
A Framework for the Language and Logic of Computer-Aided
Phenomena-Based Process Modeling

by

Jerry Bieszczad

B.S. Chemical Engineering
University of Connecticut, Storrs (1994)

Submitted to the
Department of Chemical Engineering

in Partial Fulfillment of the Requirements
for the Degree of

DOCTOR OF PHILOSOPHY IN CHEMICAL ENGINEERING

at the
Massachusetts Institute of Technology

February 2000

© 2000 Massachusetts Institute of Technology
All rights reserved.

Signature of Author: ___
Department of Chemical Engineering

October 18, 1999

Certified by: ___
George Stephanopoulos

Arthur D. Little Professor of Chemical Engineering
Thesis Supervisor

Accepted by:__
Robert E. Cohen

St. Laurent Professor of Chemical Engineering
Chairman, Committee for Graduate Students

2

3

A Framework for the Language and Logic of Computer-Aided
Phenomena-Based Process Modeling

by

Jerry Bieszczad

Submitted to the Department of Chemical Engineering
on October 18, 1999 in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Chemical Engineering

ABSTRACT

Chemical process engineering activities such as design, optimization, analysis, control, scheduling,
diagnosis, and training all rely on mathematical models for solution of some engineering problem.
Likewise, most of the undergraduate chemical engineering curricula are model-based. However,
the lack of formalization and systematization associated with model development leads most
students and engineers to view modeling as an art, not as a science. Consequently, model
development in practice is usually left to specialized modeling experts.

This work seeks to address this issue through development of a framework that raises the
level of model development from procedural computations and mathematical equations to the
fundamental concepts of chemical engineering science. This framework, suitable for
implementation in a computer-aided environment, encompasses a phenomena-based modeling
language and logical operators. The modeling language, which represents chemical processes in
terms of interacting physicochemical phenomena, provides a high-level vocabulary for describing
the topological and hierarchical structure of lumped or spatially distributed systems, mechanistic
characterization of relevant phenomena (e.g., reactions, equilibria, heat and mass transport), and
thermodynamic and physical characterization of process materials. The logical operators
systematize the modeling process by explicitly capturing procedural and declarative aspects of the
modeling activity. This enables a computer to provide assistance for analyzing and constructing
phenomena-based models, detect model inconsistencies and incompleteness, and automatically
derive and explain the resulting model equations from chemical engineering first principles.

In order to provide an experimental apparatus suitable for evaluating this framework, the
phenomena-based language and logical operators have been implemented in a computer-aided
modeling environment, named MODEL.LA. MODEL.LA enables phenomena-based modeling of
dynamic systems of arbitrary structure and spatial distribution, hierarchical levels of detail, and
multicontext depictions. Additional components allow incorporation of thermodynamic and
physical property data, integration of control structures, operational task scheduling, and external
models, and assistance for specification and solution of the resulting mathematical model.
Application of this environment to several modeling examples, as well as its classroom and
industrial deployment, demonstrate the potential benefits of rapid, reliable, and documented
chemical process modeling that may be realized from this high-level phenomena-based approach.

Thesis Supervisor: George Stephanopoulos
Title: Arthur D. Little Professor of Chemical Engineering

4

5

Acknowledgements

I would like to thank my advisor, Professor George Stephanopoulos, for the inspired mentorship

and scholarly example he has given me. His encouragement to critically evaluate and consider the

ideas of my work beyond the scope of this thesis has been a constant source of motivation over

the past several years. Professor Stephanopoulos has provided indispensable guidance regarding

both my research and professional development, while allowing me the requisite freedom to

pursue ideas and approaches of greatest interest to me.

I am also deeply indebted to the members of my thesis committee, Prof. Paul Barton, Prof.

Jack Howard, Dr. Michael Mohr, and Prof. Gregory Rutledge. Through various discussions they

have provided insightful direction and brought a broad perspective to the evaluation of my work.

In addition, Professor Alan Foss at the University of California at Berkeley has provided sage

advice regarding the role of MODEL.LA in an educational setting.

A project with the scope of MODEL.LA could not be accomplished alone, and I gratefully

acknowledge the invaluable contributions of my colleagues. Dr. Alexandros Koulouris designed

and implemented the Properties Manager, the incorporation of control structures, and the

integration of external gPROMS models into MODEL.LA. Dr. Kevin Geurts, at the University of

California at Berkeley, implemented the foundational design of the Numerical Engine. Finally,

Dr. Manuel Rodriguez incorporated the declaration of operational schedules into MODEL.LA.

With these extraordinary gentlemen, I have experienced many triumphs, shared a few defeats, and

developed close friendships.

I give kind regards to members of the LISPE research group, both past and present, who

have provided me with an endless source of ideas, advice, frivolous diversions, and many, many

laughs. Particularly, the companionship of Matthew Dyer and Orhan Karsligi on our quest

toward a Ph.D. has been most appreciated.

Finally, I must thank my family for the support that has truly made this thesis possible.

Dziekuje wszystkim! My mom has sacrificed a great deal to give her children the best. I hope my

small accomplishment gives her a source of pride. Most of all, I thank my wife, Chris, whose

love, support, encouragement, and friendship make it all worth it.

6

7

Table of Contents

Acknowledgements... 5

Table of Contents ... 7

List of Figures..13

List of Tables ...17

Chapter 1 Introduction ...19

1.1 Chemical Process Modeling Needs in Engineering Practice.. 20

1.2 Chemical Process Modeling Needs in Undergraduate Education.................................... 21

1.3 Potential Role of the Computer in Process Modeling... 24

1.4 Existing Computer-Aided Process Modeling Tools.. 25

1.4.1 Sequential Modular Flowsheet Simulators ..25
1.4.2 Programming Languages ..26
1.4.3 Spreadsheets ..27
1.4.4 Equation-Based Process Modeling Tools..28
1.4.5 Summary of Existing Computer-Aided Process Modeling Tools31

1.5 Physicochemical Phenomena-Based Process Modeling .. 32

1.5.1 Proposed Phenomena-Based Modeling Approaches..33
1.5.2 Summary of Proposed Phenomena-Based Modeling Approaches35

1.6 Research Objectives .. 36

1.6.1 Development of a Formalized Phenomena-Based Modeling Language36
1.6.2 Systematization of Modeling Activity through Modeling Logic...............................37
1.6.3 Implementation and Evaluation of Modeling Language and Logic through a

Computer-Aided Modeling Environment ..37

1.7 Thesis Outline ... 38

8

Chapter 2 Requirements for High-Level Process Modeling...39

2.1 Requirements for the Representation of Process Models.. 39

2.1.1 Declarative Model Representation ..40
2.1.2 Chemical Engineering Science Basis of Models...41
2.1.3 Explicit Documentation of Assumptions ...41
2.1.4 Hierarchical Nature of Models..42
2.1.5 Contextual Nature of Models..42

2.2 Requirements for Systematization of the Process Modeling Activity.............................. 43

2.2.1 Procedural Nature of Modeling Activity ...43
2.2.2 Contextual Nature of Modeling Activity ...45
2.2.3 Science and Art of Modeling ..46
2.2.4 Documentation of Modeling Activity..47

2.3 Implementation of High-Level Computer-Aided Modeling Support 48

2.3.1 Phenomena-Based Modeling Language...48
2.3.2 Modeling Logic..49
2.3.3 Computer-Aided Modeling Environment ..50

Chapter 3 Modeling Language Framework ...53

3.1 Formal Modeling Language Representation... 54

3.2 Hierarchy of Model Equations... 56

3.3 Phenomena-Based Model Characterization.. 58

3.3.1 Structural Characterization...59
3.3.2 Chemical Characterization ..60
3.3.3 Derivation Context ...61

3.4 Characterization of Modeling Elements ... 61

3.4.1 Modeled-Unit Characterization...62
3.4.2 Flux Characterization ...69
3.4.3 Material-Content Characterization..72
3.4.4 Phase Characterization ...76
3.4.5 Chemical Species Characterization..79
3.4.6 Chemical Reaction Characterization..79

3.5 Semantic Relationships.. 82

3.6 Model Digraph.. 83

3.7 Model Derivation Tree.. 84

3.8 Complete Context-Free Grammar Description... 84

9

Chapter 4 Modeling Logic Framework...87

4.1 Computational Logic... 88

4.2 Formal Description of Modeling Logic Operators.. 89

4.2.1 Modeling Logic Operators..90
4.2.2 Elementary Graph Operators ..91

4.3 Model Analysis Operators ... 92

4.3.1 Modeling Element Identification...94
4.3.2 Hierarchical Structure...97
4.3.3 Topological Structure...98
4.3.4 Material Characterization ...100
4.3.5 Chemical Content ...103
4.3.6 Mechanistic Characterization..104

4.4 Model Construction Operators...106

4.4.1 Modeling Elements...106
4.4.2 Topological Characterization..108
4.4.3 Chemical Content ...112
4.4.4 Hierarchical Characterization..114
4.4.5 Material Characterization ...118
4.4.6 Mechanistic Characterization..120
4.4.7 Behavioral Characterization..121

4.5 Model Consistency Operators ..122

4.5.1 Hierarchical Consistency...123
4.5.2 Material Characterization Consistency..127
4.5.3 Species Topology Rules ...129

4.6 Model Completeness Operators..131

4.7 Model Derivation Operators...133

4.7.1 Chemical Species Conservation Equation Derivation ..133
4.7.2 Energy Conservation Equation Derivation ..137
4.7.3 Chemical Reaction Rate Equation Derivation..140
4.7.4 Material-Content Characterization Equation Derivation..141
4.7.5 Phase Characterization Equation Derivation ...145
4.7.6 Mechanistic Characterization Equation Derivation..148
4.7.7 Thermodynamic and Physical Properties of Phases Equation Derivation................149
4.7.8 Thermodynamic and Physical Properties of Fluxes Equation Derivation................151

4.8 Model Explanation...151

4.9 Extensions to Modeling Logic Operators ...153

4.10 Supervisory Logic Operators..153

10

Chapter 5 The MODEL.LA Modeling Environment...159

5.1 Software Structure...160

5.2 Model Generator..160

5.2.1 Topological Structure...162
5.2.2 Hierarchical Structure...165
5.2.3 Chemical Characterization ..170
5.2.4 Phenomena-Based Mechanistic Characterization...177
5.2.5 Phenomena-Based Model Summary..182
5.2.6 Mathematical Model Derivation..183

5.3 Properties Manager..185

5.3.1 Pure Species Properties ..186
5.3.2 Binary Interaction Parameters...186
5.3.3 Material Behavior Analysis ...186

5.4 Operations Manager...191

5.4.1 User Equations...192
5.4.2 Process Controllers ..193
5.4.3 External Models ...195
5.4.4 Operational Schedules ..196

5.5 Numerical Engine...200

5.5.1 Display of Model Equations..201
5.5.2 Design Variable Specification ...201
5.5.3 Index Analysis ..203
5.5.4 Initial Conditions ..203
5.5.5 Initial Guess Specification...204
5.5.6 Solution of Model Equations ..204
5.5.7 DAE Systems Numerical Solution Methods..206
5.5.8 IPDAE Systems Numerical Solution Methods ..208
5.5.9 Display of Numerical Results..210

5.6 Summary of MODEL.LA Modeling Environment ..211

Chapter 6 Software Design of the MODEL.LA Modeling Environment213

6.1 The Object Modeling Technique ..213

6.2 MODEL.LA Modeling Element Object Models..214

6.3 MODEL.LA Modeling Environment Object Models...222

6.4 Functional Model of the MODEL.LA Modeling Environment229

6.5 Summary of MODEL.LA Modeling Environment Software Design..............................233

11

Chapter 7 Phenomena-Based Modeling Examples...235

7.1.1 HDA Plant ...235
7.1.2 Acetic Anhydride Plant ...242
7.1.3 Dynamic Distillation Column Example..251
7.1.4 1-D Spatially Distributed Reaction and Separation Processes................................254
7.1.5 2-D Tubular Reactor ..257

7.2 Summary of Model Examples...260

Chapter 8 Conclusions and Recommendations ..261

8.1 Research Contributions ..261

8.1.1 Phenomena-Based Modeling Language...261
8.1.2 Formalized Modeling Logic..262
8.1.3 Computer-Aided Modeling Environment ..262

8.2 Potential Impact on Modeling in Engineering Practice ..263

8.3 Potential Impact on Undergraduate Chemical Engineering Education264

8.3.1 Structuring of Modeling Activities..265
8.3.2 Classroom Deployment of MODEL.LA..265
8.3.3 Pedagogical Use of MODEL.LA ..266
8.3.4 Unique Impact on Undergraduate Education ..267

8.4 Directions for Future Research...269

8.4.1 Phenomena-Based Modeling Language Extensions...269
8.4.2 Integration with Molecular Modeling Tools..269
8.4.3 Implementation of Supervisory Logic ...270
8.4.4 Standardization and Integration with External Modeling Tools270

8.5 Conclusions ...271

Bibliography ..273

Appendix A MODEL.LA Context-Free Grammar..279

Appendix B Properties Manager ..285

Appendix C Operational Schedules..299

Appendix D Jacketed-CSTR Model Equations..309

Appendix E 2-D Spatially Distributed Tubular Reactor Model Equations315

12

13

List of Figures

Figure 3-1: Evolution of Process Model Representations ..54
Figure 3-2: Example Production Tree ...56
Figure 3-3: Phenomena-Based Model Production Tree ...58
Figure 3-4: Expanded Phenomena-Based Model Production Tree ...61
Figure 3-5: Modeled-Unit Production Tree...62
Figure 3-6: Hierarchical Structure Production Tree...63
Figure 3-7: Spatial Distribution Production Tree...64
Figure 3-8: Example Spatial Dimension Production Tree ..65
Figure 3-9: Topological Structure Production Tree...67
Figure 3-10: Chemical Content Production Tree ...68
Figure 3-11: Flux Production Tree..69
Figure 3-12: Flux Type Production Tree ...69
Figure 3-13: Convective Flux Production Tree..70
Figure 3-14: Energy Flux Production Tree..71
Figure 3-15: Species Flux Production Tree ...72
Figure 3-16: Flux Connectivity Production Tree ...72
Figure 3-17: Material-Content Production Tree ..73
Figure 3-18: Phase Instance Production Tree ..74
Figure 3-19: Vessel Geometry Production Tree ..75
Figure 3-20: Flux Allocations Production Tree ...76
Figure 3-21: Phase Production Tree..77
Figure 3-22: Phase Identification Production Tree ..77
Figure 3-23: Thermodynamic Phase Characterization Production Tree......................................78
Figure 3-24: Species Production Tree ...79
Figure 3-25: Reaction Production Tree ...80
Figure 3-26: Reaction Participants Production Tree ..81
Figure 3-27: Reaction Kinetics Production Tree..81
Figure 3-28: Example Model Digraph...84
Figure 3-29: Example Model Derivation Tree ...85
Figure 4-1: Modeled-Unit Digraph Representation..94
Figure 4-2: New Modeled-Unit Declaration..107
Figure 4-3: Declaration of Topological Structure..108
Figure 4-4: Declaration of Internal Flux ..109
Figure 4-5: Declaration of Multi-Level Flux..110
Figure 4-6: Hierarchical Structure Characterization Example ..116
Figure 4-7: Hierarchical Abstraction Example...117
Figure 4-8: Mathematical Model Derivation..152
Figure 4-9: Supervisory Logic Operators ..154
Figure 5-1: MODEL.LA Modeling Environment Software Structure160
Figure 5-2: MODEL.LA Graphical User Interface ..161

14

Figure 5-3: Declaration of a Modeled-Unit ...162
Figure 5-4: Declaration of a Convective Flux..163
Figure 5-5: Decomposition Flowsheet...164
Figure 5-6: Jacketed_CSTR Decomposition ...165
Figure 5-7: Modeled-Unit Aggregation Dialog..166
Figure 5-8: Example Staged Modeled-Unit ...167
Figure 5-9: Spatial Distribution Dialog..168
Figure 5-10: 1-D Distributed Heated Fin Example ..170
Figure 5-11: Project Species Selection Dialog...171
Figure 5-12: Project Reaction Dialog..172
Figure 5-13: Modeled-Unit Chemical Content Characterization Dialog173
Figure 5-14: Material-Content Declaration Dialog ..174
Figure 5-15: Material-Content Geometry Declaration Dialog ..174
Figure 5-16: Material-Content Flux Allocation Dialog ..175
Figure 5-17: Example Vessel Geometry and Flux Allocation...177
Figure 5-18: Modeling Assistant: Edit Fluxes Tab...177
Figure 5-19: Convective Flux Characterization Dialog ..178
Figure 5-20: Energy Flux Characterization Dialog ..178
Figure 5-21: Species Flux Characterization Dialog..179
Figure 5-22: Project Reaction Rate Law Dialog ..180
Figure 5-23: Project Data Summary Dialog...182
Figure 5-24: Modeled-Unit Template Selection Dialog ...183
Figure 5-25: Model Inconsistency Dialog..184
Figure 5-26: Simulation Options Dialog..185
Figure 5-27: Species Database: Identification Properties ..187
Figure 5-28: Species Database: Constant Properties...187
Figure 5-29: Species Database: Temperature Dependant Properties188
Figure 5-30: Species Database: UNIFAC Groups Properties..188
Figure 5-31: Species Database: Binary Interaction Parameters for Equations of State189
Figure 5-32: Species Database: Binary Interaction Parameters for Activity Coefficient Models

..189
Figure 5-33: Phase Equilibrium Calculations Dialog..190
Figure 5-34: Phase Properties Calculations Dialog ..190
Figure 5-35: Phase Diagram Dialog ..191
Figure 5-36: User-Entered Equation Dialog..192
Figure 5-37: Declaration of Control Structures ...193
Figure 5-38: Transmission Variable Selection Dialog ..194
Figure 5-39: Control Law Specification Dialog ...195
Figure 5-40: gPROMS External Model Definition Dialog ...196
Figure 5-41: Specification of Operational Schedule...197
Figure 5-42: Discrete/Continuous Behavior of Scheduled Process Model................................199
Figure 5-43: Numerical Engine Toolbar ..200
Figure 5-44: Model Equations Dialog ...200
Figure 5-45: Design Variable Specification Dialog ..201
Figure 5-46: High Index Diagnosis Dialog ..202

15

Figure 5-47: Initial Condition Specification Dialog..203
Figure 5-48: Initial Guesses Specification Dialog ..204
Figure 5-49: Numerical Solver Specification Dialog..205
Figure 5-50: MODEL.LA Block Solver Dialog...206
Figure 5-51: Numerical Results Display Dialog...211
Figure 6-1: Object Modeling Notation for Classes...214
Figure 6-2: Modeling Element Class Object Model ...215
Figure 6-3: Species Container Class Object Model..216
Figure 6-4: Reaction Container Class Object Model..216
Figure 6-5: Modeled-Unit Class Object Model..217
Figure 6-6: Flux Class Object Model...218
Figure 6-7: Material-Content Class and Phase Class Object Models ..219
Figure 6-8: Reaction Class Object Model..220
Figure 6-9: Species Class Object Model..220
Figure 6-10: Modeling Elements Integrated Object Model ..221
Figure 6-11: MODEL.LA Modeling Environment Object Model...222
Figure 6-12: Phenomena-Based Model Object Model ...222
Figure 6-13: Mathematical Model Object Model...223
Figure 6-14: Model Generator Object Model ..224
Figure 6-15: Properties Manager Object Model ..225
Figure 6-16: Properties Database Object Model..226
Figure 6-17: Operations Manager Object Model ...227
Figure 6-18: Numerical Engine Object Model ...228
Figure 6-19: Overall Model Derivation and Solution Functional Model...................................229
Figure 6-20: Model Derivation Functional Model ...230
Figure 6-21: Property Correlation Generation Functional Model...231
Figure 6-22: Mathematical Model Specification and Solution Functional Model......................232
Figure 6-23: Model Solution Functional Model...233
Figure 7-1: Input-Output Level Design for HDA Plant..237
Figure 7-2: Reaction and Separation Section Design for HDA Plant..238
Figure 7-3: Separation Section Design for HDA Plant...239
Figure 7-4: Reaction Section with Energy Integration for HDA Plant......................................240
Figure 7-5: Distillation Column Design for HDA Plant..241
Figure 7-6: Simulation Results for HDA Plant Base Case Design ..242
Figure 7-7: Input-Output Level Design for Acetic Anhydride Plant ...244
Figure 7-8: Chemical Species and Reactions for Acetic Anhydride Plant Design......................245
Figure 7-9: Simulation Results for Input-Output Level Design of Acetic Anhydride Plant246
Figure 7-10: Reaction and Separation Section Design for Acetic Anhydride Plant247
Figure 7-11: Reactor Design for Acetic Anhydride Plant ...248
Figure 7-12: Separations Subsystem Design for Acetic Anhydride Plant..................................249
Figure 7-13: Economic Potential for Base Case Design of Acetic Anhydride Plant250
Figure 7-14: BTX Dynamic Distillation...251
Figure 7-15: PI Control of Dynamic Distillation Column...252
Figure 7-16: Closed Loop Dynamic Response of BTX Distillation Column.............................253
Figure 7-17: 1-D Spatially Distributed Reaction and Separation Process254

16

Figure 7-18: Structure of 1-D Spatially Distributed Tubular Reactor and Gas Absorption Column
..255

Figure 7-19: 1-D Spatially Distributed Reactor and Absorption Column Results257
Figure 7-20: 2-D Spatially Distributed Tubular Reactor Example..258
Figure 7-21: 2-D Spatially Distributed Tubular Reactor Simulation Results.............................259
Figure C-1: Generic Structure of Hybrid System...300

17

List of Tables

Table 4-1: Intrinsic Declarative Graph Operators ..91
Table 4-2: Intrinsic Graph Assignment Operators..92
Table 4-3: Elementary Procedural Graph Operators ..93
Table 4-4: Modeling Element Identification Operators ..95
Table 4-5: Specialized Modeling Element Identification Operators..96
Table 4-6: Hierarchical Structure Analysis Operators..97
Table 4-7: Topological Structure Analysis Operators ..99
Table 4-8: Material Characterization Analysis Operators...102
Table 4-9: Chemical Content Analysis Operators ..103
Table 4-10: Mechanistic Characterization Analysis Operators ...105
Table 4-11: Modeling Element Declaration Operators...107
Table 4-12: Topological Structure Declaration Operators ...111
Table 4-13: Chemical Content Declaration Operators ...113
Table 4-14: Hierarchical Structure Characterization Operators..115
Table 4-15: Material Characterization Operators...119
Table 4-16: Mechanistic Characterization Operators ...121
Table 4-17: Behavioral Characterization Operators...122
Table 4-18: Hierarchical Consistency Operators..126
Table 4-19: Material Characterization Consistency Operators ...129
Table 4-20: Species Topology Consistency Operators...131
Table 4-21: Model Completeness Operators ...132
Table 4-22: Species Conservation Derivation Operators..135
Table 4-23: Species Aggregation Derivation Operators...136
Table 4-24: Convective Species Transport Derivation Operator ..137
Table 4-25: Energy Conservation Derivation Operators ..138
Table 4-26: Internal Energy Aggregation Derivation Operators...139
Table 4-27: Energy Transport Derivation Operator...140
Table 4-28: Chemical Reaction Rate Derivation Operators..141
Table 4-29: Material-Content Aggregation Operators ...142
Table 4-30: Phase Equilibrium Derivation Operators...144
Table 4-31: Phase Species Aggregation Operators ..145
Table 4-32: Species Fraction Summation Operators..146
Table 4-33: Species Holdup Derivation Operators ..146
Table 4-34: Species Concentration Derivation Operators ..147
Table 4-35: Phase Density Derivation Operators...148

