A Framework for the Language and L ogic of Computer-Aided
Phenomena-Based Process M odeling

by

Jerry Bieszczad

B.S. Chemical Engineering
University of Connecticut, Storrs (1994)

Submitted to the
Department of Chemical Engineering
in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING

at the
Massachusetts Institute of Technology

February 2000

© 2000 Massachusetts Institute of Technology
All rights reserved.

Signature of Author:

Department of Chemical Engineering
October 18, 1999

Certified by:
George Stephanopoulos
Arthur D. Little Professor of Chemical Engineering
Thesis Supervisor

Accepted by:

Robert E. Cohen
St. Laurent Professor of Chemical Engineering
Chairman, Committee for Graduate Students

A Framework for the Language and L ogic of Computer-Aided
Phenomena-Based Process M odeling

by
Jerry Bieszczad

Submitted to the Department of Chemical Engineering
on October 18, 1999 in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Chemical Engineering

ABSTRACT

Chemical process engineering activities such as design, optimization, analysis, control, scheduling,
diagnosis, and training all rely on mathematical models for solution of some engineering problem.
Likewise, most of the undergraduate chemical engineering curricula are model-based. However,
the lack of formalization and systematization associated with model development leads most
students and engineers to view modeling as an art, not as a science. Consequently, model
development in practice is usually left to specialized modeling experts.

This work seeks to address this issue through development of a framework that raises the
level of model development from procedural computations and mathematical equations to the
fundamental concepts of chemical engineering science. This framework, suitable for
implementation in a computer-aided environment, encompasses a phenomena-based modeling
language and logical operators. The modeling language, which represents chemical processes in
terms of interacting physicochemical phenomena, provides a high-level vocabulary for describing
the topological and hierarchical structure of lumped or spatially distributed systems, mechanistic
characterization of relevant phenomena (e.g., reactions, equilibria, heat and mass transport), and
thermodynamic and physical characterization of process materials. The logical operators
systematize the modeling process by explicitly capturing procedural and declarative aspects of the
modeling activity. This enables a computer to provide assistance for analyzing and constructing
phenomena-based models, detect model inconsistencies and incompleteness, and automatically
derive and explain the resulting model equations from chemical engineering first principles.

In order to provide an experimental apparatus suitable for evaluating this framework, the
phenomena-based language and logical operators have been implemented in a computer-aided
modeling environment, named MODEL.LA. MODEL.LA enables phenomena-based modeling of
dynamic systems of arbitrary structure and spatial distribution, hierarchical levels of detail, and
multicontext depictions. Additional components allow incorporation of thermodynamic and
physical property data, integration of control structures, operational task scheduling, and external
models, and assistance for specification and solution of the resulting mathematical model.
Application of this environment to several modeling examples, as well as its classroom and
industrial deployment, demonstrate the potential benefits of rapid, reliable, and documented
chemical process modeling that may be realized from this high-level phenomena-based approach.

Thesis Supervisor: George Stephanopoulos
Title: Arthur D. Little Professor of Chemical Engineering

Acknowledgements

I would like to thank my advisor, Professor George Stephanopoulos, for the inspired mentorship
and scholarly example he has given me. His encouragement to critically evaluate and consider the
ideas of my work beyond the scope of this thesis has been a constant source of motivation over
the past several years. Professor Stephanopoulos has provided indispensable guidance regarding
both my research and professional development, while allowing me the requisite freedom to
pursue ideas and approaches of greatest interest to me.

I am also deeply indebted to the members of my thesis committee, Prof. Paul Barton, Prof.
Jack Howard, Dr. Michael Mohr, and Prof. Gregory Rutledge. Through various discussions they
have provided insightful direction and brought a broad perspective to the evaluation of my work.
In addition, Professor Alan Foss at the University of California at Berkeley has provided sage
advice regarding the role of MODEL.LA in an educational setting.

A project with the scope of MODEL.LA could not be accomplished alone, and I gratefully
acknowledge the invaluable contributions of my colleagues. Dr. Alexandros Koulouris designed
and implemented the Properties Manager, the incorporation of control structures, and the
integration of external gPROMS models into MODEL.LA. Dr. Kevin Geurts, at the University of
California at Berkeley, implemented the foundational design of the Numerical Engine. Finally,
Dr. Manuel Rodriguez incorporated the declaration of operational schedules into MODEL.LA.
With these extraordinary gentlemen, I have experienced many triumphs, shared a few defeats, and
developed close friendships.

I give kind regards to members of the LISPE research group, both past and present, who
have provided me with an endless source of ideas, advice, frivolous diversions, and many, many
laughs. Particularly, the companionship of Matthew Dyer and Orhan Karsligi on our quest
toward a Ph.D. has been most appreciated.

Finally, I must thank my family for the support that has truly made this thesis possible.
Dziekuje wszystkim! My mom has sacrificed a great deal to give her children the best. I hope my
small accomplishment gives her a source of pride. Most of all, I thank my wife, Chris, whose

love, support, encouragement, and friendship make it all worth it.

Table of Contents

ACKNOWIBAGEMENTS. ...ttt b e b et e e e e beeereesnnas 5
TADIE OF CONTENTS ...ttt e et e st e e s st e e beesabeesneeennee s 7
LISt OF FIQUI S, ettt ettt et e bt e s he e e beeenbeesnee e 13
LISt OF TADIES ...ttt ettt e r e nee e 17
Chapter 1 INTrOTUCTIONcoueiiiieie ettt esr e snneenee s 19
1.1 Chemical Process Modeling Needs in Engineering Practice............cooccuvvviiieeiieinniinnnnneen. 20
1.2 Chemical Process Modeling Needs in Undergraduate Education..............cccceeevvvunennneen. 21
1.3 Potential Role of the Computer in Process Modeling.............cccccevevviiiiiiiiieiiennniiineeen. 24
1.4 Existing Computer-Aided Process Modeling ToOIS..............ueviieiiieiiiiiiiiiiieeeeeeeiiieee, 25
1.4.1 Sequential Modular Flowsheet SImulatorscoovvviiiiiiiiieieiiiiiiiiiieeeee e 25
1.4.2 Programming Lan@UaZESccoeuurriiiieeeeiiiiiiiiieeeeeeeeeeeiiitee et e e e e e e ssiiareeeeeeeeeennnnens 26
1.4.3 SPreadshEeLS ...cceeeeeiiiiiiiiieee ettt e e e e e et e e e e e e e e 27
1.4.4 Equation-Based Process Modeling ToOOIS...........cccoeiiemiiiiiiiiiiiieeieiiiieeeeee e 28
1.4.5 Summary of Existing Computer-Aided Process Modeling Toolsccceeeevnneeenn. 31
1.5 Physicochemical Phenomena-Based Process Modelingccooevvviiiiiiiiieiiinnniiinnnneen. 32
1.5.1 Proposed Phenomena-Based Modeling Approaches............ccccceeeeeviiiiiiiiieeeeennnnnns 33
1.5.2 Summary of Proposed Phenomena-Based Modeling Approaches............cccccceeunnnns 35
1.6 ReSEArCh ODJECTIVESuuvviiiiieieeeeiiiiiieeee e e ettt e e e e e ettt e e e e e e st e eeeeeeeessnnenneeeeas 36
1.6.1 Development of a Formalized Phenomena-Based Modeling Language 36
1.6.2 Systematization of Modeling Activity through Modeling Logic............cccceeeeeennnnnns 37
1.6.3 Implementation and Evaluation of Modeling Language and Logic through a
Computer-Aided Modeling Environmentcooeeerviiiiiiiiieeeeieniiiiieeeeeeeeeeiens 37
1.7 TheSIS OULINEceeiiiiiiiiiiiiiee ettt e et e e ettt e e et e e e e easeeeee e 38

Chapter 2 Requirementsfor High-Level Process Modeling........coccveveiiiieeniiinee e 39

2.1 Requirements for the Representation of Process Models............cccceeeeeevviiiiiiiiiieeeennnnns 39
2.1.1 Declarative Model Representationooecuvviiiieieeeeriniiiiiiieeeeeeeesiiiieeeeeeeee s 40
2.1.2 Chemical Engineering Science Basis of Models...........ccccouviiiiiiiiiiiniiiiiiiiiiieeees 41
2.1.3 Explicit Documentation of ASSUMPLIONSuvviviiiieeeerriiiiiiiieeeeeeeereiiiiieeeeeeeeesnaeens 41
2.1.4 Hierarchical Nature of MOdelS..........ccooeiiiiiiiiiiiiiiiiiiieiieeeeee e 42
2.1.5 Contextual Nature of MOdelS...........couiiiiiiiiiiiiiiiiiiiiee et e e e 42

2.2 Requirements for Systematization of the Process Modeling Activity.........cccceeeeenuneeenn. 43
2.2.1 Procedural Nature of Modeling ACtIVILYuvviiiiieeieiiiiiiiiieeeeeeeeriiiieeeee e e e e 43
2.2.2 Contextual Nature of Modeling ACHIVILYuvviriiieeieeiiiiiiieeee e e e e e e e 45
2.2.3 Science and Art Of MOdelngcooiiiieiiiiiiiiiiiiieeeeeeee e 46
2.2.4 Documentation Of Modeling ACHVILYceevvuuiiiiiiiieeeeiiiiiiieeee e e e eeeiiieeee e e e e e e 47

2.3 Implementation of High-Level Computer-Aided Modeling Support...........cccceeeeeeeennnnnee 48
2.3.1 Phenomena-Based Modeling Language..............ceeeeeieemrniiiiiiieeeeeeeniiiiiieeee e e e 48
2.3.2 MOdEING LLOZIC ..ceeeeuiiiiiiiieieeeeeeettt ettt ettt e e e e ettt e e e e e e e e saebbaeeeeeeeeesnnnnens 49
2.3.3 Computer-Aided Modeling Environmentccoeeevvriiiiiiieieeeeenniiiiiiieeeeeeeeseiens 50

Chapter 3 Modeling Language Frameworkc.ccooieiiiiiiiiieeeee e 53

3.1 Formal Modeling Language Representation.............ccoovveiiiiiiieeeeeennniiiiiieeeeeeeeeeiiieeeen 54

3.2 Hierarchy of Model EQUAtIONS.uuiiiiiiiiiiiiiiiiiieee ettt e e e eeeeeeas 56

3.3 Phenomena-Based Model Characterization..............eeeeereeiiriiieeeeeeenniiiiiiieeeeeeeeseieneeeeens 58
3.3.1 Structural CharaCteriZationceeeeeeriiiuiiiieieeeeeeeriiiieeeeeeeeessiarereeeeeeeessneneeeees 59
3.3.2 Chemical CharaCterizZationeeeeeeerrriuurrrreeeeeeenriiiireeeeeeeeessssinrereeeeessesnnnenneeees 60
3.3.3 DErivation COMEEXLceieeieireiiiiiiieeeeeeeriiiiitteeeeeeeesseitarteeeeeeeesssnanrareeeeessssnnnnssrenees 61

3.4 Characterization of Modeling EIEmentscooiiiimiiiiiiiiiieeeeieniiiiieeeee e 61
3.4.1 Modeled-Unit CharaCteriZation...........ceeeeuuvriieeeeeeeeiiiiiiiiieeeeeeeesriirieeeeeeeeeessneneeeeens 62
3.4.2 Flux CharaCteriZatiONccoeeuvvriiiieeeeeeriiiiiieeeeeeeeesiiirteeeeeeeesssaarareeeeesssssnneseeeees 69
3.4.3 Material-Content CharacCterizZation..............uvveeeeeeeerriiiiiiiieeeeeeesriiiieeeeeeeeeesieneeeeens 72
3.4.4 Phase CharaCteriZatiONcccuuvuvieieeeeeeriiiiiieeeeeeeeeeiitteeeeeeeessseabaeeeeeeseeesnneneeeeeas 76
3.4.5 Chemical Species Characterization..............uveeeeeeeeerriiiiiiieeeeeeeesriiiieeeeeeeeeeseneneeeeens 79
3.4.6 Chemical Reaction CharacCterization................eeeeeeerriiiiriieeeeeeennriiiieeeeeeeeeesieneeeeens 79

3.5 Semantic RelationShiPS.cceiieiiiiiiiiiiiiiee et e e e e e e e e eaaeeeeas 82

AV (o Ta IS B D T 21 o) o PP UURT RSP 83

3.7 Model Derivation TTEE.......cceiiiiiriiiiiiiieeeeeeeiteeee e e e e et e e e e e et eeee e e e e aebeaeeeas 84

3.8 Complete Context-Free Grammar DeSCription...........eeeveuuiiiiiieeeeeeiriiiiiiiieeeeeeeeiiieeeen 84

Chapter 4 Modeling LOogiC FrameWOrK..........c.eoiiiiiiiiiieiie e 87

4.1 Computational LOZIC.ccouuuiiiiiiiieeeeeeiiiieeee et e et e e e e e e e st e e e e e e e e eanens 88
4.2 Formal Description of Modeling L.ogic Operators.............oevveuviiiiiireeeerniiiiiiiieeeeeeeeeeens 89
4.2.1 Modeling LogiC OPEIatorS.....ccceeeerruuriiiiiieeeeeeeeiiiiieeeeeeeeeesiirareeeeeeeeessnairrreeeeeeeeans 90
4.2.2 Elementary Graph OPEratorsccocuvuiiiiieeeeeriiiiiiiiieeeeeeeessiiiireeeeeeeeessiinereeeeeeeeens 91
4.3 Model ANalysiS OPEIAtOrS.......ueiieeierrriiiiiiiieeeeeeieiiiiitteeeeeeeessirbreeeeeesesssnenrraeeeeesessnannnns 92
4.3.1 Modeling Element Identification...............cceeevriiiiiiiiiiieeieniiiiiieeeee e e 94
4.3.2 HierarchiCal StrUCHUTIE...........ciiiiiiiiiiiiiiieee e e e e e e eeeeeeeeas 97
4.3.3 TopOlogiCal SIIUCTUTE.........eeiiiiieiiiiiiiiieeeee et e e e et e e e e e e e e eeeeeeeeeens 98
4.3.4 Material CharaCteriZAtIONceeeeuuvirieteeeeeeeriiiiieeeeeeeeeeeiirereeeeeeeessniarreeeeeeeeans 100
4.3.5 ChemiCal CONLENLcciiiiiiiiiiiiiiiiee ettt e et e e e e e e e ebeeeee e 103
4.3.6 Mechanistic CharacCteriZation..............uveeieeeeerriiiiiiiiieeeeeeeeriiiireeeeeeeessiireeeeeeeeeens 104
4.4 Model ConstruCtion OPEIALOTScceeeeeruiririieeeeeeeerriiiiteeeeeeeeessiarrereeeeseesssnnnrrrreeeaseenns 106
4.4.1 Modeling EIEMENLS..........uuuiiiiiiieiiiiiiiiiieeeeeeeeiiieeee e e e e e ettt e e e e e e e s eearreeeeeeeeens 106
4.4.2 Topological CharaCterization............uuvverieeeeerriiiiiiiiiieeeeeeeeriiirrreeeeeeeesssainreeeeeeeeenns 108
4.4.3 ChemiCal CONLENLcciiiiiiiiiieiiitee ettt ettt ettt e e e et ee e s eieeeee e 112
4.4.4 Hierarchical CharaCteriZation.............uuvieieeeeerniiiiiiiiiieeeeeeeeriirieeeeeeeeessiiareeeeeeeeeens 114
4.4.5 Material CharaCteriZAtIONcoeeeuvviiireeeeeereriiiiieeeeeeeeeeriireeeeeeeeeesssneanreeeeeeeenns 118
4.4.6 Mechanistic CharaCteriZation.............uuveeieeeeeririiiiiiieeeeeeeeeiiiiireeeeeeeeessiiarreeeeeeeeens 120
4.4.77 Behavioral CharaCteriZation..........ccuuvvviiiieeeerniiiiiiiieeeeeeeeeeiiieeeeeeeeeeseiiirreeeeeeeeens 121
4.5 Model CoNSIStENCY OPETALOTSeeeeeeerrriiiiiiieeeeeeeerriiiirteeeeeeeesssiarrereeeeseessnnnnsrrreeeeseenns 122
4.5.1 HierarchiCal CONSISIENCY......cttitieiiiiiiiiiiiieeeeeeeiiiiiieteeeeeeesriirreeeeeeeeessneabreeeeeeeeans 123
4.5.2 Material Characterization CONSISLENCYcceerrruriririieeeeeerriiiiiiieeeeeeeeeseiiireeeeeeeeans 127
4.5.3 Species TOPology RUIEScccoieiiiiiiiiiiiiieeeeeee e e 129
4.6 Model Completeness OPEIatOrS.ceeeuuurrriiiieeeeerriiiiiiieeeeeeeeessiirrereeeeeeesssnannrreeeeeeeenns 131
4.7 Model Derivation OPEIatorS.ceeeeeereuuriiieeeeeeeerriiiiieeeeeeeeesssiinrereeeeesesssnnnsrrreeeeseenns 133
4.7.1 Chemical Species Conservation Equation Derivationcccccceeeeevviiiiiiiieeennnnn. 133
4.7.2 Energy Conservation Equation Derivationcccceeeeevriiiiiiieieeeeeenniiiieeeeeee e 137
4.7.3 Chemical Reaction Rate Equation Derivation...........ccccceeeveviiiiieiieeeinnniiiiiieeeeeenn 140
4.7.4 Material-Content Characterization Equation Derivation............ccccceevveiiviiieeeeennnn. 141
4.7.5 Phase Characterization Equation Derivationcccceeevveiiiiiieiieeeennniiiiieeeeeeeenns 145
4.7.6 Mechanistic Characterization Equation Derivation.............ccccvvveeeeeienniiiiiiieeeeeeenn. 148
4.7.7 Thermodynamic and Physical Properties of Phases Equation Derivation................ 149
4.7.8 Thermodynamic and Physical Properties of Fluxes Equation Derivation................ 151
4.8 Model EXPlanation.........coeeueiiiiiiiieieieiiiiiieeeee e ettt e e e e e e et eeeeeeesssaanneeeeeeeeeens 151
4.9 Extensions to Modeling LogiC OPETatorsccoveeuuvriiiiieeeeeriiiiiiieeeeeeeeeseiiiereeeeeeeens 153
4.10 Supervisory LOZIC OPETAtOrS.ccceiiiiiiiiiiiiieeeeeeeeeiiiiiieeeeeeeeesriiarereeeeeeesssnenareeeeeeeenns 153

Chapter 5 The MODEL.LA Modeling ENVIroNmMeNtocceeiieniiineeniee e 159

5.1 SOTEWAIE STIUCTUIE ... eeveeeiie ettt ettt et et e et e eaeeeteeeaeeetaeeeaesennseennns 160
5.2 MOAEL GENETALOT .. .c.u ettt et e et e et e e taeeeeaesetae e et e etaeseaesesnseennns 160
5.2.1 TOPOlOGICAl SIIUCLUTC.....eeieeieeiiiiiiiiiiee et eeeeiiie et e e e e e ettt eeeeeeesseibbereeeeeeesennnens 162
5.2.2 HIErarChiCal STIUCTUIEuuieveieiee ettt ettt e et e et e e eaeeeresevaeeennes 165
5.2.3 ChemiCal CRaraCteriZatIONcuuuueeueetieeeeeeee et e et et e et e et eereeeeaeeernesernaesennenes 170
5.2.4 Phenomena-Based Mechanistic Characterization...........cuueeeeevereeeeeueeeieeeeneeeennnes 177
5.2.5 Phenomena-Based Model SUMmAry...........ccccuviiiiiiiiiiiiiiiiiiieeee e 182
5.2.6 Mathematical MOdEe]l DErIVATION. ...c..uiivneiiieeeiee ettt et e et e eeaee e et seeaeeennes 183
5.3 Properti€S ManQ@eTuuuviiiieiiiiiiiiiiieeeeeeeeeeiite e e e e e eeseiibeteeeeeeeessnntsbeaeeeeeeessnnnnnns 185
5.3.1 Pure SPecies PrOPertiesceevruuuiiiiiieeieiiiiiiiiteee e eeeeiieeee e e e e e e s eee e e e e e 186
5.3.2 Binary Interaction Parameters.cceeeeirriiiiiiiiieereiiiiiiiiieeeeeeeeeeiiieeeee e e e e 186
5.3.3 Material Behavior ANalySiS........ccuuvieiiieeiiiiiiiiiiiiieee et e e e e e e e e e e e 186
5.4 Operations MaANAEET............uviiieeeeriiiiiiiiieeeeeeeeesiiititteeeeeeeassetttreeeeeeesssannsssraeeeeesessnnnnnns 191
5.4.1 USer EQUALIONSccoouiiiiiiiiieee e ettt e e e ettt ee e e e e e e s abaeeeeeeeeesnnnens 192
S5.4.2 ProcCess CONIOIIETSeveeiieeeeiee ettt e et e et e et e etaeeeeaesetaeeennaes 193
5.4.3 EXEEINAL IMOTEIS ..e ittt e e et e e taee e eaesevaesenaeen 195
5.4.4 Operational SChedUIEScooviiiiiiiiiiiiiiiiie e e e e e e 196
5.5 Numerical ENZINE.......ccocuiiiiiiiiiiiiiiieeee ettt e e e e e e eeeeeeesenaens 200
5.5.1 Display of Model EQUAtIONS............cceiiiiiiiiiiiiiiiiiieeeeeeiiieeeeee e e eiieeeee e e e e e s 201
5.5.2 Design Variable SPeCIfiCatiOncceeiiiiriiiiiiiiiieeeeeiiiiiieeeee e e e e eiieeeeeee e e e s 201
5.5.3 INAEX ANALYSIS teeeeeeiiiiiiiiiiieeeeeeeeiiee et e ettt e e e e e ettt e e e e e e e et reaaeeeeeenanans 203
5.5.4 INItIA] COMAIIONS «.utivnteiee ettt et ettt e e et e et eetaeeeeaeeesaseeaeeesnsesneeennnes 203
5.5.5 [Initial GUESS SPECIHICALION. ...ceeeruiiiiiiiiieeeeeeeiiitieeeee e e eee ettt ee e e e e e e e eeeeeeeeenanens 204
5.5.6 Solution of Model EQUAtIONScccieiiiiiiiiiiiiiiieee e e eeeiieeee e e e e e 204
5.5.7 DAE Systems Numerical Solution Methods.............coooeiiiiiiiiiiiiiiniiiiiiiceeeeeees 206
5.5.8 IPDAE Systems Numerical Solution Methodsccccvviiiiiiiiiiiiiiiiiiiieeeeeees 208
5.5.9 Display of Numerical ReSUlts...........ccooiiiiiiiiiiiiiiiiiiiieeeee e 210
5.6 Summary of MODEL.LA Modeling Environmentccccuvvveeiieeeernniiiiiiieeeeeeeenenns 211
Chapter 6 Software Design of the MODEL.LA Modéing Environmentcccceeveenn. 213
6.1 The Object Modeling TEChNIQUEeeeiieieiiiiiiiiiiiiieee e e e e e e 213
6.2 MODEL.LA Modeling Element Object MOdelS..........ccccovvriiiiiiiiiiiiiiiiiiiiiieieee e 214
6.3 MODEL.LA Modeling Environment Object Models............ccuuviiieiiiiinniiiiiiiiiieeeeees 222
6.4 Functional Model of the MODEL.LA Modeling Environmentccccuvveeeeeeennnnnnns 229
6.5 Summary of MODEL.LA Modeling Environment Software Design..............ccccceevennnnne 233

10

Chapter 7 Phenomena-Based M odeling EXampIes.........ccooviiiiienii e 235

T 11 HDA PIANE cnitiiiiiieieee ettt ettt ettt e et e et e s 235
7.1.2 Acetic Anhydride Plant............ccccuviiiiiiiiiiiiiiiiieee e e e e 242
7.1.3 Dynamic Distillation Column EXample..............oeeiiiiiiiniiiiiiiiiieeeeeiiiiieeeee e 251
7.1.4 1-D Spatially Distributed Reaction and Separation Processes...........cccceeeeeeeeennunnn. 254
7.1.5 2-D Tubular REACLOTeiiiiiiiiiiiiiiiieeeecee e 257

7.2 Summary of Model EXampIes.........ccuuuiiiiiiiiiiiiiiiiiiieee et e e e 260
Chapter 8 Conclusons and ReCOMMENTAtIONS.........cooviereiiieeiiieie e 261
8.1 Research CONtIIDULIONScccoiutiiiiiiiiiieeiiiiiiee ettt e e e eiree e e 261
8.1.1 Phenomena-Based Modeling Language..............cooeeuiiiiiiieeieiiniiiiiiiieee e, 261
8.1.2 Formalized Modeling LLOZIC........ccceuiiiiiiiiiiiiiieeeeeeieeeee e 262
8.1.3 Computer-Aided Modeling Environmentcccuvviiiieeeeinniiiiiiiieeee e 262

8.2 Potential Impact on Modeling in Engineering Practice..........ccccceevviiiiiiiiieeeiinnniiienen. 263
8.3 Potential Impact on Undergraduate Chemical Engineering Education............................ 264
8.3.1 Structuring of Modeling ACHVILIES..........uvviiiieeeeeiriiiiiiieeeeeeeeeiiieee e e e e e 265
8.3.2 Classroom Deployment of MODEL.LA.........cccooiiiiiiiiiiiiiiiiiiieeee e 265
8.3.3 Pedagogical Use of MODEL.LA ...ttt 266
8.3.4 Unique Impact on Undergraduate Educationcccceeeeeeiviiiiiiieeeeeeeesiiiieeeee. 267

8.4 Directions for Future Research.............ccooiiiiiiiiiiiiicceeceeeee 269
8.4.1 Phenomena-Based Modeling Language EXtensions...........ccceevvuvviiieeeeeeennnsinneneenn. 269
8.4.2 Integration with Molecular Modeling ToOOIS..........ccuuviiiiiiiiiiiiiiiiieee e, 269
8.4.3 Implementation of SUPErviSOTy LOZICuvviiiiiiiiiiiiiiiiiiieeeeeeieeeee e 270
8.4.4 Standardization and Integration with External Modeling ToolSsccoveurnnneeee. 270

8.5 CONCIUSIONS ..veieeniiiiteeeiite ettt ettt ettt e e ettt e e ettt e e ettt e e eabteeeeenabreeeeannes 271
BiBIIOGraPNY ... 273
Appendix A MODEL.LA Context-Free Grammarccccceiueeriienieeiiieesee e see e 279
AppendiX B PropertieS M anaAgESoooeeiiieiieeiie ittt n e enee s 285
Appendix C Operational SCNEAUIES...........oouiiiiiiiee e 299
Appendix D Jacketed-CSTR Model EQUALIONS..........c.coiiiaiiiiiiesiie e 309
Appendix E 2-D Spatially Distributed Tubular Reactor M odel Equations...................... 315

11

12

List of Figures

Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10:
Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:
Figure 3-21:
Figure 3-22:
Figure 3-23:
Figure 3-24:
Figure 3-25:
Figure 3-26:
Figure 3-27:
Figure 3-28:
Figure 3-29:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 4-9:
Figure 5-1:
Figure 5-2:

Evolution of Process Model Representationsceeeeeveeiiiiiieeeeeeennniiiiieeeeeeeenns 54
Example Production TTEEccoeeieiiiiiiiiiiiieee ettt e e eee e e 56
Phenomena-Based Model Production TTeeuvvviiieiiiiiiiiiiiiiiieeeeeeiiieeeeee e 58
Expanded Phenomena-Based Model Production Treecccvvvveieeiiiiiiiiiiieeeeeeenn. 61
Modeled-Unit Production TTEEccuuuviiiiiieeeiiiiiiiieieee ettt eee e 62
Hierarchical Structure Production TTee..........coeeuviiiiiiiiiieiiiiiiiiieeee e 63
Spatial Distribution Production TTee.........cooeuvviiiiiiiiiiiiiiiiiiieeeeeeeiieeeee e 64
Example Spatial Dimension Production Treecccceeeeviiiiiiiiiiiiiieeeeiiieeeeeeee 65
Topological Structure Production Tree.........covveiviiiiiiiieiiiiiiiiiiccee e 67
Chemical Content Production TTeeeeeeieeeiiiiiiiiiiiiieeeeeeeiieeeeee e 68
FIuxX Production TTee........cooueiiiiiiiiee ettt e e e e 69
Flux Type Production TTEeccceieviriiiiiiiiiiieeeeniiiiieeeee et 69
Convective Flux Production TTee............uuvveiiieiiiiiiiiiiiiiieeeeeeeiieeeee e 70
Energy FIux Production Tree........ccooiviiiiiiiiiiiiieeiiiiieeee e 71
Species Flux Production TTeec..uvvviiiieieeiiiiiiiieeee et e e 72
Flux Connectivity Production TTeeuviiiiieiiiiiiiiiiiiiieeeeeeieeee e 72
Material-Content Production TTeecc.uvvviiiieeiiiiiiiiiiiieeee et 73
Phase Instance Production TIeecccuuvviiiiiiiiiiiiiiiiiiiiieeeeeeeetee e 74
Vessel Geometry Production TTeevvvveiiiiiiiiiiiiiiiiiieeeeeeeieeee e 75
Flux Allocations Production TTeeccuuvviiiiiiiiiiiiiiiiiiiieee e 76
Phase Production TTee............uuiiiiiiiiiiiiiiiiiiieeeeeeeieee et 77
Phase Identification Production TTeeccceeeevriiiiiiiiiiieeiiiiiiiieieeee e 77
Thermodynamic Phase Characterization Production Tree.............ccccoeevevvviiinnnnee. 78
Species Production TTEEceeveveiiiiiiiiieeeeeeiiiiteeee et ee e e e 79
Reaction Production TTEeccuviiiiiiiiiiiiiiiieeeeiiieieeeee et 80
Reaction Participants Production TTeecceevvviiiiiiiiiieieiiiiiiiiiieeee e 81
Reaction Kinetics Production TTee...........uvveiiiiiiiiiiiiiiiiiiieeeeeeiieeeeee e 81
Example Model Digraph............coooiiiiiiiiiiiiiieeeeeeeeee e 84
Example Model Derivation TIeecoocueviiiiiieeiiiiiiiiiiieeee et 85
Modeled-Unit Digraph Representation............eeeeevveeeieeeeeeiiiiiiiiieeeeeeeeeiiiieeeeee e 94
New Modeled-Unit Declaration...............ueeeiieeieiiniiiiiiiiieee e 107
Declaration of Topological StruCtUIe...........covviiiiiiiiiiieiieiiieeeee e 108
Declaration of Internal FIUXcooooiiiiiiiiiiiiiiieeeeeeee e 109
Declaration of Multi-Level FIUX............coiiiiiiiiiiiiiiiiiieeeeeieeeeeeeieeee e 110
Hierarchical Structure Characterization EXamplecooeeciiiiiiiiiiinniiiiiiieeeeeenn. 116
Hierarchical Abstraction EXample............ccoooiiiiiiiiiiiiiiiiiiiiiiiieee e 117
Mathematical Model Derivation............c...ueveiieeeeriniiiiiiiiieee e e 152
Supervisory LOZIC OPETAtOrSuuviiiieeeiiiiiiiiiieeeeeeeesiiiiteeeeeeeeessiirereeeeeeeeenannns 154
MODEL.LA Modeling Environment Software Structureccccceeeeeeevviiiennnenn. 160
MODEL.LA Graphical User Interfacecccoouvvviiiiiiieeeiiiiniiiiiiieeee e 161

13

Figure 5-3:

Figure 5-4:

Figure 5-5:

Figure 5-6:

Figure 5-7:

Figure 5-8:

Figure 5-9:

Figure 5-10:
Figure 5-11:
Figure 5-12:
Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:
Figure 5-17:
Figure 5-18:
Figure 5-19:
Figure 5-20:
Figure 5-21:
Figure 5-22:
Figure 5-23:
Figure 5-24:
Figure 5-25:
Figure 5-26:
Figure 5-27:
Figure 5-28:
Figure 5-29:
Figure 5-30:
Figure 5-31:
Figure 5-32:
Figure 5-33:
Figure 5-34:
Figure 5-35:
Figure 5-36:
Figure 5-37:
Figure 5-38:
Figure 5-39:
Figure 5-40:
Figure 5-41:
Figure 5-42:
Figure 5-43:
Figure 5-44:
Figure 5-45:
Figure 5-46:

Declaration of @ Modeled-Unitcoooiiiiiiiiiiiiiiiiiieceeieceeee e 162
Declaration of a Convective FIUX.........ccooooiiiiiiiiiiiiiiiiiicecceee e 163
Decomposition FIOWSREEt.coovviiiiiiiiiiiieeeee e 164
Jacketed_CSTR DecompPOSItIONcceuuvviiiiiiieeeeiiiiiiiieeeeeeeeeeiiiiieee e e e e e e 165
Modeled-Unit Aggregation Dialog.............eeeeieieiiiiiiiiiiiieeeeeeiiieeeee e 166
Example Staged Modeled-Unit...........ccuuiiiiiiiiiiiiiiiiiiiiiceeeeeeeeeeee e 167
Spatial Distribution DiIalog............uvviiiiiiiiiiiiiiiiiieee e 168
1-D Distributed Heated Fin Examplecccooovriiiiiiiiiiiiiniiieeeeeeeeie, 170
Project Species Selection Dialog.............uuviieeeiiiiiiiiiiiiiieeeeeeeeee e 171
Project Reaction Dialog...........coiiiiiiiiiiiiiiiiieeieeeeeee e 172
Modeled-Unit Chemical Content Characterization Dialogcccveveveeeeeinnnnin. 173
Material-Content Declaration Dialogeeeviviiiiiiiiiiiiiiiieeeeeiiiieeee e 174
Material-Content Geometry Declaration Dialogoeeveeevieniiiiiiiiiieeeeeinins 174
Material-Content Flux Allocation Dialogcccoeeviiiiiiiiiiiiiiiiiiiiiiiceee e 175
Example Vessel Geometry and Flux Allocation................eeeeeeereiiiiiiiiieeeeeeeennnns 177
Modeling Assistant: Edit Fluxes Tab.........ccc.ccoiiiiiiiiiiiiiiiiieeeeeeiiieecee e 177
Convective Flux Characterization Dialogccccuvviiiiiiiiiiiiiiiiiiiiieeeeeeeeee, 178
Energy Flux Characterization Dialogccooviiiiiiiiiiiiiiiiiieeeiiiieeeeee e 178
Species Flux Characterization Dialog..........coeeeuiiiiiiieiiiiiiiiiiiieieeeeeeeiiiieeeee e 179
Project Reaction Rate Law Dialog...........coeeviiiiiiiiiiiiiiiiiiiieieeeeeeeee, 180
Project Data Summary Dialog.........ccooouviiiiiiiiiiiiiiiiiiieeeeeeeeeeee e 182
Modeled-Unit Template Selection Dialogccooevvoiiiiiiiiiiiiiiiiiiiiiieeee e 183
Model InconsiStency DIalog..........ceeeeiieiiiiiiiiiiiieeeeeeriiieeeee e e e e e e 184
Simulation Options DIalO@........cceveuuuiiiiiiiiiiieiiiieeee e e e e e 185
Species Database: Identification Propertiesccceeveevviiiiiieeeeeeeenniiiiiiieeeeeeenn. 187
Species Database: Constant Properties.........ooouuvvveiieeeeiiiiiiiiiiieeeeeeeeeiiiieeeee e 187
Species Database: Temperature Dependant Propertiesccccceeevvvviiviieeeennnn. 188
Species Database: UNIFAC Groups Properties........cccoeeeeuvvveeeeeeeeenniiiiiiieeeeeenn. 188
Species Database: Binary Interaction Parameters for Equations of State 189
Species Database: Binary Interaction Parameters for Activity Coefficient Models
... 189
Phase Equilibrium Calculations Dialog..........ccoovvviiiiiiiiiiiiiiiiiiieieeeeeeeeee, 190
Phase Properties Calculations Dialogcoeeevriiiiiiiiiiiieiiiiiiieceeeeeeeieeeee, 190
Phase Diagram Dialogcoeiiiiiiiiiiiiiiiiiieee e 191
User-Entered Equation DIalog..........cooevviiiiiiiiiiiiiiiiiiieeeee e e 192
Declaration of Control StrUCTUIEScoovuiieiiriiiiiiiiiiiieeeeieeee e 193
Transmission Variable Selection Dialogcooeeuiiiiiiiiiiiiiniiiiiiiiieeeeeeeieeee, 194
Control Law Specification Dialog...........uuveiieeiiiiiiiiiiiiiieeeeeeeiieeeee e, 195
gPROMS External Model Definition Dialogevvvveeeieiiiiiiiiiiiiieeeeeeiiieee, 196
Specification of Operational Schedule.............cccvvviiiiiiiiiiiiiiiiieeee e, 197
Discrete/Continuous Behavior of Scheduled Process Model.............cccoeeuennneeeee. 199
Numerical Engine TooIbar.............cooiiiiiiiiiiiiiiiiieieiieeee e 200
Model EQuations Dialoguvviiiiiiiiiiiiiiiiiiieeeeeeeeiiiiecee e e e eiieeeeeee e e e e 200
Design Variable Specification Dialogccceovvvriiiiiiiiiiiiiiiiieeeeeeeeieee, 201
High Index Diagnosis DIalogcooeeuiiiiiiiieeiiiiiiiiiieeee e 202

14

Figure 5-47:
Figure 5-48:
Figure 5-49:
Figure 5-50:
Figure 5-51:
Figure 6-1:
Figure 6-2:
Figure 6-3:
Figure 6-4:
Figure 6-5:
Figure 6-6:
Figure 6-7:
Figure 6-8:
Figure 6-9:
Figure 6-10:
Figure 6-11:
Figure 6-12:
Figure 6-13:
Figure 6-14:
Figure 6-15:
Figure 6-16:
Figure 6-17:
Figure 6-18:
Figure 6-19:
Figure 6-20:
Figure 6-21:
Figure 6-22:
Figure 6-23:
Figure 7-1:
Figure 7-2:
Figure 7-3:
Figure 7-4:
Figure 7-5:
Figure 7-6:
Figure 7-7:
Figure 7-8:
Figure 7-9:
Figure 7-10:
Figure 7-11:
Figure 7-12:
Figure 7-13:
Figure 7-14:
Figure 7-15:
Figure 7-16:
Figure 7-17:

Initial Condition Specification DIialog...........cceeeerriiiiiiiiieieieiiiiiiieeeeee e 203
Initial Guesses Specification Dialogceeeeeeeriiiiiiiiiiieieeiiiieeeee e, 204
Numerical Solver Specification Dialog............ccooiiiiiiiiiiiiiiiiiiiiiiiiiieeeee e 205
MODEL.LA Block Solver Dialog........coooouviiiiiiiiiiiiiiiiieeeeeeeeiieeeee e 206
Numerical Results Display Dialog.........ccccvviiiiiiiiiiiiiiiiiiiieeeeeeeiiieeeee e 211
Object Modeling Notation for Classes..........eevvruiiiiiiiieeeeriiiiiieieeeeeeeeiieeeeeee e 214
Modeling Element Class Object Modelccoooviiiiiiiiiiiiieiiiiiiiiiceeeee e 215
Species Container Class Object Model..............ooeiiiiiiiiiiiiiiiiiiieiieiieeeeee e 216
Reaction Container Class Object Model............cuvviiiiiiiiiiiiiiiiiiiieeeeeeiiieeeeee e 216
Modeled-Unit Class Object Model..............oooiiiiiiiiiiiiiiiieeeiiiieeeee e, 217
Flux Class Object MOdEL..........cooiiiiiiiiiiiiiiieeeeeeeee ettt 218
Material-Content Class and Phase Class Object Modelsccevveeeeeeiinniiiinnnneen. 219
Reaction Class Object MOdel............ouvviiiiiieiiiiiiiiiiieee e 220
Species Class Object MOdel.............eeiiiiiiiiiiiiiiiiiieee e 220
Modeling Elements Integrated Object Modelccccuvviiiieiiiiniiiiiiiiiiieeeeeees 221
MODEL.LA Modeling Environment Object Model............ccccoeevviiiiiiiiieeeeninnnnnns 222
Phenomena-Based Model Object Modelcooouiiiiiiiieiiiiiiiiiiiiiceeeeeeeee, 222
Mathematical Model Object Model..............ouiiiiiiiiiiiiiiiiiieeeeeeeiiieeee e 223
Model Generator Object Model........cooovviiiiiiiiiiiiiiiieee e 224
Properties Manager Object Modeloooiiiiiiiiiiiiiiiiieeeeeiieeeeeeeeee e, 225
Properties Database Object Model.............ccooiiiviiiiiiiiiiiiiiiiieeeeeeeeeeee, 226
Operations Manager Object Modelcoooiiimiiiiiiiiiiiiiiiiiieeee e, 227
Numerical Engine Object MOdelcooviiiiiiiiiiiiiiiiiiieeee e 228
Overall Model Derivation and Solution Functional Model.................cccoeounnnnneeen. 229
Model Derivation Functional Modelcccoeiiiiiiiiiniiiiiiiicecceeeeee 230
Property Correlation Generation Functional Model.............cocccciiiiiiiiiiiiniinnneen. 231
Mathematical Model Specification and Solution Functional Model...................... 232
Model Solution Functional Model.............cooooiiiiiiiiiiiiiiiiiicecceeeeen 233
Input-Output Level Design for HDA Plant..............cccovviviiiiiiiiiiiiiiiiiiiiieceeeeen 237
Reaction and Separation Section Design for HDA Plant............ccccccoovviiiiiiiinnnnnn. 238
Separation Section Design for HDA Plant............ccoooovviiiiiiiiiiiiiiiiiiiiieeeeeeees 239
Reaction Section with Energy Integration for HDA Plant...........ccccccooviiiiiiiennnnnn. 240
Distillation Column Design for HDA Plant.............cccccoeviiviiiiiiiiiiieeieiiiieeeeeeen 241
Simulation Results for HDA Plant Base Case Design...........cceevvivviiiiiiiieieeeennnnns 242
Input-Output Level Design for Acetic Anhydride Plantcccccoovviiiiiieinnnnnn. 244
Chemical Species and Reactions for Acetic Anhydride Plant Design...................... 245
Simulation Results for Input-Output Level Design of Acetic Anhydride Plant 246
Reaction and Separation Section Design for Acetic Anhydride Plant................... 247
Reactor Design for Acetic Anhydride Plant...............ccccooeveviiiiiiiiiiiiiiieee, 248
Separations Subsystem Design for Acetic Anhydride Plant...............ccccccvveeeennn. 249
Economic Potential for Base Case Design of Acetic Anhydride Plant.................. 250
BTX Dynamic DiStillation..........cceeeeerriuiiiiiiieeeeeeiiiiiiieeeeeeeeeiiiieeeeeeeeeesiineeeeees 251
PI Control of Dynamic Distillation Column................cceeeeeeiiriiiiiiiiieeeeeeiiiieee. 252
Closed Loop Dynamic Response of BTX Distillation Column............ccccceeeeenee. 253
1-D Spatially Distributed Reaction and Separation Processcccccceeeveuennnneenn. 254

15

Figure 7-18: Structure of 1-D Spatially Distributed Tubular Reactor and Gas Absorption Column

.. 255
Figure 7-19: 1-D Spatially Distributed Reactor and Absorption Column Results 257
Figure 7-20: 2-D Spatially Distributed Tubular Reactor Example..........cccccccceoviiiiiiiiniiinnnn. 258
Figure 7-21: 2-D Spatially Distributed Tubular Reactor Simulation Results............cccc.ccccceee. 259
Figure C-1: Generic Structure of Hybrid SyStem.............ccoeviviiiiiiiiiiiiiiiiiiieeee e, 300

16

List of Tables

Table 4-1:
Table 4-2:
Table 4-3:
Table 4-4-:
Table 4-5:
Table 4-6:
Table 4-7:
Table 4-8:
Table 4-9:

Table 4-10:
Table 4-11:
Table 4-12:
Table 4-13:
Table 4-14-:
Table 4-15:
Table 4-16:
Table 4-17:
Table 4-18:
Table 4-19:
Table 4-20:
Table 4-21:
Table 4-22:
Table 4-23:
Table 4-24:
Table 4-25:
Table 4-26:
Table 4-27:
Table 4-28:
Table 4-29:
Table 4-30:
Table 4-31:
Table 4-32:
Table 4-33:
Table 4-34:
Table 4-35:

Intrinsic Declarative Graph OPeratorscccuuvviiiiieeeeerriiiiiiieeeeeeeeeiiiiieeeeeeeesniens 91
Intrinsic Graph AssSignment OPEratorS........ceeeuuurrrriereeeeerriiiiiiieeeeeeeesserrrreeeeesessnnnnnns 92
Elementary Procedural Graph Operators..........ooeeuvvviiiieeeeeiiiiiiiiiieeeeeeeeeiiieeeeeee e 93
Modeling Element Identification Operatorsuveeeeeeeeririiiiiiieeeeeeeeniiieeeeeeeeenns 95
Specialized Modeling Element Identification Operators.............ceeeevvevviiiveeeeeeennnnnns 96
Hierarchical Structure Analysis OPerators.............eeeeeeeerriiiiiiiieeeeeenriiiiiieeeeeeeennanns 97
Topological Structure Analysis OPEratorsceeeeeeerriiiiiiiieeeeeeriiiiiiieeeeeeeesneeens 99
Material Characterization AnalysisS OPerators............ceeeeeeerriivriiieeeeeeerriiiireeeeeeeeens 102
Chemical Content AnalysiS OPETatorsScceeeeerruuvriiiieeeeeeeiiiiiiteeeeeeeeesriirreeeeeeeeeans 103
Mechanistic Characterization Analysis OPeratorscceeeevveciriveieeeeeenrniineneeen. 105
Modeling Element Declaration Operators..........coeeeuvvviiieeeeeeerriiiiiieeeeeeeeesiineeeeens 107
Topological Structure Declaration Operatorseeeeeeeeeerriiiiiiieeeeeeeerriiiieeeen. 111
Chemical Content Declaration OpPeratorscccuvvveeiieeeeerriiiiiiiieeeeeeeeeriiveeeeens 113
Hierarchical Structure Characterization OpPerators............eeeeveeeviiiereeeeeeensniieneneeen. 115
Material Characterization OPETatorsS.uuveieeeeerrriiriiiieeeeeeeeiiiiieeeeeeeeessnnenneeeens 119
Mechanistic Characterization OPEratorseeeeeeeevrrerieeeeeerriiiiiiieeeeeeeeeseeeneeeeens 121
Behavioral Characterization OPeratorsS...........eeeeveeuvriiieeeeeeeenriiiiiiieeeeeeeessiineeeeens 122
Hierarchical ConsiStency OPEerators.uueeeeeeerreiiiiiieieeeeeerriiiiiieeeeeeeeessenneeeeens 126
Material Characterization Consistency OPeratorsceeeeeeereuerevreeeeeeenssseneeeeens 129
Species Topology Consistency OPErators...........uuuveeeeeeeerrriiiiiiieeeeeeeeeriiiiereeeeeeeans 131
Model Completeness OPETALOTScceeereuueurrrieieeeeeeriiiiieeeeeeeeeeriirereeeeeeeeesnnenreeeeas 132
Species Conservation Derivation OPerators.............eeeeeeeerreuvriereeeeeeesniiiiireeeeeeeens 135
Species Aggregation Derivation OPerators.............eeeeeeeerrriivrieeeeeeeeerriiiiiireeeeeeenns 136
Convective Species Transport Derivation Operator............ooeeevvvveeeeeeeeennsiinnneenen. 137
Energy Conservation Derivation Operatorsccuuvveieeeeeeerrriiiiiiiiieeeeeeesiiieeeen 138
Internal Energy Aggregation Derivation Operators.oeeeveuveiveieeeeeeeenniennnnenen. 139
Energy Transport Derivation OPErator...........ceeeeeeeiueiiiieeeeeenniiiiiiieeeeeeeessneenneeeens 140
Chemical Reaction Rate Derivation Operators..............ceeeeeeerreieiiiieeeeeeeenriiineneen. 141
Material-Content Aggregation OPETatorseeeeeuvvriiieeeeeereiiiiiiieeeeeeeeereinneeeens 142
Phase Equilibrium Derivation Operators...........oeeeeuvrriireeeeeeenriiiiiiieeeeeeeessiiieneeens 144
Phase Species Aggregation OPETatorseeeeeereeurrrreeeeeeeeerriiiiiieeeeeeeesssneeneneees 145
Species Fraction Summation OPEratorsS........cceuvvvvrieeeeeeerniiiiiiieeeeeeeeeeiirrreeeeeeeenns 146
Species Holdup Derivation OPeratorsocecuvvveiieeeeeeernniiiiiieeeeeeeeeeiiiineeeeeeeeens 146
Species Concentration Derivation OPEratorseeeeeeereeuvriereeeeeensniiiiieeeeeeeeens 147
Phase Density Derivation OPerators............eeeeeeereeieriiieieeeeeenniiiiieeeeeeeeessinneneeens 148

17

Table 4-36:
Table 4-37:
Table 4-38:
Table 4-39:
Table 4-40:
Table 4-41:

Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 7-1:
Table 7-2:
Table 7-3:
Table 7-4:
Table 7-5:
Table 7-6:
Table 7-7:
Table 7-8:
Table B-1:
Table B-2:
Table B-3:
Table B-4:
Table B-5:
Table B-6:
Table B-7:
Table C-1:
Table C-2:

Phase Internal Energy Derivation Operators..........c..uveeeieeeeeeiriiiiiiiieeeeeeeensiiieeeen. 148

Mechanistic Characterization OPETatorseeeeereevrrrrieeeeeerrriiiiireeeeeeeesrseenreeeens 149

Physical and Thermodynamic Phase Property Operators............ccceeeeeeeeerrennnnnnen. 150

Physical and Thermodynamic Flux Property Operators............ccccueeeeeeeeeenscinnnneen. 151

Level-1 Supervisory OPerator.........ceeueueiiiieieeeeeiiiiiiieeeeeeeeesiiiieeeeeeeeeesieseeeeeas 156

Level-2 Supervisory OPerator..........ceieuueiiiiieeeeeeiiiiiieeeeeeeeeeiiieeeeeeeeeesieaeeeeeas 157
Heated Fin Model EQUAtIONS.......coouvviiiiiiieeieeiiiiiieeee et e eieeee e e e 169
Heated Fin Model Equations with Mechanistic Characterizationscccccc..e.... 169
Geometric Vessel Configurations for a Material-Content...............ccoovvvviiniieeeeennnn. 176
MODEL.LA Reaction Rate Law Templates.............cccceeeerrniiiiiiiiieeeeeniiiiiieeeeeennn 181
Summary of gPROMS IPDAE Solution Methodsc..euvviieiiiiiiiiiiiiiiieeeeeees 208
Design Objectives for HDA Plant............cooooiiiiiiiiiiiiiiiiiiiiiieeeee e 236
Design Objectives for Acetic Anhydride Plantcccccoovviiiiiiiiiiiiiniiiiiiiiieeeeen, 243
PI Controllers of BTX Dynamic Distillationccceeveerriiiiiiiiiieeeeeiniiiiieeeeeeenns 253
Reaction Data for 1-D Spatially Distributed Reaction and Separation Process........ 254
Solution Methods for 1-D Spatially Distributed Reactor and Absorption Column...256
Reaction Data for 2-D Spatially Distributed Tubular Reactor Example................... 258
Solution Methods for 2-D Spatially Distributed Tubular Reactor Example 259
Summary of Phenomena-Based Modeling Examplescccccoevviiiiiiiiiieeinnnnnn. 260
Pure Species Identification Properties.ooevveiviiiiiieeieiiiiiiiiiieeeee e 286
Pure Species Constant Value Propertiescoccuvvviieiieeeeiniiiiiiiiieeeeeeeeiiiiieeee e 287
Pure Species Temperature-Dependent Propertiesoooecvvviieeeeeeiniiiiiiieeeeeeenn. 288
Pure Species Temperature-Dependent Property Correlations.............ceccvvvveeeeeennnn. 289
Properties Manager Equations of State...........coccviiiiiieiiiiiniiiiiiiieeeeeeeiieeeeeee e 291
Properties Manager Activity Coefficient Models...........cooovriiiiiiiiiiiiinniiiiiiicieeeen, 292
Thermodynamic and Physical Property Correlations for Phases...........ccccccccceeenee. 293
Operational Schedule EIGMENLtSccooeiiiiiiiiiiiiiiiieeiiiiiiiieeeee e 302
Example gPROMS Schedule Translation............ooeecvviiiieiieiiniiiiiiieceee e, 307

18

Chapter 1

| ntroduction

Modeling is the quintessential activity that characterizes modern chemical process systems
engineering. Physical experiments on real processes are expensive, time-consuming, and often
potentially hazardous. Fortunately, models provide alternative means to answer questions about
the behavior of such processes through computational experiments. While the potential benefits
of process modeling are commonly acknowledged, its use is not nearly as widespread. Rather, the
development of chemical process models is usually left in the hands of a select group of modeling
experts. This is because the lack of formalization and systematization associated with model
development leads most students and practicing engineers to view modeling as an art, rather than
as a science.

Several computer-aided modeling tools have been proposed to assist the process of model
development. While these tools provide varying degrees of assistance to some aspects of the
modeling activity, they are inadequate to alleviate the modeling bottleneck that restricts the use of
models in engineering practice and in undergraduate education. This is because none of these
computer-aided tools possess an explicit understanding of the chemical engineering concepts
behind model development. Consequently, existing tools must either rely on a library of
predefined models or must provide a computational language for specifying numerical calculations
to be performed or sets of equations to be solved. Use of the former is limited by its inherent
inflexibility, while use of the latter is limited by its inherent complexity.

To provide high-level modeling support to all chemical engineers, not just modeling
experts, a computer-aided modeling environment is needed that lifts the level of model

development from procedural calculations and mathematical equations to the fundamental

19

concepts that characterize chemical engineering science. With this ability, the computer will allow
engineers to develop models at the level of chemical engineering knowledge—through explicit
assumptions about structure, physicochemical phenomena, and mechanistic characterizations.
However, before such a tool may be developed, a high-level language is needed that provides a
vocabulary for description of such models. Once this language is in place, it will provide the basis
for formalized modeling logic that enables the computer to construct mathematical models as a
human engineer would from a phenomena-based description, to provide feedback on model

completeness and consistency, and to provide guidance during the modeling activity.

1.1 Chemical Process M odeling Needsin Engineering Practice

Models are utilized to solve a variety of engineering problems related to a chemical process
throughout its lifetime. Process engineering activities such as design, optimization, analysis,
control, scheduling, diagnosis and training all rely on mathematical models that provide a basis for
computational experiments used to solve some engineering problem. In this manner, all aspects of
a process, its operation, economics, robustness, and safety, can be verified through development
of a valid model.

Properly documented, such models should become valuable assets for a company. The
motivation, ideas, assumptions, and decisions behind their development are an investment in
engineering knowledge. A company that can readily access, accumulate, analyze, and reapply this
knowledge gains a major advantage over its competitors.

Unfortunately, experience has shown that these benefits are not realized because the
investment in model development is lost. Since the knowledge behind a model is not retained nor
explicitly linked to model development, most modeling efforts start from scratch. Not only is
there little retention of modeling knowledge from process to process, but even the same process is
modeled “over and over” for different engineering applications (e.g., process design and process
control). Obviously, under these circumstances the accumulation of modeling assets is minimal.

The complex process engineering problems of today demand computer-aided modeling
tools that extend beyond the paradigm of numerical computations. Since high-powered personal
computers and efficient numerical algorithms are now commonly available, the substantial effort

required for model formulation, verification, documentation, modification, and reuse is now

20

viewed as the key obstacle preventing a more prevalent use of process modeling.
A properly designed modeling environment is needed which will alleviate the weaknesses
associated with traditional computer-aided process modeling. These weaknesses include:
1. The time and cost associated with model development are high,
2. Model development is an ad hoc activity carried out by a select group of experts,
3. Engineers and scientists in various backgrounds cannot readily contribute their
expertise in a collaborative modeling effort,
4. Models are not defined at the common level of chemical engineering assumptions,
but rather in the narrow terms of a language specific to a given modeling tool,
5. The resulting models are difficult to document and maintain,
6. The reuse of models is minimal, as they tend to be task-specific and linked to
solution procedures, and
7. Computer assistance is primarily limited to numerical computations and the
solution of equations.
Until a new computer-aided modeling paradigm is developed that addresses these issues, the

potential benefits of chemical process modeling cannot be fully realized.

1.2 Chemical Process M odeling Needs in Under graduate Education

The core material of chemical engineering education has been developed over many decades into
a focused and well-organized curriculum centered around such courses as heat and mass
transport, fluid mechanics, thermodynamics, kinetics, separation processes, and reaction
engineering. Instruction in these core courses focuses primarily on analysis—the deduction of
some behavior of a given system. For example, problems are phrased as plot the temperature
versus time, find the phases present and species concentrations, determine the velocity profile,
etc. Rarely is such behavior determined experimentally. Rather, it is determined by solution of
models derived from conservation principles and mechanistic laws (e.g., ideal gas law, Raoult’s
law, Fick’s law) describing physical and chemical phenomena.

For simplicity, the fundamental concepts and phenomena introduced in these courses are
presented in the context of idealized situations and may be characterized as set pieces of the

foundation material. Since students have little prior knowledge in describing these situations, the

21

derivations of models of these phenomena are only passively presented to the students. These
models typically take the form of one or more mathematical equations prominently boxed off in
the textbook or on the blackboard. In the interest of time, the context of a model (i.e., its
motivation, objectives, assumptions, limitations, and derivation) are treated as only of secondary
importance. Typically, emphasis then quickly shifts to mathematical techniques required to solve
the resulting equations. Subsequent homework problems, tagged as “applications”, are actually
similar set pieces that require few decisions of the student other than selection of which
predefined model equations (that best accommodate given data) and/or solution methods are to be
used.

These set pieces of the foundation material are used in order to make the fundamental
concepts and solution methods introduced as clear as possible to the student and are a necessary
part of the educational process. However, it is evident that the focus of the chemical engineering
syllabus needs to be expanded. The true measure of engineering ability is not the understanding
of idealized textbook examples but rather the application of fundamental concepts in developing
concise, appropriate models within the context of a particular engineering problem. Formulating
and deriving an adequate mathematical model is a greater challenge and yields far more rewards
to the student than just understanding and appreciating models derived in a textbook or by an
instructor. When students are required to apply fundamental concepts to derive models in
unfamiliar contexts, the necessary associations are not made and they are often confused as to the
appropriate decisions/assumptions that are required.

Comments from instructors of all undergraduate chemical engineering courses at both
MIT (Mohr, 1996) and the University of California at Berkeley (Foss, 1996) have illustrated that
such views are common:

* Students understand basic concepts but have a poor idea of when and how to

apply them to a given engineering problem.

* The foundations of disciplined and effective modeling must be laid down at the
beginning, in the introductory sophomore course in chemical engineering.

* The current teaching of modeling is ad hoc and taught primarily by a sequence of
examples. Thus, any systematization and discipline brought to the modeling

activity will be extremely beneficial.

22

* The effectiveness of the modeling activity is largely left to the intellectual
capabilities of the individual student. Consequently, the creativity of engineering
students in general suffers significantly. Assistance is needed to enhance the
modeling creativity of students overall.

Unfortunately, students are never presented an explicit modeling methodology. Rather, they can
only infer modeling techniques from exposure to a long sequence of examples. The ad hoc nature
of modeling leads to frustration for both the student, who struggles to adapt poorly understood
existing models to other problems, and the instructor, who must puzzle over what the student is
doing wrong and what information is not properly understood.

One approach for addressing the need to present a modeling methodology would be to
develop pre-wired tutorial software which would lead the student through examples of model
development for non-trivial engineering problems. However, in the context of teaching modeling,
the benefits of producing such software would be quickly exhausted. The prespecified paths and
alternatives through which students could proceed would inhibit them from directing and
experimenting with model development and would risk trivializing the complex task of modeling.
On the other hand, a well-designed computer-aided modeling environment should enable students
to express their notions of what a proper model should be. This would allow students to proceed
in an structured process of model development. First, the important structure and
physicochemical phenomena are articulated. = Next, these phenomena are characterized
mechanistically. This description provides the basis for derivation of the model equations. The
required data to solve the problem are then identified. Finally, the behavior of the process model
is observed, providing immediate feedback on the applicability of the crafted model. Obviously,
chemical engineering students must possess the skills for deriving and solving equation-based
models independently. In various problem-solving contexts, however, by taking primary
responsibility for equation formulation and solution, the computer would give students the
opportunity to concentrate on the chemical engineering assumptions and decisions needed to
synthesize a model. When students make the transition from passive onlookers to active
participants during model development, they gain the experience, knowledge, and confidence that
is necessary to solve the real engineering problems they will face throughout their education and

their careers.

23

1.3 Potential Role of the Computer in Process M odeling

Chemical engineers have long since embraced the computer as an algorithmic tool. The speed and
efficiency with which computers can perform numerical procedures is well-appreciated. Yet
advances in computer-aided process modeling over the past few decades have essentially been
limited to the realm of numerical computations. Modelers should expect more assistance from
computers than solely the ability to solve larger and larger numerical problems with ever
increasing speed. Instead of just providing passive data structures for organizing computations,
the computer should possess “modeling knowledge” that would allow it to communicate with and
assist the engineer at the level of chemical engineering understanding.

While all student and practicing chemical engineers must possess sound modeling
fundamentals, they should not be expected to be computer programmers or highly specialized
software experts in order to develop models. Process modeling should not be a career goal—all
chemical engineers need to create and use models to solve a wide variety of problems.
Furthermore, the computer should provide a collaborative environment for modeling during
process engineering activities, allowing experts in varying backgrounds (e.g., process design,
physical chemistry, reaction kinetics, process control, etc.) to readily contribute to model
development in parallel, without each having to understand the fine details of every part of the
model. Models should be viewed as repositories of engineering knowledge, not as collections of
subroutines or equations.

The computer has the potential to unleash the benefits of process modeling, but this is not
possible without a formal representation of the fundamental principles of chemical process
modeling. This representation would allow systematization of the modeling activity, where the
computer provides varying degrees of support to the engineer. Certain modeling tasks can be
completely automated by the computer. Other modeling tasks can be viewed as a structured
interaction where the computer guides the activity but the engineer makes the key modeling
decisions based on the context of the particular engineering problem. Other modeling tasks that
require human understanding and creativity cannot be automated, but the computer can still
provide a framework for explicitly documenting the motivation for these tasks, the rationale for
key decisions made, alternatives considered, etc. The computer should also have internal logic to

generate models under different contexts or levels of detail, check models for inconsistencies or

24

incompleteness, and review model simulation results to check the validity of assumptions based on

chemical engineering principles.

1.4 Existing Computer-Aided Process M odeling Tools

Many computer-aided tools designed to facilitate certain aspects of process modeling in industry
and education have been developed. However, all have failed to alleviate the perceived process
modeling bottleneck. This is because none has satisfactorily addressed all the key industrial and
educational chemical engineering modeling needs. Several examples of these approaches, their

key features, and their shortcomings are given below.

1.4.1 Sequential Modular Flowsheet Simulators

The concept of unit operations, established by Arthur Little at MIT in 1915, helped to define the
profession of chemical engineering. Decades later, unit operations are still the paradigm on which
the most popular type of commercial chemical process modeling software, sequential modular
flowsheet simulators, is based. Examples of these tools include ASPENPLUS by AspenTech,
HYSIS by Hyprotech, and PRO/II by SimSci. These simulators allow the generation of process
model flowsheets through a structured integration of predefined unit operation models (e.g., heat
exchangers, distillation columns, CSTRs, etc.) from a library. Chemical species and, where
applicable, chemical reactions are then added to the flowsheet model. Each proprietary unit
operation model from the simulator library encompasses a computational procedure which
performs predetermined calculations on a fixed set of input variables to yield values of
prespecified outputs. Calculations are performed in sequential modular fashion, where the output
values of each unit become the input values of the subsequent unit, as dictated by the topology of
specified process streams. During these calculations, the thermodynamic and physical properties
of materials are determined by pure species properties from a database and the selected
thermodynamic and physical property models of the materials.

The language of unit operations provided by sequential modular flowsheet simulators
helps modelers deal with the complexity of chemical process modeling by abstracting the details
of the embedded solution procedures. Although these tools are relatively easy to use and have
gained wide acceptance in industry, their use is restricted due to several inherent limitations. In a

flowsheet, each process unit is essentially selected as a blackbox from a finite library of available

25

models. Although some parameters may be user-specified, the model of each module is fixed.
The applicability of these inflexible models may be questionable because assumptions used in their
derivation may not be explicitly stated or readily ascertained. Furthermore, the degree of detail
these models require may be more or less than that which is needed for a particular engineering
application.

The fundamental limitation of sequential modular flowsheet simulators is that the level of
modeling granularity provided by their inflexible unit operation models is too coarse. These
libraries cannot anticipate the requirements of non-standard unique or novel processes, where the
need for models is often most critical. Furthermore, the modeling of distributed systems and the
development of hierarchical multi-level process models are not adequately supported. While most
sequential modular simulators provide a facility for adding “new” unit operations to the existing
model library, minimal assistance is provided for developing these model definitions, which must

be procedural to maintain the sequential modular calculation paradigm.

1.4.2 Programming Languages

When sequential modular flowsheet simulator models are inadequate or unavailable altogether, a
process model must be characterized in terms of elementary physical and chemical phenomena
rather than unit operations. From this description, a set of mathematical equations meant to
represent the behavior of the system may be developed from chemical engineering first principles.
The burden imposed on an engineer who must develop such a model for a complex process can be
overwhelming. The tasks involved in deriving such a model from first principles may be
decomposed into the following four aspects:

1. Declaration of Assumptions: The system to be modeled is identified, and within

the context of the modeling objectives, the variables of interest are specified and
assumptions are made regarding structure, relevant physicochemical phenomena,
and characterization of materials.

2. Derivation of Equations: Conservation principles, constitutive relationships,

design correlations, and thermodynamic and physical property values are used to
derive a consistent set of mathematical equations based on assumptions from the

first aspect.

26

3. Solution of Equations: Appropriate numerical algorithms are identified and the

equations from the second aspect are encoded in a form suitable for solution using
a procedural programming language (e.g., Fortran, C, Pascal, etc.).

4. Validate Model: After the programming code is debugged and numerical

convergence is obtained, the modeled behavior of the process is observed. If

necessary, the first, second, and third aspects are reviewed and repeated.

Obviously, to accomplish this task unassisted the modeler must possess a broad range of
capabilities. The first aspect requires an understanding of the modeling context and insight into
which phenomena are of practical relevance and significance to the problem application. The
second aspect requires comprehension of all the chemical engineering science involved in logically
deriving the equations, along with the ability to determine if they are mathematically well-defined.
The third aspect requires not only an extensive knowledge of numerical methods but also
familiarity with a programming language needed to implement them. Finally, the fourth aspect
requires extreme patience. Due to the current lack of structured logic and formalized procedures
to guide these tasks, process modelers must rely largely upon not only the science of chemical
engineering knowledge and mathematical ability, but also the art of intuition, insight, and
experience.

