪ {Y /X } and γ ′−1 =
γ −1 ∪ {X /Y }. γ ′ is a properly defined substitution as X cannot appear in
Bθ1 and thus ran(γ) because
— H ← B is renamed apart with respect to vars(Q ′) = vars(Qσ) and
—θ1 is a relevant mgu of Qiσ and H.
γ ′−1 in turn is also a properly defined substitution as Y cannot appear in
B′′ by a similar reasoning on the mgu and renaming apart in τ ′ (by our
earlier assumption on τ ′, stating that the clauses of P have not only been
renamed apart with respect to Qi but with respect to the entire Q). We
thus trivially have (Y θ ′′)γ = X θ1 Y θ ′′ = (X θ1)γ −1. Also, note that γ ′, γ ′−1

will still satisfy the requirements of case a) above.
We now simply define the final γ ′ and γ ′−1 to be the union of all the γ ′, γ ′−1

defined for the cases b) above. This is a properly defined substitution (as
X σ = Y and X σ = Z implies Y = Z , that is, there can be no conflicts
between the bindings) and we have thus found substitutions such that Rγ ′ =
R̃ and R̃γ ′−1 = R.

Step 3. We can now apply the induction hypothesis, as we have proven that
the resolvent R ′ in P ′ is an admissible renamed variant of the corresponding
resolvent R in P . Notably, we know that for any computed answer θ2 of R ′ there
exists a computed answer θ of R such that Rθ ≈ R ′θ2. In summary, we have Q
leads to R via θ ′′, R has a computed answer substitution θ , Q ′ leads to R ′ via
θ1, R ′ has a computed answer substitution θ2. So, we just have to prove that
Qθ ′′θ ≈ Q ′θ1θ2 to complete the soundness proof. We can use Corollary 8.4 to
ensure both

vars(θ2) ∩ vars(Q ′) ⊆ vars(R ′) and vars(θ) ∩ vars(Q) ⊆ vars(R). (8)

In fact, we can easily establish that Qθ ′′ ≈ Q ′θ1 because

— indeed the reasoning in point ii. above is also valid for i = j [but only subcase
a) will apply] and

—we can thus use the same substitutions γ ′, γ ′−1 to show Qθ ′′γ ′ = Q ′θ1 and
Qθ ′′ = Q ′θ1γ

′−1.

We thus simply examine every variable position in Qθ ′′ and the corresponding
variable position in Q ′θ1. Let X be a variable at some position in Q ′θ1 and Y
the corresponding variable at the same position in Qθ ′′. We have to show that

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

446 • Michael Leuschel

we can map X θ2 to Y θ and vice-versa. There are again two cases:

—If X �∈ vars(R ′) then X θ ′ = X (as θ is a computed answer substitution for
R ′, i.e., ran(θ) ⊆ vars(R ′)) and we must also have X ∈ Qiσθ1 and X �∈ Q j σθ1
for j �= i (ρAj (Q j σθ1) for j �= i all appear in R ′) and hence Y ∈ Q j θ

′′ and
Y �∈ Q j θ

′′ for j �= i as well (as X γ −1 = Y). This implies Y �∈ vars(R)
(because Qiθ

′′ ← B′′ ≈ Qiσθ1 ← Bθ1, i.e., Y cannot appear in B′′); we thus
have (Y θ)γ = X θ2 Y θ = (X θ2)γ −1.

—On the other hand, if X ∈ vars(R ′) then Y ∈ vars(R) (if X ∈ Qiσθ1 then
this follows from Qiθ

′′ ← B′′ ≈ Qiσθ1 ← Bθ1; otherwise if X ∈ Q j σθ1
with j �= i then this follows from X γ −1 = Y and the fact Q j σθ1 fea-
tures in R ′) and we know we can map X θ2 to Y θ and back using the sim-
plest substitutions γ ′′, γ ′′−1, which map back and forth between R and R ′

(i.e., Rθγ ′′ = R ′θ2, R ′θ2γ
′′−1 = Rθ , where also dom(γ ′′) ⊆ vars(Rθ), and

dom(γ ′′−1) ⊆ vars(R ′θ2)).

Now, γ ′ ∪γ ′′ is a well defined substitution because, by our assumption (8) above
on renaming apart of clauses, the variables in the terms X θ2 cannot be variables
that appear in Qiσθ1 but not in vars(R)—there is no clash between the bindings
in γ ′ and γ ′′. By a similar reasoning, γ ′−1 ∪ γ ′′−1 is a well defined substitution.
We have thus established the induction hypothesis for Q and Q ′ and thus
completed the soundness proof.

Point 1. (completeness of P ′):
We now proceed by induction on the length of the refutation δ for P ∪ {←

Q1 ∧ . . . Qn}, which yields the computed answer θ . The base case (len = 0 and
thus n = 0) is again trivial. For the induction step, let Qi be the selected literal.
As Qi ∈ γ (Ai) we can apply Definition 5.3 of aunfold to deduce that there is
an SLD-tree τ for P ∪ {← Qi} such that point 1 of Definition 5.3 holds. By
independence of the selection rule ([Apt 1990; Lloyd 1987]) we know that we do
not lose any computed answers by enforcing a particular selection rule. Without
loss of generality, we can thus assume that a prefix of δ is a branch in τ ′, that
is, δ unfolds ← Qi in the manner prescribed by τ ′ of the soundness part of the
proof.10

We can now use point 1 of Definition 5.3 defining aunfold to show that when
selecting the atom ρAi (Qiσ) in Q ′ and resolving it with the clause ρAi (H) ←
ρA,B(B) via mgu θ1 we get a resolvent R ′ which has exactly the same structure
as in the soundness part of the proof (c.f., Figure 5). The proof that R ′ is an
admissible renamed variant of R is then exactly as in the soundness part (Steps
1 and 2). The same holds for applying the induction hypothesis to prove Qθ ′′θ ≈
Q ′θ1θ2 (Step 3). The completeness proof is thus complete.

Point 3. (soundness for finite failure):
We again do a proof by induction, but this time on the depth of the failed

SLD-tree for P ′ ∪ {← Q ′}.

10If we want to establish the preservation of finite failure it is vital that the unfoldings performed
by τ are fair. For computed answers, however, this does not matter.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 447

Base Case:
The SLD-tree has just a single node in which a literal has been selected that
fails immediately—does not unify with any clause in P ′. This implies that the
goal Q finitely fails in P , because by point 1 of Definition 5.3 we know we can
find an SLD-tree τ for which no s1 satisfies Q❀τ s1, a finitely failed SLD-tree
for P ∪ {← Q}.
Induction Step:
We will do the exact same resolution step as in the proof for the soundness
part: we suppose that we select an atom ρAi (Qiσ) in Q ′. We we now resolve the
selected atom with a clause ρAi (H) ← ρA,B(B) of P ′ we get exactly the same
picture as in the soundness part (the proof in the soundness part works for
any resolvent!). So, we can re-use Steps 1 and 2 of the proof of the soundness
part for every resultant R ′ to establish that R ′ it is an admissible renamed
variant of the corresponding resolvent R in P . We can thus apply the induction
hypothesis to conclude that for each resolvent R we can construct a finitely
failed SLD-tree.

The only thing we have to establish, to be able to combine all the results
into a big finitely failed tree for Q , is that the initial SLD-tree τ ′ used in the
soundness proof can be made to be the same for all resolvents R ′. This can be
easily ensured using Lemma 8.3 and because Definition 5.3 provides us with a
single SLD-tree τ valid for all resolvents!

We can thus combine, using the subderivation lemma [Lloyd and
Shepherdson 1991], all failed SLD-trees for the resolvents into one big finitely
failed SLD-tree for P ∪ {← Q}.