18

Table 4-36: Phase Internal Energy Derivation Operators...148
Table 4-37: Mechanistic Characterization Operators ...149
Table 4-38: Physical and Thermodynamic Phase Property Operators.......................................150
Table 4-39: Physical and Thermodynamic Flux Property Operators...151
Table 4-40: Level-1 Supervisory Operator ..156
Table 4-41: Level-2 Supervisory Operator ..157
Table 5-1: Heated Fin Model Equations..169
Table 5-2: Heated Fin Model Equations with Mechanistic Characterizations169
Table 5-3: Geometric Vessel Configurations for a Material-Content..176
Table 5-4: MODEL.LA Reaction Rate Law Templates ...181
Table 5-5: Summary of gPROMS IPDAE Solution Methods ..208
Table 7-1: Design Objectives for HDA Plant...236
Table 7-2: Design Objectives for Acetic Anhydride Plant ..243
Table 7-3: PI Controllers of BTX Dynamic Distillation ...253
Table 7-4: Reaction Data for 1-D Spatially Distributed Reaction and Separation Process254
Table 7-5: Solution Methods for 1-D Spatially Distributed Reactor and Absorption Column...256
Table 7-6: Reaction Data for 2-D Spatially Distributed Tubular Reactor Example...................258
Table 7-7: Solution Methods for 2-D Spatially Distributed Tubular Reactor Example259
Table 7-8: Summary of Phenomena-Based Modeling Examples ..260
Table B-1: Pure Species Identification Properties..286
Table B-2: Pure Species Constant Value Properties ..287
Table B-3: Pure Species Temperature-Dependent Properties ..288
Table B-4: Pure Species Temperature-Dependent Property Correlations.................................289
Table B-5: Properties Manager Equations of State..291
Table B-6: Properties Manager Activity Coefficient Models..292
Table B-7: Thermodynamic and Physical Property Correlations for Phases..............................293
Table C-1: Operational Schedule Elements ...302
Table C-2: Example gPROMS Schedule Translation...307

19

Chapter 1

Introduction

Modeling is the quintessential activity that characterizes modern chemical process systems

engineering. Physical experiments on real processes are expensive, time-consuming, and often

potentially hazardous. Fortunately, models provide alternative means to answer questions about

the behavior of such processes through computational experiments. While the potential benefits

of process modeling are commonly acknowledged, its use is not nearly as widespread. Rather, the

development of chemical process models is usually left in the hands of a select group of modeling

experts. This is because the lack of formalization and systematization associated with model

development leads most students and practicing engineers to view modeling as an art, rather than

as a science.

Several computer-aided modeling tools have been proposed to assist the process of model

development. While these tools provide varying degrees of assistance to some aspects of the

modeling activity, they are inadequate to alleviate the modeling bottleneck that restricts the use of

models in engineering practice and in undergraduate education. This is because none of these

computer-aided tools possess an explicit understanding of the chemical engineering concepts

behind model development. Consequently, existing tools must either rely on a library of

predefined models or must provide a computational language for specifying numerical calculations

to be performed or sets of equations to be solved. Use of the former is limited by its inherent

inflexibility, while use of the latter is limited by its inherent complexity.

To provide high-level modeling support to all chemical engineers, not just modeling

experts, a computer-aided modeling environment is needed that lifts the level of model

development from procedural calculations and mathematical equations to the fundamental

20

concepts that characterize chemical engineering science. With this ability, the computer will allow

engineers to develop models at the level of chemical engineering knowledge—through explicit

assumptions about structure, physicochemical phenomena, and mechanistic characterizations.

However, before such a tool may be developed, a high-level language is needed that provides a

vocabulary for description of such models. Once this language is in place, it will provide the basis

for formalized modeling logic that enables the computer to construct mathematical models as a

human engineer would from a phenomena-based description, to provide feedback on model

completeness and consistency, and to provide guidance during the modeling activity.

1.1 Chemical Process Modeling Needs in Engineering Practice

Models are utilized to solve a variety of engineering problems related to a chemical process

throughout its lifetime. Process engineering activities such as design, optimization, analysis,

control, scheduling, diagnosis and training all rely on mathematical models that provide a basis for

computational experiments used to solve some engineering problem. In this manner, all aspects of

a process, its operation, economics, robustness, and safety, can be verified through development

of a valid model.

Properly documented, such models should become valuable assets for a company. The

motivation, ideas, assumptions, and decisions behind their development are an investment in

engineering knowledge. A company that can readily access, accumulate, analyze, and reapply this

knowledge gains a major advantage over its competitors.

Unfortunately, experience has shown that these benefits are not realized because the

investment in model development is lost. Since the knowledge behind a model is not retained nor

explicitly linked to model development, most modeling efforts start from scratch. Not only is

there little retention of modeling knowledge from process to process, but even the same process is

modeled “over and over” for different engineering applications (e.g., process design and process

control). Obviously, under these circumstances the accumulation of modeling assets is minimal.

The complex process engineering problems of today demand computer-aided modeling

tools that extend beyond the paradigm of numerical computations. Since high-powered personal

computers and efficient numerical algorithms are now commonly available, the substantial effort

required for model formulation, verification, documentation, modification, and reuse is now

21

viewed as the key obstacle preventing a more prevalent use of process modeling.

A properly designed modeling environment is needed which will alleviate the weaknesses

associated with traditional computer-aided process modeling. These weaknesses include:

1. The time and cost associated with model development are high,

2. Model development is an ad hoc activity carried out by a select group of experts,

3. Engineers and scientists in various backgrounds cannot readily contribute their

expertise in a collaborative modeling effort,

4. Models are not defined at the common level of chemical engineering assumptions,

but rather in the narrow terms of a language specific to a given modeling tool,

5. The resulting models are difficult to document and maintain,

6. The reuse of models is minimal, as they tend to be task-specific and linked to

solution procedures, and

7. Computer assistance is primarily limited to numerical computations and the

solution of equations.

Until a new computer-aided modeling paradigm is developed that addresses these issues, the

potential benefits of chemical process modeling cannot be fully realized.

1.2 Chemical Process Modeling Needs in Undergraduate Education

The core material of chemical engineering education has been developed over many decades into

a focused and well-organized curriculum centered around such courses as heat and mass

transport, fluid mechanics, thermodynamics, kinetics, separation processes, and reaction

engineering. Instruction in these core courses focuses primarily on analysis—the deduction of

some behavior of a given system. For example, problems are phrased as plot the temperature

versus time, find the phases present and species concentrations, determine the velocity profile,

etc. Rarely is such behavior determined experimentally. Rather, it is determined by solution of

models derived from conservation principles and mechanistic laws (e.g., ideal gas law, Raoult’s

law, Fick’s law) describing physical and chemical phenomena.

For simplicity, the fundamental concepts and phenomena introduced in these courses are

presented in the context of idealized situations and may be characterized as set pieces of the

foundation material. Since students have little prior knowledge in describing these situations, the

22

derivations of models of these phenomena are only passively presented to the students. These

models typically take the form of one or more mathematical equations prominently boxed off in

the textbook or on the blackboard. In the interest of time, the context of a model (i.e., its

motivation, objectives, assumptions, limitations, and derivation) are treated as only of secondary

importance. Typically, emphasis then quickly shifts to mathematical techniques required to solve

the resulting equations. Subsequent homework problems, tagged as “applications”, are actually

similar set pieces that require few decisions of the student other than selection of which

predefined model equations (that best accommodate given data) and/or solution methods are to be

used.

These set pieces of the foundation material are used in order to make the fundamental

concepts and solution methods introduced as clear as possible to the student and are a necessary

part of the educational process. However, it is evident that the focus of the chemical engineering

syllabus needs to be expanded. The true measure of engineering ability is not the understanding

of idealized textbook examples but rather the application of fundamental concepts in developing

concise, appropriate models within the context of a particular engineering problem. Formulating

and deriving an adequate mathematical model is a greater challenge and yields far more rewards

to the student than just understanding and appreciating models derived in a textbook or by an

instructor. When students are required to apply fundamental concepts to derive models in

unfamiliar contexts, the necessary associations are not made and they are often confused as to the

appropriate decisions/assumptions that are required.

Comments from instructors of all undergraduate chemical engineering courses at both

MIT (Mohr, 1996) and the University of California at Berkeley (Foss, 1996) have illustrated that

such views are common:

• Students understand basic concepts but have a poor idea of when and how to

apply them to a given engineering problem.

• The foundations of disciplined and effective modeling must be laid down at the

beginning, in the introductory sophomore course in chemical engineering.

• The current teaching of modeling is ad hoc and taught primarily by a sequence of

examples. Thus, any systematization and discipline brought to the modeling

activity will be extremely beneficial.

23

• The effectiveness of the modeling activity is largely left to the intellectual

capabilities of the individual student. Consequently, the creativity of engineering

students in general suffers significantly. Assistance is needed to enhance the

modeling creativity of students overall.

Unfortunately, students are never presented an explicit modeling methodology. Rather, they can

only infer modeling techniques from exposure to a long sequence of examples. The ad hoc nature

of modeling leads to frustration for both the student, who struggles to adapt poorly understood

existing models to other problems, and the instructor, who must puzzle over what the student is

doing wrong and what information is not properly understood.

One approach for addressing the need to present a modeling methodology would be to

develop pre-wired tutorial software which would lead the student through examples of model

development for non-trivial engineering problems. However, in the context of teaching modeling,

the benefits of producing such software would be quickly exhausted. The prespecified paths and

alternatives through which students could proceed would inhibit them from directing and

experimenting with model development and would risk trivializing the complex task of modeling.

On the other hand, a well-designed computer-aided modeling environment should enable students

to express their notions of what a proper model should be. This would allow students to proceed

in an structured process of model development. First, the important structure and

physicochemical phenomena are articulated. Next, these phenomena are characterized

mechanistically. This description provides the basis for derivation of the model equations. The

required data to solve the problem are then identified. Finally, the behavior of the process model

is observed, providing immediate feedback on the applicability of the crafted model. Obviously,

chemical engineering students must possess the skills for deriving and solving equation-based

models independently. In various problem-solving contexts, however, by taking primary

responsibility for equation formulation and solution, the computer would give students the

opportunity to concentrate on the chemical engineering assumptions and decisions needed to

synthesize a model. When students make the transition from passive onlookers to active

participants during model development, they gain the experience, knowledge, and confidence that

is necessary to solve the real engineering problems they will face throughout their education and

their careers.

24

1.3 Potential Role of the Computer in Process Modeling

Chemical engineers have long since embraced the computer as an algorithmic tool. The speed and

efficiency with which computers can perform numerical procedures is well-appreciated. Yet

advances in computer-aided process modeling over the past few decades have essentially been

limited to the realm of numerical computations. Modelers should expect more assistance from

computers than solely the ability to solve larger and larger numerical problems with ever

increasing speed. Instead of just providing passive data structures for organizing computations,

the computer should possess “modeling knowledge” that would allow it to communicate with and

assist the engineer at the level of chemical engineering understanding.

While all student and practicing chemical engineers must possess sound modeling

fundamentals, they should not be expected to be computer programmers or highly specialized

software experts in order to develop models. Process modeling should not be a career goal—all

chemical engineers need to create and use models to solve a wide variety of problems.

Furthermore, the computer should provide a collaborative environment for modeling during

process engineering activities, allowing experts in varying backgrounds (e.g., process design,

physical chemistry, reaction kinetics, process control, etc.) to readily contribute to model

development in parallel, without each having to understand the fine details of every part of the

model. Models should be viewed as repositories of engineering knowledge, not as collections of

subroutines or equations.

The computer has the potential to unleash the benefits of process modeling, but this is not

possible without a formal representation of the fundamental principles of chemical process

modeling. This representation would allow systematization of the modeling activity, where the

computer provides varying degrees of support to the engineer. Certain modeling tasks can be

completely automated by the computer. Other modeling tasks can be viewed as a structured

interaction where the computer guides the activity but the engineer makes the key modeling

decisions based on the context of the particular engineering problem. Other modeling tasks that

require human understanding and creativity cannot be automated, but the computer can still

provide a framework for explicitly documenting the motivation for these tasks, the rationale for

key decisions made, alternatives considered, etc. The computer should also have internal logic to

generate models under different contexts or levels of detail, check models for inconsistencies or

25

incompleteness, and review model simulation results to check the validity of assumptions based on

chemical engineering principles.

1.4 Existing Computer-Aided Process Modeling Tools

Many computer-aided tools designed to facilitate certain aspects of process modeling in industry

and education have been developed. However, all have failed to alleviate the perceived process

modeling bottleneck. This is because none has satisfactorily addressed all the key industrial and

educational chemical engineering modeling needs. Several examples of these approaches, their

key features, and their shortcomings are given below.

1.4.1 Sequential Modular Flowsheet Simulators

The concept of unit operations, established by Arthur Little at MIT in 1915, helped to define the

profession of chemical engineering. Decades later, unit operations are still the paradigm on which

the most popular type of commercial chemical process modeling software, sequential modular

flowsheet simulators, is based. Examples of these tools include ASPENPLUS by AspenTech,

HYSIS by Hyprotech, and PRO/II by SimSci. These simulators allow the generation of process

model flowsheets through a structured integration of predefined unit operation models (e.g., heat

exchangers, distillation columns, CSTRs, etc.) from a library. Chemical species and, where

applicable, chemical reactions are then added to the flowsheet model. Each proprietary unit

operation model from the simulator library encompasses a computational procedure which

performs predetermined calculations on a fixed set of input variables to yield values of

prespecified outputs. Calculations are performed in sequential modular fashion, where the output

values of each unit become the input values of the subsequent unit, as dictated by the topology of

specified process streams. During these calculations, the thermodynamic and physical properties

of materials are determined by pure species properties from a database and the selected

thermodynamic and physical property models of the materials.

The language of unit operations provided by sequential modular flowsheet simulators

helps modelers deal with the complexity of chemical process modeling by abstracting the details

of the embedded solution procedures. Although these tools are relatively easy to use and have

gained wide acceptance in industry, their use is restricted due to several inherent limitations. In a

flowsheet, each process unit is essentially selected as a blackbox from a finite library of available

26

models. Although some parameters may be user-specified, the model of each module is fixed.

The applicability of these inflexible models may be questionable because assumptions used in their

derivation may not be explicitly stated or readily ascertained. Furthermore, the degree of detail

these models require may be more or less than that which is needed for a particular engineering

application.

The fundamental limitation of sequential modular flowsheet simulators is that the level of

modeling granularity provided by their inflexible unit operation models is too coarse. These

libraries cannot anticipate the requirements of non-standard unique or novel processes, where the

need for models is often most critical. Furthermore, the modeling of distributed systems and the

development of hierarchical multi-level process models are not adequately supported. While most

sequential modular simulators provide a facility for adding “new” unit operations to the existing

model library, minimal assistance is provided for developing these model definitions, which must

be procedural to maintain the sequential modular calculation paradigm.

1.4.2 Programming Languages

When sequential modular flowsheet simulator models are inadequate or unavailable altogether, a

process model must be characterized in terms of elementary physical and chemical phenomena

rather than unit operations. From this description, a set of mathematical equations meant to

represent the behavior of the system may be developed from chemical engineering first principles.

The burden imposed on an engineer who must develop such a model for a complex process can be

overwhelming. The tasks involved in deriving such a model from first principles may be

decomposed into the following four aspects:

1. Declaration of Assumptions: The system to be modeled is identified, and within

the context of the modeling objectives, the variables of interest are specified and

assumptions are made regarding structure, relevant physicochemical phenomena,

and characterization of materials.

2. Derivation of Equations: Conservation principles, constitutive relationships,

design correlations, and thermodynamic and physical property values are used to

derive a consistent set of mathematical equations based on assumptions from the

first aspect.

27

3. Solution of Equations: Appropriate numerical algorithms are identified and the

equations from the second aspect are encoded in a form suitable for solution using

a procedural programming language (e.g., Fortran, C, Pascal, etc.).

4. Validate Model: After the programming code is debugged and numerical

convergence is obtained, the modeled behavior of the process is observed. If

necessary, the first, second, and third aspects are reviewed and repeated.

Obviously, to accomplish this task unassisted the modeler must possess a broad range of

capabilities. The first aspect requires an understanding of the modeling context and insight into

which phenomena are of practical relevance and significance to the problem application. The

second aspect requires comprehension of all the chemical engineering science involved in logically

deriving the equations, along with the ability to determine if they are mathematically well-defined.

The third aspect requires not only an extensive knowledge of numerical methods but also

familiarity with a programming language needed to implement them. Finally, the fourth aspect

requires extreme patience. Due to the current lack of structured logic and formalized procedures

to guide these tasks, process modelers must rely largely upon not only the science of chemical

engineering knowledge and mathematical ability, but also the art of intuition, insight, and

experience.

Moreover, since the resulting procedural models are intrinsically linked to the methods

used for solution, they are inherently difficult to reuse or modify to model a similar system or even

the same system within the context of a different process engineering problem (e.g., diagnosis

rather than process optimization). This is because the chemical engineering modeling knowledge

is embedded and obscured in the solution techniques of the corresponding numerical algorithms.

As a result, the investment in developing the process model must usually be repeated for each

implementation.

1.4.3 Spreadsheets

The relatively low cost and easy learning curve of spreadsheeting software (e.g., Microsoft Excel)

have led to their wide use in industry and in undergraduate education for many modeling

applications. While many engineers find them easy to use, spreadsheets are also inherently

designed for procedural computations and suffer from the same limitations as programming

28

languages. The distinction is blurred further by macro languages (e.g., Visual Basic in Microsoft

Excel) that are provided which essentially turn a spreadsheet into an interface to underlying

procedural programs.

1.4.4 Equation-Based Process Modeling Tools

 In order to alleviate the problems associated with procedural model formulations, several

equation-based modeling languages (e.g., ASCEND, OMOLA, and gPROMS) have been

developed. These tools allow the modeler to declare large systems of equations in symbolic form.

The computer then takes primary responsibility for selecting and implementing the appropriate

numerical methods to determine the results. These tools extend beyond general equation-solvers

by providing logical operators to allow conditional model definitions and by implementing certain

object-oriented programming concepts to organize the mathematical description of models.

In object-oriented programming, classes are structured data types used to describe a set of

similar objects. Each class definition encompasses a characterizing description, defined by a set of

values (attributes), and a functionality, defined by a set of procedures (methods) which operate on

the attributes. An object is created by instantiating a class (i.e., assigning values to its attributes).

Each instantiation of a class produces a new object which is coexistent but independent of

previous objects produced from that particular class. Inheritance is used to establish a multi-level

class hierarchy, where a child class inherits the attributes and methods of its parent class. The

child class may then be further refined by adding additional attributes or methods, or by modifying

methods inherited from the parent class.

Generally, in application to equation-based modeling tools, classes provide a means of

abstraction by grouping variables and equations pertaining to a certain system into a single object.

Inheritance reduces redundant modeling by grouping similar classes under a single parent class

and also promotes model reuse by allowing new models to be defined through modification and

extension of an existing model class. For example, in ASCEND (Piela, 1991, Piela et al, 1991),

atoms are an object class used to represent variables. Models are classes defined by the user to

encompass a set of variables and mathematical equations. Inheritance allows atoms to be partially

specified from previously defined atoms and models from instances of other models and atoms.

OMOLA (Nilsson, 1993, 1995) is designed for the description of dynamic models for simulation

29

purposes. In OMOLA, the model class is the root class of all user-defined models. Models are

grouped into two types, primitive and structured. Primitive models are defined by attributes

describing parameters (constant values), variables (time-varying values), realizations (equations

and constraints describing behavior of the variables) and terminals. Terminals provide a means of

communication of variables between models. Structured models allow hierarchical equation

models defined by attributes which identify the corresponding submodels and their connected

terminals. Neither Ascend nor OMOLA is limited to chemical process modeling but are both

designed to also support equation-based modeling in any other technical discipline. gPROMS

(Barton, 1992, Barton and Pantelides, 1993) is designed for the dynamic simulation of combined

discrete and continuous processes. Processes are formed by the application of tasks to instances

of models. The user-defined models encompass continuous mathematical equations meant to

describe the behavior of a modeled system. Models are defined by attributes describing

parameters (constant values), variables (time-varying values), equations (algebraic and ordinary

differential equations describing the behavior of the variables) and streams (corresponding to

terminals in OMOLA). The user may also specify tasks which represent discrete procedures, such

as control actions or disturbances, imposed on the system. Both models and tasks may be defined

hierarchically through inheritance from other models or tasks, respectively. gPROMS has been

extended to solve partial differential and integral equations in addition to ordinary differential and

algebraic systems of equations (Oh, 1995, Oh and Pantelides, 1996). gPROMS is now available

as a commercial product by Process Systems Enterprises Limited. Other examples of equation-

based modeling tools include SPEEDUP (Perkins 1982) which has been commercialized by

AspenTech, and ABACUSS which is the only equation-based modeling tool capable of

integrating systems of numerically high-index differential and algebraic equations (Feehery and

Barton, 1996).

By automatically determining the numerical solutions to the user-specified equations, these

mathematical tools are a significant aid to equation-oriented modeling. Since the equation-based

model definition is not intrinsically linked to a particular solution method, the equations may be

readily used to solve for different sets of unknown variables, for optimization, or for regression

purposes. Also, since only the equations and not the procedural solution method must be

specified, the amount of coding needed to develop a new model or modify an existing one is

30

significantly reduced. While object-oriented programming concepts such as object classes and

inheritance facilitate the writing and organization of the model equations, it is clear the focus of

these mathematical tools is to expedite the third aspect of modeling, the solution of equations

using numerical algorithms.

The mathematical modeling tools described above are capable of solving systems of

thousands of equations. However, these solution capabilities cannot be fully exploited unless the

correct, consistent generation and maintenance of these complex sets of equations can be ensured.