Moreover, since the resulting procedural models are intrinsically linked to the methods
used for solution, they are inherently difficult to reuse or modify to model a similar system or even
the same system within the context of a different process engineering problem (e.g., diagnosis
rather than process optimization). This is because the chemical engineering modeling knowledge
is embedded and obscured in the solution techniques of the corresponding numerical algorithms.
As a result, the investment in developing the process model must usually be repeated for each

implementation.

1.4.3 Spreadsheets

The relatively low cost and easy learning curve of spreadsheeting software (e.g., Microsoft Excel)
have led to their wide use in industry and in undergraduate education for many modeling
applications. While many engineers find them easy to use, spreadsheets are also inherently

designed for procedural computations and suffer from the same limitations as programming

27

languages. The distinction is blurred further by macro languages (e.g., Visual Basic in Microsoft
Excel) that are provided which essentially turn a spreadsheet into an interface to underlying

procedural programs.

1.4.4 Equation-Based Process M odeling Tools

In order to alleviate the problems associated with procedural model formulations, several
equation-based modeling languages (e.g., ASCEND, OMOLA, and gPROMS) have been
developed. These tools allow the modeler to declare large systems of equations in symbolic form.
The computer then takes primary responsibility for selecting and implementing the appropriate
numerical methods to determine the results. These tools extend beyond general equation-solvers
by providing logical operators to allow conditional model definitions and by implementing certain
object-oriented programming concepts to organize the mathematical description of models.

In object-oriented programming, classes are structured data types used to describe a set of
similar objects. Each class definition encompasses a characterizing description, defined by a set of
values (attributes), and a functionality, defined by a set of procedures (methods) which operate on
the attributes. An object is created by instantiating a class (i.e., assigning values to its attributes).
Each instantiation of a class produces a new object which is coexistent but independent of
previous objects produced from that particular class. Inheritance is used to establish a multi-level
class hierarchy, where a child class inherits the attributes and methods of its parent class. The
child class may then be further refined by adding additional attributes or methods, or by modifying
methods inherited from the parent class.

Generally, in application to equation-based modeling tools, classes provide a means of
abstraction by grouping variables and equations pertaining to a certain system into a single object.
Inheritance reduces redundant modeling by grouping similar classes under a single parent class
and also promotes model reuse by allowing new models to be defined through modification and
extension of an existing model class. For example, in ASCEND (Piela, 1991, Piela et al, 1991),
atoms are an object class used to represent variables. Models are classes defined by the user to
encompass a set of variables and mathematical equations. Inheritance allows atoms to be partially
specified from previously defined atoms and models from instances of other models and atoms.

OMOLA (Nilsson, 1993, 1995) is designed for the description of dynamic models for simulation

28

purposes. In OMOLA, the model class is the root class of all user-defined models. Models are
grouped into two types, primitive and structured. Primitive models are defined by attributes
describing parameters (constant values), variables (time-varying values), realizations (equations
and constraints describing behavior of the variables) and ferminals. Terminals provide a means of
communication of variables between models. Structured models allow hierarchical equation
models defined by attributes which identify the corresponding submodels and their connected
terminals. Neither Ascend nor OMOLA is limited to chemical process modeling but are both
designed to also support equation-based modeling in any other technical discipline. gPROMS
(Barton, 1992, Barton and Pantelides, 1993) is designed for the dynamic simulation of combined
discrete and continuous processes. Processes are formed by the application of tasks to instances
of models. The user-defined models encompass continuous mathematical equations meant to
describe the behavior of a modeled system. Models are defined by attributes describing
parameters (constant values), variables (time-varying values), equations (algebraic and ordinary
differential equations describing the behavior of the variables) and streams (corresponding to
terminals in OMOLA). The user may also specify tasks which represent discrete procedures, such
as control actions or disturbances, imposed on the system. Both models and tasks may be defined
hierarchically through inheritance from other models or tasks, respectively. gPROMS has been
extended to solve partial differential and integral equations in addition to ordinary differential and
algebraic systems of equations (Oh, 1995, Oh and Pantelides, 1996). gPROMS is now available
as a commercial product by Process Systems Enterprises Limited. Other examples of equation-
based modeling tools include SPEEDUP (Perkins 1982) which has been commercialized by
AspenTech, and ABACUSS which is the only equation-based modeling tool capable of
integrating systems of numerically high-index differential and algebraic equations (Feehery and
Barton, 1996).

By automatically determining the numerical solutions to the user-specified equations, these
mathematical tools are a significant aid to equation-oriented modeling. Since the equation-based
model definition is not intrinsically linked to a particular solution method, the equations may be
readily used to solve for different sets of unknown variables, for optimization, or for regression
purposes. Also, since only the equations and not the procedural solution method must be

specified, the amount of coding needed to develop a new model or modify an existing one is

29

significantly reduced. While object-oriented programming concepts such as object classes and
inheritance facilitate the writing and organization of the model equations, it is clear the focus of
these mathematical tools is to expedite the third aspect of modeling, the solution of equations
using numerical algorithms.

The mathematical modeling tools described above are capable of solving systems of
thousands of equations. However, these solution capabilities cannot be fully exploited unless the
correct, consistent generation and maintenance of these complex sets of equations can be ensured.
The mathematical modeling tools cannot provide this assistance because they focus on equation-
solving methods. However, to achieve widespread use of modeling, assistance for the first and
second aspects of modeling, the declaration of assumptions and the derivation of equations, may
be the most critical. It has been observed (Denn, 1986) that “the truly challenging aspect of
modeling is in the use of physical principles to arrive at a proper mathematical formulations.”
Similarly, in (Aris, 1979), “it is comparatively easy to teach the method of solution of standard
mathematical equations, but much harder to communicate the ability to formulate the equations
adequately and economically.” Since the equation-based description of models in the
mathematical modeling tools is essentially context-free and not explicitly linked to chemical
engineering concepts, the computer is unable to offer assistance beyond numerical advice such as
a degrees-of-freedom or an index analysis.

Furthermore, although the symbolic (rather than procedural) form of these equations
facilitates reuse, their applicability may be uncertain because assumptions used in deriving these
equations are not explicitly maintained. Thus, it is the responsibility of the modeler to provide
comments explaining assumptions used as the basis of model equations, to analyze the consistency
and logic of these assumptions, and to correctly derive the equations. These tasks are neither
assisted nor enforced by any of the equation-based modeling tools. This can especially lead to
difficulty in model editing and analysis. For example, to avoid redundant modeling it would be
ideal if one continuously evolving model could be used over the lifetime of a project. Over time,
such a model may grow to hundreds or thousands of equations while modifications are made by
several different modelers. However, whenever an assumption is changed or added, the modeler
must analyze the set of existing model equations (which may or may not be consistently

commented), determine the modifications necessary throughout the system of equations, then

30

implement and document these changes. As a result, this task may quickly become unwieldy as a
model grows in complexity. Obviously, further assistance to the modeler is also required for the
first and second aspects of the modeling process, the declaration of assumptions and derivation of

the corresponding mathematical equations.

1.45 Summary of Existing Computer-Aided Process M odeling Tools

Each of the existing computer-aided modeling tools do facilitate certain aspects of process
modeling. However, they fall far short of providing the high-level of modeling assistance that is
envisioned computers can provide. This is because these computer-aided tools are limited by the
language that they use to communicate with the human modeler.

Modular flowsheet simulators provide the traditional language of unit operations. While
this language is intuitive to chemical engineers, the inflexible and blackbox nature of these models
restrict their use greatly. The coarse modeling granularity provided by these tools limits their
application to the modeling of essentially well-understood, rather than unique and novel,
processes.

Programming languages provide the language of computational procedures, which
maximizes flexibility for developing process models. However this medium is tailored for the
description of solution procedures for a mathematical model, not expression of the model itself.
Use of these languages requires proficient programming ability, wide knowledge of numerical
techniques, and a significant investment of time and effort. Moreover, the procedural models
resulting from these efforts are inherently difficult to reuse or modify to model a similar system or
even the same system within the context of a different process engineering problem.
Spreadsheeting software is more user-friendly than programming languages, but is also designed
essentially for procedural computations and suffers from the same limitations as programming
languages.

Equation-based tools overcome these procedural restrictions by providing the language of
mathematical equations. These computer environments possess advanced equation-editing
capabilities designed to facilitate the compilation of mathematical relationships. However,
computer assistance to the modeler is primarily limited to the numerical solution of equations.

The modeler is still left solely responsible for making the necessary modeling assumptions and

31

simplifications, analyzing the logic and consistency of these assumptions, and deriving the
corresponding equations. The experience and skill required to construct these equation-based
models efficiently and reliably still restricts their development to the realm of modeling experts.
Consequently, most engineers are reluctant to pursue this time-consuming, error-prone, and
difficult to document approach, leading them to abandon the modeling effort or to limit the
number of alternatives they will consider during model development. Furthermore, since the
resulting model consists of mathematical equations, the assumptions used in the model definition

become implicit, inhibiting reuse of the model.

1.5 Physicochemical Phenomena-Based Process M odeling

By defining appropriate primitives and means of combination and abstraction, engineers in several
disciplines have created specialized problem-oriented modeling languages designed for various
applications. These languages provide facilities that lift the task of model formulation above the
level of mathematical equations and calculation procedures. Examples include the computer-
aided languages of electrical engineering networks (Sussman and Steele, 1980) for modeling
circuits in terms of primitives that form discrete electrical elements (e.g., resistors, capacitors,
inductors, etc.) and civil engineering networks (Maher, 1988) for modeling structures from
discrete physical elements (e.g., girders, rods, beams, etc.). For chemical process engineering, the
language of unit operations networks is no longer adequate to model the complexities of modern
processing systems. Rather, a more elementary characterization of chemical processes is required
which would allow processes to be represented as networks of interacting physicochemical
phenomena. Thus, elementary physical and chemical concepts such as system, flow, reaction, and
diffusion can be integrated to form phenomena-based models of not only traditional unit operation
systems but also unique and novel processes. These phenomena-based model descriptions can
then be used to automatically derive the requisite mathematical model equations from chemical
engineering first principles. In this manner, a high-level process modeling environment based on
the language of elementary physical and chemical phenomena can be developed that combines
the high-level approach of unit operation-based simulators with the power and flexibility of

equation-based modeling tools.

32

1.5.1 Proposed Phenomena-Based M odeling Approaches

As reviewed by Marquardt (1996), the representation of process models through the description
of elementary physical and chemical phenomena has been approached by several researchers. This
direction of research was initially established by the development of the process modeling
language MODEL.LA (Stephanopoulos et al, 1990a, 1990b), on which preliminary ideas for this
work are based. The key language elements of MODEL.LA are divided into two categories,
structural and functional. Generic-units, ports, and streams, are used to describe the structural
characteristics of a modeled process, while the modeling-scope, constraints, and generic-
variables describe the functional characteristics. Similar to object-oriented programming
concepts, each modeling element is associated with an object class, which is described by a set of
attributes. Generic-units represent a system delimited by its boundaries, and are defined by
attributes specifying structural components, modeling assumptions, and constraints. Ports, which
may be of type convective, material, energy, or information, represent boundaries through which
generic-units interact. Streams link ports of the same type between separate generic-units. The
modeling-scope encapsulates and explicitly documents all modeling assumptions and constraints
describing the generic-units. Constraints represent mathematical relationships derived from the
modeling assumptions, and are composed of generic-variables and mathematical operators.
Generic-variables encapsulate characteristics of a particular process quantity. Semantic
relationships are provided to allow specialization (through inheritance and class membership),
specification (through composition, communication, and description), abstraction and
disaggregation (through hierarchical structuring), and definition (through characterization) of the
modeling elements. The MODEL.LA language is designed for derivation of the model equations
through mass, species, and energy balances for each generic-unit. The flux terms of each balance
equation may be determined through summation or subtraction of the transferred quantities over
the corresponding ports, while the generation or consumption terms may be determined through
summation or subtraction over the corresponding sources or sinks specified for the balanced
quantity. The form of each term is determined by translation of the assumed mechanism of a
declared phenomenon into a constitutive equation. The implementation of MODEL.LA was
limited to the modeling of static, lumped systems.

Vazquez-Roman (1992) and Perkins et al (1994) describe a prototype environment for

33

modeling lumped, dynamic systems based on a purely physical description. In that work, a
process is a set of vessels whose ports are linked by connections. A vessel is characterized by its
geometry (describing shape, size and port locations). Vessels contain phases which exchange
material and/or energy with other phases. These interactions occur through connections
according to a set of transfer laws, which are specified by user-defined assumptions regarding the
relevant physicochemical phenomena. The thermodynamic state of each phase is characterized by
the masses of each chemical component present, the internal energy, and the pressure.
Controllers are modeled as blackboxes, which relate a state variable of a phase to a controller
output. Species and energy balance equations are made for each phase. The terms of the balance
equation include an accumulation term (which determines the dynamic behavior of the system), a
generation term (due to specified chemical reactions), and a term for each defined transfer (as
described by the transfer laws). The balance equations need to be coupled with thermodynamic
relations which determine the phases present in a vessel, methods for physical and thermodynamic
property calculation, pressure and volume relations for each vessel, and controller laws in order to
compile the set of equations needed to carry out dynamic simulations.

In the context of the frame-based data model VEDA, Marquardt has proposed using a
general systems theory approach to formalize the modeling knowledge for chemical engineering
processes (Marquardt, 1996). In that work, modeling objects are divided into two categories,
substantial and phenomenological. =~ Substantial modeling objects (including devices and
connections) represent structure while phenomenological modeling objects (including variables
and equations) represent the behavior of substantial objects. These elementary modeling objects
also may be combined to form composite devices, connections, variables, and systems of
equations. Devices represent any delimitable part of a process. The role of a device is to
determine its state properties from known fluxes from the surroundings. Subclasses of devices
include generalized phases and signal transformers. Connections represent entities situated
between devices. The role of a connection is to transform a driving force (as determined by the
known states of two adjacent devices) into a flux. Subclasses of connections include signal and
phase connections. From the phenomenological modeling objects (which include state variables,
balance equations, constitutive equations, and constraints) associated with the substantial

modeling objects, the equations of the model may be derived.

34

The prototype systems described above and other similar approaches (e.g., Preisig, 1995;
Woods, 1993; Cho, 1998) have dealt primarily with the formulation of generic object-oriented
classes for representation of hierarchical systems whose behavior is described in terms of

physicochemical phenomena.

1.5.2 Summary of Proposed Phenomena-Based M odeling Approaches

Each of the phenomena-based modeling approaches described above proposes different rerms
(e.g., generic-unit, vessel, or device) meant to describe similar concepts. The influence of object-
oriented programming techniques, especially with respect to classes and inheritance, is evident.
However, in their current form these works are best characterized as vocabularies, rather than
high-level computer-aided modeling tools. Evaluation of these vocabularies, and even meaningful
delineation between them, is difficult. Furthermore, while the presentation of class taxonomies
does seem appealing and often intuitive, it cannot be viewed as the culminating endpoint of this
area of research. Rather, they can only be evaluated in light of a much larger and more ambitious
goal: To enable all chemical engineers to readily build and use models by supporting the
modeling activity at the level of chemical engineering knowledge.

Obviously, these research efforts are still in their infancy and before the benefits of any
phenomena-based modeling approach can be appraised, several issues must be resolved:

1. The syntax and semantics of a phenomena-based modeling language must be
formalized. Existing approaches have provided only common-sense, by-example,
unsystematized explanations of these aspects. Most importantly, the impact of
assumptions regarding a phenomena-based model on the resulting mathematical
model has not been explicitly explained. As a result, one must rely on intuition to
interpret these models.

2. The proposed vocabularies provide means for the phenomena-based representation
of process models. However, the logic necessary for the selection, instantiation,
and combination of these object classes in the context of chemical engineering
modeling is unclear. This is because the procedural aspects of model development,
necessary for the computer to provide high-level modeling assistance, have not

been characterized. @ While Jarke and Marquardt (1995) describe generic

35

representations for tasks performed during the modeling process, it is impossible to

meaningfully implement or evaluate such ideas without a formalized modeling

language as a basis.

3. The integration of these ideas into computer-aided modeling tools has not passed

the conceptual prototype stage. Pantelides and Britt (1995) stress that the

implementation and practical application of these ideas is essential for assessing

their value.
The phenomena-based modeling approach does promise to enable the computer to provide high-
level modeling support. However, for this to be possible, these three issues must be addressed.
This final issue of implementation is perhaps the most critical, because the primary contribution of
this research area will be to facilitate the model development process for all chemical engineers,
not just modeling experts. Conceptual designs on paper alone do not achieve this. Until these
ideas are implemented in a computer-aided environment, the human modeler cannot directly
participate in evaluation, the methodology cannot be meaningfully compared to existing

approaches, and no real benefits are realized.

1.6 Research Objectives

In light of these issues, the goal of this research is to present a formal framework that enables the
computer to support the chemical process modeling activity at the level of chemical engineering
knowledge. Such a framework will enable all chemical engineers to readily construct and use
process models. With respect to this goal, three objectives are identified:

1. The development of a formalized phenomena-based modeling language,

2. The systematization of the modeling activity through modeling logic, and

3. The implementation and evaluation of the modeling language and logic through a

computer-aided modeling environment.

Each of these objectives will now be discussed.

1.6.1 Development of a Formalized Phenomena-Based M odeling L anguage

A high-level, declarative modeling language, capable of describing chemical processes in terms of
structured networks of interacting physical and chemical phenomena, must be developed and

described formally. This language will allow modelers to develop models by naturally articulating

36

assumptions about a process, instead of writing equations. The phenomena-based representation
will explicitly maintain the underlying assumptions about a process model, allowing accumulation
of modeling assets, and resulting in models which are easier to create, edit, document, reuse,
analyze, and understand.

The starting point for this language is the MODEL.LA modeling language described in
(Stephanopoulos et al, 1990a, 1990b). However this language must be significantly modified and
extended to encompass the description of dynamic processes, the representation of spatially
distributed processes (whose behavior is described by partial differential equations), and the

thermodynamic and physical characterization of materials in a process.

1.6.2 Systematization of Modeling Activity through M odeling L ogic

The modeling language will allow chemical processes to be represented at the level of elementary
physical and chemical phenomena. For the computer to comprehend and interpret these models,
the underlying logic of model development must be systematized by expressing the concepts of
chemical engineering science in a computational formalism. In other words, this will allow us to
teach chemical process modeling principles to the computer. The uncovering of such modeling
logic will systematize the modeling activity by formalizing modeling tasks that are currently
carried out by modelers in an implicit and informal manner.

With this logic, the procedural modeling knowledge behind the development of a process
model can be captured, thus allowing the computer to interactively guide model development,
automatically derive mathematical model equations, explain the resulting equations in terms of the
phenomena-based description, and detect model inconsistencies and incompleteness. This will
enable the computer to take responsibility for much of the burden of model development, while
providing interactive guidance and feedback to the modeler. As a result, the engineer can
concentrate on the creative aspects of modeling, easily exploring alternatives, tracking decisions,

and utilizing models in multiple contexts.

1.6.3 Implementation and Evaluation of Modeling Language and Logic through a

Computer-Aided Modeling Environment

In order to provide an experimental framework to test the ideas of phenomena-based modeling

language and logic, these concepts must be integrated in a computer-aided modeling environment.

37

This environment should address the chemical engineering modeling needs of both practicing
engineering and students. For the evaluation to be meaningful, the environment should be capable
of modeling nontrivial examples, including dynamic, discontinuous, spatially distributed, and
hierarchical processes under a variety of contexts. Modeling assistance should be extended to all
aspects of the process modeling activity, from the phenomena-based model declaration to
evaluation of behavior determined from numerical solution of the derived equations. For valid
comparison with other computer-aided modeling tools, the phenomena-based modeling
environment should integrate state-of-the-art computer-aided modeling features, including an
interactive graphical interface, incorporation of thermodynamic and physical property database
information, description of process control and operational schedules, assistance for consistent
specification of degrees of freedom and initial conditions for mathematical models, solution of the

model equations using an equation-based modeling tool, and graphical display of results.

1.7 ThesisOutline

This thesis organized as follows. Chapter 2 identifies the declarative characteristics of chemical
process models and procedural characteristics of process model development that a high-level
computer-aided modeling tool should address. Chapter 3 describes the MODEL.LA phenomena-
based modeling language, which provides the basis for development of the systematized modeling
logic described in Chapter 4. Chapters 5 and 6 describe the functionality, structure, and design of
the MODEL.LA computer-aided modeling environment, which integrates the formalized
modeling language and logic. Chapter 7 illustrates several modeling examples that utilize
MODEL.LA, including models for hierarchical process design, dynamic processes, and spatially
distributed processes. Finally, Chapter 8 summarizes the contributions of this work, describes the
potential impact it may have on chemical process modeling in engineering practice and

undergraduate education, and identifies areas for future research.

38

Chapter 2
Requirementsfor High-L evel Process
Modeling

This chapter elaborates on the concept of high-level computer-aided process modeling support.
The objective is to identify characteristics of process modeling that a computer-aided modeling
environment, which is designed to communicate with the modeler at the level of chemical
engineering knowledge, should address. First, requirements for the high-level representation of a
model are identified. The modeling activity that produces such a model is then discussed,
identifying several requirements for systematization of the process modeling activity. Finally, how
these requirements for model representation and modeling activity systematization can be
addressed by a high-level computer-aided modeling environment that incorporates a phenomena-

based modeling language and logic is presented.

2.1 Requirementsfor the Representation of Process M odels

Models are abstractions designed to predict desired aspects of the behavior of real systems.
Models come in many forms. Mental models, which typically capture qualitative cause-effect
relationships, are usually based on intuition and experience. Physical models, which capture
physical relationships between structures, are often constructed as reduced-scale versions of real
systems. Mathematical models, which quantitatively express mathematical relationships between
variables of interest that are meant to represent the behavior of real systems, are the most
common basis for chemical process engineering modeling activities. However, chemical engineers

do not perceive of processes in terms of the equations of these mathematical models. Rather, it is

39

natural for engineers to consider processes in terms of physical and chemical concepts, such as
structure, materials, and relevant physicochemical phenomena. As discussed in the previous
chapter, a high-level modeling approach is needed that lifts the representation of models from the
level of mathematical equations to the level of physical and chemical phenomenological concepts.
Equation-based model representations can only capture and represent mathematical
information about a process. A high-level process model representation should extend far beyond
this, capturing and representing chemical engineering knowledge about a process. Such a
representation would facilitate all aspects of the modeling activity, including model development,
documentation, analysis, editing and reuse. Several requirements for the design of such a
representation are now posed:
1. The high-level chemical process model representation should be fully declarative,
2. The model representation should be rooted in the principles of chemical
engineering science,
3. The engineering assumptions behind a model should be explicitly captured and
linked to the equations and terms of the resulting mathematical model,
4. Hierarchical structuring should enable the construction and analysis of a model at
multiple levels of detail, and
5. The model representation should support mathematical model derivation under
multiple contexts.

In the remainder of this section, each of these requirements will be discussed.

2.1.1 Declarative Model Representation

The representation of chemical process models should be fully declarative. It should not be a
procedural language for dictating instructions to a computer. Rather, it should allow a modeler to
naturally articulate assumptions about a chemical process. Declarative knowledge about a model
must be kept distinct from procedural knowledge, such as how a model is used in simulation
experiments or how model equations are derived or solved. This decoupling allows the model
representation to be developed independently of the intended process engineering application. It
also prevents the engineering assumptions behind a model from being obscured by details of its

implementation. While procedural modeling knowledge is an important part of the modeling

40

activity, it should be treated independently from the model representation so that it may be applied

generically in different modeling contexts.

2.1.2 Chemical Engineering Science Basis of M odels

Chemical engineering science seeks to characterize the behavior of complex processes in terms of
more readily understood elementary physical and chemical phenomena. These physical and
chemical phenomena are quantified mechanistically, allowing the generation of mathematical
models that relate variables of interest to other known or predictable quantities. Thus, a high-
level representation of process models should be firmly rooted in the principles of chemical
engineering science. It should be capable of capturing all types of physicochemical phenomena
and mechanistic characterizations, including conservation relationships, phase and reaction
equilibria, transport mechanisms, reaction kinetics, and thermodynamic and physical property
models. The representation must also be readily extendible to capture new characterizations of
phenomena and process modeling concepts. By grounding the model representation in terms of
the concepts of chemical engineering science, it will be possible to automatically generate
mathematical models from the high-level representation based on chemical engineering first

principles.

2.1.3 Explicit Documentation of Assumptions

A representation of a process model is by definition a simplified description of a real system. As
such, it cannot serve as a valid model of the system under all conditions. Rather its applicability is
fundamentally limited by the range of validity of its underlying assumptions and simplifications.
The appropriate level of detaill of a model, its relevant phenomena and mechanistic
characterizations, and its thermodynamic and physical property models are all dependent on the
original context under which the model was constructed. Extrapolation of a model beyond its
valid range renders the behavior it predicts meaningless. A mathematical model cannot be viewed
independently of its assumptions. Therefore, the underlying assumptions and simplifications must
be explicitly maintained by a model representation.

Furthermore, once a mathematical model is derived from a high-level representation, the
relationship between the assumptions behind a model and the equations and terms of the resulting

mathematical model should be retained. Otherwise, the linkage between the observed process

41

behavior and the underlying assumptions would be lost. This would inhibit the evaluation and
critique of modeling assumptions, which are necessary when validating a model.

A representation that defines models in terms of explicit assumptions is much easier to
understand than equation-based models. It allows modelers of varying areas of expertise to easily
examine a model, analyze its behavior, and consider its assumptions without having to infer this
information from equations. Models that are easily understood can be reused much more readily.
The applicability of a model for use in a different context can easily and reliably be ascertained by
examining its assumptions. Furthermore, if modification is needed, this may be accomplished by

manipulating the model at the same high level at which it was initially constructed.

2.1.4 Hierarchical Nature of Models

A model may be examined and utilized at varying levels of detail. A model representation should
explicitly reflect this hierarchical nature, allowing multiple coexisting levels of abstraction for a
single model. The hierarchical structure of a process model is defined by declaring how abstract
systems are conceptually decomposed into more refined subsystems. These subsystems in turn
may be recursively broken down into more refined subsystems. Hierarchical modeling allows the
modeler to concentrate on certain aspects of a model while abstracting others; to increase
modularity and control the complexity of a model by aggregating related units into more abstract
units; to generate models at multiple resolutions depending on the level of detail required for a
particular application; and in the case of process design, to incrementally develop a process model
where the behavior of a process model at a given level dictates the refinements at a subsequent,

more detailed, level (Douglas, 1985, 1988).

2.1.5 Contextual Nature of Models

A high-level model representation should allow a model to be reused in different contexts with
minimal modification required by the modeler. It should support the generation of different types
of mathematical models: dynamic or steady-state conditions, intensive or extensive state
characterizations, lumped or spatially distributed properties, detailed or abstract levels of detail.
Therefore, the context under which model equations are derived should be considered and defined

independently of the high-level representation.

42

2.2 Requirementsfor Systematization of the Process M odeling Activity

Various modeling “methodologies” have been proposed as guides to the modeling activity.
Typically, these methodologies are presented in textbooks as flowcharts that provide generic
templates of major tasks that a modeler tackles during model development. However, these
methodologies are restricted in the guidance they can offer because they are not based on a formal
representation of process models. Therefore, no explicit systematization of the modeling activity
can be presented. Rather, modeling techniques can only be inferred from a sequence of examples.
A formalized high-level model representation is necessary to systematize the modeling
activity. This will allow tasks that are currently carried out by expert modelers in an implicit and
informal manner to be characterized explicitly. Several requirements for the characterization of
these tasks, which provide the basis for systematization of the modeling activity, are now posed:
1. Systematization of the modeling activity must explicitly capture the procedural
knowledge of model development,
2. The contextual nature of modeling, which is driven by the objectives and
requirements of an engineering problem, should be captured,
3. Systematization should reflect that modeling is both a science and an art, and
4. The modeling framework should record decisions made during the modeling
activity.

In the remainder of this section, each of these requirements will be discussed.

2.2.1 Procedural Nature of M odeling Activity

The high-level model representation, discussed in the previous section, captures the declarative
“what-is” knowledge regarding the description of a process model. Systematization of the
modeling activity, however, must capture the procedural “how-to” knowledge about the process
of model development. The modeling activity may be decomposed into a sequence of hierarchical
tasks. The objectives of these tasks and the steps taken to complete them can be expressed in
terms of operators. These operators may then be used to construct the high-level model
descriptions, to verify the completeness and consistency of this description, and to derive the
mathematical model from the high-level model description. Each of these three aspects is now

discussed:

43

Model Construction: During construction of a high-level model representation, decisions

must be made regarding the structure, the characterization of materials, and the mechanistic
characterizations of physicochemical phenomena assumed to occur in a process. Each of
these decisions may be reflected by an operator that changes the state of the model in an
evolutionary manner by adding detail as additional assumptions are specified. Such operators
may be characterized explicitly by their purpose, preconditions (describing conditions which
must be met before a operator is initiated), and suboperations (which are the steps taken in
completing a task). Systematization of model construction through these operators allows
the modeler to consider computer-aided process model development as an interactive
sequence of engineering decisions, rather than as the unassisted composition of a textual input
file to a language compiler.

Model Consistency and Completeness: As a model grows in complexity, even straightforward

logic checks for consistency or completeness become tedious and readily overlooked.
Therefore, a systematized methodology to detect these circumstances is needed. The high-
level model representation allows the computer-aided analysis of models to offer more than
solely mathematical model analysis techniques. Through explicit knowledge of the
assumptions behind a model, operators can be formulated to detect logical errors in a model,
such as hierarchical and topological structural inconsistencies and the misallocation of
chemical species and reactions in a process. Model incompleteness can also be discovered by
defining operators that detect missing assumptions. Finally chemical engineering guidelines
and heuristics (e.g., Felder and Rousseau (1986) state that the ideal gas law should yield an
error of 1% or less if the molar volume is greater than 5 I/mol for diatomic gases and 20 1/mol
for other gases) can be incorporated to detect possible errors in mechanistic characterizations.
These operators can be formulated as rules, characterized by a set of preconditions (describing
model conditions that activate an operator) and a set of postconditions (describing model
conditions that must be true upon completion of an operator). If the postconditions for an
activated operator are not valid, a model inconsistency or incompleteness is detected.

Mathematical Model Derivation: Mathematical model derivation can be viewed as a set of

operators applied to the high-level model description to generate the requisite model

equations. These operators are fully based on the principles of chemical engineering science.

44

They contain knowledge of how to construct relationships that express mass and energy
conservation, thermodynamic and reaction equilibria, physical and thermodynamic property
models, transport mechanism and reaction kinetics rate laws, and other constitutive
relationships, based on the assumptions by the modeler. These operators can be also be
considered hierarchically. For example, an operator that constructs a chemical species
conservation relationship will consist of suboperations that construct the individual terms of
the balance equation, which includes an accumulation term, boundary input and output flux
terms, and internal consumption and generation terms. The operators that construct the
mathematical relationships from the high-level model descriptions allow equation-based
modeling from first principles to become a systematized process based on sound engineering

principles.

2.2.2 Contextual Nature of M odeling Activity

Modeling is the essential activity that characterizes modern process engineering. However, it is
important to recognize that modeling is always a contextual activity. The extent and detail of a
required model are closely related to the scope and objectives of the particular process
engineering problem being addressed. Context-free modeling not only risks the development of
oversimplified models which may be inadequate to fill the needs of a particular application, but
also risks wasting engineering effort and resources to generate overdetailed models which may be
difficult to solve or require information which is irrelevant to the problem at hand. This context-
dependent nature of modeling makes it impossible to provide a generic systematic modeling
template for all engineering problems. However, many specific engineering problems (e.g., the
hierarchical design of continuous processes) are associated with a wealth of generic guidelines and
heuristics for model development. A systematic framework for model development should be
capable of incorporating such knowledge, through extension of the model construction operators
described above. Such contextual operators can guide the modeling activity based on the
modeling objectives by presenting available alternatives and tracking decisions made. In this way,
process model development can be linked to the context and objectives of the problem being

addressed.

45

2.2.3 Scienceand Art of Modeling

Due to the absence of structured logic and formalized procedures to guide the arduous task of
modeling from first principles, process modelers must rely largely upon not only chemical
engineering knowledge, but also intuition, insight, and experience. As a result, modeling is
typically regarded by both student and practicing engineers as an art, not a science. The entire
modeling process cannot be formalized because the route of formulation for any non-trivial model
is always an ambiguous path, determined by the goals, preferences, and perspective of the
individual modeler. Modeling creativity would be greatly restricted if some rigid structure were
to be artificially imposed over the entire modeling process. However, chemical engineering
provides many scientific principles that allow several procedural aspects of the modeling activity
to be systematized to some degree. Various degrees of systematization relevant to the modeling
activity can be distinguished, each of which provides different levels of assistance and guidance to
the modeler. These degrees of systematization include automation, sequencing, and organization.

Certain modeling tasks can be completely automated. In such a case, due to a set of
predefined conditions or inputs by the modeler, some aspect of model development may proceed
unambiguously with any further input. The most typical cases of automation will pertain to the
symbolic generation, manipulation, and numerical solution of the mathematical modeling
equations. Another important task for automation is in model abstraction, where a set of modeled
systems are aggregated into one. Since this process is a many-to-one mapping, the structure and
relationships which define the more abstract object can automatically be generated.

Other modeling tasks can be sequenced according to their respective preconditions and
postconditions. For example, it does not make sense to define the physicochemical interactions
(e.g., diffusion is occurring) or materials (e.g. water is present) of a model until the respective
system boundaries have been identified. In another scenario, a decision made by the modeler may
unambiguously determine that other decisions are required. For example, if the modeler indicates
that a reaction is occurring in a particular system, an interaction may then initiated to determine
the reaction medium, the species present, the relevant reactions and their stoichiometry, the
kinetics, etc.

While many modeling tasks can be neither automated nor sequenced, most can be still be

structured to some degree by organizing them into orthogonal sets. In this case, sequencing does

46

not apply because a task in one orthogonal set can be pursued independently of whether or not
tasks in other orthogonal sets have been completed. This type of organization allows the user to
focus on one modeling aspect at a time. For example, after the modeler defines some of the
systems composing a model, (s)he may proceed with the refinement of topological structure (by
adding additional systems or by indicating convective, diffusive, and energy interactions),
concentrate on the individual systems (by characterizing materials present, reactions occurring,
internal structure, etc.), or work on these tasks in parallel. Such organization will allow the
modeler (or modelers) to easily and quickly review, add to, and/or edit the results of related
modeling tasks.

By incorporating these three aspects of systematization, the process of modeling will be
greatly facilitated. = Automation will benefit all modelers by taking care of mundane,
straightforward, and repetitive tasks during the modeling process. Sequencing will be most
beneficial to inexperienced modelers (e.g., students) who may have many facts or assumptions in
mind about a particular process they wish to model, but have no idea where to begin the model or
where more information is required. Finally, organization will benefit all modelers not only by
focusing the tasks of model definition, but also by directing the tasks of model editing and analysis

by grouping similar aspects of a model.

2.2.4 Documentation of M odeling Activity

During the modeling activity, the decisions made by the modeler can be captured by the sequence
of model operators activated during model development. These operators, documented along
with the objectives of the engineering problem and assumptions make, provide an explicit record
of the modeling activity. The purpose of this is threefold. First, this allows the modeler to revisit
intermediate steps of the modeling process and define alternative (but possibly coexisting)
contexts. Second, this record provides a method to trace, repeat, and debug the modeling
process. For example, in an educational setting both the student and the instructor can analyze
and critique how a model was created by studying the assumptions and decisions made during
model formulation. Third, given a record of several previous modeling attempts, a foundation is
established for automating a critique of modeling activities, distinguishing patterns between

similar modeling activities, and identifying analogies from past modeling efforts for application to

47

new ones.

2.3 Implementation of High-L evel Computer-Aided M odeling Support

In this preceding sections of this chapter, the requirements for a high-level representation of
chemical process models and the systematization of the modeling activity that produces these
models was discussed. In this section, an overview of the modeling language and logical
framework for addressing these requirements in a computer-aided modeling environment is

presented.

2.3.1 Phenomena-Based Modeling Language

Given the requirements for a high-level process model representation, there are many possible
designs for its implementation in a computer-aided modeling environment. However, the most
important consideration is that this implementation is designed primarily with the needs of the
human modeler in mind. A computer can capture the high-level representation with any type of
internal data structure. However, from the perspective of the human, the most intuitive means of
communication and documentation of a model is natural language. This would offer the lowest
learning curve, allowing the human to naturally express assumptions about a given process model
with maximum flexibility. However, for practical purposes of human-computer
intercommunication, natural language is ambiguous and redundant, offering limitless ways of
expressing the same concepts. Therefore the high-level model representation will be a well-
defined subset of natural language, where each element of the language has a direct and explicit
impact on the resulting model.

In addition to the requirements for a high-level model representation already discussed, the
modeling language will be designed to meet the following requirements:

1. The modeling language will allow assumptions about a model to be articulated and
documented through linguistic (or “English-like””) declarations regarding the
structure of the modeled systems, the characterization of materials present in these
systems, and the relevant physicochemical phenomena occurring within and among
the modeled systems.

2. The vocabulary of the language will encompass a library of concepts from chemical

engineering science, including conservation principles, equilibria, reaction kinetics,

48

transport mechanisms, and thermodynamic and physical property models, etc. The
language will also be readily extendible to incorporate additional modeling
concepts.

3. The modeling language will be composed of a set of modeling elements and
semantic relationships. Model elements represent chemical engineering concepts
(e.g., systems, fluxes, reactions, species, materials, etc.). Semantic relationships
unambiguously describe how these modeling elements are interrelated in forming

an instance of a particular model. For example, in a model fragment such as:
REACTOR_Y has-convective-output REACTOR_EFFLUENT

REACTOR_Y and REACTOR_EFFLUENT are modeling elements representing a
system and a flux, respectively, and has-convective-output is a semantic relationship
identifying that REACTOR_EFFLUENT is a convective flux that transports material
from the system REACTOR_Y.

4. The syntax of the modeling language will be defined formally using computational
language representations from computer science.

5. The definition of the language will be independent of the computer-aided
environment in which it is implemented.

The high-level representation provided by the modeling language will be complemented by the

systematization of the modeling activity made possible by modeling logic.

2.3.2 Modeing Logic

Given the requirements for systematization for the modeling activity, it is important to clearly
identify the procedural modeling knowledge necessary for model development. The details of
how this knowledge is used and implemented in a computer-aided modeling environment should
be treated separately.

The use of logic in computer science has its roots in the field of artificial intelligence,
specifically for the purpose of automated theorem-proving using propositional assertions. With
the advent of logic programming, its use expanded to capture both declarative and procedural
knowledge. It has been proposed (Kowalski, 1979) that

LOGIC + CONTROL = ALGORITHM

49

where

1. LOGIC identifies the knowledge required to solve a problem,

2. CONTROL specifies the way the knowledge is used to solve the problem, and

3. ALGORITHM results from the combination of LOGIC and CONTROL, yielding
an algorithm, or computer program, suitable for practical use.

Thus, modeling logic is proposed as the appropriate framework for providing a concise, modular,
extendible framework to capture chemical engineering modeling knowledge. This logical
framework will be defined independently of the details of its implementation. In addition to the
requirements for systematization of the modeling activity, the modeling logic will be designed to
meet the following requirements:

1. The modeling logic will consist of a set of logical operators, which may be
interpreted as “if-then” statements of knowledge, where “if” certain conditions are
true, “then’ certain actions are taken or certain conclusions are made.

2. The modeling logic operators will be defined in terms of the modeling elements
and semantic relationships of the modeling language.

3. The modeling logic operators will be designed to cover the major tasks
encountered during model development, including high-level model construction,
derivation of a mathematical model from the high-level model description,
explanation of the terms and equations of the resulting mathematical model in
terms of the underlying language-based assumptions, and detection of model
inconsistencies and incompleteness.

4. The modeling logic will be readily extendible to encompass context-dependent
modeling knowledge, applicable to specific types of process engineering problems,
which can serve as a guide to the modeling activity.

By combining the aspects of a high-level modeling language and systematized modeling logic, it
will be possible to support the modeling process at the level of chemical engineering knowledge.

These ideas will be evaluated by implementing them in a computer-aided modeling environment.

2.3.3 Computer-Aided Modeling Environment

In order to provide an experimental apparatus for testing the ambitious goals of phenomena-based

50

modeling, the modeling language and logical framework will be integrated in a computer-aided
modeling environment. Computer-aided process modeling may be viewed as an interactive
dialogue between a human engineer and a computer. The phenomena-based language will
provide the vocabulary of discourse that makes this possible. The language provides explicit
means for communication, analysis, and documentation of the modeling assumptions.

Although the elements of the language are rooted in the principles of chemical
engineering, it is the modeling logic that enables the computer to understand chemical engineering
modeling concepts and, through a graphical user interface, to become a true modeling assistant
by:

1. Interpreting the meaning of the high-level phenomena-based description,
automatically deriving the requisite model equations based on the context specified

by the modeler, and explaining the resulting equations in terms of the model

assumptions,

2. Assisting hierarchical modeling by carrying over assumptions from one model level

to another and maintaining consistency among all levels,

3. Increasing modeling efficiency by assuming responsibility for the straightforward,
repetitive, or mundane aspects of modeling,
4. Formalizing and structuring many modeling tasks which are presently carried out

by modelers in an informal and implicit manner,

5. Facilitating model editing and reuse by explicitly documenting modeling
assumptions and decisions,

6. Providing interactive guidance and feedback by detecting modeling inconsistencies
and incompleteness, and

7. Using context-dependent engineering knowledge to guide the modeling activity

based on the objectives of a given engineering problem.

Thus, by providing a set of universal modeling language elements capable of describing practically
any process at any level of detail, and logical methods for selecting, instantiating and combining
these language elements through declarative phenomena-based assumptions, modeling from first
principles can be supported with an ease of use that far exceeds that of existing computer-aided

modeling approaches.

51

While the modeling language and logic will be the foundation of the modeling
environment, its scope will be expanded through interfaces with external software components so
that a valid comparison may be made with existing computer-aided modeling tools through
application to a wide range of real engineering problems. The environment will integrate many
state of the art computer-aided modeling features. Relational databases will be accessed for the
physical and thermodynamic property data of chemical species. Software for the calculation of
properties of mixtures will be incorporated. Specification of arbitrary control structures and
operational schedules will be included. Structural algorithms will be used for interactive
specification of consistent sets of design variables and initial conditions. Equation-based modeling
tools will provide numerical routines to solve the model equations, and plotting software will
display results in tabular and graphical form. Capabilities for the access of other external
software, such as programs for equipment sizing and costing, will also be provided.

In summary, by enabling the computer to act as a knowledgeable assistant to the modeler,
phenomena-based modeling can transform much of equation-based process modeling from an
abstract art-form into a well-defined science. High-level modeling activities allow the rapid
creation and investigation of models of unique and novel processes. The computerized generation
and solution of model equations increases efficiency and reduces the risk of error. Since all
assumptions can be explicitly documented and the task of model formulation entirely decoupled
from computation procedures, the model may be readily applied for use in a variety of contexts.
Through explicit knowledge of all assumptions pertaining to a particular model, the computer will
be able to offer guidance and assistance during model development and modification, while
continuously checking for logical consistency. Finally, through an integrated modeling
environment, computer-aided assistance can be extended to all aspects of modeling, from the
declaration and documentation of the modeling objectives and assumptions, formulation of the

mathematical model, specification and solution of the model, and interpretation of results.

52

Chapter 3

Modeling L anguage Framework

A model is an artifact that provides an experimental framework for inferring some aspect of the
behavior of a particular system of interest. For this purpose, engineers have traditionally
employed mathematical models as the basis of process modeling. These mathematical models are
expressed using the “language” of mathematical equations. Subsequent numerical solution of the
resulting set of algebraic, differential, partial differential, and/or integral equations requires
translation of the mathematical model into a computational model expressed using some
procedural programming language.

As illustrated in Figure 3-1, a model must evolve through a series of representations in
order to close the gap that exists between a real process and a valid computational model of that
process. At the start of the modeling activity, an engineer uses natural language to express his or
her interpretation of the physical and chemical phenomena that characterize a process. While
natural language provides a high-level intuitive means for the engineer to express his or her
interpretation of a physical process, it is not a computationally formalized language (in terms of
syntax and semantics). This lack of formalization makes the meaning of the model ambiguous, as
only the original modeler can know the exact intended meaning behind its description. Without a
formal model description, translation into the next modeling language level, mathematical
equations, cannot be automated nor even rigorously documented. Lack of such formalization

attributes to chemical process modeling being viewed as an art, rather than as a science.

53

iz

physicochemical
phenomena

mathematical
equations

while(...) {

fe numerical
Jf=... algorithms
x=...}

S

Figure 3-1: Evolution of Process Model Representations

In this chapter, a natural characterization of chemical process models leads to the
identification of a set of fundamental modeling elements. Each modeling element may be
interpreted as structured piece of modeling knowledge that captures a set of related assumptions.
These elements provide the building blocks of a high-level phenomena-based process modeling
language, named MODEL.LA, for describing a physicochemical interpretation of a chemical
process. This high-level language provides means for rigorous documentation of chemical
process modeling assumptions and automated mathematical model generation. In addition to
modeling elements, semantic relationships are introduced in MODEL.LA to unambiguously
describe how the modeling elements are interrelated in forming a particular instance of a process
model. This allows the phenomena-based model to be represented as a semantic network. This
representation organizes the knowledge behind the model as a directed graph and provides a

structured and modular means of analyzing it.

3.1 Formal Modeling L anguage Repr esentation

The definition of any language must include a set of specifications that describe its syntax and its

54

semantics. In order to formally define the syntax of the MODEL.LA modeling language, a
context-free grammar (Sipser, 1998) is used. A context-free grammar is a 4-tuple (V, 2, R, S),
where
1. Vis a finite set called the variables,
2. 2is a finite set, disjoint from V, called the terminals,
3. R is a finite set of production rules, with each rule being a variable and a string of
variables and terminals, and
4. S is the start symbol.
Context-free grammars are commonly used for representing the syntax of programming languages
and also several examples of subsets of natural languages. Furthermore, in this work, the
production rules of the context-free grammar are used to structure the modeling assumptions
hierarchically and capture the necessary and alternative decisions made during model
development.
In the definition of the context-free grammar of MODEL.LA, variables appear as
bracketed strings. For example, the string <abc> is a variable. Terminals appear as Ariel font text
strings. For example, xyz is a terminal. Production rules appear as a variable and a string of

variables and terminals, separated by the arrow symbol —. For example,

<abc> - <def>xyz

is a rule that produces <def>xyz by substitution with <abc>. The complete set of all strings that
may be produced by such substitutions, beginning with the start symbol, comprise the language of
the grammar. Alternative substitutions for the same variable are written as a single rule, with each

substitution separated by the pipe symbol |. For example,

<def> - xyz|<def>uvw|

is a rule where variable <def> may be substituted for one of three strings: xyz, <def>uvw, or the
empty string. Note that the second substitution is recursive. This property allows the production
of an infinite number of strings (i.e., the language of the grammar is infinite).

Production rules may be depicted hierarchically using a graphical tree-like structure, which

55

will be referred to as a production tree. For example, Figure 3-2 illustrates the production tree

for the two rules described above.

<abc>

<def>

L Xyz <def> L

uvw
Xyz

Figure 3-2: Example Production Tree

In a production tree, the variable on the left-hand side of the first production rule of interest
appears at the top root node of the tree (e.g., <abc> in Figure 3-2). Recursively, the variables and
terminals introduced on the right-hand side of each production rule appear as horizontal branches
from the variable on the left-hand side of the rule (e.g., branches <def> and xyz from <abc> in
Figure 3-2). For production rules with alternative substitutions, each set of possible substituted
variables and terminals on the right hand side of the rule appear on separate vertical branches from
the variable on the left-hand side of the rule (e.g., the three vertical branches from the first
occurrence of <def>, introducing xyz, <def>uvw, or the empty string, respectively, in Figure 3-2).
The sequence of substitutions used to obtain a string in the language is called a derivation.
In this work, the production rules are designed to correspond to structured sets of modeling
assumptions (e.g., structural characterization) introduced during model development. In this
way, derivations in the modeling language provide a formal record of the modeling assumptions
that produce a model. The production rule representation introduces a hierarchical nature to
these assumptions (e.g., structural characterization requires declaration of system boundaries and
boundary fluxes). Furthermore, by capturing the rationale for each substitution, additional
knowledge regarding the purpose, applicability, and context of the model can be retained

explicitly in the modeling framework.

3.2 Hierarchy of Model Equations

The fundamental bases of chemical process models are the conservation principles. Conservation

relationships for mass, energy, and momentum for each system of interest may be expressed

56

mathematically using balance equations. The general balance equation for any of the conserved

quantities, represented as B, in a system may be expressed generically as:

(accumulation)g = (flux in)g - (flux out)g + (source)g

where:
1. (accumulation)s is the rate of accumulation of quantity B within the system
boundaries,
2. (flux in)g is the total flux of B entering through the system boundaries by all modes of
transport,
3. (flux out)pis the total flux of B leaving through the system boundaries by all modes of
transport, and
4. (source)p is the net rate of B generated or consumed by all modes of phenomena
within the system boundaries.
The terms of a balance equation are dependant on the system boundaries, or control volume,
selected and the physicochemical phenomena assumed to occur within and across the system
boundaries. Selection of an appropriate control volume is determined by level of detail required
by the context of a particular engineering problem. Models may also be examined at multiple
levels of detail, where an abstract control volume subsumes other more refined control volumes.
However, a model viewed at any level of detail must be consistent with models at more abstract
or more refined levels. For example, the net rate of accumulation of any conserved quantity in an
abstract system must equal the aggregate sum of the accumulation of the conserved quantity over
each of the system’s subunits.

The balance equations are supplemented by constitutive equations that result from the
mechanistic characterization of assumed physicochemical phenomena. These constitutive
equations include reaction kinetics and transport rate expressions, thermodynamic and physical
property relationships, empirical correlations, etc. The modeler may further supplement the
mathematical model equations by declaring additional relationships expressing design constraints,

controller relationships, and other external influences affecting the process.

57

3.3 Phenomena-Based M odel Char acterization

The informal description of chemical process modeling equations in the previous section identifies
several dimensions of process characterization necessary for model development. To formalize
these concepts, the first production rule of the context-free grammar of the MODEL.LA

modeling language is introduced:

<phenomena-based model> — <structural characterization> <chemical characterization>
<derivation context>
This production rule may also be represented by the production tree depicted in Figure 3-3.
<phenomena-based model>
<structural characterization>

<chemical characterization>
<derivation context>

Figure 3-3: Phenomena-Based Model Production Tree

The variable <phenomena-based model> introduces the start symbol of the grammar, and is the root
of all derivations in the language. The form of this production is motivated by the conservation
principles, which depend on a phenomena-based mechanistic characterization of the process. The
assumptions behind a phenomena-based model are organized into three aspects: characterization
of process structure (represented by the variable <structural characterization>), characterization of the
chemical content of the process (represented by the variable <chemical characterization>), and
declaration of a modeling context (represented by the variable <derivation context>) under which the
mathematical model is to be derived. The three substitution variables identify these three primary
aspects of a phenomena-based process model and can be regarded independently. The <structural
characterization> provides a topological and hierarchical structural template for the <phenomena-based
model>. It identifies control volumes, for which balance equations will be written, and how these
control volumes interact, providing generic (flux in)s and (flux out)s terms in the balance
equations. As an example, a simple interpretation of a <structural characterization> may be a process
flowsheet. The <chemical characterization> provides additional details by specifying the chemical
species, reactions, and materials that are present in the process. Species information identifies the

number of chemical species balance equations required for each control volume, and reaction

58

information identifies the (source)s terms in these equations. Information on materials in the
process adds specifications on their physical and thermodynamic properties. Finally, the
<derivation context> specifies the context under which the mathematical model is derived. For
example, an assumption of steady-state or dynamic conditions determines the form of the
(accumulation)p terms in the balance equations.

The independence of the three facets of the <phenomena-based model> provides powerful
means for model reuse. For a given <structural characterization> and <chemical characterization>,
different mathematical models may be derived for each independent <derivation context>.
Furthermore, the <structural characterization> provides a model template which is independent of the
<chemical characterization>. As an example, this allows the <structural characterization> of a distillation
column to be developed and used for multiple <chemical characterization>’s (i.e., distillation of any

mixture of chemical species).

3.3.1 Structural Characterization

The characterization of the structure of a phenomena-based model, represented by the variable
<structural characterization>, encompasses both topological structure and hierarchical structure. It is
captured by the declaration of instances of modeling elements modeled-units and fluxes. This

declaration is expressed formally by the production:
<structural characterization> — <modeled-units><fluxes>

Variables <modeled-units> and <fluxes> represent lists of element type <modeled-unit> and <flux>,

respectively:

<modeled-units> — <modeled-units><modeled-unit>|<modeled-unit>

<fluxes> — <fluxes><flux>]|

The topological structure of a process model is defined by declaring the systems of interest and
how they interact through the transfer of mass and energy. Each instance of a modeled-unit
modeling element represents a control volume—a modeled system delimited from its environment
by its boundaries. Each modeled-unit is represented in the mathematical model by a balance
equation for each conserved quantity of interest (mass, energy, and chemical species).

Each flux represents the transport of material (through convective flow), energy, or

59

selected chemical species across the boundaries of two separate interacting modeled-units, or
between a modeled-unit and the unmodeled surrounding environment. Each flux is represented in
the mathematical model as a term in the balance equations of the corresponding modeled-units.

Note from the form of the above recursive productions that the list of <modeled-units> must
contain at least one element, while the list of fluxes may be empty. This is because a model must
contain at least one control volume for conservation relationships to be expressed, while boundary
fluxes into these systems are not mandatory.

The modeled-unit also captures the hierarchical decomposition of a model as any
modeled-unit may be refined into any number of more refined modeled-units. In a mathematical
model, a composite modeled-unit may be viewed abstractly, where balance equations are derived
as for an elementary process unit, or as an aggregate, where the extensive quantities
characterizing the unit are determined by summing over the corresponding extensive quantities of

its subunits.

3.3.2 Chemical Characterization

The structural characterization of the phenomena-based process model is complemented by the
chemical characterization. The chemical characterization identifies instances of modeling
elements representing the chemical species, reactions, material-contents, and phases assumed to
be present in a process. Declaration of these elements in a phenomena-based model is represented
by the production:

<chemical characterization> - <chemical species list><chemical reactions>
<material-contents><phases>

Variables <chemical species list>, <chemical reactions> <material-contents>, and <phases> represent lists

of element type <chemical species>, <chemical reaction>, <material-content>, and <phase> respectively:

<chemical species list> — <chemical species list><chemical species>|
<chemical reactions> — <chemical reactions><chemical reaction>|
<material-contents> — <material-contents><material-content>|

<phases> — <phases><phase>|

The details of these elements are discussed in the following section.

60

3.3.3 Derivation Context

The derivation context does not introduce additional information to the physicochemical nature of
the phenomena-based model. Rather, it introduces assumptions under which the mathematical
model is to be derived. For example, it encompasses whether the model is assumed to be dynamic
or steady state, whether the equations are derived on a per mole or per mass basis, the level of
resolution desired for a hierarchical model, etc. Declaration of these assumptions is represented
by the production rule for the <derivation context>:

<derivation context> — <dynamic assumption> <mole or mass basis> <level of resolution>
<intensive or extensive characterization> <energy balance inclusion>...

Note that the specification of the <derivation context> may be regarded independently of the
definition of the <structural characterization> and <chemical characterization> of a phenomena-based

model.

3.4 Characterization of Modeling Elements

The production rules introduced thus far are depicted in the production tree shown in Figure 3-4.

<phenomena-based model>
— <structural characterization>

— <modeled-units>
— <fluxes>
— <chemical characterization>

— <species list>

— <reactions>

— <material-contents>
— <phases>

— <derivation context>

— <dynamic assumption>

— <mole or mass basis>

— <level of resolution>

— <intensive or extensive characterization>
— <energy balance inclusion>

Figure 3-4: Expanded Phenomena-Based M odel Production Tree

61

The structural and chemical characterization of the phenomena-based process model has
introduced six fundamental modeling elements, represented by variables <modeled-unit>, <flux>,
<chemical species>, <chemical reaction>, <material-content>, and <phase>. Instances of these elements
can capture the physicochemical phenomena-based description of a limitless number of chemical
processes. The information required to fully specify instances of these element types will now be

discussed.

3.4.1 Modded-Unit Characterization

The modeled-unit represents an instance of a control volume in a phenomena-based process
model. Assumptions necessary to fully define an instance of a modeled-unit are represented by
the production tree depicted in Figure 3-5.

<modeled-unit>

— <unit identification>

— <hierarchical structure>

— <topological structure>

— <chemical content>

— <modeled-unit behavioral characterization>

Figure 3-5: Modeled-Unit Production Tree

e Unit Identification: The variable <unit identification> identifies the modeling element as a

modeled-unit and the unique textual name used to refer to it. This is indicated by use of the

semantic relationship is-a introduced in the production rule for <unit identification>:
<unit identification> — [modeled-unit id] is-a modeled-unit

where [modeled-unit id] is a string representing the name of the modeled-unit. This results in a

declaration in the phenomena-based model such as:
REACTOR_VESSEL is-a modeled-unit

where REACTOR_VESSEL is the name given to a particular instance of a modeled-unit.

* Hierarchical Structure: The variable <hierarchical characterization> represents declaration of the

hierarchical structure of a modeled-unit. It identifies parent unit of the modeled-unit and its

<internal characterization>. The production tree for <hierarchical characterization> is shown in

62

Figure 3-6.

<hierarchical structure>

<parent unit>

is-internal-unit-of L

[modeled-unit id]
<internal characterization>

L <subunits> L <spatial distribution> L <material> L <blackbox>

has-material-content L
— <subunits> L— <subunit> [material-content id]
L— <subunit>

has-internal-unit
[modeled-unit id]

Figure 3-6: Hierarchical Structure Production Tree

The parent unit of a modeled-unit, if any, is identified by the semantic relationship is-internal-
unit-of. The complementary association, identifying the subunit of a composite parent
modeled-unit, is capture by the semantic relationship has-internal-unit. These associations are

illustrated by the following model declarations:

JACKETED_CSTR is-a modeled-unit
has-internal-unit JACKET
has-internal-unit VESSEL

JACKET is-a modeled-unit
is-internal-unit-of JACKETED_CSTR

VESSEL is-a modeled-unit
is-internal-unit-of JACKETED_CSTR

The modeler must decide to model the internal structure of a modeled-unit in one of several
different ways. The first substitution for <internal characterization>, illustrated above by the
semantic relationship has-internal-unit, indicates an abstract modeled-unit which is decomposed

into a set of subunits. The third substitution indicates a modeled-unit which is assumed to

63

have a material-content. This is declared using the semantic relationship has-material-content,

as illustrated below:

VESSEL is-a modeled-unit
has-material-content VESSEL_MATL

where VESSEL_MATL is an instance of a material-content modeling element. The fourth
substitution for <internal characterization> indicates a blackbox modeled-unit, where the unit is
modeled as an arbitrary point of mixing, separation, and/or reaction. Since this substitution
introduces the empty string, no semantic relationship is necessary. The second substitution for
<internal characterization> indicates a spatially distributed modeled-unit. A spatially distributed
modeled-unit represents a process unit that is characterized internally by spatially distributed
properties. It is modeled using a differential element subunit, along with boundary element
subunits for each of the distributed dimensions. The balance equations for such a unit are in
the form of partial differential equations (PDEs). The production tree for <spatial distribution>

is illustrated in Figure 3-7.

<spatial distribution>

has-spatial-distribution
<coordinate system>
L <rectangular coordinate> L <cylindrical coordinate> L <spherical coordinate>

rectangular cylindrical spherical
<x-characterization> <r-characterization> <r-characterization>
<y-characterization> <theta-characterization> <theta-characterization>
<z-characterization> <z-characterization> <phi-characterization>

<differential-subunits>

<differential subunits> L <differential subunit>
<differential subunit>

has-differential-subunit
[modeled-unit id]

Figure 3-7: Spatial Distribution Production Tree

Declaration of a spatially distributed modeled-unit requires selection of a coordinate system,

64

expressed using the semantic relationship has-spatial-distribution, characterization of each
spatial dimension of the selected coordinate system, and declaration of the differential element
subunits, expressed by the semantic relationship has-differential-subunit. Characterization of the
spatial dimensions is illustrated by the production tree for a representative variable <x-

characterization> shown in Figure 3-8.

<x-characterization>

L <distributed x-dimension> L <undistributed x-dimension>
has-distributed-dimension x has-undistributed-dimension x
<distributed solution specification> <undistributed solution specification>

<solution method> — <minimum>
has-solution-method — has-minimum
<difference method> L— <number>
)] I i) L— <maximum>
L BFDM L CFDM L FFDM L — has-maximum
<nodes> L— <number>
— has-nodes
— <integer>
<order>
+— has-order
L— <integer>
<minimum>
<maximum>

Figure 3-8: Example Spatial Dimension Production Tree

Each dimension is either assumed to be distributed, declared by semantic relationship has-
distributed-dimension, or non-distributed, declared by semantic relationship has-undistributed-
dimension. The declaration of a cylindrical tubular reactor with radial and axial distribution is

illustrated below:

Tube_reactor is-a modeled-unit
has-spatial-distribution cylindrical
has-distributed-dimension r

has-undistributed-dimension theta

65

has-distributed-dimension z

has-differential-subunit Tube_reactor_rz
has-differential-subunit Tube_reactor_r1
has-differential-subunit Tube_reactor_r2
has-differential-subunit Tube_reactor_z1

has-differential-subunit Tube_reactor_z2

The modeled-unit Tube_reactor_rz represents the differential element subunit for which the
partial differential equations characterizing the spatially distributed modeled-unit will be
derived. The modeled-units Tube_reactor_r1 and Tube_reactor r2 represent the differential
element boundary subunits which will determine the radial boundary conditions, while
modeled-units Tube_reactor_z1 and Tube_reactor z2 will determine the axial boundary
conditions.

Additional specifications regarding the particular numerical solution method used to
solve the partial differential equations characterizing the spatially distributed modeled-unit
may be declared as illustrated in Figure 3-8 using semantic relationships has-solution-method,
has-nodes, has-order, has-minimum, and has-maximum. Of course, these specifications depend
on the particular numerical solution method selected and do not affect the phenomena-based
model description.

Topological Structure: The topological structure of a modeled-unit requires declaration of all

boundary inputs and outputs to other modeled-units or the surroundings. The production tree
for <topological structure> is illustrated in Figure 3-9. The input and output boundary fluxes are
characterized as convective, energy, or species transport, as declared by semantic relationships
has-convective-input and has-convective-output, has-energy-input and has-energy-output, and has-

species-input and has-species-output, respectively. For example, the declarations:

REACTOR_VESSEL is-a modeled-unit
has-convective-input REACTOR_FEED
has-convective-output REACTOR_EFFLUENT
has-energy-output REACTOR_Q

illustrate a modeled-unit, REACTOR_VESSEL, with a convective input stream,

REACTOR_FEED, a convective output stream, REACTOR_EFFLUENT, and an energy output

66

flow, REACTOR_Q.

<topological structure>

<boundary inputs>

<boundary inputs> L

<boundary input>
I
L <convective input> L <energy input> L <species input>
has-convective-input has-energy-input has-species-input
[fluxid] [flux id] [fluxid]
[species id]
<boundary outputs>
<boundary outputs> L
<boundary output>
L <convective output> L <energy output> L <species output>
has-convective-output has-energy-output has-species-output
[flux id] [fluxid] [fluxid]
[species id]

Figure 3-9: Topological Structure Production Tree

e Chemical Content: The chemical content characterization of the modeled-unit involves

selection of all chemical species and reactions assumed to occur internally. The production

tree for <chemical content> is illustrated in Figure 3-10.

67

<chemical content>

<species content list>

<species content list> L
<species content>

has-species
[species id]
<reactions content>

<reactions content> L

<reaction content>

has-reaction
[reaction id]

Figure 3-10: Chemical Content Production Tree

Chemical species and reactions assumed for a modeled-unit are declared using the semantic

relationships has-species and has-reaction, respectively. For example, the declarations:

REACTOR_VESSEL is-a modeled-unit
has-species WATER
has-species o XYLENE
has-species PHTHALIC_ANHYDRIDE
has-species OXYGEN
has-reaction RXN_101

illustrate a modeled-unit, REACTOR_VESSEL, with a four chemical species, WATER,
o_XYLENE, PHTHALIC_ANHYDRIDE, and OXYGEN, and a chemical reaction, RXN_101. The
species and reactions assumed in the <chemical content> of the modeled-unit will be a subset of
those in the production of <chemical characterization> for the overall <phenomena-based model>.

Behavioral Characterization: The behavioral characterization of the modeled-unit involves

specialized assumptions regarding its operation. It can be used to express assumptions such
as those in the <derivation context> of the overall <phenomena-based model> localized to a

particular modeled-unit using the semantic relationship is-modeled-as. For example, the

68

declarations:

MIXING_POINT is-a modeled-unit

is-modeled-as no-holdup

indicates a modeled-unit, MIXING_POINT, assumed to have no-holdup (i.e., the accumulation

terms in the balance equation for the modeled-unit will be zero).

3.4.2 Flux Characterization

Each flux represents transport across the boundaries of two separate interacting modeled-units, or
between a modeled-unit and the unmodeled surrounding environment. Assumptions necessary to

fully define an instance of a flux are represented by the production tree depicted in Figure 3-11.

<flux>

<flux identification>
<flux type>
<flux connectivity>

Figure 3-11: Flux Production Tree

* Flux Identification: The variable <flux identification> identifies the modeling element as a flux
and the unique textual name used to refer to it. It is analogous to the variable <unit
identification> of a modeled-unit. Declaration of a flux in the phenomena-based model is

represented using the semantic relationship is-a, as illustrated by the declaration:
LIQUID_RECYCLE is-a flux

where LIQUID_RECYCLE is the name given to a particular instance of a flux.

* Flux Type: The type of a flux may be assumed to be either convective material transport,
energy transport, or transport of a selected chemical species. This assumption is characterized
by the production tree for <flux type> illustrated in Figure 3-12.

<flux type>

L <convective flux> L <energy flux> L <species flux>

Figure 3-12: Flux Type Production Tree

69

Declaration of a convective flux requires additional decisions regarding the physical state of
the transported material, a thermodynamic equation of state for the transported material, and a
convective transport mechanism assumed to drive the flow, as illustrated by the production
tree for <convective flux> in Figure 3-13.

<convective flux>

<convective type>

transports
material
<phase state>

, | ,
Lvapor Lliquid Lsolid

<equation of state>

is-modeled-by

equation-of-state

<equation-of-state type>
<convective mechanism>

is-modeled-by
transport-mechanism
<convective mechanism type>

Lconstant Lpressure-driven Lfrancis-weir L

Figure 3-13: Convective Flux Production Tree

For example, the declarations:

GAS_PURGE is-a flux
transports material vapor
is-modeled-by equation-of-state ideal-gas

is-modeled-by transport-mechanism pressure-driven

indicates pressure-driven gaseous flow of material whose thermodynamic behavior is modeled
as an ideal gas.
Declaration of an energy flux requires a decision regarding the transport mechanism

assumed to drive the flow, as illustrated by the production tree for <energy flux> in Figure 3-14.