8.2 Preservation of Finite Failure

In order to derive results about the preservation of finite failure in P ′ we have
to impose that the unfolding operation aunfold is in some sense fair, that is
when computing aunfold(P, A) it eventually selects every conjunct of Q ∈ γ (A)
in every non-failing branch. Otherwise, the unfolding aunfold might impose an
unfair selection rule onto the specialized program, and finite failure might no
longer be preserved. For example, one should not be able to transform the pro-
gram P = {t ← p∧fail, p ← p} into P ′ = {t ← pf , pf ← pf}, where, for example,
A = p ∧ fail in the PD-domain and ρA = pf. (This condition is quite similar to
the local improvement condition in Sands [1996] for functional programs.)

Definition 8.6. Let the goal G ′ =← (A1∧. . . Ai−1∧ B1∧. . . Bk∧Ai+1∧. . . An)θ
be derived via an SLD-resolution step from the goal G =← A1 ∧ . . . Ai ∧ . . . An,
and the clause H ← B1 ∧ . . . Bk , with selected atom Ai. We say that the atoms
A1θ , . . . , Ai−1θ , Ai+1θ , . . . , Anθ are inherited from G in G ′. We extend this notion
to derivations by taking the transitive and reflexive closure.

An complete SLD-tree τ for P ∪ {G} is said to be fair if and only if every
branch is either finitely failed, or for every goal Gi in a non-failing branch
there exists a descendant G j such that no atoms are inherited from Gi in G j .
A finite, incomplete SLD-tree τ for P ∪ {G} is said to be fair if and only if no
atom in a leaf goal L of a non-failing branch of τ is inherited from G in L.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

448 • Michael Leuschel

We call an abstract unfolding rule fair if we can always find a finite, fair
SLD-tree τ that satisfies the points 1, 2 of Definition 5.3.

Note that a finite, complete SLD-tree is always fair. We can now present the
following theorem about the preservation of finite failure.

THEOREM 8.7. Let P ′ be an abstract partial deduction of P with respect to a
covered set of abstract conjunctions A using a fair abstract unfolding aunfold,
and let Q ′ be an admissible renamed variant of Q with respect to A.

—If P ∪ {← Q} has a finitely-failed SLD-tree then so does P ′ ∪ {← Q ′}.
Note that for atomic abstract conjunctions, every finite, non-trivial SLD-

tree is fair. So, if we just have atomic abstract conjunctions, finite failure will
always be preserved (non-trivial trees are disallowed in Definition 5.3). Hence
Theorem 6.5 is a direct consequence of Theorems 8.2 and 8.7.

One can actually extend the result to allow aunfold to be just weakly fair
[Leuschel et al. 1996; Leuschel 1997]. Intuitively, this means that aunfold(P, Q)
can be unfair for a certain number of atoms, as long as we can be sure that
these atoms will eventually be selected (for non-failing derivations) within other
abstract conjunctions.

The proof of the theorem is as follows:

PROOF OF THEOREM 8.7. We use the same assumptions about the structure of
Q and Q ′ as at the beginning of the proof for Theorem 8.2. Notably, again, let
Q1, . . . , Qn and A1, . . . , An be the concrete and abstract conjunctions that satisfy
Definition 8.1 for Q and a variant Q ′′ of Q ′. Again, we have Q = Q1 ∧ . . . Qn
with Qi ∈ γ (Ai) and we chose the same renaming substitution σ such that:
Q ′ = Q ′′σ = ρA1 (Q1)σ ∧ . . . ρAn (Qn)σ = ρA1 (Q1σ)∧ . . . ρAn (Qnσ) (by Lemma 8.5).

We know by Theorem 13.6 in Lloyd [1987, p. 77] that if there exists a finitely
failed SLD-tree for P ∪{← Q} then every fair SLD-tree for P ∪{← Q} is finitely
failed.

We proceed by induction on the depth of the finitely failed SLD-tree for P∪{←
Q1 ∧ . . . Qn}.

Let Qi be the selected literal at the root. As Qi ∈ γ (Ai) we can apply Defi-
nition 5.3 of aunfold to deduce that there is a fair SLD-tree τ ′ for P ∪ {← Qi}
such that point 1 of Definition 5.3 holds.
Base Case: If this SLD-tree τ ′ is finitely failed we are in the base case of our
induction, and we know by that P ∪ {← Q ′} fails immediately when selecting
ρAi (Qiσ).
Induction Step: As τ ′ is fair, we know that, without loss of generality, we can
assume that τ ′ is the initial subtree of a finitely failed SLD-tree for P ∪ {← Q}
(and always choosing such τ ′’s will lead to a finitely failed SLD-tree).

We now do the exact same resolution step for P ′ ∪ {← Q ′} as in the proof
for the soundness proof of Theorem 8.2: we select the atom ρAi (Qiσ) in Q ′. We
now resolve the selected atom with all matching clauses ρAi (H) ← ρA,B(B) of
P ′ and for every resolvent we get exactly the same picture as in the soundness
proof of Theorem 8.2 for some leaf goal R in τ ′ (the proof in the soundness part
works for any resolvent!). So, we can reuse Steps 1 and 2 of the proof of the

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 449

soundness part for every resultant R ′ to establish that R ′ it is an admissible
renamed variant of the corresponding resolvent R in P . We can thus apply the
induction hypothesis to conclude that for each resolvent R ′ we can construct a
finitely failed SLD-tree for P ′ ∪ {← R ′}.

The only thing we have to establish, to be able to combine all the results
into a big finitely failed tree for Q ′, is that the initial SLD-tree τ used in the
soundness proof for Qσ can be made to be the same for all resolvents R and
R ′. This can be easily ensured using Lemma 8.3 and because Definition 5.3
provides us with a single SLD-tree τ ′ valid for all resolvents!

We can thus again combine, using the subderivation lemma from Lloyd and
Shepherdson [1991], all the failed SLD-trees for the resolvents into one big
finitely failed SLD-tree for P ′ ∪ {← Q ′}.

9. SOME INSTANCES OF ABSTRACT PARTIAL DEDUCTION

In this section we show how some of the existing logic program specialization
techniques can be cast into our framework, and how easily the correctness
results can be re-used. In fact, to re-use our correctness results one has to
prove that the particular aunfold under consideration satisfies Definition 5.3,
that aresolve satisfies Definition 5.4 and finally that the widening ageneralize
satisfies ageneralize(A) *split A.

9.1 Classical and Conjunctive Partial Deduction

Classical partial deduction [Lloyd and Shepherdson 1991; Gallagher 1993] can
be seen as an instance of our framework simply by taking

—the PD-domain (i.e. the concrete domain is the abstract domain and an ab-
stract element represents all its instances) as our abstract domain,

—abstract unfolding is done by an unfolding rule as defined in Definition 3.4—
aunfold builds an SLD-tree and returns the resultants of the tree.

—abstract resolution simply returns the bodies of the above resultants:
aresolve(A, H ← B) = B.

—ageneralize is such that it only produces sets of atoms and the initial abstract
conjunction A is an atom.

To represent conjunctive partial deduction [Leuschel et al. 1996; Glück et al.
1996; Leuschel 1997] we just have to drop the last requirement.

As a corollary of Proposition 5.6, we know that we satisfy Definition 5.3 of an
abstract unfolding. The fact that abstract resolution aresolve(A, H ← B) = B
satisfies Definition 5.4 follows from our discussions in Section 3.3. We can thus
apply Theorem 8.2. For classical partial deduction of atoms, fairness of aunfold
trivially follows from the fact that τ is non-trivial. We can hence also apply
Theorem 8.7.