The mathematical modeling tools cannot provide this assistance because they focus on equation-

solving methods. However, to achieve widespread use of modeling, assistance for the first and

second aspects of modeling, the declaration of assumptions and the derivation of equations, may

be the most critical. It has been observed (Denn, 1986) that “the truly challenging aspect of

modeling is in the use of physical principles to arrive at a proper mathematical formulations.”

Similarly, in (Aris, 1979), “it is comparatively easy to teach the method of solution of standard

mathematical equations, but much harder to communicate the ability to formulate the equations

adequately and economically.” Since the equation-based description of models in the

mathematical modeling tools is essentially context-free and not explicitly linked to chemical

engineering concepts, the computer is unable to offer assistance beyond numerical advice such as

a degrees-of-freedom or an index analysis.

Furthermore, although the symbolic (rather than procedural) form of these equations

facilitates reuse, their applicability may be uncertain because assumptions used in deriving these

equations are not explicitly maintained. Thus, it is the responsibility of the modeler to provide

comments explaining assumptions used as the basis of model equations, to analyze the consistency

and logic of these assumptions, and to correctly derive the equations. These tasks are neither

assisted nor enforced by any of the equation-based modeling tools. This can especially lead to

difficulty in model editing and analysis. For example, to avoid redundant modeling it would be

ideal if one continuously evolving model could be used over the lifetime of a project. Over time,

such a model may grow to hundreds or thousands of equations while modifications are made by

several different modelers. However, whenever an assumption is changed or added, the modeler

must analyze the set of existing model equations (which may or may not be consistently

commented), determine the modifications necessary throughout the system of equations, then

31

implement and document these changes. As a result, this task may quickly become unwieldy as a

model grows in complexity. Obviously, further assistance to the modeler is also required for the

first and second aspects of the modeling process, the declaration of assumptions and derivation of

the corresponding mathematical equations.

1.4.5 Summary of Existing Computer-Aided Process Modeling Tools

Each of the existing computer-aided modeling tools do facilitate certain aspects of process

modeling. However, they fall far short of providing the high-level of modeling assistance that is

envisioned computers can provide. This is because these computer-aided tools are limited by the

language that they use to communicate with the human modeler.

Modular flowsheet simulators provide the traditional language of unit operations. While

this language is intuitive to chemical engineers, the inflexible and blackbox nature of these models

restrict their use greatly. The coarse modeling granularity provided by these tools limits their

application to the modeling of essentially well-understood, rather than unique and novel,

processes.

Programming languages provide the language of computational procedures, which

maximizes flexibility for developing process models. However this medium is tailored for the

description of solution procedures for a mathematical model, not expression of the model itself.

Use of these languages requires proficient programming ability, wide knowledge of numerical

techniques, and a significant investment of time and effort. Moreover, the procedural models

resulting from these efforts are inherently difficult to reuse or modify to model a similar system or

even the same system within the context of a different process engineering problem.

Spreadsheeting software is more user-friendly than programming languages, but is also designed

essentially for procedural computations and suffers from the same limitations as programming

languages.

Equation-based tools overcome these procedural restrictions by providing the language of

mathematical equations. These computer environments possess advanced equation-editing

capabilities designed to facilitate the compilation of mathematical relationships. However,

computer assistance to the modeler is primarily limited to the numerical solution of equations.

The modeler is still left solely responsible for making the necessary modeling assumptions and

32

simplifications, analyzing the logic and consistency of these assumptions, and deriving the

corresponding equations. The experience and skill required to construct these equation-based

models efficiently and reliably still restricts their development to the realm of modeling experts.

Consequently, most engineers are reluctant to pursue this time-consuming, error-prone, and

difficult to document approach, leading them to abandon the modeling effort or to limit the

number of alternatives they will consider during model development. Furthermore, since the

resulting model consists of mathematical equations, the assumptions used in the model definition

become implicit, inhibiting reuse of the model.

1.5 Physicochemical Phenomena-Based Process Modeling

By defining appropriate primitives and means of combination and abstraction, engineers in several

disciplines have created specialized problem-oriented modeling languages designed for various

applications. These languages provide facilities that lift the task of model formulation above the

level of mathematical equations and calculation procedures. Examples include the computer-

aided languages of electrical engineering networks (Sussman and Steele, 1980) for modeling

circuits in terms of primitives that form discrete electrical elements (e.g., resistors, capacitors,

inductors, etc.) and civil engineering networks (Maher, 1988) for modeling structures from

discrete physical elements (e.g., girders, rods, beams, etc.). For chemical process engineering, the

language of unit operations networks is no longer adequate to model the complexities of modern

processing systems. Rather, a more elementary characterization of chemical processes is required

which would allow processes to be represented as networks of interacting physicochemical

phenomena. Thus, elementary physical and chemical concepts such as system, flow, reaction, and

diffusion can be integrated to form phenomena-based models of not only traditional unit operation

systems but also unique and novel processes. These phenomena-based model descriptions can

then be used to automatically derive the requisite mathematical model equations from chemical

engineering first principles. In this manner, a high-level process modeling environment based on

the language of elementary physical and chemical phenomena can be developed that combines

the high-level approach of unit operation-based simulators with the power and flexibility of

equation-based modeling tools.

33

1.5.1 Proposed Phenomena-Based Modeling Approaches

As reviewed by Marquardt (1996), the representation of process models through the description

of elementary physical and chemical phenomena has been approached by several researchers. This

direction of research was initially established by the development of the process modeling

language MODEL.LA (Stephanopoulos et al, 1990a, 1990b), on which preliminary ideas for this

work are based. The key language elements of MODEL.LA are divided into two categories,

structural and functional. Generic-units, ports, and streams, are used to describe the structural

characteristics of a modeled process, while the modeling-scope, constraints, and generic-

variables describe the functional characteristics. Similar to object-oriented programming

concepts, each modeling element is associated with an object class, which is described by a set of

attributes. Generic-units represent a system delimited by its boundaries, and are defined by

attributes specifying structural components, modeling assumptions, and constraints. Ports, which

may be of type convective, material, energy, or information, represent boundaries through which

generic-units interact. Streams link ports of the same type between separate generic-units. The

modeling-scope encapsulates and explicitly documents all modeling assumptions and constraints

describing the generic-units. Constraints represent mathematical relationships derived from the

modeling assumptions, and are composed of generic-variables and mathematical operators.

Generic-variables encapsulate characteristics of a particular process quantity. Semantic

relationships are provided to allow specialization (through inheritance and class membership),

specification (through composition, communication, and description), abstraction and

disaggregation (through hierarchical structuring), and definition (through characterization) of the

modeling elements. The MODEL.LA language is designed for derivation of the model equations

through mass, species, and energy balances for each generic-unit. The flux terms of each balance

equation may be determined through summation or subtraction of the transferred quantities over

the corresponding ports, while the generation or consumption terms may be determined through

summation or subtraction over the corresponding sources or sinks specified for the balanced

quantity. The form of each term is determined by translation of the assumed mechanism of a

declared phenomenon into a constitutive equation. The implementation of MODEL.LA was

limited to the modeling of static, lumped systems.

Vazquez-Roman (1992) and Perkins et al (1994) describe a prototype environment for

34

modeling lumped, dynamic systems based on a purely physical description. In that work, a

process is a set of vessels whose ports are linked by connections. A vessel is characterized by its

geometry (describing shape, size and port locations). Vessels contain phases which exchange

material and/or energy with other phases. These interactions occur through connections

according to a set of transfer laws, which are specified by user-defined assumptions regarding the

relevant physicochemical phenomena. The thermodynamic state of each phase is characterized by

the masses of each chemical component present, the internal energy, and the pressure.

Controllers are modeled as blackboxes, which relate a state variable of a phase to a controller

output. Species and energy balance equations are made for each phase. The terms of the balance

equation include an accumulation term (which determines the dynamic behavior of the system), a

generation term (due to specified chemical reactions), and a term for each defined transfer (as

described by the transfer laws). The balance equations need to be coupled with thermodynamic

relations which determine the phases present in a vessel, methods for physical and thermodynamic

property calculation, pressure and volume relations for each vessel, and controller laws in order to

compile the set of equations needed to carry out dynamic simulations.

In the context of the frame-based data model VEDA, Marquardt has proposed using a

general systems theory approach to formalize the modeling knowledge for chemical engineering

processes (Marquardt, 1996). In that work, modeling objects are divided into two categories,

substantial and phenomenological. Substantial modeling objects (including devices and

connections) represent structure while phenomenological modeling objects (including variables

and equations) represent the behavior of substantial objects. These elementary modeling objects

also may be combined to form composite devices, connections, variables, and systems of

equations. Devices represent any delimitable part of a process. The role of a device is to

determine its state properties from known fluxes from the surroundings. Subclasses of devices

include generalized phases and signal transformers. Connections represent entities situated

between devices. The role of a connection is to transform a driving force (as determined by the

known states of two adjacent devices) into a flux. Subclasses of connections include signal and

phase connections. From the phenomenological modeling objects (which include state variables,

balance equations, constitutive equations, and constraints) associated with the substantial

modeling objects, the equations of the model may be derived.

35

The prototype systems described above and other similar approaches (e.g., Preisig, 1995;

Woods, 1993; Cho, 1998) have dealt primarily with the formulation of generic object-oriented

classes for representation of hierarchical systems whose behavior is described in terms of

physicochemical phenomena.

1.5.2 Summary of Proposed Phenomena-Based Modeling Approaches

Each of the phenomena-based modeling approaches described above proposes different terms

(e.g., generic-unit, vessel, or device) meant to describe similar concepts. The influence of object-

oriented programming techniques, especially with respect to classes and inheritance, is evident.

However, in their current form these works are best characterized as vocabularies, rather than

high-level computer-aided modeling tools. Evaluation of these vocabularies, and even meaningful

delineation between them, is difficult. Furthermore, while the presentation of class taxonomies

does seem appealing and often intuitive, it cannot be viewed as the culminating endpoint of this

area of research. Rather, they can only be evaluated in light of a much larger and more ambitious

goal: To enable all chemical engineers to readily build and use models by supporting the

modeling activity at the level of chemical engineering knowledge.

Obviously, these research efforts are still in their infancy and before the benefits of any

phenomena-based modeling approach can be appraised, several issues must be resolved:

1. The syntax and semantics of a phenomena-based modeling language must be

formalized. Existing approaches have provided only common-sense, by-example,

unsystematized explanations of these aspects. Most importantly, the impact of

assumptions regarding a phenomena-based model on the resulting mathematical

model has not been explicitly explained. As a result, one must rely on intuition to

interpret these models.

2. The proposed vocabularies provide means for the phenomena-based representation

of process models. However, the logic necessary for the selection, instantiation,

and combination of these object classes in the context of chemical engineering

modeling is unclear. This is because the procedural aspects of model development,

necessary for the computer to provide high-level modeling assistance, have not

been characterized. While Jarke and Marquardt (1995) describe generic

36

representations for tasks performed during the modeling process, it is impossible to

meaningfully implement or evaluate such ideas without a formalized modeling

language as a basis.

3. The integration of these ideas into computer-aided modeling tools has not passed

the conceptual prototype stage. Pantelides and Britt (1995) stress that the

implementation and practical application of these ideas is essential for assessing

their value.

The phenomena-based modeling approach does promise to enable the computer to provide high-

level modeling support. However, for this to be possible, these three issues must be addressed.

This final issue of implementation is perhaps the most critical, because the primary contribution of

this research area will be to facilitate the model development process for all chemical engineers,

not just modeling experts. Conceptual designs on paper alone do not achieve this. Until these

ideas are implemented in a computer-aided environment, the human modeler cannot directly

participate in evaluation, the methodology cannot be meaningfully compared to existing

approaches, and no real benefits are realized.

1.6 Research Objectives

In light of these issues, the goal of this research is to present a formal framework that enables the

computer to support the chemical process modeling activity at the level of chemical engineering

knowledge. Such a framework will enable all chemical engineers to readily construct and use

process models. With respect to this goal, three objectives are identified:

1. The development of a formalized phenomena-based modeling language,

2. The systematization of the modeling activity through modeling logic, and

3. The implementation and evaluation of the modeling language and logic through a

computer-aided modeling environment.

Each of these objectives will now be discussed.

1.6.1 Development of a Formalized Phenomena-Based Modeling Language

A high-level, declarative modeling language, capable of describing chemical processes in terms of

structured networks of interacting physical and chemical phenomena, must be developed and

described formally. This language will allow modelers to develop models by naturally articulating

37

assumptions about a process, instead of writing equations. The phenomena-based representation

will explicitly maintain the underlying assumptions about a process model, allowing accumulation

of modeling assets, and resulting in models which are easier to create, edit, document, reuse,

analyze, and understand.

The starting point for this language is the MODEL.LA modeling language described in

(Stephanopoulos et al, 1990a, 1990b). However this language must be significantly modified and

extended to encompass the description of dynamic processes, the representation of spatially

distributed processes (whose behavior is described by partial differential equations), and the

thermodynamic and physical characterization of materials in a process.

1.6.2 Systematization of Modeling Activity through Modeling Logic

The modeling language will allow chemical processes to be represented at the level of elementary

physical and chemical phenomena. For the computer to comprehend and interpret these models,

the underlying logic of model development must be systematized by expressing the concepts of

chemical engineering science in a computational formalism. In other words, this will allow us to

teach chemical process modeling principles to the computer. The uncovering of such modeling

logic will systematize the modeling activity by formalizing modeling tasks that are currently

carried out by modelers in an implicit and informal manner.

With this logic, the procedural modeling knowledge behind the development of a process

model can be captured, thus allowing the computer to interactively guide model development,

automatically derive mathematical model equations, explain the resulting equations in terms of the

phenomena-based description, and detect model inconsistencies and incompleteness. This will

enable the computer to take responsibility for much of the burden of model development, while

providing interactive guidance and feedback to the modeler. As a result, the engineer can

concentrate on the creative aspects of modeling, easily exploring alternatives, tracking decisions,

and utilizing models in multiple contexts.

1.6.3 Implementation and Evaluation of Modeling Language and Logic through a

Computer-Aided Modeling Environment

In order to provide an experimental framework to test the ideas of phenomena-based modeling

language and logic, these concepts must be integrated in a computer-aided modeling environment.

38

This environment should address the chemical engineering modeling needs of both practicing

engineering and students. For the evaluation to be meaningful, the environment should be capable

of modeling nontrivial examples, including dynamic, discontinuous, spatially distributed, and

hierarchical processes under a variety of contexts. Modeling assistance should be extended to all

aspects of the process modeling activity, from the phenomena-based model declaration to

evaluation of behavior determined from numerical solution of the derived equations. For valid

comparison with other computer-aided modeling tools, the phenomena-based modeling

environment should integrate state-of-the-art computer-aided modeling features, including an

interactive graphical interface, incorporation of thermodynamic and physical property database

information, description of process control and operational schedules, assistance for consistent

specification of degrees of freedom and initial conditions for mathematical models, solution of the

model equations using an equation-based modeling tool, and graphical display of results.

1.7 Thesis Outline

This thesis organized as follows. Chapter 2 identifies the declarative characteristics of chemical

process models and procedural characteristics of process model development that a high-level

computer-aided modeling tool should address. Chapter 3 describes the MODEL.LA phenomena-

based modeling language, which provides the basis for development of the systematized modeling

logic described in Chapter 4. Chapters 5 and 6 describe the functionality, structure, and design of

the MODEL.LA computer-aided modeling environment, which integrates the formalized

modeling language and logic. Chapter 7 illustrates several modeling examples that utilize

MODEL.LA, including models for hierarchical process design, dynamic processes, and spatially

distributed processes. Finally, Chapter 8 summarizes the contributions of this work, describes the

potential impact it may have on chemical process modeling in engineering practice and

undergraduate education, and identifies areas for future research.

39

Chapter 2

Requirements for High-Level Process

Modeling

This chapter elaborates on the concept of high-level computer-aided process modeling support.

The objective is to identify characteristics of process modeling that a computer-aided modeling

environment, which is designed to communicate with the modeler at the level of chemical

engineering knowledge, should address. First, requirements for the high-level representation of a

model are identified. The modeling activity that produces such a model is then discussed,

identifying several requirements for systematization of the process modeling activity. Finally, how

these requirements for model representation and modeling activity systematization can be

addressed by a high-level computer-aided modeling environment that incorporates a phenomena-

based modeling language and logic is presented.

2.1 Requirements for the Representation of Process Models

Models are abstractions designed to predict desired aspects of the behavior of real systems.

Models come in many forms. Mental models, which typically capture qualitative cause-effect

relationships, are usually based on intuition and experience. Physical models, which capture

physical relationships between structures, are often constructed as reduced-scale versions of real

systems. Mathematical models, which quantitatively express mathematical relationships between

variables of interest that are meant to represent the behavior of real systems, are the most

common basis for chemical process engineering modeling activities. However, chemical engineers

do not perceive of processes in terms of the equations of these mathematical models. Rather, it is

40

natural for engineers to consider processes in terms of physical and chemical concepts, such as

structure, materials, and relevant physicochemical phenomena. As discussed in the previous

chapter, a high-level modeling approach is needed that lifts the representation of models from the

level of mathematical equations to the level of physical and chemical phenomenological concepts.

Equation-based model representations can only capture and represent mathematical

information about a process. A high-level process model representation should extend far beyond

this, capturing and representing chemical engineering knowledge about a process. Such a

representation would facilitate all aspects of the modeling activity, including model development,

documentation, analysis, editing and reuse. Several requirements for the design of such a

representation are now posed:

1. The high-level chemical process model representation should be fully declarative,

2. The model representation should be rooted in the principles of chemical

engineering science,

3. The engineering assumptions behind a model should be explicitly captured and

linked to the equations and terms of the resulting mathematical model,

4. Hierarchical structuring should enable the construction and analysis of a model at

multiple levels of detail, and

5. The model representation should support mathematical model derivation under

multiple contexts.

In the remainder of this section, each of these requirements will be discussed.

2.1.1 Declarative Model Representation

The representation of chemical process models should be fully declarative. It should not be a

procedural language for dictating instructions to a computer. Rather, it should allow a modeler to

naturally articulate assumptions about a chemical process. Declarative knowledge about a model

must be kept distinct from procedural knowledge, such as how a model is used in simulation

experiments or how model equations are derived or solved. This decoupling allows the model

representation to be developed independently of the intended process engineering application. It

also prevents the engineering assumptions behind a model from being obscured by details of its

implementation. While procedural modeling knowledge is an important part of the modeling

41

activity, it should be treated independently from the model representation so that it may be applied

generically in different modeling contexts.

2.1.2 Chemical Engineering Science Basis of Models

Chemical engineering science seeks to characterize the behavior of complex processes in terms of

more readily understood elementary physical and chemical phenomena. These physical and

chemical phenomena are quantified mechanistically, allowing the generation of mathematical

models that relate variables of interest to other known or predictable quantities. Thus, a high-

level representation of process models should be firmly rooted in the principles of chemical

engineering science. It should be capable of capturing all types of physicochemical phenomena

and mechanistic characterizations, including conservation relationships, phase and reaction

equilibria, transport mechanisms, reaction kinetics, and thermodynamic and physical property

models. The representation must also be readily extendible to capture new characterizations of

phenomena and process modeling concepts. By grounding the model representation in terms of

the concepts of chemical engineering science, it will be possible to automatically generate

mathematical models from the high-level representation based on chemical engineering first

principles.

2.1.3 Explicit Documentation of Assumptions

A representation of a process model is by definition a simplified description of a real system. As

such, it cannot serve as a valid model of the system under all conditions. Rather its applicability is

fundamentally limited by the range of validity of its underlying assumptions and simplifications.

The appropriate level of detail of a model, its relevant phenomena and mechanistic

characterizations, and its thermodynamic and physical property models are all dependent on the

original context under which the model was constructed. Extrapolation of a model beyond its

valid range renders the behavior it predicts meaningless. A mathematical model cannot be viewed

independently of its assumptions. Therefore, the underlying assumptions and simplifications must

be explicitly maintained by a model representation.

Furthermore, once a mathematical model is derived from a high-level representation, the

relationship between the assumptions behind a model and the equations and terms of the resulting

mathematical model should be retained. Otherwise, the linkage between the observed process

42

behavior and the underlying assumptions would be lost. This would inhibit the evaluation and

critique of modeling assumptions, which are necessary when validating a model.

A representation that defines models in terms of explicit assumptions is much easier to

understand than equation-based models. It allows modelers of varying areas of expertise to easily

examine a model, analyze its behavior, and consider its assumptions without having to infer this

information from equations. Models that are easily understood can be reused much more readily.

The applicability of a model for use in a different context can easily and reliably be ascertained by

examining its assumptions. Furthermore, if modification is needed, this may be accomplished by

manipulating the model at the same high level at which it was initially constructed.

2.1.4 Hierarchical Nature of Models

A model may be examined and utilized at varying levels of detail. A model representation should

explicitly reflect this hierarchical nature, allowing multiple coexisting levels of abstraction for a

single model. The hierarchical structure of a process model is defined by declaring how abstract

systems are conceptually decomposed into more refined subsystems. These subsystems in turn

may be recursively broken down into more refined subsystems. Hierarchical modeling allows the

modeler to concentrate on certain aspects of a model while abstracting others; to increase

modularity and control the complexity of a model by aggregating related units into more abstract

units; to generate models at multiple resolutions depending on the level of detail required for a

particular application; and in the case of process design, to incrementally develop a process model

where the behavior of a process model at a given level dictates the refinements at a subsequent,

more detailed, level (Douglas, 1985, 1988).

2.1.5 Contextual Nature of Models

A high-level model representation should allow a model to be reused in different contexts with

minimal modification required by the modeler. It should support the generation of different types

of mathematical models: dynamic or steady-state conditions, intensive or extensive state

characterizations, lumped or spatially distributed properties, detailed or abstract levels of detail.

Therefore, the context under which model equations are derived should be considered and defined

independently of the high-level representation.

43

2.2 Requirements for Systematization of the Process Modeling Activity

Various modeling “methodologies” have been proposed as guides to the modeling activity.

Typically, these methodologies are presented in textbooks as flowcharts that provide generic

templates of major tasks that a modeler tackles during model development. However, these

methodologies are restricted in the guidance they can offer because they are not based on a formal

representation of process models. Therefore, no explicit systematization of the modeling activity

can be presented. Rather, modeling techniques can only be inferred from a sequence of examples.

A formalized high-level model representation is necessary to systematize the modeling

activity. This will allow tasks that are currently carried out by expert modelers in an implicit and

informal manner to be characterized explicitly. Several requirements for the characterization of

these tasks, which provide the basis for systematization of the modeling activity, are now posed:

1. Systematization of the modeling activity must explicitly capture the procedural

knowledge of model development,

2. The contextual nature of modeling, which is driven by the objectives and

requirements of an engineering problem, should be captured,

3. Systematization should reflect that modeling is both a science and an art, and

4. The modeling framework should record decisions made during the modeling

activity.