70

<energy flux>

— <energy type>

transports
energy
— <energy mechanism>

is-modeled-by
transport mechanism
<energy mechanism type>

L constant L surface-convection L surface-radiation L

Figure 3-14: Energy Flux Production Tree

For example, the declarations:

REACTOR_Q is-a flux
transports energy

is-modeled-by transport-mechanism surface-convection

indicates an energy flow driven by a surface convection transport mechanism.
Declaration of a species flux requires decisions regarding which species is transported
and the transport mechanism assumed to drive the flow, as illustrated by the production tree

for <species flux> in Figure 3-15. For example, the declarations:

REACTOR_Q is-a flux
transports species OXYGEN

is-modeled-by transport-mechanism fickian-diffusion

indicates transport of species OXYGEN due to Fickian diffusion.
The definition of all three flux types have two semantic relationships in common. The
semantic relationships transports indicates the type of transport, while the semantic relationship

is-modeled-by is used to characterize a flux mechanistically.

71

<species flux>

— <species type>

transports
species
[species id]

L— <species mechanism>

is-modeled-by
transport mechanism
<species mechanism type>

Lconstant Lfickian—diffusion Lchemical—equilibrium L

Figure 3-15: Species Flux Production Tree

* Flux Connectivity: The connectivity of a flux identifies the modeled-units that it associates.

The production tree for <flux connectivity> is illustrated in Figure 3-16.

<flux connectivity>
— <source unit>

from
[modeled-unit id]
L— <sink unit>

to
[modeled-unit id]

Figure 3-16: Flux Connectivity Production Tree
The source and sink modeled-units are identified by the semantic relationships from and to,

respectively, as illustrated by the declarations:

REACTOR_Q is-a flux
from REACTOR_VESSEL
to COOLING_JACKET

3.4.3 Material-Content Characterization

An elementary modeled-unit may be modeled as a blackbox, or as a unit with a material-content.

72

Physically, material-content refers to a region with no internal boundaries containing one or more
thermodynamic phases at equilibrium. A material-content is represented in the mathematical
model by relationships expressing thermal, physical, and chemical equilibrium. Assumptions
necessary to fully define an instance of a material-content are characterized by the production tree
for <material-content> illustrated in Figure 3-17.

<material-content>

— <material-content identification>

— <modeled-unit association>

— <phase instances>

— <species content>

— <vessel geometry>

— <flux allocations>

— <material-content behavioral characterization>

Figure 3-17: Material-Content Production Tree

e Material-Content Identification: The variable <material-content identification> identifies the

modeling element as a material-content and the unique textual name used to refer to it. It is
analogous to the variable <unit identification> of a modeled-unit. Declaration of a material-
content in the phenomena-based model is represented using the semantic relationship is-a, as

illustrated by the declaration:
FLASH_MATL is-a material-content

where FLASH_MATL is the name given to a particular instance of a material-content.

e Modeled-Unit Association: The variable <modeled-unit association> identifies the modeled-unit

with which the material-content is associated with. It is declared using the semantic
relationship is-material-content-of which is complementary to the semantic relationship has-
material-content that relates a modeled-unit to a material-content, as illustrated by the

declarations:

FLASH_MATL is-a material-content

is-material-content-in FLASH

FLASH is-a modeled-unit
has-material-content FLASH_MATL

73

* Phase Instances: The variable <phase instances> identifies the phases assumed to compose a

material-content. These declarations are characterized by the production tree in Figure 3-18.

<phase instances>

<phase instances> L <phase instance>
<phase instance>

L <vapor phase> L <liquid phase> L <solid phase>

has-vapor-phase has-liquid-phase has-solid-phase
[phase id] [phase id] [phase id]

Figure 3-18: Phase Instance Production Tree

Vapor, liquid, and solid phases are declared using the semantic relationships has-vapor-phase,

has-liquid-phase, and has-solid-phase, respectively, as illustrated by the declarations:

FLASH_MATL is-a material-content
has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL_L

where FLASH_MATL is a material-content composed of a vapor phase and a liquid phase at
equilibrium. Note from the production tree for <phase instances> that a material-content must
contain at least one phase.

» Species Content: The variable <species content> has already been discussed in the definition of a

modeled-unit. Chemical species assumed to be present in the material-content are identified

by the semantic relationship has-species, as illustrated by the declarations:

FLASH_MATL is-a material-content
has-species BENZENE
has-species TOLUENE

where FLASH_MATL contains two chemical species, BENZENE and TOLUENE.

* Vessel Geometry: The variable <vessel geometry> identifies the geometry of the vessel assumed

to contain the material-content. This optional assumption, illustrated in the production tree of

Figure 3-19, is used to derive an expression that relates the height of the contained phases as

74

a function of total volume.

<vessel geometry>

has-vessel-geometry L
<geometry type>

L rectangular L cylindrical L spherical L

Figure 3-19: Vessel Geometry Production Tree

The geometry is identified using the semantic relationship, has-vessel-geometry, as illustrated

by the declarations:

FLASH_MATL is-a material-content

has-vessel-geometry spherical

Flux Allocations: The variable <flux allocations> identifies the allocation of boundary fluxes to

or from the associated modeled-unit to individual phases of the material-content. Primarily,
this is used to relate to state of an outgoing convective flux to one of the phases of a material-
content. Boundary fluxes may be allocated directly to a phase, or determined by geometry.
Fluxes that do not need to be allocated are assigned to the material-content itself. The
allocation of boundary fluxes, identified by semantic relationships has-boundary-flux, to the
phases or geometry of a modeled-unit with a material-content are identified by the semantic
relationship allocated-to, as illustrated by the production tree in Figure 3-20. Examples of

these declarations are given below:

FLASH is-a modeled-unit
has-material-content FLASH_MATL
has-convective-input FEED
has-convective-output OVERHEAD
has-convective-output BOTTOMS

FLASH_MATL is-a material-content
has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL L

has-boundary-flux FEED allocated-to self

75

has-boundary-flux OVERHEAD allocated-to FLASH_MATL_V
has-boundary-flux BOTTOMS allocated-to FLASH_MATL_L

In this example, there is a convective input FEED into the FLASH which has a material
FLASH_MATL with a vapor phase, FLASH_MATL_V, and liquid phase, FLASH_MATL_L, at
equilibrium. A convective stream OVERHEAD withdraws vapor material from the FLASH and
another convective stream BOTTOMS withdraws liquid material from the FLASH.

<flux allocations>

<flux allocations> L

<flux allocation>

has-boundary-flux

[fluxid]

allocated-to
<allocated element>

I
L [phase id] L geometry L self

Figure 3-20: Flux Allocations Production Tree

e Behavioral Characterization: The behavioral characterization of the material-content involves

specialized assumptions regarding its behavior (e.g., isobaric, isothermal, constant volume,
etc.). These assumptions are made using the semantic relationship is-modeled-as, as illustrated

by the declarations:

FLASH_MATL is-a material-content

is-modeled-as constant-volume

3.4.4 Phase Characterization

A phase represents a region with spatially uniform thermodynamic and physical properties. Each
phase is represented in the mathematical model by relationships describing its physical and
thermodynamic properties as functions of temperature, pressure, and composition. Assumptions

required to fully define an instance of a phase are illustrated by the production tree in Figure 3-21.

76

<phase>

<phase identification>
<material-content association>
<thermodynamic characterization>
<chemical content>

Figure 3-21: Phase Production Tree

Phase Identification: The variable <phase identification> identifies the modeling element as a

phase, the physical state of the phase, and the unique textual name used to refer it. This is
accomplished using the semantic relationship is-a, as shown by the production tree for <phase
identification> illustrated in Figure 3-22.

<phase identification>

[phase id]
is-a
<phase state>

|
Lvapor Lliquid Lsolid

phase

Figure 3-22: Phase Identification Production Tree

This results in a declaration in the phenomena-based model such as:
FLASH_MATL_L is-a liquid phase

where FLASH_MATL_L is the name given to a particular instance of a liquid phase.

Material-Content Association: The variable <material-content association> identifies the material-

content with which the phase is associated with. It is declared using the semantic relationship

is-phase-in as illustrated by the declarations:
FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL

FLASH MATL L is-a liquid phase
is-phase-in FLASH_MATL

FLASH_MATL is-a material-content
is-vapor-phase FLASH_MATL_V

77

has-liquid-phase FLASH_MATL_L

where FLASH_MATL_V and FLASH_MATL_L are names given to two separate instances of

phases in a material-content FLASH_MATL.

e Thermodynamic Characterization: The variable <thermodynamic phase characterization>

introduces a mechanistic characterization of a given phase. Either an equation of state or
activity coefficient model may be selected, as illustrated in the production tree in Figure 3-23.

<thermodynamic phase characterization>

L <equation of state> L <activity coefficient>

is-modeled-by is-modeled-by
equation-of-state activity-coefficient-model
<equation-of-state type> <activity-coefficient model>

|
Lideal gas Lvan-der-waals |—redlich-kwong L |—ideal Lmargules Lunifac L

Figure 3-23: Thermodynamic Phase Char acterization Production Tree

The selected mechanistic characterization is declared using the semantic relationship is-

modeled-by, as illustrated by the declaration:

FLASH_MATL_V is-a vapor phase

is-modeled-by equation-of-state redlich-kwong

e Chemical Content: The variable <chemical content> has already been discussed in the definition

of a modeled-unit. Chemical species and reaction assumed to be present in the phase are
identified by the semantic relationships has-species, and has-reaction, respectively, as

illustrated by the declarations:

VESSEL_MATL_L is-a liquid phase
has-species WATER
has-species o XYLENE
has-species PHTHALIC_ANHYDRIDE
has-species OXYGEN
has-reaction RXN_101

78

where a phase, VESSEL_MATL_L, is assumed to contain four chemical species, WATER,
o_XYLENE, PHTHALIC_ANHYDRIDE, and OXYGEN, and a chemical reaction, RXN_101.

3.4.5 Chemical Species Characterization

An instance of a chemical species in a phenomena-based model is characterized by the production

tree illustrated in Figure 3-24.

<species>

<species identification>
<database id>

Figure 3-24: SpeciesProduction Tree

Species Identification: The variable <species identification> identifies the modeling element as a

chemical species and the unique textual name used to refer to it. It is analogous to the
variable <unit identification> of a modeled-unit. Declaration of a species in the phenomena-
based model is represented using the semantic relationship is-a, as illustrated by the

declaration:
OXYGEN is-a species

where OXYGEN is the name given to a particular instance of a species.

Database Identification: The variable <database id> identifies the unique identification tag used

to access the properties of a chemical species from a database. This tag may be identified

using a semantic relationship such as has-database-id, as illustrated by the declarations:

OXYGEN is-a species
has-database-id 901

Here it is assumed that a database is used to access physical and thermodynamic property
correlations for each species. Alternatively, more complex productions can be used for the

chemical species that contain this data explicitly.

3.4.6 Chemical Reaction Characterization

An instance of a chemical species in a phenomena-based model is characterized by the production

79

tree illustrated in Figure 3-25.

<reaction>

<reaction identification>
<participants>
<kinetics>

Figure 3-25: Reaction Production Tree

* Reaction Identification: The variable <reaction identification> identifies the modeling element as
a chemical reaction and the unique textual name used to refer to it. It is analogous to the
variable <unit identification> of a modeled-unit. Declaration of a reaction in the phenomena-
based model is represented using the semantic relationship is-a, as illustrated by the

declaration:
RXN_101 is-a reaction

where RXN_101 is the name given to a particular instance of a reaction.

» Participants: The variable <participants> identifies the reactants and products of the reaction,
whether the reaction is modeled as irreversible, reversible, or equilibrium, and any relevant
catalyst. These productions are illustrated in the production tree in Figure 3-26. For example,

the declarations:

RXN_A is-a reaction
+ 1 ACETIC_ACID + 11 BUTANOL <==>+ 1 n_BUTYL_ACETATE + 1 WATER

indicate a reversible reaction, RXN_A, of species ACETIC_ACID and 1_BUTANOL to form
n_BUTYL_ACETATE and WATER.

80

<participants>

<reactants>
<reactants> L <stoichiometry>
<stoichiometry>
+
<number>
[species id]
<reversibility>
<products>
<products> |~<stoichiomet1ry>
<stoichiometry>
<catalyst>

has-catalyst
[species id]

Figure 3-26: Reaction Participants Production Tree

Kinetics: For rate-based reactions, the variable <kinetics> identifies the rate laws for the
forward and, if the reaction is reversible, reverse rate laws. These forward and reverse rate
laws are equations identified by the semantic relationships has-forward-kinetics and has-reverse-
kinetics, as illustrated by the production tree in Figure 3-27.

<kinetics>
— <forward rate law>

— has-forward-kinetics
— [equation]
— <reverse rate law>

— has-reverse-kinetics
— [equation]

Figure 3-27: Reaction Kinetics Production Tree

81

3.5 Semantic Relationships

In the previous section, the assumptions that compose a phenomena-based model have been
structured hierarchically using production rules that involve substitution of a variable with one or
more non-terminal variables. In order to complete the grammar of the phenomena-based
modeling language, production rules which substitute terminals in place of variables were then
introduced. The format of these terminal substitutions were designed to consist of two parts: a
semantic relationship and an identifier. These identifiers refer to the textual name of a modeling
element or another elementary data type (i.e., integer, real, or string).

The semantic relationships unambiguously describe how the modeling elements are
interrelated in forming a particular instance of a process model. In this section, these semantic
relationships are summarized by organizing them into several categories.

+ Identification: The is-a semantic relationship is used to identify the type of each modeling
element. The is-a relationship links a unique textual name identifying the element to a string

that identifies the type of the element.

* Hierarchical Structure: The parent-subunit relationship is captured by the symmetric semantic
relationships is-subunit-of and has-subunit .
Spatially distributed modeled-units are modeling using a differential element approach.
They are characterized by a coordinate system, identified by semantic relationship has-spatial-
distribution, the distributed dimensions, which are identified by semantic relationship has-
distributed-dimension, and the differential element subunits, which are identified by semantic
relationship has-differential-subunit.

e Material-Content: =~ The modeled-unit-material-content relationship is captured by the

symmetric relationships has-material-content and is-material-content-of.

The phases of a material-content are identified by semantic relationships has-vapor-
phase, has-liquid-phase, and has-solid-phase. The associated material-content of a phase is
identified by semantic relationship is-phase-in.

The geometry of a material-content is identified by the semantic relationship has-vessel-
geometry.

* Topological Structure: The boundary fluxes of a modeled-unit are identified by the semantic

relationships has-convective-input, has-convective-output, has-energy-input, has-energy-output,

82

has-species-input, and has-species-output.

The allocation of boundary fluxes, identified by semantic relationships has-boundary-flux,
to the phases or geometry of a modeled-unit with a material-content are identified by the
semantic relationship allocated-to.

The modeled-units connected by a flux are identified by semantic relationships from and

to. The type of flux is identified by semantic relationship transports.

e Chemical Characterization: The chemical species and reactions in a modeled-unit, material-
content, or phase, are identified by semantic relationships has-species and has-reaction,
respectively.

* Mechanistic Characterization: Mechanistic characterizations of thermodynamic property

models, transport mechanisms, and reaction rate laws are identified by the semantic
relationship is-modeled-by.

e Behavioral Characterization: Behavioral characterizations of modeled-units and material-

contents are identified by the semantic relationship is-modeled-as.

3.6 Model Digraph

The introduction of semantic relationships into the modeling language allows a structured
representation of phenomena-based process models using semantic networks. This semantic
network may be depicted as a directed graph, where the vertices are labeled with names of
modeling elements or another elementary data type, and the edges are labeled with semantic
relationships. This representation organizes the knowledge behind the model and provides a
structured and modular means of analyzing the phenomena-based model. For example, the

declarations:

JACKET is-a modeled-unit
is-internal-unit-of JACKETED_CSTR

has-energy-input q

q is-a flux
transports energy
to JACKET

is-modeled-by transport-mechanism surface-convection

83

JACKETED_CSTR is-a modeled-unit
has-internal-unit JACKET

may be represented by the model digraph illustrated in Figure 3-28.

@ has-energy-input
is-a
) to is-modeled-by
modeled-unit o transport-mechanism
surface-convection

is-a

is-internal-unit-o has-internal-unit

transports
Jacketed cstr

Figure 3-28: Example M odel Digraph

3.7 Mode Derivation Tree

The sequence of substitutions used to obtain a string (i.e., an instance of a model) in the language
of MODEL.LA is characterized by the derivation tree of the model. The derivation tree is an
extended production tree that includes details regarding which alternative decisions were made
during the construction of a model. Similar to the production tree, the derivation tree captures
the sequence of modeling decisions by recording the production rules and alternatives selected in

a hierarchical manner. For example, the declarations:

HDA_Plant is-a modeled-unit
has-internal-unit Separation_section
has-internal-unit Reaction_section
has-convective-input reactants

has-convective-output products

are captured by the derivation tree in Figure 3-29.

3.8 Complete Context-Free Grammar Description

The complete context-free grammar of the MODEL.LA modeling language is given in Appendix
A.

84

<phenomena-based model>
— <structural characterization>
— <modeled-units>

<modeled-units>
<modeled-unit>

— <unit identification>

HDA_Plant is-a modeled-unit
— <hierachical structure>

<subunits>
— <subunits>
<subunit>

has-internal-unit Separation_section
— <subunit>

has-internal-unit Reaction_section
— <topological structure>

— <boundary inputs>
<boundary inputs>

<>
<boundary input>

<convective input>

has-convective-input reactants
— <boundary outputs>

<boundary outputs>

<>
<boundary output>

<convective output>

has-convective-output products
'— <chemical content>
~ <fluxes>
— <chemical content>
— <derivation context>

Figure 3-29: Example Model Derivation Tree

85

86

Chapter 4

Modeling L ogic Framework

In the previous chapter, the context-free grammar of the MODEL.LA modeling language, which
specifies the syntax of the modeling language, was introduced. This grammar formally describes
the production rules that generate instances of the modeling elements and semantic relationships
that compose a phenomena-based model. Essentially, the modeling elements and semantic
relationships of the language provide a vocabulary that allows an engineer to articulate
assumptions about the topological and hierarchical structure, physicochemical phenomena, and
mechanistic characterizations of a chemical process. However, relying on syntax and common-
sense or by-example explanations of the meaning of the modeling elements would leave the
definition of the modeling language incomplete. In order to describe the semantics of the
language, and to enable a computer to understand phenomena-based modeling assumptions and
chemical process modeling principles, the underlying logic of model development must be
elucidated.

To complete the specification of MODEL.LA, in this chapter a modeling logic framework
is presented that describes the semantics of the modeling language (by formally describing the
impact of phenomena-based assumptions on the resulting mathematical model) and makes it
possible to systematize many aspects of the model development process. This systematization can
enable a computer to comprehend the implication of the modeling assumptions, to assist the
modeler in constructing the phenomena-based model description, to detect model inconsistencies
and incompleteness, to automatically derive mathematical models, and to explain the terms and
equations of the resulting mathematical model in terms of the modeling assumptions.

Furthermore, the modeling logic framework provides a basis for introducing supervisory logic

87

into the modeling activity, which can guide inexperienced modelers toward completion of certain
contextual modeling goals.

In order to assist engineers develop process models, a variety of modeling methodologies
have been proposed (e.g., Aris, 1979, and Denn, 1986). These methodologies are commonly
presented as flowcharts that provide very generic templates of the major tasks that a modeler
tackles during model development. These flowcharts are frequently supplemented with several
common-sense rules or heuristics that may also be employed under certain circumstances.
Unfortunately, the level of granularity of guidance that these methodologies provide is too broad,
the assistance they offer is too passive, and the knowledge they contain is too unstructured to
offer real assistance to inexperienced modelers. This is because their lack of formalism restricts
systematization of the modeling activity. As such, existing methodologies, while valid, cannot
adequately address the modeling needs of either the chemical process industry or chemical
engineering education.

The MODEL.LA modeling logic does not introduce new concepts of chemical engineering
science and modeling expertise. Rather, through logical constructs based on the MODEL.LA
modeling language, it makes it possible to express these chemical engineering concepts in a
computational framework. In this manner, a computer can understand chemical process modeling
principles. This allows systematization of the modeling activity, where such modeling knowledge
makes possible varying degrees of computer-aided modeling support, including full automation,

structured interaction, and explicit documentation.

4.1 Computational Logic

The MODEL.LA modeling logic presented in this chapter expresses chemical process modeling
knowledge in a computational framework. Discussion of its implementation in this work is
deferred until the subsequent chapter. The goal of this chapter is to present the embedded
chemical process modeling knowledge in a concise, structured, and extendible manner that clearly
identifies the principles of chemical engineering science applied in model development. This
knowledge may subsequently be used to develop algorithms or programs through various
implementations (e.g., expert systems, procedural subroutines, or object-oriented programs).

However, decisions for implementation are considered separately from the modeling logic

88

framework itself.

4.2 Formal Description of Modeling L ogic Operators

Logical operators, which represent tasks that comprise the modeling activity, form the basis of the
MODEL.LA modeling logic. These logical modeling operators are classified as either declarative
or procedural. Declarative operators allow assertions to be proposed about the state of the
model (e.g., Reactor-x is adiabatic). Each declarative operator is characterized by three

attributes:

declarative operator = <arguments, preconditions, postconditions>

where
1. Arguments are the model elements on which the operator acts,
2. Preconditions are the necessary conditions that must be true before the operator is
activated, and
3. Postconditions are the necessary conditions that are asserted by the activated
operator.
Unlike declarative operators, procedural operators change the state of the model (e.g., decompose
Plant-Y into a Reaction-Section and a Separation-Section). Each procedural operator is

characterized by three attributes:

procedural operator = <arguments, preconditions, suboperations>

where
1. Suboperations are the set of state operations and subtasks into which the operator
is decomposed. This approach allows a hierarchical description of modeling tasks,
where each modeling task can be decomposed into a set of smaller subtasks.
The arguments and preconditions for procedural operators are defined as for declarative
operators.
To formally compose each operator, a variation of the notation of first-order predicate

logic is used. Each operator is represented as an implication, expressed generically as:

antecedent [J consequent

89

This may be interpreted as an if-then rule, where if the antecedent is true, then the consequent is
asserted. For declarative operators, if the consequent also implies the antecedent, [J is replaced
by <. This may be interpreted as and if-and-only-if rule.

The antecedent is a well-formed formula composed of variable symbols, predicate
symbols, connectives and quantifiers. Predicate symbols may be interpreted as boolean functions,
which, based on the state values of their arguments, return a value of true or false. For example,
the predicate precond(arg,,...,arg,) returns a value of true or false based on the values of its n
arguments argy,...,arg,. The connectives include: U (and), U (or), = (not), and the existential
quantifier, [(there exists). The arguments of the operator appear as scoped variables and are
identified at the head of the antecedent using the universal quantifier, L (for all). For example, in
the formula Ux,;Ux, ...0x, variables x;,x,...,x, represent a list of n arguments. Variable type
assertions for each variable are listed as predicate symbols in the antecedent. For example, the
predicate symbols type_id;(x;) U type_idx(x;) U ... U type_id,(x,), assert the types of variables
X1,X2...,Xn, Tespectively, where fype_id; identifies the type of variable x;. The variable type
declarations in the antecedent are followed by the remaining preconditions, which are also
represented by predicate symbols.

Postconditions of the declarative operators are expressed in the consequent, which is also
a well-formed formula composed of predicate symbols, variable symbols, connectives and
quantifiers. For procedural operators, the consequent contains the sequence of procedural
suboperations, which are listed delimited by commas. Each suboperation may be another
modeling logic operator, a statement containing other common mathematical, set, and assignment
operations, or may contain function statements which introduce new state variables into the

model. The latter appear generically as:

Avar(type_id(var))

where var is the new state variable introduced into the model, and fype_id is an asserted predicate

identifying the type of the new state variable.

4.2.1 Modeling Logic Operators

As previously described, the semantic network digraph provides a structured, modular, and

90

organized view of an instance of a phenomena-based model. To exploit these features, the logical

operators of the phenomena-based model will be defined in terms of the model digraph.

4.2.2 Elementary Graph Operators

The state of a phenomena-based model is represented formally by the model digraph. The model

digraph is defined as:
M= (V,E)

where:
1. M is the model digraph,
2. Vis the set of n labeled vertices {v,, v, ...v,} in the graph, and
3. Eis the set of m labeled, directed edges {e;, e, ...e,} in the graph, where each edge is
incident to and incident from a pair of vertices in the graph.
Elementary predicate symbols, which are assumed to be intrinsic declarative operators that make

generic assertions about a model digraph are defined in Table 4-1.

Table 4-1: Intrinsic Declarative Graph Operators
Operator Actions Preconditions
vertex(v) Identifies v is a vertex.
edge(e) Identifies e is a edge.
string(s) Identifies s is a string.

has_label(m, s)

Asserts that the label of m is s.

string(s) U (edge(m) Overtex(m))

incident_from(e, v)

Asserts that e is incident from v.

edge(e) Overtex(v)

incident_to(e, v)

Asserts that e is incident to v.

edge(e) Overtex(v)

Elementary predicate symbols, which are assumed to be intrinsic operators that generically access

elements of the model digraph and allow their values to be assigned (e.g., label(m) := “Reactor-

x”") are defined in Table 4-2.

91

Table 4-2: Intrinsic Graph Assignment Operators

Operator Actions Preconditions
label(m) Accesses label of m. edge(m) Overtex(m)
incident_from(e) Accesses vertex that e is incident from. edge(e)
incident_to(e) Accesses vertex that e is incident to. edge(e)

For convenience, several procedural operators that change the state of model graph M are defined

in Table 4-3 in terms of these intrinsic graph operators.

4.3 Model Analysis Operators

In the previous section, a set of intrinsic and elementary graph operators were defined that
provide means for analyzing and editing the model digraph. Since the state of the phenomena-
based model is defined in terms of the model digraph, at the lowest level all modeling logic
operators must be defined in terms of these intrinsic graph operators. However, by defining high-
level operators in terms of these low-level operators, layers of abstraction (Abelson et al, 1996)
are developed that separate the modeling activity from the actual underlying digraph
representation. In turn, the high-level operators may be used to develop even more sophisticated
modeling tasks. This use of abstraction enables the modeler to concentrate on modeling tasks
such as “define plant separation subsystem” instead of “add vertex and label to model digraph”.
With this methodology of abstraction in mind, several high-level declarative operators are now
defined in terms of the model digraph to facilitate analysis of a phenomena-based model. In
subsequent sections, these operators will provide the basis for describing operators for model
construction, detection of model inconsistencies and incompleteness, and automated mathematical
model generation. The model analysis operators are all defined as “if-and-only-if” implications, as

denoted by the < symbol.

92

Table 4-3: Elementary Procedural Graph Operators

Operator Actions

Dv Ds [vertex(v) Dstring(s) D Add_vertex(v, s) 1.) Adds a vertex v to the model digraph, M, where

lDbl _ M= (V,E).
abel(v) := s, 2.) Labels v with string s.
V:=vUOv]
O] OA
s [strlngD(s) dd_new_vertex(s) 1) Creates vertex v.
2.) Activates preceding operator to add v to model
Av(vertex(v)),

digraph with appropriate label.
Add_vertex(v, 5)] grap pprop

Oe Ov; Ov, Os [edge(e) Overtex(vy) Overtex(v,)

Ostring(s) U Add_edge(e, v, v2, 5) 1.) Adds edge e to model digraph, M, where M =
O (V, E).
label(e) :=s, 2.) Sets incident from vertex of e to v,.
incident_from(e) := vy, 3.) Sets incident to vertex of e to v,.
incident_to(e) := v, 4.) Labels e with string s.
E:=FE[e]
Ov; Ov, Os [vertex(vy) Overtex(v,) Ostring(s)
OAdd_new_edge(vi, v2, 5) 1.) Creates edge e.
O 2.) Activates preceding operator to add e to model
Ae(edge(e)), digraph with appropriate label.

Add_edge(e, vy, v, 5)]

Ov; Ov, Os;Os;, [vertex(vy) Overtex(vy) O string(s;)

Ostring(sz) 1.) Activates preceding operator to add an edge
UAdd_new_complementary_edges(v;, vz, sy, 52) from v, to v, with appropriate label.
O 2.) Activates preceding operator to add an edge
Add_new_edge(v;, vs, S;), from v, to v; with appropriate label.

Add_new_edge(v,, vy, 52)]

Ose Osv; Osv, [string(se) O string(sv;) Ostring(svy)
OAdd_new_vertex_pair_and_edge(se, sv;, sv;)

N 1.) Creates vertex v;.

Av,(vertex(v;)), 2.) Creates vertex v,.

Avy(vertex(v,)), 3.) Creates edge e.

Ae(edge(e)), 4.) Adds v;, v,, and e to model digraph with
Add_vertex(v;, sv;), appropriate labels.

Add_vertex(v,, sv,),
Add_edge(e, vy, v, 5)]

93

4.3.1 Modeling Element Identification

Every instance of a modeling element in the phenomena-based model is represented by a vertex in
the model digraph. This vertex is labeled with the unique name, or identifier, of the modeling
element. An edge labeled “is-a” that is incident from this vertex is incident to a vertex labeled
with a string representing the type (e.g., “flux”) of the modeling element. Figure 4-1 illustrates an

example of a modeled-unit modeling element named “Jacket” in a model digraph.

D
is-a
o

Figure4-1: Modeled-Unit Digraph Representation

Several declarative operators that identify the particular type of a modeling element, which are
represented by graph vertices with “is-a” edges incident from them, are defined in Table 4-4.

The declarative operators defined in Table 4-4 are also used by other operators that
identify specialized (e.g., liquid flux) or generalized types of modeling elements. Several

examples of these are listed in Table 4-5.

94

Table 4-4: Modeling Element Identification Operators

Operator

Actions

Om [modeled_unit(m)
vertex(m) O e [(edge(e) Overtex(v)
O has_label(e, “is-a”) O has_label(v, “modeled-unit™)
UOincident_from(e, m) Oincident_to(e, v))]

Identifies m is a modeled-unit.

Cf [flux(f)

vertex(f) Ok [(edge(e) Overtex(v)
Ohas_label(e, “is-a”) O has_label(v, “flux”
UOincident_from(e, f) Oincident_to(e, v))]

Identifies f'is a flux.

Om [material-content(m)

vertex(m) O e [(edge(e) Overtex(v)
Ohas_label(e, “is-a”) O has_label(v, “material-content™)
O incident_from(e, m) Oincident_to(e, v))]

Identifies m is a material-content.

Op [vapor_phase(p)

vertex(p) Ok [V (edge(e) Overtex(v)
Ohas_label(e, “is-a”) O has_label(v, “vapor phase”)
UOincident_from(e, p) Oincident_to(e, v))]

Identifies p is a vapor phase.

UOp [liquid_phase(p)
vertex(p) Ok [V (edge(e) Overtex(v)
O has_label(e, “is-a”) Ohas_label(v, “liquid phase’)
UOincident_from(e, p) Oincident_to(e, v))]

Identifies p is a liquid phase.

Op [solid_phase(p)
vertex(p) Ok [V (edge(e) Overtex(v)
Ohas_label(e, “is-a”) Ohas_label(v, “solid phase”)
UOincident_from(e, p) Oincident_to(e, v))]

Identifies p is a solid phase.

Or [reaction(r)
vertex(r) Ok v (edge(e) Overtex(v)
O has_label(e, “is-a”) O has_label(v, “reaction’)
O incident_from(e, r) Oincident_to(e, v))]

Identifies r is a reaction.

Us [species(s)
vertex(s) Ok [v (edge(e) Overtex(v)
O has_label(e, “is-a”) Ohas_label(v, “species”)
UOincident_from(e, s) Oincident_to(e, v))]

Identifies s is a species.

95

Table 4-5: Specialized M odeling Element | dentification Operator s

Operator

Actions

Of [vapor_flux(f)

Sflux(f) O Ce O (edge(e) Overtex(v) O has_label(e, “transports”)
O has_label(v, “material vapor”) Oincident_from(e, f)
Oincident_to(e, v))]

Identifies f is a vapor convective
flux

Of [liquid_flux(f)

flux(f) O Ce O (edge(e) Overtex(v) O has_label(e, “transports”)
O has_label(v, “material liquid”) Oincident_from(e, f)
Oincident_to(e, v))]

Identifies fis a liquid convective
flux

Uf [solid_flux(f)

flux(f) O Ce O (edge(e) Overtex(v) O has_label(e, “transports”)
O has_label(v, “material solid”) Oincident_from(e, f)
Oincident_to(e, v))]

Identifies fis a solid convective
flux

Of [convective_flux(f)
= vapor_flux(p) Oliquid_flux(p) O solid_flux(p)]

Identifies fis a convective flux

Uf [energy_flux(f)

flux(f) O e O (edge(e) Overtex(v) O has_label(e, “transports”)
O has_label(v, “energy”) Oincident_from(e, f)
Oincident_to(e, v))]

Identifies f is an energy flux

Of Us [species_flux(f, s)

Sflux(f) O species(s) Ok (Oedge(e) Ohas_label(e, “transports’)
UOincident_from(e, f) Oincident_to(e, s))]

Asserts that species flux f
transports species §

Of [species_flux(f)
<= flux(f) Ok (species(s) O species_flux(f, s))]

Identifies fis a species flux

Op [phase(p)
<= vapor_phase(p) Oliquid_phase(p) U solid_phase(p)]

Identifies p is a phase

g [geometry(g)

vertex(g) Ok [V (edge(e) Overtex(v) O material_content(m)
O has_label(e, “has-vessel-geometry”) Uincident_from(e, m)
U incident_to(e, g))]

Identifies g is a geometry

Us [spatial_distribution(s)
vertex(s) Ok [(edge(e) Overtex(v) Omodeled_unit(m)
O has_label(e, “has-spatial-distribution”) Oincident_from(e, m)
Oincident_to(e, s))]

Identifies s is a spatial
distribution.

Om [distributed_unit(m)
modeled_unit(m) O [k Us (edge(e) O spatial_distribution(s)
O has_label(e, “has-spatial-distribution”) Oincident_from(e, f)
Oincident_to(e, v))]

Identifies m is a spatially
distributed modeled-unit.

96

4.3.2 Hierarchical Structure

The hierarchical structure of modeled-units in a phenomena-based model is declared using the
complementary semantic relationships has-internal-unit and is-internal-unit-of. ~ Operators that

provide for analysis of this hierarchical structure are listed in Table 4-6.

Table 4-6: Hierarchical Structure Analysis Operators

Operator Actions
Op [has_subunits(p)
modeled_unit(p) O s Tk (modeled_unit(s) Asserts that modeled-unit p has subunits.

Oedge(e) Ohas_label(e, “has-internal-unit”)
UOincident_from(e, p) Oincident_to(e, s))]
Us [has_parent(s)

modeled_unit(s) U [p Tk (modeled_unit(p) Asserts that modeled-unit s has a parent unit.
Oedge(e) Ohas_label(e, “is-internal-unit-of”)
UOincident_from(e, s) Oincident_to(e, p))]

Op Os [has_subunit(p, s)
modeled_unit(p) O modeled_unit(s) Asserts that modeled-unit p has subunit s.
Ok (edge(e) Ohas_label(e, “has-internal-unit™)
UOincident_from(e, p) Oincident_to(e, s))]

Os Op [is_subunit_of(s, p)
modeled_unit(s) O modeled_unit(p) Asserts that s is a subunit of modeled-unit p
O [k (edge(e) O has_label(e, “is-internal-unit-of”)
UOincident_from(e, s) Oincident_to(e, p))]

Oa Od [has_descendant(a, d)
modeled_unit(a) Omodeled_unit(d) Asserts that modeled-unit a has descendant d
O (has_subunit(a, d) O Us (modeled_unit(s)
O has_subunit(a, s) O has_descendant(s, d))]

Od Oa [has_ancestor(d, a)

=S

modeled_unit(d) Omodeled_unit(a) Asserts that modeled-unit 4 has ancestor a
O (is_subunit_of(d, a) O s (modeled_unit(s)
O is_subunit_of(d, s) Ohas_ancestor(s, a)]

Op Us [has_differential_subunit(p, s)
distributed_unit(p) Omodeled_unit(s) O [k (edge(e)
O has_label(e, “has-differential-subunit’)
UOincident_from(e, p) Oincident_to(e, s))]

Asserts that spatially distributed modeled-unit
p has differential subunit s.

The fifth and sixth operators in Table 4-6, has_descendant and has_ancestor, are defined

97

recursively, where the operator is defined in terms of itself. When these recursive operators are
evaluated, an assertion is made when the predicate disjunctive to the recursive predicate is true.

The following declarations will be used to illustrate use of these operators:

PLANT is-a modeled-unit
has-internal-unit REACTION_SECTION
has-internal-unit SEPARATION_SECTION

REACTION_SECTION is-a modeled-unit
is-internal-unit-of PLANT
has-internal-unit REACTION_PRETREAT
has-internal-unit JACKETED_CSTR

JACKETED_CSTR is-a modeled-unit
is-internal-unit-of REACTION_SECTION
has-internal-unit JACKET
has-internal-unit VESSEL

JACKET is-a modeled-unit
is-internal-unit-of JACKETED_CSTR

VESSEL is-a modeled-unit
is-internal-unit-of JACKETED_CSTR

Examples of assertions that may be made from these declarations using the operators in Table 4-6
include: has_subunits(PLANT), has_parent(JACKETED_CSTR),
has_subunit(REACTION_SECTION, REACTION_PRETREAT), is_subunit_of(JACKET,
JACKETED_CSTR), has_descendant(PLANT, VESSEL), and has_ancestor(JACKET,
REACTION_SECTION).

4.3.3 Topological Structure

The topological structure of a phenomena-based model reflects how modeled-units interact
through transport of mass, energy, and chemical species between their boundaries. The boundary
fluxes associated with a modeled-unit are identified by semantic relationships has-convective-input,
has-convective-output, has-energy-input, has-energy-output, has-species-input, and has-species-output.
The most refined modeled-units that a flux interconnects are identified by semantic relationships to

and from. Operators that allow analysis of this topological structure are listed in Table 4-7.

98

Table 4-7: Topological Structure Analysis Operators

Operator

Actions

Om Of [has_input_flux(m, f)
modeled_unit(m) O flux(f) O Ck (edge(e)
Oincident_from(e, m) Oincident_to(e, f)
O (has_label(e, “has-convective-input™)
O has_label(e, “has-energy-input”)
O has_label(e, “has-species-input”))]

Asserts that modeled-unit m has input flux f.

Om Of [has_output_flux(m, f)
modeled_unit(m) O flux(f) O Ck (edge(e)
UOincident_from(e, m) Oincident_to(e, f)
U (has_label(e, “has-convective-output’™)
O has_label(e, “has-energy-output™)
O has_label(e, “has-species-output™))]

Asserts that modeled-unit m has output flux f.

Om Of [has_convective_input(m, f)

<

has_input_flux(m, f) O convective_flux(f)]

Asserts that modeled-unit m has convective input flux

f

Om Of [has_convective_output(m, f)

=S

has_output_flux(m, f) O convective_flux(f)]

Asserts that modeled-unit m has convective output
flux f.

Om Of [has_energy_input(m, f)

<

has_input_flux(m, f) Oenergy_flux(f)]

Asserts that modeled-unit m has energy input flux f.

Om Of [has_energy_output(m, f)

=S

has_output_flux(m, f) Oenergy_flux(f)]

Asserts that modeled-unit m has energy output flux f.

Om Of [has_species_input(m, f)

=S

has_input_flux(m, f) Ospecies_flux(f)]

Asserts that modeled-unit m has species input flux f.

Om Of [has_species_output(m, f)

=S

has_output_flux(m, f) Ospecies_flux(f)]

Asserts that modeled-unit m has species output flux f.

Of Om [from(f, m)
Sflux(f) Omodeled_unit(m) O [k (edge(e)
O has_label(e, “from”) Oincident_from(e, f)
Oincident_to(e, m))]

Asserts that fis a transport flux that originates
incident from modeled-unit m.

Of Om [to(f, m)
Sflux(f) Omodeled_unit(m) O [k (edge(e)
Ohas_label(e, “to”) Oincident_from(e, f)
Oincident_to(e, m))]

Asserts that fis a transport flux that terminates
incident to modeled-unit m.

99

The following declarations will be used to illustrate use of these operators:

JACKETED_CSTR is-a modeled-unit
has-internal-unit JACKET
has-internal-unit VESSEL
has-convective-input reactants

has-convective-output products

VESSEL is-a modeled-unit
is-internal-unit-of JACKETED CSTR
has-convective-input reactants
has-convective-output products

has-energy-input q

q is-a flux
transports energy
from VESSEL
to JACKET

reactants is-a flux
transports material liquid
from source
to VESSEL

Examples of assertions that may be made from these declarations using the operators in Table 4-7
include: has_energy_input(VESSEL, q), has_convective_input(JACKETED_CSTR, reactants),
has_convective_input(VESSEL, reactants), and to(q, VESSEL). Note that although
has_convective_input(JACKETED_CSTR, reactants) is true, to(JACKETED_CSTR, qg) cannot be
asserted since the fo operator only applies to the most-refined modeled-unit that the flux is

incident to.

4.3.4 Material Characterization

The material characterization in a phenomena-based model is defined by instances of the modeling
element material-content, which is declared for a modeled-unit using the complementary semantic
relationships has-material-content and is-material-content-in. The phases that compose a material-
content are identified by the semantic relationships has-vapor-phase, has-liquid-phase, and has-solid-

phase. If a vessel geometry is assumed for the material-content, it is declared using the semantic

100

relationship has-geometry. Allocation of boundary fluxes, identified by semantic relationship has-
boundary-flux, to the phases or geometry of a material-content are declared using the semantic
relationship is-allocated-to. Operators that allow analysis of this material characterization are listed
in Table 4-8.

The following declarations will be used to illustrate use of these operators:

FLASH is-a modeled-unit
has-material-content FLASH_MATL
has-convective-input FEED
has-convective-output OVERHEAD
has-convective-output BOTTOMS

FLASH_MATL is-a material-content
is-material-content-in FLASH
has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL_L
has-geometry vertical-cylinder
has-boundary-flux FEED allocated-to self
has-boundary-flux OVERHEAD allocated-to FLASH_MATL_V
has-boundary-flux BOTTOMS allocated-to FLASH_MATL_L

FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL

FLASH MATL L is-a liquid phase
is-phase-in FLASH_MATL

Examples of assertions that may be made from these declarations using the operators in Table 4-8
include: material_unit(FLASH), has_phase(FLASH_MATL, FLASH _MATL L),
has_geometry(FLASH_MATL, vertical-cylinder), has_boundary_flux(FLASH_MATL, FEED), and
allocated_to(FLASH_MATL, FLASH_MATL L, BOTTOMS).

101

Table 4-8: Material Characterization Analysis Operators

Operator

Actions

Ou Om [has_material_content (u, m)

=S

modeled-unit(u) Omaterial_content(m)
Ok (edge(e)

O has_label(e, “has-material-content™)

U incident_from(e, u) Oincident_to(e, m))]

Asserts that modeled-unit u has material-content
m.

Ou [material_unit(u)
modeled_unit(u) O On (material_content (m)
O has_material_content (u, m))]

Asserts that modeled-unit u has a material-content.

Ou [blackbox_unit(u)

modeled_unit(u) O - material_unit(u)
O = has_subunits(u)]

Asserts that modeled-unit « is a modeled as a
blackbox.

Om Op [has_phase(m, p)
material_content(m) O phase(p) O [k (edge(e)
U (has_label(e, “has-vapor-phase’)
O has_label(e, “has-vapor-phase”)
O has_label(e, “has-vapor-phase”))
U incident_from(e, m), Oincident_to(e, p))]

Asserts that material-content m has phase p.

Om Og [has_geometry(m, g)
material_content(m) U geometry(g)
O [k (edge(e) Ohas_label(e, “has-geometry”)
U incident_from(e, m) U incident_to(e, g))]

Asserts that material-content m has geometry g.

Om Of [has_boundary_flux(m, f)
material_content(m) O flux(f) O Ce (edge(e)
O has_label(z, “has-boundary-flux’)
UOincident_from(e, m) U incident_to(e, f))]

Asserts that material-content m has boundary flux

f

Om Op Of [allocated_to(m, p, f)
material_content(m) O phase(p) O flux(f)
O has_phase(m, p) Ohas_boundary_flux(m, f)
O [k (edge(e) Ohas_label(e, “allocated-to™)
U incident_from(e, m) U incident_to(e, p))]

Asserts that material-content m has boundary flux f
allocated to phase p.

Om Og Of [allocated_to(m, g, f)
material_content(m) 0 geometry(g) O flux(f)
O geometry(m, g) O has_boundary_flux(m, f)
O [k (edge(e) Ohas_label(e, “allocated-to™)
U incident_from(e, m) Oincident_to(e, g))]

Asserts that material-content m has boundary flux f
allocated to geometry g.

Ua [allocated_element(a)

=S

material_content(a) O phase(a) O geometry(a)]

Asserts that a boundary flux can be allocated to
modeling element a.

102

4.35 Chemical Content

The chemical content of a phenomena-based model identifies the chemical species and reactions

assumed to be present in the modeled-units, material-contents, and phases of the model.

The

species and reaction present in these modeling elements are identified using the semantic

relationships has-species and has-reaction, respectively. Operators that allow analysis of this

chemical content are listed in Table 4-9. Additionally, the last operator determines if a particular

chemical species is transported by a flux.

Table 4-9: Chemical Content Analysis Operators

Operator

Actions

Om [species_element(m)

=

modeled_unit(m) O material_content(m) U phase(m)]

Asserts that species may be
assigned to modeling element m.

Om UOs [has_species(m, s)
species_element(m) O species(s)
O [k (edge(e) Ohas_label(y, “has-species’)
O incident_from(e, m) Uincident_to(e, s))]

Asserts that species s is assigned
to modeling element m.

Om [reaction_element(m)

=S

modeled_unit(m) O phase(m))

Asserts that reactions may be
assigned to modeling element m.

Om Os [has_reaction(m, s)
reaction_element(m) O reaction(s)
O [k (edge(e) Ohas_label(y, “has-reaction’)
O incident_from(e, m) Oincident_to(e, s))]

Asserts that reaction r is
assigned to modeling element m.

Of Os [flux(f) Ospecies(s) Otransports_species(f, s)
species_flux(f, s) O (convective_flux(f)
O [k (modeled_unit(u) O from(f, u)
O ((blackbox_unit(u) O has_species(u, s))
O On (material_content(m) O has_material_content(u;, m)
O ((has_geometry(m, g) Oallocated_to(m, g, f) O has_species(m, s))
O (phase(p) Ohas_phase(m, p) Oallocated_to(m, p, f)
O has_species(p, 5))))))]

Asserts that a flux transports a
species if i) it is a corresponding
species flux, ii) it is a convective

flux from a blackbox unit that
has the species, iii) it is allocated

to the geometry of a material-
content that has the species, or

iv) it is allocated to a phase that

has the species.

The following declarations will be used to illustrate use of these operators:

VESSEL_MATL_L is-a liquid phase
has-species WATER

has-species o XYLENE

103

has-species PHTHALIC_ANHYDRIDE
has-species OXYGEN
has-reaction RXN_101

Examples of assertions that may be made from these declarations using the operators in Table 4-9
include: species_element(VESSEL_MATL_L) has_species(VESSEL_MATL_L, WATER), and

has_reaction(VESSEL_MATL L, RXN_101).

4.3.6 Mechanistic Characterization

The mechanistic characterization of a phenomena-based model identifies the transport
mechanisms of fluxes, thermodynamic characterizations of phases, and kinetic rate laws of
reactions. Transport mechanisms, equations of state, and activity coefficient models are identified
by the semantic relationship is-modeled-by. Kinetic rate laws are identified by semantic
relationships has-forward-kinetics and has-reverse-kinetics. Operators that allow analysis of such
mechanistic characterizations are listed in Table 4-10.

The following declarations will be used to illustrate use of these operators:

VESSEL_MATL_V is-a vapor phase

has-equation-of-state ideal-gas

Examples of assertions that may be made from these declarations using the operators in Table

4-10 include: equation_of _state(ideal-gas) and has_equation_of _state(NESSEL_MATL_V, ideal-

gas).

104

Table 4-10: Mechanistic Characterization Analysis Operators

Operator

Actions

Om [transport_mechanism(m)
vertex(m) O has_label(m, “transport-mechanism *”)
OOf Tk (flux(f) Oedge(e) O has_label(e, “is-modeled-by”)
UOincident_from(e, f) Oincident_to(e, m)]

Identifies m is a
transport
mechanism.

Of Om [has_transport_mechanism(f, m)
Sflux(f) Otransport_mechanism(m) O [k (edge(e)
Ohas_label(e, “is-modeled-by”) U incident_from(e, f) O incident_to(e, m)]

Asserts that flux f
has transport
mechanism m.

Os [equation_of _state(s)
vertex(s) O has_label(s, “equation-of-state *”)
Op Ck ((phase(p) O convective_flux(p)) Oedge(e)
O has_label(e, “is-modeled-by”) Oincident_from(e, p) Oincident_to(e, s)]

Identifies s is an
equation of state.

Op Us [has_equation_of _state(p, s)
(phase(p) O convective_flux(p)) O equation_of _state(s) U [k (edge(e)
O has_label(e, “is-modeled-by”)0 incident_from(e, f) O incident_to(e, s)]

Asserts that phase or
convective flux p
has equation-of-state
e.

Oa [activity_coefficient_model(a)
vertex(a) O has_label(a, “activity-coefficient-model *”)
Op Ck (phase(p) Oedge(e) Ohas_label(e, “is-modeled-by’)
UOincident_from(e, p) Oincident_to(e, a)]

Identifies a is an
activity coefficient
model.

Op Oa [has_activity_coefficient_model(p, a)
phase(p) Oactivity_coefficient_model(a) 0 [k (edge(e)
Ohas_label(e, “is-modeled-by”) Oincident_from(e,) Oincident_to(e, a)]

Asserts that phase p
has activity
coefficient model a.

Ok [forward_rate_law(k)

equation(k) O r [k (reaction(p) O edge(e)
Ohas_label(e, “has-forward-kinetics”) Uincident_from(e, r) Oincident_to(e, k)]

Identifies k is a
forward kinetic rate
law for a reaction.

Or Ok [has_forward_rate_law(r, k)
reaction(r) U forward_rate_law(k) O [k (edge(e)
Ohas_label(e, “has-forward-kinetics”) Oincident_from(e, r) Oincident_to(e, k)]

Asserts that reaction
r forward kinetic
rate law k.

Lk [reverse_rate_law(k)

equation(k) O r [k (reaction(p) O edge(e)
Ohas_label(e, “has-reverse-kinetics”) Uincident_from(e, r) Oincident_to(e, k)]

Identifies k is a
reverse Kinetic rate
law for a reaction.

Or Ok has_reverse_rate_law(r, k)

reaction(r) Oreverse_rate_law(k) [[k (edge(e)
Ohas_label(e, “has-reverse-kinetics”) Oincident_from(e, r) Oincident_to(e, k)]

Asserts that reaction
r reverse Kinetic rate
law k.

105

4.4 Model Construction Operators

The model analysis operators defined in the previous section allow high-level assertions to be
made regarding a phenomena-based model by examining the state of the underlying model
digraph. These declarative operators abstract the details of the underlying representation, and
provide the basis for knowledge-level analysis of a phenomena-based model. In a similar manner,
it is intuitive to characterize the procedural development of a phenomena-based model as a
sequence of hierarchical tasks (e.g., refine modeled-unit, characterize phase behavior, define
material geometry, etc.), instead of elementary graph operations. In this section, the tasks
comprising the modeling activity that dictate the creation and specification of the phenomena-
based model are characterized as procedural operators. These procedural operators differ from
the declarative analysis operators defined in the previous section because, when activated, they
change the state of the phenomena-based model by modifying the underlying model digraph.
These operators are initiated by their preconditions and decisions made by the modeler based on
the context of a given engineering problems. In response to these decisions, the operators change
the state of the model digraph to automatically generate the underlying MODEL.LA language-
based description of the model.

Once deployed in a computer-aided environment, these operators can enable a computer
to help the modeler define the model interactively and gradually, provide feedback on the validity
of assumptions, capture the rationale of decisions made, and provide an explicit record of the
modeling activity. Furthermore, these operators can provide a basis for defining high-level
supervisory logic operators that integrate context-dependent modeling knowledge that guides the

modeling activity based on the goals of an engineering problem.

4.4.1 Modeling Elements

When a new instance of a modeling element in a phenomena-based model is declared, a new
vertex labeled with the unique name of the element is added to the model digraph. A new edge
labeled “is-a” is then added to the digraph that is incident from the modeling element vertex and
incident to a new vertex labeled with a string representing the type (e.g., “flux”) of the modeling
element. Figure 4-2 illustrates an example of a new modeled-unit modeling element named

“Jacket” added to a model digraph.

106

+ is-a

modeled-unit

Figure 4-2: New M odeled-Unit Declaration

Several procedural operators that create new instances of modeling elements, which are

represented by graph vertices with “is-a” edges incident from them, are defined in Table 4-11.

Table4-11: Modeling Element Declaration Operator s

Operator Actions

Os; Os, [string(s;) Ostring(sy) OAdd_model_element(s;, s5)
0
Add_new_vertex_pair_and_edge(“is-a”, s;, 2]
Us [string(s) OAdd_modeled_unit(s)
0
Add_model_element(s, “modeled-unit”)]
Os [string(s) OAdd_flux(s)
O Adds a new flux named s to the model digraph.
Add_model_element(s, “flux)]
Os [string(s) OAdd_reaction(s)
0
Add_model_element(s, “reaction”)]
Us [string(s) OAdd_species(s)
0
Add_model_element(s, “species™)]
Os [string(s) OAdd_material_content(s)
0
Add_model_element(s, “material-content”)]
Us [string(s) OAdd_vapor_phase(s)
0
Add_model_element(s, “vapor phase’)]
Os [string(s) OAdd_liquid_phase(s)
0
Add_model_element(s, “liquid phase”)]
Os [string(s) OAdd_solid_phase(s)
0
Add_model_element(s, “solid phase”)]

Creates modeling element of type s;, adds it to
the model digraph and labels it with name s,

Adds a new modeled-unit named s to the model
digraph.

Adds a new reaction named s to the model
digraph.

Adds a new species named s to the model
digraph.

Adds a new material-content named s to the
model digraph.

Adds a new vapor phase named s to the model
digraph.

Adds a new liquid phase named s to the model
digraph.

Adds a new solid phase named s to the model
digraph.

The operators in Table 4-11 simply add new instances of modeling elements to the phenomena-
based model. To fully define the model, additional operators that introduce semantic relationships

that characterize and interrelate these modeling elements must be defined.

107

4.4.2 Topological Characterization

When a flux is declared to occur between two modeled-units, semantic relationships to and from
identifying the sink and source modeled-unit must be added to the specification of the flux, along
with semantic relationship transports identifying the type of transport. Furthermore, semantic
relationship has-convective-input, has-energy-input, or has-species-input identifying the flux must be
added to the specification of the sink modeled-unit, and semantic relationship has-convective-
output, has-energy-output, or has-species-output identifying the flux must be added to the

specification of the source modeled-unit. The following declarations:

INPUT-OUTPUT-PLANT is-a modeled-unit
has-internal-unit REACTION-SECTION
has-internal-unit SEPARATION-SECTION

REACTION-SECTION is-a modeled-unit
is-internal-unit-of INPUT-OUTPUT-PLANT

SEPARATION-SECTION is-a modeled-unit
is-internal-unit-of INPUT-OUTPUT-PLANT

Source is-a modeled-unit

Sink is-a modeled-unit

are illustrated in the conceptual flowsheet shown in Figure 4-3.

/ Input-Output-Plant \

Reaction- Separation-

(o] . . (o]
Source Section Section Sink

o /

Figure 4-3: Declaration of Topological Structure

If a convective liquid effluent flux is declared between the Reaction-Section and the Separation-
Section, as illustrated in Figure 4-4, the modeling element representing the flux is first created,

resulting in declaration:

108

effluent

is-a flux

-

Input-Output-Plant \

Reaction-

o Section

Source

> Separation-

. (o]
effluent Section Sink

o

/

Figure 4-4: Declaration of Internal Flux

The relevant modeling elements are then modified as follows to reflect the connectivity of the

flux:

REACTION-SECTION

SEPARATION-SECTION

effluent

is-a modeled-unit
is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-output effluent

is-a modeled-unit
is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-input effluent

is-a flux

transports material liquid
from REACTION-SECTION
to SEPARATION-SECTION

In addition, when the flux crosses the boundary of any ancestor of the sink or source modeled-

unit, the appropriate modifications must be made to the specifications of the ancestor modeled-

units. For example, If a convective liquid raw-materials flux is declared between the Source and

the REACTION-SECTION, as illustrated in Figure 4-5, the resulting declarations are as follows:

INPUT-OUTPUT-PLANT

REACTION-SECTION

is-a modeled-unit
has-internal-unit REACTION-SECTION
has-internal-unit SEPARATION-SECTION

has-convective-input raw-materials

is-a modeled-unit

109

is-internal-unit-of INPUT-OUTPUT-PLANT
has-convective-output effluent

has-convective-input raw-materials

Source is-a modeled-unit

has-convective-output raw-materials

effluent is-a flux
transports material liquid
from Source
to REACTION-SECTION

/ Input-Output-Plant \

raw-materials Reaction 3 ration
o > Section > eSp:cﬁolﬁ o
Source effluent Sink

o /

Figure 4-5: Declaration of Multi-L evel Flux

In this manner, the topological structure declaration operators, listed in Table 4-12, represent
high-level modeling tasks (e.g., Add_convective_flux) that abstract the details which refine the
state of the model, establish necessary semantic relationships, and enforce topological model

consistency.

110

Table 4-12: Topological Structure Declaration Operators

Operator

Actions

Om; Omy Of [modeled_unit(m;) O modeled_unit(my) O flux(f)

OAdd_convective_flux(m;, my, f)

0

Av(vertex(v)),

Add_vertex(v, “material”),

Add_new_edge(f, v, “transports”),

Add_new_complementary_edges(m;, f, “has-convective-output”, “‘from”),

Add_new_complementary_edges(my, f, “has-convective-input”, “to”),

Oa [modeled_unit(a) O has_ancestor(m;, a) O = has_ancestor(m,, a)
O Add_new_edge(a, f, “has-convective-input™)],

Oa [modeled_unit(a) O has_ancestor(my, a) 0= has_ancestor(m;, a)
O Add_new_edge(a, f, “has-convective-output’)]]

Specifies convective
flux f from modeled-
unit m; to modeled-
unit m,.

Adds input flux to
ancestors of m; where
appropriate.

Adds output flux to
ancestors of m, where
appropriate.

Om; Omy Of [modeled_unit(m;) O modeled_unit(my) O flux(f)

OAdd_energy_flux(m;, my, f)

0

Av(vertex(v)),

Add_vertex(v, “energy”),

Add_new_edge(f, v, “transports”),

Add_new_complementary_edges(m,, f, “has-energy-output”, “from”),

Add_new_complementary_edges(my, f, “has-energy-input”’, “to”)

Oa [modeled_unit(a) O has_ancestor(m;, a) 0= has_ancestor(m,, a)
O Add_new_edge(a, f, “has-energy-input”)],

Oa [modeled_unit(a) O has_ancestor(m,, a) 0= has_ancestor(m;, a)
O Add_new_edge(a, f, “has-energy-output’)]]

Specifies energy flux f
from modeled-unit m;
to modeled-unit m,.
Adds input flux to
ancestors of m; where
appropriate.

Adds output flux to
ancestors of m, where
appropriate.

Om; Omy, OF Os [modeled_unit(m;) O modeled_unit(m,) O flux(f) O species(s)

OAdd_species_flux(m;, my, f, s)

0

Av(vertex(v)),

At(string(1)),

t:= “species” + label(s),

Add_vertex(v, t),

Add_new_edge(f, v, “transports”),

Add_new_complementary_edges(m;, f, “has-species-output”, ‘from”),

Add_new_complementary_edges(my, f, “has-species-input”, “to”),

Oa [modeled_unit(a) O has_ancestor(m;, a) 0= has_ancestor(m,, a)
O Add_new_edge(a, f, “has-species-input”)],

Oa [modeled_unit(a) O has_ancestor(my, a) 0= has_ancestor(m;, a)
O Add_new_edge(a, f, “has-species-output”)]]

Specifies species s flux
f from modeled-unit
m; to modeled-unit
my.

Adds input flux to
ancestors of m; where
appropriate.

Adds output flux to
ancestors of m, where
appropriate.

Om Op Of [material_content(m) Oallocated_element(p) O flux(f)
OAllocate_flux(m, p, f)
O
Add_new_edge(m, f, “has-boundary-flux”),
Add_new_edge(f, p, “allocated-to0)]

Allocates boundary flux f
of material-content m to
modeling element p.

111

4.4.3 Chemical Content

The assumption that a chemical species is present in a modeled-unit, material-content, or phase in
a phenomena-based model requires that the semantic relationship has-species identifying the
species be added to the specification of the corresponding modeling element. Similarly, the
assumption that a chemical reaction is present in a modeled-unit or phase requires that the
semantic relationship has-reaction identifying the reaction be added to the specification of the
corresponding modeled-unit or phase. Additionally, for consistency, when a species is declared to
be present in a phase, is must also be present in the associated material-content, the modeled-unit
containing the material-content, and all ancestors of the modeled-unit. This is required so that the
phenomena-based model, viewed at any level of detail, will be consistent with all other levels. A
similar hierarchical consistency is required for the declaration of chemical reactions. Chemical
content declaration operators that make these desired modifications are listed in Table 4-13.

Use of these operators will be illustrated by the following declarations:

SEPARATION_SECTION is-a modeled-unit
has-internal-unit FLASH
has-internal-unit DISTILLATION_TRAIN

FLASH is-a modeled-unit
has-material-content FLASH_MATL

FLASH_MATL is-a material-content
is-material-content-in FLASH
has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL_L

FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL

FLASH MATL L is-a liquid phase
is-phase-in FLASH_MATL

112

Table 4-13: Chemical Content Declaration Operators

Operator

Actions

Om Or [modeled-unit(m) O reaction(r) OAdd_reaction(m, r)
0
Add_new_edge(m, r, “has-reaction”),
Oa [modeled_unit(a) O has_ancestor(m, a) = has_reaction(a, r)
0
Add_reaction(a, r)]]

Adds reaction r to modeled-
unit m.

Adds r to ancestors of m
where appropriate.

Op Or [phase(p) O reaction(r) OAdd_reaction(p, r)
0
Add_new_edge(p, r, “has-reaction”),
Un [[material_content(m) Omodeled_unit(u) U has_phase(m, p)
O has_material_content(u, m) 0= has_reaction(u, r)
0
Add_reaction(u, r)]]

Adds reaction r to phase p.
Adds r to modeled-unit
containing material-content
associated with p when
necessary.

Ou Os [modeled-unit(u) O species(s) O Add_species(u, s)

0

Add_new_edge(u, s, “has-species”),

Oa [modeled_unit(a) O has_ancestor(u, a) O - has_species(a, s)
0
Add_species(a, s)],

Un [material_content(m) O has_material_content(u, m)
O - has_species(m, s)
0
Add_species(m, 5)]]

Adds species s to modeled-
unit m.

Adds s to ancestors of m
where appropriate.

Adds s to material-content of
m if when necessary.

Om Os [material_content(m) O species(s) Add_species(m, s)
0
Add_new_edge(m, s, “has-species”),
[k [modeled_unit(w) O has_material_content(u, m)
O - has_species(u, s)
0
Add_species(u, s)]]

Adds species s to material-
content m.

Adds s to modeled-unit
associated with m where
appropriate..

Op Or [phase(p) Ospecies(s) OAdd_species(m, s)
0
Add_new_edge(p, s, “has-reaction”),
Un [material_content(m) O has_phase(m, p) - has_species(m, s)
0
Add_species(m, 5)]]

Adds species s to phase p.
Adds s to material-content
associated with p when
necessary.

The operation Add_species(FLASH_MATL_V, BENZENE) will result in declarations:

SEPARATION_SECTION is-a modeled-unit

has-internal-unit FLASH

has-internal-unit DISTILLATION_TRAIN

has-species BENZENE

FLASH is-a modeled-unit

113

has-material-content FLASH_MATL
has-species BENZENE

FLASH_MATL is-a material-content
is-material-content-in FLASH
has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL_L
has-species BENZENE

FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL
has-species BENZENE

FLASH MATL L is-a liquid phase
is-phase-in FLASH_MATL

For consistency, note that not only is the specification of FLASH_MATL_V modified, but also the
specifications of FLASH_MATL, FLASH, and SEPARATION_SECTION. However, after application
of these operators, inconsistencies may still be present. For example, the operation
Add_species(FLASH, TOLUENE) would leave the model inconsistent, as no phase in the material-
content would contain the species TOLUENE. An additional declaration would be required by the
modeler that made such an assignment. If it were not made, such an inconsistency would be

detected by a model inconsistency operator, as defined in the subsequent section.

4.4.4 Hierarchical Characterization

The decomposition of a composite modeled-unit into a set of more refined modeled-units, or the
aggregation of a set of modeled-units into an abstract modeled-unit, requires that complementary
semantic relationships has-internal-unit and is-internal-unit-of identifying the necessary interrelations
be added to the specifications of the corresponding modeled-units. Additionally, for consistency,
all species and reactions in the subunits must also be present in the abstract composite unit. Any
non-internal fluxes crossing the boundary of the abstract unit must also added to the specification
of the composite unit. Hierarchical structure characterization operators that make these desired

modifications are listed in Table 4-14.

114

Table 4-14: Hierarchical Structure Characterization Operators

Operator

Actions

Op Us [modeled_unit(p) O modeled_unit(s) O Add_subunit(p. s)
0
Add_new_complementary_edges
p, s, “has-internal-unit”’, “is-internal-unit-of”),

Oa [has_species(s, a) O—has_species(p, a)

O Add_species(p, a)]
Or [has_reaction(s, r) O - has_reaction(p, r)

O Add_reaction(p, r)]]

Specifies s is a
subunit of modeled-
unit p.

Adds species in s to p
when necessary.
Adds reactions in s to
p when necessary.

Op Os; Os; ...Osy [modeled_unit(p) O modeled_unit(s;)
O modeled_unit(s,) O ... Omodeled_unit(sy)
OAbstract_subunits(p, s, S2,..., SN)
O
S={s/, 25..0, SN},
Om[m OS8O Add_subunit(p, m)],
Of Om [flux(f) Om O S Ohas_input(m,) 0= Th(n O S O has_output(n, f))
O
convective_flux(f)
O Add_new_edge(m, f, “has-convective-input”),
energy_flux(f)
O Add_new_edge(m, f, “has-energy-input”),
species_flux(f)
O Add_new_edge(m, f, “has-species-input”)]
Of Om [flux(f) Om O S Ohas_output(m, f) 0= Th(n O S Ohas_input(n, f))
O
convective_flux(f)
O Add_new_edge(m, f, “has-convective-output™),
energy_flux(f)
O Add_new_edge(m, f, “has-energy-output™),
species_flux(f)
O Add_new_edge(m, f, “has-species-output’)]]

Activates previous
operator to add set of
subunits to parent
unit.