It can also be easily verified that the generalization operations used in ex-
isting classical or conjunctive partial deduction techniques satisfy our require-
ments in Definition 6.6.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

450 • Michael Leuschel

Removal of Redundant Clauses. de Waal and Gallagher [1991], Gallagher
and de Waal [1992], and de Waal and Gallagher [1994] present a classical par-
tial deduction approach, but where a resultant Qθk ← Bk is removed from
aunfold(P, Q) if it can be proven by a bottom-up abstract interpretation that
Bk fails. Such a resultant is called redundant. In case Bk fails finitely, it is very
easy to prove that this extension of partial deduction satisfies Definitions 5.3
and 5.4 (simply use, in the proof of Proposition 5.6, a tree τ ′ instead of τ where
all branches ending in a redundant Bj are fully expanded until failure). In case
Bk fails infinitely, the situation is more complicated, and we cannot directly use
our top-down framework. We will return to the issue of combining bottom-up
and top-down approaches in Section 10.

9.2 Ecological and Constrained Partial Deduction

Ecological partial deduction [Leuschel 1995; Leuschel et al. 1998; Leuschel
1997] (and its ancestor Gallagher and Bruynooghe [1991]) specializes sets of
characteristic atoms of the form (A, τ), where A is an ordinary atom and τ

a characteristic tree (basically a representation of the shape of an SLD-tree).
Intuitively (A, τ) represents all instances of A that have τ as a characteristic
tree. Ecological partial deduction can be seen as an instance of the above generic
framework by using an abstract domain (AQ, γ) with

—AQ = (A, T), where A is the set of atoms and T is the set of characteristic
trees [Gallagher and Bruynooghe 1991; Gallagher 1991].

—γ ((A, τ)) = {A′′ | A′′ � A′ � A∧ A′ has characteristic tree τ },

and where abstract unfolding and resolution are defined by

—aunfold(P, (A, τ)) is based on using the SLD-tree for P ∪ {← A} according to
the shape indicated by τ (and removing the resultants that are not present
in τ ; see Leuschel [1995], Leuschel et al. [1998], Leuschel [1997]).

—aresolve((A, τ), Aθ ← B) = (B, τ ′) where τ ′ is the characteristic tree for an
SLD-tree for P ∪ {← B}.

It is again very easy to prove that the above operations satisfy our require-
ments in Definitions 5.3 and 5.4, thus making our correctness results immedi-
ately applicable.

Constrained partial deduction [Leuschel and De Schreye 1998] specializes
sets of constrained atoms of the form c�A where A is an ordinary atom an c a
constraint on the variables in A. For example, the concretization function we
have γ (c�A) = {Aθ | D |= ∀(cθ)}, whereD is the underlying constraint structure
and we can cast constrained partial deduction into the our framework and the
correctness results from Leuschel and De Schreye [1998] are again a special
case of our generic results.

The present framework can now be used to easily extend both methods to
handle conjunctions or even to integrate all of these methods into one powerful
top-down specialization method.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 451

9.3 Partial Deduction using Regular Types

Regular types encoded as regular unary logic programs [Yardeni and Shapiro
1990; Gallagher and de Waal 1994] have proven to be successful both for pro-
gram analysis and specialization. Indeed, using regular types as an abstract
domain for specialization was already proposed in Puebla et al. [1997, 1999].

Instances of our abstract partial deduction framework using regular types
have recently been developed. First, Gallagher and Peralta [2000, 2001] present
several atomic abstract partial deduction methods, one of which is formally cast
into our framework. An implementation has been produced, which has been
validated on practical examples.

Second, Leuschel and Gruner [2001] present an extension of Gallagher and
Peralta [2000, 2001] that can specialize abstract conjunctions. It is formally
shown how to perform abstract unfolding and resolution in such a setting, and
the practical usefulness of combining regular types with conjunctions has been
demonstrated on several examples. An implementation, using the ECCE system
[Leuschel 2002] has been developed and applied to several examples; one of
which we elaborate below. One possible application of the method is the model
checking [Clarke et al. 1999] of process algebras.

We present some aspects of these instances of our framework below.

Definition 9.1. A canonical regular unary clause is a clause of the form:
t0(f (X 1, . . . , X n)) ← t1(X 1) ∧ . . . ∧ tn(X n)

where n ≥ 0 and X 1, . . . , X n are distinct variables. A regular unary logic (RUL)
program is a finite set of regular unary clauses, in which no two different clause
heads have a common instance, together with the single fact any(X) ←. Given a
(possibly non-ground) conjunction T and a RUL program R, we write R |= ∀(T)
if and only if R ∪ {← T } has an SLD-refutation with the empty computed
answer. Finally, the success set of a predicate t in a RUL program R is defined
by successR(t) = {s | s is ground ∧ R |= ∀(t(s))}.

Example 9.2. For example, given the following RUL-program R, we have
R |= ∀(t1([a])) and R |= ∀(t1([X , Y])).

t1([]). any(X).
t1([H|T]) :- any(H),t1(T).

Definition 9.3. We define the RUL-domain (AQ, γ) to consist of abstract
conjunctions of the form 〈Q , T, R〉 ∈ AQ where Q , T are concrete conjunctions
and R is a RUL program such that: T = t1(X 1) ∧ . . . ∧ tn(X n), where vars(Q) =
{X 1, . . . , X n} and ti are predicates defined in R. The concretization function
γ is defined as follows: γ (〈Q , T, R〉) = {Qθ | R |= ∀(Tθ)}. T is called a type
conjunction.

Using R from Ex. 9.2 we have that γ (〈p(X), t1(X), R〉) = {p([]), p([X]), p([a]),
. . . , p([X , Y]), p([X , X]), p([a, X]), . . .}. Note that abstract conjunctions from
our RUL-domain are called R-conjunctions in Gallagher and Peralta [2001].

Full details on how to implement abstract unfolding, abstract resolution and
concrete abstract partial deduction procedures can be found in Gallagher and
Peralta [2000, 2001] and Leuschel and Gruner [2001].

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

452 • Michael Leuschel

The following example, which was worked out using the implementation pre-
sented in Leuschel and Gruner [2001], shows a particular verification example
where conjunctions and regular types both play an important role.

Example 9.4. Take the following simple program, which simulates several
problems that can happen during model checking of infinite state process alge-
bras. Here, the predicate trace/2 describes the possible traces of a particular
(infinite state) system. In sync trace/2 we describe the possible traces of two
synchronized copies of this system, with different start states.

trace(s(X),[dec|T]) :- trace(X,T).
trace(0,[stop]).
trace(s(X),[inc|T]) :- trace(s(s(X)),T).
trace(f(X),[dec|T]) :- trace(X,T).
trace(f(X),[inc|T]) :- trace(f(f(X)),T).
trace(a,[inc,stop]).
sync_trace(T) :- trace(s(0),T), trace(f(a),T).

As one can see, the synchronization of s(0) with f(a) will never produce
a complete trace, and hence sync trace will always fail. Classical partial de-
duction is unable to infer failure of sync trace, even when using conjunctions,
due to the inherent limitation of the PD-domain to capture the possible states
of our system, the possible first arguments to trace/2. In the RUL domain
we can retain much more precise information about the calls to trace/2. Our
implementation was able to infer that the first argument to calls to trace/2
descending from trace(f(a),T) will always have the type t940 defined by:

t940(a):-true.
t940(f(_460)) :- t940(_460).

This is the residual program generated by ECCE.

sync_trace([inc,A|B]) :- p_conj__2(0,A,B,a).
sync_trace__1([inc,A|B]) :- p_conj__2(0,A,B,a).
p_conj__2(A,dec,[B|C],D) :- p_conj__3(A,B,C,D).
p_conj__2(A,inc,[B|C],D) :- p_conj__2(s(A),B,C,f(D)).
p_conj__3(A,dec,[B|C],D) :- p_conj__4(A,B,C,D).
p_conj__3(A,inc,[B|C],D) :- p_conj__2(A,B,C,D).
p_conj__4(s(A),dec,[B|C],f(D)) :- p_conj__4(A,B,C,D).
p_conj__4(s(A),inc,[B|C],f(D)) :- p_conj__2(A,B,C,D).