In the remainder of this section, each of these requirements will be discussed.

2.2.1 Procedural Nature of Modeling Activity

The high-level model representation, discussed in the previous section, captures the declarative

“what-is” knowledge regarding the description of a process model. Systematization of the

modeling activity, however, must capture the procedural “how-to” knowledge about the process

of model development. The modeling activity may be decomposed into a sequence of hierarchical

tasks. The objectives of these tasks and the steps taken to complete them can be expressed in

terms of operators. These operators may then be used to construct the high-level model

descriptions, to verify the completeness and consistency of this description, and to derive the

mathematical model from the high-level model description. Each of these three aspects is now

discussed:

44

• Model Construction: During construction of a high-level model representation, decisions

must be made regarding the structure, the characterization of materials, and the mechanistic

characterizations of physicochemical phenomena assumed to occur in a process. Each of

these decisions may be reflected by an operator that changes the state of the model in an

evolutionary manner by adding detail as additional assumptions are specified. Such operators

may be characterized explicitly by their purpose, preconditions (describing conditions which

must be met before a operator is initiated), and suboperations (which are the steps taken in

completing a task). Systematization of model construction through these operators allows

the modeler to consider computer-aided process model development as an interactive

sequence of engineering decisions, rather than as the unassisted composition of a textual input

file to a language compiler.

• Model Consistency and Completeness: As a model grows in complexity, even straightforward

logic checks for consistency or completeness become tedious and readily overlooked.

Therefore, a systematized methodology to detect these circumstances is needed. The high-

level model representation allows the computer-aided analysis of models to offer more than

solely mathematical model analysis techniques. Through explicit knowledge of the

assumptions behind a model, operators can be formulated to detect logical errors in a model,

such as hierarchical and topological structural inconsistencies and the misallocation of

chemical species and reactions in a process. Model incompleteness can also be discovered by

defining operators that detect missing assumptions. Finally chemical engineering guidelines

and heuristics (e.g., Felder and Rousseau (1986) state that the ideal gas law should yield an

error of 1% or less if the molar volume is greater than 5 l/mol for diatomic gases and 20 l/mol

for other gases) can be incorporated to detect possible errors in mechanistic characterizations.

These operators can be formulated as rules, characterized by a set of preconditions (describing

model conditions that activate an operator) and a set of postconditions (describing model

conditions that must be true upon completion of an operator). If the postconditions for an

activated operator are not valid, a model inconsistency or incompleteness is detected.

• Mathematical Model Derivation: Mathematical model derivation can be viewed as a set of

operators applied to the high-level model description to generate the requisite model

equations. These operators are fully based on the principles of chemical engineering science.

45

They contain knowledge of how to construct relationships that express mass and energy

conservation, thermodynamic and reaction equilibria, physical and thermodynamic property

models, transport mechanism and reaction kinetics rate laws, and other constitutive

relationships, based on the assumptions by the modeler. These operators can be also be

considered hierarchically. For example, an operator that constructs a chemical species

conservation relationship will consist of suboperations that construct the individual terms of

the balance equation, which includes an accumulation term, boundary input and output flux

terms, and internal consumption and generation terms. The operators that construct the

mathematical relationships from the high-level model descriptions allow equation-based

modeling from first principles to become a systematized process based on sound engineering

principles.

2.2.2 Contextual Nature of Modeling Activity

Modeling is the essential activity that characterizes modern process engineering. However, it is

important to recognize that modeling is always a contextual activity. The extent and detail of a

required model are closely related to the scope and objectives of the particular process

engineering problem being addressed. Context-free modeling not only risks the development of

oversimplified models which may be inadequate to fill the needs of a particular application, but

also risks wasting engineering effort and resources to generate overdetailed models which may be

difficult to solve or require information which is irrelevant to the problem at hand. This context-

dependent nature of modeling makes it impossible to provide a generic systematic modeling

template for all engineering problems. However, many specific engineering problems (e.g., the

hierarchical design of continuous processes) are associated with a wealth of generic guidelines and

heuristics for model development. A systematic framework for model development should be

capable of incorporating such knowledge, through extension of the model construction operators

described above. Such contextual operators can guide the modeling activity based on the

modeling objectives by presenting available alternatives and tracking decisions made. In this way,

process model development can be linked to the context and objectives of the problem being

addressed.

46

2.2.3 Science and Art of Modeling

Due to the absence of structured logic and formalized procedures to guide the arduous task of

modeling from first principles, process modelers must rely largely upon not only chemical

engineering knowledge, but also intuition, insight, and experience. As a result, modeling is

typically regarded by both student and practicing engineers as an art, not a science. The entire

modeling process cannot be formalized because the route of formulation for any non-trivial model

is always an ambiguous path, determined by the goals, preferences, and perspective of the

individual modeler. Modeling creativity would be greatly restricted if some rigid structure were

to be artificially imposed over the entire modeling process. However, chemical engineering

provides many scientific principles that allow several procedural aspects of the modeling activity

to be systematized to some degree. Various degrees of systematization relevant to the modeling

activity can be distinguished, each of which provides different levels of assistance and guidance to

the modeler. These degrees of systematization include automation, sequencing, and organization.

Certain modeling tasks can be completely automated. In such a case, due to a set of

predefined conditions or inputs by the modeler, some aspect of model development may proceed

unambiguously with any further input. The most typical cases of automation will pertain to the

symbolic generation, manipulation, and numerical solution of the mathematical modeling

equations. Another important task for automation is in model abstraction, where a set of modeled

systems are aggregated into one. Since this process is a many-to-one mapping, the structure and

relationships which define the more abstract object can automatically be generated.

Other modeling tasks can be sequenced according to their respective preconditions and

postconditions. For example, it does not make sense to define the physicochemical interactions

(e.g., diffusion is occurring) or materials (e.g. water is present) of a model until the respective

system boundaries have been identified. In another scenario, a decision made by the modeler may

unambiguously determine that other decisions are required. For example, if the modeler indicates

that a reaction is occurring in a particular system, an interaction may then initiated to determine

the reaction medium, the species present, the relevant reactions and their stoichiometry, the

kinetics, etc.

While many modeling tasks can be neither automated nor sequenced, most can be still be

structured to some degree by organizing them into orthogonal sets. In this case, sequencing does

47

not apply because a task in one orthogonal set can be pursued independently of whether or not

tasks in other orthogonal sets have been completed. This type of organization allows the user to

focus on one modeling aspect at a time. For example, after the modeler defines some of the

systems composing a model, (s)he may proceed with the refinement of topological structure (by

adding additional systems or by indicating convective, diffusive, and energy interactions),

concentrate on the individual systems (by characterizing materials present, reactions occurring,

internal structure, etc.), or work on these tasks in parallel. Such organization will allow the

modeler (or modelers) to easily and quickly review, add to, and/or edit the results of related

modeling tasks.

By incorporating these three aspects of systematization, the process of modeling will be

greatly facilitated. Automation will benefit all modelers by taking care of mundane,

straightforward, and repetitive tasks during the modeling process. Sequencing will be most

beneficial to inexperienced modelers (e.g., students) who may have many facts or assumptions in

mind about a particular process they wish to model, but have no idea where to begin the model or

where more information is required. Finally, organization will benefit all modelers not only by

focusing the tasks of model definition, but also by directing the tasks of model editing and analysis

by grouping similar aspects of a model.

2.2.4 Documentation of Modeling Activity

During the modeling activity, the decisions made by the modeler can be captured by the sequence

of model operators activated during model development. These operators, documented along

with the objectives of the engineering problem and assumptions make, provide an explicit record

of the modeling activity. The purpose of this is threefold. First, this allows the modeler to revisit

intermediate steps of the modeling process and define alternative (but possibly coexisting)

contexts. Second, this record provides a method to trace, repeat, and debug the modeling

process. For example, in an educational setting both the student and the instructor can analyze

and critique how a model was created by studying the assumptions and decisions made during

model formulation. Third, given a record of several previous modeling attempts, a foundation is

established for automating a critique of modeling activities, distinguishing patterns between

similar modeling activities, and identifying analogies from past modeling efforts for application to

48

new ones.

2.3 Implementation of High-Level Computer-Aided Modeling Support

In this preceding sections of this chapter, the requirements for a high-level representation of

chemical process models and the systematization of the modeling activity that produces these

models was discussed. In this section, an overview of the modeling language and logical

framework for addressing these requirements in a computer-aided modeling environment is

presented.

2.3.1 Phenomena-Based Modeling Language

Given the requirements for a high-level process model representation, there are many possible

designs for its implementation in a computer-aided modeling environment. However, the most

important consideration is that this implementation is designed primarily with the needs of the

human modeler in mind. A computer can capture the high-level representation with any type of

internal data structure. However, from the perspective of the human, the most intuitive means of

communication and documentation of a model is natural language. This would offer the lowest

learning curve, allowing the human to naturally express assumptions about a given process model

with maximum flexibility. However, for practical purposes of human-computer

intercommunication, natural language is ambiguous and redundant, offering limitless ways of

expressing the same concepts. Therefore the high-level model representation will be a well-

defined subset of natural language, where each element of the language has a direct and explicit

impact on the resulting model.

In addition to the requirements for a high-level model representation already discussed, the

modeling language will be designed to meet the following requirements:

1. The modeling language will allow assumptions about a model to be articulated and

documented through linguistic (or “English-like”) declarations regarding the

structure of the modeled systems, the characterization of materials present in these

systems, and the relevant physicochemical phenomena occurring within and among

the modeled systems.

2. The vocabulary of the language will encompass a library of concepts from chemical

engineering science, including conservation principles, equilibria, reaction kinetics,

49

transport mechanisms, and thermodynamic and physical property models, etc. The

language will also be readily extendible to incorporate additional modeling

concepts.

3. The modeling language will be composed of a set of modeling elements and

semantic relationships. Model elements represent chemical engineering concepts

(e.g., systems, fluxes, reactions, species, materials, etc.). Semantic relationships

unambiguously describe how these modeling elements are interrelated in forming

an instance of a particular model. For example, in a model fragment such as:

REACTOR_Y has-convective-output REACTOR_EFFLUENT

REACTOR_Y and REACTOR_EFFLUENT are modeling elements representing a

system and a flux, respectively, and has-convective-output is a semantic relationship

identifying that REACTOR_EFFLUENT is a convective flux that transports material

from the system REACTOR_Y.

4. The syntax of the modeling language will be defined formally using computational

language representations from computer science.

5. The definition of the language will be independent of the computer-aided

environment in which it is implemented.

The high-level representation provided by the modeling language will be complemented by the

systematization of the modeling activity made possible by modeling logic.

2.3.2 Modeling Logic

Given the requirements for systematization for the modeling activity, it is important to clearly

identify the procedural modeling knowledge necessary for model development. The details of

how this knowledge is used and implemented in a computer-aided modeling environment should

be treated separately.

The use of logic in computer science has its roots in the field of artificial intelligence,

specifically for the purpose of automated theorem-proving using propositional assertions. With

the advent of logic programming, its use expanded to capture both declarative and procedural

knowledge. It has been proposed (Kowalski, 1979) that

LOGIC + CONTROL = ALGORITHM

50

where

1. LOGIC identifies the knowledge required to solve a problem,

2. CONTROL specifies the way the knowledge is used to solve the problem, and

3. ALGORITHM results from the combination of LOGIC and CONTROL, yielding

an algorithm, or computer program, suitable for practical use.

Thus, modeling logic is proposed as the appropriate framework for providing a concise, modular,

extendible framework to capture chemical engineering modeling knowledge. This logical

framework will be defined independently of the details of its implementation. In addition to the

requirements for systematization of the modeling activity, the modeling logic will be designed to

meet the following requirements:

1. The modeling logic will consist of a set of logical operators, which may be

interpreted as “if-then” statements of knowledge, where “if” certain conditions are

true, “then” certain actions are taken or certain conclusions are made.

2. The modeling logic operators will be defined in terms of the modeling elements

and semantic relationships of the modeling language.

3. The modeling logic operators will be designed to cover the major tasks

encountered during model development, including high-level model construction,

derivation of a mathematical model from the high-level model description,

explanation of the terms and equations of the resulting mathematical model in

terms of the underlying language-based assumptions, and detection of model

inconsistencies and incompleteness.

4. The modeling logic will be readily extendible to encompass context-dependent

modeling knowledge, applicable to specific types of process engineering problems,

which can serve as a guide to the modeling activity.

By combining the aspects of a high-level modeling language and systematized modeling logic, it

will be possible to support the modeling process at the level of chemical engineering knowledge.

These ideas will be evaluated by implementing them in a computer-aided modeling environment.

2.3.3 Computer-Aided Modeling Environment

In order to provide an experimental apparatus for testing the ambitious goals of phenomena-based

51

modeling, the modeling language and logical framework will be integrated in a computer-aided

modeling environment. Computer-aided process modeling may be viewed as an interactive

dialogue between a human engineer and a computer. The phenomena-based language will

provide the vocabulary of discourse that makes this possible. The language provides explicit

means for communication, analysis, and documentation of the modeling assumptions.

Although the elements of the language are rooted in the principles of chemical

engineering, it is the modeling logic that enables the computer to understand chemical engineering

modeling concepts and, through a graphical user interface, to become a true modeling assistant

by:

1. Interpreting the meaning of the high-level phenomena-based description,

automatically deriving the requisite model equations based on the context specified

by the modeler, and explaining the resulting equations in terms of the model

assumptions,

2. Assisting hierarchical modeling by carrying over assumptions from one model level

to another and maintaining consistency among all levels,

3. Increasing modeling efficiency by assuming responsibility for the straightforward,

repetitive, or mundane aspects of modeling,

4. Formalizing and structuring many modeling tasks which are presently carried out

by modelers in an informal and implicit manner,

5. Facilitating model editing and reuse by explicitly documenting modeling

assumptions and decisions,

6. Providing interactive guidance and feedback by detecting modeling inconsistencies

and incompleteness, and

7. Using context-dependent engineering knowledge to guide the modeling activity

based on the objectives of a given engineering problem.

Thus, by providing a set of universal modeling language elements capable of describing practically

any process at any level of detail, and logical methods for selecting, instantiating and combining

these language elements through declarative phenomena-based assumptions, modeling from first

principles can be supported with an ease of use that far exceeds that of existing computer-aided

modeling approaches.

52

While the modeling language and logic will be the foundation of the modeling

environment, its scope will be expanded through interfaces with external software components so

that a valid comparison may be made with existing computer-aided modeling tools through

application to a wide range of real engineering problems. The environment will integrate many

state of the art computer-aided modeling features. Relational databases will be accessed for the

physical and thermodynamic property data of chemical species. Software for the calculation of

properties of mixtures will be incorporated. Specification of arbitrary control structures and

operational schedules will be included. Structural algorithms will be used for interactive

specification of consistent sets of design variables and initial conditions. Equation-based modeling

tools will provide numerical routines to solve the model equations, and plotting software will

display results in tabular and graphical form. Capabilities for the access of other external

software, such as programs for equipment sizing and costing, will also be provided.

In summary, by enabling the computer to act as a knowledgeable assistant to the modeler,

phenomena-based modeling can transform much of equation-based process modeling from an

abstract art-form into a well-defined science. High-level modeling activities allow the rapid

creation and investigation of models of unique and novel processes. The computerized generation

and solution of model equations increases efficiency and reduces the risk of error. Since all

assumptions can be explicitly documented and the task of model formulation entirely decoupled

from computation procedures, the model may be readily applied for use in a variety of contexts.

Through explicit knowledge of all assumptions pertaining to a particular model, the computer will

be able to offer guidance and assistance during model development and modification, while

continuously checking for logical consistency. Finally, through an integrated modeling

environment, computer-aided assistance can be extended to all aspects of modeling, from the

declaration and documentation of the modeling objectives and assumptions, formulation of the

mathematical model, specification and solution of the model, and interpretation of results.

53

Chapter 3

Modeling Language Framework

A model is an artifact that provides an experimental framework for inferring some aspect of the

behavior of a particular system of interest. For this purpose, engineers have traditionally

employed mathematical models as the basis of process modeling. These mathematical models are

expressed using the “language” of mathematical equations. Subsequent numerical solution of the

resulting set of algebraic, differential, partial differential, and/or integral equations requires

translation of the mathematical model into a computational model expressed using some

procedural programming language.

As illustrated in Figure 3-1, a model must evolve through a series of representations in

order to close the gap that exists between a real process and a valid computational model of that

process. At the start of the modeling activity, an engineer uses natural language to express his or

her interpretation of the physical and chemical phenomena that characterize a process. While

natural language provides a high-level intuitive means for the engineer to express his or her

interpretation of a physical process, it is not a computationally formalized language (in terms of

syntax and semantics). This lack of formalization makes the meaning of the model ambiguous, as

only the original modeler can know the exact intended meaning behind its description. Without a

formal model description, translation into the next modeling language level, mathematical

equations, cannot be automated nor even rigorously documented. Lack of such formalization

attributes to chemical process modeling being viewed as an art, rather than as a science.

54

Engineer

mathematical

equations
0,t)y,x,x(f =�

physicochemical

phenomena
A->B

numerical

algorithms

while(…) {

 f=…

 Jf=…

 x=… }

Computer

Figure 3-1: Evolution of Process Model Representations

In this chapter, a natural characterization of chemical process models leads to the

identification of a set of fundamental modeling elements. Each modeling element may be

interpreted as structured piece of modeling knowledge that captures a set of related assumptions.

These elements provide the building blocks of a high-level phenomena-based process modeling

language, named MODEL.LA, for describing a physicochemical interpretation of a chemical

process. This high-level language provides means for rigorous documentation of chemical

process modeling assumptions and automated mathematical model generation. In addition to

modeling elements, semantic relationships are introduced in MODEL.LA to unambiguously

describe how the modeling elements are interrelated in forming a particular instance of a process

model. This allows the phenomena-based model to be represented as a semantic network. This

representation organizes the knowledge behind the model as a directed graph and provides a

structured and modular means of analyzing it.

3.1 Formal Modeling Language Representation

The definition of any language must include a set of specifications that describe its syntax and its

55

semantics. In order to formally define the syntax of the MODEL.LA modeling language, a

context-free grammar (Sipser, 1998) is used. A context-free grammar is a 4-tuple (V, Σ, R, S),

where

1. V is a finite set called the variables,

2. Σ is a finite set, disjoint from V, called the terminals,

3. R is a finite set of production rules, with each rule being a variable and a string of

variables and terminals, and

4. S is the start symbol.

Context-free grammars are commonly used for representing the syntax of programming languages

and also several examples of subsets of natural languages. Furthermore, in this work, the

production rules of the context-free grammar are used to structure the modeling assumptions

hierarchically and capture the necessary and alternative decisions made during model

development.

In the definition of the context-free grammar of MODEL.LA, variables appear as

bracketed strings. For example, the string <abc> is a variable. Terminals appear as Ariel font text

strings. For example, xyz is a terminal. Production rules appear as a variable and a string of

variables and terminals, separated by the arrow symbol →. For example,

<abc> → <def>xyz

is a rule that produces <def>xyz by substitution with <abc>. The complete set of all strings that

may be produced by such substitutions, beginning with the start symbol, comprise the language of

the grammar. Alternative substitutions for the same variable are written as a single rule, with each

substitution separated by the pipe symbol |. For example,

<def> → xyz|<def>uvw|

is a rule where variable <def> may be substituted for one of three strings: xyz, <def>uvw, or the

empty string. Note that the second substitution is recursive. This property allows the production

of an infinite number of strings (i.e., the language of the grammar is infinite).

Production rules may be depicted hierarchically using a graphical tree-like structure, which

56

will be referred to as a production tree. For example, Figure 3-2 illustrates the production tree

for the two rules described above.

xyz <def>

uvw

<def>

xyz

<abc>

Figure 3-2: Example Production Tree

In a production tree, the variable on the left-hand side of the first production rule of interest

appears at the top root node of the tree (e.g., <abc> in Figure 3-2). Recursively, the variables and

terminals introduced on the right-hand side of each production rule appear as horizontal branches

from the variable on the left-hand side of the rule (e.g., branches <def> and xyz from <abc> in

Figure 3-2). For production rules with alternative substitutions, each set of possible substituted

variables and terminals on the right hand side of the rule appear on separate vertical branches from

the variable on the left-hand side of the rule (e.g., the three vertical branches from the first

occurrence of <def>, introducing xyz, <def>uvw, or the empty string, respectively, in Figure 3-2).

The sequence of substitutions used to obtain a string in the language is called a derivation.

In this work, the production rules are designed to correspond to structured sets of modeling

assumptions (e.g., structural characterization) introduced during model development. In this

way, derivations in the modeling language provide a formal record of the modeling assumptions

that produce a model. The production rule representation introduces a hierarchical nature to

these assumptions (e.g., structural characterization requires declaration of system boundaries and

boundary fluxes). Furthermore, by capturing the rationale for each substitution, additional

knowledge regarding the purpose, applicability, and context of the model can be retained

explicitly in the modeling framework.

3.2 Hierarchy of Model Equations

The fundamental bases of chemical process models are the conservation principles. Conservation

relationships for mass, energy, and momentum for each system of interest may be expressed

57

mathematically using balance equations. The general balance equation for any of the conserved

quantities, represented as B, in a system may be expressed generically as:

(accumulation)B = (flux in)B - (flux out)B + (source)B

where:

1. (accumulation)B is the rate of accumulation of quantity B within the system

boundaries,

2. (flux in)B is the total flux of B entering through the system boundaries by all modes of

transport,

3. (flux out)B is the total flux of B leaving through the system boundaries by all modes of

transport, and

4. (source)B is the net rate of B generated or consumed by all modes of phenomena

within the system boundaries.

The terms of a balance equation are dependant on the system boundaries, or control volume,

selected and the physicochemical phenomena assumed to occur within and across the system

boundaries. Selection of an appropriate control volume is determined by level of detail required

by the context of a particular engineering problem. Models may also be examined at multiple

levels of detail, where an abstract control volume subsumes other more refined control volumes.

However, a model viewed at any level of detail must be consistent with models at more abstract

or more refined levels. For example, the net rate of accumulation of any conserved quantity in an

abstract system must equal the aggregate sum of the accumulation of the conserved quantity over

each of the system’s subunits.

The balance equations are supplemented by constitutive equations that result from the

mechanistic characterization of assumed physicochemical phenomena. These constitutive

equations include reaction kinetics and transport rate expressions, thermodynamic and physical

property relationships, empirical correlations, etc. The modeler may further supplement the

mathematical model equations by declaring additional relationships expressing design constraints,

controller relationships, and other external influences affecting the process.