Identifies fluxes
entering abstract
parent system.
Identifies fluxes
leaving abstract
parent system.

Op Us [distributed_unit(p) Omodeled_unit(s)
UAdd_differential_subunit(p. s)
0
Add_new_complementary_edges
(p, s, “has-differential-subunit”’, “‘is-internal-unit-of”),

Oa [has_species(s, a) O—has_species(p, a)

O Add_species(p, a)]
Or [has_reaction(s, r) O - has_reaction(p, r)

O Add_reaction(p, r)]]

Specifies s is a
differential subunit of
spatially distributed
modeled-unit p.

Adds species in s to p
when necessary.
Adds reactions in s to
p when necessary.

115

-

raw-materials Reaction
>

° Section

Source

recycle

> Separation- products

o

effluent Section Sink

/

Figure 4-6: Hierarchical Structure Characterization Example

Use of these operators will be illustrated by the following declarations, which are

illustrated in Figure 4-6:

REACTION-SECTION

SEPARATION_SECTION

The operations

is-a modeled-unit
has-convective-input raw-materials
has-convective-input recycle
has-convective-output effluent
has-reaction RXN_101
has-species A

has-species B

has-species C

is-a modeled-unit
has-convective-input effluent
has-convective-output products
has-convective-output recycle
has-species A

has-species B

has-species C

Add_modeled_unit(“INPUT-OUTPUT-PLANT”) and Abstract_subunits(INPUT-

OUTPUT-PLANT, REACTION-SECTION, SEPARATION-SECTION) will result in following

declarations, illustrated in Figure 4-7:

INPUT-OUTPUT-PLANT

is-a modeled-unit
has-internal-unit REACTION-SECTION
has-internal-unit SEPARATION-SECTION

has-convective-input raw-materials

116

has-convective-output product
has-reaction RXN_101
has-species A

has-species B

has-species C

REACTION-SECTION is-a modeled-unit
is-internal-unit-of INPUT-OUTPUT-PLANT
has-convective-input raw-materials
has-convective-input recycle
has-convective-output effluent
has-reaction RXN_101
has-species A
has-species B

has-species C

SEPARATION-SECTION is-a modeled-unit
is-internal-unit-of INPUT-OUTPUT-PLANT
has-convective-input effluent
has-convective-output products
has-convective-output recycle
has-species A
has-species B

has-species C

/ Input-Output-Plant \

* recycle
raw-materials _ '
5| Reaction- Separation- products
Source effluent Sink

o /

Figure 4-7: Hierarchical Abstraction Example

Whenever possible, the modeling operators propagate assumptions throughout the hierarchical
structure of the phenomena-based model. When modeled-units are aggregated into an abstract

composite system, a consistent representation may be made automatically. However, when a

117

modeled-unit is dissagregated into a set of modeled-units, additional declarations are required by

the modeler that allocate the species, reactions, and fluxes of the abstract unit to its subunits.

445 Material Characterization

When a material-content is associated with a modeled-unit, the complementary semantic
relationships has-material-content and is-material-content-of interrelating the modeled-units must be
added to the corresponding specifications. Additional assignments of chemical species and
boundary fluxes may also be made for consistency. When a phase is associated with a material-
content, the semantic relationship has-vapor-phase, has-liquid-phase, or has-solid-phase identifying
the phase must be added to the specification of the material-content, and the semantic relationship
is-phase-in identifying the material-content must be added to the specification of the phase.
Additional assignments of chemical species and reactions may also be made for consistency.
Declaration of a vessel geometry for a material-content requires addition of the semantic
relationship has-vessel-geometry identifying the type of geometry to the specification of the
material-content. Material characterization operators that make these desired modifications are
listed in Table 4-15.

Use of these operators will be illustrated by the following declarations:

FLASH is-a modeled-unit
has-species BENZENE
has-species TOLUENE
has-convective-input feed
has-convective-output overhead

has-convective-output bottoms

The operations Add_material_content(“FLASH_MATL”), Add_material_content(FLASH,
FLASH_MATL), Add_vapor_phase(“FLASH_MATL_V”), Add_phase(FLASH_MATL,
FLASH_MATL_V), Add_liquid_phase(“FLASH_MATL_L”), and Add_phase(FLASH_MATL,
FLASH_MATL_L) will result in the following declarations:

118

Table 4-15: Material Characterization Operators

Operator

Actions

Ou Om [modeled_unit(u) Omaterial_content(m)
OAdd_material_content(u, m)
0
Add_new_complementary_edges
(u, m, “has-material-content”, “is-material-content-of”),
Us [has_species(u, s) - has_species(m, s)
0
Add_species(m, s)],
Us [has_species(m, s) 0= has_species(u, s)
0
Add_species(u, s)],
Of [flux(f) O (has_input_flux(u, f) O has_output_flux(u, f))
0
Allocate_flux(m, f, m)]]

Specifies m is material-content
of modeled-unit u.

Adds species in u to m if
necessary.

Adds species in m to u if
necessary.

Adds boundary fluxes of u to m.

Om Op [material_content(m) O phase(p) OAdd_phase(m, p)
0
vapor_phase(p) 0 Add_new_edge(m, p, “has-vapor-phase”),
liquid_phase(p) 1 Add_new_edge(m, p, “has-liquid-phase”),
solid_phase(p) 0 Add_new_edge(m, p, “has-solid-phase”),
Add_new_edge(p, m, “is-phase-in’),
Us [has_species(p, s) - has_species(m, s)
0
Add_species(m, 5)]]
[k [modeled_unit(w) O has_material_content(u, m)
O = has_reaction(u, r)
0
Add_reaction(u, r)]]

Specifies p is phase in material-
content m.

Adds species in p to m if
necessary.

Adds reactions in p to modeled-
unit associated with m if
necessary.

Os Om [string(s) Omaterial_content(m) Add_geometry(m, s)

0
Av(vertex(v)),
label(v) :=s,

Add_new_edge(m, v, “has-vessel-geometry”)]

Specifies geometry of material-
content m.

FLASH is-a modeled-unit
has-species BENZENE
has-species TOLUENE

has-convective-input feed

has-convective-output overhead

has-convective-output bottoms

FLASH_MATL is-a material-content

is-material-content-in FLASH

119

has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL_L
has-boundary-flux feed allocated-to self
has-boundary-flux overhead allocated-to self
has-boundary-flux bottoms allocated-to self
has-species BENZENE

has-species TOLUENE

FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL

FLASH MATL L is-a liquid phase
is-phase-in FLASH_MATL

Note that additional declarations must be made by the modeler allocating the chemical species and

the outgoing convective fluxes to the phases of the material-content.

4.4.6 Mechanistic Characterization

Mechanistic characterizations in a phenomena-based model regarding transport mechanisms of
fluxes and thermodynamic characterizations of phases require that the semantic relationship is-
modeled-by identifying the assumed mechanism be added to the specifications of the corresponding
modeling elements. Kinetic rate laws of reactions require specification of rate equations using
semantic relationships has-forward-kinetics and has-reverse-kinetics. Mechanistic characterization
operators that make these desired modifications are listed in Table 4-16.

Use of these operators will be illustrated by the following declarations:

FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL
has-species BENZENE
has-species TOLUENE

The operation Specify_equation_of _state(FLASH_MATL_V, “redlich-kwong”) will result in the

following declarations:

FLASH_MATL_V is-a vapor phase
is-phase-in FLASH_MATL
has-species BENZENE

120

has-species TOLUENE

is-modeled-by equation-of-state redlich-kwong

Table 4-16: Mechanistic Characterization Operators

Operator Actions
Of Os [flux(f) Ostring(s) O Specify_mechanism(f, s)
O
Av(ve{’tex(v)), Specifies transport mechanism of flux
At(string(1)), f

t := “transport-mechanism” + s,
Add_vertex(v, t),
Add_new_edge(f, v, “is-modeled-by”)]

Op Os [(phase(p) O convective_flux(p)) O string(s)
O Specify_equation_of_state(p, s)
O
Av(vertex(v)),
At(string(1)),
t := “equation-of-state ” + s,
Add_vertex(v, t),
Add_new_edge(f, v, “is-modeled-by”)]

Specifies equation of state for phase
or convective flux p.

Op Us [phase(p) O string(s) O Specify_activity_coefficient_model(p, s)
O
Av(vertex(v)),
At(string(1)),
t := “activity-coefficient-model ” + s,
Add_vertex(v, t),
Add_new_edge(f, v, “is-modeled-by”)]

Specifies activity coefficient model of
phase p.

Or Oe [reaction(r) O equation(e) U Specify_forward_kinetics(r, e) [

Specifies forward kinetic rate law of

Add_new_edge(r, e, “has-forward-kinetics)] reaction r.
Or Ue [reaction(r) O equation(e) U Specify_reverse_kinetics(r,) [Specifies reverse kinetic rate law of
reaction r.

Add_new_edge(r, e, “has-reverse-kinetics”)]

4.4.7 Behavioral Characterization

Behavioral characterizations of modeled-units and materials in a phenomena-based model require

that the semantic relationship is-modeled-as identifying the assumed behavior be added to the

specifications of the corresponding modeling elements. Behavioral characterization operators that

make these desired modifications are listed in Table 4-17.

Use of these operators will be illustrated by the following declarations:

FLASH_MATL is-a material-content

is-material-content-in FLASH

121

has-vapor-phase FLASH_MATL_V
has-liquid-phase FLASH_MATL_L

The operation Specify_behavior(FLASH_MATL, “constant-pressure’”) will result in the following

declarations:
FLASH_MATL is-a material-content

is-material-content-in FLASH
has-vapor-phase FLASH_MATL_V
has-vapor-phase FLASH_MATL_L
is-modeled-as constant-pressure

Table 4-17: Behavioral Characterization Operators

Operator Actions

Om Os [modeled_unit(m) O string(s) O Specify_behavior(m, s)
O

Specifies a behavioral assumption for
Av(vertex(v)), modeled-unit m.
Add_vertex(v, s),

Add_new_edge(m, v, “is-modeled-as”)]
Om Os [material_content(m) O string(s) O Specify_behavior(m, s)

N Specifies a behavioral assumption for

Av(vertex(v)), material-content m.
Add_vertex(v, s),

Add_new_edge(m, v, “is-modeled-as”)]

4.5 Model Consistency Operators

Before a mathematical model is derived from the physicochemical description, the consistency of
the phenomena-based model should be verified. An inconsistency is detected when logical
operators make conflicting assertions about the state of the phenomena-based model. For

example, consider the following logical statements:

Ux [A(x) O B(x)]
Ux [C(x) = B(x)]

If, for a given x, A(x) is true and C(x) is false, then a logical inconsistency exists since B(x)

(asserted by the first implication) and - B(x) (asserted by the second if-and-only-if implication)

122

cannot be true simultaneously.

The most readily ascertained inconsistencies in a phenomena-based model description
involve the hierarchical and topological allocation of fluxes, chemical species, and chemical
reactions in the model. In this section, operators that express necessary conditions for the state of
a phenomena-based model will be described. When these operators make assertions that conflict
with the hierarchical structure, topological structure, material-content, and chemical content
analysis operators defined in an earlier section, the existence of modeling inconsistencies is
detected. In a computer-aided environment, these operators may be used to provide feedback to
the modeler on the consistency of the phenomena-based model description, and possible
alternatives to resolve the problem. As an extension, additional operators may be defined that
invoke “chemical engineering judgement” for reviewing model simulation results in order to

evaluate and critique mechanistic assumptions made during model development.

4.5.1 Hierarchical Consistency

The hierarchical structure of a phenomena-based model allows the model to be viewed at multiple
levels of detail, where composite systems may be viewed as abstract control volumes or as
aggregates of more refined control volumes. For conservation principles to be expressed
consistently among the varying levels of detail, certain conditions must be true. Several rules for
the hierarchical consistency of a phenomena-based model are listed in Table 4-18. These
operators are applied iteratively throughout the hierarchical tree of modeled-units, ensuring
consistency among all levels of modeling detail.

The first operator in Table 4-18 states that any chemical species assumed to be present in
an composite parent unit must also be assumed to be present at least one subunit of the parent.
Conversely, the second operator states that any chemical species assumed to be present in a
subunit must also be present in the parent unit. Essentially, these operators state that the set of
species assumed for the parent unit must equal the union of the sets of species assumed for each

of the subunits, or

s= s,

subunits

where

1. §is the set of species assumed to be present in the composite unit, and

123

2. S;is the set of species assumed to be present in the i subunit of the composite
unit.

Similarly, in the case of chemical reactions, the third and fourth operators state that

R= |Jr,

subunits
where
1. R is the set of reactions assumed to occur in the composite unit, and
2. R;is the set of reactions assumed to occur in the i subunit of the composite unit.
These rules enforce that consistent conservation equations are derived, regardless of the level of
abstraction or refinement.

The fifth and sixth operators in Table 4-18 state that any flux entering (or leaving) the
boundary of a composite unit must enter (or leave) the boundary of one of the subunits of the
composite unit. Conversely, the seventh and eighth operators state that any flux entering (or
leaving) the boundary of a subunit of a composite unit that does not leave (or enter) the boundary
of another subunit of the composite unit (i.e., it is not an internal flux) must enter (or leave) the
boundary of the composite unit. The final related operator states that any internal flux between

two subunits of a composite unit cannot be a boundary flux of the composite unit. Essentially,

in in in out

F=HUFR B EUR B HUR
subunits subunits subunits

out _— out out in

F =qUF, F e g UF,

subunits subunits subunits

1. F"is the set of fluxes assumed to enter the boundaries of the composite unit,

these rules state that

and

where

2. F”is the set of fluxes assumed to leave the boundaries of the composite unit,

3. F/™ is the set of fluxes assumed to enter the boundaries of the /" subunit of the
composite unit, and

4. F™ is the set of fluxes assumed to leave the boundaries of the i subunit of the
composite unit.

These rules enforce that the net flux of a conserved quantity into (or out of) a composite system

124

will equal the sum of the net fluxes of the conserved quantity into (or out of) each of its subunits.
If a phenomena-based model were to be viewed as a static entity, these hierarchical
consistency operators might seem irrelevant, since this abstraction is a many-to-one mapping that
can be automated. For example, why maintain the species and reaction assignment assumptions
for the parent unit separately, when they may be inferred as needed from the species and reaction
assignment assumptions for the subunits? Similarly, why maintain the boundary flux assumptions
when they may similarly be inferred from the boundary fluxes of the subunits? However, model
development is in fact an evolutionary process. During hierarchical model development of a
complex process, modelers can readily overlook these details, neglecting to carry over
assumptions (such as the presence of species and reactions) from one level to the next refined
level. By tracking and maintaining these assumptions at each level independently, such oversights

may be detected and pointed out to the modeler for rectification.

125

Table 4-18: Hierarchical Consistency Operators

Operator

Actions

Om Os [modeled_unit(m) O species(s) [has_species(m, s)
O has_subunits(m)
O

Ux(has_subunit(m, x) O has_species(x, 5))]

Verifies that all species assigned to a
parent unit are also assigned to at least
one subunit of the parent unit.

Om Op Os [modeled_unit(m) O modeled_unit(p) O species(s)
O has_subunit(p, m) O has_species(m, s)
0
has_species(p, 5)]

Verifies that all species assigned to any
subunit of a parent unit are also
assigned to the parent unit.

Om Or [modeled_unit(m) O reaction(r) O has_reaction(m, r)
O has_subunits(m)
O

Ci(has_subunit(m, x) has_reaction(x, r))]

Verifies that all reaction assigned to a
parent unit are also assigned to at least
one subunit of the parent unit.

Om Op Or [modeled_unit(m) O modeled_unit(p) O reaction(r)
O has_subunit(p, m) O has_reaction(m, r)
0
has_reaction(p, r)]

Verifies that all reactions assigned to
any subunit of a parent unit are also
assigned to the parent unit.

Om Of [modeled_unit(m) O flux(f) O has_input_flux(m, f)
O has_subunits(m)
O
Uk (has_subunit(m, s) O has_input_flux(s, f))]

Verifies that any flux to a parent unit is
also a flux to a subunit of the parent
unit.

Om Of [modeled_unit(m) O flux(f) O has_output_flux(m, f)
O has_subunits(m)
O
Uk (has_subunit(m, s) O has_output_flux(s, f))]

Verifies that any flux from a parent
unit is also a flux from a subunit of the
parent unit.

Of Os Om Op [flux(f) Omodeled_unit(s) U modeled_unit(m)
Omodeled_unit(p) O from(f, s) Oto(f, m) O has_subunit(p, s)
O = has_subunit(p, m)
O
has_output_flux(p, /)]

Verifies that any flux from a subunit of
a parent unit to a unit that is not a
subunit of the parent unit is also a flux
from the parent unit.

Of Os Om Op [flux(f) Omodeled_unit(s) U modeled_unit(m)
Omodeled_unit(p) O from(f, m) Oto(f, s) O has_subunit(p, s)
O = has_subunit(p, m)
O
has_input_flux(p, f)]

Verifies that any flux to a subunit of a
parent unit to a unit that is not a
subunit of the parent unit is also a flux
to the parent unit.

Of Op Os; Os, [flux(f) O modeled_unit(p) O modeled_unit(s;)
Omodeled_unit(s;) O from(f, s;) Oto(f, s2)
O has_subunit(p, s;) O has_subunit(p, s;)
O

=has_input_flux(p,) 3 has_output_flux(p,)]

Verifies that any flux between two
subunits of a parent unit is not a flux to
or from the parent unit.

126

452 Material Characterization Consistency

The conditions for consistency of the material characterization of a phenomena-based model are
related to those for hierarchical consistency. The associated rules are listed in Table 4-19.

The first two operators in Table 4-19 states that any chemical species assumed to be
present in an material unit (i.e., a modeled-unit with a material-content) must also be present in its
material-content and that, conversely, and chemical species assumed to be present in the material-
content must also be present in the associated modeled-unit. Essentially, these operators state
that

§=S
where
1. S"is the set of species assumed to be present in the material unit, and
2. S is the set of species assumed to be present in material-content of the material

unit.

The third operator in Table 4-19 states that any chemical species assumed to be present in an
material-content must also be assumed to be present at least one phase of the material-content.
Conversely, the second operator states that any chemical species assumed to be present in a phase

must also be present in the material-content. Essentially, these operators state that

s= s,

phases
where
1. §is the set of species assumed to be present in the material-content, and
2. S; is the set of species assumed to be present in the i phase of the material-
content.

Similarly, in the case of chemical reactions, the fifth and sixth operators state that

R= R,

phases
where
1. R is the set of reactions assumed to occur in the modeled-unit associated with the
material-content, and

2. R;is the set of reactions assumed to occur in the i phase of the material-content.

127

The seventh and eighth operators state that any flux entering or leaving the boundaries of a
material unit must be a boundary flux of its material-content. Essentially,
B=F"0F"

where

1. B is the set of boundary fluxes of a material-content,

2. F"is the set of fluxes assumed to enter the boundaries of the associated modeled-

unit, and

3. F’is the set of fluxes assumed to leave the boundaries of the associated modeled-

unit.

The above material characterization consistency operators may be viewed as extensions to the
hierarchical consistency operators, where a material-content is viewed as the single subsystem of
the modeled-unit, and the phases are viewed as subsystems of the material-content.

The final two rules in Table 4-19 require that convective or species boundary fluxes
leaving a material-content must either be “allocated” as leaving a particular phase of the material-
content, or this allocation must be determined from an associated vessel geometry and the port
position of the flux relative to the geometry. For example, a convective flux leaving a vapor-
liquid equilibrium system must be allocated to the vapor or liquid phase, determining the state of
the material transported by the convective flux. Since conservation equations will be derived for
the overall modeled-unit, and not the individual phases, the fluxes between the phases of a
material-content are not modeled. Therefore, all energy fluxes, and convective and species fluxes
entering a material-content, do not need to be allocated to a particular phase. This method of
model derivation is possible since phases in a material-content are by definition assumed to be in
thermodynamic equilibrium. Deriving conservation equations in this manner also avoids the
generation of high-index DAE models (that are difficult in initialize consistently for numerical

solution) associated with dynamic models of equilibrium systems (Ponton and Gawthrop, 1991).

128

Table 4-19: Material Characterization Consistency Operators

Operator

Actions

Ou Om Os [modeled_unit(u) Omaterial_content(m) U species(s)
O has_material_content(u, m) O has_species(u, s)
O has_species(m, s)]

Verifies that any species assigned to a
material unit is also assigned to the
associated material-content.

Ou Om Os [modeled_unit(u) Omaterial_content(m) U species(s)
O has_material_content(u, m) O has_species(m, s)
O has_species(u, s)]

Verifies that any species assigned to a
material-content is also assigned to the
associated material unit.

Om UOs [material_content(m) O species(s) O has_species(m, s)
O
[Cp(phase(p) O has_phase(m, p) O has_species(p, s))]

Verifies that any species assigned to a
material-content is also assigned to at
least one phase of the material-content.

Op Os Om [phase(p) O species(s) Omaterial_content(m)
O has_species(p, s) O has_phase(m, p)
O has_species(m, s)]

Verifies that any species assigned to a
phase is also assigned to the associated
material-content.

Ou Om Or [modeled_unit(u) Omaterial_content(m) O reaction(r)
O has_material_content(u, m) O has_reaction(m, r)
O
[Cp(phase(p) O has_phase(m, p) O has_reaction(p, r))]

Verifies that any reaction assigned to a
material unit is also assigned to at least
one phase of the associated material-
content.

Op Or Om Ou [phase(p) O reaction(r) O material_content(m)
O has_reaction(p, r) O has_phase(m, p)
O modeled_unit(u) O has_material_content(u, m)
O has_reaction(u, s)]

Verifies that any reaction assigned to a
phase is also assigned to modeled-unit of
the associated material-content.

Ou Om Of [modeled_unit(u) Omaterial_content(m) O flux(f)
O has_boundary_flux(u, f)
0
has_boundary_flux(m, f)]

Verifies that any boundary flux of a
material unit is a boundary flux of the
associated material-content.

Ou Om Of [modeled_unit(u) Omaterial_content(m) O flux (f)
O has_boundary_flux(m, f)
0
has_boundary_flux(u, f)]

Verifies that any boundary flux of a
material-content is a boundary flux of the
associated material unit.

Ou Om Of [modeled_unit(u) Omaterial_content(m) O flux (f)

O has_material_content(u, f) O has_convective_output(u, f)

O

Cp(phase(p) O has_phase(m, p) Oallocated_to(m, p, f))
O Cg(geometry(g) O has_geometry(m, g)
Oallocated_to(m, g, f))]

Verifies that any convective flux from a
material unit is allocated to a phase or
the geometry of the associated material-
content.

Ou Om Of [modeled_unit(u) Omaterial_content(m) O flux (f)
O has_material_content(u, f) O has_species_input(u, f)
O
Cp(phase(p) O has_phase(m, p) Oallocated_to(m, p, f))
O Cg(geometry(g) Ohas_geometry(m, g)
Oallocated_to(m, g, f))]

Verifies that any species flux from a
material unit is allocated to a phase or
the geometry of the associated material-
content.

4.5.3 Species Topology Rules

In sequential modular flowsheet simulators, the common paradigm for declaring relevant chemical

species is to assume a flowsheet wide basis. In other words, a set of chemical species is declared

129

for the entire flowsheet, and these species are assumed to occur in every system is the flowsheet.
Therefore, trivial balance equations are calculated for those species that are not present (i.e., the
flow rates of the species in all streams connected to the unit is zero). In an equation-based model,
however, such an assumption would unnecessarily increase the number of and complexity of the
model equations, making subsequent structural analysis and numerical solution less robust and
more time consuming. Furthermore, the inclusion of trivial equations often leads to numerical
singularities during solution. To avoid these difficulties, the MODEL.LA modeling language
allows a finer allocation of chemical species to individual modeled-units and even individual
phases within the phenomena-based model. This prevents the derivation of unnecessary model
equations (e.g., balances for species that are not present in a particular modeled-unit) and reduces
the complexity of equations that are derived (e.g., terms representing the contribution of a zero
concentration species to an equation that describes the specific enthalpy of a phase are not
included).

The methodology of localized species allocation does introduce the possibility of
inconsistencies in the phenomena-based model definition. Operators that detect these
inconsistencies are listed in Table 4-20. The first operator state that all species entering a system
due to transport by a flux must appear in that system. For species fluxes, the transported species
is assigned directly. For convective fluxes, the species transported are determined by species
present in the upstream, or source, unit. If the source unit is a blackbox, all species in the
modeled-unit are assumed to be transported by the flux. If the source unit is a material unit and
the flux is allocated to the geometry of the material-content, all species in the material-content are
assumed to be transported by the flux. If the source unit is a material unit and the flux is allocated
to a phase of the material-content, all species in the phase are assumed to be transported by the
flux. The second operator states that for any species flux, the source unit must also contain the
species transported by the flux. The third operator states that any species participating in a
reaction that is assumed to occur in a modeled-unit or phase, must appear in that modeled-unit or
phase. Finally, the last operator is applied for steady-state models only. Since there is no initial
holdup of species considered in the modeled-units of a steady-state model, any species appearing
in a modeled-unit must be transported to the modeled-unit by a flux, or appear there due to a

chemical reaction.

130

Table 4-20: Species Topology Consistency Operators

Operator

Actions

Of Os Om [flux(f) O species(s) O modeled_unit(m)
O has_convective_input(m, f) O transports_species(f, s)
O
has_species(m, s)]

For convective fluxes from a blackbox
source unit, verifies that any species in
the source unit appears in the sink unit.

Of Os Om [flux(f) O species(s) Ospecies_flux(f, s) Omodeled_unit(m)
O has_species_output(m, s)
O
has_species(m, s)]

For species fluxes, verifies that the
transported species appears in the
source unit.

Or Om Os[reaction(r) O reaction_element(m) O species(s)
O has_participant(r, s) O has_reaction(m, r)
0
has_species(m, s)]

Verifies that all participating species in
a reaction that occurs in a modeled-
unit or phase appears in the modeled-
unit or phase.

Os Om [species(s) Omodeled_unit(m) O has_species(m, s)
O
U (flux(f) O transports_species(f, s) O has_input_flux(m, f)

In steady-state models, verifies any
species in a modeled-unit is
transported to the modeled-unit by a

flux, or appears as a product of a

O OF (reaction(r) O has_product(r, s) O has_reaction(m, r)] i .)
reaction assigned to the modeled-unit.

The methodology of localized species allocation does increase the number of declarations
that a modeler must make during model formulation. However, this burden is usually outweighed
by the benefits of reduced computational complexity, memory, and time required during
derivation, analysis, and solution of the resulting model equations. Finally, if localized allocation
does not apply (i.e., all species are assumed to occur in all systems in the process model) a
specification in the derivation context of the phenomena-based model definition may assume the

global species declaration paradigm, thus making localized unit-by-unit allocations unnecessary.

4.6 Model Completeness Operators

In addition to inconsistencies, a phenomena-based model should be checked for model
incompleteness. Various aspects regarding the complete specification of a phenomena-based
model are dictated by the context-free grammar that describes the syntax of the MODEL.LA
modeling language. In the context of the phenomena-based model digraph, these specifications
can expressed as logical operators that convey necessary decisions and assumptions for each of
the modeling elements. Completeness operators also verify that complementary relationships
exist between associated modeling elements. Selected examples of such operators are listed in

Table 4-21.

131

Table 4-21: Model Completeness Operators

Operator

Actions

Op Os [modeled_unit(p) Omodeled_unit(s) O has_subunit(p, s)

<

is_subunit_of(m, u)]

Verifies that the complementary
associations are made for composite
unit and subunits.

Om [distributed_unit(m) O
Uk (coordinate_system(s) 0 has_coordinate_system(m, s))
O U (distributed_dimension(d) O
has_distributed_dimension(m, d))]

Verifies that every distributed unit
has a coordinate system selected with
at least one distributed dimension

UOm [material_content(x)
O
[k (modeled_unit(u) Ois_material_content_of(m, u))
Op (phase(p) O has_phase(m, p))
O Uk (species(s) O has_species(m, s))]

Verifies that every material-content
is associated with a modeled-unit
and has at least one phase and one
chemical species.

Om Ou [material_content(m) O modeled_unit(u)
O has_material_content(u, m)

=S

is_material_content_of(m, u)]

Verifies that the complementary
associations are made for materials
and modeled-units.

Om Op [material_content(m) O phase(p) O has_phase(m, p)

<

is_phase_in(p, m)]

Verifies that the complementary
associations are made for all
materials and phases.

Op [phase(p)
O

Un (material_content(m) Ois_phase_in(p, m))

O Uk (species(s) O has_species(m, s))

O (Ck (equation_of _state(e) U has_equation_of _state(p, e))
O [(activity_coefficient_model(a)

O has_activity_coefficient_model(p, a)))]

Verifies that every phase is
associated with a material-content,
has at least one chemical species,
and is characterized mechanistically.

Of [flux(p)
0
Un (modeled_unit(m) O from(f, m))
M0 m (modeled_unit(m) O to(f, m))
0 ¢ (transport_mechanism(t) O has_transport_mechanism(f, t))

Verifies that every flux has a source
and sink unit, and is characterized
mechanistically.

Of [convective_flux(f)
O
[k (equation_of _state(e) U has_equation_of_state(f, e))

Verifies that the material transported
by every convective flux is
characterized mechanistically.

Of [species_flux(f) O
Uk (species(s) Otransports_species(f, s))]

Verifies that every species flux has a
species associated with it

Of Om [flux(f) Omodeled_unit(m) O to(f, m)

=S

has_input_flux(m, f)]

Verifies that the complementary
associations are made for all input
fluxes and modeled-units.

Of Om [flux(f) Omodeled_unit(m) O from(f, m)

=S

has_output_flux(m, f)]

Verifies that the complementary
associations are made for all output
fluxes and modeled-units.

Or [reaction(r)Q
Uk (species(s) O has_reactant(r, s))
O Uk (species(s) O has_product(r, s))]

Verifies that every reaction has
reactant and product species
selected.

132

Similar to model inconsistency operators, model incompleteness is detected when the
completeness operators make assertions about the state of the phenomena-based model that
conflict with the hierarchical structure, topological structure, material-content, and chemical
content analysis operators. In a computer-aided environment, these operators may be used to

provide feedback to the modeler on the completeness of the phenomena-based model description.

4.7 Model Derivation Operators

The semantics of the MODEL.LA modeling language are best characterized by the set of logical
operators that map the phenomena-based model description into the corresponding mathematical
equation-based representation. In this manner, the procedural operators defined in this section
formally describe the impact of individual modeling assumptions made on the resulting
mathematical model. With these formalisms, the modeling logic of MODEL.LA makes it possible
to not only automatically derive a mathematical models from the phenomena-based description,
but also to explain the basis of the resulting equations, terms, and variables of the model in terms
of the operators and the assumptions that produced it.

In this section, elements that represent the mathematical model are also introduced. The
set of mathematical equations composing the model is identified by the predicate
model_equations(x). An equation is identified by the predicate equation(x). The predicate
generic_variable(x) identifies any elementary variable (e.g., a), or any composite variable (e.g.,
sin(a)+b*c) resulting from any combination of elementary or binary mathematical operations.
Finally, variables appearing in couri er font represent elementary variables associated with each
modeling element (e.g., tenperature(x)). These mathematical modeling elements and

operations are assumed to be intrinsic.

4.7.1 Chemical Species Conservation Equation Derivation

Each modeled-unit in a phenomena-based model represents a control volume defined by the
modeler. Consequently, equations expressing the conservation of mass for all relevant chemical
species are derived for each modeled-unit. This relationship is expressed generically for species i

as:

133

dN; _
fluxes fluxes
where:
1. N; is the molar holdup of species i within the boundaries of the modeled-unit,
2. ny is the molar flux of species i crossing the boundaries of the modeled-unit due to the
j" flux into or out the modeled-unit,
3. ;is stoichiometry of species i in reaction j, and
4. & is the molar extent of the j” reaction that is assumed to occur within the boundaries
of the modeled-unit.
This derivation holds at any level of modeling detail, for both composite and elementary modeled-

units. The logical operators that characterize this mathematical model deriviation based on

chemical species conservation are listed in Table 4-22.

134

Table 4-22: Species Conservation Derivation Operators

Operator

Actions

UX Om Os [model_equations(X) Omodeled_unit(m) O species(s)
O has_species(m, s)
0
include_species_balance(X, m,)]

Identifies when an equation
expressing the conservation of mass
of species s in modeled-unit m is
required in the set of model equations
X.

UX Om Os [model_equations(X) Omodeled_unit(m) O species(s)
UOinclude_species_balance(X, m, s)

Creates equation e, which expresses

a conservation of mass of species s in
Ae(equation(e)), modeled-unit m, and adds e to the set
species_balance(m, s, e), of model equations X.
X:=X0Oe¢e]

Om Os Oe [modeled_unit(m) O species(s) U equation(e)
O species_balance(m, s, €)
0
Av,(generic_variable(v;)),
species_accumulation_term(m, s, v;),
Avy(generic_variable(v,)),
species_boundary_flux_terms(m, s, v;),
Av;(generic_variable(vs)),
species_source_terms(m, s, v3),
e:=v;=vy+ v;3]

Creates terms of equation e, which
express conservation of mass of
species s in modeled-unit m.

Om Os Ov [modeled_unit(m) O species(s) U generic_variable(v)
O species_accumulation_term(m, s, v)
0
v:=d(mol ar _hol dup(m, s))/df]

Defines term v, which expresses
accumulation of mass of species s in
modeled-unit m.

Om Os Ov; [modeled_unit(m) O species(s) O generic_variable(v;)

O species_boundary_flux_terms(m, s, v;)

O

Of [flux(f) O transports_species(f, s) O has_input_flux(m, f)
O
v;:=v; +speci es_nol e_fl ux(, s)]

Of [flux(f) O tranports_species(f, s) O has_output_flux(m, f)
O
v;:=v;—speci es_nol e fl ux(, s)]]

Defines composite term v;, which
expresses transport of mass of species
s across boundaries of modeled-unit
m.

Om Os Ov [modeled_unit(m) O species(s) U generic_variable(v)
O species_source_terms(m, s, v)
0
Or [reaction(r) O has_reaction(m, r) O has_species(r, s)
0
v:i=v +stoichiometry(,s)*
reacti on_extent (m, r)]]

Defines composite term v, which
expresses generation and
consumption of mass of species s
within boundaries of modeled-unit m
due to chemical reactions.

135

Alternatively, for a composite modeled-unit, the net molar holdup for any species may be
expressed as a summation of the individual molar holdups for each of its subunits:

N, = SN,

subunits

where:

1. N; is the molar holdup of species i within the boundaries of the composite modeled-

unit, and

2. N is the molar holdup of species i within the boundaries of the 7™ subunit of the

composite modeled-unit.
The logical operators that characterize this mathematical model derivation expressing the

aggregation of control volumes into a composite control volume are listed in Table 4-23.

Table 4-23: Species Aggregation Derivation Operators

Operator Actions
UX Om Os [model_equations(X) Omodeled_unit(m) O species(s)
O has_subunits(m) O has_species(m, s) Creates equation e, which expresses
O holdup of mass of species s in composite
Ae(equation(e)), modeled-unit m, and adds e to set of
sum_composite_species_holdup(m, s, e), model equations X.
X:=X0Oe¢e]

Om Os Oe [modeled_unit(m) O species(s) U equation(e)
O sum_composite_species_holdup(m, s, e)

0

Av,(generic_variable(v;)), Creates terms of equation e, which

v; = ol ar _hol dup(m, s), express holdup of mass of species s of
Avy(generic_variable(v,)), composite modeled-unit 7, by summing

over the individual holdups of species s

Ou [modeled_unit(u) O has_subunit(m, u)
for each subunit of m.

O has_species(u, s)

O
v, := v, + ol ar _hol dup(u, s)]
e:=v;=v;|

136

For each convective flux, the molar flux of species i is expressed as:

where:

n, =x,*n

1. n;is the molar flux of species i due to the convective flux,
2. x; is the mole fraction of species i in the material transported by the convective flux,
and

3. nis the total molar flux due to the convective flux.

The logical operator that characterizes this mathematical model derivation is listed in Table 4-24.

Table 4-24: Convective Species Transport Derivation Operator

Operator Actions
UX Of Os [model_equations(X) O convective_flux(f) O species(s)
Utransports_species(f, s) Creates equation e, which expresses
O transport of mass of species s due to
Ae(equation(e)), convective flux fas fraction of total
e :=speci es_mol e_f 1 ux(, s) mass transport, and adds e to set of
=speci es_nol e_fraction(, s)*nmol e_f | ux(, model equations X.

X:=X0Oe¢e]

4.7.2

Energy Conservation Equation Derivation

Equations expressing the conservation of energy are also derived for each modeled-unit. This

relationship is expressed generically as:

where:

dUu

— = e.—Ze.

d t i i
input output
fluxes fluxes

1. U is the holdup of internal energy within the boundaries of the modeled-unit, and
2. e is the flux of energy crossing the boundaries of the modeled-unit due to the i flux

into or out of the modeled-unit.

This derivation holds at any level of modeling detail, for both composite and elementary modeled-

units. The form of the accumulation term assumes that changes in the potential and kinetic energy

of the system are negligible. If this assumption is not valid, the derivation can be readily extended

to account for these effects. The logical operators that characterize this mathematical model

deriviation based on energy conservation are listed in Table 4-25.

137

Table 4-25: Energy Conservation Derivation Operators

Operator

Actions

UX Om [model_equations(X) Omodeled_unit(m)
0
include_energy_balance(X, m)]

Identifies when an equation expressing
the conservation of energy in modeled-
unit m is required in the set of model
equations X.

UX Oy [model_equations(X) Omodeled_unit(m)
Oinclude_energy_balance(X, m)
0
Ae(equation(e)),
energy_balance(m, e),

Creates equation e, which expresses
conservation of energy for modeled-
unit m, and adds e to set of model
equations X.

X:=X0Oe¢e]
Om Oe [modeled_unit(m) Oequation(e) Oenergy_balance(m, e)
0

Av,(generic_variable(v;)),
energy_accumulation_term(m, v;),
Avy(generic_variable(v,)),
energy_boundary_flux_terms(m, v;),
e:=v;=v;|

Creates terms of equation e, which
express conservation of energy in
modeled-unit m .

Om Ov [modeled_unit(m) U generic_variable(v)
Oenergy_accumulation_term(m, v)
0
y:=d(i nt er nal _ener gy(m))/dt]

Defines term v, which expresses
accumulation of internal energy in
modeled-unit m.

Om Ov; [modeled_unit(m) O generic_variable(v;)
Oenergy_boundary_flux_terms(m, v)
O
Of [flux(f) O has_input_flux(m, f)
O
v;:=v;+energy_fl ux{]
Of [flux(f) O has_output_flux(m, f)
O
v;:=v;-energy_fl ux®ll

Defines composite term v;, which
expresses transport of energy across
boundaries of modeled-unit .

138

Alternatively, for a composite modeled-unit, the net holdup of internal energy may be expressed
as a summation of the individual holdups of internal energy for each of its subunits:

u= S,

subunits

where:

1. U is the holdup of internal energy within the boundaries of the composite modeled-

unit, and

2. U, is the holdup of internal energy within the boundaries of the i subunit of the

composite modeled-unit.
The logical operators that characterize this mathematical model derivation expressing the

aggregation of control volumes into a composite control volume are listed in Table 4-26:

Table 4-26: Internal Energy Aggregation Derivation Operators

Operator Actions

UX Om [model_equations(X) Omodeled_unit(m) O has_subunits(m) . .
Creates equation e, which expresses

O i .
A i holdup of internal energy of composite
elequa zon(.e)),. modeled-unit m, and adds e to set of
sum_composite_internal_energy_holdup(m, e), model equations X
X:=X0Oe] '

Om Oe [modeled_unit(m) O equation(e)
O sum_composite_internal_energy_holdup(m, e)
0
Av,(generic_variable(v;)),
v;=1internal _energy@m),

Creates terms of equation e, which
express holdup of internal energy of
composite modeled-unit m, by summing

Ava(g eneric_varigble(vz)), . over the individual holdups of internal
Ou [modeled_unit(u) O has_subunit(m, u) energy for each subunit of .

O

v, :=vy,+internal _energyu)]
e:=v;=v;|

139

For each convective and species flux, the energy flux is expressed as:
e=h*n
where:
1. e is the energy flux due to the flux,
2. his the specific enthalpy of the material transported by the flux, and
3. nis the total molar flux due to the flux.
Again, effects due to potential and kinetic energy are assumed to be negligible, but can readily be

appended. The logical operator that characterizes this mathematical model derivation is listed in

Table 4-27:
Table 4-27: Energy Transport Derivation Operator
Operator Actions
OX Of Ov [model_equations(X)

O (convective_flux(f) Ospecies_flux(f)) Creates equation e, which expresses
O transport of energy due to convective of
Ae(equation(e)), species flux f as product of specific
e:=energy_flux({) = enthalpy and total mass transport, and

speci fi c_ent hal py(H*nol e_f 1 ux(f) adds e to set of model equations X.
X:=X0Oe¢e]

4.7.3 Chemical Reaction Rate Equation Derivation
For each rate-based volumetric reaction in a phase, where the rate of reaction is defined as a
function of the intensive properties of the phase, the extent of reaction is expressed as:
$=(r orward ~ Treverse)V
where:
1. ¢is the net extent of reaction in the phase,
2. Tforwara ANd Treverse are the forward and reverse rates of reaction, respectively, and

3. Vis the total volume of the phase.

The logical operators that characterize this mathematical model deriviation are listed in Table

4-28.

140

Table 4-28: Chemical Reaction Rate Derivation Operators

Operator Actions

UX Op Or [model_equations(X) O phase(p) O reaction(r)
O has_reaction(p, r)
O
Ae(equation(e)),

Creates equation e, which expresses net
rate of reaction of reaction r in phase p,

Av(generzc_varzaéle(v)), and adds e to set of model equations X.
net_rate_of _reaction(p, r, v),

e:=extent _of _reaction(,r) =v*vol ume()
X:=X0Oe¢e]
Op Or Ov [phase(p) Oreaction(r) O generic_variable(v) O
reversible(r)
Onet_rate_of _reaction(p, r, v) Creates variable v, which expresses net
O rate of reaction for reversible reaction r.
v:=forward_rate_of reaction(,r)
-reverse rate of reaction(p,r)]
Op Or Ov [phase(p) Oreaction(r) O generic_variable(v)
O irreversible(r) Onet_rate_of_reaction(p, r, v) Creates variable v, which expresses net
O rate of reaction for irreversible reaction r.

v:=forward rate of reaction(p,r)]

4.7.4 Material-Content Characterization Equation Derivation

An elementary modeled-unit modeled as a blackbox is not associated with any internal intensive
quantities. However, when an elementary modeled-unit is assumed to contain a material-content,
the control volume defined by the modeled-unit is assumed to encompass a region with no internal
boundaries containing one or more phases at equilibrium. For such a system, additional equations
are derived to capture the intensive characterization of these phases. Furthermore, each extensive
quantity characterizing a modeled-unit with a material-content is derived as a summation of the
corresponding quantity for each phase in the material-content. This is expressed generically as:

B= Y B,

phases
where:
1. B is the holdup in the material-content of extensive quantity B (e.g., volume, internal
energy, species moles, etc.), and
2. B is the corresponding holdup of quantity B in the i phase of the material-content.
The logical operators that characterize this mathematical model derivation are listed in Table

4-29.

141

Table 4-29: Material-Content Aggregation Operators

Operator Actions
UX Om [model_equations(X) Omaterial_content(m) Creates equation e, which decomposes

O
Ae(equation(e)),
decompose_volume(m, e),

volume of material-content m as
summation of volumes of individual
phase, and adds e to set of model

X:=X0Ue] equations X.
Om Oe [material_content(m) O equation(e) O decompose_volume(m, €)
O

Av,(generic_variable(v;)),
v; :=vol unme(m),
Avy(generic_variable(v,)),
sum_phase_volumes(m, v,)),
e:=v;=v;|

Creates terms of equation e, which
decompose volume of material-
content m as summation of volumes of
individual phases.

Om Ov; [material_content(m) U generic_variable(v)
O sum_phase_volumes(m, v)
0
Op [phase(p) O has_phase(m, p)
0
v:=v+Vvol une(p)]]

Creates composite term v, which
expresses summation of volumes for
each phase of material-content m.

UX Om [model_equations(X) Omaterial_content(m)

Creates equation e, which decomposes

O internal energy of material-content m
Ae(equation(e)), as summation of internal energies of
decompose_internal_energy(m, e), individual phase, and adds e to set of
X:=X0Ue] model equations X.

Om Oe [material_content(m) O equation(e)
Odecompose_internal_energy(m, e)
0
Av,(generic_variable(vy)), v; :=i nt er nal _ener gy(m),
Avy(generic_variable(vy)), sum_phase_internal_energy(m,

v2)),

e:=v;=v;|

Creates terms of equation e, which
decomposes internal energy of
material-content m as summation of
internal energies of individual phases.

Om Ov; [material_content(m) U generic_variable(v)
Osum_phase_internal_energy(m, v)
0
Op [phase(p) has_phase(m, p)
0
v:=v+internal energy®ll

Creates composite term v, which
expresses summation of internal
energies for each phase of material-
content m.

UX Om Os [model_equations(X) U material_content(m) O species(s)
O has_species(m, s)
0
Ae(equation(e)),
decompose_species_holdup(m, s, e),
X:=X0Oe¢e]

Creates equation e, which decomposes
holdup of species s of material-
content m as summation of holdups of
species s of individual phases, and
adds e to set of model equations X.

Om Os Oe [material_content(m) O species(s) U equation(e)
Odecompose_species_holdup(m, s, e)
0
Av,(generic_variable(vy)),
v, ;= speci es_hol dup(m,),

Creates terms of equation e, which
decomposes holdup of species s of
material-content m as summation of
holdups of species s of individual
phases.

142

Avy(generic_variable(v,)),
sum_phase_species_holdup(m, s, v,)),
e:=v;=v;|
Om Os Ov; [material_content(m) O species(s) O generic_variable(v)

Osum_phase_species_holdup(m, s, v) Creates composite term v, which

O expresses summation of holdups of

Up [phase(p) U has_phase(m, p) U has_species(s) species s for each phase of material-
0 content m.

v:=v+speci es_hol dup(p, s)]]

Equations expressing physical, thermal, and chemical equilibria among phases of a material-
content are derived by equating the corresponding equilibrium quantities for each phase. This

relationship is expressed generically as:

where:
1. B is the equilibrium quantity of the material-content (e.g., temperature, pressure,
chemical species fugacity), and
2. B;is the corresponding quantity of the i phase of the material-content.
The logical operators that characterize this mathematical model deriviation based on

thermodynamic equilibrium are listed in Table 4-30.

143

Table 4-30: Phase Equilibrium Derivation Operators

Operator

Actions

UX Om Op [model_equations(X) Omaterial_content(m) 0 phase(p)
O has_phase(m, p)

Creates equation e, which expresses

O thermal equilibrium for phase p of
Ae(equation(e)), material-content m, and adds e to set
thermal_equilibrium(m, p, e), of model equations X.
X:=X0Oe]

Om Op Oe [material_content(m) O phase(p) O equation(e)
U thermal_equilibrium(m, p, e)
0
e:=tenperature(m)=tenperature(p]

Creates terms of equation e, which
express thermal equilibrium for
phase p of material-content m, by
equating temperature of phase to
overall material-content temperature.

UX Om Op [model_equations(X) Omaterial_content(m) 0 phase(p)
O has_phase(m, p)

Creates equation e, which expresses

O physical equilibrium for phase p of
Ae(equation(e)), material-content m, and adds e to set
physical_equilibrium(m, p, e), of model equations X.
X:=X0Oe¢e]

Om Op Oe [material_content(m) O phase(p) O equation(e)
O physical_equilibrium(m, p, e)
0
e :=pressure(m)=pressurep)]

Creates terms of equation e, which
express physical equilibrium for
phase p of material-content m, by
equating pressure of phase to overall
material-content pressure.

UX Om Op Os [model_equations(X) Omaterial_content(m) 0 phase(p)
Ospecies(s) O has_phase(m, p) O has_species(p, s)

Creates equation e, which expresses

O chemical equilibrium of species s for
Ae(equation(e)), phase p of material-content m, and
chemical_equilibrium(m, p, s, e), adds e to set of model equations X.
X:=X0Oe]

Om Op Os Oe [material_content(m) O phase(p) U species(s) [Creates terms of equation e, which

equation(e) express chemical equilibrium of
U chemical_equilibrium(m, p, s, e) species s for phase p of material-
O content m, by equating fugacity of

Avy(generic_variable(vy)),
fugacity_model(p, s, v),
e :=fugaci ty@m, s)=v,]

species s for phase to overall
material-content fugacity of species
s.

Op Os Qe Ov [phase(p) Ospecies(s) Oequation_of _state(e)
O has_equation_of_state(p, e) U generic_variable(v)
Ofugacity_model(p, s, v)
O
v;:=mol e_fraction(p,s) *
fugacity coefficient(p,s)*pressure(p)]

Creates composite term v, which
expresses fugacity of species s for
phase p modeled using equation of
state e.

Op Os Oa Ov [phase(p) O species(s) Oactivity_coefficient(a)
O has_activity_coefficient(p, a) U generic_variable(v)
Ofugacity_model(p, s, v)
O
v;:=nol e_fraction(p,s) *
activity coefficient(p,s)*vapor_pressure(p,s)]

Creates composite term v, which
expresses fugacity of species s for
phase p modeled using activity
coefficient model a.

144

4.7.5 Phase Characterization Equation Derivation

The total molar holdup of a phase is derived as a summation over the individual species molar

holdups in the phase. This is expressed generically as:

N= YN,

species
where:

1. N is the total molar holdup in the phase, and

2. N;is the total molar holdup of the i species in the phase.
The logical operators that characterize this mathematical model deriviation are listed in Table

4-31.

Table 4-31: Phase Species Aggregation Operators

Operator Actions
0X Op [model_equations(X) Uphase(p) Creates equation e, which expresses
O total molar holdup of phase p as
Ae(equation(e)), summation of individual species molar
decompose_molar_holdup(p, e), holdups, and adds e to set of model
X:=X0Ue] equations X.
Op Ue [phase(p) Oequation(e) O decompose_molar_holdup(m, €)

0
Av,(generic_variable(v;)),
v; ;= ol ar _hol dup(p),
Avy(generic_variable(v,)),
Os [species(s) has_species(p, s)
0
v, := v, + speci es_hol dup(p, s)]
e:=v;=v;|

Creates terms of equation e, which
expresses total molar holdup of phase p
as summation of individual species
molar holdups.

The sum of species mole fractions of a phase must equal unity. This is expressed generically as:

x; =1

species
where:
1. x; is the mole fraction of the i species in the phase.
The logical operators that characterize this mathematical model deriviation are listed in Table

4-32.

145

Table 4-32: Species Fraction Summation Operators

Operator Actions
UX Op [model_equations(X) O phase(p) . .
0 Creates equation e, which expresses

. summation of individual species molar
Ae(equation(e)), . .

. p . fraction of phase p as equal to unity, and
sum_species_mole_fractions(p, e), adds e to set of model equations X.
X:=X0Oe¢e]

Op Ue [phase(p) O equation(e) O sum_species_mole_fractions(m, e)
O

Creates equation e, which expresses

Av(generic_variable(v)), summation of individual species molar

Ds [species(s) has_species(p, s) fraction of phase p as equal to unity, and
. .) adds e to set of model equations X.
v:=v+species_nole_fraction(p,s)]
e:=v=1]

The total species molar holdup of a phase is equal to the product of the species mole fraction and
the total molar holdup of the phase. This is expressed generically as:

N, =x;N

1

where:
1. N is the total molar holdup of the i species in the phase,
2. x; is the mole fraction of the i species in the phase, and
3. N s the total molar holdup in the phase.

The logical operator that characterizes this mathematical model deriviation is listed in Table 4-33

Table 4-33: Species Holdup Derivation Operators

Operator Actions
UX Op Os [model_equations(X) O phase(p) O species(s)
O has_species(p, s) Creates equation e, which expresses
O total molar holdup of phase p as
Ae(equation(e)), product of molar fraction and molar
e :=speci es_nol ar _hol dup(p, s) = holdup of species s, and adds e to
speci es_nol e_fraction(p, s) * nol ar _hol dup(p), set of model equations X.

X:=X0Oe]

Note that for a given phase, the set of equations formed by the operator in Table 4-33, the
operators in Table 4-32, and the operators in Table 4-31 contains one redundant equation that
must be excluded from the mathematical model. With regard to the structural analysis of the

degrees of freedom of the model equations, it is best to include both summation equations, and

146

eliminate one of the equations formed by the operator in Table 4-33.
The total species molar holdup of a phase is equal to the product of the species
concentration and the total volume of the phase. This is expressed generically as:

N, =cV

1

where:
1. N is the total molar holdup of the i species in the phase,
2. ¢ is the molar concentration of the i species in the phase, and
3. Vis the total volume of the phase.

The logical operator that characterize this mathematical model deriviation is listed in Table 4-34.

Table 4-34: Species Concentration Derivation Operators

Operator Actions
UX Op Os [model_equations(X) O phase(p) O species(s)
U has_species(p, s) Creates equation e, which expresses
O total molar holdup of species s for phase
Ae(equation(e)), p as product of molar species
e :=speci es_nol ar _hol dup(p, s) concentration and volume, and adds e to
=speci es_concentrati on(p, s) * vol une(p), set of model equations X.
X:=X0Oe¢e]

The equations derived by the operator in Table 4-34 introduce the definition of molar species
concentrations into the model, which are frequently used in mechanistic characterizations of
species transport mechanisms and reaction rate laws.

The total molar holdup of a phase is equal to the product of the density and the total
volume of the phase. This is expressed generically as:

N=pV

where:

1. N is the total molar holdup of the phase,

2. pis the molar density of the phase, and

3. Vis the volume of the phase.

The operators that characterize this mathematical model deriviation are listed in Table 4-35.

147

Table 4-35: Phase Density Derivation Operators

Operator Actions
UX Op Us [model_equations(X) O phase(p)
O Creates equation e, which expresses total
Ae(equation(e)), molar holdup of phase p as product of
e :=nmol ar _hol dup(p) molar density and volume, and adds e to set
=nol ar _densi ty(p) * vol ume(p), of model equations X.
X:=X0Oe¢e]

The equations derived by the operator in Table 4-35 introduce the definition of molar density (or
its inverse, specific volume) into the mathematical model.

The total internal energy of a phase is equal to the product of the specific internal energy
and the total molar holdup of the phase. This is expressed generically as:

U =uN

where:

1. U is the total internal energy of the phase,

2. u is the specific internal energy of the phase, and

3. N s the total molar holdup of the phase.
The logical operators that characterize this mathematical model deriviation are listed in Table

4-36.

Table 4-36: Phase Internal Energy Derivation Operators

Operator Actions
UX Op Us [model_equations(X) O phase(p)

O Creates equation e, which expresses
Ae(equation(e)), total internal energy of phase p as
e:=internal _energy(p) product of specific internal energy and

=specific_internal _energy(p) molar holdup, and adds e to set of

* ol ar _hol dup(p), model equations X.

X:=X0Oe¢e]

4.7.6 Mechanistic Characterization Equation Derivation

Mechanistic characterizations of fluxes and reactions introduce additional relationships into the
mathematical model. Constitutive equations for flux transport mechanisms are used to derive the

net rate of flux of the transported material, energy, or species as a function of the properties of the

148

two interconnected modeled-units. Reaction rate laws are used to derive the rate of reaction in a
phase as a function of properties (e.g., temperature, species concentrations, partial pressures, etc)

of that phase. Operators that characterize these mathematical model derivations are listed in

Table 4-37.
Table 4-37: Mechanistic Characterization Operators
Operator Actions
0X Op Or OI [model_equations(X) O phase(p) O reaction(r)

O rate_law(l) O has_reaction(p, r) O has_rate_law(r, [) Creates equation e, which expresses rate
O of reaction for reaction r in phase p
Ae(equation(e)), using an assumed kinetic rate law, and
reaction_rate_law_of _reaction(p, r, e), adds e to set of model equations X.
X:=X0Oe¢e]

UX Op Om [model_equations(X) O flux(p)
O transport_mechanism(m)

. T ion hich expr T
O has_transport_mechanism(f, ml) Creates equation e, which expresses rate

of transport for flux fusing an assumed

E) transport mechanism, and adds e to set
e(equation(e)), of model equations X.
transport_mechanism_rate_law(f, m, e),

X:=X0Oe¢e]

Of Om Qe [energy_flux(f) Omechanism(m) O equation(e)
O has_mechanism(m, f) O surface_convection(m)

U transport_mechanism_rate_law(f, m, e) Creates terms of equation e, which

O

A bl expresses rate of energy transport for
vi(variable(v.)), flux f modeled using constitutive

source_temperature(f, vi), equation for surface convection .

Av,(variable(vy)),

sink_temperature(f, v,),
e:=energy_ flux{) =U coeff (H*Area()*(v;-v,)]
The final operator in Table 4-37 illustrates the use of an assumed transport mechanism in

generating the form of a particular constitutive equation that characterizes an energy flux which is

modeled as driven by a surface convection mechanism.

4.7.7 Thermodynamic and Physical Properties of Phases Equation Derivation

Physical and thermodynamic property correlations for each phase in the model are expressed
generically as:
B=f(T,P,x)
where:
1. B is the thermodynamic or physical property of the phase,

2. T is the temperature of the phase, and

149

3. P is the pressure of the phase.

4. xis the vector of species mole fractions in the phase.

Operators that characterize these mathematical model derivations are listed in Table 4-38.

Table 4-38: Physical and Thermodynamic Phase Property Operators

Operator

Actions

UX Op [model_equations(X) O phase(p)
0

Ae(equation(e)),
molar_density(p, e),
X:=X0Oe¢e]

Creates equation e, which expresses
molar density of phase p as function of
properties of p, and adds e to set of
model equations X.

UX Op [model_equations(X) O phase(p)
O
Ae(equation(e)),
specific_enthalpy(p, e),
X:=X0Oe¢e]

Creates equation e, which expresses
specific enthalpy of phase p as function
of properties of p, and adds e to set of
model equations X.

UX Op [model_equations(X) O phase(p)
O
Ae(equation(e)),
specific_internal_energy(p, e),
X:=X0Oe¢e]

Creates equation e, which expresses
specific internal energy of phase p as
function of properties of p, and adds e to
set of model equations X.

UX Op [model_equations(X) O phase(p)
0
Ae(equation(e)),
heat_capacity(p, e),
X:=X0Oe¢e]

Creates equation e, which expresses
heat capacity of phase p as function of
properties of p, and adds e to set of
model equations X.

0X Op Oe Os [model_equations(X) O phase(p) O species(s)
O has_species(p, s) Uequation_of _state(e)
O has_equation_of _state(p, €)

N . phase p as function of properties of p,

?e(eq.uatzon(;().),. v) and adds e to set of model equations X.
ugacity_coefficient(p, s, e),

X:=X0Oe]

Creates equation e, which expresses
fugacity coefficient of species s for

UX Op Oa Us [model_equations(X) O phase(p) O species(s)
O has_species(p, s) Oactivity_coefficient(a)
O has_activity_coefficient(p, a)

D . p as function of properties of p, and
Ae(equatlon(e.))., adds e to set of model equations X.
activity_coefficient(p, s, e),

X:=X0Oe]

Creates equation e, which expresses
activity coefficient of species s for phase

OX Op Os [model_equations(X) O liquid_phase(p) O species(s)
O has_species(p, s)

O

Ae(equation(e)), as function of properties of p, and adds
vapor_pressure(p, s, €), e to set of model equations X.
X:=X0Oe¢e]

Creates equation e, which expresses
vapor pressure of species s for phase p

150

To complete this specification, additional operators are required that access a database of pure

chemical species properties used to form the requisite property correlation of the phase.

4.7.8 Thermodynamic and Physical Properties of Fluxes Equation Derivation

Physical and thermodynamic property correlations for the transported material of each convective
flux in the model are expressed generically as:
B=f(T,P,x)

where:

1. B is the thermodynamic or physical property of the transported material,

2. T is the temperature of the transported material,

3. Pis the pressure of the transported material, and

4. x1is the vector of species mole fractions of the transported material.

Logical operators that characterize these mathematical model derivations are listed in Table 4-39.

Table 4-39: Physical and Thermodynamic Flux Property Operators

Operator Actions

OX Of [model_equations(X) O convective_flux(f) . .

0 Creates eqqatlon e, wh19h expresses
De(equation(e)) molar density of convective flux fas

: ’ function of properties of f, and adds e to
density(f, e), set of model equations X.
X:=X0Oe]

OX Of [model_equations(X) O convective_flux(f) Creates equation e, which expresses
O specific enthalpy of convective flux fas
specific_enthalpy(f, e), function of properties of f, and adds e to
X:=X0Ue] set of model equations X.

To complete this specification, additional operators are required that access a database of pure
chemical species properties used to form the requisite property correlation of the tranported

material.

4.8 Model Explanation

The process of mathematical model generation from a phenomena-based description is illustrated
conceptually in Figure 4-8. The state of the model digraph (determined by the phenomena-based
modeling assumptions) activates operators that create mathematical model equations.

Suboperations of these operators then create the individual terms and variables of these equations.

151

The record of operators applied and the preconditions that activated them during model
derivation provide means for explaining the reasoning behind the derivation of a mathematical
model. As a result, this provides a direct link between the assumptions made by the modeler in
creating a phenomena-based model description, and the equations and terms of the resulting

mathematical model.

has-energy-input

is-modeled-by
o mechanism
urface-convectio
3 tram

has-subunit 15-a @

equation

mathematical model

Figure 4-8: Mathematical M odel Derivation

152

4.9 Extensionsto Modeling Logic Operators

The declarative and procedural operators introduced in this chapter, which are all based on low-
level intrinsic operators that act on the underlying phenomena-based model digraph, provide the
basis for the description of high-level modeling logic. This logic may be readily extended to
encompass additional operators for model analysis, construction, consistency, completeness, and
derivation. For example, a high-level operator may be defined that asserts when a system is
adiabatic:

Ox [adiabatic(x) =
modeled_unit(x) 0= Oy (flux(y) O (has_energy_input(x, y) O has_energy_output(x, y)))]

Other high-level analysis operators may be defined that build upon low-level operators. In a
similar manner, operators that introduce additional mechanistic characterizations, along with their
impact on the resulting mathematical model equations, may be defined. Furthermore, these
logical operators, through knowledge of the underlying modeling assumptions, may be extended
to analyze numerical results from the solution of mathematical model equations to detect possible
inconsistencies in mechanistic characterizations using chemical engineering guidelines. Most
importantly, supervisory logic operators may even be defined that interact with the modeler in a

given context to guide him or her toward completion of certain modeling goals.

4.10 Supervisory Logic Operators

The modeling logic of MODEL.LA provides a formal basis for describing the analysis,
construction, consistency and completeness of a phenomena-based model, and the derivation and
explanation of the mathematical model from the phenomena-based description. This modeling
logic may be readily extended to capture other domain-dependent modeling knowledge that
guides the modeling activity based on goals of engineering problem. This knowledge can be
integrated into the modeling logic framework as supervisory logic which interacts with the
engineer to guide and structure the decisions made during model development. The process of
supervisory logic interacting with the modeler in constructing a phenomena-based model is
illustrated conceptually in Figure 4-9. The context of a given modeling problem, declared by the
engineer, activates supervisory operators that initiate applicable modeling tasks. These operators

interact with the modeler and activate model construction operators that refine the description of

153

the phenomena-based model.

Engineer

supervisor
operator

supervisory logic

i;-a : . E E E
. : Sis-modeled-by
modeled-unit : 0 3 mechanism
. * \qurface-convectiop
has-subunit transports)

Jacketed_cstr

henomena-based model

is-internal-unit-of

Figure 4-9: Supervisory Logic Operators

These supervisory logic operators may lend varying degrees of support to the modeling activity,
including:
1. Full automation, where, based on assertions made from preconditions by the
modeling logic operators, the logic can automatically refine the description of a

phenomena-based model.

154

2. Structured interaction, where, by presenting the modeler with possible decisions
and querying him/her about which assertions should be made, the logic can
proceed to refine the description of a phenomena-based model.

3. Integrated documentation, where the modeler is responsible for guiding the
direction of the modeling activity by selecting assertions and modeling tasks
carried out, while the logic records and integrates the rationale stated by the
modeler for carrying out the tasks into a record of the modeling activity.

For example, the supervisory logic operator listed in Table 4-1 is based on a methodology for the
hierarchical design of continuous chemical plants (Douglas, 1985, 1988). The operator provides
an explicit framework for the modeling task of creating the input-output description of a
continuous chemical plant. The first two suboperators (which are examples of full automation)
create a modeled-unit and label it “input_output_plant’. In the next two suboperators (which are
examples of structured interaction), the modeler defines the chemical species and reactions
assumed to occur within the plant. The fifth and sixth suboperators automatically assign the
species and reactions to the plant. In the seventh suboperator, for each species that is designated
as a raw material by the modeler, a feed stream is added to the plant from the surroundings.
Similarly, in the eighth suboperator, for each species that is designated as a product by the
modeler, a convective product stream is added from the plant to the surroundings. In the ninth
suboperator, for each species that is designated as a byproduct by the modeler, a waste stream is
added from the plant to the surroundings. In the final suboperation (which is an example of

integrated documentation), the modeler provides a rationale for the decisions made at this level.

155

Table 4-40: Level-1 Supervisory Operator

Supervisory Operator Suboperation
[Level _1()
0
Am (modeled_unit(m)), (1)
label(m) :=“input_output_plant”), 2)
Define_species(), 3)
Define_reactions(), “4)
Us [species(s) (5)
0
Add_species(m, s)],
Or [reaction(r) (6)
0
Add_reaction(m, r)],
Os [species(s) O raw_material(s) @)
0
An (source(n)),
Af (convective_flux(f)), label(f) := label(s) + “_feed”,
Add_convective_flux(f, n, m)],
Us [species(s) Oproduct(s) ®)
0
An (sink(n)),
Af (convective_flux(f)), label(f) := label(s) + “_product”,
Add_convective_flux(f, m, n)],
Uk [species(s) O raw_material(s) ©)
0
An (sink(n)),
Af (convective_flux(f)), label(f) := “byproducts”,
Add_convective_flux(f, n, m)], (10)
Document_decisions()]

The next Level-2 for the hierarchical design of the plant may be represented by the operator in
Table 4-41. The first six suboperations refine the input-output plant into two subunits,
representing a reaction section and a separation section. All species are added to both subunits,
then all reactions are added to only the reaction section. A convective effluent stream is then
added from the reaction section to the separation section. The raw material input streams from
level-1 to the plant are then allocated to the reaction section, and the product and byproduct from
level-1 from the plant are then allocated from the separation section. Recycle streams are then
added from the separation section to the reaction section for each raw material that is not

completely reacted (as decided by the modeler). The modeler then documents the decisions

156

made.