This program contains no facts and a simple bottom-up post-processing (e.g.,
the one implemented in ECCE based upon Marriott et al. [1990]) can infer that
sync trace fails.

Observe that a deterministic regular type analysis on its own (i.e., without
conjunctions) cannot infer failure of sync trace. The reason is that, while the
regular types are precise enough to characterize the possible states of our in-
finite state system, they are not precise enough to characterize the possible
traces of the system! For example, the top-down regular type analysis of the SP

system produces the following result for the possible answers of sync trace:

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 453

sync_trace__ans(X1) :- t230(X1).
t230([X1|X2]) :- t231(X1),t232(X2).
t231(inc) :- true. t233(inc) :- true.
t231(dec) :- true. t233(dec) :- true.
t231(stop) :- true. t233(stop) :- true.
t232([X1|X2]) :- t233(X1),t232(X2).
t232([]) :- true.

In other words, the regular type analysis on its own was incapable of detect-
ing the failure. Using our approach, the conjunctive partial deduction compo-
nent achieves “perfect” precision (by keeping the variable link between the two
copies of our system), and it is hence not a problem that the traces cannot be
accurately described by regular types.11 This underlines our hope that adding
conjunctions to regular types will be useful for a more precise treatment of syn-
chronization in infinite state systems. We also believe that it will be particularly
useful for refinement checking [Roscoe 1999], where a model checker tries to
find a trace T that can be performed by one system but not by the other. Such
refinement checking can be encoded by the following clause:

not_refinement_of(S1,S2,T) :- trace(S1,T), \+(trace(S2,T)).

This clause is similar to the clause defining sync trace; a non-conjunctive
regular type analysis will face the same problems as above.

10. PROPAGATING SUCCESS INFORMATION

In this section we address one remaining limitation of our framework compared
to existing top-down abstract interpretation approaches. Indeed, compared to
the top-down abstract interpretation framework of Bruynooghe [1991],

(1) our framework can use abstract conjunctions instead of abstract atoms,
and can make use of sophisticated abstract unfoldings rather than just sin-
gle abstract resolution steps. Apart from producing more efficient special-
ized programs, these features sometimes allow for a more precise analysis
Leuschel and De Schreye [1996].

(2) on the other hand, there is no propagation or inference of success informa-
tion in our framework. The following example explains and illustrates this
limitation.

Example 10.1. Consider the following tiny program:
p(X) ← q(X) ∧ r(X)
q(a) ←
r(a) ←
r(b) ←

11The non-deterministic regular type analysis of Gallagher and Puebla [2002] actually is precise
enough to capture these traces. However, we believe that there will be more complicated system
traces that it cannot precisely describe.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

454 • Michael Leuschel

�
��✠

❅
❅❅❘❄ ❄

�

← r(X)

�

← p(X)

← q(X) ∧ r(X)

← q(X)

�

τ2: τ3:τ1:

X /a X /bX /a
�

��✠
❅

❅❅❘
�

X /a

← q(X)

← q(X)

τ ′
2:

Fig. 6. SLD-trees for Example 10.1.

Let us suppose we apply the instance of Algorithm 2 described in
Section 9.1,—classical partial deduction within the PD-domain. For a given
query ← p(X), one possible (although very suboptimal) outcome of the algo-
rithm is the final set Ai = {p(X), q(X), r(X)} of abstract conjunctions and the
SLD-trees τ1, τ2 and τ3 presented in Figure 6 (generated by aunfold).

With this result of the analysis, the transformed program is identical to the
original one. Note that in τ2 we have derived that the only answer for ← q(X)
is X /a. An abstract interpretation algorithm such as the one in Bruynooghe
[1991] would propagate this success-information to the leaf of τ1, yielding that
(under the left-to-right selection rule) the call ← r(X) becomes more specific,
namely ← r(a). This information would then be used in the analysis of the r/1
predicate, allowing the removal of the right branch of τ3 and thus the clause
generated from it. This clause is redundant, because for no concretization of
← p(X) will this clause appear in a successful refutation.
The same picture holds even if we add the clause

q(X) ← q(X)
to the above program, thus obtaining the tree τ ′

2 in Figure 6 instead of τ2. Indeed,
an abstract interpretation [Bruynooghe 1991] of q(X) will return that the only
possible computed answer substitution for q(X) is {X /a}. Hence, assuming a
left-to-right selection rule, the predicate r/1 will again only ever be called with
its argument instantiated to a.

It can be relatively easy to add the possibility of doing such sideways and
bottom-up information passing to our framework.12 In fact, all we have to do is
replace Definition 6.2, defining the concretization function γ for sequences of
abstract conjunction, by the following definition:

Definition 10.2. Let 〈AQ, γ 〉 be an abstract domain. We define γ for se-
quences of abstract conjunctions in the context of a program P inductively as
follows:

—γ (〈A1〉) = γ (A1)
—γ (〈A1, . . . , An〉) = {Qs ∧ Qn | Qs ∈ γ (〈A1, . . . , An−1〉), Qn � &An' and

(P |= ∀(Qs)) ⇒ Qn ∈ γ (An)}.
Intuitively, for a conjunction q(t) ∧ r(t) to be a concretization of a sequence

〈A1, A2〉 of abstract conjunctions, the atom r(t) must only be a concretization of
A2 in case P |= ∀(q(t)), that is, if q(t) is a computed instance.

12Another possible solution is to analyse the calls q(X) and r(X) in conjunction, thus achieving
“perfect” success information passing. However, due to termination considerations this is not always
possible or desirable.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 455

Table I. A Comparison of Program Specialization and Abstract Interpretation Techniques

PD CPD MSV TD-AI Plai BU-AI APD APD+

Abs. Domain PD PD PD any any any any any
Conjunctions no yes yes13 no no no yes yes
Unfolding yes yes no no yes no yes yes
Success Info no no yes yes yes yes no yes
Semantics SLD SLD TP And-Or And-Or TP SLD SLD+TP

For example, in the PD-domain and in the context of Example 10.1 we have
q(a) ∧ r(a) ∈ γ (〈q(X), r(a)〉) but also q(b) ∧ r(b) ∈ γ (〈q(X), r(a)〉), as P �|= q(b).
Similarly, we have q(X)∧r(X) ∈ γ (〈q(X), r(a)〉), as P �|= ∀X .q(X). Observe that
neither q(b) ∧ r(b) nor q(X) ∧ q(X) is an element of γ (q(X) ∧ r(a)).

Using the revised Definition 10.2 we have that 〈q(X), r(a)〉 is an abstrac-
tion of q(X) ∧ r(X) and Algorithm 2 can thus produce the outcome Ai =
{p(X), q(X), r(a)} and sideways and bottom-up information passing has been
achieved.

The change made in Definition 10.2 means that Theorems 8.2 and 8.7 will no
longer hold for any SLD-refutation and finitely failed SLD-tree, but only for LD-
refutations and finitely failed LD-trees (SLD-derivations and SLD-trees which
follow a left-to-right selection rule are called LD-derivations and LD-trees re-
spectively). Furthermore, the abstract unfolding operation will now have to
satisfy the requirements of Definition 5.3 not for some SLD-tree τ but for some
LD-tree τ .