58

3.3 Phenomena-Based Model Characterization

The informal description of chemical process modeling equations in the previous section identifies

several dimensions of process characterization necessary for model development. To formalize

these concepts, the first production rule of the context-free grammar of the MODEL.LA

modeling language is introduced:

<phenomena-based model> → <structural characterization> <chemical characterization>
<derivation context>

This production rule may also be represented by the production tree depicted in Figure 3-3.

<structural characterization>
<chemical characterization>

<derivation context>

<phenomena-based model>

Figure 3-3: Phenomena-Based Model Production Tree

The variable <phenomena-based model> introduces the start symbol of the grammar, and is the root

of all derivations in the language. The form of this production is motivated by the conservation

principles, which depend on a phenomena-based mechanistic characterization of the process. The

assumptions behind a phenomena-based model are organized into three aspects: characterization

of process structure (represented by the variable <structural characterization>), characterization of the

chemical content of the process (represented by the variable <chemical characterization>), and

declaration of a modeling context (represented by the variable <derivation context>) under which the

mathematical model is to be derived. The three substitution variables identify these three primary

aspects of a phenomena-based process model and can be regarded independently. The <structural

characterization> provides a topological and hierarchical structural template for the <phenomena-based

model>. It identifies control volumes, for which balance equations will be written, and how these

control volumes interact, providing generic (flux in)B and (flux out)B terms in the balance

equations. As an example, a simple interpretation of a <structural characterization> may be a process

flowsheet. The <chemical characterization> provides additional details by specifying the chemical

species, reactions, and materials that are present in the process. Species information identifies the

number of chemical species balance equations required for each control volume, and reaction

59

information identifies the (source)B terms in these equations. Information on materials in the

process adds specifications on their physical and thermodynamic properties. Finally, the

<derivation context> specifies the context under which the mathematical model is derived. For

example, an assumption of steady-state or dynamic conditions determines the form of the

(accumulation)B terms in the balance equations.

The independence of the three facets of the <phenomena-based model> provides powerful

means for model reuse. For a given <structural characterization> and <chemical characterization>,

different mathematical models may be derived for each independent <derivation context>.

Furthermore, the <structural characterization> provides a model template which is independent of the

<chemical characterization>. As an example, this allows the <structural characterization> of a distillation

column to be developed and used for multiple <chemical characterization>’s (i.e., distillation of any

mixture of chemical species).

3.3.1 Structural Characterization

The characterization of the structure of a phenomena-based model, represented by the variable

<structural characterization>, encompasses both topological structure and hierarchical structure. It is

captured by the declaration of instances of modeling elements modeled-units and fluxes. This

declaration is expressed formally by the production:

<structural characterization> → <modeled-units><fluxes>

Variables <modeled-units> and <fluxes> represent lists of element type <modeled-unit> and <flux>,

respectively:

<modeled-units> →<modeled-units><modeled-unit>|<modeled-unit>

<fluxes> → <fluxes><flux>|

The topological structure of a process model is defined by declaring the systems of interest and

how they interact through the transfer of mass and energy. Each instance of a modeled-unit

modeling element represents a control volume—a modeled system delimited from its environment

by its boundaries. Each modeled-unit is represented in the mathematical model by a balance

equation for each conserved quantity of interest (mass, energy, and chemical species).

Each flux represents the transport of material (through convective flow), energy, or

60

selected chemical species across the boundaries of two separate interacting modeled-units, or

between a modeled-unit and the unmodeled surrounding environment. Each flux is represented in

the mathematical model as a term in the balance equations of the corresponding modeled-units.

Note from the form of the above recursive productions that the list of <modeled-units> must

contain at least one element, while the list of fluxes may be empty. This is because a model must

contain at least one control volume for conservation relationships to be expressed, while boundary

fluxes into these systems are not mandatory.

The modeled-unit also captures the hierarchical decomposition of a model as any

modeled-unit may be refined into any number of more refined modeled-units. In a mathematical

model, a composite modeled-unit may be viewed abstractly, where balance equations are derived

as for an elementary process unit, or as an aggregate, where the extensive quantities

characterizing the unit are determined by summing over the corresponding extensive quantities of

its subunits.

3.3.2 Chemical Characterization

The structural characterization of the phenomena-based process model is complemented by the

chemical characterization. The chemical characterization identifies instances of modeling

elements representing the chemical species, reactions, material-contents, and phases assumed to

be present in a process. Declaration of these elements in a phenomena-based model is represented

by the production:

<chemical characterization> → <chemical species list><chemical reactions>
<material-contents><phases>

Variables <chemical species list>, <chemical reactions> <material-contents>, and <phases> represent lists

of element type <chemical species>, <chemical reaction>, <material-content>, and <phase> respectively:

<chemical species list> → <chemical species list><chemical species>|

<chemical reactions> → <chemical reactions><chemical reaction>|

<material-contents> → <material-contents><material-content>|

<phases> → <phases><phase>|

The details of these elements are discussed in the following section.

61

3.3.3 Derivation Context

The derivation context does not introduce additional information to the physicochemical nature of

the phenomena-based model. Rather, it introduces assumptions under which the mathematical

model is to be derived. For example, it encompasses whether the model is assumed to be dynamic

or steady state, whether the equations are derived on a per mole or per mass basis, the level of

resolution desired for a hierarchical model, etc. Declaration of these assumptions is represented

by the production rule for the <derivation context>:

<derivation context> → <dynamic assumption> <mole or mass basis> <level of resolution>
<intensive or extensive characterization> <energy balance inclusion>...

Note that the specification of the <derivation context> may be regarded independently of the

definition of the <structural characterization> and <chemical characterization> of a phenomena-based

model.

3.4 Characterization of Modeling Elements

The production rules introduced thus far are depicted in the production tree shown in Figure 3-4.

<modeled-units>

<fluxes>

<structural characterization>

<species list>

<reactions>

<material-contents>

<phases>

<chemical characterization>

<dynamic assumption>

<mole or mass basis>

<level of resolution>

<intensive or extensive characterization>

<energy balance inclusion>

...

<derivation context>

<phenomena-based model>

Figure 3-4: Expanded Phenomena-Based Model Production Tree

62

The structural and chemical characterization of the phenomena-based process model has

introduced six fundamental modeling elements, represented by variables <modeled-unit>, <flux>,

<chemical species>, <chemical reaction>, <material-content>, and <phase>. Instances of these elements

can capture the physicochemical phenomena-based description of a limitless number of chemical

processes. The information required to fully specify instances of these element types will now be

discussed.

3.4.1 Modeled-Unit Characterization

The modeled-unit represents an instance of a control volume in a phenomena-based process

model. Assumptions necessary to fully define an instance of a modeled-unit are represented by

the production tree depicted in Figure 3-5.

<unit identification>
<hierarchical structure>

<topological structure>
<chemical content>
<modeled-unit behavioral characterization>

<modeled-unit>

Figure 3-5: Modeled-Unit Production Tree

• Unit Identification: The variable <unit identification> identifies the modeling element as a

modeled-unit and the unique textual name used to refer to it. This is indicated by use of the

semantic relationship is-a introduced in the production rule for <unit identification>:

<unit identification> → [modeled-unit id] is-a modeled-unit

where [modeled-unit id] is a string representing the name of the modeled-unit. This results in a

declaration in the phenomena-based model such as:

REACTOR_VESSEL is-a modeled-unit

where REACTOR_VESSEL is the name given to a particular instance of a modeled-unit.

• Hierarchical Structure: The variable <hierarchical characterization> represents declaration of the

hierarchical structure of a modeled-unit. It identifies parent unit of the modeled-unit and its

<internal characterization>. The production tree for <hierarchical characterization> is shown in

63

Figure 3-6.

is-internal-unit-of
[modeled-unit id]

<parent unit>

<subunits>

<subunit>

has-internal-unit
[modeled-unit id]

<subunit>

<subunits> <spatial distribution>

has-material-content
[material-content id]

<material> <blackbox>

<internal characterization>

<hierarchical structure>

Figure 3-6: Hierarchical Structure Production Tree

The parent unit of a modeled-unit, if any, is identified by the semantic relationship is-internal-

unit-of. The complementary association, identifying the subunit of a composite parent

modeled-unit, is capture by the semantic relationship has-internal-unit. These associations are

illustrated by the following model declarations:

JACKETED_CSTR is-a modeled-unit

has-internal-unit JACKET

has-internal-unit VESSEL

JACKET is-a modeled-unit

is-internal-unit-of JACKETED_CSTR

VESSEL is-a modeled-unit

is-internal-unit-of JACKETED_CSTR

The modeler must decide to model the internal structure of a modeled-unit in one of several

different ways. The first substitution for <internal characterization>, illustrated above by the

semantic relationship has-internal-unit, indicates an abstract modeled-unit which is decomposed

into a set of subunits. The third substitution indicates a modeled-unit which is assumed to

64

have a material-content. This is declared using the semantic relationship has-material-content,

as illustrated below:

VESSEL is-a modeled-unit

has-material-content VESSEL_MATL

where VESSEL_MATL is an instance of a material-content modeling element. The fourth

substitution for <internal characterization> indicates a blackbox modeled-unit, where the unit is

modeled as an arbitrary point of mixing, separation, and/or reaction. Since this substitution

introduces the empty string, no semantic relationship is necessary. The second substitution for

<internal characterization> indicates a spatially distributed modeled-unit. A spatially distributed

modeled-unit represents a process unit that is characterized internally by spatially distributed

properties. It is modeled using a differential element subunit, along with boundary element

subunits for each of the distributed dimensions. The balance equations for such a unit are in

the form of partial differential equations (PDEs). The production tree for <spatial distribution>

is illustrated in Figure 3-7.

has-spatial-distribution

rectangular

<x-characterization>

<y-characterization>

<z-characterization>

<rectangular coordinate>

cylindrical

<r-characterization>

<theta-characterization>

<z-characterization>

<cylindrical coordinate>

spherical

<r-characterization>

<theta-characterization>

<phi-characterization>

<spherical coordinate>

<coordinate system>

<differential subunits>

<differential subunit>

has-differential-subunit
[modeled-unit id]

<differential subunit>

<differential-subunits>

<spatial distribution>

Figure 3-7: Spatial Distribution Production Tree

Declaration of a spatially distributed modeled-unit requires selection of a coordinate system,

65

expressed using the semantic relationship has-spatial-distribution, characterization of each

spatial dimension of the selected coordinate system, and declaration of the differential element

subunits, expressed by the semantic relationship has-differential-subunit. Characterization of the

spatial dimensions is illustrated by the production tree for a representative variable <x-

characterization> shown in Figure 3-8.

has-distributed-dimension x

has-solution-method

BFDM CFDM FFDM ...

<difference method>

<solution method>

has-nodes
<integer>

<nodes>

has-order
<integer>

<order>

<minimum>
<maximum>

<distributed solution specification>

<distributed x-dimension>

has-undistributed-dimension x

has-minimum
<number>

<minimum>

has-maximum
<number>

<maximum>

<undistributed solution specification>

<undistributed x-dimension>

<x-characterization>

Figure 3-8: Example Spatial Dimension Production Tree

Each dimension is either assumed to be distributed, declared by semantic relationship has-

distributed-dimension, or non-distributed, declared by semantic relationship has-undistributed-

dimension. The declaration of a cylindrical tubular reactor with radial and axial distribution is

illustrated below:

Tube_reactor is-a modeled-unit

has-spatial-distribution cylindrical

has-distributed-dimension r

has-undistributed-dimension theta

66

has-distributed-dimension z

has-differential-subunit Tube_reactor_rz

has-differential-subunit Tube_reactor_r1

has-differential-subunit Tube_reactor_r2

has-differential-subunit Tube_reactor_z1

has-differential-subunit Tube_reactor_z2

The modeled-unit Tube_reactor_rz represents the differential element subunit for which the

partial differential equations characterizing the spatially distributed modeled-unit will be

derived. The modeled-units Tube_reactor_r1 and Tube_reactor_r2 represent the differential

element boundary subunits which will determine the radial boundary conditions, while

modeled-units Tube_reactor_z1 and Tube_reactor_z2 will determine the axial boundary

conditions.

Additional specifications regarding the particular numerical solution method used to

solve the partial differential equations characterizing the spatially distributed modeled-unit

may be declared as illustrated in Figure 3-8 using semantic relationships has-solution-method,

has-nodes, has-order, has-minimum, and has-maximum. Of course, these specifications depend

on the particular numerical solution method selected and do not affect the phenomena-based

model description.

• Topological Structure: The topological structure of a modeled-unit requires declaration of all

boundary inputs and outputs to other modeled-units or the surroundings. The production tree

for <topological structure> is illustrated in Figure 3-9. The input and output boundary fluxes are

characterized as convective, energy, or species transport, as declared by semantic relationships

has-convective-input and has-convective-output, has-energy-input and has-energy-output, and has-

species-input and has-species-output, respectively. For example, the declarations:

REACTOR_VESSEL is-a modeled-unit

has-convective-input REACTOR_FEED

has-convective-output REACTOR_EFFLUENT

has-energy-output REACTOR_Q

illustrate a modeled-unit, REACTOR_VESSEL, with a convective input stream,

REACTOR_FEED, a convective output stream, REACTOR_EFFLUENT, and an energy output

67

flow, REACTOR_Q.

<boundary inputs>

has-convective-input
[flux id]

<convective input>

has-energy-input
[flux id]

<energy input>

has-species-input
[flux id]

[species id]

<species input>

<boundary input>

<boundary inputs>

<boundary outputs>

has-convective-output
[flux id]

<convective output>

has-energy-output
[flux id]

<energy output>

has-species-output
[flux id]

[species id]

<species output>

<boundary output>

<boundary outputs>

<topological structure>

Figure 3-9: Topological Structure Production Tree

• Chemical Content: The chemical content characterization of the modeled-unit involves

selection of all chemical species and reactions assumed to occur internally. The production

tree for <chemical content> is illustrated in Figure 3-10.

68

<species content list>

has-species
[species id]

<species content>

<species content list>

<reactions content>

has-reaction
[reaction id]

<reaction content>

<reactions content>

<chemical content>

Figure 3-10: Chemical Content Production Tree

Chemical species and reactions assumed for a modeled-unit are declared using the semantic

relationships has-species and has-reaction, respectively. For example, the declarations:

REACTOR_VESSEL is-a modeled-unit

has-species WATER

has-species o_XYLENE

has-species PHTHALIC_ANHYDRIDE

has-species OXYGEN

has-reaction RXN_101

illustrate a modeled-unit, REACTOR_VESSEL, with a four chemical species, WATER,

o_XYLENE, PHTHALIC_ANHYDRIDE, and OXYGEN, and a chemical reaction, RXN_101. The

species and reactions assumed in the <chemical content> of the modeled-unit will be a subset of

those in the production of <chemical characterization> for the overall <phenomena-based model>.

• Behavioral Characterization: The behavioral characterization of the modeled-unit involves

specialized assumptions regarding its operation. It can be used to express assumptions such

as those in the <derivation context> of the overall <phenomena-based model> localized to a

particular modeled-unit using the semantic relationship is-modeled-as. For example, the

69

declarations:

MIXING_POINT is-a modeled-unit

is-modeled-as no-holdup

indicates a modeled-unit, MIXING_POINT, assumed to have no-holdup (i.e., the accumulation

terms in the balance equation for the modeled-unit will be zero).

3.4.2 Flux Characterization

Each flux represents transport across the boundaries of two separate interacting modeled-units, or

between a modeled-unit and the unmodeled surrounding environment. Assumptions necessary to

fully define an instance of a flux are represented by the production tree depicted in Figure 3-11.

<flux identification>
<flux type>
<flux connectivity>

<flux>

Figure 3-11: Flux Production Tree

• Flux Identification: The variable <flux identification> identifies the modeling element as a flux

and the unique textual name used to refer to it. It is analogous to the variable <unit

identification> of a modeled-unit. Declaration of a flux in the phenomena-based model is

represented using the semantic relationship is-a, as illustrated by the declaration:

LIQUID_RECYCLE is-a flux

where LIQUID_RECYCLE is the name given to a particular instance of a flux.

• Flux Type: The type of a flux may be assumed to be either convective material transport,

energy transport, or transport of a selected chemical species. This assumption is characterized

by the production tree for <flux type> illustrated in Figure 3-12.

<convective flux> <energy flux> <species flux>

<flux type>

Figure 3-12: Flux Type Production Tree

70

Declaration of a convective flux requires additional decisions regarding the physical state of

the transported material, a thermodynamic equation of state for the transported material, and a

convective transport mechanism assumed to drive the flow, as illustrated by the production

tree for <convective flux> in Figure 3-13.

transports
material

vapor liquid solid

<phase state>

<convective type>

is-modeled-by
equation-of-state

<equation-of-state type>

<equation of state>

is-modeled-by
transport-mechanism

constant pressure-driven francis-weir ...

<convective mechanism type>

<convective mechanism>

<convective flux>

Figure 3-13: Convective Flux Production Tree

For example, the declarations:

GAS_PURGE is-a flux

transports material vapor

is-modeled-by equation-of-state ideal-gas

is-modeled-by transport-mechanism pressure-driven

indicates pressure-driven gaseous flow of material whose thermodynamic behavior is modeled

as an ideal gas.

Declaration of an energy flux requires a decision regarding the transport mechanism

assumed to drive the flow, as illustrated by the production tree for <energy flux> in Figure 3-14.

71

transports
energy

<energy type>

is-modeled-by
transport mechanism

constant surface-convection surface-radiation ...

<energy mechanism type>

<energy mechanism>

<energy flux>

Figure 3-14: Energy Flux Production Tree

For example, the declarations:

REACTOR_Q is-a flux

transports energy

is-modeled-by transport-mechanism surface-convection

indicates an energy flow driven by a surface convection transport mechanism.

Declaration of a species flux requires decisions regarding which species is transported

and the transport mechanism assumed to drive the flow, as illustrated by the production tree

for <species flux> in Figure 3-15. For example, the declarations:

REACTOR_Q is-a flux

transports species OXYGEN

is-modeled-by transport-mechanism fickian-diffusion

indicates transport of species OXYGEN due to Fickian diffusion.

The definition of all three flux types have two semantic relationships in common. The

semantic relationships transports indicates the type of transport, while the semantic relationship

is-modeled-by is used to characterize a flux mechanistically.

72

transports
species

[species id]

<species type>

is-modeled-by
transport mechanism

constant fickian-diffusion chemical-equilibrium ...

<species mechanism type>

<species mechanism>

<species flux>

Figure 3-15: Species Flux Production Tree

• Flux Connectivity: The connectivity of a flux identifies the modeled-units that it associates.

The production tree for <flux connectivity> is illustrated in Figure 3-16.

from
[modeled-unit id]

<source unit>

to
[modeled-unit id]

<sink unit>

<flux connectivity>

Figure 3-16: Flux Connectivity Production Tree

The source and sink modeled-units are identified by the semantic relationships from and to,

respectively, as illustrated by the declarations:

REACTOR_Q is-a flux

from REACTOR_VESSEL

to COOLING_JACKET

3.4.3 Material-Content Characterization

An elementary modeled-unit may be modeled as a blackbox, or as a unit with a material-content.

73

Physically, material-content refers to a region with no internal boundaries containing one or more

thermodynamic phases at equilibrium. A material-content is represented in the mathematical

model by relationships expressing thermal, physical, and chemical equilibrium. Assumptions

necessary to fully define an instance of a material-content are characterized by the production tree

for <material-content> illustrated in Figure 3-17.

<material-content identification>
<modeled-unit association>
<phase instances>

<species content>
<vessel geometry>
<flux allocations>

<material-content behavioral characterization>

<material-content>

Figure 3-17: Material-Content Production Tree

• Material-Content Identification: The variable <material-content identification> identifies the

modeling element as a material-content and the unique textual name used to refer to it. It is

analogous to the variable <unit identification> of a modeled-unit. Declaration of a material-

content in the phenomena-based model is represented using the semantic relationship is-a, as

illustrated by the declaration:

FLASH_MATL is-a material-content

where FLASH_MATL is the name given to a particular instance of a material-content.

• Modeled-Unit Association: The variable <modeled-unit association> identifies the modeled-unit

with which the material-content is associated with. It is declared using the semantic

relationship is-material-content-of which is complementary to the semantic relationship has-

material-content that relates a modeled-unit to a material-content, as illustrated by the

declarations:

FLASH_MATL is-a material-content

is-material-content-in FLASH

FLASH is-a modeled-unit

has-material-content FLASH_MATL

74

• Phase Instances: The variable <phase instances> identifies the phases assumed to compose a

material-content. These declarations are characterized by the production tree in Figure 3-18.

<phase instances>

has-vapor-phase
[phase id]

<vapor phase>

has-liquid-phase
[phase id]

<liquid phase>

has-solid-phase
[phase id]

<solid phase>

<phase instance>
<phase instance>

<phase instances>

Figure 3-18: Phase Instance Production Tree

Vapor, liquid, and solid phases are declared using the semantic relationships has-vapor-phase,

has-liquid-phase, and has-solid-phase, respectively, as illustrated by the declarations:

FLASH_MATL is-a material-content

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

where FLASH_MATL is a material-content composed of a vapor phase and a liquid phase at

equilibrium. Note from the production tree for <phase instances> that a material-content must

contain at least one phase.

• Species Content: The variable <species content> has already been discussed in the definition of a

modeled-unit. Chemical species assumed to be present in the material-content are identified

by the semantic relationship has-species, as illustrated by the declarations:

FLASH_MATL is-a material-content

has-species BENZENE

has-species TOLUENE

where FLASH_MATL contains two chemical species, BENZENE and TOLUENE.

• Vessel Geometry: The variable <vessel geometry> identifies the geometry of the vessel assumed

to contain the material-content. This optional assumption, illustrated in the production tree of

Figure 3-19, is used to derive an expression that relates the height of the contained phases as

75

a function of total volume.

has-vessel-geometry

rectangular cylindrical spherical ...

<geometry type>

<vessel geometry>

Figure 3-19: Vessel Geometry Production Tree

The geometry is identified using the semantic relationship, has-vessel-geometry, as illustrated

by the declarations:

FLASH_MATL is-a material-content

has-vessel-geometry spherical

• Flux Allocations: The variable <flux allocations> identifies the allocation of boundary fluxes to

or from the associated modeled-unit to individual phases of the material-content. Primarily,

this is used to relate to state of an outgoing convective flux to one of the phases of a material-

content. Boundary fluxes may be allocated directly to a phase, or determined by geometry.