Table 4-41: Level-2 Supervisory Operator

Supervisory Operator Suboperation
Un [Level_2() O modeled_unit(m) O label(m) :="“input_output_plant™)

0
Ax (modeled_unit(x)), (1)
label(x):= “reaction_section”, 2)
Ap (modeled_unit(p)), 3)
label(p):= “separation_section”, “4)
Add_subunit(m, x); (5)
Add_subunit(m, p); (6)
Os [species(s) (7

0

Add_species(r, s),

Add_species(p, s)],
Or [reaction(r) (®

0

Add_reaction(m, r)],
Af (convective_flux(f)), 9
label(f) := “effluent”, (10)
Add_convective_flux(f, x, p), 3y
Of [flux() O has_input(m, f) (12)

0

Allocate_flux(f, x)],
Of [flux(f) O has_output(m, f)
0
Allocate_flux(f, p)],
Os [species(s) Oraw_material(s) O~ completely_reacted(s, x)
0
Af (convective_flux(f)),
label(f) := label(s) + “_recycle”,
Add_convective_flux(f, p, x)],
Document_decisions()]

13)

(14)

15)

The applicability of these supervisory logic operators in this simple example are dependent on a
particular modeling context, the hierarchical design of a continuous chemical plant. A wide
variety of such examples may be formulated for various modeling goals. Thus, while these
operators are treated as distinct from the core MODEL.LA modeling logic, they can provide the

most powerful means for assisting the process of model development.

157

158

Chapter 5
The MODEL.LA Modeing Environment

In the previous two chapters, the context-free grammar of the MODEL.LA modeling language,
which specifies the syntax of the modeling language, and the framework of modeling logic
operators, which specifies the semantics of the modeling language elements, were introduced.
The modeling elements and semantic relationships of the modeling language provide the
vocabulary that allows an engineer to articulate assumptions about the structure, physicochemical
phenomena, and mechanistic characterizations of a process. The modeling logic operators
provide a framework that formally describes the impact of these phenomena-based assumptions
on the resulting mathematical model, and makes it possible to systematize the modeling process.
This framework enables the computer to understand the implication of the modeling assumptions,
to assist the modeler in constructing the phenomena-based model description, to detect model
inconsistencies and incompleteness, to automatically derive mathematical models, and to explain
the terms and equations of the resulting mathematical model in terms of the modeling
assumptions. The phenomena-based modeling language and logical framework has been
described independently of any computer-aided implementation. However, without such an
implementation, it would be impossible to test and evaluate these phenomena-based concepts in a
meaningful manner.

In this chapter, the implementation of the modeling language and logical framework of
MODEL.LA in a computer-aided modeling environment is presented through discussion of its
functionality, graphical user interface, and overall structure. This software acts as an interface
between the modeler and the underlying modeling language and logic and provides an interactive

environment for phenomena-based modeling of dynamic or static systems of arbitrary structure

159

(with lumped or spatially distributed properties), hierarchical levels of detail, and multi-context

depictions.

5.1 Software Structure

The MODEL.LA modeling environment is designed for personal computers running 32-bit
Microsoft Windows operating systems. The overall software structure of MODEL.LA is

depicted graphically in Figure 5-1.

Modeler
A
GUI ‘}
(Model Generator 1
> -- Modeling Language <
Material -- Modeling Logic J Mathematical
Properties Models
\4 \4
External) .
Properties Manager Constraints N_‘fmseré%ﬁ! C'Z?ig;]”e
- Physical - Sglution

-- Thermodynamic Operations Manager -- Display of Results
-- Process Control

j‘ -- Schedules L

-- Design Equations
Figure5-1: MODEL.LA Modeling Environment Softwar e Structure

The four primary components of MODEL.LA are the
1. Model Generator,
2. Properties Manager,
3. Operations Manager, and
4. Numerical Engine.

The details of each of these components will be discussed in the remainder of this chapter.

5.2 Model Generator

The key component of the MODEL.LA modeling environment is the Model Generator. The
Model Generator integrates the modeling language, which provides a basis for description of
phenomena-based models, and the modeling logic operators, which enable the computer to

understand and analyze the modeling assumptions, assist the modeler in constructing the

160

phenomena-based model description, detect model inconsistencies and incompleteness,
automatically derive mathematical models, and explain the terms and equations of the resulting

mathematical model. The modeler interacts with the modeling environment through a graphical

user interface (GUI).

B MODEL LA

- [= 1]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

* o =
*O 3= K| [=|E| &

= Modella Project.la =] E || HisSichisalh Tree =13 I

-

Flowsheet _\ | Hierarchical Tree |—

Properties View | =]
7 Properties Yiew 1 [=] B I

Modeling Assistant

Add New Process Units | A New Fluses | Specity Species and Reactions | Edit Pracess Units | Edit Fluves | Edit Control Loops | Madel Simulation |

& 0 a0 W = B ?
Blackbow Unit Unit withapor — Unit with Liquid ~— Unit with Wapor — Unit with Liquid Staged Unit Spatially Unit from Help

Fhaze Fhaze Liquid E quilibrium Liquid E quilibrium Distributed Unit Template Library

Figure5-2: MODEL.LA Graphical User Interface
The primary GUI of MODEL.LA is illustrated in Figure 5-2. It consists of four key
components:

1. Flowsheets provide graphical means of declaring and depicting topological and

hierarchical structure,

2. Hierarchical Tree provides a graphical overview of the hierarchical structure of a

phenomena-based model,

3. Properties View displays the textual language-based assumptions that characterize

the phenomena-based modeling elements, and

161

4. Modeling Assistant provides the modeler with a palette of modeling options and
decisions available for declaring, characterizing, and analyzing the elements of a
phenomena-based model during the course of the modeling activity.

In addition to these elements, the GUI of the Model Generator uses a rich set of contextual
menus and dialogs for specification of the topological structure, hierarchical structure, chemical
characterization, and the mechanistic description of a phenomena-based model. The interactive
nature of the modeling environment provides the modeler with immediate feedback during model
development. Also, the corresponding MODEL.LA language-based description is automatically

generated after each interaction and displayed in the Properties View.

E% MODEL.LA - [5]x]
File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help
* e
*O 3= K| [=|E| &
¥ Modella Project. la M [=] EF || == Hierarchical Tree Mi=]E3 I
-

------- o® Jacketed Cstr

JaCketed—CStr 7 Properties Yiew o] x] I

Jacketed Csir js-z modeled-unit

Rename Selected Specify Matenial Aszsign Reactions Specify Internal — Specify 5 patial Set Design Help
Unit Content and Species Subunits Distribution Wariables of

Selected Unit

Figure 5-3: Declaration of a M odeled-Unit

5.2.1 Topological Structure

The topological structure of a phenomena-based model is declared using an intuitive flowsheet

162

approach where icons, depicting modeled-units, are interconnected by arrows, depicting fluxes
between the modeled-units. Flux arrows are color-coded indicating the transport of material

(blue), energy (red), or a selected chemical species (green).

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

et N [=ER H

= Modella Project.la =] E || HisSichisalh Tree =13 I
|- g® Jacketed Csh

reactants input

Tacketed Cstr 17 Properties View =10] x| I

reactants input js-z flux

transports material liquid from source
o Jacketed Cstr

Is-modglec-by equation-of-state
incompressible

Is-modeled-by transport-mechanism
constant

Add Mew Process Units Add Mew Flures | Specify Species and Reactions | Edit Process Units | Edit Fluses | Edit Control Loops | Model Simulation

r P ?

@

Energy Flux Chemical Species Help
Flux

Figure 5-4: Declaration of a Convective Flux

Modeled-units are added to the flowsheet using the Add New Process Units tab of the
Modeling Assistant (shown at the bottom of Figure 5-2). The modeler declares a modeled-unit by
selecting the appropriate icon (e.g., Blackbox Unit) on the Modeling Assistant and dropping it on
the flowsheet. The new modeled-unit, which is automatically given a default name, can be
renamed by the modeler by selecting the Rename Selected Unit option on the Edit Process Units
tab of the Modeling Assistant (shown at the bottom of Figure 5-3). For example, in Figure 5-3, a
modeled-unit has been declared by the modeler and renamed Jacketed_CSTR. The Hierarchical
Tree is automatically updated to reflect this addition, and the Properties View shows all

assumptions made for the selected modeled-unit. If desired, the default icon for a modeled-unit

163

may also be replaced with more descriptive icons using a right-click menu option. Such icons do
not change the phenomena-based description of a modeled-unit, but can be used to give graphical
clues as to the purpose of the modeled-unit. For example, in Figure 5-4, the default icon for the
Jacketed_CSTR is replaced with an icon depicting a jacketed well-stirred tank.

Fluxes are added to the flowsheet using the Add New Fluxes tab of the Modeling Assistant
(shown at the bottom of Figure 5-4). The modeler declares a flux by selecting the appropriate
icon (e.g., Convective Flux) on the Modeling Assistant and dragging on the flowsheet from the
source modeled-unit to the sink modeled-unit. The flux can be renamed by selecting the Rename
Selected Flux option on the Edit Fluxes tab of the Modeling Assistant (as shown in Figure 5-18).
For example, in Figure 5-4, a convective flux has been declared from the surrounding environment
to the Jacketed_CSTR and renamed reactants_input. As for modeled-units, the Properties View

shows all assumptions made for the selected flux.

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

et N [=ER H

" Modella Project.la M =] B3 || == Hierarchical Tree (O] x] I
roectanta ingut | e @ Jacketed_Cstr
=
coolant_mut et
e odusEa_cut put
BN Jacketed_Cstr H[=] 3 I
tredctdnts dnput i
—————————;———————————| = Properties Yiew =10 x|
coolant outlet lLJacketed Csir is-2 modeled-unit

has-convective-input reactants _input
has-convective-outou! products output
hasconvectve-input coolant_inlet

hascomvective-output coolant _outlet

coolant dnlet

_4

4
I _____________Foﬁcﬁ?uﬁut__
-

Add Mew Process Units | Add Mew Fluxes | Specify Species and Feactions Edit Process Units | Edit Fluxes | Edit Cantral Loops | Model Simulation |
o & 5 & & ?
Rename Selected Specify Material Aszign Reaction: $9 a Specify Spatial Set Design Help
Unit Content and Species 3 Distribution ‘ariables of
Selected Unit

Figure 5-5: Decomposition Flowsheet

164

E% MODEL.LA - [5]x]
File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help
* o =
*O 3= K| [=|E| &
" Modella Project.la M =] B3 || == Hierarchical Tree (O] x] I
roectanta ingut ﬂ B Jacketed_Csti
i g® Wessel
= o ol Jacket
coofant_oukict
e odusEa_cut put
BN Jacketed_Cstr H[=] 3 I
reactants input !
—_—— | — — — = Properties Yiew =10 x|

cooclant outlet

g _exchange

products output

Add Mew Process Units Add Mew Flures | Specify Species and Reactions | Edit Process Units | Edit Fluses | Edit Contral Loops | Model Simulation |

- e S ?

@
Convective Flux Energy Flux Chemical Species Help |
F

T

Figure 5-6: Jacketed CSTR Decomposition

5.2.2 Hierarchical Structure

The hierarchical structure of a phenomena-based model is declared using a series of
decomposition flowsheets where internal subunits may be declared within the boundary of a
composite modeled-unit. A particular modeled-unit is decomposed by selecting the Specify
Internal Subunits option on the Edit Process Units tab of the Modeling Assistant (shown at the
bottom of Figure 5-5). For example, Figure 5-5 illustrates the initial decomposition flowsheet for
the Jacketed_CSTR modeled-unit. In a decomposition flowsheet, the boundaries of the composite
modeled-unit appear as a dashed outline. Subunits of the composite modeled-unit may be added
within this boundary in the same manner as in the top-level flowsheet. Boundary fluxes to or

from the composite modeled-unit initially appear terminating at the dashed boundary.

Subsequently, these fluxes must be allocated to the subunits. For example, in Figure 5-5, the

165

Jacketed_CSTR has four boundary fluxes, each of which must be eventually allocated to a subunit
of the Jacketed_CSTR. Internal fluxes may also be declared between any two subunits of a
composite modeled-unit. Figure 5-6 shows the final hierarchical structure of the Jacketed_CSTR,
which has been decomposed into two subunits, a Vessel and a Jacket. The reactants_input and
products_output boundary fluxes have been allocated to the Vessel, and the coolant_inlet and
coolant_outlet boundary fluxes have been allocated to the Jacket. Additionally, an internal energy
flux, g_exchange, has been declared from the Vessel to the Jacket. If desired, these subunits may
be likewise decomposed down to an arbitrary level of detail.

In addition to the disaggregation of an existing modeling unit into a set of new subunits, a
set of existing modeled-units may also be aggregated into a new composite modeled-unit. This
action is declared by the modeler using the Modeled-Unit Aggregation Dialog (Figure 5-7) where

a set of modeled-units may be selected for aggregation into a new composite modeled-unit.

Select Units to Add to Hew Parent |

Fleactar_pretreat =] ~

e [T B

£-- Remove |
o | <
] | Cancel | Help |

Figure 5-7: Modeled-Unit Aggregation Dialog

Two special cases of the composite modeled-unit are the staged and the distributed
composite units. Staged modeling units may be declared by selecting the Staged Unit icon on the
Add Process Units tab of the Modeling Assistant and dragging it to a flowsheet. In a staged
modeled-unit, the unit is refined into a series of identical subunits. In the decomposition
flowsheet of the staged modeled-unit, only three subunits appear. Assumptions made for the
representative (second) subunit are automatically propagated to the other subunits in the staged

system. Fluxes in the staged system are declared only between the first two subunits. An

166

identical flux is then automatically created between every two subsequent adjacent subunits in the
staged system. For example, in Figure 5-8, the rectifying section of a distillation column is
modeled as a staged system with 15 staged subunits. Fluxes in the staged system are declared
between the first two subunits, Rectifying_1 and Rectifying_2. For example, a convective flux
identical to flux Lr is propagated between every two adjacent subunits in the stage. Thus, stage
Rectifying_10 has a convective input flux, Lr_8, and a convective output flux, Lr_9, resulting

from declaration of Lr.

E% MODEL.LA - [= 1]
File Edit Model Simulation Utilties “window Help

eolenslesl k| ==

—o 9 [=] B3| == Hierarchical Tree BI=IE

2 |||z g® Distilation

=l & @ column

- - o® Pectifying

------ o® Rectifying_1
...... o® Rectifying 2
...... o® Rectifving_3
------ o® Rectifying_4
...... o® Rectifying 5
...... o® Rectifving_B
------ o® Rectifying_7
...... o® Rectifying_3
o® Rectifving_3
...... 3 R ectifying_10
...... o® Rectifing_11
------ o® Rectifying_12
...... o® Reclifing_13
...... o® Rectifing_14
iz,b_ o® Rectifying_15

- g SHipping

------ o® rehailer
------ o® condenser

-
2
X
;I 1 Properties View =1 B4
__________ ¥Va_ _——— Y — — - Rectifying 10 /s-2 modeled-unit

| Is-internakuni-of Rectifying
La has-materiatcontent Rectifving 10matl
' hascomvective-oulput Vr_8
| has-comvective-input Wr_9
lr’r TVr | hascomvechive-input Lr_8
|
|
|
|
|

hasconvective-output Lr_9
Comments:
Rectifying_10 is the 10th subunitin the stage Rectifying..

It has two convective input fluxes, Vr_9 and Lr_g, which
result from declaration of fluxes Vr and Lr, respectively,
hetween representative subunits Rectifying_1 and
Rectifying_2.

o Lrs -
Var It also has twao convective output fluxes, Vr_8 and Lr_9,
- which algo result from declaration of fluxes Vrand Lr,

P ¥ respectively. -
A v

Figure 5-8: Example Staged M odeled-Unit

Distributed modeling units may be declared by selecting the Distributed Unit icon on the
Add Process Units tab of the Modeling Assistant and dragging it to a flowsheet. A distributed
unit represents a process unit whose state is characterized internally by spatially distributed
properties. The assumed distribution of such a modeled-unit is declared using the Spatial

Distribution Dialog, shown in Figure 5-9, where the coordinate system, distributed dimensions,

167

and desired solution methods are selected. Distributed modeled-units assumptions are declared
using a differential element subunit, along with boundary subunits for each of the distributed
dimensions. The balance equations for such a unit are in the form of partial differential equations
(PDEs). In these systems, differential fluxes are added to or from the representative differential
element subunit for each distributed dimension. Fluxes to or from the boundary elements

determine the boundary conditions of the PDE balance equations for the distributed unit.

Spatial Distribution |

|' Coordinate Svstem

' Fectangular " Cylindrical " Spherical

H-dimensinnl y-dimenzion 2-dimetzion |

v Diztributed Dimenzsion

MHurber of Elements: I1 I minimumm [meters] ID
Order of Approximation: I2 rasimum [meters] I-I

— Solution Methiod

% Centered Finite Difference " Upwind-Biazed Finite Difference
" Backward Finite Difference " Orthogonal Collozation in Finite Element

" Forward Firite Difference

Cancel | Help |

Figure 5-9: Spatial Distribution Dialog

For example, Figure 5-10, a model of the classic heated fin example (Bird et al, 1960) is
illustrated. The fin is modeled with a rectangular coordinate system distributed along the z-
dimension (as shown in Figure 5-9). An energy flux, gz, is assumed along the z-axis. There is
also an energy flux, 7w, at the initial boundary of the z-axis, and another, gw, to the surroundings
along the length of the z-dimension. The no flux boundary condition at the final z-axis boundary
is established since there is no boundary flux declared at the final boundary element of the z-axis.

The corresponding steady-state model equations derived are listed in Table 5-1.

168

Table5-1: Heated Fin Model Equations

1. Unit fin_z energy balance
Z:= (Zmin, in> Zmax, rm)
(-Cuo o 2)) = (0€4ea o, 0e(2/0Z,,) = 0

2. Unit fin_z1 boundary ener gy balance
earea,q/.(z_coord_min_.ﬁn) = eTw, murc:/((xmax, fin ~ Xmin, ﬁn)*(ymax, fin ymin, ﬁn))

3. Unit fin_z2 boundary ener gy balance
€, (2_cOOrd_max_fin) =0

4. Flux gz flux integrated
z = (Zmin, fin? Z
€, () = (B g source 2™ Ko 1 = X 1)) ™ Vo 10 = Yo 1)

‘max, ﬁn)

Subsequent mechanistic characterizations of the energy fluxes assume a temperature fixed
by Tw at the initial z-boundary, Fourier conduction by gz along the z-axis, and surface convection
by gw at the outer boundary along the z-dimension, thus completing the heated fin example. The

additional model equations derived from these assumptions are shown in Table 5-2.

Table5-2: Heated Fin Model Equationswith Mechanistic Char acterizations

1. Unit fin_z energy balance
Z:= (Zmin, ﬁn|+7 A— rm|')
(-Cuo ol 2)) = (0€4ea o, 0e(2/0Z,,) = 0

2. Unit fin_z1 boundary ener gy balance
earea,q/.(z_coord_min_.ﬁn) = eTw, murc:/((xmax, fin ~ Xmin, ﬁn)*(ymax, fin ymin, ﬁn))

3. Unit fin_z2 boundary ener gy balance
€,en (2_co0rd_max_fin) =0

4. Flux Tw thermal equilibrium

T, .(z_coord_min_fin) =T, ...
5. Flux gw energy flux

Z:= (Zmin, v Lmax, rm)

€t qusoned 2) = (Uo o (2)F (T (2) - Tl (2)

6. Flux gz energy flux
Z:= (Zmin, v Lmax,)
e qn o 2) = (K, (2)*(OT , (2)/0Z,)))

7. Flux gz flux integrated
z = (Zmin, fin? Z

€, 2) = (Buren g el 2 Ko~ X 1)) * Vo 10~ Vi)

‘max, ﬁn)

169

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

kY | =
eOleBlmalEy| K| mE=(R] i
EF heated fin.la [_ o] x] I # Hierarchical Tree M=1E3 I
qu
T 4 h
L S— fin
A, .
7 Properties Yiew M=k
s Jin -2 modered-unit
i has-spatialdistibution rectangular
_ O] x| hasundistributectcimension x
;l has-minimum 0
- s hasmaximum 1

hasundisttibutecdimension y
has-minimum 0
hasmaximum 1

has-distibuted-dimension z
has-solution-rmethod CEDM

|
|
|
| hasnodes 10
| hasordar 2
- has-minimum 0
| hasmaximum 1
| hasinternakunit fin_z
hasinternakunit fin_z1
| has-infernatunit fin_z2
| hasenargy-input Tw

hasenergy-outout gw

a wi 8 &8 9
Blackbow Unit Uit with Vapor — Unit with Liquid ~— Unit with Wapor — Unit with Liquid Staged Unit Spatially Unit from Help
Fhaze Fhaze Ligquid E quilibrium Liquid E quilibrium Distributed Unit Template Library

Figure5-10: 1-D Distributed Heated Fin Example

5.2.3 Chemical Characterization

The chemical characterization of a phenomena-based model is characterized by declarations of
chemical species, chemical reactions, material-contents, and phases. Chemical species and
chemical reactions are declared by selecting the Declare Chemical Species and Declare Chemical
Reactions options, respectively, on the Specify Species and Reactions tab of the Modeling
Assistant (shown at the bottom of Figure 5-11).

» Chemical Species. In MODEL.LA, chemical species are selected from database using the

Project Species Selection Dialog shown in Figure 5-11. Chemical species in the database are
listed in the DATABASE group, and chemical species currently declared in the phenomena-based
model are listed in the PROJECT group. In Figure 5-11, four chemical species have been

declared for the model: acetic acid, water, 1-butanol, and n-butyl acetate. In addition to the

170

chemical species listed in the database (which currently contains the set of over 1400 chemical
compounds from the DIPPR database compiled by AIChE (1982)), new chemical species may be
declared by the modeler for inclusion in a model. Once chemical species are added to a
phenomena-based model, the modeler may assign these to the individual modeled-units, material-

contents, and phases in the model, and use them to define chemical reactions.
i MODEL.LA = [2]=]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

et N [=ER H

¥ Modella Project.la =] B3 || -7 Hierarchical Tree =] I
il ! ﬂ s ol Jacketed_Cstr
i g® Wessel
— i @ Jacket
Species Selection for MODEL LA Project HE
\:m —DAaTABASE Wiew by: —PROJECT
—Wiew Species:
- propionates and butyra;l o SDEC:Sd & Mame [Capyto atatbase |
BN Jacketed_Cstr - cycloalkanes 1| S = |UPAC Name
- cycloalkenes v User-defined Formula MNew Compatind |
- cpcloaliphatic alcohols -
. epoxides rBUTYL ACETATE Sl ! M [=1ES
- dimethylalk anes ETHYL ACETATE - ACETIC_ACID
| - dicarbowylic acids ETHYLEME GLYCOL DIALC WATER
- dialkenes ETHYLIDEWE DIACETATE 1_BUTANOL
| - naphthal GLYCERYL TRIACETATE _>> Aidd 53 n_BUTYL_ACETATE
| napHihaEnes ISOBUTYL ACETATE -
- ethyl & higher alkenes |SOPENTYL ACETATE
- acetates ISOPROPYL ACETATE
| T, H, F compounds METHYL ACETATE ml
| - fomates DECYL ACETATE
\ e
coolant inlet || " akileyslopentanes nHEPTYL ACETATE SEEEEy
»—7 - - organicdinarganic comp - nHE®YL ACETATE
4 | n-HONYLACETATE =l
“ |
I Cancel | Help |

Add Mew Process Units | Add Mew Fluses Specify Species and Reactions | Edit Process Units | Edit Fluses | Edit Control Loops | Model Simulation |

I

| Declare Chemical Help
Reactions

Figure 5-11: Project Species Selection Dialog

» Chemical Reactions: Chemical reactions in a phenomena-based model are declared using the

Project Reaction Dialog, shown in Figure 5-12, where participating species, their stoichiometry,
and other characterizations are declared. In Figure 5-12, the reversible reaction of acetic acid and
1-butanol to form water and n-butyl acetate has been declared. Once chemical reactions have
been declared in a phenomena-based model, the modeler may assign these to the individual

modeled-units and phases in the model.

171

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

et N [=ER H

" Modella Project.la I [=] ES 1= HisSichisal Tree =13 I
roectanta ingut ﬂ s o Jacketed_Csht

i g® Wessel
= o @ Jacket

ceolunt_oublct

e otucta_cutput
L Reaction Properties of renl: 1 ACETIC_ACID + 1 1_BUTANOL <==> 1 WATER + 1 n_BUTYL_ACETATE

EM Jacketed_Cstr Digplay Mames As:
I D efault A l

Global Species

Feactants Catalyst Products

= 10] x|
[RCETIC_ACID |1 [(nane) | WETER [T
ok |

ACETIC_aACID |« [~ Heterogeneous
WATER 1_BUTANOL 1 n_BUTYL_ACE[1
R Fizactant => ¢ Inevasie [oo |
ce ~f
=> Product | £ Equiibrium
j " Estent-based

Add Delet Drelet |
_4 elele elete
Iﬂ_l 3

coolant inl

_4

Species

Figure 5-12: Project Reaction Dialog

Chemical species and reactions are assigned to a modeled-unit by selection of the Assign
Reactions and Species option on the Edit Process Units of the Modeling Assistant. This activates
the Modeled-Unit Chemical Content Characterization Dialog, shown in Figure 5-13. Here,
chemical species and reactions declared for the phenomena-based model may be assigned to a

particular modeled-unit.

172

Unit Jacketed_Cstr Chemical Species and Reactions

— Speciez
[T Morrcondensible
WATER wWATER
1_BUTAMNOL . 1_BUTAMOL
n BUTvL_ACETATE _“ddta Uni | r BUTYL_ACETATE
Add to Project | Femove from Lnit |
— Reactionz
Add to Project |
Project
renl: 1T ACETIC_ACID +11_BUTAMOL <=j ol b [|
IIrit
ranl: 1T ACETIC ACID +11 BUTAMOL < Remove from Lnit |

ok | Cancel |

Figure 5-13: Modeled-Unit Chemical Content Char acterization Dialog

+ Material-Contents. A material-content is declared for a modeled-unit by selection of the

Specify Material Content on the Edit Process Units tab of the Modeling Assistant. This activates
the Material Content Declaration Dialog (as shown in Figure 5-14). Here the chemical species,
geometry (Figure 5-15), phases, and allocation of boundary fluxes to phases (Figure 5-16) for a

material-content are declared.

173

M aterial Content Flashmatl of Unit Flash |

— Phases Flashmat| %0 = Flashmat| L0 I

— Phaze Equation of State

Add Y apar |vaEDr Flazhmat] w0 4|
Redich Kwong Soave j

Add Liquid |
Add Salid | — Phase Activity Coefficient kModel
Delete Phase | I j
: : — Phaze Species
Edit Allocation of Fluses | ™ Mor-condensible
Speci TOLLUEME - Remaove from Phasze |
— Species
Project b aterial

— Reachons
TOLUENE HYDROGEN 2dd to Project
HYDROGEN BENZENE : |
ME THANE Add => | ME THANE Project

BIFHENYL BIPHENYL fren_mair: 1 TOLUENE + 1 HYDROGEM =7 | #dd to Phase |

LI ;l Phaze
Add ta Froject | Remave from Material | I j ey e fiom Fhase |

bt aterial Simulation O ptions | Declare Material Geometiy | Help |

Figure 5-14: Material-Content Declaration Dialog

Select Yeszsel Geometry for Matenal |

Mo Geometry Rectangular i Harizontal Sphere
Cylinder Cylinder
B @ &
Cone Wertical Harizontal Constant Crozs
Annuluz Annulus Sechional Area
[T Load Mew lcon [T esse! has vordlabaye maternal

Cancel | Help |

Figure 5-15: Material-Content Geometry Declar ation Dialog

174

E dit Allocation of Fluxes to Phazes of Matenal Flazshmatl |

Fluses Allozated Phases
Wapor_overhead, convective autput flug toYapar_recovery | vapar Flazhmat] w0 j
Feed, convective input flus from Beachon sechion raterial Flazhmatl
Liquid_battoms, convective output fus ta Liquid_recoverny liquid Flashmat_L0

k. Cancel |

Figure 5-16: Material-Content Flux Allocation Dialog

The declaration of a geometry for a material-content introduces relationships into the
mathematical model that express the height of the phases that compose the material-content as a
function of material volume. The available geometrical configurations are summarized in Table
5-3. Declaration of a geometry allows the allocation of boundary fluxes (e.g., convective outputs
streams) to be determined by geometry during model simulation. In such cases, a port height for
the boundary flux is designated. The properties of the material transported by the flux is
determined by the phase whose height overlaps that of the port height. For example, in Figure
5-17 a material-content is shown with two phases, phase-1 and phase-2, and three convective
output boundary fluxes, flux-1, flux-2, and flux-3, allocated to the vessel geometry. The material
transported by flux-1 is characterized by the properties of phase-1 since the port height of flux-1
overlaps that of phase-1. Similarly, the material transported by flux-2 is characterized by the
properties of phase-2. However, no material is transported by flux-3 since the port height of the
flux exceeds that of the entire material-content. Note that this allocation is not necessarily known
a priori and must be determined during model simulation. Thus, the allocation of boundary fluxes
to vessel geometry introduces conditional discontinuities into the mathematical model.
 Phases. Phases declared for a material-content are also assigned chemical reactions and
species using appropriate tab on the right side of the Material-Content Declaration Dialog

(shown in Figure 5-14).

175

Table 5-3: Geometric Vessel Configurationsfor a Material-Content

Geometric Relationships

Vessel

Geometry V=vessel volume, H,m,,e,,-fl;=materlal-content height Parameters
V pateriat = material-content volume -
L=length,
Rectangular V=LWH, H,k, ..=-H W=width,
H=height
Vertical cylinder V =1R’H H =H R=radius,
y ’ material H=height
Horizontal cylinder V =1R’L H =2R R=radius,
Yy ’ material L=length
V =1mR’L,
V e = L ¥ circlesegment(H ,,,,...» R),
Horizontal cylinder) _ 2 R=radius,
(with vessel void) circlesegment(h,r) =(h—r)\2rh—h L=length
2
. T
+r? arcsmB}i —IH+—
[r [2
4
Sphere V = ?RS, H, . ..=2R R=radius
Sphere _4n s _Ti .
(With vessel VOid) V - ? R 4 Vmalerial - E Hmalerial (3R - Hmalerial) R=radius
_Ti 5 _ R=radius,
Cone V= ER H, H,,..=-H Heheight
R;=inner radius,
Vertical annulus V=mR;,-R)H, H,,,, =H Ry=outer radius,
H=height
R,=inner radius,
Horizontal annulus vV = 7T(R22 - R]2)L, H,,...=2R R,=outer radius,
L=length
— 2 2
V=mR, -R)L,
Vmalerial =L * [CirCIesegment(Hmalerial 4 R2) - Ainner]’

Horizontal annulus
(with vessel void)

circlesegment(h,) =(h —r)\2rh—h*

+7? arcsinBﬁ—l&i,
or O 2

R;=inner radius,
R,=outer radius,

L=length
EO’ 0= Hmazen'az < R2 - R] 5
A = Epirclesegment(H material —~ By =R, R)),
inner .
] R2 _Rl < Hmazerial < R2 + Rl ’
2 .
%Rl ’ R2 + Rl S Hmalerial = 2R2 ’
' ' A=cross
Slanted cylinder W1th AlH sectional area,
constant cross sectional V= s material — H i
sin 6 H=height,

area

0 = slant angle

176

flux-3
vessel void N\ >
|
e e helght flux-3 port i
/:\ i
[}
| . |
i height I
! phase-2 flux-2 |
i phase-2 o > i
| | i
i helght flux-2 port i i
] 7|"\ -------- 1 !
i flux-1 ! I
I ! . ! I
: i helght phase-1 ﬁ : :
: ! phase-1 Vo | !
: : : helght flux-1 port : :
! |] i
NN N VoW

Figure 5-17: Example Vessel Geometry and Flux Allocation

5.2.4 Phenomena-Based M echanistic Characterization

* Phases. The physical state of a phase is selected when the phase is declared. Thermodynamic
characterizations of phases are also declared in the Material-Content Declaration Dialog (shown
in Figure 5-14). Either a P-V-T equation of state or, for incompressible phases, an activity
coefficient model may be selected to characterize the thermodynamic behavior of a phase.

* Fluxes. Fluxes are characterized by selecting the Edit Flux Properties option in the Edit

Fluxes tab on the Modeling Assistant (as shown in Figure 5-18).

Add Mew Process Unitsl Add Mew Flukes I Specify Species and Reactions I Edit Process Units ~ Edit Fluxes I Edit Contral Loops | Model Simulation I

» & & 2

Rename Selected Edit Flux Set Design Help
Flus Properties “ariables of
Selected Flux

Figure5-18: Modeling Assistant: Edit Fluxes Tab

This activates the appropriate flux characterization dialog for the selected convective, energy, or
selected chemical species flux, as shown in Figure 5-19, Figure 5-20, and Figure 5-21,

respectively.

177

Convective flux properties of F

Liid]
Incompressible 7]

Flux F comvective mass flux:
IF (Pg - Pt == epsilon
Myt F, source = (a7 Thoy, £1*(PF - Prnay)”)

FISF.

Figure 5-19: Convective Flux Characterization Dialog

Energy flux propertiez of q

Flux energy flux:
eqsomce = Aq*(Fq*(Thg) - (Tap 1)

Figure 5-20: Energy Flux Characterization Dialog

178

Species 02 Hux properties of diff |

— Transported Species

[0z =]

— Mechanizm

™ Pending

Congtant Cancel |

Surface Diffusion

Fickian Diffuzion

-~
o

~

" Knudsen Diffusion |7 Use species
™ Partial Pressure Diffusion sensentatans
" Chemical E quilibriurm

~

-

Partition Coefficient

Partition Driven Diffugion

Flux diff species 02 flux:
Mo sonmee = A (W, a0 02, lig, ligd - €02 map, map0))

Figure 5-21: Species Flux Characterization Dialog

 Reactions. Kinetic rate laws are declared for rate-based (i.e., reversible or irreversible)
reactions by selecting the Rate Law button on the Project Reaction Dialog (shown in Figure
5-12). This activates the Reaction Rate Law Dialog shown in Figure 5-22. Rate laws are
declared separately for forward and reverse rates of reaction. Template forms available for
reaction rate laws are listed in Table 5-4. If another form of a kinetic rate law is required, it may

be declared as a user-defined equation in the Operations Manager.

179

Reaction Rate of rxn0: 1 ACETIC_ACID + 1 1_BUTANOL <==> 1 WATER + 1 n_BUTYL_ACETATE

Fonward R eaction Rate | Reverse Reaction B ate I

Fiate Law Denominator Terms
’7 * none " bwo ' thiee " four
Murnerator I
Participantz
—Rate Constant
i s [BCETIC_ACD |2
= Pending SCETIC ACID
1_BUTANOL 1
r wATER 1]

m BUTYL_ACET:|0

 Arheniuz

 Modified &rhenivs 0= I

0

Cancel

Help

il

Rate Law: [T Use partial pressures

Phase Unitmatl V1 reaction 1m0 forward rate:

t_tenl)_FOra i map = (k_CONSHOIW 0 0 (CACETI 40D, Tt wapd” (€] AUTANOL Unit map0)

Phase Unitmatl VI reaction 1m0 reverse rate:

r_renll_backi wapo = (k_consthack, o*(C waree that vap0l) ™ (Cy BUTYE ACETATE, Uhit vapd)

Figure 5-22: Project Reaction Rate Law Dialog

180

Table5-4: MODEL.LA Reaction Rate Law Templates

For reaction: a\R, +a,Ry+..+a,R, - b P +b,P,+..+D,P,
. . _nf*n%* *ni* mf* mg* *m;
Define: F,(reaction) = cyp *cgl *..%cg *cp' *cp o Cp,
where: Cp represents the molar concentration (or partial pressure) of reactant R;,

¢, represents the molar concentration (or partial pressure) of product P;, and

n represents an exponent specified by the modeler.

For both forward and reverse reaction, rate law may be specified as one of:

no denominator terms: rate = k, * F, (reaction)
_ _ ky * F(reaction)
two denominator terms: rate = I+k, * F, (reaction)
k, * F,(reaction)
three denominator terms: rate =

1+ k, * F, (reaction) + k5 * F;(reaction)
four denominator terms:
k, * F,(reaction)
1+ k, * F, (reaction) + k; * F;(reaction) +k, * F, (reaction)

rate =

Rate constant models may be specified for each k;:

Constant: k, = const
Arrhenius: k, = A*exp(——)
RT
. . n; B Ei
Modified Arrhenius: k, = A *T" *exp(ﬁ)

181

5.25 Phenomena-Based Model Summary
At any point during the modeling activity, a complete summary of all assumptions and
declarations made for a phenomena-based model is available for display in the Project Data

Summary Dialog (as illustrated in Figure 5-23).

Poectata

todella 1.0 [beta)
Project Mame: Developer:
IMDdEIIa Project IF"ru:uieu:t Developer

Project Assumptions | Praject Commerts

Azzumphions | Comments |

Wessel Js-3 modeled-unit -
isinternatunitof Jacketed Cstr
hasspecies ACETIC_ACID
hasspecies WATER
hasspecies 1_BUTANOL
hasspecies n_BUTYL_ACETATE
hasreaction rxnl LI

L T L N e e L]

Units |Flu:-:es| Heau:tiu:unsl Speciesl Controllers | Transmission Lines

: bl Liquid Phase Weszelmat_LO
&4 UnitJacket
&4 Material Jacketmatl
@ Liquid Phase Jacketmat_L0

Cancel | Help |

Figure 5-23: Project Data Summary Dialog

This dialog groups all modeling assumptions by element type. Here, comments for any modeling
elements may be documented and edited. Hypertext is used to facilitate navigation of the
phenomena-based assumptions.

In addition, the assumptions of any modeled-unit in a phenomena-based model may be

saved, along with its topological and hierarchical structure, as a template in a model library for

182

reuse in the same or any other modeling project. A model template is added to a model by

selecting the Unit from Template Library icon on the Add Process Units tab of the Modeling

Assistant and dragging it to a flowsheet. This activates the Modeled-Unit Template Selection

Dialog (Figure 5-24), where the appropriate template library file is selected.

Select Unit Template |

todella 1.0 [beta)

Current Template
IE:HdeeIIa'\ESTH.Iat Load Mew Template |

Azzumphions | Comments

Jacketed Csir sz modeled-unit
hasinterna-unt Wessel
hasinternaFunit Jacket
hasconvective-inout reactants _input
hascomvective-ouiout products owtput
hascomvective-input coolant_inlet
hascomvective-output coolant outlet

Units | Fluzes I

=@ Unit Vessel
L b Material Vesselmatl
: bl Liquid Phase Weszelmat_LO
&4 UnitJacket
&4 Material Jacketmatl

@ Liquid Phase Jacketmat_L0

Cancel | Help |

Figure 5-24: Modeled-Unit Template Selection Dialog

5.2.6 Mathematical M odd Derivation

When the modeler completes the phenomena-based model description, MODEL.LA analyzes

model for any inconsistencies or incompleteness (e.g., missing assumptions, inconsistent species

allocation, and unallocated fluxes). If any are detected, they are described to the modeler in the

Model Inconsistency Dialog (illustrated in Figure 5-25). Such inconsistencies must be remedied

183

before a mathematical model can be derived.

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

et N [=ER H

19 Modella Project.la Inconsistencies in 5pecies Allocation Tree I] 3 I
cevctanta ingul
= Cshr

MODEL - Connection reactants inout is not properly attached |
nnection products_output iz not properly attached b
MODEL -- Connection coolant_inlet iz not properly attached |
MODEL -- Connection coolant_outlet is not properly attached

£ Jacketed_Cstr Iodel Structure iz incomect -- fix before proceeding ReCheck | oK I Help |

I
___________——————————| 7 Properties Yiew =10 %]

coolant outlet essel is-g modeled-unit

I—’- - Is-intermalunit-of Jacketed Csir

| has-species ACETIC_ACID
has-species WATER

| hasspecies 1_BUTANOL

| has-species n_BUTYL_ACETATE
hasregction rznl

| has-materiaFcontent Yesselmatl

|

|

|

Iredctdntsﬁinput i

Tacket

Vessel
SR

|

|

| |

| g exchange
|

|

I

hasenergy-output 4 exchange
o aoiant_inlet

Wesselmatl /52 material
Is-materiaFcontent-of Vessel

_4

hasliquickphase Vesselmatl 10

4
= - Taets obmir has-species RCETIC_ACID
}Pro ucts output hag-species WATER
& hasspecies 1_BUTANOL

il *[/|l hasspecies n BUTYL ACETATE x|

Add Mew Process Units | Add Mew Fluxes | Specify Species and Reactions | Edit Process Units | Edit Fluxes | Edit Control Loops Model Simulation |

B : g H B ®
%)=0
Edit Simulation E dit zer Steady-State Diynamic Steady-State Diynamic Help |
Options Equations Simulation of Unit Simulation of Unit Simulation of Simulation of
Project Project

Figure 5-25: Model Inconsistency Dialog

When the phenomena-based model is completed, a derivation context for the mathematical model
is specified using the Simulation Options Dialog shown in Figure 5-26. The level of detail for a
hierarchical model may also be specified by selecting the desired resolution in the Hierarchical
Tree. The model equations are then generated from first principles based on the modeling logic
operators described in the previous chapter. The model equations which are automatically
derived include conservation equations, equilibrium relationships, transport mechanisms, rate
laws, geometry constraints, extensive property decompositions, etc. These equations are
supplemented with thermodynamic and physical property correlations constructed by the
MODEL.LA Properties Manager, and additional constraints from the Operations Manager. The

model equations derived for the Jacketed_CSTR model in this section are given in Appendix D.

184

Model Equation Generation Options |

— Ophions

¥ Dwnamic Balance Equations

¥ Include Energy Balances

[T Use Masz-Bazed Variables and Balances

[Include Process Unit E stensive Yariables for Steady-State Simulations
V¥ Include Phyzical Property Correlations

¥ Use Species sllocation to Feduce E quations

[Include Economic Potential B elationzhips

[Include Entiopy Relationships

V' Include Yalumetric Flowrates

[Include Control Equations

[T Compact E quations

Simulate Cancel Help

Figure 5-26: Simulation Options Dialog

5.3 Properties M anager

The MODEL.LA Properties Manager constructs correlations that describe thermodynamic and
physical properties of mixtures (i.e., phases) based on the selected state, equation of state or
activity coefficient model, and selected chemical species for each phase. These properties are
expressed as equation-based functions of pressure, temperature, and composition, and are
appended to the model equations derived by the Model Generator. These correlations are
dependent on the constant and temperature-dependent pure species properties and binary
interaction parameters declared in the database. Supplementary details regarding the MODEL.LA

Properties Manager are given in Appendix B.

185

5.3.1 Pure Species Properties

The MODEL.LA Properties Manager currently accesses the DIPPR database, which contains
data on 36 constant and temperature-dependent properties of over 1400 chemical species. A
modeler may add additional species to the database as necessary. Each species is characterized by
a set of identification properties (Figure 5-27), constant properties (Figure 5-28), temperature-
dependent properties (Figure 5-29), and UNIFAC groups (Figure 5-30) that are displayed and

may be edited using dialogs.

5.3.2 Binary Interaction Parameters

In addition to pure species property data, the MODEL.LA Properties Manager stores data on
binary interaction parameters for equations of state (Figure 5-31) and activity coefficient models

(Figure 5-32). These data are also displayed and edited using dialogs.

5.3.3 Material Behavior Analysis

The MODEL.LA Properties Manager provides several features to facilitate the study of the
behavior of phases that are declared by the modeler, independently of model equations derived by
the Model Generator. The thermodynamic and physical properties of these phases are based on
assigned species and assumed equation of state or activity coefficient models in a phenomena-
based model, along with pure component data and binary interaction parameters from the
database. The Phase Equilibrium Calculations Dialog (Figure 5-33) of the Properties Manager
is used to perform flash calculations for multiphase systems. The Phase Properties Dialog
(Figure 5-34) displays and plots correlations for physical and thermodynamic properties of single
phases. Finally, the Phase Diagram Dialog (Figure 5-35) is used to generate phase diagrams for

multiphase systems.

186

Project Species Properties E3

Compound:

Eead fram dbl Erave fodi | Cancel

Help

[dentificatian | Properties | Conelations | LIMIFAC |

Index |30008

Name |n_BUTYL_ACETATE
IUPAC Name |BUTYL_ACETATE
CAS & | 123364

Formula |ceH1202

Stucture |CH3CO0_CHZ_3CH3
Chemical Group Iacetates

Change Group...

Figure 5-27: SpeciesDatabase: Identification Properties

Project Species Properties E3
Compound:
Eead o d | Srawe ol | ﬂ
o - : Help
Identification Froperties Eorrelahonsl UNIF.&EII
talecular wWeight 116.16 kgkmal
Critical Temperature 57915 K.
Critical Pressure 3110000 Fa
Critic:al Y olurne 0.339 ri 3 kil
Critical Compreszszibility Factor 0.251
telting Paint [1 atm] 199.65 K.
Triple Point Temperature 199.55 K.
Triple Paint Prezsure 1.143467 Pa
Muormal Boling Paint [1 atm] ECE
Liquid Malar Yolurne [at 298.15K) 1.132593 3/ kol
Enthalpy of Formation (ideal gas] 485500000 Jfkmal
Gibbs Energy of Formation [ideal gaz) [-312600000 JAkmal
Abzolute Entropy (ideal gasz) 442500 JAkmol-K
Enthalpy of Fusion 14400000 Jkmol
et Enthalpy of Combustion -3280000000 JAkmol
Acentric Factor 0.410061
Solubility Parameter [at 298.15K)] 17590 [l 2
Dipole Moment £.14e-30 cm
wan der W aals Reduced Yolume 0.07323 m3/kmol
van der Waals Area 1049000000 m2/kmal
Lawwer Flammability Limit 1.7 wol2 in air
|pper Flammability Limit 7E wal i air
Auto-ignition Temperature £94 [

Figure 5-28: Species Database: Constant Properties

187

Project Species Properties E3

Compound: ok |
Eread from dbl Save tad | Cancel
i Hel
\dentification | Properties Comelations | UNIFAC | i
— Property
& Liquid Density ' Second Viial Coefficient
" Solid Density " Absolute Liguid Viscosity
" Heat of Waporization " Wapor Yiscosity
" |deal Gas Heat Capacity " Liguid Thermal Conductivity
" Liguid Heat Capacity " Wapor Thermal Conductivity
" Solid Heat Capacity ' Surface Tension

€ Wapor Pressure

— Correlation
Equation Code: 105 Unitz: kmolm3

IEI. 26028

I 57315

IEI. 309
I—

Awailable Equations min Temp (K] = [195.65

| vl Select | Plat | max Temp (K] = [573.15

= |0.663

B
B
A C
13U+{1-T:C)D) 0

E

=

Figure 5-29: Species Database: Temperature Dependant Properties

Project Species Properties E3

oK |

Eead fram dbl Erave fodi | Cancel

Compound:

Hel
Identificationl Properties | Carelations UN|F-‘3\C| er

— Equilibrivm
' apor-Liquid " Liquid-Liquid

— UMIFALC Groups

CH3 -
CH2
CH

Group Arnaunt

C
CH2=CH
CH=CH

CH3 1
CH2=C S

CH=C |
ol ol CH3coo

ACH

AC |
ACTHA [VE[Ete

ACCH2

ACCH

OH

CHA0H

Hz0

ACOH

CHACO

CH2C0 hd

— L2

Figure 5-30: SpeciesDatabase: UNIFAC Groups Properties

188

Binary Data for project compounds EE3

2_PROP&MOL -
wWATER -

Figure 5-31: Species Database: Binary Interaction Parametersfor Equations of State

Binary Data for project compounds EE3

2_PROP&MOL -
wWATER -

20,4000 £23,0000

Figure 5-32: Species Database: Binary Interaction Parametersfor Activity Coefficient M odels

189

Phase Equilibrium Calculations

— Owerall M aterial Data
tale Fractions |D.392DDD

WATER

Eum =

Temperature: [352.150000 | K
Pressure: [1450.00000 | Pa

Total Malar mazs: 1 mole

EHE
M_W0 M_LEI|

E quation of State; IIncompressibIe "I
Activity Madel: I\A-"ilson 'I

Maole Fractions |D.288511

M_VO

WATER 0.733483

Eum =

kalar mass: |U_541 250 moles

Defing Design Varables |

Flazh Calculations i

Ehase iaanan | Phaze Froperties |

ok | Help |

Given the TP and the overall composition of the mixture, calculate the conmpozition and amount of each phase

Figure 5-33: Phase Equilibrium Calculations Dialog

Phase Properties

—Data

— Reference Data

Mole Fractions [0.266511 Temperature 3531650000 | K Temperature
WATER 0733459 Fressure [31450.00000 Pa . [252750000 | K
Physical State | Linuid []| | Fresue
g : [330 Pa
E quation of State Ilncompresmble 'I State
Total= 1.000000 Activity Model | Wilsan =l f1deal Gas =l
Physical Properties Thermodynamic Properties |
(o " Enthalpy " Entropy
" Intemnal Energy " Gibbs Energy " Helmhaoltz Energy

E quation:

[[[[158760 + [[-E35FT_mat]] + [1.9654T_mat™2]I"«_2_PROFAMOL_] + [[[[276370 + [[-2090.1]T _mat]] +
[8.125°(T_mat™2]]] + [[-0.01 4116(T_mat™3]]] + [9.3701 &-06*(T_mat™4]]*«_WATER_]) +
(0% 2 PROPANOL_] + [0%_WATER_]]

4 alue: |1 03434.9909 Jékmol-K

Expand Equation... |

Flat Equatiar... | ok I Help

Figure 5-34: Phase Properties Calculations Dialog

190

Multi-Component Phaze Diagram ﬂm

—arnable to vary

ramy Phase Diagram |x_2_PROPANDL_M_v0 =]
1

i walue: ||:|_|:|1
0.0 s walue: ||:|_E|E|

of steps: |
of skeps: (100 ﬂl
0.a
—Yariables ko plot
|P_h =

0 WE.
|x_2_PROPANOL_M_LD =]

o7

0.5

Flot on new graph |

0.4
o 0.z 0.4 0.6 0.3 1

talar fraction
oK Help |

Figure 5-35: Phase Diagram Dialog

5.4 Operations M anager

The MODEL.LA modeling language is designed to represent chemical processes in terms of
interacting physicochemical phenomena. From this phenomena-based description, the
corresponding model equations are derived from first principles whenever a mathematical model
is required. There are several situations, however, where additional relationships are needed to
describe certain modeling objectives and complete the mathematical model. The MODEL.LA
Operations Manager provides facilities for the modeler to introduce these additional relationships
integrated within the context of the phenomena-based model description. Supplementary details
regarding the MODEL.LA Operations Manager are given in Appendix C.
In MODEL.LA, the modeler may introduce four different types of relationships in the

Operations Manager, including:

1. User Equations,

2. Process Controllers,

3. External Models, and

4. Operational Schedules.

The declaration of each of these types of relationships will be discussed in the remainder of this

191

section.

54.1 User Equations

User Equations represent generic equations adde

d to the mathematical model by the modeler.

Such equations are declared using the User-Entered Equation Dialog illustrated in Figure 5-36.

Uszer Entered Equation |

—ariables
&= Unit:
™ Flux
i~ Chemical Bxn
" Parameters Fhazes:

Benz_reboil |

w_BE

b aterial
Benz_rect_1 wapl
Benz_rect_10
Benz_rect_11

Benz_rect_12
Benz_rect_13
Benz_rect_14
Benz_rect_15

[

Wariables:

HZEME_Benz_condmat] L0 [species molar fraction]

Species:

BEMZEME

_i [peu:ies malar concen | BIPHEMYL
nrho [molar dengity] METHAME
h [zpecific enthalpy] TOLUEME

ac_i [species activity cosf
wp_i [wapar pressune]

nCp [molar heat capacity ¢
v [misture molecular we

Enter Mew Y ariable: I

Declare &z Uzer Defined Y anable |

— Idzer Entered E quation

[nzert Y ariable | Delete\:"arial:ules;"[lperatursl

Backup

Add Mumeric value: | I

NMEDROFEN fed, coree = 2 [[MAENIENE, feed, cormee T MIOIIENE, feed, sonmce) T WAPEENYT foed, sonmee

— Operators

+

I

e:-:pl In |.-'1‘-.E!5| zin

coz |

Help I

Cancel |

s|lol o]

Figure 5-36: User-Entered Equation Dialog

Here the modeler may construct arbitrary mathematical equations that interrelate variables

associated with the phenomena-based model and also additional variables, parameters, and

numerical constants that the modeler defines.

192

These equations are stored symbolically and

subsequently appended to the model equations derived from the phenomena-based representation.

5.4.2 ProcessControllers

While equations that introduce continuous process control laws may be defined as User
Equations, the MODEL.LA Operations Manager allows control structures to be introduced
explicitly as elements in the process modeling flowsheet. This methodology enforces an intuitive
distinction between the model behavior that is the result of physicochemical phenomena
(exemplified by the conservation equations) and the behavior that stems from external intervention

(due to manual or automatic manipulations of process parameters).

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

lerley k| == H

= Modella Project-Controlled._la W= B3 || = NScketed Estr M=1E3 I
- -
reactants input
= — : L
_ _ _ |¥egctapts ipput P
- 1
coclant outlet ‘
> coolant outlet ‘
£1 £
Jacketed_Cstr g exchange WP
Vesscl FlowEqualizer| |
coolant inlet -—l—- r
»— = \
\M_____/ TV |products output 7+ ‘
T J |T_V |products output N ‘
flow in ‘
flow ‘
Ctrl flow I ___________‘
4 coolant inlet
flow sp

Add Mew Process Units I Add Mew Fluxes I Specify Species and Reactions I Edit Process Units I Edit Fluxes ~Edit Control Loops | Model Simulation

W ¢ W o oW e & 7

Add Controller Add Task Add gPROMS Add Edit Equation E dit Equation Uit Help
model Tranzmizzion Unit Tranzmizzion from Library

Figure 5-37: Declaration of Control Structures

Controllers are introduced by the modeler using the Edit Control Loops tab of the
Modeling Assistant (illustrated at the bottom of Figure 5-37). Controllers may represent process

controllers, valves, sensors, actuators, etc. Conservation equations are not derived for a

193

controller. Rather, each controller in the model relates a set of one or more input variables to a
set of one or more output variables through a set of control laws (i.e., equations). Transmission
lines establish links between the input and output variables of the controller and process variables
associated with the phenomena-based model that are being measured or manipulated by the
controller. The associated variable of a transmission line is selected using the Transmission

Variable Selection Dialog illustrated in Figure 5-38.

Edit Transmission |

— Tranzmitted Y ariable

h.ligd
v ligl
M lig0
M_i
M_i.lig0
HCp.ligd
tirbi, ligd
Fl

M

|

Wariable Mame: IT_*J acketmat]

[0 et vanable st snbsequent Fieranehizal [evel

— ' alue

[Has lower bound [T Has upper baund

Help | Cancel |

Figure 5-38: Transmission Variable Selection Dialog

In defining process control relationships, the modeler may select from a set of predefined
control law templates (e.g., PID control) or may define an arbitrary set of equations to serve as
the control laws. Control laws are specified using the Control Law Specification Dialog,
illustrated in Figure 5-39. A restriction is imposed that each control structure is structurally self-
consistent (i.e., given the set of controller inputs, the controller laws provide a well-defined set of
mathematical equations that may be used to uniquely calculate the set of controller outputs. At
solution time, the equations represented by the process controller are appended and solved

simultaneously with the conservation equations generated by the Model Generator.

194

E dit Controller

EE|

—State————— — Mew Equation — Parameters

[Achive

Edit Farameters. ..

Time-dependent

Linear Differenl
Congtant Outpe

[walid Equation:

Linear Output =] Edit Time-E vent Instants. ..

I i oos Mew Eguation... | Mew Schedule. .. Replace Temparary Y ars. .

— Control Equations

T =p = [CH Yo hiaz + [Ch YoESHT sp- T Wesszelm

St + [Chl T % Kc/Chl 1% BFCH T

[Ea. | Edit & Custorn. .. Delete | [Active

PID equation in Cirl T WV
Te sp=(Ctl T V bias +(Ctel T WV Ke®T _sp - Tigew) +
Ot T W EefCtel T VW t*Ctel T W_IM

OF. |

Figure 5-39: Control Law Specification Dialog

5.4.3 External Models

The concept of a structurally self-consistent process controller modeling element has been

extended to also incorporate elements modeled outside of MODEL.LA.

components, modeled using the gPROMS equation-based modeling language (Barton, 1992),
may be incorporated as external models on the MODEL.LA process modeling flowsheet. Each
such external model is associated with a gPROMS model definition file. Transmission lines are
again used to establish links between the input and output variables of the external model and
process variables associated with the phenomena-based model. The gPROMS External Model

Definition Dialog (illustrated in Figure 5-40) is used to relate process variables to variables

195

These external

appearing in the external model definition file. In a similar manner, the open-architecture features
of the gPROMS language may be used to send, retrieve, and incorporate runtime data from

external applications during model simulation.

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties Window Help

pnléla Eélaél LI E§|E EI Edit gPROMS Model (7] =]

— State Simulation type Model
IR ext_task.la) & Diynaric
V¥ Active i Path: IEI:\BE5\m0della\gPF|DMSmodeIs\rowctrI‘I.gPHDM
" Steady-state
y N e (R MODEL: [Flow_Contol Z] _ Bowse. |
4n_walver
I T 140 Interface
£33 Input variables: gPROMS model variables:
F_tankmatl MOMNE -
height_tat_tankmat]_LO Walve. Pogition
W alve. Flow
in Walve Press_In
Walve, Press_Out
Walve. Delta_P
. Walve Valve_Caonstant
Dutput variables: ¢ blteh 2 Walve Control_Action
n_flus_out Controller. S etpaint
Controller. Measured_Variabh
LLI Controller. Gain
=1 Propertics Yiew Controller. Integral_Error LI
fow control /s-5 equation-unit Edit Model Variables. .. |

Ismodglec-as active
Ian-externakmodal ~ Interface equation:
has-path CLoPROMS
corresponds-io-gPROMS-model Flow_Contral
hasinpuktransmission t1
hasinpuktransmission 12

F_t Pump.Press_In
height_tat_tankmat]_LO = Pump.Height

hasoutput-iransmission t0

Output wariables
n_flux_out =Y alve Flow

Help |

Add Mew Process Units I Add Mew Fluxes I Specify Species and Reactions I Edit Process Units I Edit Fluxes ~Edit Control Loops | Model Simulation I

W ¢ W o oW e & 7

Add Controller Add Task Add gPROMS Add Edit Equation E dit Equation Uit Help
model Tranzmizzion Unit Tranzmizzion from Library

Figure 5-40: gPROMS External Model Definition Dialog

5.4.4 Operational Schedules

In the definition of a combined discrete/continuous model in gPROMS, processes are formed by
the application of tasks to instances of models. A gPROMS model encompasses a set of
continuous mathematical equations meant to describe the behavior of a modeled system. Tasks,
which represent discrete procedures such as control actions or disturbances, may be imposed on
the modeled system. Both models and tasks may be defined hierarchically through inheritance
from other models or tasks, respectively. Tasks are used to compose schedules, which specify the

sequential or concurrent (i.e., parallel) execution of selected tasks. Furthermore, alternative tasks

196

may be executed conditionally, based on run-time process conditions, or iteratively, where a task
is executed repeatedly until some conditions are met.

In a similar manner, the definition of tasks and schedules may be incorporated into the
definition of a phenomena-based model using the Operations Manager of MODEL.LA. The task
element, declared on the MODEL.LA process model flowsheet, represents the discrete
manipulation of a process variable (e.g., volumetric flow rate). This allows discrete events, such
as opening a valve or charging a reactor, to be modeled. Such tasks are used to compose
schedules, which are comprised of a set of actions and events executed sequentially or in parallel.
Different types of actions and events allow the declaration of complex schedules involving
sequential and parallel branches with actions triggered by a multitude of conditions. Separation of

schedules from the phenomena-based model allows different schedules to be implemented for the

same model.
R MODEL.LA Event Equation EHE
File Schedule Ullites ‘window Help “ariabl
I"Dl l!‘:‘@ Eél @El k | E;lE E Ir!puts: Event Parameters: Task Parameters
time Ewentd_DeltaT
™ scheduled cstr.la 3’?&?2;::::::{'3
feed flow
feed_taslc
%reactor_vol_fill storage vo Edit Parameters..
r— Equation
feead product
= Insert anable Delete Vanable.fUDeralursl Backup I Add Mumenc value.l I
Reactor Storage
reactor wvol empty Vstomee, i < 100
reazctor rate
- product flow
> —— -
product_task
Operatars
PO D B (=
;I J li ABS
exp | log | sin | cos | tan G 5
E¥ Schedule:main ook e
) B | []) [AND[OR
< | =] =] >
Initial-Vhile When -
When @ roduct_onfl)- V2T oroduct_offfendWhile
= ~ L —{End
Ewvent Unit '
Edit Parameters " Void
Operations Schedule | Task Selected When
@ [feed_task: Irout Variatie: & wihile
o e o = 0O =
@ NONE " End'whie
Add Start Add End Add Action AddEvent Add Condition Add Parallel Help
Ok | Cancel |

Figure 5-41: Specification of Operational Schedule

197

In MODEL.LA, there are two primary steps in declaration of a schedule. The tasks are
first declared on the process model flowsheet and then these tasks are used to compose the
schedule. Similar to a process controller, each task on the process model flowsheet is associated
with a set of one or more measured variables, represented by transmission lines incident to the
task icon, and a set of one or more manipulated variables, represented by transmission lines
incident from the task icon.

Once the necessary tasks have been declared on the process model flowsheet, a schedule
can be defined. In MODEL.LA, schedules are defined graphically using flowcharts (as illustrated
in Figure 5-41). A schedule is composed of a structured sequence of tasks and/or other schedules
(allowing a hierarchical description of composite schedules). Every task in a schedule is
composed of an event followed by an action. When control passes to the event and its condition
is satisfied, the action is triggered.

Events in a schedule flowchart are depicted as arrows that interconnect icons which
represent actions. Events may be of type void, when, while or end while. When control is passed
to a void event, the associated action is immediately triggered. When control is passed to a when
event, the associated action is triggered once the condition defined for the event is satisfied. At
the conclusion of an action associated with a void or when event, control is passed to the
subsequent event. When control is passed to a while event, if the condition defined for the while
event is not satisfied, control immediately passes to the subsequent end while event in the
schedule and the action following the end while event is then triggered. If the condition defined
for the while event is satisfied, the associated action is triggered and execution of the schedule
continues from that point until an end while event is triggered. At that point, control returns to
the previous while event. In this manner, the while event allows the definition of iterative task
execution. A condition defined for a when or while event may be a function of a time event (e.g.,
time < 1 hour), a state event (e.g., temperature = 300 K), or both. In the case of a state event, the
event must be associated with a task that measures the required input variable.

Each action in a schedule is associated with a task that results in the manipulation of some
process variable when the action is triggered. Each schedule must consist of an initial event
(representing the start of the schedule), one or more intermediate actions, and at least one end

action (which represent termination of the schedule). Conditional branches in a schedule may also

198

be defined to specify alternative paths in a schedule. Here, the branch taken in the schedule is
determined during the simulation by the validity of the conditional defined by the modeler.
Parallel branches may also be defined to introduce the concurrent execution of two or more
branches in a schedule. Finally, composite actions may be defined which embed an entire sub-

schedule or operating procedure, allowing a hierarchical abstraction of complex schedules.

Simulation Resultz Examination x|

Sz Linits |F|UHESI USETVGISI Graph |Numerical Valuesl Design'\r‘ariablesl

Current Simulation

= Gyl

Save Current Datal Urits
Reactor 120
Load OId Data |

Simulation Of scheduled cstrla

100
Phazes
|IiﬂD 30
50
W ariables
M_i [zpecies moles) Al

T [temperature]

11 [internal ener
I 20

Species
0
0 1 2 3 4 3] 4]
time (s) x 10"-3
waniable unitz p— = " =
o3 B %, Reactor (m*3)

2.V, Storage (m*3)

Expand Graph | 0k | Help

Figure 5-42: Discrete/Continuous Behavior of Scheduled Process M odel

The introduction of Operational Schedules introduces a hybrid discrete and continuous behavior
into a phenomena-based model simulation. Figure 5-42 illustrates the such behavior for the model
shown in Figure 5-41. In this example, the Reactor is charged to a volume of 10 m’, then drained
into a Storage vessel once the rate of reaction in the Reactor falls below a certain level. This is
repeated (using a while task in the schedule) until the volume of material in the Storage vessel

exceeds 100 m’.

199

5.5 Numerical Engine

Once the model equations are derived by the Model Generator and supplemented with additional

correlations and relationships from the Properties Manager and Operations Manager, the

complete mathematical model is passed to the Numerical Engine of MODEL.LA. Here, the

modeler is guided through specification of design variables, initial guesses, an index analysis and

initial condition for dynamic models, solution of the equations, and display of results. The entry

point into the Numerical Engine for the modeler is the Numerical Engine Toolbar (Figure 5-43).

Mumerical Engine

=

Design Initial
Variables | Conditions

Progress

|'Numeri|:al Engine Status H ge: |

Figure 5-43: Numerical Engine Toolbar

Model Equation Yiewer EE

1. Unit Vessel species ACETIC_ACID halance -
(T-MacEri ACD, products cutpat, souree) + WA CETRY ACHD eactarts pnat senmee) + (-2t 2000001 15q0) = 0

2. Unit Vessel species WATER halance
[(-MEATER roducts ot source) + MHATER eartude it comce) T 830 _12000ece] 1ign = 0

3. Unit Jacket species WATER halance
M EATER coolirt nlet souree - MHATER, cooluwt cntlet source = U

4. Unit Vessel species 1_BUTANOL halance
(T-M; AUTANeIprodacts ot source) + W BUTANGE, teartuts et source) + (-8t _£0t05ece 15000 = 0

5. Unit Vessel species n_BUTYL_ACETATEhalance
([-My AUTYL ACETATE.products o source) + My AUTYL ACETATE, renctarts ot sonree) + 83 1000050001 1000 =0

6. Phase Vesselmatl L0 sum of individual species mole fractions
((XACEIIY ACD, Woseel ligh T XWATER, Vossel Ligh) T X7 BUTANDE, Vhesel ligl) + X BUTYL ACTTATE, Voesel ligh = |

7. Phase Vesselmail L0 species ACETIC ACTD molar concentration
CACETIC ACID, Vessel liah = RACETIC ACID, Vessel. Lig) * T whseel 1ig0

2. Phase Vesselmatl L0 species WATER molar concentration
C WATER, Vel lig) = XWATER, Versel Ligd "FHOR Thecel lion

— Options

[+ Physical Property Carrelations as Functions [T Show Output Yariables Find Text From Cursor |

[T Show Equation Fesiduals ™ Shaow Equation Jacobian Find faain |

Help

i

Figure 5-44: Model Equations Dialog

200

5.5.1 Display of Model Equations

The modeler may view the complete set of model equations at any time by selecting the option
View Equations on the Numerical Engine Toolbar. This activates the Model Equations Dialog
(Figure 5-44). Equations, terms, and variables, are all related to the modeling elements that
produced them through the use of subscripts and headings. Also, the basis of each equation (e.g.,

Acetic Acid balance) is displayed.