Finally, it is possible to go even further and implement a stronger, selection
rule-independent, bottom-up success propagation, that would not only instan-
tiate r(X) to r(a) in Example 10.1 but also instantiate p(X) to p(a). Abstract
partial deduction could then produce the outcome Ai = {p(a), q(a), r(a)} and
the specialized program:

p(a) ←
q(a) ←
r(a) ←
Details of this approach are sketched in Leuschel [1998b]. A variation of

this approach has been used in Leuschel and Gruner [2001] to obtain a con-
crete specialization procedure and a practical implementation. We basically
can instantiate the resultants using bottom-up success information. However,
this specialization approach can change the termination characteristic of the
program and no longer preserves the finite failure semantics, because infinite
failure can be replaced by a finite one.

11. MORE RELATED WORK

Abstract Interpretation of Logic Programs. Table I presents a brief compar-
ison of how the specialization and abstract interpretation techniques discussed
in the paper relate to each other. The abbreviations in the table for the column

13Only in the journal version [Marriott et al. 1990].

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

456 • Michael Leuschel

headings are as follows:

—PD: stands for classical partial deduction [Lloyd and Shepherdson 1991]
—CPD: denotes conjunctive partial deduction [De Schreye et al. 1999]
—MSV: this is the most specific version abstract interpretation of Marriott et al.

[1988, 1990]
—TD-AI: is the top-down abstract interpretation framework of Bruynooghe

[1991]
—Plai: is the already mentioned technique of Puebla et al. [1997, 1999] which

extends an existing abstract interpreter for Prolog so that it produces spe-
cialized code. This can be seen as abstract partial deduction on atoms, using
arbitrary abstract domains (provided by the abstract interpreter), and (con-
trary to Puebla and Hermenegildo [1995, 1999]) it can use an abstract un-
folding which performs more than one unfolding step.

—BU-AI: this is a classical bottom-up abstract interpretation based on approx-
imating TP and computing a fixpoint of this abstraction.

—APD: this is abstract partial deduction as developed in this paper up until
Section 8.

—APD+: this is the abstract partial deduction with success information prop-
agation, as extended in Section 10.

The first row of Table I indicates which abstract domain can be used by the
respective methods. The second row indicates whether the method can ana-
lyze conjunctions of atoms, while the third row indicates whether the method
can make use of an unfolding rule. The fourth row indicates whether success
information can be inferred and propagated, while the last row indicates the
semantics on which the abstractions are based.

Specialization and Transformation of Logic Programs. We have already dis-
cussed in Section 9 the relationship of our abstract partial deduction frame-
work (namely “more general than”) with classical partial deduction [Lloyd and
Shepherdson 1991; Gallagher 1993], conjunctive partial deduction [Leuschel
et al. 1996; Glück et al. 1996; Leuschel 1997], ecological partial deduction
[Leuschel 1995, 1997; Leuschel et al. 1998] (and its ancestor Gallagher and
Bruynooghe [1991]), constrained partial deduction [Leuschel and De Schreye
1998], and partial deduction with removal of useless clauses [de Waal and
Gallagher 1991, 1994; Gallagher and de Waal 1992].

The following techniques in the functional/logic setting, are also closely re-
lated. Gallagher and Lafave [1996] present a variation of ecological partial
deduction for functional and logic languages, using trace terms instead of char-
acteristic trees. Lafave and Gallagher [1997] is a technique in the style of con-
strained partial deduction for functional-logic programs. Alpuente et al. [1998]
and Albert et al. [1998] can be viewed as a conjunctive partial deduction tech-
nique (i.e., abstract partial deduction in the classicalPD-domain) for functional-
logic languages.

Another, strongly related work is Pettorossi and Proietti [1996b], which uses
an unfold/fold program transformation approach to specialize logic programs

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 457

in a given context. This context is another predicate of the logic program un-
der consideration. In contrast to our general technique, Pettorossi and Proietti
[1996b] performs syntactic transformations only, and has a more limited ab-
stract unfolding possibility. Also, the side-condition has to be expressed as a
logic program predicate, that is, it may not be obvious how to easily handle char-
acteristic trees from ecological partial deduction or more general constraints.
Finally, the results of Pettorossi and Proietti [1996b] are for the least Herbrand
model semantics and not (yet) for computed answer or finite failure semantics.
Nonetheless, it should be possible to cast Pettorossi and Proietti [1996b] (or a
suitably adapted version thereof) in our framework and thus gain correctness
results for computed answers and finite failure.

Functional Programming. Supercompilation [Sørensen et al. 1996; Glück
and Sørensen 1994], is very related to conjunctive partial deduction (in fact,
conjunctive partial deduction was in part inspired by supercompilation). In-
deed, the abstract domain for supercompilation can be seen as the concrete do-
main of functional programming expressions augmented with variables (which
already exist in the concrete domain of logic programming). Tupling [Chin and
Khoo 1993], deforestation [Wadler 1990], and generalized partial computation
[Futamura et al. 1991] are also closely related to conjunctive partial deduction
(see De Schreye et al. [1999], Leuschel [1999], Sørensen et al. [1994]) and thus
abstract partial deduction in the “classical” PD-domain. We believe that it is
possible to adapt the present paper to a functional programming setting, thus
making it possible to extend the above techniques to use richer, more expressive
abstract domains.

One of the earliest combinations of abstract interpretation and partial eval-
uation was developed by Consel and Khoo [1993]. They give a framework for a
first-order functional language parametrized on algebras. Another related func-
tional programming technique is type specialization [Hughes 1999]. It already
uses a domain based upon types, richer than the PD-domain. It is still unclear
whether a logic programming version of type specialization can be developed,
and whether it can then be cast into our framework.

Imperative Programming. [Jones 1999] presents a very generic framework
which can model various (non-conjunctive) partial evaluation and driving tech-
niques in the context of imperative programs. It has a concept of abstract stores,
which represent sets of possible concrete stores of the imperative program.
The paper also contains soundness and completeness criteria, and clarifies
the relationship between partial evaluation and driving (i.e., supercompila-
tion). However, in contrast to our paper, it has more limited abstract unfolding:
in essence every abstract unfolding step must correspond to exactly one con-
crete step (there is, however, a post-processing compression phase of transient
transitions).

12. FUTURE WORK AND CONCLUSION

Future Work. A lot of avenues can be pinpointed for further work. First, on
the practical side, one should of course implement further, useful instances of

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

458 • Michael Leuschel

the generic algorithms presented in this paper. Gallagher and Peralta [2000,
2001] and Leuschel and Gruner [2001] have already developed instances of our
framework based upon regular types, and some promising applications for infi-
nite state model checking of process algebras have been hinted at. These tech-
niques can probably be further improved, by using the possibilities opened up
by our very general definition of abstract unfolding (cf., Section 5). It should also
be possible to move to more precise abstract domains, such as non-deterministic
regular types [Gallagher and Puebla 2002] without too much difficulty.

New abstract partial deduction techniques, based upon other abstract do-
mains from the abstract interpretation literature also look very promising for
specialization purposes.

On the theoretical side, one could try to extend the language treated by our
framework. We can already handle definite logic programs with declarative
built-ins such as is, call, functor, arg, \==. This allows the expression of a
large number of interesting, practical programs; one can even implement and
use certain higher-order features such as map/3. However, we cannot yet han-
dle normal logic programs with negation or constraint logic programs, and one
should strive to extend our framework to handle such programs. Ideally, one
should aim at making our framework programming language independent thus
not only covering normal and constraint logic programs, but functional and im-
perative programs as well. This would provide a unified correctness framework
in which most specialization techniques could be cast.

One can also endeavor to cover ever more powerful, but ever more difficult
to automate, specialization methods such as goal replacement, specialization
of disjunctions of conjunctions [Pettorossi et al. 1997] or specialization of con-
junctions of unlimited length [Pettorossi and Proietti 1996a].