Fluxes that do not need to be allocated are assigned to the material-content itself. The

allocation of boundary fluxes, identified by semantic relationships has-boundary-flux, to the

phases or geometry of a modeled-unit with a material-content are identified by the semantic

relationship allocated-to, as illustrated by the production tree in Figure 3-20. Examples of

these declarations are given below:

FLASH is-a modeled-unit

has-material-content FLASH_MATL

has-convective-input FEED

has-convective-output OVERHEAD

has-convective-output BOTTOMS

FLASH_MATL is-a material-content

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

has-boundary-flux FEED allocated-to self

76

has-boundary-flux OVERHEAD allocated-to FLASH_MATL_V

has-boundary-flux BOTTOMS allocated-to FLASH_MATL_L

In this example, there is a convective input FEED into the FLASH which has a material

FLASH_MATL with a vapor phase, FLASH_MATL_V, and liquid phase, FLASH_MATL_L, at

equilibrium. A convective stream OVERHEAD withdraws vapor material from the FLASH and

another convective stream BOTTOMS withdraws liquid material from the FLASH.

<flux allocations>

has-boundary-flux
[flux id]

allocated-to

[phase id] geometry self

<allocated element>

<flux allocation>

<flux allocations>

Figure 3-20: Flux Allocations Production Tree

• Behavioral Characterization: The behavioral characterization of the material-content involves

specialized assumptions regarding its behavior (e.g., isobaric, isothermal, constant volume,

etc.). These assumptions are made using the semantic relationship is-modeled-as, as illustrated

by the declarations:

FLASH_MATL is-a material-content

is-modeled-as constant-volume

3.4.4 Phase Characterization

A phase represents a region with spatially uniform thermodynamic and physical properties. Each

phase is represented in the mathematical model by relationships describing its physical and

thermodynamic properties as functions of temperature, pressure, and composition. Assumptions

required to fully define an instance of a phase are illustrated by the production tree in Figure 3-21.

77

<phase identification>

<material-content association>
<thermodynamic characterization>
<chemical content>

<phase>

Figure 3-21: Phase Production Tree

• Phase Identification: The variable <phase identification> identifies the modeling element as a

phase, the physical state of the phase, and the unique textual name used to refer it. This is

accomplished using the semantic relationship is-a, as shown by the production tree for <phase

identification> illustrated in Figure 3-22.

[phase id]

is-a

vapor liquid solid

<phase state>

phase

<phase identification>

Figure 3-22: Phase Identification Production Tree

This results in a declaration in the phenomena-based model such as:

FLASH_MATL_L is-a liquid phase

where FLASH_MATL_L is the name given to a particular instance of a liquid phase.

• Material-Content Association: The variable <material-content association> identifies the material-

content with which the phase is associated with. It is declared using the semantic relationship

is-phase-in as illustrated by the declarations:

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

FLASH_MATL_L is-a liquid phase

is-phase-in FLASH_MATL

FLASH_MATL is-a material-content

is-vapor-phase FLASH_MATL_V

78

has-liquid-phase FLASH_MATL_L

where FLASH_MATL_V and FLASH_MATL_L are names given to two separate instances of

phases in a material-content FLASH_MATL.

• Thermodynamic Characterization: The variable <thermodynamic phase characterization>

introduces a mechanistic characterization of a given phase. Either an equation of state or

activity coefficient model may be selected, as illustrated in the production tree in Figure 3-23.

is-modeled-by
equation-of-state

ideal gas van-der-waals redlich-kwong ...

<equation-of-state type>

<equation of state>

is-modeled-by
activity-coefficient-model

ideal margules unifac ...

<activity-coefficient model>

<activity coefficient>

<thermodynamic phase characterization>

Figure 3-23: Thermodynamic Phase Characterization Production Tree

The selected mechanistic characterization is declared using the semantic relationship is-

modeled-by, as illustrated by the declaration:

FLASH_MATL_V is-a vapor phase

is-modeled-by equation-of-state redlich-kwong

• Chemical Content: The variable <chemical content> has already been discussed in the definition

of a modeled-unit. Chemical species and reaction assumed to be present in the phase are

identified by the semantic relationships has-species, and has-reaction, respectively, as

illustrated by the declarations:

VESSEL_MATL_L is-a liquid phase

has-species WATER

has-species o_XYLENE

has-species PHTHALIC_ANHYDRIDE

has-species OXYGEN

has-reaction RXN_101

79

where a phase, VESSEL_MATL_L, is assumed to contain four chemical species, WATER,

o_XYLENE, PHTHALIC_ANHYDRIDE, and OXYGEN, and a chemical reaction, RXN_101.

3.4.5 Chemical Species Characterization

An instance of a chemical species in a phenomena-based model is characterized by the production

tree illustrated in Figure 3-24.

<species identification>
<database id>

<species>

Figure 3-24: Species Production Tree

• Species Identification: The variable <species identification> identifies the modeling element as a

chemical species and the unique textual name used to refer to it. It is analogous to the

variable <unit identification> of a modeled-unit. Declaration of a species in the phenomena-

based model is represented using the semantic relationship is-a, as illustrated by the

declaration:

OXYGEN is-a species

where OXYGEN is the name given to a particular instance of a species.

• Database Identification: The variable <database id> identifies the unique identification tag used

to access the properties of a chemical species from a database. This tag may be identified

using a semantic relationship such as has-database-id, as illustrated by the declarations:

OXYGEN is-a species

has-database-id 901

Here it is assumed that a database is used to access physical and thermodynamic property

correlations for each species. Alternatively, more complex productions can be used for the

chemical species that contain this data explicitly.

3.4.6 Chemical Reaction Characterization

An instance of a chemical species in a phenomena-based model is characterized by the production

80

tree illustrated in Figure 3-25.

<reaction identification>
<participants>
<kinetics>

<reaction>

Figure 3-25: Reaction Production Tree

• Reaction Identification: The variable <reaction identification> identifies the modeling element as

a chemical reaction and the unique textual name used to refer to it. It is analogous to the

variable <unit identification> of a modeled-unit. Declaration of a reaction in the phenomena-

based model is represented using the semantic relationship is-a, as illustrated by the

declaration:

RXN_101 is-a reaction

where RXN_101 is the name given to a particular instance of a reaction.

• Participants: The variable <participants> identifies the reactants and products of the reaction,

whether the reaction is modeled as irreversible, reversible, or equilibrium, and any relevant

catalyst. These productions are illustrated in the production tree in Figure 3-26. For example,

the declarations:

RXN_A is-a reaction

+ 1 ACETIC_ACID + 1 1_BUTANOL <==> + 1 n_BUTYL_ACETATE + 1 WATER

indicate a reversible reaction, RXN_A, of species ACETIC_ACID and 1_BUTANOL to form

n_BUTYL_ACETATE and WATER.

81

<reactants>
<stoichiometry>

+
<number>

[species id]

<stoichiometry>

<reactants>

=> == <=>

<reversibility>

<products>
<stoichiometry>

<stoichiometry>

<products>

has-catalyst
[species id]

<catalyst>

<participants>

Figure 3-26: Reaction Participants Production Tree

• Kinetics: For rate-based reactions, the variable <kinetics> identifies the rate laws for the

forward and, if the reaction is reversible, reverse rate laws. These forward and reverse rate

laws are equations identified by the semantic relationships has-forward-kinetics and has-reverse-

kinetics, as illustrated by the production tree in Figure 3-27.

has-forward-kinetics
[equation]

<forward rate law>

has-reverse-kinetics
[equation]

<reverse rate law>

<kinetics>

Figure 3-27: Reaction Kinetics Production Tree

82

3.5 Semantic Relationships

In the previous section, the assumptions that compose a phenomena-based model have been

structured hierarchically using production rules that involve substitution of a variable with one or

more non-terminal variables. In order to complete the grammar of the phenomena-based

modeling language, production rules which substitute terminals in place of variables were then

introduced. The format of these terminal substitutions were designed to consist of two parts: a

semantic relationship and an identifier. These identifiers refer to the textual name of a modeling

element or another elementary data type (i.e., integer, real, or string).

The semantic relationships unambiguously describe how the modeling elements are

interrelated in forming a particular instance of a process model. In this section, these semantic

relationships are summarized by organizing them into several categories.

• Identification: The is-a semantic relationship is used to identify the type of each modeling

element. The is-a relationship links a unique textual name identifying the element to a string

that identifies the type of the element.

• Hierarchical Structure: The parent-subunit relationship is captured by the symmetric semantic

relationships is-subunit-of and has-subunit .

Spatially distributed modeled-units are modeling using a differential element approach.

They are characterized by a coordinate system, identified by semantic relationship has-spatial-

distribution, the distributed dimensions, which are identified by semantic relationship has-

distributed-dimension, and the differential element subunits, which are identified by semantic

relationship has-differential-subunit.

• Material-Content: The modeled-unit-material-content relationship is captured by the

symmetric relationships has-material-content and is-material-content-of.

The phases of a material-content are identified by semantic relationships has-vapor-

phase, has-liquid-phase, and has-solid-phase. The associated material-content of a phase is

identified by semantic relationship is-phase-in.

The geometry of a material-content is identified by the semantic relationship has-vessel-

geometry.

• Topological Structure: The boundary fluxes of a modeled-unit are identified by the semantic

relationships has-convective-input, has-convective-output, has-energy-input, has-energy-output,

83

has-species-input, and has-species-output.

The allocation of boundary fluxes, identified by semantic relationships has-boundary-flux,

to the phases or geometry of a modeled-unit with a material-content are identified by the

semantic relationship allocated-to.

The modeled-units connected by a flux are identified by semantic relationships from and

to. The type of flux is identified by semantic relationship transports.

• Chemical Characterization: The chemical species and reactions in a modeled-unit, material-

content, or phase, are identified by semantic relationships has-species and has-reaction,

respectively.

• Mechanistic Characterization: Mechanistic characterizations of thermodynamic property

models, transport mechanisms, and reaction rate laws are identified by the semantic

relationship is-modeled-by.

• Behavioral Characterization: Behavioral characterizations of modeled-units and material-

contents are identified by the semantic relationship is-modeled-as.

3.6 Model Digraph

The introduction of semantic relationships into the modeling language allows a structured

representation of phenomena-based process models using semantic networks. This semantic

network may be depicted as a directed graph, where the vertices are labeled with names of

modeling elements or another elementary data type, and the edges are labeled with semantic

relationships. This representation organizes the knowledge behind the model and provides a

structured and modular means of analyzing the phenomena-based model. For example, the

declarations:

JACKET is-a modeled-unit

is-internal-unit-of JACKETED_CSTR

has-energy-input q

q is-a flux

transports energy

to JACKET

is-modeled-by transport-mechanism surface-convection

84

JACKETED_CSTR is-a modeled-unit

has-internal-unit JACKET

may be represented by the model digraph illustrated in Figure 3-28.

Jacket

modeled-unit q

is-a

has-energy-input

flux

is-a
transports

energy
is-internal-unit-of

Jacketed_cstr

is-modeled-by

transport mechanism

surface-convection

transport-mechanism

surface-convection

has-internal-unit

to

Figure 3-28: Example Model Digraph

3.7 Model Derivation Tree

The sequence of substitutions used to obtain a string (i.e., an instance of a model) in the language

of MODEL.LA is characterized by the derivation tree of the model. The derivation tree is an

extended production tree that includes details regarding which alternative decisions were made

during the construction of a model. Similar to the production tree, the derivation tree captures

the sequence of modeling decisions by recording the production rules and alternatives selected in

a hierarchical manner. For example, the declarations:

HDA_Plant is-a modeled-unit

has-internal-unit Separation_section

has-internal-unit Reaction_section

has-convective-input reactants

has-convective-output products

are captured by the derivation tree in Figure 3-29.

3.8 Complete Context-Free Grammar Description

The complete context-free grammar of the MODEL.LA modeling language is given in Appendix

A.

85

<modeled-units>

HDA_Plant is-a modeled-unit

<unit identification>

has-internal-unit Separation_section

<subunit>

<subunits>

has-internal-unit Reaction_section

<subunit>

<subunits>

<hierachical structure>

<>

<boundary inputs>

has-convective-input reactants

<convective input>

<boundary input>

<boundary inputs>

<>

<boundary outputs>

has-convective-output products

<convective output>

<boundary output>

<boundary outputs>

<topological structure>

<chemical content>

<modeled-unit>

<modeled-units>

<fluxes>

<structural characterization>

<chemical content>

<derivation context>

<phenomena-based model>

Figure 3-29: Example Model Derivation Tree

86

87

Chapter 4

Modeling Logic Framework

In the previous chapter, the context-free grammar of the MODEL.LA modeling language, which

specifies the syntax of the modeling language, was introduced. This grammar formally describes

the production rules that generate instances of the modeling elements and semantic relationships

that compose a phenomena-based model. Essentially, the modeling elements and semantic

relationships of the language provide a vocabulary that allows an engineer to articulate

assumptions about the topological and hierarchical structure, physicochemical phenomena, and

mechanistic characterizations of a chemical process. However, relying on syntax and common-

sense or by-example explanations of the meaning of the modeling elements would leave the

definition of the modeling language incomplete. In order to describe the semantics of the

language, and to enable a computer to understand phenomena-based modeling assumptions and

chemical process modeling principles, the underlying logic of model development must be

elucidated.

To complete the specification of MODEL.LA, in this chapter a modeling logic framework

is presented that describes the semantics of the modeling language (by formally describing the

impact of phenomena-based assumptions on the resulting mathematical model) and makes it

possible to systematize many aspects of the model development process. This systematization can

enable a computer to comprehend the implication of the modeling assumptions, to assist the

modeler in constructing the phenomena-based model description, to detect model inconsistencies

and incompleteness, to automatically derive mathematical models, and to explain the terms and

equations of the resulting mathematical model in terms of the modeling assumptions.

Furthermore, the modeling logic framework provides a basis for introducing supervisory logic

88

into the modeling activity, which can guide inexperienced modelers toward completion of certain

contextual modeling goals.

In order to assist engineers develop process models, a variety of modeling methodologies

have been proposed (e.g., Aris, 1979, and Denn, 1986). These methodologies are commonly

presented as flowcharts that provide very generic templates of the major tasks that a modeler

tackles during model development. These flowcharts are frequently supplemented with several

common-sense rules or heuristics that may also be employed under certain circumstances.

Unfortunately, the level of granularity of guidance that these methodologies provide is too broad,

the assistance they offer is too passive, and the knowledge they contain is too unstructured to

offer real assistance to inexperienced modelers. This is because their lack of formalism restricts

systematization of the modeling activity. As such, existing methodologies, while valid, cannot

adequately address the modeling needs of either the chemical process industry or chemical

engineering education.

The MODEL.LA modeling logic does not introduce new concepts of chemical engineering

science and modeling expertise. Rather, through logical constructs based on the MODEL.LA

modeling language, it makes it possible to express these chemical engineering concepts in a

computational framework. In this manner, a computer can understand chemical process modeling

principles. This allows systematization of the modeling activity, where such modeling knowledge

makes possible varying degrees of computer-aided modeling support, including full automation,

structured interaction, and explicit documentation.

4.1 Computational Logic

The MODEL.LA modeling logic presented in this chapter expresses chemical process modeling

knowledge in a computational framework. Discussion of its implementation in this work is

deferred until the subsequent chapter. The goal of this chapter is to present the embedded

chemical process modeling knowledge in a concise, structured, and extendible manner that clearly

identifies the principles of chemical engineering science applied in model development. This

knowledge may subsequently be used to develop algorithms or programs through various

implementations (e.g., expert systems, procedural subroutines, or object-oriented programs).

However, decisions for implementation are considered separately from the modeling logic

89

framework itself.

4.2 Formal Description of Modeling Logic Operators

Logical operators, which represent tasks that comprise the modeling activity, form the basis of the

MODEL.LA modeling logic. These logical modeling operators are classified as either declarative

or procedural. Declarative operators allow assertions to be proposed about the state of the

model (e.g., Reactor-x is adiabatic). Each declarative operator is characterized by three

attributes:

declarative operator = <arguments, preconditions, postconditions>

where

1. Arguments are the model elements on which the operator acts,

2. Preconditions are the necessary conditions that must be true before the operator is

activated, and

3. Postconditions are the necessary conditions that are asserted by the activated

operator.

Unlike declarative operators, procedural operators change the state of the model (e.g., decompose

Plant-Y into a Reaction-Section and a Separation-Section). Each procedural operator is

characterized by three attributes:

procedural operator = <arguments, preconditions, suboperations>

where

1. Suboperations are the set of state operations and subtasks into which the operator

is decomposed. This approach allows a hierarchical description of modeling tasks,

where each modeling task can be decomposed into a set of smaller subtasks.

The arguments and preconditions for procedural operators are defined as for declarative

operators.

To formally compose each operator, a variation of the notation of first-order predicate

logic is used. Each operator is represented as an implication, expressed generically as:

antecedent ⇒ consequent

90

This may be interpreted as an if-then rule, where if the antecedent is true, then the consequent is

asserted. For declarative operators, if the consequent also implies the antecedent, ⇒ is replaced

by ⇔. This may be interpreted as and if-and-only-if rule.

The antecedent is a well-formed formula composed of variable symbols, predicate

symbols, connectives and quantifiers. Predicate symbols may be interpreted as boolean functions,

which, based on the state values of their arguments, return a value of true or false. For example,

the predicate precond(arg1,…,argn) returns a value of true or false based on the values of its n

arguments arg1,…,argn. The connectives include: ∧ (and), ∨ (or), ¬ (not), and the existential

quantifier, ∃ (there exists). The arguments of the operator appear as scoped variables and are

identified at the head of the antecedent using the universal quantifier, ∀ (for all). For example, in

the formula ∀ x1∀ x2 …∀ xn variables x1,x2,…,xn represent a list of n arguments. Variable type

assertions for each variable are listed as predicate symbols in the antecedent. For example, the

predicate symbols type_id1(x1) ∧ type_id2(x2) ∧ … ∧ type_idn(xn), assert the types of variables

x1,x2,…,xn, respectively, where type_idi identifies the type of variable xi. The variable type

declarations in the antecedent are followed by the remaining preconditions, which are also

represented by predicate symbols.

Postconditions of the declarative operators are expressed in the consequent, which is also

a well-formed formula composed of predicate symbols, variable symbols, connectives and

quantifiers. For procedural operators, the consequent contains the sequence of procedural

suboperations, which are listed delimited by commas. Each suboperation may be another

modeling logic operator, a statement containing other common mathematical, set, and assignment

operations, or may contain function statements which introduce new state variables into the

model. The latter appear generically as:

∆var(type_id(var))

where var is the new state variable introduced into the model, and type_id is an asserted predicate

identifying the type of the new state variable.

4.2.1 Modeling Logic Operators

As previously described, the semantic network digraph provides a structured, modular, and

91

organized view of an instance of a phenomena-based model. To exploit these features, the logical

operators of the phenomena-based model will be defined in terms of the model digraph.

4.2.2 Elementary Graph Operators

The state of a phenomena-based model is represented formally by the model digraph. The model

digraph is defined as:

M = (V, E)

where:

1. M is the model digraph,

2. V is the set of n labeled vertices {v1, v2, …vn} in the graph, and

3. E is the set of m labeled, directed edges {e1, e2, …em} in the graph, where each edge is

incident to and incident from a pair of vertices in the graph.

Elementary predicate symbols, which are assumed to be intrinsic declarative operators that make

generic assertions about a model digraph are defined in Table 4-1.

Table 4-1: Intrinsic Declarative Graph Operators

Operator Actions Preconditions

vertex(v) Identifies v is a vertex.

edge(e) Identifies e is a edge.

string(s) Identifies s is a string.

has_label(m, s) Asserts that the label of m is s. string(s) ∧ (edge(m) ∨ vertex(m))

incident_from(e, v) Asserts that e is incident from v. edge(e) ∧ vertex(v)

incident_to(e, v) Asserts that e is incident to v. edge(e) ∧ vertex(v)

Elementary predicate symbols, which are assumed to be intrinsic operators that generically access

elements of the model digraph and allow their values to be assigned (e.g., label(m) := “Reactor-

x”) are defined in Table 4-2.

92

Table 4-2: Intrinsic Graph Assignment Operators

Operator Actions Preconditions

label(m) Accesses label of m. edge(m) ∨ vertex(m)

incident_from(e) Accesses vertex that e is incident from. edge(e)

incident_to(e) Accesses vertex that e is incident to. edge(e)

For convenience, several procedural operators that change the state of model graph M are defined

in Table 4-3 in terms of these intrinsic graph operators.

4.3 Model Analysis Operators

In the previous section, a set of intrinsic and elementary graph operators were defined that

provide means for analyzing and editing the model digraph. Since the state of the phenomena-

based model is defined in terms of the model digraph, at the lowest level all modeling logic

operators must be defined in terms of these intrinsic graph operators. However, by defining high-

level operators in terms of these low-level operators, layers of abstraction (Abelson et al, 1996)

are developed that separate the modeling activity from the actual underlying digraph

representation. In turn, the high-level operators may be used to develop even more sophisticated

modeling tasks. This use of abstraction enables the modeler to concentrate on modeling tasks

such as “define plant separation subsystem” instead of “add vertex and label to model digraph”.

With this methodology of abstraction in mind, several high-level declarative operators are now

defined in terms of the model digraph to facilitate analysis of a phenomena-based model. In

subsequent sections, these operators will provide the basis for describing operators for model

construction, detection of model inconsistencies and incompleteness, and automated mathematical

model generation. The model analysis operators are all defined as “if-and-only-if” implications, as

denoted by the ⇔ symbol.

93

Table 4-3: Elementary Procedural Graph Operators

Operator Actions

∀ v ∀ s [vertex(v) ∧ string(s) ∧ Add_vertex(v, s)

⇒
label(v) := s,
V := V ∪ v]

1.) Adds a vertex v to the model digraph, M, where
M = (V, E).

2.) Labels v with string s.

∀ s [string(s) ∧ Add_new_vertex(s)

⇒
∆v(vertex(v)),
Add_vertex(v, s)]

1.) Creates vertex v.
2.) Activates preceding operator to add v to model

digraph with appropriate label.

∀ e ∀ v1 ∀ v2 ∀ s [edge(e) ∧ vertex(v1) ∧ vertex(v2)

∧ string(s) ∧ Add_edge(e, v1, v2, s)

⇒
label(e) := s,
incident_from(e) := v1,
incident_to(e) := v2,
E := E ∪ e]

1.) Adds edge e to model digraph, M, where M =
(V, E).

2.) Sets incident from vertex of e to v1.
3.) Sets incident to vertex of e to v2.
4.) Labels e with string s.

∀ v1 ∀ v2 ∀ s [vertex(v1) ∧ vertex(v2) ∧ string(s)

∧ Add_new_edge(v1, v2, s)

⇒
∆e(edge(e)),
Add_edge(e, v1, v2, s)]

1.) Creates edge e.
2.) Activates preceding operator to add e to model

digraph with appropriate label.