55.2 Design Variable Specification
The first task in the specification of the mathematical model is the selection of the design (or
known) variables. The modeler initiates this action by selecting the Design Variables option on

the Numerical Engine Toolbar. This activates the Design Variable Specification Dialog (Figure

5-45).
r Unknown Y ariables Degign Wanable Swapping Selecton ————————————
 Units n_tlux_coolant_inlet [malar fus) To make the sellec:ted unknown a desigh v:ariable, you

& must exchange it far one of the current design
= variables. Please select a current design variable that

"' Chemical Rzns wou are willing to refinguigh from the lizt to the right.

" Parameters Phazes: " aniables: Species: T Tt et

e e R

coolant_outlet h [zpecific enthalpy)]) -

products_output

q_exchange

reactants_input :
riho [molar density]
%_i [species molar fraction)

[~ SortMarables By Type Weelare Fondl Stages: Weclane as Wesign Yarnakle Swap vanables E quationz |
— Design Variables

Area, q_eschange 1 o L] = Declare as Unknovan W ariable |
Uo, q_exchange A00 w2 K x
k_constfor, rnd 0.013 S1 Uits - Exchange with Unknown |
k_constback, rsnl 0.0044 5| Lnits

- = = [Change v alue Eandll Stages |
T, coclant_inlet 25 Celsius -
w--source, coolant_inlet 0.2 m"Hs - Suggest |
T, reactants_input 50 Celsius -
w--source, reactants_input nz m"3s - Export DOF |
i1 BUTAROL, reactants_input 0.5 mole fraction x
ACETIC_ACID, reactants_input 0s mole Fraction - LI DOF Left I 0

Laad Simulation Save Simulation | Dizplay Equalionsl QK. I E «it | Help |

Figure 5-45: Design Variable Specification Dialog

The number of variables that must be specified (also referred to as the number of degrees of

freedom) is equal to the number of variables minus the number of equations in the mathematical

201

model. The Design Variable Specification Dialog displays all variables in the mathematical
model, grouped according to modeling element (e.g., Vessel) or variable type (e.g., temperature).
As the modeler selects each desired design variable, the structural consistency of the selection is
immediately verified using an incidence matrix (Steward, 1962). If the selection conflicts with any
preselected design variables, a list of the conflicting variables is presented for exchange with the
most recent selection by generation of all feasible Steward paths (Steward, 1965). At any point in
the selection the modeler may request that a structurally consistent set of design variables be
proposed to fill the remaining degrees of freedom, which are determined using the path
augmentation algorithm described by Duff (1981a, 1981b). The modeler may review these
suggested variables and for each that is not a desirable design variable, the alternative variables to
replace it are presented for exchange.

Causzes of DAE High Index Problem HE

— These izsues must be addreszed before the model may be simulated.

— Implicit B ate Y aniables Dynamic Design ' ariables

— Singular Subset of Equations
|i. Phase Jacketmail L0 enthalpy corrvelation from PPM i’
Moot lign = FI Tracer)

2. Unit Jacket extensive variahle Un_Jacketbmnatl deconposition
Uraciat = (Mracket, Lin0 *Macket, 1iq0]) - (P Tacket * Vindiat) r

— Implicit Differential Equations

DAE |r'u:|e:-c=| 2 <- Back |
DynamicDDF=| B Help |

Figure 5-46: High Index Diagnosis Dialog

202

5.5.3 Index Analysis

For dynamic models, a structural index analysis (Pantelides, 1988) is performed immediately after
the complete specification of the degrees of freedom design variables. If a structurally high index
mathematical model is detected, the singular subset of equations or other cause of the index
problem is presented in the High Index Diagnosis Dialog (illustrated in Figure 5-46). In such a
case, the numerical solution is not allowed to proceed until the problem is reformulated.

Techniques for the reduction of high index models have been discussed by Moe (1995).

5.5.4 [|nitial Conditions

For dynamic models, a set of initial conditions must also be specified. The modeler initiates this
action by selecting the Initial Conditions option on the Numerical Engine Toolbar. This activates

the Initial Conditions Specification Dialog (Figure 5-47).

Dynamic DOF [Initial Condition] Selection

r Unknown Y ariables Degign Wanable Swapping Selection
= Units M_Wesselmatl L0 [moles) To initialize the selec:h_ec_l lvariable_,lyou mLzt exchange it
ol for ane of the current initial conditions. Please select &
= current initial condition that yau are willing to relinguish

" Chemical Rans from the list ta the right.
' Parameters Phazes: Wariables: Species: T I

! c_i [zpecies mqlar COPn . V:\-"ZE:ZI

b aterial ext_ranfl [reaction exte % ACETIC_ACID, Vessel, ligD
h [specific enthalpy) #_n_BUTYL_ACETATE. Vessel, ligl

i [misture molecular # WATER, Vessel, ligd

M_i [zpecies moleg]

nCp [molar heat capac
riho [molar density]
1_renl_back [reaction ;I

[~ SortMarables By Type Weelare Fondl Stages: | Wec!ane as = Swap vanables |

r Initial Conditions

T, Jacket 25 Cielsius - Declare as Unknown 'V ariable |
T, Vessel 25 Celsius -
Y, Jacket 1 3 - Exchange with Lnknown |
W, Wessel 1 m3 = [2h wialie Ean &St |
u ACETIC ACIO, Yessel, ligh 0 mole fraction - Angz akz o A
u_n BUTYL_ACETATE, Wessel, liql 0 mole fraction - Suggest |
u WATER, Wessel, ligl 1 mole fraction -

= Esport |Cz |

- ICs Left | o
Save Simulation | Dizplay Equalionsl QK. I E «it | Help |

Figure 5-47: Initial Condition Specification Dialog

Since initial conditions are specified in a manner analogous to the specification of degrees of

freedom, the functionality of this dialog is essentially the same as the Design Variable

203

Specification Dialog.

5.5.5 Initial Guess Specification

Once the proper number of design variables are specified to satisfy the degrees of freedom, the
modeler may specify initial guesses for any or all unknown variables. The modeler initiates this
action by selecting the Initial Guesses option on the Numerical Engine Toolbar. This activates

the Initial Guesses Variable Specification Dialog (Figure 5-48).

Initial Guesses For Computed Yarnables

&l ariables Units | FIu:-tes' Chemical Heactions' Phusical Property Parametelsl
Uritz: W ariables: Species:
E [i (zpecies molar concentration) a
Jacketed_Cstr h [zpecific enthalpy]
Yeszel s [misture molecular weight]
M [males)
M_i [zpecies moles)
nCp [molar heat capacity at congtant
rikho [molar density)
W [walume ﬂ
c_WATER Joli] k.g-moledm” 3 -
h e 7 Jouleﬂkq-m&vle -
mw 1 katkg-mole -
i} a0 kgmole -
M _WATER 50 kg-mole =
—
nCp TEO00 Joulelkg-mole K ol
niho 50 kg-moledm”3 -
i 1 m"3 -
4 W ATER 1 mole fraction -
Change all analogous | Default values |
ak I Cancel Help
Change all units | Smart guesses for variables |

Figure 5-48: Initial Guesses Specification Dialog

Rough order-of-magnitude estimates for all variables are provided by default based on their type
(e.g., temperature variables are set to 298 K). The modeler may specify a different estimate for
any variable or set of variables of a particular type. The Numerical Engine will also automatically
calculate initial guesses for all unknown thermodynamic and physical properties based on guessed

values of temperature, pressure and composition.

5.5.6 Solution of Model Equations

Once the mathematical model is structurally well-posed through specification of design variables

and initial conditions (if necessary), the model is prepared for numerical solution. The modeler

204

initiates this action by selecting the Simulation option on the Numerical Engine Toolbar. This

activates the Numerical Solver Specification Dialog (Figure 5-49).

Simulation Set-up |

Standard Simulation Dezign % ariable Yariation Simulation |

E quation Salver -
[Place rezults in model wariables. {* 1 BRIE gPROMS Options

= [nteractive

— Design Y arable Y ariation

Design ariable: II_I.;.{ q_exchange j
I riitial b alue: Final %/ alue:
[500 [1000 Wi 2_K =]

IE— Stepz

Time Integration

C irnuilati
fl::E'r::rr_l,l out sirnulation IEEIEI IS j

Record resultz

ENEL: I1 a I i j

|] I Ear‘u:ell Help |

Figure 5-49: Numerical Solver Specification Dialog

For steady-state models, the model is ready for solution. For dynamic models, the modeler must
additionally specify the length of simulation time and the time interval at which results are to be
recorded. The Numerical Engine then automatically generates a gPROMS input file, launches the
solver for solution of the model, and reads the simulation results back into the MODEL.LA
process variables (thus retaining robust initial guesses for subsequent simulations). Alternatively,
for steady-state (algebraic) models, the modeler may select to use the built-in interactive solver of
the Numerical Engine (illustrated in Figure 5-50). This solver presents the modeler with a block-
by-block decomposition of the model equations, and uses a Newton-Raphson method to solve
each block of equations individually. If a block of equations does not converge, the user may
view the value of the unknown variables at the last iteration, update their guesses, and restart the

solution procedure.

205

For steady-state or dynamic models, the modeler may also choose a Design Variable
Variation Simulation. Here, a design variable of interest is selected for variation over a specified
range. The mathematical model is then solved repeatedly where for each solution the variable of

interest is incremented through the specified range over a designated number of intervals.

Block-by-Block Newton-Raphson Solver I
] | Block 22 - | Block 23 - | Block 24 - | Block 25 - | Block 26 - | Block 27 - | Block 28 - | Block 23 - | Block 30 - | RIL
— Block Unknowns —Attempt solution ..
n_1 BUTAMOL--source, products_output 0.25 kg-molets - ;I " of curent black only. Solve
n_ACETIC_ACID--source, products_oukput 0.25 Lg-molefs -
n_n_BUTYL_ACETATE--source, praducts_output 0.25 kg-molets - £ from cument block. Atternpting Block...
n_tot--source, products_output 1 kg-molets - " ta current black. -
n_WATER--source, products_output 0.25 kg-molets -
nrho, Yezzel, ligh 12,3191 kmalelmE = — Solver Parameters
i_ran_back, Veszel, ligl 00427245 kgmolem e = _l |1 000000e-04 | Residual Talerance
0 Forw, |, ligd 0473341 - “H: - 5
i_ran0_tarw, Vessel, lig kgmoleim 3 1.000000e-07 | Change in Unknawns
T, Jacket 25 Celziuz -
T, Wessel 25 Celsius - ;I |2D M axirnurn Iberations
— Black Equatiohs Block S c |
1. Unit Vessel species ACETIC_ACID balance ﬂ pek Smart Buesses
(MACETIY ACI reactms vt sonree - WA CETCY ACHD products outpnt sonree) + (- 8300200550501 1iq0) = 0
Residual = 0621413 Change Analogous |
2. Fluxproducis_output species ACETIC _ACID mole fraction Exit |
MACENT ACID products oapntt, sonree — XACEIA ACHD, Wessel, linl *“totmoducrs Tt sonTee
Residual = 0 Help |
3. Fluxproducts_output species WATER mole fraction j

Solver Meszages

Block mumber 21 consisting of Equations 22 thru 45: &l Blocks
[terations Petformed 0
Solution Status: Block uneonrverged.
Stopped [erating When:

% Cument Block Only

[

[Disable Tracking of Mumerical E xceptions

Figure 5-50: MODEL.LA Block Solver Dialog

55.7 DAE SystemsNumerical Solution M ethods

The original implementation of gPROMS (Barton, 1992) utilized the numerical package

DASOVL (Jarvis, 1993) for the solution of DAE systems. A DAE system may be expressed as:
flxy,0)=0

where x is the n-dimensional vector of unknown variables, y is m-dimensional vector of known

variables, ¢ is the independent variable, x =< and f'is the set of equations represented as an n+m

206

dimensional vector-valued function. Many DAE solvers such as DASOLV and DASSL (Petzold,
1982) are based on a method first proposed by Gear (1971). This method substitutes a difference
approximation for x which is based on the backwards differentiation formula family of methods.
By fitting a k" order polynomial to k+1 values of x, the time derivatives at a given integration step

are approximated as:

k
'xn - an 'xn—i
n i=

where subscripts such as 7 refer variable values at the n” integration step, @ is a scalar multiplier,
and 4 is the current step size. This expression may be rearranged to give:

apx, 1 &
B 2

n n 1=l n

a.x
— 0
- n+yn

n"'n—i

where), at each iteration is a constant computed from terms from previous iterations.

Substituting this expression into the DAE system for each integration step yields :

a
f(h_oxn +yn"xn’yn’tn) :O

n
Thus, the resulting set of algebraic equations can be solved at each integration step using a
Newton-based method. DAE solvers such as DASOLV and DASSL also automatically adjust the
integration step size and order of integration of BDF methods so that error estimates satisfy a
user-specified tolerance.

The BDF solution methods described above are limited to the solution DAE systems
whose index does not exceed unity. Furthermore, these methods are appropriate for the solution
of continuous DAE systems. Introduction of discrete changes into the mathematical model
requires reinitialization of the mathematical model (i.e., a new initial value problem must be
solved) at the point of discontinuity. This of course requires the localization of these discrete
events by the solver that implements DAE solution routines. The introduction of time events,
whose exact time of occurrence is known in advance, simply requires integration to the specified
time points. However, the introduction of state events, whose exact time of occurrence is not
known in advance but rather determined by state conditions that come true during the integration,
require identification and localization during the solution procedure. The implementation of

routines for the identification and localization of state events in gPROMS is discussed in Barton

207

(1992). An efficient algorithm that “guarantees the location of all state event in strict time order”
for initial value problems in DAE systems with discontinuities has described by Park and Barton

(1996).

55.8 IPDAE SystemsNumerical Solution M ethods

The extension of gPROMS to encompass the numerical solution of IPDAE systems (Oh, 1995)
involved the integration of solution methods classified as belonging to the family of methods of
lines. In these methods, a two-step approach is used. First the distributed spatial dimensions are
discretized into finite dimensional representations, yielding a DAE approximation of the IPDAE
system. The DAEs are then integrated over the desired solution time using appropriate numerical
techniques. The discretized results from solution of the DAEs are interpreted as approximations
to the continuous behavior of the IPDAE system.

The solution methods for IPDAE systems implemented in gPROMS and accessible
through MODEL.LA for the modeling of spatially distributed systems are listed in Table 5-5.

Table 5-5: Summary of gJPROM S IPDAE Solution M ethods

Numerical Method Orders of Approximation
Centered Finite Difference Method (CFDM) 2,4,6
Backward Finite Difference Method (BFDM) 1,2
Forward Finite Difference Method (FFDM) 1,2
Upwind-Biased Finite Difference Method (UFDM) 2
Orthogonal Collocation on Finite Elements Method (OCFEM) 2,3,4

Common features of these discretization methods (Oh, 1995) include:
« the spatial variation of each distributed variable ¢z), zO[Z", Z"] is approximated in
terms of the values of variable as ¢z;) at a finite and fixed set of positions z;[Z,
z',
* equations that are distributed over the domain [Z- ZY] are enforced at some of the
points {z;} while other desirable properties of the solution (e.g., continuity) are
enforced at others, and

* the partial derivatives of ¢(z) at the points {z;} and integrals over the domain

208

[Z", Z"] are approximated in terms of the values ¢(z,).
In gPROMS, finite difference methods are based on polynomial approximations of the distributed
variables about the grid points {z;} which are uniformly spaced at a distance h apart. A n™ order
polynomial approximation can be constructed in terms of the values of the variable at n+1

consecutive points on the grid (i.e., z;, ..., Zi+»). This approximation may be expressed as:
n
#z) = Z Az,)L(2)
j:

where L"(z) is a n™ degree Lagrange polynomial defined as

n
[n] — <7 Zjrg
@= [e
k=0.k%j Tivj — ik
The first spatial derivative of ¢z) at each grid point z;.,, ¢g=0..n, may then be approximated as

d(ﬂ n [{1]
d—z(z,-+,,) = ;(D(Z,-ﬁ)d—;(z,-w), q=0.n

For the first order forward and backward finite difference methods, respectively, the resulting

expressions are:

ﬂ(zi) ~ —¢(z,)+¢(z;4)
dz h
99 ()= Z R THZ)
dz h

Likewise, for second order backward, centered, and forward finite difference approximations,

respectively, the resulting expressions are:

g ()~ T3 T 40(0) ~0Gi)
dz h
d_(o(Zi) = _ ¢(Zi—1)+ (D(Ziﬂ)
dz 2h
d_(O(Z)= ®z,,) ~ 4@z, +3¢(z;)
dz 2h

Finally, an example of a biased upwind approximation is given as

=6 (&) =20 ¢z;,) +36 Qz,,,) ~12¢z,,,) +2¢X(z,.;)
24h

g, . _
dz (z)

An orthogonal collocation method approximates the solution of IPDAE systems by

weighted combinations of orthogonal polynomials of degree n, and demands that the describing

209

equations be satisfied exactly at a finite set of points, called collocation points. In gPROMS, this
method has been implemented in conjunction with a finite element approach, where the domain is
divided into elements and an orthogonal collocation method is applied in each element. This
solution method is termed orthogonal collocation method on finite elements. The function ¢z) in

element / is approximated as
1N ~ - 1 [n] 1 —_
az)~Z(“Zj)Lj (Z) I—lm
=

where the position of the j” point in element 7 is denoted by 7. Thus, the first-order derivative of

the approximated solution ¢(z) at position ¢ in element / becomes:

dpz,) 1 &,
dzq :FZAE‘I](Z)(D(Z;) [=1.m,q=0.n

J=0

where E' is the length of element 7 and A is a constant matrix defined by:
[n]
Ag’;] E—a’é (z,) J,q=0.n
where 2=(z-z,)/E'. As an example, second-order approximations of first-order spatial

derivatives in element / are given by the expressions

de . _ =34z,) ~ ¢z +¢z;)
dz (20) E'
4 N _ I
99 (1) = 282) ZA0%:)
dz E
49 1)~ R%) * Aa) +3%z,)
dz ? E'

with normalized collocation points at 0, 0.5, and 1.

In gPROMS, selection of an appropriate solution method, order of approximation, and
discretization for the solution of IPDAE systems is solely the responsibility of the modeler.
Obviously, the development of robust and reliable generic solvers for these systems remains an

important continuing area of research.

55.9 Display of Numerical Results

After a successful (i.e., converged) simulation, the Numerical Engine displays the numerical

results in tabular and graphical form, with variables organized by modeling element (as illustrated

210

in Figure 5-51). The results may also be exported in spreadsheet format. For distributed systems,
OLE automation is used to automatically create surface plots (which are animated for dynamic
simulations) in Microsoft Excel.

Simulation Results Examination E

Sl iz Linits |F|UHESI Graph |Numerical Valuesl Design'\r‘ariablesl

Current Simulation

= Syl

Save Current Datal Urits
Jacket 032

Simulation Of Modella Project la

Load Old D ata | Jacketed Cstr :
025 | [e T I
Phazes '
! 02 1l o o o o T
t aterial/S elf H H 1 3 1
I I I S S S A A
W ariables
_r«n0_back [reaction rat;l 01 ! ! ' ! !
r_ran0_fonw [reaction rate ’ TN Tt TTaTTTTTTTT AT vt
W [vaolume 1 1 i 1 1
% i [species molar fractior i
005 ... L s R R N
Species :
1_BUTAMOL 0
ACETIC ACID

G RUTL AL 0 50 100 150 200 250 300
WATER time (5)

waniable unitz
I mole_fraction - I

1. #_ACETIC_ACID, Vessel, ligd (male_fraction)

2w n_BUTYL_ACETATE, Wessel, liqh (male_fraction)

Expand Graph | 0k Help

Figure 5-51: Numerical Results Display Dialog

5.6 Summary of MODEL.LA M odeling Environment

The MODEL.LA Modeling Environment provides an experimental framework for testing the
concepts of phenomena-based modeling language and logic described earlier in this thesis. It also
integrates state-of-the-art computer-aided modeling features, including an interactive graphical
interface, incorporation of thermodynamic and physical property database information, description
of process control and operational schedules, assistance for consistent specification of degrees of
freedom and initial conditions for mathematical models, solution of the model equations using an

equation-based modeling tool, and graphical display of results. In this manner, this high-level

211

modeling tool extends modeling assistance to all aspects of the process modeling activity, from
declaration of the phenomena-based assumptions, generation of mathematical model equations,
specification of the mathematical model, numerical solution, and display of results. At any point
during these activities, the modeler is free to revisit the modeling assumptions, make any desired
additions or modifications, and get immediate feedback on the impact of these assumptions on the
resulting mathematical model and observed process behavior. In order to provide further details
on the implementation of MODEL.LA, the following chapter describes the underlying software

design of the modeling environment.

212

Chapter 6
Softwar e Design of the
MODEL.LA Modeling Environment

The previous chapter provided an overview of the functionality, graphical user interface, and
overall structure of the phenomena-based MODEL.LA Modeling Environment. This description
concentrated on the use of the environment from a modeler’s perspective. In this chapter, details
regarding the software design of the MODEL.LA environment are presented. This description
offers insight into and provides documentation for the construction of the underlying software

system.

6.1 The Object M odeling Technique

In order to present the software design of the MODEL.LA Modeling Environment, a widely-used
graphical notation known as the Object Modeling Technique (Rumbaugh et al, 1991), or OMT, is
utilized. OMT is a methodology that captures multiple views of a system. The two primary
views of the OMT methodology are the object model and the functional model. The object
model represents the static, structural, “data” aspects of a systems. It describes the structure of
objects in a system—their identity, their relationships to other objects, their attributes, and their
operations. Objects are the units into which aspects of the real-world environment are divided.
The functional model represents the transformational, “function” aspects of a system. The
functional model specifies the meaning of the operations in the object model and the actions in the
dynamic model. It specifies the results of a computation without specifying how or when they are

computed. If desired, control information may be embedded into the functional model, or may be

213

represented as a separate dynamic model.

OMT utilizes a graphical notation to describe these software models. Depiction of the
object model, which uses rectangles to represent classes of objects and lines to represent their
interrelations, is similar to a semantic network. The functional model is depicted using data flow
diagrams. Information included in these graphical models is usually presented selectively,
abstracting certain details in order to highlight particular aspects of the system.

OMT is designed for the modeling and design of object-oriented systems. As a result,
there is a natural mapping into an object-oriented programming language representation. In this
work, the MODEL.LA Modeling Environment has been implemented in C++, an object-oriented
programming language derived from the procedural language C. However, OMT is a generic
representation that does not depend on the programming language used for implementation. In
fact, a system such as MODEL.LA designed using the object modeling technique may be

subsequently implemented in any object-oriented, procedural, or database programming language.

6.2 MODEL.LA Modeling Element Object M odels

The object model depicts classes of objects in a system as rectangles. Each class is characterized
by a name and, optionally, attributes and operations. In this work, object classes and their

attributes are depicted using the graphical OMT notation illustrated in Figure 6-1.

Class-Name

attribute-name-1 : data-type-1

attribute-name-2 : data-type-2

Figure 6-1: Object Modeling Notation for Classes

Interrelations between these classes are represented using lines (or links), which are referred to as
associations. Associations are bi-directional, and may be labeled to characterize their purpose.
Associations that are optional are indicated by a hollow circle at the end of the link. Associations
that may occur an arbitrary number of times are indicated by a filled circle at the end of the link.
Other constraints on the number of associations between two classes are indicated by numbers
that label the end of the link (e.g., 2+ indicates a link that occurs 2 or more times). A class
hierarchy is established by structuring object classes as a tree, where a superclass is connected by

a line to the apex of a triangle and its subclasses are connected by lines to a horizontal bar

214

attached to the base of the triangle. Subclasses inherit all attributes and associations from their
superclass. Object classes that are aggregates of a set of other object classes are also depicted
using a tree structure, where a link originating from a hollow diamond attached to the base of the
aggregate class branches to a set of one or more constituent classes.

The modeling elements introduced in Chapter 3 are represented as classes that provide the
basis for the design of the MODEL.LA Modeling Environment. These classes are introduced in
Figure 6-2 as subclasses of a Modeling Element class. This class has an attribute name, that
uniquely identifies an instance of the class in a phenomena-based model, an attribute comments,
that records any textual information specified by the modeler regarding an instance of the
modeling element, and an association to multiple instances of object class Variable, which

represent mathematical variables (e.g., temperature) associated with an instance of the modeling

element.
Modeling Element has-variable .
name: string —@
comments: string
Modeled-Unit Material-Content Phase Flux Reaction Species

Figure 6-2: Modeling Element Class Object M odel

For simplicity, Figure 6-2 does not include any attributes or associations for the modeling element
subclasses. These features are introduced incrementally in the remainder of this section.
However, before introducing the object models of the modeling element classes, two additional
superclasses are first presented. Figure 6-3 illustrates the object model for the class Species
Container. An instance of a Species Container is associated with a set of instances of class
Species. In a phenomena-based model, these correspond to modeled-units, material-contents, and
phases. Therefore, in the object model these modeling element classes appear as subclasses of the

Species Container class.

215

has-species
Species Container P—@

Modeled-Unit Material-Content Phase

Figure 6-3: Species Container Class Object M odel

Similarly, Figure 6-4 illustrates the object model for the class Reaction Container. An instance of
a Reaction Container is associated with a set of instances of class Reaction. In a phenomena-
based model, these correspond to modeled-units and phases, which consequently appear as

subclasses of the Reaction Container class.

has-reaction
Reaction Container P—@

Modeled-Unit Phase

Figure 6-4: Reaction Container Class Object M odel

All attributes and associations of the superclasses presented above are inherited by the
Modeled-Unit class, whose object model is illustrated in Figure 6-5. Additionally, instances of the
Modeled-Unit class possess five additional types of associations. Hierarchical structure is
captured by associations with instances of other modeled-units. Abstraction is indicated by an
association with another modeled-unit representing its parent, while decomposition is indicated by
an association to a set of other modeled-unit representing subunits. Alternatively, the material-
content of a modeled-unit without subunits is captured by an association to an instance of a
Material-Content. Topological structure is captured by links to instances of the Port class. The
Port class has a directionality attribute indicating whether it is an input or output to the system.
Finally, spatially distributed modeled-units are associated with instances of the Spatial
Distribution class. This class is decomposed into a Coordinate System whose Rectangular,
Cylindrical, or Spherical subclasses have boolean attributes indicating which dimensions are
distributed, and instances of the Discretization class for each distributed dimension, which has

attributes indicating the number of discretization nodes, order of approximation, minimum and

216

maximum domain, and an association to a numerical Solution Method selected for the partial

differential equations that characterize the system.

l_ Modeling Element ﬁ Species Container Reaction Container h

Variable Species Reaction

. su.bunit . wn Port
has-internal-unit Modeled-Unit . L
directionality: integer
parent
has-material-content has-spatial-distribution
Material-Content Spatial Distribution
| e 13
Coordinate Discretization
System nodes: integer
/\ order: integer
| minimum: real
maximum: real
Rectangular Cylindrical Spherical
x-distributed: boolean r-distributed r-distributed
y-distributed: boolean | |theta-distributed theta-distributed Solution Method
z-distributed: boolean z-distributed phi-distributed

BFDM CFDM FFDM e

Figure 6-5: Modeled-Unit Class Object M odel

217

The object model for the Flux class is illustrated in Figure 6-6. All types of fluxes share
three types of associations that represent the topology of a phenomena-based model. The
connectivity of a flux is indicated by associations with instances of the Port class. In addition, for
fluxes attached to modeled-units with a material-content, a flux may be associated with a Phase or
Geometry to which it is allocated. An instance of a flux is characterized as either a Convective
Flux, an Energy Flux, or a Species Flux, indicating the type of transport. Transport mechanisms
for these types of fluxes are indicated by respective associations with a Convective Mechanism, an
Energy Mechanism, or a Species Mechanism. Additionally, Convective Fluxes have a state
attribute that indicates the physical state of the material transported, and an association with an

Equation of State that characterizes the physical behavior of the material. A Species Flux is also

associated with a Species indicating the selected chemical species being transported.

40| Variable

allocated-to

Modeling Element

attached-to

Geometry

allocated-to

Figure 6-6: Flux Class Object M odel

218

Euatl ; Convective Energy Species transports Species
quation o ° Flux Flux Flux
State -
state: integer
Convective Energy Species
Mechanism Mechanism Mechanism
Pressure- Francis Surface Fickian Chemical
Driven Weir * Convection| | Diffusion | |Equilibrium| * *
Surface Surface Fourier Ve
Convection| | Radiation | [Conduction

The object models for the Material-Content class and the associated Phase class are
illustrated in Figure 6-7. In addition to inherited Species associations, the Material-Content class
is associated with a Geometry class, which represents a geometric characterization of the vessel
that contains it. In addition to inherited Species and Reaction associations, the Phase class is
associated with an Equation of State class or an Activity Coefficient Model class that represent
the thermodynamic characterization of a phase in a phenomena-based model. As described in the
object model for the Flux class, both the Geometry and the Phase classes may be associated with

an instance of a Flux.

*— Modeling Element

Variable
ﬁ Species Container Reaction Container n
Species Reaction
has-phase
Material-Content 1 Phase
+

has-equation-of-state

Equation of State

has-geometry

allocated-to

Geometry

Rectangular Conical Annular | * Ideal Redlich P‘?”g cee
Gas Kwong Robinson

has-activity-coefficient-model

)
Activity Coefficient Model

Ideal Margules NRTL L

Figure 6-7: Material-Content Class and Phase Class Object Models

219

The object model for the Reaction class is illustrated in Figure 6-8. Each reaction is
composed of instances of the Participant class, the Catalyst class, and the Rate Law class. These

classes are used to characterize the stoichiometry, participating species, and kinetic rate law for a

Modeling Element —0@

reaction in a phenomena-based model.

has-reaction)
Reaction Container }0—0‘ Reaction

reversibility: integer

0
Participant Catalyst Rate Law
| | l
Stoichiometry Species Equation

value: real

Figure 6-8: Reaction Class Object M odel

The final modeling element object model is illustrated in Figure 6-9 for the Species class. Each
species has a database ID attribute that uniquely identifies a species in the Properties Database of

the MODEL.LA Modeling Environment.

Modeling Element —0@

has-species)
Species Container }0—0‘ Species

database ID: integer

Figure 6-9: Species Class Object M odel

220

The primary associations between the modeling element classes are illustrated in the
integrated object model in Figure 6-10. This object model summarizes the structure of instances

and associations of modeling element classes that characterize a phenomena-based model.

; has-species .
React_lon P Reaction
Container

i has-species
Spec!es Hp Species
Container

subunit | has-material-content _
has-internal-unit Modeled-Unit O| Material-Content

parent
has-spatial-distribution owns has-geometry
_ Sp_atia_l Port Geometry
Distribution
0-2

attached-to

Flux

Figure 6-10: Modeling Elements Integrated Object M odel

allocated-to allocated-to

221

6.3 MODEL.LA M odeling Environment Object M odels

In the preceding section, the object models for the MODEL.LA modeling elements were

presented. In this section, these object models are integrated into the object models of the

MODEL.LA Modeling Environment.

The composition of the MODEL.LA object model is

illustrated in Figure 6-11. As discussed in Chapter 5, the MODEL.LA environment is composed

of the Model Generator, the Properties Manager, the Operations Manager, and the Numerical

Engine. All of these software elements interact with the modeler through a Graphical Interface

during the construction of a phenomena-based model and subsequent mathematical model

derivation, specification, and solution.

MODEL.LA
Graphical Model Properties Operations Numerical
Interface Generator Manager Manager Engine
L

Figure 6-11: MODEL.LA Modeling Environment Object M odel

Figure 6-12 illustrates the object model for the Phenomena-Based Model class.

In

addition to associations with the phenomena-based modeling elements, a Phenomena-Based

Model has attributes that capture the name of the model, the developer, and any textual comments

that provide supplementary information about the model.

Phenomena-Based Model

owns

Project name: string
Project developer: string
Project comments: string

owns owns owns

Modeled-Unit

owns

owns

Material-Content Phase Flux Reaction

Species

Figure 6-12: Phenomena-Based M odel Object M odel

222

In MODEL.LA, phenomena-based model descriptions are used to derive mathematical
models. The object model for the Mathematical Model class is illustrated in Figure 6-13.
Instances of a Mathematical Model are composed of instances of Equations, Variables, and an
operational Schedule. Subclasses of Equations include Conservation Equations, Constitutive

Equations, Property Correlations, and Control Laws.

Mathematical
Model

. b
Equation Variable|0—OScheduIe

Conservation Constitutive Property Control
Equation Equation Correlation Law

Figure 6-13: Mathematical Model Object M odel

The object model for the Model Generator is illustrated in Figure 6-14. The Model
Generator is associated an instance of a Phenomena-Based Model. The Model Generator uses
elements of the Phenomena-Based Model to construct the elements of an associated
Mathematical Model. Conservation Equations are constructed and associated with Modeled-
Units and Constitutive Equations are generated and associated with Modeled-Units, Fluxes,
Reactions, Material-Contents, and Phases. The Model Generator is also associated with the
Properties Manager, for generation of Property Correlations for Phases, and the Operations
Manager for generation of Control Laws and Operational Schedules. Finally, an association with

the Numerical Engine allows solution of the resulting Mathematical Model.

223

Model Generator

1

Phenomena-Based Model

Modeled-

. Flux|| Reaction
Unit

Material-
Content

Properties
Manager

Operations
Manager

Numerical
Engine

Phase

e e A

Conservation Constitutive Property Control
Equation Equation Correlation Law
Equation H Variable |O—O Scheduleo
’ ’ 7
Mathematical ©
Model O

Figure 6-14: Model Generator Object M odel

The object model of Figure 6-14 illustrates the structure of the Model Generator and its
associations with the other elements of the MODEL.LA Modeling Environment, the Properties
Manager, the Operations Manager, and the Numerical Engine. In the remainder of this section,
the object model for these software elements are presented.

The object model for the Properties Manager is illustrated in Figure 6-15. The Properties
Manager is associated with a Phase and the set of Species contained in the phase.
Characterizations of the phase and its species enable construction of a Property Correlation for
the thermodynamic or physical property identified by attribute property ID. Pure Species
Properties relationships are obtained through an association with a Properties Database. When

necessary, a Departure Function or Excess Property relationship is constructed by the

224

Species

database ID: integer

Properties
Manager

!

Phase

.

__|Property Correlation

property ID: integer

appropriate Equation of State Model Manager or Activity Coefficient Model Manager.

— |

Properties
Database

l

Equation of State
Model Manager

l

Activity Coefficient
Model Manager

l

O

(@)

0 0
Species Property Departure Function Excess Property
T O
Ideal Redlich Peng
Gas Kwong Robinson| **
Manager Manager Manager
Margules NRTL UNIFAC
Manager Manager Manager

Figure 6-15: Properties Manager Object M odel

225

The object model for the Properties Database of the Properties Manager is illustrated in
Figure 6-16. The Properties Database is composed of DIPPR Data tables (consisting of
identification data, constant property data, and temperature-dependent property correlation data),
UNIFAC Data tables for VLE and LLE activity coefficient models, and Binary Parameter Data

tables for binary species interaction parameters for equations of state and activity coefficient

models.
Properties
Database
0
DIPPR Data UNIFAC Data Binary Parameter Data
0 species ID: integer

group-1: string
group-1 count: integer

group-n: string
group-n count: integer

. .

Equation of State Data Activity Coefficient Data

species 1 ID: integer
species 2 ID: integer
value: real

species 1 ID: integer
species 2 ID: integer
value-A: real
temperature-1: real

value-A: real
temperature-n: real
value-B: real
temperature-1: real

Identification Data Constant Data Temperature-Dependant

Data

species ID: integer species ID: integer

property code: integer

property code: integer

species ID: integer

value-B: real

property value: string property value: real property code: integer
property units: string property correlation: integer temperature-n: real
parameter A: real value-C: real
parameter B: real temperature-1: real
parameter C: real
parameter D: real value-C: real

parameter E: real
minimum temperature: real
maximum temperature: real

temperature-n: real

property units: string

Figure 6-16: Properties Database Object M odel

226

The object model for the Operations Manager is illustrated in Figure 6-17. The
Operations Manager is associated with instances of Controllers, Transmission Lines, Tasks, and
Schedules. Each Controller is associated with Transmission Lines and a Control Law. Each
Transmission Line is associated with a Manipulated Variable or a Measured Variable. Each
Task is also associated with Transmission Lines. A Schedule is composed of Events and Actions.
Events are associated with Tasks, whose Measured Variables are used to construct Conditionals
for When events and While events. Events trigger associated Actions. Elementary Actions are
characterized by a change in an associated Manipulated Variable. Condition events are
associated with a Conditional that determines the path taken at a branch in a schedule. Finally, a
Composite event is itself associated with an instance of a Schedule. allowing a hierarchical

composition of complex schedules.

Operations
Manager

Control Law IO—‘
—3J Controller |0 l

Schedule
Tt oton o
Task Even Action
1+ i1+ A
’_'Transmission Line
l l Void | | when | | while | |End while If Not
Manipulated Measured .
Variable Variable }’_—‘{ Conditional
Condition Elementary | |Parallel| [Initial| | End | |Composite

Figure 6-17: Operations Manager Object M odel

227

The object model for the Numerical Engine is illustrated in Figure 6-18. In addition to the
Mathematical Model containing model Equations, Variables, and operational Schedule, the
Numerical Engine is associated with a Degrees of Freedom Incidence Matrix for consistent
specification of design variables and detection of high index model formulations, an [nitial
Conditions Incidence Matrix for consistent specification of initial conditions for dynamic models,
gPROMS for solution of the mathematical model, and a Results Display for tabular and graphical

analysis of the resulting model behavior.

Numerical
Engine
| I l
Degrees of Initial gPROMS | | Results
Freedom Conditions Input File Display
Incidence Incidence
Matrix Matrix ?
gPRfMS Excel
Mathematical gPROMS
Model Output File

!

Schedule

Equation Variable

name: string
value: real
units: string
role: integer

Figure 6-18: Numerical Engine Object M odel

The object models described in this section and the previous section specify the static structure of
the MODEL.LA Modeling Environment. These object models provide a basis for the
phenomena-based modeling activities. In the following section, the functional model of the
modeling environment is discussed, illustrating how these elements are used during subsequent

mathematical model derivation and solution.

228

6.4 Functional Model of the MODEL.LA M odeling Environment

The functional models of the object modeling technique capture how output values are calculated
from input values in a program. It consists of multiple data flow diagrams which show the flow
of values from external inputs, through operations and internal data stores, to external outputs. A
data flow diagram consists of processes (represented by ellipses) that transform data, data flows
(represented by arrows) that move data, actor objects (represented by rectangles) that produce
and consume data, and internal data stores (represent by two horizontal lines) that hold data for
subsequent use.

A high-level functional model describing mathematical model derivation and solution is
illustrated in Figure 6-19. The Phenomena-Based Model is represented as a static data store.
Assumptions from the Phenomena-Based Model are used to derive the model equations.
Variable specifications (i.e., design variables and initial conditions) for these equations are
combined which the equations for model solution. The resulting numerical results are stored in

the Model Behavior data store for subsequent analysis.

mathematical
model
derivation

Phenomena- assumptions

Based Model

model equations

numerical
results

Model
Behavior

model
solution

model
specification

variable
specifications

Figure 6-19: Overall Model Derivation and Solution Functional M odel

In the remainder of this section, the abstract processes of this overall functional model are further

specified by refined functional models.

229

Figure 6-20 illustrates the functional model for the process of mathematical model
derivation. The phenomena-based model assumptions are used to derive conservation equations,
constitutive relationships, and property correlations. Additionally, the Operations Manager
provides control structures for construction of control laws, and the active schedule is used to

generate an operational schedule, thus completing the mathematical model.

model conservation
Phenomena- assumptions derive conservation equations
Based Model equations
constitutive

derive constitutive relationships

relationships

property \/ \/
correlations Mathematical
Model

construct property
correlations

control
control structures |
construct control aws
laws
Operations
Hanager operational
generate operational schedule

) schedule
active schedule

Figure 6-20: Model Derivation Functional M odel

230

The functional model for the process that generates a property correlation is illustrated in
Figure 6-21. The Model Generator supplies a phase for which the desired property correlation is
to be constructed. The list of assumed species is extracted and stored in the Phase Species data
store. Properties of these pure species are accessed from a Property Database using the proper
species id. These pure species correlations are stored in a Pure Species Properties data store.
When necessary, the assumed equation of state model or activity coefficient model is extracted
from the phase and used to construct the appropriate departure function, excess property
relationship, or overall property correlation. Relevant data from these processes are combined to

form the overall phase property correlation which is added to the Mathematical Model data

store.
Model
Generator
Property
phase Database
species id species
property

correlation Pure Species

\ extract \SPECIeS_ by ose access pure
species Species species Properties
properties

equation of
state model

departure
function

extract
equation of
state model

construct
departure
function

property
/ correlation
. construct
Binary roperty
Parameters P

_\ correlation

construct
excess

property

combine
contributions

excess phase

property property
relationship correlation

extract activity
coefficient
model

activity coefficient

model Mathematical

Model

Figure 6-21: Property Correlation Generation Functional M odel

231

The functional model for mathematical model specification and solution is illustrated in
Figure 6-22. Model equations from the Mathematical Model are used for specification of degrees
of freedom. An incidence matrix is used to maintain a structurally consistent set of selected
design variables. If the model is dynamic, once design variables have been selected, a structural
index analysis is performed on the model equations before specification of initial conditions. The
structurally well-posed mathematical model is then solved. Numerical results are stored for

subsequent display and analysis of the behavior of the model.

model
Mathematical —equations degrees of freedom

design variables

o Degrees of Freedom
Mode! specification Incidence Matrix
Steward paths

index
analysis

@ design variables

2l condition initial conditions Initial Conditions

specification L Incidence Matrix
Steward paths

) initial conditions
mathematical model

numerical results

Model results
Behavior display

Figure 6-22: Mathematical M odel Specification and Solution Functional M odel

232

Finally, the functional model for mathematical model solution is illustrated in Figure 6-23.
The mathematical model is combined with selected design variables and initial conditions to
formulate a gPROMS input file. gPROMS is then executed for model solution and results are
stored in a gPROMS output file. These numerical results are then processed by the Numerical

Engine of MODEL.LA.

Mathematical
Model

numerical

Degrees of Freedom S 9PROMS __ “gPROMS gPROMS resultsE Numerical
Incidence Matrix input file output file Engine

Initial Conditions
Incidence Matrix

Figure 6-23: Model Solution Functional M odel

6.5 Summary of MODEL.LA M odeling Environment Softwar e Design

This chapter has presented an overview of the software design of the MODEL.LA Modeling
Environment using the object modeling technique. The static structure of MODEL.LA has been
presented using object models. These object models illustrate how object classes are used to
represent the phenomena-based modeling elements and the associated software elements.
Functional models were then presented to illustrate the use of these object classes during model
derivation and solution. In order to demonstrate the resulting utility of the phenomena-based
modeling approach embodied by the MODEL.LA Modeling Environment, the following chapter

illustrates its use in application to a variety of chemical process modeling examples.

233

234

Chapter 7
Phenomena-Based M odeling Examples

The previous two chapters provided an overview of the functionality, graphical user interface,
structure, and software design of the phenomena-based MODEL.LA Modeling Environment. In
this chapter, the practical use of this environment is illustrated through application to a series of
phenomena-based modeling examples. These examples include:
1. The hierarchical design of a chemical plant for the hydrodealkylation of toluene to
produce benzene,
2. The hierarchical design and economic analysis of a chemical plant for the
production of acetic anhydride from acetone and acetic acid,
3. A study of the open-loop and closed-loop behavior of a distillation column with
side stripper for the separation of a mixture of benzene, toluene, and o-xylene,
4. A dynamic model of a chemical plant with a 1-D spatially distributed reaction and
separation unit operations, and
5. A dynamic model of a 2-D spatially distributed tubular reactor with a cooling
jacket.
These examples were selected to illustrate the use of the MODEL.LA Modeling Environment in
modeling non-trivial processes in order to facilitate comparison of the phenomena-based modeling

approach with existing computer-aided modeling approaches.

7.1.1 HDA Plant

The HDA plant case study illustrates the hierarchical design of a plant for the hydrodealkylation

of toluene to produce benzene. It is based on an example given in Douglas (1988), which is an

235

adaptation of an AIChE student design problem described in (McKetta, 1977). Design objectives

and constraints are given in Table 7-1.

Table 7-1: Design Objectivesfor HDA Plant

1. Reaction information
a. Reactions:
Toluene + H, — Benzene + CH,
2 Benzene ~ Diphenyl + H,
b. Reaction inlet temperature > 1150 °C (to get a reasonable reaction rate); reactor pressure = 500 psia
c.

Moles Benzene at Reactor Outlet _

Selectivity = S
Moles Toluene Converted
. _ Moles Toluene Converted in Reactor _
Conversion = =x
Moles Toluene Fed to Reactor
S =1—%, x<0.97
—-— x .

d. Gas phase
e. No catalyst

2. Production rate of benzene: 265 mol/hr

Product purity of benzene: xp=0.9997

4. Raw materials: Pure toluene at ambient conditions; H, stream containing 95% H,, 5% CH, at 550 psia,
100°F

5. Constraints: Hy/aromatic = 5 at the reactor inlet (to prevent coking); reactor outlet temperature < 1300°F (to
prevent hydrocracking); rapidly quench reactor effluent to 1150°F, x < 0.97 for the product distribution
correlation

e

In this example, the base case design of the HDA plant is modeled. In order to concentrate on
phenomena-based modeling aspects in this initial example, the economic analysis is neglected.
However, if desired, pricing and cost correlations may be readily added to the model as user-
defined equations, as is done for the subsequent Acetic Anhydride plant example.

Following the hierarchical design methodology for a continuous plant, the plant is first
modeled at an abstract input-output level, where only raw material, product, byproduct, and
waste streams are included. Thus, the HDA Plant illustrated in Figure 7-1 is modeled with two
convective input streams for raw materials hydrogen and toluene, two convective output streams
for product benzene and byproduct diphenyl, and a convective output stream representing a
gaseous purge of methane. Complete recycle of toluene and hydrogen is assumed. Declaration of

the two reactions of interest and their assignment to the HDA Plant are also illustrated in Figure

236

7-1.

= MODEL LA

=|=]]
Fle Edit Model Simulation Utilities Window Help
le p@l@; Ia'!l | | Efl El |
71 hda01 Ja W[=] E3 i Hierarchical Tree ITI E3
:I - Plant Plant -2 modeled-unit
hasspecies TOLUENE
hasspecies HFDROGEN
hasspecies BENZENE
hasspecies METHANE
has-apecies BIPHENYL
X b has-reaction 1¥n_main
iz _hydroger out_benzens has-reaction rxn_side
Plant , has-convective-Input in_hydrogen
in toluene out_diph eny.l» hag-convective-output out_diphemd
hasconvective-input in_toluene
hasconvective-outout purge
has-convective-oulout out_benzene
2 Project Reaclions
ik
Unit Plant Chemical Species and Reaclions Mame Staichiometiy
S 1 TOLUEME + 1 HYDROGEN == 1 BENZENE +1 METHAME

TRn_gide 2BEMZEME ==» 1 BIFHENYL + 1 HYDROGEN
ok

Cancel

Add ta Linit |

v |
Reaction Properties of ren_main: 1 TOLUEME + 1 HYDROGEN ==> 1 BENZENE + 1 METHANE

K

Dizplay Mames As:

Add to Project | Re IDefauIt vl

| Reactants Catalyst Froducts
1| (eElemsts [TOLUENE [rore) = EENEERE [
— Reaction

TALUENE HYDROGEN [Hetegeneaus K NE |1
Addta -
HYDROGEM ==3 Cancel
Project E‘IIIE:‘L?:‘JE(E ml ™ Imeversible —I
[ran_main: 1 TOLUENE + 1 HYDROGEN = =] el ' Reversible
-> F'roduc:t L
" Equilib
Unit AR Frate e |
[rar_main: 1 TOLUENE + 1 HYDROGEN ==]| ~ Remove = ' Extent-based

Add Delete Delete
K Cancal | H [osee |

Figure 7-1: Input-Output Level Design for HDA Plant

Continuing with the hierarchical design approach, the input-output level view of the HDA
plant is decomposed into a reaction section and a separation section (as illustrated in window
Plant of Figure 7-2). Raw materials feeds to the plant are allocated to the reaction section, and
an effluent stream is declared from the reaction section to the separation section. Vapor and
liquid recycle streams for hydrogen and toluene, respectively, are also declared. For convenience,
a mixing point is defined before the reaction section, so that the 5/1 ratio of H,/Aromatics at the
reactor inlet may be readily specified, and a split point is defined for the vapor recycle to establish

a purge stream of the same composition as the gaseous recycle stream.

237

B MODEL LA

[[=]]

Fille Process Unit Process Flus Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utities ‘window Help
3 = =
eOleBlEaley K| =(=E i
E= Plant M= EF || == Hierarchical Tree —olx]
_| [+ -o® Plant
r_______________ - — ® Reaction_section
purge

o® Separation_section

-o® Flash

| recycle wvapor
= iSplit_vapor | @ Tiain
| - ® Split_liguid
Toverhea d_wvapor | ------- o® Split_vapaor
| n- A B @ mix_feed
in hydrogen 4 72

— out_benze =
=» ix feed fead =fflnent |
in toluens |MUX 1880 Reaction_section f— | Separation_szection

out_diphenyl

[T
= Separation_section =1O]x]

L™ Properties Yiew

Reaction section is-3 modeled-unit
Js-internalunitof Plant
has-species TOLUENE
has-species HDROGEN
| has-species BENZENE

| has-species METHANE

| has-species BIPHENYL
out_benzens has-reaction 1¥n_main
hasreaction r£n_side
has-convective-outout effluent
has-convechive-input feed

- - - - - - =

overhead wvapor |

effiuent Flazh
= ? ———————

Train out d;phenyl

train feed

flash liguid | Split_liquid | ecycle llquld

I gquench feed

|

Figure 7-2: Reaction and Separation Section Design for HDA Plant

A preliminary structure for the design of the separation section is illustrated in window
Separation_section of Figure 7-2. The effluent stream from the reaction section is fed to a flash
(where vapor and liquid phases are modeled assuming ideal thermodynamic behavior). The vapor
stream from the flash is recycled, and the liquid stream (after a portion is split to serve as a quench
for the reactor effluent) is fed to a liquid separation section (i.e., Train) where toluene, benzene,
and diphenyl are to be separated. Simulation of this design, however, indicates that trace amounts
of methane are present in the liquid stream from the flash. Consequently, methane must also be
separated in the liquid separation section. This requires an additional output stream from the
liquid separation section. To accommodate this, however, the overall input-output level design of
the HDA plant must first be modified (as illustrated in window hda0O4.la of Figure 7-3). The
methane output stream, out_methane, is then allocated to the separation section, and subsequently

the liquid separation section. For this base case design, the liquid separation section is modeled as

238

a distillation train, as illustrated in window Train of Figure 7-3. A series of three columns are

proposed to separate methane, benzene, and diphenyl as products, before recycling the remaining

toluene.
EX MODEL.LA HE e
Fille Process Unit Process Flus Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utities ‘window Help
3 == =
o0l eR[Pa)=3 K| =[] B
=¥ hdal4_la M =] B3 | 7 5 eparation_section _[olix=]
= =
- ____________| =5
overhead vapor
purge - out_methane
|
X ent —— out benzens
in h_}rdrogen““ out methane " Flazh . —
»————> = Train
Plant out_benzene
in toluene . train feed out_diphenyl
T out diphenyl
flash liguid Spht_hqmd |
|queﬂchﬁfeed recycle liguid
ml 1 3 @_'I i o
EEjliain JM[=] S | | Hierarchical Tiee I =] 1

- Plant
— - . = i @ Reaction_section
| = Separation_section
| out_benzene out dlphenyl § Stahilizer
train feed H

Stabilizer Benz Distill rm |
I

| Lbottoms_stab recycle i;quld

_____ r

out methane

- Tal_Distill
o® Split_liquid
& Split_wvapor

o® mix_feed

bottoms benz

i 2

Figure 7-3: Separation Section Design for HDA Plant

Until this point in the design, only mass balances have been considered in modeling the HDA
plant. To consider energy integration, energy balances must also be included. The resulting
design of the reaction section, with energy integration, is illustrated in window Reaction_section
The

preheated feed is further heated to the specified inlet temperature in a furnace, requiring a heat

of Figure 7-4. The feed stream to the furnace is first preheated in a heat exchanger.

duty modeled as an energy input stream. The reactor effluent is then quenched with a portion of
the liquid stream from the flash in the separation section. The resulting stream is used to preheat
the reactor feed in the heat exchanger, before being cooled. The resulting material consists of a

vapor and liquid at equilibrium. This is modeled as two separate streams that are fed to the

separation section. Energy integration is then considered for the separation section (illustrated in
window Separation of Figure 7-4) of the HDA Plant. Here, the energy required to compress the

vapor recycle stream and pump the liquid recycle stream are also included in the model.

Ef MODEL LA

= [=] %]
File Process Unit Process Flux Contraller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Uliities Window Help
% ==
i =l e L Y e L |
B9 hdaD5.1a H= E |21 Reaction section _ ol x]
::I [=
purge — guench feed_ -
out methans ——, |
in hydrogen ——p | effluent
»— cut benzene Quenche — === Eeactor |
in toluene ot : | hed
= | lq”em = Thot feed |
) feed |
s m S
. _>l_I |
=l A cooler feed
9 S eparation ! i | flash feed _l
| Caoler ficish feed v
| |___________ qcocler
compressed vapor purge
| \ recycle wapor [1] Al .l;!
| Compresao Split_wapor B Hierarchical Tree o [=] B
S . J =@ HDA_plan
| Tovsrhead vapor \ ® Reaction_section
| - out_methans @ Healx
Flash foed 1 I - @ Preheal_cold
= = = out benzens o Preheal_hol
Flash . = - Cooler
o flash feed v Train out diphenyl
= —
| qo
| lflash_liquid ar
|
quench_feed_Pump quench lig L . train fe=d recycle liguid | @ Splt_liuid
———————— «——— 2plit liguid [———=
| < @ Flash
| T | e @ Split_wapor
W_pramp ® Compressor
o
w_compressor w tol pum | [
B T {o.pum S
o
-/ | @ Stabilizer
| recyele tol @ Benz_distil
o w | o @ Tol_distil
_ _—— - — — — — —_—— — T
= - o @ Qi_splt
ll o e Min_feed
\

Figure 7-4: Reaction Section with Energy Integration for HDA Plant

The details for each of the distillation columns of the distillation train are then specified. Each
column is modeled in a similar manner, illustrated by the benzene distillation column shown in
Figure 7-5. Each distillation column consists of a column, a condenser, and a reboiler. Energy
fluxes from the condenser and to the reboiler are declared. The column consists of a rectifying
section and a stripping section, which are both modeled as staged units. Each stage in the
rectifying section and stripping section, along with the condenser and reboiler, are modeled as
material modeled-units with ideal vapor and liquid phases at equilibrium. Material is fed to the
top stage in the stripping section, and withdrawn from the liquid phases of the condenser and

reboiler, respectively. Vapor flows upward through the column through a series of vapor

240

convective streams, and liquid flows downward through the column through a series of liquid
convective streams. The stabilizer column, for removal of methane, is modeled in a similar
manner, except material is withdrawn from the vapor phase of the condenser. Also, the stripping
section of the stabilizer column, which consists of only two stages, and the rectifying section of
the toluene column, which consists of only one stage, are not modeled as staged units but as
independent vapor-liquid equilibrium material units. The resulting hierarchical structure of the

stabilizer and toluene columns is illustrated in window Hierarchical Tree of Figure 7-5.

Ef MODEL LA

= [=] %]
File Process Unit Process Flus Controller Transmission Line Modeling Projsct Model Simulation Modeling Panes Draw Utilties 'wWindow Help
> — =
*ole2mal K| ==K
= Benz_distill H[=] E3 || = Ben= et M=l B3| - Hierarchical Tree 1 =] B3

® HDA_plant
@ FAeaction_section
-® Separation
® Tol_pump
o® Purmp
@ Split_liquid

= ==
__________F_____ - -
benz Qc ‘
benz Va

| out benzens B

Benz cond benz La
><_/ Benz rect_1
benz La
‘—‘ n lbenz_br Tbenz_Vr|

|

Benz_column ‘ |

bottoms stab

-® Stab_rect
o® Stab_rect 1

Benzg_rect_15 |
benz Lrs |
J— benz_ Vsr

benz Vi

baottoms benz

N
benz Ibp.nz reboil
o \
_________ ibenz_Qr_ - 1

. Stab rect 8

o® Stab_stip

-, ® Stab_strip_1
o® Stab_stip_2

:‘l @ Stab_rehail

o® Stab_cond

Benz_distil

Benz_column

o® Benz_rect

@ Benz_stip

- @ Benz_reboil

- @ Benz_cond

b Benz_stip

L

Ir

bottoms stab |benz

=
benz Vsr
1
EBenz_strip_1 |

ibenz_zs Tbeuz ;75

| Eenz_rect

- @ Tal_distil
o Tol_colurnn
_ bottoms_stab benz Lrs|penz vsr Benz_strip 2 | o® Tol_rect
= @ Tol_stip
| | o® Tol_strip_1
. - ® Tol_strip_2
Benz_stri benz Vb e ToLaib3
LTl Benz gtrip 15[«———4= Tral oLE R
— - o @ Tol_strip_4
| benz Vb | bonz Lb | - ® Tal_reboil
| — -o® Tal_cond
| benz_z-b .] Qcﬁmix
—_ | - @ Qr_split
4 | o]l I | Wi

Figure 7-5: Digtillation Column Design for HDA Plant

Simulation of the final base case design of the HDA plant is illustrated in Figure 7-6. Displayed

are profiles of the liquid mole fraction of benzene in the rectifying and stripping sections of the

benzene column.

241

qMODEL 1A = [=] %]
Ei Staged Unit Profiles HE

I Simulation Of hda07.la
[

s Window Help

— Jbenz_Va - ‘
benz La
Benz reect_1 4—*[—@
lbenz_zr Tbenz Vr‘ o ® Split_vapor
- +oo @ Compressor
L@ W _aplit
| o e
=@ Stabilizer
‘ o® Stab_colurnn
| H ! ‘ s @ Stab_rect
Eenz_rect_15 @ Stab_rect_1
' ' ' ‘ @ Shab_rect_2
benz Lrs - @ Stab_rect_3
0 4 8 12 16 J— - hbenz Vsr HE - @ Stab_rect_4
stage # Staged Unit Profiles [7] x]
Z 2 - -
1. %_BENZENE, Benz_rect_2, ligd (male_fraction) . .
Simulation Of hdaQ7.1a
4 8 12 16
stage #
— 1. %_BENZENE, Benz_strip_2, liq0 (male_fraction) ‘
o | Help

Figure 7-6: Simulation Resultsfor HDA Plant Base Case Design

7.1.2 Acetic Anhydride Plant

This example is based on an AIChE student design problem described in (McKetta, 1977). The
primary design objective is to design a plant for the production of acetic anhydride from raw
materials acetone and acetic acid. Additional design objectives and constraints are given in Table
7-2. As in the previous example, the plant is designed hierarchically. The initial input-output
level design of the plant is shown in Figure 7-7. At this level the plant has two raw material
streams, a product stream, and a gaseous stream for reaction byproducts. Complete recycle of
raw materials is assumed. Declaration of the three reactions of interest and their assignment to
the overall plant are illustrated in Figure 7-8. Expressions for yield and conversion are entered as

user-defined equations.

242

Table 7-2: Design Objectivesfor Acetic Anhydride Plant

Reaction information

a.

Reactions:

Acetone — Ketene + Methane
2 Ketene — Ethylene + 2 CO
Ketene + Acetic Acid — Acetic Anhydride

Furnace specifications (to crack acetone):

temperature = 700 °C
gas phase

Quench reactor specifications (to produce acetic anhydride):

Temperature = 80 °C
liquid phase
acetic acid concentration = 50 mol %

Moles Carbon Monoxide Formed in Furnace

Ketene Yield =1-

Moles Acetone Converted in Furnace

Moles Acetone Converted in Furnace

Acetone Conversion =

Moles Acetone Fed to Furnace

4
Ketene Yield =1— gAcetone Conversion

2. Production rate of acetic anhydride: 16.58 Ib-mol/hr
3. Product purity of acetic anhydride: 99 mole %
4. Raw materials: Pure acetone and acetic acid at ambient conditions
5. Cost data:
a. Acetone: $24/1b-mol
b. Acetic Acid: $23/1b-mol
c. Acetic Anhydride: $51.50/1b-mol

243

B MODEL.LA

[[=]]
File Process Unit Process Flus Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilities “findow Help
K3
o0 eB[Pa)mp] K| [m == B
EF Input_Output_Anhyiide_Plant la M =] B3 | == Hierarchical Tree —olx]

e

dcetone Feed

Gaseous Byproducts

B

¥

il <l .l

Owerall__Plant
Acetane_lnventorny
& Acetichcid_nventony

Anhkydride Froduct
Overall__Flant =

Aceticdcid Feed

Aceticdcid

p—————————| Aceticheid_Inventory

= Prope

Overall

5 Yiew

19 [=[
Plant js-z2 modeled-unit

has-species MCETONE

has-species KETENE

has-species METHANE

hasspecies ETHYLENE

hasspecies CARBON_MONOXIDE

hasspecies ACETIC_ACID

has-species ACETIC_ANHYDRIDE

has-reatction Acetone Cracking

hasreattion Ketene Decomposition

has-reaction Product Formation

hasconvective-input Acetone Feed

has-comective-input Acetichcid Feed

hasconvective-ouiput Gaseous Buproducts

hascomective-ontput Anhwdride Product

Add New Process Lnits | Add New Fluxesl Specify Species and Heactionsl Edit Process Linits | Edit Fluzes | Edit Control Loops | Model Simulation |

g (€ § € w & 8§ ?

@
Blackbow Urit — Unit with Uit with Urit with

Unit with Staged Unit Spatially Unit frarm Help
“apor Phase Liguid Phase “apor Liguid Liguid Liguid Distributed Template
E quilibriurn Equilibrium Unit Librany

Figure 7-7: Input-Output Level Design for Acetic Anhydride Plant

244

151 MODEL LA =18 x|

File Process Unit Process Flux Controller Transmission Line Modeling Project
le plalla-; Ia'!l | I fl

Unit Overall__Plant Chemical Species and Reactions | 7 Hierarchical Tree (O] x] Il

todel Simulation Modeling Panes Draw Utilities “window Help

— Specie
[™ Nan-gandensil Name Stoichiometiy
Acetone Cracking ‘IAEETEINE > 1 KETENE +1 METHANE
ACETIC_ACID KETEME K Y ecom 0
ACETIC_ANHYDRIDE i | |METHANE P t F ETENE + 1 ACETICACID == ACETIC_ANHYDRIDE
METHANE Add ol | v erie racueL T armaten ¥ - ok |
CARBOM_MOMO=IDI CARBOMN_MOND:I
ETHYLEME ACETIC_ACID Cancel
KETEME =l ACETIC_ANHYDRI —I
Add to Project | Remowve from Un ﬂl
~ Reaction: Rename | Add Delete Edit Fate [Lavy |
LUEN R eaction Properties of Ketene_Decomposition: 2 KETENE ==> 1 ETHYLENE + 2 CARBON_MONODXIDE
Froject Display Mames As:
IAcetone_Clacking: TACETOME ==>1 KEj Add ICommon Mame Vl
_— Feactants Catalyst Products
Unit Bl EmeEEs [RETENE = =] [ETAVENE 1
IAcetone_Elacklng: TACETOME ==3 1 KEJ Hemove

[Heterogeneous
ACETIC_ACID CARBOM_MOR 2 g |
ACETIC_ANHYE ==3 ancel |
METHANE Reastant > | * Ineversible
o T el © Reversti
KETENE = Product | ' Equillbriur,
Eiete (LAt |
LI & Estent-based

Add Delete | Delete |

Add New Process Units I Add New Fluxes | Specify Species and Reactions Edit Process Urits | Edit Fluxesl Edit Control Laops I Madel Simulation

o @ & @ & 2

Rename Specify Agzign Specify Specify Spatial Set Design Help
Selected Urit Material Reactionzand Intemnal Distibution Wariables of
Content Species Subunits Selected Unit

Figure 7-8: Chemical Speciesand Reactionsfor Acetic Anhydride Plant Design

245

Results from the numerical simulation (illustrated in Figure 7-9) of the input-output level
view of the plant determine the maximum economic potential of the plant ($650,000/yr) and a

lower bound on the value of ketene yield required (0.83) for the plant to be profitable.

= MODEL.LA

= B
Fle Process Unit Process Flus Contraller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilities WWindow Help
0 pB|Er | B I—In—_lv—|l .
JE'EI_El Simulation Results Examination |
B T Simulations Uit I Fluges UserVars | Graph |Numerica\ Valuesl Design Variablesl

I Gt 411
Simulation Of Input_Qutput_Anhyride_Flant.la
Save Current Datal USBIVa[S—
Acetone

B [oadOld Data |

Phases

Yariables

Acetone_Corversion
(Economic. Potential |0

Species

Aceticdc

05 06 0 08 08 1

variable units Ketene_¥ield (51_Units) Acetone Feed
P l AceticAcid Feed
e - —k ¢ Gaseous Byproducts
‘ 1. Economic_Potential_I_O (51_Units) | + Anhwdride Product
& E d Graph oK | Hel |

il ﬁ hos E o .
Design Exit View Save O
Variables Si i Resul Engine | Eyuations |Simulations Help Progress

|'Numeric:al Engine Status M

Figure 7-9: Simulation Resultsfor Input-Output Level Design of Acetic Anhydride Plant

Following the hierarchical design approach, the input-output level view of the plant is
decomposed into a reaction subsystem and a separation subsystem (illustrated in Figure 7-10).
The assumption of full recycle of raw materials is maintained. A gaseous stream (consisting of
mostly reaction byproducts) and a liquid stream (consisting of mainly product and unreacted raw
materials) from the reaction subsystem to the separation subsystem are assumed. At this level, the
concept of per pass conversion of acetone is defined in terms of acetone feed rates to the reaction
section, thus allowing recycle rates of acetone to be calculated as a function of ketene yield. This
illustrates the tradeoff between high product yield and high recycle requirements. As a result of

the ketene yield to acetone conversion design correlation, as ketene yield approaches unity,

246

acetone conversion approaches zero, requiring a high rate of acetone recycle (e.g., a value of .95

for ketene yield results in acetone conversion of 0.04 and acetone recycle of 450 lb-mol/hr).