13. CONCLUSION

In this paper we have presented a very generic framework for top-down logic
program specialization. We have established several generic correctness results
and have cast several existing techniques in our framework, thereby reusing the
correctness results in a simple manner. We have also shown how the additional
generality of our framework can be exploited in practice, for improved gener-
alization, unfolding and code-generation. Instances of our framework, based
upon regular types, have already been developed in the literature and their
usefulness has been demonstrated. In the course of this paper, we have also
clarified the relationship of top-down partial deduction with abstract inter-
pretation, establishing a common basis and terminology. We believe we have
made an important step towards a full reconciliation of abstract interpretation
and program specialization. In summary, the new framework with its generic
algorithm and correctness results, provides the foundation for new, powerful
specialization techniques.

ACKNOWLEDGMENTS

Maurice Bruynooghe provided very valuable feedback on this article. The au-
thor also greatly benefited from discussions with Danny De Schreye, John

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 459

Gallagher, Stefan Gruner, Neil Jones, Jesper Jørgensen, Helko Lehmann, Bern
Martens, Torben Mogensen, Germán Puebla, Jens-Peter Secher, Morten Heine
Sørensen, and comments of anonymous referees of JICSLP’98. Finally, I am
very greatful to the anonymous referees of ACM TOPLAS; their detailed com-
ments and constructive criticisms have substantially helped me to improve the
article.

REFERENCES

ALBERT, E., ALPUENTE, M., FALASCHI, M., JULIÁN, P., AND VIDAL, G. 1998. Improving control in func-
tional logic program specialization. In Static Analysis. Proceedings of SAS’98, G. Levi, Ed. LNCS
1503. Springer-Verlag, Pisa, Italy, 262–277.

ALPUENTE, M., FALASCHI, M., AND VIDAL, G. 1998. Partial Evaluation of Functional Logic Programs.
ACM Trans. Prog. Lang. Syst. 20, 4, 768–844.

APT, K. R. 1990. Introduction to logic programming. In Handbook of Theoretical Computer Sci-
ence, J. van Leeuwen, Ed. North-Holland Amsterdam, Chapter 10, 495–574.

BENKERIMI, K. AND HILL, P. M. 1993. Supporting transformations for the partial evaluation of
logic programs. J. Logic Comput. 3, 5 (October), 469–486.

BOL, R. 1993. Loop checking in partial deduction. J. Logic Prog. 16, 1&2, 25–46.
BOULANGER, D. AND BRUYNOOGHE, M. 1993. Deriving fold/unfold transformations of logic programs

using extended OLDT-based abstract interpretation. J. Symbolic Computat. 15, 5&6, 495–521.
BRUYNOOGHE, M. 1991. A practical framework for the abstract interpretation of logic programs.

J. Logic Prog. 10, 91–124.
BRUYNOOGHE, M., DE SCHREYE, D., AND MARTENS, B. 1992. A general criterion for avoiding infinite

unfolding during partial deduction. New Generation Computing 11, 1, 47–79.
BURSTALL, R. M. AND DARLINGTON, J. 1977. A transformation system for developing recursive pro-

grams. JACM 24, 1, 44–67.
CHIN, W.-N. AND KHOO, S.-C. 1993. Tupling functions with multiple recursion parameters. In

Proceedings of the Third International Workshop on Static Analysis. Number 724 in LNCS 724.
Springer-Verlag, Padova, Italy, 124–140.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999. Model Checking. MIT Press.
COMINI, M. AND MEO, M. C. 1999. Compositionality properties of sld-derivations. Theoretical Com-

puter Science 211, 1 & 2, 275–309.
CONSEL, C. AND DANVY, O. 1993. Tutorial notes on partial evaluation. In Proceedings of ACM

Symposium on Principles of Programming Languages (POPL’93). ACM Press, Charleston, South
Carolina, 493–501.

CONSEL, C. AND KHOO, S. C. 1993. Parameterized partial evaluation. ACM Trans. Prog. Lang.
Syst. 15, 3, 463–493.

COUSOT, P. AND COUSOT, R. 1977. Abstract interpretation: A unified lattice model for static analysis
of programs by construction of approximation of fixed points. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, Los Angeles. ACM, New York, NY, 238–
252.

COUSOT, P. AND COUSOT, R. 1992. Abstract interpretation and application to logic programs.
J. Logic Prog. 13, 2 & 3, 103–179.

DE SCHREYE, D. AND DECORTE, S. 1994. Termination of logic programs: The never ending story.
J. Logic Prog. 19 & 20, 199–260.

DE SCHREYE, D., GLÜCK, R., JøRGENSEN, J., LEUSCHEL, M., MARTENS, B., AND SøRENSEN, M. H. 1999.
Conjunctive partial deduction: Foundations, control, algorithms and experiments. J. Logic
Prog. 41, 2 & 3 (November), 231–277.

DE WAAL, D. A. AND GALLAGHER, J. 1991. Specialisation of a unification algorithm. In Logic Pro-
gram Synthesis and Transformation. Proceedings of LOPSTR’91, T. Clement and K.-K. Lau, Eds.
Manchester, UK, 205–220.

DE WAAL, D. A. AND GALLAGHER, J. 1994. The applicability of logic program analysis and transfor-
mation to theorem proving. In Automated Deduction—CADE-12, A. Bundy, Ed. Springer-Verlag,
207–221.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

460 • Michael Leuschel

DOETS, K. 1993. Levationis laus. J. Logic Comput. 3, 5, 487–516.
FUTAMURA, Y., NOGI, K., AND TAKANO, A. 1991. Essence of generalized partial computation.

Theoretical Computer Science 90, 1, 61–79.
GALLAGHER, J. 1991. A system for specialising logic programs. Technical Report TR-91-32,

University of Bristol. November.
GALLAGHER, J. 1993. Tutorial on specialisation of logic programs. In Proceedings of PEPM’93, the

ACM Sigplan Symposium on Partial Evaluation and Semantics-Based Program Manipulation.
ACM Press, 88–98.

GALLAGHER, J. AND BRUYNOOGHE, M. 1990. Some low-level transformations for logic programs. In
Proceedings of Meta90 Workshop on Meta Programming in Logic, M. Bruynooghe, Ed. Leuven,
Belgium, 229–244.

GALLAGHER, J. AND BRUYNOOGHE, M. 1991. The derivation of an algorithm for program specialisa-
tion. New Generation Computing 9, 3 & 4, 305–333.

GALLAGHER, J. AND DE WAAL, D. A. 1992. Deletion of redundant unary type predicates from logic
programs. In Logic Program Synthesis and Transformation. Proceedings of LOPSTR’92, K.-K.
Lau and T. Clement, Eds. Manchester, UK, 151–167.

GALLAGHER, J. AND DE WAAL, D. A. 1994. Fast and precise regular approximations of logic pro-
grams. In Proceedings of the Eleventh International Conference on Logic Programming, P. Van
Hentenryck, Ed. The MIT Press, 599–613.

GALLAGHER, J. AND LAFAVE, L. 1996. Regular approximations of computation paths in logic and
functional languages. In Partial Evaluation, International Seminar, O. Danvy, R. Glück, and
P. Thiemann, Eds. LNCS 1110. Springer-Verlag, Schloß Dagstuhl, 115–136.

GALLAGHER, J. P. AND PERALTA, J. C. 2000. Using regular approximations for generalization during
partial evaluation. In Proceedings of PEPM’00, J. Lawall, Ed. ACM Press, 44–51.

GALLAGHER, J. P. AND PERALTA, J. C. 2001. Regular tree languages as an abstract domain in program
specialisation. Higher Order and Symbolic Computation 14, 2–3 (November), 143–172.