∀ v1 ∀ v2 ∀ s1∀ s2 [vertex(v1) ∧ vertex(v2) ∧ string(s1)

∧ string(s2)

∧ Add_new_complementary_edges(v1, v2, s1, s2)

⇒
Add_new_edge(v1, v2, s1),
Add_new_edge(v2, v1, s2)]

1.) Activates preceding operator to add an edge
from v1 to v2 with appropriate label.

2.) Activates preceding operator to add an edge
from v2 to v1 with appropriate label.

∀ se ∀ sv1 ∀ sv2 [string(se) ∧ string(sv1) ∧ string(sv2)

∧ Add_new_vertex_pair_and_edge(se, sv1, sv2)

⇒
∆v1(vertex(v1)),

∆v2(vertex(v2)),

∆e(edge(e)),
Add_vertex(v1, sv1),
Add_vertex(v2, sv2),
Add_edge(e, v1, v2, s)]

1.) Creates vertex v1.
2.) Creates vertex v2.
3.) Creates edge e.
4.) Adds v1, v2, and e to model digraph with

appropriate labels.

94

4.3.1 Modeling Element Identification

Every instance of a modeling element in the phenomena-based model is represented by a vertex in

the model digraph. This vertex is labeled with the unique name, or identifier, of the modeling

element. An edge labeled “is-a” that is incident from this vertex is incident to a vertex labeled

with a string representing the type (e.g., “flux”) of the modeling element. Figure 4-1 illustrates an

example of a modeled-unit modeling element named “Jacket” in a model digraph.

JacketJacket

modeled-unitmodeled-unit

is-a

Figure 4-1: Modeled-Unit Digraph Representation

Several declarative operators that identify the particular type of a modeling element, which are

represented by graph vertices with “is-a” edges incident from them, are defined in Table 4-4.

The declarative operators defined in Table 4-4 are also used by other operators that

identify specialized (e.g., liquid flux) or generalized types of modeling elements. Several

examples of these are listed in Table 4-5.

95

Table 4-4: Modeling Element Identification Operators

Operator Actions

∀ m [modeled_unit(m)

⇔
vertex(m) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “modeled-unit”)

∧ incident_from(e, m) ∧ incident_to(e, v))]

Identifies m is a modeled-unit.

∀ f [flux(f)

⇔
vertex(f) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “flux”)

∧ incident_from(e, f) ∧ incident_to(e, v))]

Identifies f is a flux.

∀ m [material-content(m)

⇔
vertex(m) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “material-content”)

 ∧ incident_from(e, m) ∧ incident_to(e, v))]

Identifies m is a material-content.

∀ p [vapor_phase(p)

⇔
vertex(p) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “vapor phase”)

∧ incident_from(e, p) ∧ incident_to(e, v))]

Identifies p is a vapor phase.

∀ p [liquid_phase(p)

⇔
vertex(p) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “liquid phase”)

∧ incident_from(e, p) ∧ incident_to(e, v))]

Identifies p is a liquid phase.

∀ p [solid_phase(p)

⇔
vertex(p) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “solid phase”)

∧ incident_from(e, p) ∧ incident_to(e, v))]

Identifies p is a solid phase.

∀ r [reaction(r)

⇔
vertex(r) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “reaction”)

∧ incident_from(e, r) ∧ incident_to(e, v))]

Identifies r is a reaction.

∀ s [species(s)

⇔
vertex(s) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v)

∧ has_label(e, “is-a”) ∧ has_label(v, “species”)

∧ incident_from(e, s) ∧ incident_to(e, v))]

Identifies s is a species.

96

Table 4-5: Specialized Modeling Element Identification Operators

Operator Actions

∀ f [vapor_flux(f)

⇔
flux(f) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v) ∧ has_label(e, “transports”)

∧ has_label(v, “material vapor”) ∧ incident_from(e, f)

∧ incident_to(e, v))]

Identifies f is a vapor convective
flux

∀ f [liquid_flux(f)

⇔
flux(f) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v) ∧ has_label(e, “transports”)

∧ has_label(v, “material liquid”) ∧ incident_from(e, f)

∧ incident_to(e, v))]

Identifies f is a liquid convective
flux

∀ f [solid_flux(f)

⇔
flux(f) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v) ∧ has_label(e, “transports”)

∧ has_label(v, “material solid”) ∧ incident_from(e, f)

∧ incident_to(e, v))]

Identifies f is a solid convective
flux

∀ f [convective_flux(f)

⇔ vapor_flux(p) ∨ liquid_flux(p) ∨ solid_flux(p)]
Identifies f is a convective flux

∀ f [energy_flux(f)

⇔
flux(f) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v) ∧ has_label(e, “transports”)

∧ has_label(v, “energy”) ∧ incident_from(e, f)

∧ incident_to(e, v))]

Identifies f is an energy flux

∀ f ∀ s [species_flux(f, s)

⇔
flux(f) ∧ species(s) ∧ ∃ e (∧ edge(e) ∧ has_label(e, “transports”)

∧ incident_from(e, f) ∧ incident_to(e, s))]

Asserts that species flux f
transports species s

∀ f [species_flux(f)

⇔ flux(f) ∧ ∃ s (species(s) ∧ species_flux(f, s))]
Identifies f is a species flux

∀ p [phase(p)

⇔ vapor_phase(p) ∨ liquid_phase(p) ∨ solid_phase(p)]
Identifies p is a phase

∀ g [geometry(g)

⇔
vertex(g) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v) ∧ material_content(m)

∧ has_label(e, “has-vessel-geometry”) ∧ incident_from(e, m)

∧ incident_to(e, g))]

Identifies g is a geometry

∀ s [spatial_distribution(s)

⇔
vertex(s) ∧ ∃ e ∃ v (edge(e) ∧ vertex(v) ∧ modeled_unit(m)

∧ has_label(e, “has-spatial-distribution”) ∧ incident_from(e, m)

∧ incident_to(e, s))]

Identifies s is a spatial
distribution.

∀ m [distributed_unit(m)

⇔
modeled_unit(m) ∧ ∃ e ∃ s (edge(e) ∧ spatial_distribution(s)

∧ has_label(e, “has-spatial-distribution”) ∧ incident_from(e, f)

∧ incident_to(e, v))]

Identifies m is a spatially
distributed modeled-unit.

97

4.3.2 Hierarchical Structure

The hierarchical structure of modeled-units in a phenomena-based model is declared using the

complementary semantic relationships has-internal-unit and is-internal-unit-of. Operators that

provide for analysis of this hierarchical structure are listed in Table 4-6.

Table 4-6: Hierarchical Structure Analysis Operators

Operator Actions

∀ p [has_subunits(p)

⇔
modeled_unit(p) ∧ ∃ s ∃ e (modeled_unit(s)

∧ edge(e) ∧ has_label(e, “has-internal-unit”)

∧ incident_from(e, p) ∧ incident_to(e, s))]

Asserts that modeled-unit p has subunits.

∀ s [has_parent(s)

⇔
modeled_unit(s) ∧ ∃ p ∃ e (modeled_unit(p)

∧ edge(e) ∧ has_label(e, “is-internal-unit-of”)

∧ incident_from(e, s) ∧ incident_to(e, p))]

Asserts that modeled-unit s has a parent unit.

∀ p ∀ s [has_subunit(p, s)

⇔
modeled_unit(p) ∧ modeled_unit(s)

∧ ∃ e (edge(e) ∧ has_label(e, “has-internal-unit”)

∧ incident_from(e, p) ∧ incident_to(e, s))]

Asserts that modeled-unit p has subunit s.

∀ s ∀ p [is_subunit_of(s, p)

⇔
modeled_unit(s) ∧ modeled_unit(p)

∧ ∃ e (edge(e) ∧ has_label(e, “is-internal-unit-of”)

∧ incident_from(e, s) ∧ incident_to(e, p))]

Asserts that s is a subunit of modeled-unit p

∀ a ∀ d [has_descendant(a, d)

⇔
modeled_unit(a) ∧ modeled_unit(d)

∧ (has_subunit(a, d) ∨ ∃ s (modeled_unit(s)

∧ has_subunit(a, s) ∧ has_descendant(s, d))]

Asserts that modeled-unit a has descendant d

∀ d ∀ a [has_ancestor(d, a)

⇔
modeled_unit(d) ∧ modeled_unit(a)

∧ (is_subunit_of(d, a) ∨ ∃ s (modeled_unit(s)

∧ is_subunit_of(d, s) ∧ has_ancestor(s, a)]

Asserts that modeled-unit d has ancestor a

∀ p ∀ s [has_differential_subunit(p, s)

⇔
distributed_unit(p) ∧ modeled_unit(s) ∧ ∃ e (edge(e)

∧ has_label(e, “has-differential-subunit”)

∧ incident_from(e, p) ∧ incident_to(e, s))]

Asserts that spatially distributed modeled-unit
p has differential subunit s.

The fifth and sixth operators in Table 4-6, has_descendant and has_ancestor, are defined

98

recursively, where the operator is defined in terms of itself. When these recursive operators are

evaluated, an assertion is made when the predicate disjunctive to the recursive predicate is true.

The following declarations will be used to illustrate use of these operators:

PLANT is-a modeled-unit

has-internal-unit REACTION_SECTION

has-internal-unit SEPARATION_SECTION

REACTION_SECTION is-a modeled-unit

is-internal-unit-of PLANT

has-internal-unit REACTION_PRETREAT

has-internal-unit JACKETED_CSTR

JACKETED_CSTR is-a modeled-unit

is-internal-unit-of REACTION_SECTION

has-internal-unit JACKET

has-internal-unit VESSEL

JACKET is-a modeled-unit

is-internal-unit-of JACKETED_CSTR

VESSEL is-a modeled-unit

is-internal-unit-of JACKETED_CSTR

Examples of assertions that may be made from these declarations using the operators in Table 4-6

include: has_subunits(PLANT), has_parent(JACKETED_CSTR),

has_subunit(REACTION_SECTION, REACTION_PRETREAT), is_subunit_of(JACKET,

JACKETED_CSTR), has_descendant(PLANT, VESSEL), and has_ancestor(JACKET,

REACTION_SECTION).

4.3.3 Topological Structure

The topological structure of a phenomena-based model reflects how modeled-units interact

through transport of mass, energy, and chemical species between their boundaries. The boundary

fluxes associated with a modeled-unit are identified by semantic relationships has-convective-input,

has-convective-output, has-energy-input, has-energy-output, has-species-input, and has-species-output.

The most refined modeled-units that a flux interconnects are identified by semantic relationships to

and from. Operators that allow analysis of this topological structure are listed in Table 4-7.

99

Table 4-7: Topological Structure Analysis Operators

Operator Actions

∀ m ∀ f [has_input_flux(m, f)

⇔
modeled_unit(m) ∧ flux(f) ∧ ∃ e (edge(e)

∧ incident_from(e, m) ∧ incident_to(e, f)

∧ (has_label(e, “has-convective-input”)

∨ has_label(e, “has-energy-input”)

∨ has_label(e, “has-species-input”))]

Asserts that modeled-unit m has input flux f.

∀ m ∀ f [has_output_flux(m, f)

⇔
modeled_unit(m) ∧ flux(f) ∧ ∃ e (edge(e)

∧ incident_from(e, m) ∧ incident_to(e, f)

∧ (has_label(e, “has-convective-output”)

∨ has_label(e, “has-energy-output”)

∨ has_label(e, “has-species-output”))]

Asserts that modeled-unit m has output flux f.

∀ m ∀ f [has_convective_input(m, f)

⇔
has_input_flux(m, f) ∧ convective_flux(f)]

Asserts that modeled-unit m has convective input flux
f.

∀ m ∀ f [has_convective_output(m, f)

⇔
has_output_flux(m, f) ∧ convective_flux(f)]

Asserts that modeled-unit m has convective output
flux f.

∀ m ∀ f [has_energy_input(m, f)

⇔
has_input_flux(m, f) ∧ energy_flux(f)]

Asserts that modeled-unit m has energy input flux f.

∀ m ∀ f [has_energy_output(m, f)

⇔
has_output_flux(m, f) ∧ energy_flux(f)]

Asserts that modeled-unit m has energy output flux f.

∀ m ∀ f [has_species_input(m, f)

⇔
has_input_flux(m, f) ∧ species_flux(f)]

Asserts that modeled-unit m has species input flux f.

∀ m ∀ f [has_species_output(m, f)

⇔
has_output_flux(m, f) ∧ species_flux(f)]

Asserts that modeled-unit m has species output flux f.

∀ f ∀ m [from(f, m)

⇔
flux(f) ∧ modeled_unit(m) ∧ ∃ e (edge(e)

∧ has_label(e, “from”) ∧ incident_from(e, f)

∧ incident_to(e, m))]

Asserts that f is a transport flux that originates
incident from modeled-unit m.

∀ f ∀ m [to(f, m)

⇔
flux(f) ∧ modeled_unit(m) ∧ ∃ e (edge(e)

∧ has_label(e, “to”) ∧ incident_from(e, f)

∧ incident_to(e, m))]

Asserts that f is a transport flux that terminates
incident to modeled-unit m.

100

The following declarations will be used to illustrate use of these operators:

JACKETED_CSTR is-a modeled-unit

has-internal-unit JACKET

has-internal-unit VESSEL

has-convective-input reactants

has-convective-output products

VESSEL is-a modeled-unit

is-internal-unit-of JACKETED_CSTR

has-convective-input reactants

has-convective-output products

has-energy-input q

q is-a flux

transports energy

from VESSEL

to JACKET

reactants is-a flux

transports material liquid

from source

to VESSEL

Examples of assertions that may be made from these declarations using the operators in Table 4-7

include: has_energy_input(VESSEL, q), has_convective_input(JACKETED_CSTR, reactants),

has_convective_input(VESSEL, reactants), and to(q, VESSEL). Note that although

has_convective_input(JACKETED_CSTR, reactants) is true, to(JACKETED_CSTR, q) cannot be

asserted since the to operator only applies to the most-refined modeled-unit that the flux is

incident to.

4.3.4 Material Characterization

The material characterization in a phenomena-based model is defined by instances of the modeling

element material-content, which is declared for a modeled-unit using the complementary semantic

relationships has-material-content and is-material-content-in. The phases that compose a material-

content are identified by the semantic relationships has-vapor-phase, has-liquid-phase, and has-solid-

phase. If a vessel geometry is assumed for the material-content, it is declared using the semantic

101

relationship has-geometry. Allocation of boundary fluxes, identified by semantic relationship has-

boundary-flux, to the phases or geometry of a material-content are declared using the semantic

relationship is-allocated-to. Operators that allow analysis of this material characterization are listed

in Table 4-8.

The following declarations will be used to illustrate use of these operators:

FLASH is-a modeled-unit

has-material-content FLASH_MATL

has-convective-input FEED

has-convective-output OVERHEAD

has-convective-output BOTTOMS

FLASH_MATL is-a material-content

is-material-content-in FLASH

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

has-geometry vertical-cylinder

has-boundary-flux FEED allocated-to self

has-boundary-flux OVERHEAD allocated-to FLASH_MATL_V

has-boundary-flux BOTTOMS allocated-to FLASH_MATL_L

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

FLASH_MATL_L is-a liquid phase

is-phase-in FLASH_MATL

Examples of assertions that may be made from these declarations using the operators in Table 4-8

include: material_unit(FLASH), has_phase(FLASH_MATL, FLASH_MATL_L),

has_geometry(FLASH_MATL, vertical-cylinder), has_boundary_flux(FLASH_MATL, FEED), and

allocated_to(FLASH_MATL, FLASH_MATL_L, BOTTOMS).

102

Table 4-8: Material Characterization Analysis Operators

Operator Actions

∀ u ∀ m [has_material_content (u, m)

⇔
modeled-unit(u) ∧ material_content(m)

∧ ∃ e (edge(e)

∧ has_label(e, “has-material-content”)

∧ incident_from(e, u) ∧ incident_to(e, m))]

Asserts that modeled-unit u has material-content
m.

∀ u [material_unit(u)

⇔
modeled_unit(u) ∧ ∃ m (material_content (m)

∧ has_material_content (u, m))]

Asserts that modeled-unit u has a material-content.

∀ u [blackbox_unit(u)

⇔
modeled_unit(u) ∧ ¬material_unit(u)

∧ ¬has_subunits(u)]

Asserts that modeled-unit u is a modeled as a
blackbox.

∀ m ∀ p [has_phase(m, p)

⇔
material_content(m) ∧ phase(p) ∧ ∃ e (edge(e)

∧ (has_label(e, “has-vapor-phase”)

∨ has_label(e, “has-vapor-phase”)

∨ has_label(e, “has-vapor-phase”))

∧ incident_from(e, m), ∧ incident_to(e, p))]

Asserts that material-content m has phase p.

∀ m ∀ g [has_geometry(m, g)

⇔
material_content(m) ∧ geometry(g)

∧ ∃ e (edge(e) ∧ has_label(e, “has-geometry”)

∧ incident_from(e, m) ∧ incident_to(e, g))]

Asserts that material-content m has geometry g.

∀ m ∀ f [has_boundary_flux(m, f)

⇔
material_content(m) ∧ flux(f) ∧ ∃ e (edge(e)

∧ has_label(z, “has-boundary-flux”)

∧ incident_from(e, m) ∧ incident_to(e, f))]

Asserts that material-content m has boundary flux
f.

∀ m ∀ p ∀ f [allocated_to(m, p, f)

⇔
material_content(m) ∧ phase(p) ∧ flux(f)

∧ has_phase(m, p) ∧ has_boundary_flux(m, f)

∧ ∃ e (edge(e) ∧ has_label(e, “allocated-to”)

∧ incident_from(e, m) ∧ incident_to(e, p))]

Asserts that material-content m has boundary flux f
allocated to phase p.

∀ m ∀ g ∀ f [allocated_to(m, g, f)

⇔
material_content(m) ∧ geometry(g) ∧ flux(f)

∧ geometry(m, g) ∧ has_boundary_flux(m, f)

∧ ∃ e (edge(e) ∧ has_label(e, “allocated-to”)

∧ incident_from(e, m) ∧ incident_to(e, g))]

Asserts that material-content m has boundary flux f
allocated to geometry g.

∀ a [allocated_element(a)

⇔
material_content(a) ∨ phase(a) ∨ geometry(a)]

Asserts that a boundary flux can be allocated to
modeling element a.

103

4.3.5 Chemical Content

The chemical content of a phenomena-based model identifies the chemical species and reactions

assumed to be present in the modeled-units, material-contents, and phases of the model. The

species and reaction present in these modeling elements are identified using the semantic

relationships has-species and has-reaction, respectively. Operators that allow analysis of this

chemical content are listed in Table 4-9. Additionally, the last operator determines if a particular

chemical species is transported by a flux.

Table 4-9: Chemical Content Analysis Operators

Operator Actions

∀ m [species_element(m)

⇔
modeled_unit(m) ∨ material_content(m) ∨ phase(m)]

Asserts that species may be
assigned to modeling element m.

∀ m ∀ s [has_species(m, s)

⇔
species_element(m) ∧ species(s)

∧ ∃ e (edge(e) ∧ has_label(y, “has-species”)

∧ incident_from(e, m) ∧ incident_to(e, s))]

Asserts that species s is assigned
to modeling element m.

∀ m [reaction_element(m)

⇔
modeled_unit(m) ∨ phase(m)]

Asserts that reactions may be
assigned to modeling element m.

∀ m ∀ s [has_reaction(m, s)

⇔
reaction_element(m) ∧ reaction(s)

∧ ∃ e (edge(e) ∧ has_label(y, “has-reaction”)

∧ incident_from(e, m) ∧ incident_to(e, s))]

Asserts that reaction r is
assigned to modeling element m.

∀ f ∀ s [flux(f) ∧ species(s) ∧ transports_species(f, s)

⇔
species_flux(f, s) ∨ (convective_flux(f)

∧ ∃ u (modeled_unit(u) ∧ from(f, u)

∧ ((blackbox_unit(u) ∧ has_species(u, s))

∨ ∃ m (material_content(m) ∧ has_material_content(u1, m)

∧ ((has_geometry(m, g) ∧ allocated_to(m, g, f) ∧ has_species(m, s))

∨ (phase(p) ∧ has_phase(m, p) ∧ allocated_to(m, p, f)

∧ has_species(p, s)))))))]

Asserts that a flux transports a
species if i) it is a corresponding
species flux, ii) it is a convective

flux from a blackbox unit that
has the species, iii) it is allocated

to the geometry of a material-
content that has the species, or
iv) it is allocated to a phase that

has the species.

The following declarations will be used to illustrate use of these operators:

VESSEL_MATL_L is-a liquid phase

has-species WATER

has-species o_XYLENE

104

has-species PHTHALIC_ANHYDRIDE

has-species OXYGEN

has-reaction RXN_101

Examples of assertions that may be made from these declarations using the operators in Table 4-9

include: species_element(VESSEL_MATL_L) has_species(VESSEL_MATL_L, WATER), and

has_reaction(VESSEL_MATL_L, RXN_101).

4.3.6 Mechanistic Characterization

The mechanistic characterization of a phenomena-based model identifies the transport

mechanisms of fluxes, thermodynamic characterizations of phases, and kinetic rate laws of

reactions. Transport mechanisms, equations of state, and activity coefficient models are identified

by the semantic relationship is-modeled-by. Kinetic rate laws are identified by semantic

relationships has-forward-kinetics and has-reverse-kinetics. Operators that allow analysis of such

mechanistic characterizations are listed in Table 4-10.

The following declarations will be used to illustrate use of these operators:

VESSEL_MATL_V is-a vapor phase

has-equation-of-state ideal-gas

Examples of assertions that may be made from these declarations using the operators in Table

4-10 include: equation_of_state(ideal-gas) and has_equation_of_state(VESSEL_MATL_V, ideal-

gas).

105

Table 4-10: Mechanistic Characterization Analysis Operators

Operator Actions

∀ m [transport_mechanism(m)

⇔
vertex(m) ∧ has_label(m, “transport-mechanism *”)

∧ ∃ f ∃ e (flux(f) ∧ edge(e) ∧ has_label(e, “is-modeled-by”)

∧ incident_from(e, f) ∧ incident_to(e, m)]

Identifies m is a
transport

mechanism.

∀ f ∀ m [has_transport_mechanism(f, m)

⇔
flux(f) ∧ transport_mechanism(m) ∧ ∃ e (edge(e)

∧ has_label(e, “is-modeled-by”) ∧ incident_from(e, f) ∧ incident_to(e, m)]

Asserts that flux f
has transport

mechanism m.