£% MODEL LA [[=7]x]
Fle Process Unit Process Flus Contraller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilities WWindow Help

0| pBBny | B3 = =

leoal K| =l=|E] B

1F recycle_structure.la !EE 7 Hierarchical Tree _[O] =] I (B Pmpeltles View —olx]
—_—

‘ @ Overal_Plant Reac‘tlons Subsystem /s modeled-unit

Reactions_Subsystem Is-internatunitof Overall Plant
-@ Separations_Subspstem hasspecies ACETONE

dcetone Feed

]Gaseous Byproducts

. Acetone_|nventary hasspecies KETEME
L Bcetichcid_Inventary hasspecies METHANE
has-species ETHYLENE
il ol il ol anhydride Produ ct has-species CARBON_MONOXIDE

has-species ACETIC_ACID
Overall Flant has-species ACETIC_ANHYDRIDE
has-reaction Acetone Cracking
has-reaction Ketene Decomposition
has-reaction Product Formation
has-convective-input Acetichcid Feed
Areticdcid Feed has-convective-owput Gaseous Effluent

| L A ==y
4 N Overall__Plant [_ o]}
dd_Inwventory i’

Acetone Feed

y

| ¢ |Acid_Recycle |
] |

¥ Gaseous Effluent

Anhydride Product
— p—y
iy

Liguid Effiuent

I
b / . |

| Reactions_Subsystem Separations_Subsystem

Aceticdcid Feed 4 |acetone Recycle

Figure 7-10: Reaction and Separation Section Design for Acetic Anhydride Plant

The design continues with the configuration of reactors in the reaction subsystem (illustrated in
Figure 7-11). At this level, energy balances are also introduced. The pure acetone raw material
stream is mixed with the acetone recycle stream and fed to an acetone cracking furnace which
operates at 700°C. The effluent stream from this reactor (containing unstable ketene) is then
rapidly quenched with pure and recycled acetic acid in a two-phase quench reactor. To maintain
the quench reactor at 80°C, a liquid stream is withdrawn from the reactor, cooled with water in a
heat exchanger, and recirculated back to the reactor. At this level, equipment sizing and cost
correlations are introduced for the reactors and heat exchanger as user-defined equations. Also,

energy costs for the required furnace duty are included in economic potential calculations.

247

1= MODEL LA =18 =]

Fle Process Unit Process Flus Contraller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilities WWindow Help

*clepla|| N [==lEl i

Acetone_Cracking_Reactor
Quench_Reactar

@ Reactar_Yessel

bl Heat_Ewxchanger

Aceticdcid Feed Vapor Effluent

Return

4

Furnace Effluent

Reactor_Veszel) To Be Coocled

Acid Recycle | i @ Separations Subsvstem |
. —

o | - | M aterial Content Reactor_Vesselmatl of Unit Reactor_Vessel I
Ligu;
| FeEs Reactor_Vessalmat V0 Reactor_Vesselmatl LD |

— Phase E quation of State

|_ o __ Add Vapor |
Add Liquid |
Add Solid |

Incompressible j

— Phase Activity Coefficient Model

Delete Phase | Margules =l
_I Constant -
— p[*an Laar

" . wil
Edit &llocation of Fluzes | NF?[DLH I Horcondensible
LINIFAC
— Specie: [ALETUNE Remave from Phaze

Project b aterial

-

— Reaction

Add to Project
Project
|cetone_Cracking: 1 ACETONE ==> 1 KE[¥| fdd to Phase

Add New Process Units | Add Mew Fluses | Specify Spe

RETEME Phase
o = = IPlnduct_Fnrmatinn' 1KETENE +1 AEETIj Remove from Phaze
il Add ta Project | Femave from Matenall
Rename Specify Remove Edit Ma
Selected Urit Material Material and Geom

Content Specif
Interﬂal Uynits taterial Simulation Dptionsl Declare Material Geomnety | Help |

Figure 7-11: Reactor Design for Acetic Anhydride Plant

Since the quench reactor operators at conditions of vapor-liquid equilibrium, two effluent
streams are fed to the separations subsystem. Initial design (illustrated in Figure 7-12) of the
separations subsystem concentrates on the gaseous stream. To reduce loss of raw materials and
product in the gaseous stream, the stream is first cooled to condense most of the valuable
components, then separated in a flash. Additionally, a gas absorber is used to recover most of the
remaining valuable components in the gaseous stream leaving the flash. An acetic acid stream
from the liquid separation subsystem is used as the solvent in the absorber. The gaseous
byproducts stream from the absorber leaves the plant, while the liquid solvent stream returns to

the liquid separations subsystem.

248

5 MODEL LA - (=] x|

Fille Process Unit Process Flus Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utlities 'window Help

leé@l@él@él M =E @I

= Overall_Plant M [=] EF || Hierarchical Tree 1 =1 B3
|_____— o Tr ————————1F————__ _____| .He;lors_Subsystem |

o ® Acetone_Cracking_Reactor
o® Ouench_Reactor
Reactor_Veszel
Heat_Exchanger
@ HEX_Shell_Side
Jc separatics H o® HEX_Tube Side
= | [Separations_Subsystemn
----- & Liquid_Separations

- g @ Anbwdiide_Column
@ Anh_Stripping
- ol inh_Rectifying
@ Anhydiide_Feed Tray

.
O Out Anhydride Product |Gaseous Byproducts

dcid Recypcle

N Vapor Effluent

|

|

| Reactors_Subsystem| 7, 4.,; d Bffluent | Separations_Subsystem !

: o gr_ separation
|

|

|

Acetone Recycle

. . @ Anh_Condenser
Aceticdcid Feed CW_COND Out | . ® AnhReboiler
Furnace Duty CW_COND In | - @ Acetone_Column
- — - - - - - 0 - = & Acet_Rebailer
o Acet_Cond
4 3 =
_I J £ @ Acetone_Feed_1
L™ Separations_Subsystem) [] 3 @ Acetone Feed 2
- el . ;I @ Acetone_Feed 3
apor uent. _—— _——— —_—— —_— e — — — # AcetoneStippin
- Pping
| Gaseous Byproducts Anhydride Product & Mid 2
| Acid_Recycle_ - & Mid_1
) @ Acetone_Rectifping
| Cond CW COND Out < dcid Solvent gc_separet (i | L. .® Soliter
ondenser Absorber - ® Acid_Cooler
Solvent Recowery qc_sep_split
Condensed Vapor ar_sep_split

Condenser

°| Liquid_Separations gr seps
PR ol

® COND_Shell_Side

COND_Tube_Side

|
|
Flash Vapor
| : Vap
| Flash Liguid
| N H = > Flash_nit

»{Flash_Unit
CW COND In - SENEsEsssssssssse S BB o® Absorber
- - T _|biguid Effluent. __ _|Acetones Recycle e @ Acetone_|nventory
- o Acetichcid_lnventory

Figure 7-12: Separ ations Subsystem Design for Acetic Anhydride Plant

The liquid separations subsystem is then designed to separate three liquid streams: the
quench reactor liquid effluent stream, the liquid stream condensed from the quench reactor vapor
stream, and the used liquid solvent stream. Most of the anhydride product is in the quench
reactor liquid effluent stream, so this stream is fed to a distillation column to separate the
anhydride product as a bottoms stream. The remaining two streams, along with the acetone/acid
overhead stream from the anhydride column are fed to a second distillation column. The
overhead stream from this column is mostly pure acetone, while the bottoms stream is mostly
pure acetic acid. The acetone stream is recycled to the acetone cracking furnace, while the acetic
acid stream is split so that a portion is used as a solvent in the gas absorber and the remainder is
recycled to the quench reactor.

The Kremser equation (King, 1980) is introduced as a user-defined equation to estimate

the number of stages in the gas absorber (10 stages), and the rectifying (6 stages) and stripping

249

section (13 stages) of the anhydride column. Since the three streams separated by the
Acetone/Acid column have varying concentrations, they are fed to different trays in the column.
The Kremser equation is then again used to estimate the number of stages in each section of the
column. These calculations result in a 23 stage column, where the liquid from the flash is fed to
the fourth stage, the anhydride column overhead is fed to the ninth stage, and the absorber solvent
is fed to the fourteenth stage. The absorber and columns are then modeled as explicit VLE stages
where each section is modeled as a staged unit.

Sizing and cost correlations for the separation subsystem equipment are added as user-
defined equations, and the economic potential of this base-case design is then evaluated through

numerical simulation. These results (shown in Figure 7-13) reveal that the design is not profitable

at any value for ketene yield.

= MODEL LA = S
Flle Process Unit Process Flux Contraller Transmission Line Modeling Project Model Simulation Maodeling Panes Draw Utilities WWindow Help
le plal BEn @1' | :=|
Simulation Results Examination
- Stages User\Vars | LI_'l Graph |Numencal Valuesl Design Varlahlesl | FPlant
Aceto e ey sctors_Subsystem |
| ™ Sho sl &cetone_Cracking_Reactol
Simulation Of mod revised- Complete-Plant-final-with-Aigorous-columns la Quench_Reactor
| Save Cunent Datal User Vars X106 . ® Reactor_Vessel
| 38 o ® Heat_Ewxchanger
Load Oid Data | j j j ' ' ' ' HE¥_Shell_Side
I I I
| i i . . ! HE®_Tube_Side
| I I I I ' parations_Subsystern
Phases H H ! ! Liquid_Separations
| 42 ... T 1 P Y [& Anhydride_Column
| ' ' | @& Anh_Stipping
' ' ' [I | o ® Anh_Stipping_| |
Acet ' T | = ® Anh_Stripping_
. I
I [T A N | I S o® &nh_Shipping_: |
L— Wariables 46 L. 1% i et it sl J: ttoT -t o® Anh_Stipping_, |
ing ' ater Cost ' I I | o® Anh_Stipping ! ||/
A I Economic Potential | O H H H S A A (R | I S o® &inh_Stipping_— ||
Economic_Potential_Recy \ \ \ \ \ FE N N | I o® Anh_Stipping_
EP_Vapar_recovery 5 [' L L | & Snh Stioping ¢
Fumace Anrualized Cost x| N === T-=--imm--f----p---q----p---p---- o Lomppindt |
I I I I I [T TR Y | I S = ® Anh_Stipping_!
Species ' '
P I I I ' ' [T (R N | N R, o ® Anh_Stipping_* I
Vapo: , , , | | | - g Anh_Stipping_* |
I I I I I I N
| | | | | | R N | R =@ Anh_Stipping_° |
| -04 . . I @& Anh_Rectifying
09108209309409508608970880891 | - o® Anh_Rectifying.
wariable units Ketene_Yield (S1_Units) o® Anh_Rectifying.
| ISI Units vl ------ ® Anh_Rectifying,
| - | &—4 1 Econaomic_Potential_|_O (S|_Units) ‘ ~u® iinh_Rectiying,
| o @ Anh Rectifying,
prctons
Expand Graph oK. | Help | : Feed_Tr
| denser
= 5| W
B I
Exit View Save O oiler |
Result Engine | Eyuations |Simulations Help Progress p
. Feed_1 !
IVNumerlcal Engine Status M | Feed 2 ™ :
1 H4

Figure 7-

13:

250

Economic Potential for Base Case Design of Acetic Anhydride Plant

7.1.3 Dynamic Distillation Column Example

The following phenomena-based model is based on a SPEEDUP example model file. It is a
dynamic model of a distillation column with a side stripper for the separation of benzene, toluene,

and o-xylene. The process is illustrated in Figure 7-14.

=) MODEL LA (=] x|

Fille Process Unit Process Flus Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utities ‘window Help
3 = =
o e L = = R

I btx2dyn.la =] B4 || BT eslamn !EE 1 Hierarchical Tree !EE
:I e ETX colurmin
=

@ Colurmn

----- @ Rectify

------ o® Rectify_1
------ o® Rectifp_2
------ o® Rectify_3
------ o® Rectify_4
------ o® Rectify 5
------ o® Rectify_B
------ o® Rectify 7
..... ® Ship

o® Ship_1
...... o® Stip_2
...... o® Ship_3
...... o® Stip_4
...... o® Ship 5
...... o® Stip 6
o® Ship_7
----- @ Midsect

------ o® Midsect_1
o® Midsect_2
o® Midsect_3
o® Midsect_4
o® Midsect_5
------ o® Midsect_&
I N~ e o® Reboil

- _ AI:* — | ® Condenser
= - g® Cond

o g® Reflus_split
g ® Dum

- g @ Feflus

- g® Side_stipper
n. Side_reboi
cead | 200 Ly | B Side_column

|
| a1 - g® Side_column_1
| | - g ® Side_column_2
1 [5 ® Side_column_3
T cefius_1 ovechead o : »
o i) il - @ Side_column_4

- g® Side_column_5

LLI 4 é]il_l » ; e g® Side_column_G |

:"d(? abfeed

—J

gl

7 Column

|___

Figure 7-14: BTX Dynamic Distillation

A saturated 0.45/0.45/0.1 mole percent liquid mixture of benzene/o-xylene/toluene is fed to the
fourteenth tray of a twenty tray distillation column. A sidestream is withdrawn from the eighth
tray of the column and fed to the top of a six tray side stripper. A benzene-rich overhead stream
is drawn from the top of the column, while o-xylene-rich and toluene-rich bottoms streams are
drawn from the column and side stripper, respectively. Ideal vapor liquid equilibria are assumed
for all trays in the column and side stripper. All tray-to-tray vapor flows in the column and side
stripper are modeled using a pressure-driven transport mechanism, and all tray-to-tray liquid flows

are modeled using Francis Weir overflow transport mechanisms.

251

9 MODEL.LA HE R

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties window Help

0O pE| By | Bx = =
oleelzaloy] | =l=(x|
1® btx_ctrl-demo.la M=) B ||| == Side_stripper =13 I
- - m
J side return _I
— — —
F::dm aakfeed
[—
tedes
c_dist
A A
¥ BTX_column M= B3
-
. ’ EEIN
| 1a Condenzer overkead
—) »
| 1 Column
1 | =
| 0 s pen SN
- * Cirlo [+ | [i
| side return L —
« = -
| side feed L ———— e
satfeed t5 £7 t8 | L
13 DT
| - oult || ——|-
1$DT5p|
| vh 10 cuiz | 2! |
| lib—» . £ 9 | ‘—‘—‘W
Reboil | L g _
- S — — e — — -
attoms
o 2% JEN N "

Figure 7-15: PI Control of Dynamic Distillation Column

The process was first modeled at steady state, with molar purity specifications of the benzene,
toluene, and o-xylene streams set at 95%, 85%, and 95%, respectively, to determine nominal
values for the reflux flow rate, side stripper feed stream flow rate, and energy inputs to both
reboilers. Results from the steady-state simulation were then used to initialize a dynamic
simulation for a study of the open-loop dynamic response of the process to disturbances in feed
concentration and feed flow rate. Four PI controllers were then added to the process, as

illustrated in Figure 7-15. These controllers are summarized in Table 7-3.

252

Table 7-3: PI Controllersof BTX Dynamic Distillation

Controller Measured Variable Setpoint Manipulated Variable
Ctrl0 vapor m01§ fraction of Xpenzene=0.95 reflux flow rate
benzene in tray 20
temperature differential 1o flow rate of side stripper
Cull between trays 13 and 14 Tiray 13 Tray 14=10°C feed stream
Ctrl2 mole fraction of o-xylene Xorytenc=0.95 energy 1nput' to column
bottoms stream reboiler
Ctel3 mole fraction of toluene Xonenc=0.85 energy input tq side
bottoms stream stripper reboiler

The resulting closed-loop response of the process to a disturbance in the feed flow rate is

illustrated in Figure 7-16.

= MODEL LA

=12]]
File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help
r’Dl lgz’l@ @él @'[Simulation Results Examination |
[Simulations Units | Fluxesl Stagasl L4+

Graph | Numerical alues | Design Variables |

1 Hierarchical ... [H[=]E3

=] Showal & BTH_column
it Simulation Of bb¢_ctr-dermola |l = @ Columin |
Save Current Data r:'lds z =l oes M ® Rectiy
idzect ! - 0956 ® Rectify_1
LoadidDala | - [Midsects s @ Rectiy 2
.1‘.@ aat L= 0954 - o® Reciy_3
Rectity 2 =] ' < o® Rectify_4
ro o Rectify 5
Ph - -
qu‘;ses 08952 g ® Rectiy_5
Matsrisl/S el .S? Rectity 7
Tp
085 ' =@ Strip_1
A I H w0 Strip_2 |
_ WYariables 09458 ! s g @ Shrip_3 |
17 BTX_colum H_tat (tatal height] : : - g® Strip_4
_——— P_surface [surface presst 0.946 H H o ol Shrip 5 |
| U : T A R e o® Stip & |
| : : o® Ship_7
0944 : : @ Midzect |
| | | poe g @ Midsect_1
| 0942 : : g ® Midsect_2
3 Midsect_3
0 1 2 3 5 =@ Midssel_
| tirre (3% 1044 — M!dsect_4
| 4 Midsect_&
isble btz 0l —_— | ® Midsect 6
| feneme e E—A |y 1 wYLENE, Reboil, lig0 (mole_fraction .® Rcbai
satfeed mole_raction jv —, ; ey |] = # Condenser
. ¥_BEMZEME, Rectify_1, vap0 {mole_fraction) X -
ide_stripper
| @ Side_reboil
| @ Side column
oK He|
| e | o
. :_column_2
Yy @ : column_3
2 /‘F :_column_4
Design . p— :_column_5
Variables | ¢! Initial r*Immll Si Recul Progress :_column_E
IVNumerical Engine Status N

Figure 7-16: Closed Loop Dynamic Response of BT X Distillation Column

253

7.1.4 1-D Spatially Distributed Reaction and Separation Processes

The following phenomena-based model is based on an example by Heydweiller et al (1977). The
model is of a process with three unit operations, a mixer, a tubular reactor, and a countercurrent
absorption column. A gPROMS model of this process also appears in (Oh, 1995).

Specifications for the reaction of interest are summarized in Table 7-4.

Table 7-4: Reaction Data for 1-D Spatially Distributed Reaction and Separ ation Process

1. Stoichiometry:

A+B - 2C
2. Rate Law:
r, =klc,c,
3. Gas phase
4. Isothermal
i MODEL.LA [=[=2]x]

File Process Unit Process Flux Contraller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties Window Help

OeBes(my k| mE|E| B

R 1D reaction and separation.la I[=] B3 I

- Hierarchical Tree 1M [m] B3 I

o® Mixing_T ank.
& Tubular_Feactor

® Tubular_Reactor_z

Tubular_Reactor_z1
o® Tubular_Reactor_z2
Gas_Abzorber

a2hsork

lrecycle

Gras_Absorber

o® Liquid_z
& Liquid_z1
e @ Liquid_22

fead

effluent outlet

Add New Process Units | Add New Fluses | Specify Species and Reactions | Edit Pracess Units | Edit Fluses | Edit Contiol Loops | Model Simulation |

=]) o) Wi (i) - | ?
Blackbow Unit Uit with Vapor — Unit with Liquid ~— Unit with Wapor — Unit with Liquid Staged Unit Spatially Unit from Help
Fhaze Fhaze Ligquid E quilibrium Liquid E quilibrium Distributed Unit Template Library

Figure 7-17: 1-D Spatially Distributed Reaction and Separ ation Process

254

The structure of the process is illustrated in Figure 7-17. Reactants are mixed with a
recycle stream and fed to a tubular reactor. The reactor effluent enters the bottom of a
countercurrent absorption column where C is partially absorbed into a liquid phase product
stream. The remaining vapor is recycled.

The structure of the reactor and two-phase absorption column are illustrated in Figure
7-18. The reactor, and gas and liquid phases of the absorber are each modeled as 1-D spatially
distributed systems. The reactor has convective and Fickian diffusive flux of all species along the
distributed z-dimension. The vapor and liquid phases of the absorber have convective flow along
their respective distributed z-dimensions, and diffusion of C occurs from the gas to the liquid

phase (with the rate of diffusion proportional to the deviation from equilibrium).

£m MODEL.LA - [= 1]
File Process Unit Process Flux Contraller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties Window Help
kY | =
L L e e A
=
et — ahsorh
absork recycle |
Liquid_zZ|
| |]
| | Vapor £ | i ioui
| Vapor Liquid | | I Liguid_z
| hs 12
| | Tabs_v&p | | ld s 4g
| outlet | | | Liquid_=1
L —Fflaemt —_— leffluent | | outlet
TR ;ﬂ!,;l 1 _>l_I ;d
9 Tubular_Reactor 9I=1 E3 || . 1
= [Tubular Reactor z is-a modeled-unit -
[1 bl is-internalunitof Tubular Reactor
| hasspecies &
| hasspecies B
tr =z . has-species C
| | hasspecies inert
feead effiuant has-reaction rznl
— -y has-matetiatcontent Tubular Reactor zmatl
Tubular Reactor zl Tubular Reactor =k [Tubular Reactor =2 has-convective-input tr_z
- - - - | has-species-input tr_a z (species &)
has-species-inpet it b z (speciesB)
| | hasspeciesinputtr ¢ z (speciesC)
v, has-speciesinput tr_i z (species inert)
| | Tubular Reactor zmatl is-3 material
- - _ 1 is-materiateontentof Tubular Reactor z
hasvaporphase Tubular Reactor zmatl V0
hasspecies A
e O ﬁas—spec;_esl? 5l

Figure 7-18: Structure of 1-D Spatially Distributed Tubular Reactor and Gas Absor ption Column

255

The model equations derived by MODEL.LA from this phenomena-based model
description include 1%-order partial differential, differential and algebraic equations. These
equations are submitted symbolically to gPROMS and solved numerically using the partial
differential equations modeling capabilities of the solver. The solution methods specified for

solution of the resulting partial differential equations are summarized in Table 7-7:

Table 7-5: Solution Methodsfor 1-D Spatially Distributed Reactor and Absor ption Column

1. Tubular Reactor

a. Domain: Otolm

b. Elements: 10

c. Order of Approximation: 2

d. Solution Method: Centered Finite Difference

2. Absorption Column Gas Phase

a. Domain: Otolm

b. Elements: 10

c. Order of Approximation: 1

d. Solution Method: Backward Finite Difference

3. Absorption Column Gas Phase

a. Domain: Otolm

b. Elements: 10

c. Order of Approximation: 2

d. Solution Method: Centered Finite Difference

Once the model equations are solved, the discretized results for spatially distributed variables are
read by MODEL.LA, and OLE automation is used to load the simulation results into Microsoft
Excel and generate surface plots of selected variables. Figure 7-19 displays results for the rate of
reaction in the reactor, and the concentration of C in both the vapor and liquid phases of the

absorption column.

256

” File Edit Wiew Insert Format Tools Chart ‘Window Help

¢_C_VYapor_zmatl_¥0[z)

kg-moleim™3

T i
e 3 7 2 = z 2
il B 2 &8 3 ¥ 2 8 -~
g 8 % %3 ¥ %
2

SpaceCoordinate_1 2 2
4[4 [w [mifs_Chartl £ Chart2 £ Chart3 j, Chartd / Sheetl & She

kg-moletm*3is

Figure 7-19: 1-D Spatially Distributed Reactor and Absor ption Column Results

7.1.5 2-D Tubular Reactor

The final phenomena-based modeling example is a dynamic model of a 2-D spatially distributed
tubular reactor with a cooling jacket. It is based on an example by Froment and Bischoff (1990),
modified to introduce radial as well as axial distribution. A gPROMS model of this reactor
appears in (Oh, 1995).

Specifications for the reaction of interest are summarized in Table 7-6. The structure of
the reactor is illustrated in Figure 7-20. The reactor is declared to be cylindrical with radial and
axial distribution. Axially, there is convective flux, Fickian diffusive flux of o-xylene and oxygen,
and Fourier conductive flux of energy. Radially, there is also diffusion of o-xylene and oxygen
and energy conduction. At the outer radial boundary, there is energy transport, modeled by a

surface convection mechanism, to a lumped cooling jacket.

257

Table 7-6: Reaction Data for 2-D Spatially Distributed Tubular Reactor Example

1. Stoichiometry:
o-xylene + 3 oxygen — phthalic anhydride + 3 water

2. Rate Law:

-E
ro —xylene = A |}Xp(ﬁ)po—wlene poxygen

3. Gas phase

5 MODEL LA [(=] =]

File Process Unit Process Flux Controller Transmission Line Modeling Project Model Simulation Modeling Panes Draw Utilties indow Help

et N [=ER H

= tuboeactorta RETE [iearchical reeMBIER]|
ﬂ Tube reactor rz js-2 modeled-unit Tube_reactor
cool in cool out Is-internakuni-of Tube reactor ® Tube_reactor_rz
= Tacket = P has-species 0_XYLENE -o® Tube_reactor_r1
hasspecies PHTHALIC_ANHYDRIDE -g® Tube_reactor_r2
hasspecies OXYGEN -o® Tube_reactor_z1
Tq has-gpacies WATER -g® Tube_reactor_z2
hasreaction rZnd Jacket
has-materiatcontent Tube reactor rzmatl
roducts hasconvective-input flow z
reactants Tube reactor Fid has-species-inout a_z (species o_XYLENE)
o hasspeciesinout b_Z (species OXYGEN)
hasensrgy-input oz
- has-species-inout a 1 (species 0_XYLENE)
LL' v o hasspeciesinout b (species OXYGEN)
IR Tube_reactor
4 ﬂ Add Mew Flures
_______________ —— — —————— Specify Species and Reactions

Edit Process Units | Edit Fluzes
Edit Cantral Loops

|

| Model Simulation
| Add Mew Process Units
|

|

|

% Blackbos Uni

G Unit with % apaor Phase

|

@ Linit with Liquid Phase
Tube reactor rz

@ Uit with % apor Liquid E quilit

| Z | Uit with Liquid Liguid E quilit
| 2 | 64§ Staged Unit
| ; g |) Spatialy Distrbuted Urit
: - : Q Unit fram Termplate Libran
| I Tube_reactor rl I | D Help
Kl ap

Figure 7-20: 2-D Spatially Distributed Tubular Reactor Example

The model equations derived by MODEL.LA, including integral, 2"°—order partial differential,
differential and algebraic equations, are given in Appendix E. These equations are formulated as a
gPROMS input file and solved using the solution methods summarized in Table 7-7 for the

resulting partial differential equations.

258

Table 7-7: Solution Methodsfor 2-D Spatially Distributed Tubular Reactor Example

1. Radial (r) Dimension:

a. Domain: 0t00.0127 m

b. Elements: 5

c. Order of Approximation: 2

d. Solution Method: Centered Finite Difference

2. Axial (z) Dimension:

a. Domain: Oto3m

b. Elements: 14

c. Order of Approximation: 1

d. Solution Method: Backward Finite Difference
2 Microsoft Excel - Book1 - [=]x]
||#7 Ele Edt view Dnsert Format Tools Chart Window Help & x|

Tube_reactor Temperature {K)
time=8s

B4

6375
T
= B35
g O 638-640
g . -. mE35-638
s @ [33-635
E mG30-633
s| 1) O628-630
5 node -
Eu B275 node(13) :gig-gii
p node2(11) m620-623
EI node?(9)
il node2(7) z-dimension

node?(5)
node2(3)
node2(1}

=
w
=
=1
=

r-dimension

node1(3)
node1(4)

node1(5)
node1(6)

time =05 fime=1s tme=2s time =35 time =4 5 time=5s time =75 atime =85 time=9s time =105

Figure 7-21: 2-D Spatially Distributed Tubular Reactor Simulation Results

259

To facilitate analysis of the behavior of 2-D spatially distributed processes, MODEL.LA uses
OLE automation to load the simulation results into Microsoft Excel, generate surface plots, and
animate these plots. An excerpt from the results for the 2-D spatially distributed tubular reactor,

which exhibits a hot spot near the reactor inlet at the radial center, is illustrated in Figure 7-21.

7.2 Summary of M odel Examples

The examples in this chapter illustrate the use of the MODEL.LA Modeling Environment in a
variety of modeling contexts. These examples and the form of the resulting mathematical models

are summarized in Table 7-8.

Table 7-8: Summary of Phenomena-Based M odeling Examples

Steady-State or Type of Number of
Example Dynamic Process | Mathematical Model | Equations Comments
HDA Plant Steady-State Algebraic 3293 Hierarchical design
Hierarchical design
Acetic Anhydride Plant Steady-State Algebraic 3894 with economic
analysis
Open loop and
BTX Distillation Dynamic DAE 2266 closed loop control
structures
1-D Reaction and Separation Dynamic PDAE 138 Isothermal process
2-D Tubular Reactor Dynamic IPDAE 93 Non-isothermal
process

260

Chapter 8

Conclusions and Recommendations

This final chapter summarizes the primary research contributions of this work and the potential
impact envisioned it may have on chemical process modeling in engineering practice and in

undergraduate education. It concludes with recommendations for future research.

8.1 Research Contributions

The main contributions of this research include:

1. The development of a high-level phenomena-based modeling language for the
representation of chemical process models in terms of interacting physicochemical
phenomena.

2. The description of modeling logic, which allows systematization of the model
development process through explicit representation of modeling tasks as
operators that act on a language-based model description.

3. The integration of the phenomena-based modeling language and logic into a
computer-aided modeling environment that enables rapid, reliable, and
documented chemical process model development from first principles.

Each of these aspects will now be discussed.

8.1.1 Phenomena-Based Modeling Language

The phenomena-based modeling language of MODEL.LA provides a high-level language for
representing chemical processes in terms of interacting physicochemical phenomena. This
language is designed to enable chemical engineers and computers to communicate in a language

based on the principles of chemical engineering science. The high-level nature of this language

261

can allow all chemical engineers, not just modeling experts, to develop and use chemical process
models formulated from first principles. Compared to mathematical equation-based models, the
resulting models are much easier to construct, edit, debug, analyze, reuse, and understand.
Furthermore, the phenomena-based model representation preserves modeling knowledge, by

explicitly retaining the assumptions behind a process model.

8.1.2 Formalized M odeling Logic

The MODEL.LA modeling logic operators provide a basis for systematizing the process of model
development by explicitly characterizing modeling tasks that are currently carried out in an
informal and implicit manner. These operators allow the computer to understand the procedural
and declarative aspects of the modeling activity. This enables it to provide assistance for
analyzing and constructing phenomena-based models, to detect inconsistencies and
incompleteness in the phenomena-based model description, and to derive and explain the resulting
mathematical model equations. In addition, by recording operators activated during model
development, explicit documentation of the modeling activity that produces a process model can

be maintained.

8.1.3 Computer-Aided Modeling Environment

The motivation behind the development of the phenomena-based language and logic of
MODEL.LA is to enhance the modeling capability and productivity of any chemical engineer.
However, the concepts of phenomena-based language and logic expressed on paper alone would
essentially limit the impact of this work to an academic exercise. The MODEL.LA modeling
environment embodies these ideas of language and logic, and provides a system that enables
phenomena-based modeling of dynamic systems of arbitrary structure and spatial distribution,
hierarchical levels of detail, and multicontext depictions. Components of the MODEL.LA
environment provide automated mathematical model derivation, incorporation of thermodynamic
and physical property data, integration of control structures, operational task scheduling, and
external models, and assistance for analysis, specification, and solution of the resulting
mathematical model. The features of the MODEL.LA environment enable evaluation of the
phenomena-based modeling methodology through application to wide variety of modeling

examples and case studies. Such examples have highlighted the enhanced productivity, reliability,

262

and maintainability of models developed in this environment.

8.2 Potential Impact on Modeling in Engineering Practice

The industrial use of the MODEL.LA modeling environment was subjected to preliminary
evaluation at modeling workshops which took place at the Mitsubishi Chemical Corporation in
Kurashiki, Japan and the Dow Chemical Corporation in Midland, Michigan. At each location, 15-

20 process engineers assessed the use of the MODEL.LA environment in application to dynamic

process simulation, spatially distributed system modeling, and hierarchical process design.

These experiments revealed that the high-level phenomena-based modeling approach of

MODEL.LA can have a unique impact on chemical process modeling by:

1.

Reducing the time required for equation-based process model development by an
order of magnitude,

Enabling process models to be readily used and reused in different contexts (e.g.,
process design, steady state or dynamic optimization, training, controller design),
Enforcing the consistency and completeness of assumptions that characterize
complex process models,

Supporting the multiple resolution modeling and analysis of hierarchical and
spatially distributed systems, and

Retaining the knowledge and explicit assumptions behind the development of a

process model.

Specifically with regard to process design, MODEL.LA can have a unique impact by:

1.

Accelerating process model development and thus increasing the number of
alternatives that can be considered,

Allowing experts in varying backgrounds to readily contribute to a design in a
collaborative manner by raising the level of model development from the equation
or procedural level to the knowledge level,

Providing complete flexibility in process specification, since models are not limited
to an existing library, and

Facilitating evolutionary process development by allowing addition of detail in a

hierarchical manner.

263

In summary, the MODEL.LA modeling environment can enhance process modeling in engineering
practice by not only guiding and expediting the process of model development, but also by
transforming the product of modeling from a procedural or mathematical equation-based

representation to an chemical engineering phenomena-based representation.

8.3 Potential Impact on Under graduate Chemical Engineering Education

The pedagogical approach of chemical engineering education was established many decades ago
by the concept of unit operations. Unit operations were identified as common types of equipment
(e.g., distillation column) that were then characterized by generalized sets of equations or other
methods of analysis (e.g., McCabe-Thiele diagrams for distillation columns). These classic set
pieces of instruction were developed to concisely introduce methods of analysis to students and
engineers. In the 1960s, an emphasis on more fundamental concepts (i.e., transport phenomena)
introduced more science and mathematics into the chemical engineering curriculum, yet also
within the context of what have become classic set pieces of analysis (e.g., heated fin, Navier-
Stokes equations, etc.). “To a large extent,” writes Cussler (1999), “[chemical engineering
curricula] reflect the scheme first suggested in 1917.” As a result of this tradition that often limits
instruction to the analysis of idealized situations, the education of many contemporary students is
left incomplete.

The Bloom Taxonomy of Educational Objectives (Bloom, 1956) identifies six ascending
levels of understanding: (i) translation (i.e., memorization), (ii) interpretation (i.e., paraphrased
repetition), (iii) application (i.e., “analysis” in an engineering context), (iv) analysis (i.e.,
“modeling” in an engineering context), (v) synthesis (i.e., creative design), and (vi) evaluation
(i.e., critical appraisal). Unfortunately, most of the current curricula focuses only on the first
three levels, and does not adequately nurture higher-level understanding in students. Creative
exercises, coupled with computer-based material, are one way to allow students to develop these
higher-level thinking skills (Montgomery and Felder, 1996).

The MODEL.LA modeling environment allows students to develop models at the high-
level of elementary physical and chemical phenomena that they assume to occur in a chemical
process. This enables students to freely express their assumptions of what constitutes the physical

and chemical makeup of a model, while being guided through a structured process of model

264

development.

8.3.1 Structuring of Modeling Activities

While students are free to express their own notions of the assumptions behind a chemical process
model, the framework of the MODEL.LA modeling environment enforces an explicit, yet natural,
structure on the process of model development. Key tasks that a student must tackle during this
process are summarized below:

1. Decide what are the appropriate control volumes (i.e., systems) for a process,

2. Declare how these systems interact through transport of mass and energy,

3. Specify and characterize chemical species, reactions, and materials present in the

process,

4. Refine and specify the internal content of the control volumes,

5. Characterize the boundary interactions mechanistically,

6. Check the model for consistency and prepare it for solution, and

7. Specify values of known parameters, solve the model, and analyze the results.
These tasks simply represent good modeling practice, whether a student is using MODEL.LA,
another computer-aided modeling tool, or paper and pencil. However, only in MODEL.LA are
all of these steps always explicit. This rigor helps to enforce a sound modeling methodology in
students, and provides a framework for subsequent model development with or without

computer-aided assistance.

8.3.2 Classroom Deployment of MODEL.LA

MODEL.LA was deployed in the senior-year Integrated Chemical Engineering (10.490) course at
MIT during the Fall 1998 semester. The educational context of this course focused on
hierarchical process synthesis. These experiments were designed to investigate the pedagogical
use of MODEL.LA in the classroom. Using questionnaires (with 34 responses from 38
participating students), the instructional experiments at MIT revealed how students benefited the
most from use of MODEL.LA:
1. The students recognized in MODEL.LA the basic principles of chemical
engineering science and felt confident invoking them during the modeling of

processing systems (85% of the respondents indicated good to excellent

265

recognition and usage of the principles).

2. In contrast to traditional flowsheet design, 100% of respondents preferred the
evolutionary, hierarchical modeling approach of MODEL.LA, which enabled
group members to distribute the work load, while maintaining the consistency and
integrity of the overall design.

3. A significant majority (70%) of respondents indicated that MODEL.LA allowed
them to effectively shift the focus of attention from the algebraic manipulation of
modeling equations to the engineering problem at hand (i.e. how to synthesize a
chemical processing scheme).

4. Almost all of the respondents (90%) found the graphic user interfaces of
MODEL.LA very natural to their modeling tasks, and far more ‘“relevant”,
“intuitive”, ‘‘effective”, and “powerful” than other computer-aided modeling
system they had used (including programming languages, spreadsheets, flowsheet
simulators, and equation-based modeling tools).

5. Students also suggested that MODEL.LA be incorporated into several other
undergraduate core courses in chemical engineering, including, (i) Introductory
Course in Chemical Engineering, (if) Thermodynamics, (iii) Separation Processes,

(iv) Kinetics and Reaction Engineering, (v) Chemical Engineering Laboratory, and

(vi) Process Design.
MODEL.LA was also deployed at the University of California at Berkeley using small-size groups
of sophomore students. The educational context in these groups focused on learning the art of
modeling. In written evaluations, these students commented that MODEL.LA was successful in
(i) focusing their learning on the concepts and phenomena behind a problem, (ii) providing a
physical feel for a model that is missing from equation writing, and (iii) deepening their

understanding of phenomena and behavior with rapidly produced numerical feedback.

8.3.3 Pedagogical Use of MODEL.LA

By taking responsibility for mathematical model derivation, MODEL.LA can allow students to
freely express their notions of what assumptions characterize an adequate process model, without

trepidation over subsequent mathematical manipulations. Of course, students must master

266

mathematical model derivation skills. However, students must not dissociate description of the

underlying physical and chemical phenomena from the problem-solving activity.

Based on the preliminary experiments described above, the following proposes the

appropriate pedagogical use of MODEL.LA in undergraduate chemical engineering education:

1.

For novice students, MODEL.LA acts as a virtual laboratory, where students use
predefined models to investigate qualitative cause-and-effect interactions between
phenomena, process parameters and observed behavior (e.g., adding heat to a
vapor-liquid equilibrium system).

For beginning students, who are comfortable writing balance equations for
blackbox systems, MODEL.LA helps students extend these models to more
complex systems by familiarizing them with the functional form, limitations, and
parameters of the equations at every stage of assumption-making. This approach
seeks to instill a disciplined approach to modeling so that students are not
immediately overwhelmed when faced with a new problem-solving context.

For intermediate students, MODEL.LA provides a toolbox where the seemingly
disjoint concepts taught in various core chemical engineering courses can be
integrated, applied in the context of open-ended problem-solving, and truly
understood through such applications.

For advanced students, MODEL.LA allows them to concentrate on matters of
process synthesis, where they investigate operating alternatives and generate novel
process structures using the building blocks of elementary physical and chemical
phenomena, not the hard-wired unit operation models of commercial simulators.
MODEL.LA allows these students to concentrate on the creative “what-if” aspects
of synthesis, without being bogged down or intimidated by the mathematical

manipulations required to investigate new ideas.

8.3.4 Unique Impact on Undergraduate Education

It is envisioned that appropriate pedagogical use of MODEL.LA can result in a unique impact on

the use of process modeling in chemical engineering undergraduate education.

aspects are summarized below:

267

Several such

1.

An advanced background in mathematics for the student will not be a
prerequisite. Many students are overwhelmed by modeling because they are
dismayed or distracted by the intricacies of the mathematical calculations involved.
The declarative phenomena-based modeling language approach can alleviate this
by allowing students to concentrate on the chemical engineering concepts and
principles employed during the process of modeling, disjoint of any complex
mathematical activity. Obviously, mathematical skills are indeed a critical
educational requirement for engineering students. However, beginning students
who do not yet possess these skills should not be restricted from exercises that
nurture creative and critical thinking.

The learning rate of the student can be increased. Students are currently taught
the set pieces of the foundation material early in the chemical engineering
curriculum, but then struggle to apply these concepts later in senior-year
laboratory and design projects. While it is through this type of struggle that the
student begins to truly understand and appreciate the basic principles, this learning
should take place far earlier in the curriculum. The MODEL.LA modeling
environment can allow the student to apply these concepts within the core courses
to non-idealized situations where decisions beyond “picking the right equation”
must be made. Students may develop their understanding by experimenting with
their ideas and assumptions, and then be given immediate feedback so they may
evaluate the impact of their decisions. This will enable students to gain a deeper
understanding of basic principles when they are first taught by making the link
between concepts and open-ended engineering problem solving.

The scope of engineering problems the students investigate can be broadened.
The culmination of most chemical engineering curricula is one or more senior-year
design projects which, ideally, should force students to integrate all the knowledge
they have learned in the core courses. Typically, the task is to design and optimize
a system of interrelated processes and operations in order to meet certain
objectives. However, in many cases the challenge to the student becomes not

integrating chemical engineering knowledge, but learning how to use some unit

268

operation-based flowsheet simulator. This experience may benefit certain students
who will use such simulators later in their professional careers. However, a
flowsheet simulator is not an appropriate pedagogical tool for this situation
because by definition its focus is on the use of predefined unit operation models. A
phenomena-based tool will enable students to integrate all concepts they have
learned in application to a design problem. While the student may still implement
such units as “heat exchangers”, “packed towers” or “reactors”, they will be
defined through a physicochemical phenomena-based approach, where all
assumptions become explicit and understood, rather than just selected as “black
boxes”. With the assistance of the high-level environment such as MODEL.LA,

students may even feel inspired to play with the design of novel processing units.

8.4 Directionsfor Future Resear ch

Use of the MODEL.LA modeling environment in undergraduate education and industrial practice
reinforced several of the anticipated benefits of the phenomena-based modeling approach. In
addition, these experiences also revealed several opportunities for future directions of research

and development.

8.4.1 Phenomena-Based Modeling Language Extensions

The phenomena-based modeling language of MODEL.LA reflects the focus of the traditional
chemical engineering curricula, in that it is best suited for the modeling of processes that involve
traditional petrochemical materials. Likewise, few simulation tools currently exist that are well-
suited for the modeling of specialty chemicals. To address this need, the modeling language of
MODEL.LA should be extended to fully encompass the modeling of solids, aggregate phases,
electrolytes, polymers, biological systems, etc. This would require the addition of appropriate
mechanistic characterizations of these materials and associated phenomena, along with the
corresponding logic for derivation of the requisite model equations (including formulation of

population balances).

8.4.2 Integration with Molecular M odeling Tools

The chemical processing industry places a growing emphasis on both product, as well as process,

269

design (Cussler, 1999). While a variety of molecular simulation algorithms and computer-aided
tools are available for such purposes, there has been little progress in incorporating these tools in
a generic manner into macroscopic (i.e., continuum) modeling tools. Ideally, the macroscopic
modeling capabilities of MODEL.LA could be integrated with molecular modeling tools for true
multi-scale modeling, where thermodynamic and physical properties and transport mechanisms
determined through simulation on a molecular level are solved simultaneously with the modeling

continuum processes on a macroscopic level.

8.4.3 Implementation of Supervisory Logic

The discussion of supervisory logic in this work proposes a basic template for incorporating
contextual modeling knowledge that can enable the computer to guide the modeling activity.
Significant further research would be required to explore the implementation of such guidance.
Ideally, a language is needed that would allow the modeler to express the context of a particular
modeling task. Rules that would allow the computer to recognize a particular context and
implement appropriate guidance (by proposing alternatives and critiquing decisions) would then
need to be formulated. Appropriate mechanisms that would allow the computer to subsequently
analyze simulation results to verify assumptions made during the modeling activity would also be

desirable.

8.4.4 Standardization and Integration with External M odeling Tools

The growing consensus in the process engineering community is that no one modeling tool is
capable of meeting all the modeling needs of the chemical process industry. Rather, certain
specialized models or tools are frequently required for a specific modeling objective. To address
this need, standardization of computer-aided modeling tools has been proposed by organizations
such as Global CAPE-OPEN (formerly CAPE-OPEN). These standards propose that all chemical
process modeling tools be capable of communicating through standard interfaces. In theory, this
approach would allow the integration of any number of modeling tools, databases, numerical
solvers, etc., in a single model formulation. Extension of the MODEL.LA modeling environment
to encompass these standards is anticipated as primarily a matter of software engineering, but may
be a pivotal requirement for its widespread acceptance for modeling in the chemical process

industry.

270

8.5 Conclusions

Since the concept of phenomena-based chemical process modeling was proposed nearly a decade
ago, several proponents and skeptics have voiced their conflicting opinions on its potential
benefits and ultimate feasibility. This research effort has sought to resolve this debate by (i)
developing a phenomena-based modeling language that encompasses the modeling of dynamic,
hierarchical, and spatially distributed processes, (ii) presenting a formalized modeling logic that
explicitly represents the declarative and procedural aspects of the modeling activity, and (iii)
integrating these concepts of language and logic in a computer-aided modeling environment in
order to provide an experimental apparatus suitable evaluating these ideas. Through application
of this environment to the modeling of a wide range of examples, as well as its deployment in
classroom and industrial settings, the potential benefits of rapid, reliable, and documented
chemical process modeling that may be realized from this high-level phenomena-based approach

have been demonstrated.

271

272

Bibliography

Abelson, H., G.J. Sussman and J. Sussman (1996). Structure and Interpretation of Computer
Programs. MIT Press, Cambridge.

AIChE (1982). Design Institute for Physical Property Data (DIPPR). American Institute for
Chemical Engineers, New York.

Aris, R. (1979). Mathematical Modeling Techniques. Pitman Publishing Ltd., London.

Barton, P.I. (1992). The Modelling and Simulation of Combined Discrete/Continuous
Processes. Ph.D. Thesis, Imperial College of Science, Technology and Medicine.

Barton, P.I. and C.C. Pantelides (1993). gPROMS - A combined discrete/continuous modelling
environment for chemical processing systems. Simulation Series, 25, pp. 25-34.

Bird, R.B., W.E. Stewart, and E.N. Lightfoot (1960). Transport Phenomena. Wiley, New York.

Bloom, B.S. (1956). Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain.
David McKay, New York.

Cho. J.H. (1997). Computer Aids for Mathematical Model Building. Ph.D. Thesis, Imperial
College of Science, Technology and Medicine.

Cussler, R.A. (1999). Do changes in the chemical industry imply changes in curriculum?
Chemical Engineering Education, 33, No. 1, pp. 12-17.

Denn, M.M. (1986). Process Modeling. Wiley, New York.

Douglas, J.M. (1985). Hierarchical design procedure for continuous plants. AIChE Journal. 33,
pp- 353-362.

Douglas, .M. (1988). Conceptual Design of Chemical Processes. McGraw-Hill, New York.

Duff, I.S., (1981a). On algorithms for obtaining a maximum transversal. ACM Trans. Math.
Softw., 4, pp. 315-330.

273

Duff, 1.S., (1981b). Algorithm 575. Permutations for a zero-free diagonal. ACM Trans. Math.
Softw., 4, pp. 387-390.

Feehery, W. and P.I. Barton (1996). A differentiation-based approach to dynamic simulation and
optimization with high-index differential-algebraic equations. In M. Berz, C. Bischof, G.
Corliss, and A. Griewank (Eds.), Computational Differentiation, SIAM. pp. 239-253.

Felder, R.M. and R.W. Rousseau (1986). Elementary Principles of Chemical Processes. John
Wiley, NY.

Foss, A.S. (1995). Report of Modeling Conversations at Berkeley. University of California at
Berkeley Faculty Interviews.

Froment, G.F. and K.B. Bischoff (1990). Chemical Reactor Analysis and Design. Wiley, New
York.

Gear, C.W. (1971). Simultaneous numerical solution of differential-algebraic equations. IEEE
Transactions on Circuit Theory, 18, pp. 89-95.

Heydweiller, J.C., R.F. Sincovec, and L.T. Fan (1977). Dynamic simulation of chemical
processes described by distributed and lumped parameter models. Comp. Chem. Eng., 1,
pp- 125-131.

Jarke, M. and W. Marquardt (1995). Design and evaluation of computer-aided process modeling
tools. Preprints of ISPE ’95 .

Jarvis, R.B. (1993). Robust Dynamic Simulation of Chemical Engineering Processes. Ph.D.
Thesis, Imperial College of Science, Technology and Medicine.

King, C.J. (1980). Separation Processes. McGraw-Hill, New York.

Kowalski, R. (1979). Logic for Problem Solving. North-Holland, New York.

Lloyd, M. (1985). Graphical function chart programming for programmable controllers (Grafcet).
Control Engineering, 32, pp.73-76.

Maher, M.L. (1988). Expert systems for structural design. Expert Systems in Engineering, 1FS
Publications, New York.

Marquardt, W. (1992). An object-oriented representation of structured process models. Comp.

Chem. Eng., 16, suppl., pp. S329-S336.

274

Marquardt, W. (1996). Trends in computer-aided process modeling. Comp. Chem. Eng., 20, NoO.
6/7, pp. 591-609.

McKetta, J.J., (1977). Encyclopedia of Chemical Processing and Design. Dekker, New York.

Moe, H.I. (1995). Dynamic Process Simulation Studies on Modeling and Index Reduction.
Ph.D. Thesis, Norwegian Institute of Technology.

Mohr, C.M. (1995). Summary of Faculty Interviews. Massachusetts Institute of Technology
Faculty Interviews.

Montgomery, S. and H.S. Fogler (1996). Selecting computer-aided instruction software.
Journal of Engineering Education, 85, No. 1, pp. 53-60.

Nilsson, B. (1993). Object-Oriented Modeling of Chemical Processes. Ph.D. Thesis, Lund
Institute of Technology.

Nilsson, B. (1995). Experiences of developing process model libraries in OMOLA. Preprints of
ISPE 95 .

Oh, M. (1995). Modelling and Simulation of Combined Lumped and Distributed Processes.
Ph.D. Thesis, Imperial College of Science, Technology and Medicine.

Oh, M. and C.C. Pantelides (1996). Modelling and simulation language for combined lumped and
distributed parameter systems. Computers & Chemical Engineering. 20, pp. 611-633.

Pantelides, C.C. (1988). The consistent initialization of differential-algebraic systems. SIAM J.
Sci. Stat. Comput., 9, No. 2, pp. 213-231.

Pantelides, C.C. and H.I. Britt (1995). Multipurpose process modeling environments. In L. T.
Biegler and M. F. Doherty (Eds.), Foundations of Computer-Aided Process Design,
AIChE Symposium Series, 91, No. 304, pp. 128-141.

Park, T. and P.I. Barton, (1996). State event location in differential-algebraic models. ACM
Transactions on Modelling and Computer Simulation, 6, pp. 137-165.

Perkins, J.D. and R.W.H. Sargent (1982). SPEEDUP—A computer program for steady-state and
dynamic simulation and design of chemical processes. AIChE Symposium Series, NO.
214, pp. 1-11.

Perkins, J.D., R. W. H. Sargent, R. Vazquez-Roman and J. H. Cho (1996). Computer generation
of process models. Comp. Chem. Eng., 20, No. 6/7, pp. 635-639.

275

Petri, C.A. (1963). Fundamentals of a theory of asynchronous information flow. Proceedings of
IFIP Congress, NO. 62, pp. 386-390.

Petzold, L.R. (1982). Differential/algebraic equations are not ODEs. SIAM Journal of Scientific
and Statistical Computing, 3, pp. 367-384.

Piela, P. (1989). ASCEND—An Object Oriented Environment for the Development of
Quantitative Models. Ph.D. Thesis, Carnegie Mellon University.

Piela, P., T.G. Epperly, K.M. Westerberg, and A.W. Westerburg (1991). Ascend: An object-
oriented computer environment for modeling and analysis: The modeling language.
Comp. Chem. Eng., 15, 53-72.

Ponton, J.W., P.J. Gawthrop (1991). Systematic construction of dynamic models for phase
equilibrium problems. Comp. Chem. Eng., 15, 803-808.

Preisig, H.A. (1995). MODELLER—An object-oriented computer-aided modelling tool. In L.
T. Biegler and M. F. Doherty (Eds.), Foundations of Computer-Aided Process Design,
AIChE Symposium Series, 91, No. 304, pp. 328-331.

Rumbaugh, J., M. Blaha, W. Premerlani, R. Eddy, and W. Lorensen (1991). Object-Oriented
Modeling and Design. Prentice-Hall, New Jersey.

Sipser, M. (1998). Introduction to the Theory of Computation. PWS Publishing, Boston.

Steward, D.V., (1962). On an approach to techniques for the analysis of the structure of large
systems of equations. SIAM Rev., 4, pp. 321-342.

Steward, D.V., (1965). Partitioning and tearing systems of equations, J. SIAM Numer. Anal. Ser.
B., 2, No. 2. 345-365.

Sussman, G.J., and G.L. Steele (1980). Constraints--a language for expressing almost-
hierarchical descriptions. Artificial Intelligence, 14, pp. 1-39.

Stephanopoulos, G., G. Henning, and H. Leone (1990a). MODEL.LA. A modeling language for
process engineering—I: The formal framework. Comp. Chem. Eng., 14, No. 8, pp. 813-
846.

Stephanopoulos, G., G. Henning, and H. Leone (1990b). MODEL.LA. A modeling language for
process engineering—II: Multifaceted modeling of processing systems. Comp. Chem.

Eng., 14, No. 8, pp. 847-869.

276

Tester, J.W. and M. Modell (1997). Thermodynamics and Its Applications. Prentice-Hall, New
Jersey.

Vazquez-Roman, R. (1992). Computer Aids for Process Model-Building. Ph.D. Thesis, Imperial
College of Science, Technology and Medicine.

Woods, E.A., (1993). The Hybrid Phenomena Theory. Ph.D. Thesis, Norwegian Institute of
Technology.

Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation. Academic Press,

London.

277

278

Appendix A
MODEL .LA Context-Free Grammar

* Overall Phenomena-Based M odel
<phenomena-based model> — <structural characterization> <chemical characterization> <derivation context>

<structural characterization> — <modeled-units> <fluxes>
<chemical characterization> — <chemical species list> <chemical reactions> <material-contents> <phases>
<derivation context> — <dynamic assumption> <mole or mass basis> <level of resolution>

<intensive or extensive characterization> <energy balance inclusion>...

» Element Lists

<modeled-units> — <modeled-units> <modeled-unit> | <modeled-unit>
<fluxes> — <fluxes> <flux> |

<chemical species list> — <chemical species list> <chemical species> |
<chemical reactions> — <chemical reactions> <chemical reaction> |
<material-contents> — <material-contents> <material-content> |
<phases> — <phases> <phase> |

¢« Modeled-Unit
<modeled-unit> — <unit identification> <hierarchical structure> <topological structure> <chemical content>
<modeled-unit behavioral characterizations>

<unit identification> — [modeled-unit id] is-a modeled-unit

<hierarchical characterization> — <parent unit> <internal characterization>
<parent unit> — is-internal-unit-of [modeled-unit id] |
<internal characterization> — <subunits> | <spatial distribution> | <material> | <blackbox>

<subunits> — <subunits> <subunit> | <subunit>
<subunit> - has-internal-unit [modeled-unit id]

<spatial distribution> — has-spatial-distribution <coordinate system> <differential subunits>

<coordinate system> — <rectangular coordinate> | <cylindrical coordinate> | <spherical coordinate>
<rectangular coordinate> — rectangular <x-characterization> <y-characterization> <z-characterization>
<cylindrical coordinate> — cylindrical <r-characterization> <theta-characterization> <z-characterization>
<spherical coordinate> — spherical <r-characterization> <theta-characterization> <phi-characterization>
<x-characterization> — <distributed x-dimension> | <undistributed x-dimension>

279

<y-characterization> — <distributed y-dimension> | <undistributed y-dimension>

<z-characterization> — <distributed z-dimension> | <undistributed z-dimension>

<r-characterization> — <distributed r-dimension> | <undistributed r-dimension>
<theta-characterization> — <distributed theta-dimension> | <undistributed theta-dimension>
<phi-characterization> — <distributed phi-dimension> | <undistributed phi-dimension>

<distributed x-dimension> — has-distributed-dimension x <distributed solution specification>
<distributed y-dimension> — has-distributed-dimension y <distributed solution specification>
<distributed z-dimension> - has-distributed-dimension z <distributed solution specification>
<distributed r-dimension> - has-distributed-dimension r <distributed solution specification>
<distributed theta-dimension> — has-distributed-dimension theta <distributed solution specification>
<distributed phi-dimension> - has-distributed-dimension phi <distributed solution specification>
<undistributed x-dimension> — has-undistributed-dimension x <undistributed solution specification>
<undistributed y-dimension> — has-undistributed-dimension y <undistributed solution specification>
<undistributed z-dimension> — has-undistributed-dimension z <undistributed solution specification>
<undistributed r-dimension> — has-undistributed-dimension r <undistributed solution specification>
<undistributed theta-dimension> — has-undistributed-dimension theta <undistributed solution specification>
<undistributed phi-dimension> — has-undistributed-dimension phi <undistributed solution specification>
<distributed solution specification> — <solution method> <nodes> <minimum> <maximum>
<solution method> - has-solution-method <difference method>

<difference method> — BFDM | CFDM | FFDM | UFDM | OCFEM

<nodes> - has-nodes <integer>

<minimum> - has-minimum <number>

<maximum> - has-maximum <number>

<undistributed solution specification> — <minimum> <maximum>

<differential subunits> — <differential subunits> <differential subunit> | <differential subunit>
<differential subunit> — has-differential-subunit [modeled-unit id]

<material> — has-material-content [material-content id]
<blackbox> -

<topological structure> — <boundary inputs> <boundary outputs>

<boundary inputs> — <boundary inputs> <boundary input> |

<boundary outputs> — <boundary outputs> <boundary output> |

<boundary input> — <convective input> | <energy species input> | <species input>
<boundary output> — <convective output> | <energy output> | <species output>
<convective input> — has-convective-input [flux id]

<convective output> — has-convective-output [flux id]

<energy input> — has-energy-input [flux id]

<energy output> — has-energy-output [flux id]

<species input> — has-species-input [flux id] [species id]

<species output> — has-species-output [flux id] [species id]

<chemical content> — <species content list> <reactions content>
<species content list> — <species content list> <species content> |
<species content> — has-species [species id]

<reactions content> — <reactions content> <reaction content> |
<reactions content> — has-reaction [reaction id]

280

<modeled-unit behavioral characterizations> — <modeled-unit behavioral characterizations>
<modeled-unit behavioral characterization> |

<modeled-unit behavioral characterization> — is-modeled-as <modeled-unit behavioral type>
<modeled-unit behavioral type> — is-modeled-as no-holdup | adiabatic |...

e Flux
<flux> — <flux identification> <flux type> <flux connectivity>
<flux identification> — [flux id] is-a flux

<flux type> — <convective flux> | <energy flux> | <species flux>

<convective flux> — <convective type> <equation of state> <convective mechanism>

<convective type> — transports material <phase state>

<convective mechanism > - is-modeled-by transport-mechanism <convective mechanism type>

<convective mechanism type> — constant | pressure-driven | francis-weir |...

<energy flux> — <energy type> <energy mechanism>

<energy type> — transports energy

<energy mechanism > - is-modeled-by transport-mechanism <energy mechanism type>

<energy mechanism type> — constant | surface-convection | fourier-conduction | surface-radiation |
shaft-work | thermal-equilibrium |...

<species flux> — <species type> <species mechanism>

<species type> — transports species [species id]

<species mechanism > - is-modeled-by transport-mechanism <species mechanism type>

<species mechanism type> — constant | surface-diffusion | fickian-diffusion | knudsen-diffusion |
partial-pressure-diffusion | chemical equilibrium | partition-coefficient |...

<flux connectivity> — <source unit> <sink unit>
<source unit> — from [modeled-unit id]
<sink unit> — to [modeled-unit id]

* Material-Content
<material-content> — <material-content identification> <modeled-unit association> <phase instances>
<species content> <vessel geometry> <flux allocations> <material-content behavioral characterizations>

<material-content identification> — [material-content id] is-a material-content
<modeled-unit association> — is-material-content-in [modeled-unit id]

<phase instances> — <phase instances> <phase instance> | <phase instance>
<phase instance> — <vapor phase> | <liquid phase> | <solid phase>

<vapor phase> — has-vapor-phase [phase id]

<liquid phase> — has-liquid-phase [phase id]

<solid phase> — has-solid-phase [phase id]

<vessel geometry> — has-vessel-geometry <geometry type> |
<geometry type> — rectangular | spherical | vertical-cylinder | horizontal-cylinder |

vertical-annulus | horizontal-annulus | conical |...

<flux allocations> — <flux allocations> <flux allocation> |
<flux allocation> — has-boundary-flux [flux id] allocated-to <allocated element>

281

<allocated element> — [phase id] | geometry | self

<material-content behavioral characterizations> — <material-content behavioral characterizations>
<material-content behavioral characterization> |

<material-content behavioral characterization> - is-modeled-as <material-content behavioral type>

<material-content behavioral type> — constant-volume | constant-pressure | include-PV-work |
has-vessel-void...

e Phase
<phase> — <phase identification> <material-content association> <thermodynamic characterization>
<chemical content>

<phase identification> — [phase id] iS-a <phase state> phase
<phase state> — vapor | liquid | solid

<material-content association> — is-phase-in [material-content id]

<thermodynamic characterization> — <equation of state> | <activity coefficient>

<equation of state> — is-modeled-by equation-of-state <equation of state type>

<equation of state type> — ideal-gas | incompressible | van-der-waals | redlich-kwong |
redlich-kwong-soave | peng-robinson |...

<activity coefficient> — is-modeled-by activity-coefficient-model <activity coefficient model>

<activity coefficient model> — ideal | margules | van-laar | wilson | nrtl | unifac |...

» Chemical Species
<chemical species> — <species identification> <database id>

<species identification> — [species id] is-a chemical-species
<database id> — has-database-id <integer>

¢ Chemical Reaction
<chemical reaction> — <reaction identification> <participants> <kinetics>

<reaction identification> — [reaction id] is-a chemical-reaction

<participants> — <reactants> <reversibility> <products> <catalyst>
<reactants> — <reactants> <stoichiometry> | <stoichiometry>
<stoichiometry> — + <number> [species id]

<reversibility> — O |e |==

<products> — <products> <stoichiometry> | <stoichiometry>
<catalyst> — has-catalyst [species id] |

<kinetics> — <forward rate law><reverse rate law>
<forward rate law> — has-forward-kinetics [equation]
<reverse rate law> — has-reverse-kinetics [equation] |

e Miscellaneous
[modeled-unit id] — <string>
[flux id] — <string>
[material-content id] — <string>
[phase id] — <string>

282

[reaction id] — <string>
[species id] — <string>

<string> — <letter><characters>

<characters> — <letter>|<digit>|_|

<letter> - AJBICIDIEIFIGIHIIIKILIMINIOPIQIRISITIUIVIWIX]Y[Zlalblcldleltighfikitiminlolplalrisiulywixylz
<digit> - 1]2|3]4|5|6]7|8|9|0

<integer> — <sign><digits>

<sign> - +|-|

<digits> — <digits><digit>|<digit>

<number> - <integer><fraction>

<fraction> - .<digits>|

283

284

Appendix B

Properties Manager

This appendix provides additional details regarding the features and functionality of the
MODEL.LA Properties Manager.
* Purpose
The purpose of the MODEL.LA Properties Manager is to construct equation-based correlations
that describe the thermodynamic and physical properties of pure chemical species and mixtures.
Within the MODEL.LA Modeling Environment, these property equations supplement the
conservation and constitutive equations that are derived by the MODEL.LA Model Generator
from the phenomena-based model description.

The Properties Manager also provides additional facilities for the analysis of the
thermodynamic and physical behavior of pure chemical species and mixtures, independently from
a phenomena-based modeling context.

» Propertiesof Pure Chemical Species

The Properties Manager integrates a database of thermodynamic and physical properties for pure
chemical species. The constant value and temperature-dependent properties contained in this
database mirror those of the DIPPR pure species database (AIChE, 1982). Use of this common
format enables straightforward incorporation of data provided by DIPPR (which currently
encompasses the measured and predicted properties of over 1400 species), and is also readily
extended to incorporate the property data of other species through a standard representation.
Through use of the Properties Manager, the modeler is not required to access and
manipulate the pure species property database tables directly. Rather, the data is accessed

through a series of graphical dialogs. A list of all chemical species contained in the database is

285

accessed using the Project Species Dialog (illustrated in Figure 5-11). Species identification
properties for each species, accessed using the dialog of Figure 5-27, are summarized in Table B-
1. Constant value properties for each species, accessed using the dialog of Figure 5-28, are
summarized in Table B-2. Temperature dependant properties for each species, accessed using the
dialog of Figure 5-29, are summarized in Table B-3. Each temperature-dependent property is
characterized by a temperature-dependent correlation with up to five parameters, and a
temperature range, characterized by a minimum and maximum bounds, over which the correlated
data is valid. Available correlations are summarized in Table B-4. The database also contains
UNIFAC group characterizations for each species, used for calculation of activity coefficients for
vapor-liquid equilibrium and liquid-liquid equilibrium systems, which are accessed using the dialog
illustrated in Figure 5-30. The structure of the properties database is summarized by the object
model illustrated in Figure 6-16.

Within a phenomena-based modeling context, pure species thermodynamic and physical
property data are primarily used for the construction of thermodynamic and physical property

correlations of mixtures of components (i.e., phases in a phenomena-based model).