GALLAGHER, J. P. AND PUEBLA, G. 2002. Abstract interpretation over non-deterministic finite
tree automata for set-based analysis of logic programs. In Practical Aspects of Declarative
Languages, 4th International Symposium, PADL 2002, Portland, OR, USA, LNCS Vol. 2257,
S. Krishnamurthi and C. R. Ramakrishnan, Eds. Springer Lecture Notes in Computer Science,
243–261.

GLÜCK, R., JøRGENSEN, J., MARTENS, B., AND SøRENSEN, M. H. 1996. Controlling conjunctive partial
deduction of definite logic programs. In Proceedings of PLILP’96, H. Kuchen and S. Swierstra,
Eds. LNCS 1140. Springer-Verlag, Aachen, Germany, 152–166.

GLÜCK, R. AND SøRENSEN, M. H. 1994. Partial deduction and driving are equivalent. In Pro-
gramming Language Implementation and Logic Programming. Proceedings, Proceedings of
PLILP’94, M. Hermenegildo and J. Penjam, Eds. LNCS 844. Springer-Verlag, Madrid, Spain, 165–
181.

HERMENEGILDO, M., WARREN, R., AND DEBRAY, S. K. 1992. Global flow analysis as a practical com-
pilation tool. J. Logic Prog. 13, 4, 349–366.

HUET, G. 1980. Confluent reductions: Abstract properties and applications to term rewriting
systems. JACM 27, 4, 797–821.

HUGHES, J. 1999. A type specialisation tutorial. In Partial Evaluation: Practice and Theory,
J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, Eds. LNCS 1706. Springer-Verlag, Copenhagen,
Denmark, 293–325.

JANSSENS, G. AND BRUYNOOGHE, M. 1992. Deriving descriptions of possible values of program vari-
ables by means of abstract interpretation. J. Logic Prog. 13, 2 & 3, 205–258.

JONES, N. D. 1996. An introduction to partial evaluation. ACM Computing Surveys 28, 3
(September), 480–503.

JONES, N. D. 1997. Combining abstract interpretation and partial evaluation. In Static Analysis,
Proceedings of SAS’97, P. Van Hentenryck, Ed. LNCS 1302. Springer-Verlag, Paris, 396–405.

JONES, N. D. 1999. The essence of program transformation by partial evaluation and driving. In
Proceedings of the Third International Ershov Conference on Perspectives of System Informatics.
LNCS 1755. Springer-Verlag, Novosibirsk, Russia, 62–79.

JONES, N. D., GOMARD, C. K., AND SESTOFT, P. 1993. Partial Evaluation and Automatic Program
Generation. Prentice Hall.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 461

JONES, N. D. AND SøNDERGAARD, H. 1987. A semantics-based framework for the abstract interpre-
tation of Prolog. In Abstract Interpretation of Declarative Languages, S. Abramski and C. Hankin,
Eds. Ellis-Horwood, Chapter 6, 124–142.

KO, H.-P. AND NADEL, M. E. 1991. Substitution and refutation revisited. In Logic Programming:
Proceedings of the Eighth International Conference, K. Furukawa, Ed. MIT Press, 679–692.

KOMOROWSKI, J. 1982. Partial evaluation as a means for inferencing data structures in an ap-
plicative language: a theory and implementation in the case of Prolog. In Ninth Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages. Albuquerque, New
Mexico. 255–267.

KOMOROWSKI, J. 1992. An introduction to partial deduction. In Proceedings Meta’92, A. Pettorossi,
Ed. LNCS 649. Springer-Verlag, 49–69.

LAFAVE, L. AND GALLAGHER, J. 1997. Constraint-based partial evaluation of rewriting-based
functional logic programs. In Logic Program Synthesis and Transformation. Proceedings of
LOPSTR’97, N. Fuchs, Ed. LNCS 1463. Leuven, Belgium, 168–188.

LASSEZ, J.-L., MAHER, M., AND MARRIOTT, K. 1988. Unification revisited. In Foundations of Deduc-
tive Databases and Logic Programming, J. Minker, Ed. Morgan-Kaufmann, 587–625.

LE CHARLIER, B. AND VAN HENTENRYCK, P. 1994. Experimental evaluation of a generic abstract
interpretation algorithm for Prolog. ACM Trans. Prog. Lang. Syst. 16, 1, 35–101.

LEUSCHEL, M. 1995. Ecological partial deduction: Preserving characteristic trees without
constraints. In Logic Program Synthesis and Transformation. Proceedings of LOPSTR’95,
M. Proietti, Ed. LNCS 1048. Springer-Verlag, Utrecht, The Netherlands, 1–16.

LEUSCHEL, M. 2002. The ECCE partial deduction system and the DPPD library of benchmarks.
Obtainable via http://www.ecs.soton.ac.uk/~mal.

LEUSCHEL, M. 1997. Advanced techniques for logic program specialisation. Ph.D. thesis, K.U.
Leuven. Accessible via http://www.ecs.soton.ac.uk/~mal.

LEUSCHEL, M. 1998a. On the power of homeomorphic embedding for online termination. In
Static Analysis. Proceedings of SAS’98, G. Levi, Ed. LNCS 1503. Springer-Verlag, Pisa, Italy,
230–245.

LEUSCHEL, M. 1998b. Program specialisation and abstract interpretation reconciled. In Proceed-
ings of the Joint International Conference and Symposium on Logic Programming JICSLP’98,
J. Jaffar, Ed. MIT Press, Manchester, UK, 220–234.

LEUSCHEL, M. 1999. Logic program specialisation. In Partial Evaluation: Practice and Theory,
J. Hatcliff, T. Æ. Mogensen, and P. Thiemann, Eds. LNCS 1706. Springer-Verlag, Copenhagen,
Denmark, 155–188 and 271–292.

LEUSCHEL, M. AND BRUYNOOGHE, M. 2002. Logic program specialisation through partial deduction:
Control issues. Theory and Practice of Logic Programming 2, 4 & 5 (July & September), 461–515.

LEUSCHEL, M. AND DE SCHREYE, D. 1996. Logic program specialisation: How to be more specific. In
Proceedings of PLILP’96, H. Kuchen and S. Swierstra, Eds. LNCS 1140. Springer-Verlag, Aachen,
Germany, 137–151.

LEUSCHEL, M. AND DE SCHREYE, D. 1998. Constrained partial deduction and the preservation of
characteristic trees. New Generation Computing 16, 283–342.

LEUSCHEL, M., DE SCHREYE, D., AND DE WAAL, A. 1996. A conceptual embedding of folding into
partial deduction: Towards a maximal integration. In Proceedings of the Joint International
Conference and Symposium on Logic Programming JICSLP’96, M. Maher, Ed. MIT Press, Bonn,
Germany, 319–332.

LEUSCHEL, M. AND GRUNER, S. 2001. Abstract partial deduction using regular types and its applica-
tion to model checking. In Proceedings of 11th Int’l Workshop on Logic-based Program Synthesis
and Transformation, LOPSTR’2001, A. Pettorossi, Ed. LNCS 2372. Springer-Verlag, Paphos,
Cyprus, 91–110.

LEUSCHEL, M. AND LEHMANN, H. 2000. Coverability of reset Petri nets and other well-structured
transition systems by partial deduction. In Proceedings of the International Conference on
Computational Logic (CL’2000), J. Lloyd, Ed. LNAI 1861. Springer-Verlag, London, UK, 101–
115.

LEUSCHEL, M. AND MARTENS, B. 1995. Partial deduction of the ground representation and its ap-
plication to integrity checking. In Proceedings of ILPS’95, the International Logic Programming
Symposium, J. W. Lloyd, Ed. MIT Press, Portland, USA, 495–509.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

462 • Michael Leuschel

LEUSCHEL, M., MARTENS, B., AND DE SCHREYE, D. 1998. Controlling generalization and polyvariance
in partial deduction of normal logic programs. ACM Trans. Prog. Lang. Syst. 20, 1 (January), 208–
258.