Table B-1: Pure Species | dentification Properties

1. Database Index
Common Name
IUPAC Name

CAS Registry Number
Molecular Formula

Structural Formula

N o kWD

Chemical Group

286

Table B-2: Pure Species Constant Value Properties

Property Units Conditions
8. Molecular Weight kg/kg-mol —
9. Ciritical Temperature K —
10. Ceritical Pressure Pa —
11. Critical Volume m’/kg-mol —
12. Critical Compressibility Factor — —
13. Melting Point K 1 atm
14. Triple Point Temperature K —
15. Triple Point Pressure Pa —
16. Normal Boiling Point K 1 atm
17. Liquid Molar Volume m’/kg-mol 298.15K
18. Enthalpy of Formation of Ideal Gas J/kg-mol 298.15K
19. Gibbs Free Energy of Formation of Ideal Gas J/kg-mol 298.15 K and latm
20. Absolute Entropy of Ideal Gas J/kg-mol K 298.15 K and latm
21. Enthalpy of Fusion at Melting Point J/kg-mol —
22. Net Enthalpy of Combustion J/kg-mol 298.15K
23. Acentric Factor — —
24. Solubility Parameter I /m*? 298.15 K
25. Dipole Moment cm —
26. van der Waals Reduced Volume m’/kg-mol —
27. van der Waals Area m?*/kg-mol —
28. Lower Flammability Limit vol % in air —
29. Upper Flammability Limit vol % in air —
30. Auto-ignition Temperature K —

287

Table B-3: Pure Species Temper atur e-Dependent Properties

Property Units Conditions

31. Liquid Density kg-mol /m’ 1 atm below normal boiling point
32. Solid Density kg-mol /m’ —

33. Heat of Vaporization J/kg-mol —

34. Ideal Gas Heat Capacity J/kg-mol K —

35. Liquid Heat Capacity J/kg-mol K 1 atm below normal boiling point
36. Solid Heat Capacity J/kg-mol K —

37. Vapor Pressure Pa —

38. Second Virial Coefficient m’/kg-mol —

39. Absolute Liquid Viscosity Pas 1 atm below normal boiling point
40. Vapor Viscosity Pas —

41. Liquid Thermal Conductivity W/ mK —

42. Vapor Thermal Conductivity W/ mK 1 atm or below

43. Surface Tension N/m 1 atm below normal boiling point

288

Table B-4: Pure Species Temper atur e-Dependent Property Correlations

Correlation Correlation p
T arameters
Number Y = property, T = temperature (K) , T¢ = critical temperature (K)
100 Y=A+BT+CT*+DT?+ET* A,B,C,D,E
B
101 Y =exp[BA +F +CIn(T) + DT" [H A,B,C,D,E
y = AT®
102 - C D A, B,C,D
I+ —+—
T T
C
103 Y :A+BexpB-—H A,B,C,D
D
L T°C
rearBa iDL E
_ A
105 - B]+(]_7/C)[) A, B, C, D
Y =A(1-T)B+CT,+DT,2+ET,3
106 _ T A,B,C,D, E
r TC
107 Y=A+B (C/T) +D (E/T) A,B,C,D, E
inh(C/T) cosh(E/T)
vy =A% sp 2acy —ape - DD
t 3 2 5
114 A,B,C,D
t :l—l
TC
B E
115 Y =exp[54 +F+Cln(T)+DT2 +F[H A,B,C,D,E

289

* Properties of Phases

Correlations that describe the physical and thermodynamic properties of phases in a phenomena-
based model are constructed by the Properties Manager based on pure component species data
and, when appropriate, equation of state or activity coefficient models selected by the modeler to
characterize the thermodynamic behavior of the phase. Thermodynamic equation of state models
supported by the Properties Manager are listed in Table B-5. Further details regarding these
equations of state and the suggested mixing rules shown are discussed in Reid et al (1984). The
equation of state mixing rules introduce binary interaction parameters for each pair of chemical
species in the phase. These binary interaction parameters are also stored in the Properties
Manager database and may be accessed using the dialog shown in Figure 5-31. Thermodynamic
activity coefficient models supported by the Properties Manager are listed in Table B-6. Activity
coefficient correlations in Table B-6 are shown for binary systems. Generalized multicomponent

correlations used are also summarized in Reid et al (1984).

290

Table B-5: Properties Manager Equations of State

Equation of Correlation
State (ki = Binary Interaction Parameter)
Ideal Gas P=RT/V
RT
P= — a_’;
V-b, V
van der Waals a, zzzxixj(aiaj)”2(l_kij) b, = Zx,-b,-
T 5 7
27R°T, RT,,
a, = ol bi = ?
64F, 8P,
RT
2 D

Redlich-Kwong

“V-b, TV +h,)

a, :Zinxj(aiaj)W(l—kij) b = inbi
5 4

Redlich-
Kwong-Soave

0.42748R*T>? , = O-08664RT,
a =— e L
’ F ’ P
p= RT a,T)

" V-b, V(V+b,)

am(T):szixj(aiaj)”2(l_kij) bm :inbi
roJ i

0.42748R°T”, - 0.08664RT. .

a(T) = P—L’ [+ fw,(1-T,,7)] b, = P—L’

c,i c,i

fa =0.48 +1.574@, -0.176w,”

Peng-Robinson

_ RT _ a, (T)
V-b, YV +b,)+b,V=b,)

a,(T)=% % xx;(@a)"””(1-k;) b, = xb
[i

P

Virial
(simplified)

0.45724R°T, Uaes 0.07780RT.,
a,(T) =————[1 + f@,(1-T,;")] b =——
. ’ .
f@ =0.37464 +1.54226@, —0.26992w,’
b= RT
V-B

RT ..
= = cy 0) [0
B, _Z inxfBif Bij - (B; +(UijBii)
[cif

T, =(=k)T.T.)"

civc,j

291

Table B-6: Properties Manager Activity Coefficient Models

CA—tY"tiVi Correlation I Binary
oefficient nteraction
Model (shown for binary component mixtures) Parameters
Ideal Solution y =1 —
Margules Tlny, =(A +3B +5C)x; —4(B +4C)x; +12Cx; A B C
(four suffix)
Ax i
van Laar Ty, = +—L A B
Bx,
N\ N\
Iny, =In(x, + A\, x,) +x2EX — +/i‘ E
VAL, X 2%
Wilson aj, azp
V. a V a
A, :iexpB-—”H A, :—‘expB—AH
Vi O 70O v, O 70O
O G G O
Iny, _xz2 3, = é T, %D
p 1 T x,G, (x, +x,Gy,) p
NRTL 812 821, 412
_8n _ 82 _ —
r, =——= T1,, ==— 1InG,, =—a,T InG, =-a,T
12 T 21 T 12 12¢12 21 12t 21
O} e r,
Iny, :ln_]"'i% In—+®,H, -—+1, 5-¢,In(6, +6,7,))
x, 2 P, T,
T T
UNIQUAC + 92611 H = - L E Upz, Uzg
06, +6,1, 6, +6,7,,
u u
InT.. =—2 Int, =—-—2L
12 R 21 RT
UNIFAC based on UNIQUAC equation,

calculates interactions based on structural subgroups of components

292

The thermodynamic and physical properties correlations constructed by the Properties Manager

for phases are listed in Table B-7.

Table B-7: Thermodynamic and Physical Property Correlationsfor Phases

Property Units

1. Average Molecular Weight kg/kg-mol
2. Molar Density kg-mol/m’
3. Molar Volume m’/kg-mol
4. Component Fugacity Pa

5. Component Fugacity Coefficient —

6. Component Activity —

7. Component Activity Coefficient —

8. Internal Energy J/kg-mol
9. Enthalpy J/kg-mol
10. Gibbs Free Energy J/kg-mol
11. Entropy J/kg-mol K
12. Helmholtz Energy J/kg-mol
13. Heat Capacity J/kg-mol K

The formulation of each of these property correlations for phases is a phenomena-based model is
now discussed.

1. Average Molecular Weight:

The average molecular weight of a phase is calculated as:

MW, = S xMW,

ave
species

where
1. MW, is the average molecular weight of the phase,
2. x; is the mole fraction of the i species component in the phase, and
3. MW, is the molecular weight of the i"" species component in the phase.
2. Molar Density:
For phases modeled as incompressible (i.e., the density of the phase is not dependent on pressure),

the molar density is calculated assuming ideal solution behavior:

293

-1

pT.X) = EZ Y E

where
1. p is the molar density of the phase,
2. x; is the mole fraction of the i species component in the phase, and
3. p is the molar density of the i"" species component in the phase.
For phases modeled using an equation of state, the molar density is calculated as:
p(P.T.X) =V " (P.,T.X)
where
1. p is the molar density of the phase, and
2. Vis the molar volume of the phase (determined by the equation of state model

selected for the phase).
3. Molar Volume:

For phases modeled as incompressible, the molar volume is calculated assuming ideal solution
behavior:
X

V(T.x) = "
sp;es ,0 i (T)

where

1. Vis the molar volume of the phase,

2. x; is the mole fraction of the i species component in the phase, and

3. p is the molar density of the i species component in the mixture.
For phases modeled using an equation of state, the molar density is expressed as a function of
pressure, temperature, and composition:

f(PV.T.X)=0

where

1. P is the pressure of the phase,
V is the molar volume of the phase,

T is the temperature of the phase, and

> won

X 1is the vector of mole fractions for all species in the phase.

294

As shown in Table B-5, non-ideal equation of state models will also contain a set of binary
interaction parameters for all pairs of species in the phase.
4. Fugacity:
For phases modeled as incompressible, the fugacity of each species in the phase is calculated
(neglecting the Poynting correction factor) as:
fi =xV.P,;

where

1. f;is the fugacity of the i species component in the phase,

2. x; is the mole fraction of the i species component in the phase,

3. yis the activity coefficient of the i species component in the phase, and

4. P,,;1s the vapor pressure of the i" species component in the phase.
For phases modeled using an equation of state, the fugacity of each species in the phase is
expressed as:

fi = x4.P

where

1. f;is the fugacity of the i species component in the phase,

2. x; is the mole fraction of the i species component in the phase,

3. @is the fugacity coefficient of the i species component in the phase, and

4. P is the pressure of the phase.

5. Fugacity Coefficient:

For phases modeled using an equation of state, the fugacity coefficient of each species in the

phase is determined by evaluation of the following integral:

RTIhg _—f%;ia in RTIn(2)
V.N;[i]

1. @ is the fugacity coefficient of the i species component in the phase,

where

T is the temperature of the phase,

P is the pressure of the phase,

S

V is the molar volume of the phase,

295

5. Zis the compressibility factor of the phase, and

6. x is the vector of mole fractions for all species in the phase.
Integrated forms of this equation for the equations of state in Table B-5 are given in Reid et al
(1984).
6. Activity:
For incompressible phases modeled using an activity coefficient model, the activity of each species
in the phase is expressed as:

a; =Xy,

where

1. a; is the activity of the i species component in the phase, and

2. yis the activity coefficient of the i" species component in the phase.

7. Activity Coefficient:

For incompressible phases modeled using an activity coefficient model, the activity coefficient of
each species in the phase is expressed as:
y, = f(T.%)

where

1. yis the activity coefficient of the i" species component in the phase,

2. T is the temperature of the phase, and

3. x is the vector of mole fractions for all species in the phase.
The activity model correlations for binary systems are summarized in Table B-6. Correlations for
multicomponent mixtures may be found in Reid et al (1984).

8,9, 10, 11, 12. Internal Energy, Enthalpy, Gibbs Free Energy, Entropy, Helmholtz Energy :

For phases modeled as incompressible, thermodynamic variables are calculated using excess
properties based on the selected activity coefficient model:

i

G=G"+ 3 xG,+RT Y x,Inx

species species

S=St+ inSl. -R in Inx,

species species

A=A" + inAi + RT in Inx,

species species

296

H=H"+ Y xH,

species

U=U"+ 3 xU,

speces
where
1. G is the Gibbs free energy of the phase,
S is the entropy of the phase,
A is the Helmholtz energy of the phase,
H is the enthalpy of the phase,

U is the internal energy of the phase,

AN o

x; is the mole fraction of the i" species component in the phase, and
7. E (superscript) represents an excess property.
For phases modeled using an equation of state, the thermodynamic variables are calculated using

departure functions based on the selected equation of state model:

AT,V) —A°(T,V°) = _Jfﬁp—%%ﬂl+RTln§%

o v PT 0
S(T,V)=-8S°(T,v°)y=— -__HIV +RI
TS = LY n%

UT,V) -U°(T,V°) =[A(T,V) —A°(T,V) +T[S(T,V) - S°(T,V)]

H(T.V) -H’(T.V°) =[UT.V) ~U°(T.V°)]+PV - RT
G(T.V) =G°(T.V’) =[H(T.V)~H’(T.V)]-T[S(T.V)-S°(T.V")]

where

1. A is the Helmholtz energy of the phase,

2. S is the entropy of the phase,

3. U is the internal energy of the phase,

4. H is the enthalpy of the phase,

5. G is the Gibbs free energy of the phase, and

6. O (superscript) represents a reference state property.
Integrated forms of the departure functions for the equations of state in Table B-5 are given in

Reid et al (1984). The use of departure functions for the calculation of thermodynamic mixtures

297

using equation of state models is discussed in detail by Tester and Modell (1997).

13. Heat Capacity:

For phases modeled as incompressible (i.e., the density of the phase is not dependent on pressure),
the molar heat capacity is calculated assuming ideal solution behavior:

i pii

¢, (10 = 3 xe,,(I)

species
where

1. ¢, is the molar heat capacity of the phase,

2. x; is the mole fraction of the i species component in the phase, and

3. ¢, 1s the molar heat capacity of the i" species component in the phase.
For phases modeled using an equation of state, the molar heat capacity is calculated using

a departure function based on the selected equation of state model:
2 P T 0P /0T
¢, (T.V)=c(T,V°) = TJL ()V—R
(0P/0V),

1. ¢, is the molar heat capacity of the phase,

where

2. P is the pressure of the phase,

3. V is the molar volume of the phase,

4. T is the temperature of the phase, and

5. O (superscript) represents a reference state property.

 Analysisof Phase Behavior

Analysis of the thermodynamic and physical behavior of phases is facilitated through the Phase
Properties Dialog (illustrated in Figure 5-34). Here, property correlations constructed based on
pure species properties and selected equation of state or activity coefficient models may be

viewed and plotted.

298

Appendix C
Operational Schedules

This appendix provides additional details regarding the declaration of operational schedules
through use of the MODEL.LA Operations Manager.

* Purpose

The purpose of an operational schedule declared within the MODEL.LA Operations Manager is
to impose discrete actions on the behavior of an otherwise continuous process model. Within the
MODEL.LA Modeling Environment, this results in hybrid discrete and continuous behavior
exhibited during subsequent simulation of a phenomena-based process model.

e Hybrid Systems

The mathematical model derived from a phenomena-based model representation consists of a set
of continuous equations that are based on conservation principles. The behavior of such a model
is characterized by a set of state variables (e.g., mass, energy, temperature, composition, etc.) that
vary continuously in time. However, external discrete actions imposed on the system through
manipulation of some process quantity (e.g., set flow rate to zero) result in discontinuous process
behavior. Such models that exhibit both discrete and continuous behavior have been termed
hybrid systems.

The general structure of a hybrid system may be interpreted as shown in Figure C-1. The
state of a physical system is monitored by sensors that relay this information to an external control
system. Based on the state of the physical system, the control system may implement discrete (or
continuous) actions on the physical system through actuators that manipulate a variable or

variables associated with the physical system.

299

Physical

Actuator ——p|
System

—» Sensor

Non-Physical
System —
(e.g., controller)

Figure C-1: Generic Structure of Hybrid System

e QOperational Schedules

In chemical plants, the two predominant types of procedures that result in hybrid systems are
control procedures and operating procedures. In general, control procedures sample variables at
regular intervals of time, which may be interpreted as time events. At each time event an action is
performed—the value of a manipulated variable is changed based on a specified control law. In
general, operating procedures encompass both time events and state events. These operating
procedures may be interpreted as operational schedules that encompass a sequence of actions that
are performed on the process when some conditions are satisfied (i.e., time events or state
events). These operational schedules are an inherent part of the operation of a batch plant and
appear commonly during the startup, shutdown, and maintenance of a continuous plant.

Several formalisms have been proposed to describe discrete systems. Examples include
finite state automata (Sipser, 1998), DEVS formalism (Zeigler, 1984), Petri Nets (Petri, 1963),
and Grafcet (Lloyd, 1985). Computer-aided packages that allow the simulation of hybrid
discrete/continuous systems include gPROMS (Barton, 1992), OMOLA (Nilsson, 1993), and
ABACUSS (Feehery and Barton, 1996).
» Graphical Declaration of Schedules

In the MODEL.LA Operations Manager, operational schedules are declared using a graphical
syntax based on a set of graphical elements. A schedule is composed of a sequence of elementary
and/or composite actions. An elementary action represents the manipulation of a process variable.
A composite action is itself a schedule that is composed of a sequence of elementary and/or
composite actions. The sequence of actions carried out in a schedule is dictated by events that

link the actions. Certain events are associated with a condition based on a set of one or more

300

measured process variables. When an event has control in a schedule and the condition associated
with the event becomes true, the subsequent action in the schedule is triggered. Control then
passes to the subsequent event, as dictated by the topology of the schedule events.

In MODEL.LA, tasks are declared as icons on a process flowsheet where they are
associated with a one or more measured variables and one or more manipulated variable through a
set of transmission lines. Subsequently, these tasks are used in the construction of any number of
operational schedules in the MODEL.LA Operations Manager. Here, schedules are constructed
graphically as flowcharts. The graphical elements that are used to compose a schedule are
summarized in Table C-1. Each of these elements are now discussed.

1. Events:

An event in a schedule is represented by an arrow line that connects two actions. The orientation
of the arrow depicts the flow of control (i.e., sequence of manipulations) in a schedule. An event
may be of type void, when, while, end while, if, and if not.

1.A Void Event:

When control is passed to a void event, the subsequent associated action is immediately triggered.
In this manner, a sequence of actions connected by void events are used to trigger a set of actions
simultaneously.

1.B When Event:

When control is passed to a when event, the subsequent action is triggered once the conditional
defined for the event becomes true. A when event is associated with a task that has been declared
on the process flowsheet. Variables measured by the task are used to construct the conditional

associated with the when event.

301

Table C-1: Operational Schedule Elements

Element Icon Purpose
Event 1. Void events trigger simultaneous actions
e When event triggers action based on time or state event

(black arrow)

While/end while events establish loop in schedule

el

1f7if not events establish conditional branches in schedule

Initial Action

(green circle)

Establishes starting point of schedule

End Action

(red circle)

Establishes termination of branch in schedule

Elementary Action

(blue ellipse)

Represents manipulation of process variable

Composite Action

>

(olive ellipse)

Represents abstraction of sequence of events and actions

Condition Action

O

(yellow diamond)

Establishes conditional branches during execution of

schedule

Parallel Action

]
(black bar)

Establishes multiple independent execution paths in schedule

302

1.C While and End While Events:

A while event establishes the beginning of a loop of actions in the schedule. The closure of the
loop is established by a subsequent end while event. Similar to a when event, a while event is
associated with a task that has been declared on the process flowsheet. Variables measured by the
task are used to construct the conditional associated with the while event. When control is passed
to a while event, the associated action is activated if the conditional associated with the while
event is true. Execution then continues until control passes to the subsequent end while event in
the schedule. At that point control returns to the initial while event. In this manner, an iterative
loop of actions is established. When control is passed to a while event and the associated
conditional is not true, the action subsequent to the end while event that ends the loop is
triggered. In this manner, the loop is terminated.

1.D If and If Not Events:

A condition action establishes a pair of alternative branches encountered during the execution of a
schedule. Each condition action is associated a conditional and a subsequent if and an if not
event. When a condition action is triggered, control is passed to the if event if the conditional
associated with the condition action is true. If it is false, control is passed to the if not event.
Similar to a void event, when control is passed to an if or an if not event, the subsequent
associated action is immediately triggered.

2. Initial Action:

Every schedule must have exactly one initial action. It is represented in a schedule by a green
circle. The initial action establishes the starting point of the schedule. The initial action is
associated with a null action (i.e., no process manipulation occurs) and thus immediately passes
control to the subsequent event.

3. End Action:

Every path in a schedule must terminate at an end action. It is represented in a schedule by a red
circle. The end action is associated with a null action and represents termination of the
operational schedule.

4. Elementary Action:

An elementary action is represented in a schedule by a blue ellipse. It represents a change in the

value of a manipulated variable in the process. An elementary action is associated with a task that

303

has been declared on the process flowsheet. Variables manipulated by the task are used to
construct the action (represented by an equation) associated with the elementary action.

5. Composite Action:

A composite action represents an abstraction of a sequence of actions and events. It is represented
in a schedule by an olive ellipse. A composite action is itself a well-defined schedule. This
enables a hierarchical declaration of operational schedules. The actions and events that compose
a composite action are declared on a separate decomposition flowchart. When a composite action
is triggered, control passes to the initial action in the decomposition of the composite action.
Execution of the sub-schedule continues until an associated end action is triggered. Control is
then passed to the event subsequent to the composite action in the parent schedule.

6. Condition Action:

An condition action is represented in a schedule by a yellow diamond. A condition action
establishes a pair of alternative branches encountered during the execution of a schedule. A
condition action is associated with a null action. Therefore no process variable is manipulated.
Rather, the condition action is associated with a task that has been declared on the process
flowsheet. Variables measured by the task are used to construct the conditional associated with
the condition action. Each condition action is also associated with a subsequent if and if not
event. When the condition action is triggered, control is passed to the if event if the conditional is
true. Ifit is false, control is passed to the if not event.

7. Parallel Action:

An parallel action is represented in a schedule by a solid black bar. A parallel action enables the
execution of two or more simultaneous paths in a operational schedule. A parallel action is
associated with a null action. Therefore no process variable is manipulated. Rather, when a
parallel action is triggered, control is passed to all events immediately subsequent to the action.
Each path is then executed independently and concurrently. The overall operational schedule
terminates when all resulting paths in the schedule terminate at end actions.

* Schedule Construction

The first step in constructing a schedule in MODEL.LA is to declare the necessary tasks as icons
on the phenomena-based model flowsheet. Each task is associated with a set of measured process

variables (declared by transmission lines incident to the task) and a set of manipulated process

304

variables (declared by transmission lines incident from the task). For example, in Figure 5-41,
feed_task represents a task that measures the volume of the Reactor and Storage systems through
transmission lines reactor_vol_fill and storage_vol, respectively, and manipulates the volumetric
flow rate of the feed stream through transmission line feed_flow. The measured process variables
are used to construct conditionals for when events, while events, and condition actions. The
manipulated process variables are used to construct action equations for elementary actions.

Each schedule is constructed using the elements described in the preceding section. These
are presented to the modeler on the Modeling Assistant (illustrated at the bottom of Figure 5-41).
Rules for construction of a valid schedule are now presented.

— All schedules must contain exactly one initial action that has no events incident to
it and exactly one void, when, or while event incident from it.

— Every branch in a schedule must terminate at an end action, which must have
exactly one void, when, if, if not, or end while event incident to it and no events
incident from it.

— Every elementary, composite, condition, and parallel action in a schedule must
have exactly one event (of any kind) incident to it.

— Every elementary and composite action in a schedule must have exactly one void,
when, while, or end while event incident from it.

— Every condition element must have exactly one if and exactly one if not event
incident from it.

— Every parallel branch may have any number (greater than zero) of events incident
from it of type void, when, or while.

— Every loop established by a while event must terminate at a end while event.

— Every when event, while event, and condition element must either be associated
with a time event or a state event characterized by a conditional. Events
associated with state events must be associated with a task that measures the
variables used to construct the characterizing conditional.

— Every initial, final, conditional, and parallel events are by default associated with
null actions.

— Every elementary action must be associated with a task that manipulates a process

305

variable and an equation that characterizes the manipulation of the variable.
— Every composite action must be associated with a distinct, valid sub-schedule.

» Schedule Execution

For a given phenomena-based model description and set of tasks, any number of schedules may be
declared. However, when the model is simulated, only the selected active schedule (which may
integrate other sub-schedules through composite actions) is implemented for execution. The
schedule is posed in the gPROMS input language for simulation with the model equations derived
from the phenomena-based model description. Each elementary action in a schedule is declared
as a gPROMS TASK which RESETs the value of a process variable. Table C-2 illustrates the
declaration of the schedule depicted in Figure 5-41. The first four entries represent elementary
actions feed_on, feed_off, product_on, and product_off. Each action manipulates a process
variable from the phenomena-based model equations (contained in MODEL The_Model). The
main schedule and any composite action sub-schedules are also declared as gPROMS TASKs
which list the schedule actions in a SEQUENCE associated with the SCHEDULE of the TASK.
Elementary or composite actions linked by void events are listed sequentially in a SEQUENCE.
When events are declared as CONTINUE UNTIL statements that separate elementary or
composite events. While events are declared as WHILE [condition] DO statements that terminate
at End While events declared as END statements. Conditional actions are declared as

IF/THEN/ELSE statements. Finally, parallel actions are declared as PARALLEL statements.

306

Table C-2: Example gPROM S Schedule Trandation

gPROMS Tasks

TASK feed_on
PARAMETER
The_Model AS MODEL The_Model
SCHEDULE
SEQUENCE
RESET The Model.v_flux_feed := 0.1 ; END
END
END

TASK feed_off
PARAMETER
The_Model AS MODEL The_Model
SCHEDULE
SEQUENCE
RESET The Model.v_flux_feed := 0.001 ; END
END
END

TASK product_on
PARAMETER
The_Model AS MODEL The_Model
SCHEDULE
SEQUENCE
RESET The_Model.v_flux_product := 0.1 ; END
END
END

TASK product_off
PARAMETER
The_Model AS MODEL The_Model
SCHEDULE
SEQUENCE
RESET The_Model.v_flux_product := 0.001 ; END
END
END

TASK main
PARAMETER
The_Model AS MODEL The_Model
SCHEDULE
SEQUENCE
WHILE The_Model.V_Storagematl_L0O < 100 AND TIME <= 5000 DO
SEQUENCE
feed_on(The_Model IS The_Model);
CONTINUE UNTIL The_Model.V_Reactormatl_LO >= 10 OR TIME > 5000
feed_off(The_Model IS The_Model);
CONTINUE UNTIL The_Model.r_rxn0_forw_Reactormatl_L0O <= 0.001 OR TIME > 5000
product_on(The_Model IS The_Model);
CONTINUE UNTIL The _Model.V_Reactormatl 1.0 <= 0.1 OR TIME > 5000
product_off(The_Model IS The_Model);
END
END
END
END

307

308

Appendix D
Jacketed-CSTR Model Equations

1. Unit Jacketed_Cstr speciesACETIC_ACID mole quantity decomposition
N =N

ACETIC_ACID, Jacketed_Cstr ACETIC_ACID, Vessel

2. Unit Vessel speciesACETIC_ACID balance

aNA('ETI(; ACID, V:nc/ at - (nA('ETI(; ACID, reactants_input, source nA('ETI(; ACID, products_output, murcc) + (_eXt—rxn()Vcncl, mm)

3. Unit Vessel species ACETIC_ACID mole quantity decomposition
N =N

ACETIC_ACID, Vessel ACETIC_ACID, Vessel, liq0

4. Unit Jacketed_Cstr species WATER mole quantity decomposition
N =N

WATER, Jacketed_Cstr WATER, Vessel + NWATER, Jacket

5. Unit Vessel speciesWATER balance
aNWATER, Vcnc/ at = (nWATER, reactants_input, source nWATER, products_output, murcc) + ext_ranVM lig0

6. Unit Vessel species WATER mole quantity decomposition
N =N

WATER, Vessel WATER, Vessel, liq0

7. Unit Jacket species WATER balance
aNWATER, .Iackcl/at = nWATER,c - n

oolant_inlet, source WATER, coolant_outlet, source

8. Unit Jacket species WATER mole quantity decomposition
N N

WATER, Jacket — WATER, Jacket, liq0

9. Unit Jacketed_Cstr species1 BUTANOL mole quantity decomposition
N =N

1_BUTANOL, Jacketed_Cstr 1_BUTANOL, Vessel

10. Unit Vessel species1 BUTANOL balance
aNLBUTAN()L, Vcnc/ at = (nLBUTAN()L, reactants_input, source nLBUTAN()L, products_output, murcc) + (_CXt_rxnochl, 1340)

11. Unit Vessel species1 BUTANOL mole quantity decomposition
=N

1_BUTANOL, Vessel I_BUTANOL, Vessel, liq0

12. Unit Jacketed Cstr speciesn_ BUTYL_ACETATE mole quantity decomposition
N =N

n_BUTYL_ACETATE, Jacketed_Cstr n_BUTYL_ACETATE, Vessel

309

13. Unit Vessel speciesn_BUTYL_ACETATE balance

-n) + ext_rxn0

aanBUTYLﬁA('ETATE, Vcnc/at - (nniBUTYLiA('ETATE, reactants_input, source n_BUTYL_ACETATE, products_output, source. Vessel, liq0

14. Unit Vessel speciesn_BUTYL_ACETATE mole quantity decomposition
N =N

n_BUTYL_ACETATE, Vessel n_BUTYL_ACETATE, Vessel, liq0

15. Phase Vesselmatl L O total moles decomposition into individual species moles
liqli) + N

NVCHCL liq0 — ((NA('ETI(;A('ID, Vessel, liq0 + NWATER, Vessel, liqli) + NIﬁBUTANOL, Vessel, n_BUTYL_ACETATE, Vessel, liq0

16. Phase Vesselmatl_L 0 sum of individual species mole fractions
1

((XA('ETI(;A('ID, Vessel, liq0 + XWATER, Vessel, liqli) + XIﬁBUTANOL, Vessel, liqli) + XniBUTYLiA('ETATE, Vessel, liq0 —

17. Phase Vesselmatl_L 0 species ACETIC_ACID molar concentration
N =C

*
ACETIC_ACID, Vessel, liq0 'ACETIC_ACID, Vessel, liq0 VVCHCL lig0

18. Phase Vesselmatl_L 0 species WATER mole fraction
N X *N

WATER, Vessel, liq0 — #NWATER, Vessel, liq0 Vessel, lig0

19. Phase Vesselmatl_L 0 speciesWATER molar concentration
N *\

WATER, Vessel, liq0 — CWATER, Vessel, lig0 Vessel, lig0

20. Phase Vesselmatl L0 species1 BUTANOL mole fraction
N =X

*
I1_BUTANOL, Vessel, liq0 1_BUTANOL, Vessel, liq0 NVCHCL ligd

21. Phase Vesselmatl_L 0 species1 BUTANOL molar concentration
N c

— *
1_BUTANOL, Vessel, liq0 — 1_BUTANOL, Vessel, liq0 Vessel, liq0

22. Phase Vesselmatl_L 0 speciesn_BUTYL_ACETATE molefraction
N X *N

'n_BUTYL_ACETATE, Vessel, liq0

n_BUTYL_ACETATE, Vessel, liq0 — Vessel, liq0

23. Phase Vesselmatl L0 speciesn BUTYL_ACETATE molar concentration
NnJ?UTYLiA('ETATE, Vessel, liq0 = CniBUTYLiA('ETATE, Vessel, liqli*VVcncl, lig0

24. Phase Jacketmatl_L O total moles decomposition into individual species moles
N N

Jacket, liq0 WATER, Jacket, liqO

25. Phase Jacketmatl_L O sum of individual species mole fractions
XWATER, Jacket, liq0 = 1

26. Phase Jacketmatl_L O speciesWATER molar concentration
NWATER, Jacket, liq0 = CWATER, Jacket, liqli*v.lackcl, lig0

27. Unit Jacketed_Cstr reaction rxn0 extent decomposition
ext_rxn0 = ext_rxn0

Jacketed_Cstr Vessel

28. Unit Vessel reaction rxn0 extent decomposition
ext_rxn0,._, = ext_rxn0

Vessel Vessel, lig0

29. Flux reactants input molar density
n =rho *V

'tot, reactants_input, source N, reactants_input reactants_input, source

30. Phasereactants input_phase molecular weight from PPM

310

mWrcacl;.\nlLinpul = ((((XA('ETI(;A('ID, macmnu,inpul*60'0526) + (XWATER, macmnu,inpm*lg'()lS?’)) + (XLBUTANUL, macmnu,inpul*74~ 1228)) + (Xn,BUTyL,A('ETATE,
116.16))

reactants_input

31. Flux reactants input sum of species mole fractions

((XA('ETI(; ACID, reactants_input + XWATER, macmnu,inpul) + XLBUTANOL, macmnu,inpul) + Xn,BUTyL,A('ETATE, reactants_input 1

32. Phasereactants input_phase density correlation from PPM
rho =F(T X X X

n, reactants_input reactants_input® “ ACETIC_ACID, reactants_input> # “WATER, reactants_input® />/_BUTANOL, reactants_input? Xn,BUTyL,A('ETATE,macmnu,inpul)

33. Flux reactants _input species ACETIC_ACID moale fraction
n =X

ACETIC_ACID, reactants_input, source MCETIC_ACID, reactants_input nlol, reactants_input, source

34. Flux reactants input species WATER mole fraction
n =X *n

WATER, reactants_input, source WATER, reactants_input 'tot, reactants_input, source

35. Flux reactants _input species1 BUTANOL moale fraction
n =X

1_BUTANOL, reactants_input, source 1_BUTANOL, reactants_input nlol, reactants_input, source

36. Flux reactants input speciesn_ BUTYL_ACETATE molefraction
n =X

*
n_BUTYL_ACETATE, reactants_input, source 'n_BUTYL_ACETATE, reactants_input nIOI, reactants_input, source

37. Flux products _output molar density
n =rho *V

tot, products_output, source n, Vessel, liq0 products_output, source

38. Flux products output speciesACETIC_ACID mole fraction
n =X

*k
ACETIC_ACID, products_output, source MCETIC_ACID, Vessel, liq0 nlol, products_output, source

39. Flux products output species WATER mole fraction
n =X

*
WATER, products_output, source WATER, Vessel, liq0 nmt, products_output, source

40. Flux products output speciesl BUTANOL mole fraction
n =X *Nn

1_BUTANOL, products_output, source 1_BUTANOL, Vessel, liq0 ' 'tot, products_output, source

41. Flux products output speciesn BUTYL_ACETATE moalefraction
n =X

*
n_BUTYL_ACETATE, products_output, source 'n_BUTYL_ACETATE, Vessel, liq0 nIOI, products_output, source

42. Flux coolant_inlet molar density
n =rho *V,

tot, coolant_inket, source I, coolant_inlet ¥ coolant_inlet, source

43. Phase coolant_inlet_phase molecular weight from PPM
MW, i = 18.0153

44. Flux coolant_inlet sum of species mole fractions
XWATER, coolant_inlet = 1
45. Phase coolant_inlet_phase density correlation from PPM
r hon, coolant_inlet = F (Tcmylam,inlsl)

46. Flux coolant_inlet speciesWATER mole fraction
n =X *n

WATER, coolant_inlet, source WATER, coolant_inlet ! 'tot, coolant_inket, source

47. Flux coolant_outlet molar density

311

*\

coolant_outlet, source

'tot, coolant_outlet, source r hon, Jacket, liq0

48. Flux coolant_outlet species WATER mole fraction
n =

WATER, coolant_outlet, source WATER, Jacket, liq0 nIOI, coolant_outlet, source

49. Unit Vessel energy balance
U, /0t = (e,

actants_input, source epmducluwulpul, murcc) eqicxchang:, source

50. Unit Jacket energy balance
ou, /ot = (e

Jacket’

+ €

oolant_inlet, source ectm];.\nlﬁﬂullcl, murcc) ’q_exchange, source

51. Flux reactants input energy flux
€ =h *n

‘reactants_input, source reactants_input 'tot, reactants_input, source

52. Flux products_output ener gy flux
e *Nn

products_output, source ' 'Vessel, liq0 tot, products_output, source

53. Flux coolant_inlet energy flux
e

‘coolant_inlet, source ! lcoolant_inlet nmt,m»]am,inm, source

54. Flux coolant_outlet ener gy flux
e =h *n

‘coolant_outlet, source Jacket, liq0 'tot, coolant_outlet, source

55. Flux g_exchange energy flux

= *((T = Thaa))
eqicxchang:, source Aqicxchangc Uo, q_exchange TV:n:l T.Iackcl

56. Phase Vesselmatl L O reaction rxn0 forward rate
r—rxno—forWVcncl, lig0 = (k—COHStforwr:m()*(CA('ETI(;A('ID, Vessel, liqliA))*(CliBUTANUL, Vessel, liqli)

57. Phase Vesselmatl L Oreaction rxn0 reverserate
r—rxno—baCchncl, lig0 = (k—COHStbaCkr:m()*(CWATER, Vessel, liqli))*(cniBUTYLiA('ETATE, Vessel, liqli)

58. Phase Vesselmatl L O reaction rxn0 extent
ext_rxn0 = (r_rxn0_forw, r_rxn(Q_back

= -)*V
Vessel, lig Vessel, lig0 Vessel, lig0. Vessel, lig

59. Phase Vesselmatl L O molar density
N =rho *V

Vessel, lig n, Vessel, liq0 Vessel, lig

60. Phase Jacketmatl L O molar density
N =rho *V

Jacket, liq0 n, Jacket, liq0 Jacket, liqO

61. Unit Vessel extensive variable V_Vesselmatl decomposition
V=V

Vessel Vessel, lig0

62. Unit Jacket extensive variable V_Jacketmatl decomposition
Vi =V

Jacket Jacket, iq0

63. Phase Vesselmatl_L O density correlation from PPM
r hon, Vessel, ig0 — F(Twma X X X

"ACETIC_ACID, Vessel, liq0?

X

WATER, Vessel, liq0? 1_BUTANOL, Vessel, liq0? 'n_BUTYL_ACETATE, Vessel, liqli)

64. Phase Jacketmatl_L O density correlation from PPM
I’ hO = F(T.lackcl)

n, Jacket, liq0

312

65. Unit Vessel extensive variable Un_Vesselmatl decomposition
UV:H:I = (NVCHCL liqli*hV:ncl, liqli) - (Pw“el*vwwl)

66. Phase Vesselmatl_L 0 enthalpy correlation from PPM
X

Vessel, liq0 F(TVcnd’ XA('ETI(;A('ID, Vessel, lig0? XWATER, Vessel, liq0? XIﬁBUTANOL, Vessel, liq0? 'n_BUTYL_ACETATE, Vessel, liqli)

67. Phase Vesselmatl_L 0 heat capacity correlation from PPM

Cp n, Vessel, liq0 — F(TVcnd’ XA('ETI(;A('ID, Vessel, liq0? XWATER, Vessel, liq0? XIﬁBUTANOL, Vessel, liq0? XniBUTYLiA('ETATE, Vessel, liqli)

68. Unit Jacket extensive variable Un_Jacketmatl decomposition
U.Iackcl = (N.Ia\ckcl, liqli* h.lackcl, liqli) - (P.Iackcl*v.lackcl)

69. Phase Jacketmatl_L O enthalpy correlation from PPM
h.lackcl, lig0 = F(T.Ia\ckcl)

70. Phase Jacketmatl_L O heat capacity correlation from PPM
c:p n, Jacket, liq0 = F(T.Iackcl)

71. Connection reactants_input phase reactants _input_phase enthalpy correlation from PPM
h =F(T X X X X

reactants _input reactants_input® “NACETIC_ACID, reactants_input> / “WATER, reactants_input® /“/_BUTANOL, reactants_input? n,BUTyL,A('ETATE,macmnu,inpul)

72. Connection coolant_inlet phase coolant_inlet_phase enthalpy correlation from PPM
hcmw]anlﬁinlcl = F (Tcmylam,inlsl)

73. Phase Vesselmatl_L 0 molecular weight from PPM

mWV:ncl, lig0 = ((((XA('ETI(;A('ID, Vessel, liqli*60'0526) + (XWATER, Vessel, i * 1 8 '0 1 53)) + (XLBUTAN()L, Vessel, i
*116.16))

ligO iqli*74' 1228)) + (XniBUTYLiA('ETATE, Vessel,

liq0

74. Phase Jacketmatl_L O molecular weight from PPM
mw = 18.0153

Jacket, liq0

313

314

Appendix E
2-D Spatially Distributed Tubular Reactor
Model Equations

1. Flux flow_z moleflux per area

r L (rmln, Tube_reactor? rmax, Tuh:fr:ucl«»r)’ z K (Zmln, Tube_reactor? Zmax, Tuhcir:ucl«»r)

narea, flow_z, murcc(r’ Z) = r hon Tube_reactor_rz, \'apli(r’ Z)*Vz ﬂ«mi/(rl Z)

2. Unit Tube reactor_rz specieso XY LENE balance
r:.= +’ r _)a Z:= (Z +7 Zmax, Tube_reactor| _)
ac,, XYLENE, Tube_reactor_rz, \,ap“(l", Z)/at = (((_(anarea 0_XYLENE, flow_z, murcc(r’ Z)/azruhe,mucw)) - (anarea 0_XYLENE, a_z, murcc(r’ Z)/azruhe,mucw)) - ((1/r)*(a(narea

vt o BT 1)) + (-r_rxn0_forw_Tube_reactor_rzmatl_V 0., o, el 7:2)

(r min, Tube_reactor max, Tube_reactor| min, Tube_reactor

3. Unit Tube reactor_r1 boundary specieso_XYLENE balance
z2:=(z z
Narea o xrions. o (F_COOrd_min_Tube_reactor,z) =0

min, Tube_reactor? “max, Tuhe,mucw)

4. Unit Tube_reactor_r2 boundary specieso XY LENE balance
z2:=(z z
Narea o xron. o (7_COOTd_max_Tube_reactor,z) = 0

min, Tube_reactor? “max, Tuhe,mucw)

5. Unit Tube _reactor_z1 boundary specieso_XYLENE balance
r +’ rmax, Tube_reactor| _)
narea 0_XYLENE, nuw,/(r’ z_coord_min_Tube_reactor) + narea 0_XYLENE, a,/.(r’ z_coord_min_Tube_reactor) = narea 0_XYLENE, reactants. \mllcc(r)

L (r min, Tube_reactor

6. Unit Tube reactor_z2 boundary specieso_XYLENE balance
r

= (r min, Tube_reactor? r max, Tuhe,mucw)

Naea o xriene v A Z_COOrd_max_Tube_reactor) + N, , vy, (1:Z_coord_max_Tube_reactor) = N, , e poses, souee 7)

7. Flux a z specieso XY LENE flux
r.=

(rmln, Tube_reactor? rmax, Tuh:fr:ucl«»r)’ z K (Zmln, Tube_reactor? Zmax, Tuhcir:ucl«»r)

narea 0_XYLENE, a_z, murcc(r ’ Z) = ('(Df u,/(r ’ Z) *(aCrLXYLENE, Tube_reactor_rz, \'apli(r ’ Z)/ azruhe,mucw)))

8. Flux a r specieso XYLENE flux

r L (rmln, Tube_reactor? rmax, Tuh:fr:ucl«»r)’ z K (Zmln, Tube_reactor? Zmax, Tuhcir:ucl«»r)

narea 0_XYLENE, a_r, murcc(r ’ Z) = ('(Df u,.(r ’ Z) *(aCrLXYLENE, Tube_reactor_rz, \'apli(r ’ Z)/ arTuhe,mucw)))

315

9. Unit Tube reactor_rz speciesPHTHALIC_ANHY DRIDE balance
r:= (r min, Tube_reactor? rmax, Tuhe,mucw); Z:= (Zmin, Tube_reactor +7 Z
aCPHTHAu(; ANHYDRIDE, Tube_reactor_rz, vapn(r s Z)/ at = (-(anarea PHTHALIC_ANHYDRIDE, flow_z, murcc(r s Z)/ azruhe,mucw)) +
r_rxn0_forw_Tube_reactor_rzmatl_VO,. ..o . vurc(7:2)

max, Tuhe,mucmr)

10. Unit Tube reactor_z1 boundary speciesPHTHALIC_ANHY DRIDE balance
r.= r

narea PHTHALIC_ANHYDRIDE, ﬂnwi/.(r’ Z—COOrd—mln—Tube—reaCtor) = narea PHTHALIC_ANHYDRIDE, reactants \mucc(r)

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

11. Unit Tube reactor_z2 boundary speciesPHTHALIC_ANHY DRIDE balance
r

= (r min, Tube_reactor? r max, Tuhe,mucw)

narea PHTHALIC_ANHYDRIDE, ﬂ«»wil.(r’ Z—coord—ma'X_Tube_rea0t0r) = narea PHTHALIC_ANHYDRIDE, products, murcc(r)

12. Unit Tube reactor_rz species OXY GEN balance

r:= +7 r _)7 Z:= (Z +7 Zmax, Tube_reactor| _)
acoxy(;EN, Tube_reactor_rz, vapn(r > Z)/ at = (((_(anarea OXYGEN, flow_z, murcc(r ’ Z)/ azruhe,mucw)) - (anarea OXYGEN, b_z, murcc(r > Z)/ azruhe,mucw)) - ((1/ r)*(a(narea
oxsembsoueel HZFDION 14 e0))) + (-(3*r_rxn0_forw_Tube_reactor_rzmatl_VO,,. e v ol 7:2)))

(r min, Tube_reactor| max, Tube_reactor| 'min, Tube_reactor|

13. Unit Tube reactor_r1 boundary species OXY GEN balance
z2:=(z z
N,ea oxveen. s F_coord_min_Tube_reactor,z) = 0

'min, Tube_reactor? “~max, Tuhcircucl«»r)

14. Unit Tube_reactor_r2 boundary species OXY GEN balance
z2:=(z z
N, e oxycen. v (F_coord_max_Tube_reactor,z) =0

'min, Tube_reactor? “~max, Tuhcircucl«»r)

15. Unit Tube_reactor_z1 boundary species OXY GEN balance
r +,r -)
narea OXYGEN, ﬂ«»wil.(r’ Z—coord_mln_Tube_rea6t0r) + narea OXYGEN, bi/.(r’ Z—COOrd—mln—Tube—reaCtor) = narea OXYGEN, reactants, \mucc(r)

L (r min, Tube_reactor max, Tube_reactor

16. Unit Tube_reactor_z2 boundary species OXY GEN balance
r

= (r min, Tube_reactor? r max, Tuhe,mucw)

Navea, oxvoen. now o 1> Z_CO0rd_max_Tube_reactor) + N,... oveen.. (T1:2_c00rd_max_Tube_reactor) =n

area, OXYGEN, products, murcc(r)

17. Flux b_z species OXY GEN flux
r:= (rmin, Tube_reactor? rmax, Tuhe,mucw); Z:= (Zmin, Tube_reactor? Zmax, Tuhe,mucw)

narea OXYGEN, b_z, murcc(r ’ Z) = ('(Df hJ(r s Z) *(aCUXY(}EN, Tube_reactor_rz, \'apl)(r ’ Z)/ azruhe,mucw)))

18. Flux b_r species OXY GEN flux
r:= (rmin, Tube_reactor? rmax, Tuhe,mucw); Z:= (Zmin, Tube_reactor? Zmax, Tuhe,mucw)

narea OXYGEN, b_r, murcc(r ’ Z) = ('(Df hJ(r i Z) *(aCUXY(}EN, Tube_reactor_rz, \'apl)(r ’ Z)/ arTuhe,macw)))

19. Unit Tube reactor_rz speciesWATER balance
r:= (rmin, Tube_reactor? rmax, Tuhe,mucw); Z:= (Zmin, Tube_reactor| +7 Z
0C, 151, v sesctor ol 5 ZNOC = (20Nt v, o soueel 5 ZNOZ e o)) + (3*1_rxn0_forw_Tube_reactor_rzmatl_VO

w1:2))

max, Tuhe,mucmr)

Tube_reactor_rz,

20. Unit Tube_reactor_z1 boundary speciesWATER balance
r.= r

narea WATER, nﬂw,/.(r’ z_coord_min_Tube_reactor) = narea WATER, reactants \mucc(r)

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

316

21. Unit Tube_reactor_z2 boundary speciesWATER balance
r:= r
narea WATER, ﬂ«»wil.(r’ Z_coord_ma'X_Tube_reGCtor) = narsa WATER, products, murcc(r)

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

22. Unit Jacket speciesWATER balance
aNWATER, .Iackcl/ at = nWATER, cool_in, source nWATER, cool_out, source

23. Unit Jacket species WATER mole quantity decomposition
N =N

WATER, Jacket WATER, Jacket, li0

24. Phase Tube_reactor_rzmatl_VO0 sum of individual species mole fractions
r) 2:=(z Z o e i)

((XrLXYLENE, Tube_reactor_rz, \'apli(r ’ Z) + XI’HTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apli(r ’ Z)) + Xoxy(;EN, Tube_reactor_rz, \'apli(r ’ Z)) + XWATER, Tube_reactor_rz, \'apli(r ’ Z) =1

L (r min, Tube_reactor? r max, Tube_reactor. 'min, Tube_reactor?

25. Phase Tube reactor_rzmatl VO specieso XYLENE molar concentration
r= T e, Tuve recior)s Z 2= (Z z

— * ()
C, XYLENE, Tube_reactor_rz, \'apli(r ’ Z) - XrLXYLENE, Tube_reactor_rz, \'apli(r ’ Z) r hon, Tube_reactor_rz, vapol 3 <.

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

26. Phase Tube reactor_rzmatl_VO speciesPHTHALIC_ANHYDRIDE molar concentration
r:= r) Z2:=(2Z z

(rmin,Tllhcircuclnﬂ max, Tube_reactor. 'min, Tube_reactor? max,Tuhcircucl«»r)

— * ()
CPHTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apli(r ’ Z) - XPHTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apli(r ’ Z) r hon, Tube_reactor_rz, vapol /3 Z.

27. Phase Tube reactor_rzmatl_VO species OXY GEN molar concentration
r T e, Tuve recior)s Z 2= (Z z

— * ()
Coxy(;EN, Tube_reactor_rz, \'apli(r ’ Z) - XUXYGEN, Tube_reactor_rz, \'apli(r ’ Z) r hon, Tube_reactor_rz, vapol /3 Z.

L (rmin, Tube_reactor? 'min, Tube_reactor® “~max, Tuhe,mucw)

28. Phase Tube reactor_rzmatl VO speciesWATER molar concentration
ri= ¥ e, Tuve recior)s Z 2= (Z z

— * ()
CWATER, Tube_reactor_rz, \'apli(r ’ Z) - XWATER, Tube_reactor_rz, \'apli(r ’ Z) r hon, Tube_reactor_rz, vapol /3 Z.

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

29. Phase Jacketmatl_L O total moles decomposition into individual species moles
N N

Jacket, liqg0 — WATER, Jacket, liqO

30. Phase Jacketmatl_L O sum of individual species mole fractions
XWATER, Jacket, liq0 = 1

31. Phase Jacketmatl_L O speciesWATER molar concentration
N *\

WATER, Jacket, liq0 CWATER, Jacket, lig0 Jacket, lig0

32. Phasereactants phase molecular weight from PPM

r:= (rmin, Tube_reactor? r

mWrcz\clann(r) = ((((XrLXYLENE, mamnn(r)*lo6' 167) + (XPHTHALI(;ANHYDRIDE, rcacumn(r)* 148.1 18)) + (XUXYGEN, ,mm(r)*?) 1 9988)) + (XWATER,
o (r)¥18.0153))

max, Tuhe,mucmr)

33. Flux reactants sum of species mole fractions

r:= (rmin, Tube_reactor? r

((XrLXYLENE, rcaclz\nl\\(r) + XPHTHALI(;ANHYDRIDE, rcaclz\nl\\(r)) + XUXYGEN, rcaclz\nl\\(r)) + XWATER, rcaclz\nl\\(r) = 1

max, Tuhe,mucmr)

34. Flux reactants specieso_XYLENE mole fraction
r= r

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

317

— * ()
narea 0_XYLENE, reactants \mucc(r) - XrLXYLENE, rcaclann(r) narea, reactants, sourcel

35. Flux reactants speciesPHTHALIC_ANHYDRIDE mole fraction
re= r
n

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

— * ()
area, PHTHALIC_ANHYDRIDE, reactants. \mucc(r) - XI’HTHALI(;ANHYDRIDE, rcaclanl\\(r) narea, reactants, source r

36. Flux reactants species OXY GEN moale fraction
r = (rmin, Tube_reactor? r

— * ()
narea OXYGEN, reactants \mucc(r) - Xoxy(;EN, rcaclann(r) narsa, reactants, sourcel 7

max, Tuhe,mucmr)

37. Flux reactants speciesWATER mole fraction
r:= (rmin, Tube_reactor? rmax, Tuhe,mucw)

— *k ()
narea WATER, reactants. \mllcc(r) - XWATER, rcamnn(r) narsa, reactants, source! r

38. Flux productstotal mole flux decomposition into individual species mole fluxes
r.= r
n

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

area, products, murcc(r) - ((narsa 0_XYLENE, products, murcc(r) + narsa PHTHALIC_ANHYDRIDE, products, murcc(r)) + narsa OXYGEN, products, murcc(r)) + narea WATER, products, murcc(r)

39. Flux flow_z differential specieso XYLENE mole flux
ri= T e, Tuse rseor)3 Z 1= (Z z

— ES)
narea 0_XYLENE, flow_z, murcc(r ’ Z) - CrLXYLENE, Tube_reactor_rz, \'apl)(r ’ Z) v, nmu(r 2

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

40. Flux flow_z differential speciesPHTHALIC_ANHYDRIDE mole flux
r r), Z2:=(Z z
n

L (rmin, Tube_reactord ' max, Tube_reactor. 'min, Tube_reactor® “~max, Tuhe,mucw)

— * ()
area, PHTHALIC_ANHYDRIDE, flow_z, murcc(r ’ Z) - CPHTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apli(r ’ Z) v, fow_A 5 <

41. Flux flow_z differential species OXY GEN mole flux
ri= T e, Tuse rseor)3 Z 1= (Z z

— *
narea OXYGEN, flow_z, murcc(r s Z) - Coxy(;EN, Tube_reactor_rz, \'apli(r ’ Z) v, nmu(r s Z)

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

42. Flux flow_z differential speciesWATER mole flux
ri= T e, Tuse rseor)3 Z 1= (Z z

= *
narea WATER, flow_z, murcc(r ’ Z) - CWATER, Tube_reactor_rz, \'apl)(r ’ Z) v, nmu(r ’ Z)

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

43. Phase cool_in_phase molecular weight from PPM
mw,,, = 18.0153

cool_in

44. Flux cool_in sum of species mole fractions
XWATER, cool_in = 1
45. Flux cool_in speciesWATER mole fraction
n =X *n

WATER, cool_in, source

WATER, cool_in ' 'tot, cooL_in, source

46. Flux cool_out speciesWATER mole fraction
n =X

*k
WATER, cool_out, source WATER, Jacket, liq0 nlol, cool_out, source

47. Unit Tube reactor_rz energy balance
r:= +,r -);Z2:=(2 +, Zinax, tue sescion]”)
TNO, rune o s vant 7 2 OV o s apel 152N = ((((((-(O€urem o 12N OZ 1 i) = (€ v coree LN OZ) = (08,
e HINOZ o)) = (0€ua g s sounee 1IN OZ o)) = (D) ¥(0(Ehran e 1,2 *DOT 1)) = (1) *(0(€4ea s
e L0 1 o)) = (VD) *(0(Ehran s 2O 1)

(r min, Tube_reactor| max, Tube_reactor| 'min, Tube_reactor|

318

48. Unit Tube reactor_r1 boundary energy balance

Z:= (Zmin, Tube_reactor? Zmax, Tuhe,mucw)
(€yen..(r_coord_min_Tube_reactor,z) + €,.,, (r_coord_min_Tube_reactor,z)) + €,.,

(r_coord_min_Tube_reactor,z) =0

49. Unit Tube reactor_r2 boundary energy balance

Z:= (Zmin, Tube_reactor? Zmax, Tuhe,mucw)
(€yen..(r_coord_max_Tube_reactor,z) + €,.., (r_coord_max_Tube_reactor,z)) + €,..

(1_coord_max_Tube_reactor,z) = €, , wul3)

50. Unit Tube reactor_z1 boundary energy balance
r:= +, T -)
((Eyen now A1,2_co0rd_min_Tube_reactor) + €,

w.(hZ_coord_min_Tube_reactor)) + €,

(r min, Tube_reactor| max, Tube_reactor|

(r,z_coord_min_Tube_reactor)) + €,

rea, a_z! rea,

vea o {1:Z_cOOTA_min_Tube_reactor) = €, q s s

51. Unit Tube reactor_z2 boundary energy balance
ri= r
((Eyen now 1:2_co0rd_max_Tube_reactor) + €,

v(hZ_coord_max_Tube_reactor)) + €,

(r min, Tube_reactor® ' max, Tuhcircucl«»r)

(r,z_coord_max_Tube_reactor)) + €,

rea, a_z!

(r,z_coord_max_Tube_reactor) = €, s, souel T)

rea,

rea, q_z

52. Unit Jacket energy balance
ou, /ot = (e -e)+ €,

Jacket (‘cool_in, source ‘co0l_out, source. , source

53. Flux reactants energy flux
r

-h * (r)
€4ren, et soureel) = Mcacans (1) Nagen, s, o T

= (r min, Tube_reactor? r max, Tuhe,mucw)

54. Flux products ener gy flux
r:= (rmin, Tube_reactor? r

— & ()
Euen. e soeel) = My soneel 7 Moy s, sl

max, Tuhe,mucmr)

55. Flux flow_z ener gy flux
r:= T e, T reseor)3 Z 1= (Z z
Euren i1 soneel 5 2) = Pt cactor avapol 12 N i e 752)

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

56. Flux a_z energy flux
r F e, e scor)> Z 1= (Z z
earea, a_z, murcc(r ’ Z) = ha,/., murcc(r ’ Z) *narea 0_XYLENE, a_z, murcc(r ’ Z)

L (rmin, Tube_reactor? 'min, Tube_reactor® “~max, Tuhe,mucw)

57. Flux b_z energy flux
r:= r) Z2:=(2Z z
e

‘area, b_z, murce(r’ Z) = hbf/., murce(r’ Z)*narea OXYGEN, b_z, murce(r’ Z)

(rmin, Tube_reactor? ' max, Tube_reactor. 'min, Tube_reactor? “~max, Tuhcircucl«»r)

58. Flux q_z energy flux
ri= F e, e escor)> Z 1= (Z z

€uen g s ol 122) = (K (1,2 (OT o A ENOZ s)))

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

59. Flux a_r energy flux
ri= T % ¢ z
earea, ar, murce(r ’ Z) = ha,r, murce(r ’ Z) *narea 0_XYLENE, a_r, murcc(r ’ Z)

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

319

60. Flux b_r energy flux
ri= F e, e escor)> Z 1= (Z z

earea, b_r, murcc(r’ Z) = hbir, murcc(r’ Z)*narea OXYGEN, b_r, murcc(r’ Z)

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

61. Flux g_r energy flux
ri= T e, Tuse rseor)3 Z 1= (Z z

€ g v souee 112) = (K (1,2 F(OT o ol WOV g c)))

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

62. Flux cool_in energy flux
e =h,,.*n

‘cool_in, source cool_in

tot, cool_in, source

63. Flux cool_out energy flux
e =h

‘cool_out, source Jacket, liq0 nlol, cool_out, source

64. Flux q energy flux
Z = (Zmin, Tube_reactor? Z
€ren g o 2) = Uo (2 (T e e o T_cOOTd_max_Tube_reactor,z) - T)

max, Tuhe,mucmr)

65. Flux q flux integrated
€, e = (INTEGRAL (€0, sourcel Z)*T . 1une sescon)s AZrune o)) (N€ Ry 1 rcor = TN 1 i)

66. Phase Tube reactor_rzmatl VO specieso XYLENE partial pressure
r:= (rmin, Tube_reactor? rmax, Tuhe,mucw); Z:= (Z Z

— * ()
prLXYLENE, Tube_reactor_rz, \'apl)(r ’ Z) - XrLXYLENE, Tube_reactor_rz, \'apl)(r ’ Z) PTubc,macmr,n. nZ

'min, Tube_reactor® “~max, Tuhcircucl«»r)

67. Phase Tube_reactor_rzmatl_VO speciesPHTHALIC_ANHYDRIDE partial pressure
r:.= r), Z2:=(Z z

(rmin, Tube_reactor? ' max, Tube_reactor. 'min, Tube_reactor? “~max, Tuhcircucl«»r)

— * ()
pPHTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apl)(r ’ Z) - XPHTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apl)(r ’ Z) PTubc,macmr,n. rZ

68. Phase Tube reactor_rzmatl VO species OXY GEN partial pressure
r = rmax, Tllhcircucl«»r); Z = (Z Z

— * ()
pUXYGEN, Tube_reactor_rz, \'apl)(r ’ Z) - Xoxy(;EN, Tube_reactor_rz, \'apl)(r ’ Z) PTubc,macmr,n. rZ

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

69. Phase Tube reactor_rzmatl VO speciesWATER partial pressure
r ¥ e, Tuve recior)s Z 2= (Z z

— * ()
pWATER, Tube_reactor_rz, \'apl)(r ’ Z) - XWATER, Tube_reactor_rz, \'apl)(r ’ Z) PTubc,macmr,n. nZ

L (rmin, Tube_reactor? 'min, Tube_reactor® “~max, Tuhe,mucw)

70. Phase Tube_reactor_rzmatl_VO reaction rxn0 forward rate
r= F e, e scor)> Z 1= (Z z
r_rxn0_forw_Tube_reactor_rzmatl_VO,,. ..o . vucl7:2) = ((A_rxn0_forw*exp((-

E_I'X n O_fOI'W)/ (Rg as* TTube,mac mr,n.(r ’ Z)))) * (prLXYLENE, Tube_reactor_rz, \'apl)(r ’ Z))) * (pUXYGEN, Tube_reactor_rz, \'apl)(r ’ Z))

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

71. Phase Jacketmatl L O molar density
N =rho *V

Jacket, liq0 n, Jacket, liq0 Jacket, liqO

72. Unit Jacket extensive variable V_Jacketmatl decomposition
Vi =V

Jacket Jacket, iq0

73. Phase Tube reactor_rzmatl_VO density correlation from PPM
r:= r) Z2:=(2Z z

(rmin, Tube_reactor? ' max, Tube_reactor. 'min, Tube_reactor? “~“max, Tuhcircucl«»r)

320

N0, 1 ool 7:2) = F (T o o 122): Prie s o1:2))

74. Phase Jacketmatl_L O density correlation from PPM

r hon, Jacket, liq0 = F(T.Iackcl)

75. Phase Tube reactor_rzmatl VO species 0 XY LENE fugacity coefficient correlation from PPM
r= ¥ e, Tuve recior)s Z 2= (Z z

fcn XYLENE, Tube_reactor_rz, \'apli(r ’ Z) =1

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

76. Phase Tube reactor_rzmatl VO speciesPHTHALIC_ANHY DRIDE fugacity coefficient correlation
from PPM
r:=

(rmin, Tube_reactor? rmax, Tuthcucl«»r)’ z K (Zmin, Tube_reactor? Zmax, Tuhcircucl«»r)

fCI’HTHALI(;ANHYDRIDE, Tube_reactor_rz, vap(i(r’ ‘Z) - 1

77. Phase Tube reactor_rzmatl VO species OXY GEN fugacity coefficient correlation from PPM
r= ¥ e, Tuve recior)s Z 2= (Z z

fCoxy(;EN, Tube_reactor_rz, \'apli(r ’ Z) =1

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

78. Phase Tube reactor_rzmatl VO species WATER fugacity coefficient correlation from PPM
r ¥ e, Tuve recior)s Z 2= (Z z

fCWATER, Tube_reactor_rz, \'apli(r ’ Z) =1

L (rmin, Tube_reactor? 'min, Tube_reactor® “~max, Tuhe,mucw)

79. Phase Tube reactor_rzmatl_VO internal energy correlation from PPM
re= ¥ e, Tuve recior)s Z 2= (Z z
uTubc,macmr,n., vapu(r ’ Z) = F (XrLXYLENE, Tube_reactor_rz, vapu(r ’ Z)) TTubc,rcacmr,n.(r ’ Z)) XI’HTHALI(; ANHYDRIDE, Tube_reactor_rz, vapu(r ’ Z) ’ X(}XYGEN, Tube_reactor_rz, vapu(r ’ Z)) XWATER,

Tube_reactor_rz, \'apli(r ’ Z))

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

80. Phase Tube reactor_rzmatl_VO enthalpy correlation from PPM
r), Z2:=(Z z

L (rmin, Tube_reactor? rmax, Tube_reactor. 'min, Tube_reactor® “~max, Tuhe,mucw)

Tube_reactor_rz, \'apli(r ’ Z) =F (XrLXYLENE, Tube_reactor_rz, \'apli(r ’ Z) ’ TTube,macmr,n.(r ’ Z) ’ XI’HTHALI(; ANHYDRIDE, Tube_reactor_rz, \'apli(r ’ Z) ’ Xoxy(;EN, Tube_reactor_rz, \'apli(r ’ Z) ’ XWATER,

Tube_reactor_rz, \'apli(r ’ Z))

81. Phase Tube reactor_rzmatl VO heat capacity correlation from PPM
re= T e, Tuve recior)s Z 2= (Z z
Cp n, Tube_reactor_rz, vapu(r ’ Z) = F (XrLXYLENE, Tube_reactor_rz, vapu(r ’ Z)) TTubc,rcacmr,n.(r ’ Z)) XPHTHALI(; ANHYDRIDE, Tube_reactor_rz, vapu(r ’ Z) ’ X(}XYGEN, Tube_reactor_rz, vapu(r ’ Z) s

XWATER, Tube_reactor_rz, vapu(r ’ Z))

(r min, Tube_reactor? min, Tube_reactor? “max, Tuhe,mucw)

82. Unit Jacket extensive variable Un_Jacketmatl decomposition
U.Iackcl = (N *h.lackcl, liqli) - (Pluckcl*v.lz\ekcl)

Jacket, iq0

83. Phase Jacketmatl_L O enthalpy correlation from PPM
h = F(T.Iackcl)

Jacket, liq0

84. Phase Jacketmatl_L O heat capacity correlation from PPM
c =F(T,..)

pn, Jacket, lig0 —

85. Connection reactants phase reactants phase enthalpy correlation from PPM
r:= (rmin, Tube_reactor? rmax, Tuhe,mucw)

hrcaclz\nl\\(r) - F(XrLXYLENE, rcaclz\nl\\(r)7 XPHTHALI(;ANHYDRIDE, rcaclz\nl\\(r)7 X(}XYGEN, rcaclz\nl\\(r)7 XWATER, rcaclz\nl\\(r)7 T |cuclunl\(r))

86. Flux a_z specieso_XYLENE enthalpy from PPM

321

- (rmin, Tube_reactor? rmax, Tuthcucl«»r)’ z K (Zmin, Tube_reactor? Zmax, Tuhcircucl«»r)

r:
N, , wue(2) = 19080000 + ((74396*(T A1,2) - 298.15)) + (131.755*((T A1.2)") - 88893.422)))

Tube_reactor_ Tube_reactor_

87. Flux b_z species OXY GEN enthalpy from PPM

r L (rmin, Tube_reactor? rmax, Tuthcucl«»r)’ z K (Zmin, Tube_reactor? Zmax, Tuhcircucl«»r)

N, wud2) = 0+ (2631 1.5%(T 1y ror of1:2) = 298.15)) + (4.76755((T 1y roer o 1:2)°) - 88893.422)))

88. Flux a r specieso XYLENE enthalpy from PPM

r L (rmin, Tube_reactor? rmax, Tuthcucl«»r)’ z K (Zmin, Tube_reactor? Zmax, Tuhcircucl«»r)

h,. .(r,z) = 19080000 + ((74396*(T (r,z) - 298.15)) + (131.755%((T (r,z)) - 88893.422)))

Tube_reactor_ Tube_reactor_

89. Flux b_r species OXY GEN enthalpy from PPM

r L (rmin, Tube_reactor? rmax, Tuthcucl«»r)’ z K (Zmin, Tube_reactor? Zmax, Tuhcircucl«»r)

Ry ouee(12) = 0+ (2631 1.5%(T A1,2) - 298.15)) + (4.7675*((T A1.2))) - 88893.422)))

Tube_reactor_ Tube_reactor_

90. Connection cool_in phase cool_in_phase enthalpy correlation from PPM
e = F(T)

ool in coolLin

91. Phase Tube reactor_rzmatl VO molecular weight from PPM

r:= (rmin, Tube_reactors | ma, T..hc,mcw); Z:= (Zmin, Tube_reactors Lrmax, T..hc,mcw)

MW et oo 15.2) = (K, v, e estor e vapol 1520 100.107) 4 (Kpsrisasic antavomive, tuve sector o 1:2)* 148 118)) + Koy,
tuse sesctor e vapol 152) 31.9988)) 4 (Xyarie, e st v 7:2)*18.0153))

92. Phase Jacketmatl_L O molecular weight from PPM
mw = 18.0153

Jacket, iq0

93. user_equation

322