LEUSCHEL, M. AND SøRENSEN, M. H. 1996. Redundant argument filtering of logic programs. In
Logic Program Synthesis and Transformation. Proceedings of LOPSTR’96, J. Gallagher, Ed.
LNCS 1207. Springer-Verlag, Stockholm, Sweden, 83–103.

LLOYD, J. W. 1987. Foundations of Logic Programming. Springer-Verlag.
LLOYD, J. W. AND SHEPHERDSON, J. C. 1991. Partial evaluation in logic programming. J. Logic

Prog. 11, 3& 4, 217–242.
MARRIOTT, K., NAISH, L., AND LASSEZ, J.-L. 1988. Most specific logic programs. In Proceedings of

the Joint International Conference and Symposium on Logic Programming. IEEE, MIT Press,
Seattle, 909–923.

MARRIOTT, K., NAISH, L., AND LASSEZ, J.-L. 1990. Most specific logic programs. Annals of Mathe-
matics and Artificial Intelligence 1, 303–338.

MARTENS, B. AND DE SCHREYE, D. 1996. Automatic finite unfolding using well-founded measures.
J. Logic Prog. 28, 2 (August), 89–146.

MARTENS, B., DE SCHREYE, D., AND HORVÁTH, T. 1994. Sound and complete partial deduction with
unfolding based on well-founded measures. Theoretical Computer Science 122, 1–2, 97–117.

MOGENSEN, T. AND SESTOFT, P. 1997. Partial evaluation. In Encyclopedia of Computer Science and
Technology, A. Kent and J. G. Williams, Eds. Marcel Decker, 270 Madison Avenue, New York,
New York 10016, 247–279.

MUCHNICK, S. S. 1997. Advanced Compiler Design Implementation. Morgan Kaufmann Publish-
ers, Inc., San Francisco, California.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1991. Combined determination of sharing and freeness
of program variables through abstract interpretation. In Proceedings of the Eighth International
Conference on Logic Programming, K. Furukawa, Ed. MIT Press, Cambridge, Paris, 49–63.

MUTHUKUMAR, K. AND HERMENEGILDO, M. 1992. Compile-time Derivation of Variable Dependency
Using Abstract Interpretation. J. Logic Prog. 13, 2&3 (July), 315–347.

PETTOROSSI, A. AND PROIETTI, M. 1996a. Program derivation via list introduction. In Proceed-
ings of the IFIP TC2 Working Conference on Algorithmic Languages and Calculi, R. Bird and
L. Meertens, Eds. Chapman & Hall, Le Bischenberg, France.

PETTOROSSI, A. AND PROIETTI, M. 1996b. A theory of logic program specialization and generalization
for dealing with input data properties. In Partial Evaluation, International Seminar, O. Danvy,
R. Glück, and P. Thiemann, Eds. LNCS 1110. Springer-Verlag, Schloß Dagstuhl, 386–408.

PETTOROSSI, A., PROIETTI, M., AND RENAULT, S. 1997. Reducing nondeterminism while specializing
logic programs. In Proceedings of ACM Symposium on Principles of Programming Languages
(POPL’97), N. D. Jones, Ed. Paris, France, 414–427.

PROIETTI, M. AND PETTOROSSI, A. 1991. Unfolding-definition-folding, in this order, for avoid-
ing unnecessary variables in logic programs. In Proceedings of PLILP’91, J. Maluszyński and
M. Wirsing, Eds. LNCS 528. Springer-Verlag, 347–358.

PROIETTI, M. AND PETTOROSSI, A. 1993. The loop absorption and the generalization strategies for
the development of logic programs and partial deduction. J. Logic Prog. 16, 1 & 2 (May), 123–162.

PUEBLA, G., BUENO, F., AND HERMENEGILDO, M. 2000a. A Generic Preprocessor for Program Val-
idation and Debugging. In Analysis and Visualization Tools for Constraint Programming,
P. Deransart, M. Hermenegildo, and J. Maluszynski, Eds. Number 1870 in LNCS. Springer-
Verlag, 63–107.

PUEBLA, G., BUENO, F., AND HERMENEGILDO, M. 2000b. Combined Static and Dynamic Assertion-
Based Debugging of Constraint Logic Programs. In Logic-based Program Synthesis and Trans-
formation (LOPSTR’99). Number 1817 in LNCS. Springer-Verlag, 273–292.

PUEBLA, G., GALLAGHER, J., AND HERMENEGILDO, M. 1997. Towards integrating partial evaluation
in a specialization framework based on generic abstract interpretation. In Proceedings of the
ILPS’97 Workshop on Specialisation of Declarative Programs and its Application, M. Leuschel,
Ed. K.U. Leuven, Tech. Rep. CW 255. Port Jefferson, USA, 29–38.

PUEBLA, G. AND HERMENEGILDO, M. 1995. Implementation of multiple specialization in logic pro-
grams. In Proceedings of PEPM’95, the ACM Sigplan Symposium on Partial Evaluation and
Semantics-Based Program Manipulation. ACM Press, La Jolla, California, 77–87.

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

Partial Evaluation and Abstract Interpretation of Logic Programs • 463

PUEBLA, G. AND HERMENEGILDO, M. 1996. Abstract specialization and its application to program
parallelization. In Logic Program Synthesis and Transformation. Proceedings of LOPSTR’96,
J. Gallagher, Ed. LNCS 1207. Stockholm, Sweden, 169–186.

PUEBLA, G. AND HERMENEGILDO, M. 1999. Abstract Multiple Specialization and its Application to
Program Parallelization. J. Logic Prog. Special Issue on Synthesis, Transformation and Analysis
of Logic Programs 41, 2&3 (November), 279–316.

PUEBLA, G., HERMENEGILDO, M., AND GALLAGHER, J. 1999. An Integration of Partial Evaluation in a
Generic Abstract Interpretation Framework. In ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation (PEPM’99), O. Danvy, Ed. Number NS-99-1 in
BRICS Series. University of Aarhus, Denmark, 75–85.

ROSCOE, A. W. 1999. The Theory and Practice of Concurrency. Prentice-Hall.
SAHLIN, D. 1993. Mixtus: An automatic partial evaluator for full Prolog. New Generation Com-

puting 12, 1, 7–51.
SANDS, D. 1996. Total correctness by local improvement in the transformation of functional pro-

grams. ACM Trans. Prog. Lang. Syst. 18, 2 (Mar.), 175–234.
SøRENSEN, M. H. AND GLÜCK, R. 1995. An algorithm of generalization in positive supercompilation.

In Proceedings of ILPS’95, the International Logic Programming Symposium, J. W. Lloyd, Ed.
MIT Press, Portland, USA, 465–479.

SøRENSEN, M. H., GLÜCK, R., AND JONES, N. D. 1994. Towards unifying partial evaluation, de-
forestation, supercompilation, and GPC. In Programming Languages and Systems—ESOP ’94.
Proceedings, D. Sannella, Ed. LNCS 788. Springer-Verlag, Edinburgh, Scotland, 485–500.

SøRENSEN, M. H., GLÜCK, R., AND JONES, N. D. 1996. A positive supercompiler. J. Functional
Prog. 6, 6, 811–838.

WADLER, P. 1990. Deforestation: Transforming programs to eliminate intermediate trees. Theo-
retical Computer Science 73, 231–248. Preliminary version in ESOP’88, LNCS 300.

YARDENI, E. AND SHAPIRO, E. 1990. A type system for logic programs. J. Logic Prog. 10, 2, 125–154.

Received May 2000; revised July 2002; accepted May 2003

ACM Transactions on Programming Languages and Systems, Vol. 26, No. 3, May 2004.