∀ s [equation_of_state(s)

⇔
vertex(s) ∧ has_label(s, “equation-of-state *”)

∧ ∃ p ∃ e ((phase(p) ∨ convective_flux(p)) ∧ edge(e)

∧ has_label(e, “is-modeled-by”) ∧ incident_from(e, p) ∧ incident_to(e, s)]

Identifies s is an
equation of state.

∀ p ∀ s [has_equation_of_state(p, s)

⇔
(phase(p) ∨ convective_flux(p)) ∧ equation_of_state(s) ∧ ∃ e (edge(e)

∧ has_label(e, “is-modeled-by”)∧ incident_from(e, f) ∧ incident_to(e, s)]

Asserts that phase or
convective flux p

has equation-of-state
e.

∀ a [activity_coefficient_model(a)

⇔
vertex(a) ∧ has_label(a, “activity-coefficient-model *”)

∧ ∃ p ∃ e (phase(p) ∧ edge(e) ∧ has_label(e, “is-modeled-by”)

∧ incident_from(e, p) ∧ incident_to(e, a)]

Identifies a is an
activity coefficient

model.

∀ p ∀ a [has_activity_coefficient_model(p, a)

⇔
phase(p) ∧ activity_coefficient_model(a) ∧ ∃ e (edge(e)

∧ has_label(e, “is-modeled-by”) ∧ incident_from(e, f) ∧ incident_to(e, a)]

Asserts that phase p
has activity

coefficient model a.

∀ k [forward_rate_law(k)

⇔
equation(k) ∧ ∃ r ∃ e (reaction(p) ∧ edge(e)

∧ has_label(e, “has-forward-kinetics”) ∧ incident_from(e, r) ∧ incident_to(e, k)]

Identifies k is a
forward kinetic rate
law for a reaction.

∀ r ∀ k [has_forward_rate_law(r, k)

⇔
reaction(r) ∧ forward_rate_law(k) ∧ ∃ e (edge(e)

∧ has_label(e, “has-forward-kinetics”) ∧ incident_from(e, r) ∧ incident_to(e, k)]

Asserts that reaction
r forward kinetic

rate law k.

∀ k [reverse_rate_law(k)

⇔
equation(k) ∧ ∃ r ∃ e (reaction(p) ∧ edge(e)

∧ has_label(e, “has-reverse-kinetics”) ∧ incident_from(e, r) ∧ incident_to(e, k)]

Identifies k is a
reverse kinetic rate
law for a reaction.

∀ r ∀ k has_reverse_rate_law(r, k)

⇔
reaction(r) ∧ reverse_rate_law(k) ∧ ∃ e (edge(e)

∧ has_label(e, “has-reverse-kinetics”) ∧ incident_from(e, r) ∧ incident_to(e, k)]

Asserts that reaction
r reverse kinetic rate

law k.

106

4.4 Model Construction Operators

The model analysis operators defined in the previous section allow high-level assertions to be

made regarding a phenomena-based model by examining the state of the underlying model

digraph. These declarative operators abstract the details of the underlying representation, and

provide the basis for knowledge-level analysis of a phenomena-based model. In a similar manner,

it is intuitive to characterize the procedural development of a phenomena-based model as a

sequence of hierarchical tasks (e.g., refine modeled-unit, characterize phase behavior, define

material geometry, etc.), instead of elementary graph operations. In this section, the tasks

comprising the modeling activity that dictate the creation and specification of the phenomena-

based model are characterized as procedural operators. These procedural operators differ from

the declarative analysis operators defined in the previous section because, when activated, they

change the state of the phenomena-based model by modifying the underlying model digraph.

These operators are initiated by their preconditions and decisions made by the modeler based on

the context of a given engineering problems. In response to these decisions, the operators change

the state of the model digraph to automatically generate the underlying MODEL.LA language-

based description of the model.

Once deployed in a computer-aided environment, these operators can enable a computer

to help the modeler define the model interactively and gradually, provide feedback on the validity

of assumptions, capture the rationale of decisions made, and provide an explicit record of the

modeling activity. Furthermore, these operators can provide a basis for defining high-level

supervisory logic operators that integrate context-dependent modeling knowledge that guides the

modeling activity based on the goals of an engineering problem.

4.4.1 Modeling Elements

When a new instance of a modeling element in a phenomena-based model is declared, a new

vertex labeled with the unique name of the element is added to the model digraph. A new edge

labeled “is-a” is then added to the digraph that is incident from the modeling element vertex and

incident to a new vertex labeled with a string representing the type (e.g., “flux”) of the modeling

element. Figure 4-2 illustrates an example of a new modeled-unit modeling element named

“Jacket” added to a model digraph.

107

JacketJacket

modeled-unitmodeled-unit

is-a+

Figure 4-2: New Modeled-Unit Declaration

Several procedural operators that create new instances of modeling elements, which are

represented by graph vertices with “is-a” edges incident from them, are defined in Table 4-11.

Table 4-11: Modeling Element Declaration Operators

Operator Actions

∀ s1 ∀ s2 [string(s1) ∧ string(s2) ∧ Add_model_element(s1, s2)

⇒
Add_new_vertex_pair_and_edge(“is-a”, s1, s2)]

Creates modeling element of type s1, adds it to
the model digraph and labels it with name s2

∀ s [string(s) ∧ Add_modeled_unit(s)

⇒
Add_model_element(s, “modeled-unit”)]

Adds a new modeled-unit named s to the model
digraph.

∀ s [string(s) ∧ Add_flux(s)

⇒
Add_model_element(s, “flux”)]

Adds a new flux named s to the model digraph.

∀ s [string(s) ∧ Add_reaction(s)

⇒
Add_model_element(s, “reaction”)]

Adds a new reaction named s to the model
digraph.

∀ s [string(s) ∧ Add_species(s)

⇒
Add_model_element(s, “species”)]

Adds a new species named s to the model
digraph.

∀ s [string(s) ∧ Add_material_content(s)

⇒
Add_model_element(s, “material-content”)]

Adds a new material-content named s to the
model digraph.

∀ s [string(s) ∧ Add_vapor_phase(s)

⇒
Add_model_element(s, “vapor phase”)]

Adds a new vapor phase named s to the model
digraph.

∀ s [string(s) ∧ Add_liquid_phase(s)

⇒
Add_model_element(s, “liquid phase”)]

Adds a new liquid phase named s to the model
digraph.

∀ s [string(s) ∧ Add_solid_phase(s)

⇒
Add_model_element(s, “solid phase”)]

Adds a new solid phase named s to the model
digraph.

The operators in Table 4-11 simply add new instances of modeling elements to the phenomena-

based model. To fully define the model, additional operators that introduce semantic relationships

that characterize and interrelate these modeling elements must be defined.

108

4.4.2 Topological Characterization

When a flux is declared to occur between two modeled-units, semantic relationships to and from

identifying the sink and source modeled-unit must be added to the specification of the flux, along

with semantic relationship transports identifying the type of transport. Furthermore, semantic

relationship has-convective-input, has-energy-input, or has-species-input identifying the flux must be

added to the specification of the sink modeled-unit, and semantic relationship has-convective-

output, has-energy-output, or has-species-output identifying the flux must be added to the

specification of the source modeled-unit. The following declarations:

INPUT-OUTPUT-PLANT is-a modeled-unit

has-internal-unit REACTION-SECTION

has-internal-unit SEPARATION-SECTION

REACTION-SECTION is-a modeled-unit

is-internal-unit-of INPUT-OUTPUT-PLANT

SEPARATION-SECTION is-a modeled-unit

is-internal-unit-of INPUT-OUTPUT-PLANT

Source is-a modeled-unit

Sink is-a modeled-unit

are illustrated in the conceptual flowsheet shown in Figure 4-3.

Reaction-

Section

Separation-

Section

Input-Output-Plant

Source Sink

Figure 4-3: Declaration of Topological Structure

If a convective liquid effluent flux is declared between the Reaction-Section and the Separation-

Section, as illustrated in Figure 4-4, the modeling element representing the flux is first created,

resulting in declaration:

109

effluent is-a flux

Reaction-

Section

Separation-

Section

Input-Output-Plant

Source Sinkeffluent

Figure 4-4: Declaration of Internal Flux

The relevant modeling elements are then modified as follows to reflect the connectivity of the

flux:

REACTION-SECTION is-a modeled-unit

is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-output effluent

SEPARATION-SECTION is-a modeled-unit

is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-input effluent

effluent is-a flux

transports material liquid

from REACTION-SECTION

to SEPARATION-SECTION

In addition, when the flux crosses the boundary of any ancestor of the sink or source modeled-

unit, the appropriate modifications must be made to the specifications of the ancestor modeled-

units. For example, If a convective liquid raw-materials flux is declared between the Source and

the REACTION-SECTION, as illustrated in Figure 4-5, the resulting declarations are as follows:

INPUT-OUTPUT-PLANT is-a modeled-unit

has-internal-unit REACTION-SECTION

has-internal-unit SEPARATION-SECTION

has-convective-input raw-materials

REACTION-SECTION is-a modeled-unit

110

is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-output effluent

has-convective-input raw-materials

Source is-a modeled-unit

has-convective-output raw-materials

effluent is-a flux

transports material liquid

from Source

to REACTION-SECTION

Reaction-

Section

Separation-

Section

Input-Output-Plant

raw-materials

effluentSource Sink

Figure 4-5: Declaration of Multi-Level Flux

In this manner, the topological structure declaration operators, listed in Table 4-12, represent

high-level modeling tasks (e.g., Add_convective_flux) that abstract the details which refine the

state of the model, establish necessary semantic relationships, and enforce topological model

consistency.

111

Table 4-12: Topological Structure Declaration Operators

Operator Actions

∀ m1 ∀ m2 ∀ f [modeled_unit(m1) ∧ modeled_unit(m2) ∧ flux(f)

∧ Add_convective_flux(m1, m2, f)

⇒
∆v(vertex(v)),
Add_vertex(v, “material”),
Add_new_edge(f, v, “transports”),
Add_new_complementary_edges(m1, f, “has-convective-output”, “from”),
Add_new_complementary_edges(m2, f, “has-convective-input”, “to”),
∀ a [modeled_unit(a) ∧ has_ancestor(m1, a) ∧ ¬has_ancestor(m2, a)

⇒ Add_new_edge(a, f, “has-convective-input”)],

∀ a [modeled_unit(a) ∧ has_ancestor(m2, a) ∧ ¬has_ancestor(m1, a)

⇒ Add_new_edge(a, f, “has-convective-output”)]]

1. Specifies convective
flux f from modeled-
unit m1 to modeled-
unit m2.

2. Adds input flux to
ancestors of m1 where
appropriate.

3. Adds output flux to
ancestors of m2 where
appropriate.

∀ m1 ∀ m2 ∀ f [modeled_unit(m1) ∧ modeled_unit(m2) ∧ flux(f)

∧ Add_energy_flux(m1, m2, f)

⇒
∆v(vertex(v)),
Add_vertex(v, “energy”),
Add_new_edge(f, v, “transports”),
Add_new_complementary_edges(m1, f, “has-energy-output”, “from”),
Add_new_complementary_edges(m2, f, “has-energy-input”, “to”)
∀ a [modeled_unit(a) ∧ has_ancestor(m1, a) ∧ ¬has_ancestor(m2, a)

⇒ Add_new_edge(a, f, “has-energy-input”)],

∀ a [modeled_unit(a) ∧ has_ancestor(m2, a) ∧ ¬has_ancestor(m1, a)

⇒ Add_new_edge(a, f, “has-energy-output”)]]

1. Specifies energy flux f
from modeled-unit m1

to modeled-unit m2.
2. Adds input flux to

ancestors of m1 where
appropriate.

3. Adds output flux to
ancestors of m2 where
appropriate.

∀ m1 ∀ m2 ∀ f ∀ s [modeled_unit(m1) ∧ modeled_unit(m2) ∧ flux(f) ∧ species(s)

∧ Add_species_flux(m1, m2, f, s)

⇒
∆v(vertex(v)),

∆t(string(t)),
t := “species ” + label(s),
Add_vertex(v, t),
Add_new_edge(f, v, “transports”),
Add_new_complementary_edges(m1, f, “has-species-output”, “from”),
Add_new_complementary_edges(m2, f, “has-species-input”, “to”),
∀ a [modeled_unit(a) ∧ has_ancestor(m1, a) ∧ ¬has_ancestor(m2, a)

⇒ Add_new_edge(a, f, “has-species-input”)],

∀ a [modeled_unit(a) ∧ has_ancestor(m2, a) ∧ ¬has_ancestor(m1, a)

⇒ Add_new_edge(a, f, “has-species-output”)]]

1. Specifies species s flux
f from modeled-unit
m1 to modeled-unit
m2.

2. Adds input flux to
ancestors of m1 where
appropriate.

3. Adds output flux to
ancestors of m2 where
appropriate.

∀ m ∀ p ∀ f [material_content(m) ∧ allocated_element(p) ∧ flux(f)

∧ Allocate_flux(m, p, f)

⇒
Add_new_edge(m, f, “has-boundary-flux”),
Add_new_edge(f, p, “allocated-to”)]

Allocates boundary flux f
of material-content m to

modeling element p.

112

4.4.3 Chemical Content

The assumption that a chemical species is present in a modeled-unit, material-content, or phase in

a phenomena-based model requires that the semantic relationship has-species identifying the

species be added to the specification of the corresponding modeling element. Similarly, the

assumption that a chemical reaction is present in a modeled-unit or phase requires that the

semantic relationship has-reaction identifying the reaction be added to the specification of the

corresponding modeled-unit or phase. Additionally, for consistency, when a species is declared to

be present in a phase, is must also be present in the associated material-content, the modeled-unit

containing the material-content, and all ancestors of the modeled-unit. This is required so that the

phenomena-based model, viewed at any level of detail, will be consistent with all other levels. A

similar hierarchical consistency is required for the declaration of chemical reactions. Chemical

content declaration operators that make these desired modifications are listed in Table 4-13.

Use of these operators will be illustrated by the following declarations:

SEPARATION_SECTION is-a modeled-unit

has-internal-unit FLASH

has-internal-unit DISTILLATION_TRAIN

FLASH is-a modeled-unit

has-material-content FLASH_MATL

FLASH_MATL is-a material-content

is-material-content-in FLASH

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

FLASH_MATL_L is-a liquid phase

is-phase-in FLASH_MATL

113

Table 4-13: Chemical Content Declaration Operators

Operator Actions

∀ m ∀ r [modeled-unit(m) ∧ reaction(r) ∧ Add_reaction(m, r)

⇒
Add_new_edge(m, r, “has-reaction”),
∀ a [modeled_unit(a) ∧ has_ancestor(m, a) ∧ ¬has_reaction(a, r)

⇒
Add_reaction(a, r)]]

1. Adds reaction r to modeled-
unit m.

2. Adds r to ancestors of m
where appropriate.

∀ p ∀ r [phase(p) ∧ reaction(r) ∧ Add_reaction(p, r)

⇒
Add_new_edge(p, r, “has-reaction”),
∃ m ∃ u [material_content(m) ∧ modeled_unit(u) ∧ has_phase(m, p)

∧ has_material_content(u, m) ∧ ¬has_reaction(u, r)

⇒
Add_reaction(u, r)]]

1. Adds reaction r to phase p.
2. Adds r to modeled-unit

containing material-content
associated with p when
necessary.

∀ u ∀ s [modeled-unit(u) ∧ species(s) ∧ Add_species(u, s)

⇒
Add_new_edge(u, s, “has-species”),
∀ a [modeled_unit(a) ∧ has_ancestor(u, a) ∧ ¬has_species(a, s)

⇒
Add_species(a, s)],

∃ m [material_content(m) ∧ has_material_content(u, m)

∧ ¬has_species(m, s)

⇒
Add_species(m, s)]]

1. Adds species s to modeled-
unit m.

2. Adds s to ancestors of m
where appropriate.

3. Adds s to material-content of
m if when necessary.

∀ m ∀ s [material_content(m) ∧ species(s) ∧ Add_species(m, s)

⇒
Add_new_edge(m, s, “has-species”),
∃ u [modeled_unit(u) ∧ has_material_content(u, m)

∧ ¬has_species(u, s)

⇒
Add_species(u, s)]]

1. Adds species s to material-
content m.

2. Adds s to modeled-unit
associated with m where
appropriate..

∀ p ∀ r [phase(p) ∧ species(s) ∧ Add_species(m, s)

⇒
Add_new_edge(p, s, “has-reaction”),
∃ m [material_content(m) ∧ has_phase(m, p) ∧ ¬has_species(m, s)

⇒
Add_species(m, s)]]

1. Adds species s to phase p.
2. Adds s to material-content

associated with p when
necessary.

The operation Add_species(FLASH_MATL_V, BENZENE) will result in declarations:

SEPARATION_SECTION is-a modeled-unit

has-internal-unit FLASH

has-internal-unit DISTILLATION_TRAIN

has-species BENZENE

FLASH is-a modeled-unit

114

has-material-content FLASH_MATL

has-species BENZENE

FLASH_MATL is-a material-content

is-material-content-in FLASH

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

has-species BENZENE

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

has-species BENZENE

FLASH_MATL_L is-a liquid phase

is-phase-in FLASH_MATL

For consistency, note that not only is the specification of FLASH_MATL_V modified, but also the

specifications of FLASH_MATL, FLASH, and SEPARATION_SECTION. However, after application

of these operators, inconsistencies may still be present. For example, the operation

Add_species(FLASH, TOLUENE) would leave the model inconsistent, as no phase in the material-

content would contain the species TOLUENE. An additional declaration would be required by the

modeler that made such an assignment. If it were not made, such an inconsistency would be

detected by a model inconsistency operator, as defined in the subsequent section.

4.4.4 Hierarchical Characterization

The decomposition of a composite modeled-unit into a set of more refined modeled-units, or the

aggregation of a set of modeled-units into an abstract modeled-unit, requires that complementary

semantic relationships has-internal-unit and is-internal-unit-of identifying the necessary interrelations

be added to the specifications of the corresponding modeled-units. Additionally, for consistency,

all species and reactions in the subunits must also be present in the abstract composite unit. Any

non-internal fluxes crossing the boundary of the abstract unit must also added to the specification

of the composite unit. Hierarchical structure characterization operators that make these desired

modifications are listed in Table 4-14.

115

Table 4-14: Hierarchical Structure Characterization Operators

Operator Actions

∀ p ∀ s [modeled_unit(p) ∧ modeled_unit(s) ∧ Add_subunit(p. s)

⇒
Add_new_complementary_edges

(p, s, “has-internal-unit”, “is-internal-unit-of”),
∀ a [has_species(s, a) ∧ ¬has_species(p, a)

⇒ Add_species(p, a)]

∀ r [has_reaction(s, r) ∧ ¬has_reaction(p, r)

⇒ Add_reaction(p, r)]]

1. Specifies s is a
subunit of modeled-
unit p.

2. Adds species in s to p
when necessary.

3. Adds reactions in s to
p when necessary.

∀ p ∀ s1 ∀ s2 ...∀ sN [modeled_unit(p) ∧ modeled_unit(s1)

∧ modeled_unit(s2) ∧ ... ∧ modeled_unit(sN)

∧ Abstract_subunits(p, s1, s2,..., sN)

⇒
S={s1, s2,..., sN},
∀ m [m ∈ S ⇒ Add_subunit(p, m)],

∀ f ∀ m [flux(f) ∧ m ∈ S ∧ has_input(m, f) ∧ ¬ ∃ n(n ∈ S ∧ has_output(n, f))

⇒
convective_flux(f)

⇒ Add_new_edge(m, f, “has-convective-input”),
energy_flux(f)

⇒ Add_new_edge(m, f, “has-energy-input”),
species_flux(f)

⇒ Add_new_edge(m, f, “has-species-input”)]

∀ f ∀ m [flux(f) ∧ m ∈ S ∧ has_output(m, f) ∧ ¬ ∃ n(n ∈ S ∧ has_input(n, f))

⇒
convective_flux(f)

⇒ Add_new_edge(m, f, “has-convective-output”),
energy_flux(f)

⇒ Add_new_edge(m, f, “has-energy-output”),
species_flux(f)

⇒ Add_new_edge(m, f, “has-species-output”)]]

1. Activates previous
operator to add set of
subunits to parent
unit.

2. Identifies fluxes
entering abstract
parent system.

3. Identifies fluxes
leaving abstract
parent system.

∀ p ∀ s [distributed_unit(p) ∧ modeled_unit(s)

∧ Add_differential_subunit(p. s)

⇒
Add_new_complementary_edges

(p, s, “has-differential-subunit”, “is-internal-unit-of”),
∀ a [has_species(s, a) ∧ ¬has_species(p, a)

⇒ Add_species(p, a)]

∀ r [has_reaction(s, r) ∧ ¬has_reaction(p, r)

⇒ Add_reaction(p, r)]]

1. Specifies s is a
differential subunit of
spatially distributed
modeled-unit p.

2. Adds species in s to p
when necessary.

3. Adds reactions in s to
p when necessary.

116

Reaction-

Section

Separation-

Section

raw-materials

effluent

products
recycle

Source Sink

Figure 4-6: Hierarchical Structure Characterization Example

Use of these operators will be illustrated by the following declarations, which are

illustrated in Figure 4-6:

REACTION-SECTION is-a modeled-unit

has-convective-input raw-materials

has-convective-input recycle

has-convective-output effluent

has-reaction RXN_101

has-species A

has-species B

has-species C

SEPARATION_SECTION is-a modeled-unit

has-convective-input effluent

has-convective-output products

has-convective-output recycle

has-species A

has-species B

has-species C

The operations Add_modeled_unit(“INPUT-OUTPUT-PLANT”) and Abstract_subunits(INPUT-

OUTPUT-PLANT, REACTION-SECTION, SEPARATION-SECTION) will result in following

declarations, illustrated in Figure 4-7:

INPUT-OUTPUT-PLANT is-a modeled-unit

has-internal-unit REACTION-SECTION

has-internal-unit SEPARATION-SECTION

has-convective-input raw-materials

117

has-convective-output product

has-reaction RXN_101

has-species A

has-species B

has-species C

REACTION-SECTION is-a modeled-unit

is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-input raw-materials

has-convective-input recycle

has-convective-output effluent

has-reaction RXN_101

has-species A

has-species B

has-species C

SEPARATION-SECTION is-a modeled-unit

is-internal-unit-of INPUT-OUTPUT-PLANT

has-convective-input effluent

has-convective-output products

has-convective-output recycle

has-species A

has-species B

has-species C

Reaction-

Section

Separation-

Section

Input-Output-Plant

raw-materials

effluent

products
recycle

Source Sink

Figure 4-7: Hierarchical Abstraction Example

Whenever possible, the modeling operators propagate assumptions throughout the hierarchical

structure of the phenomena-based model. When modeled-units are aggregated into an abstract

composite system, a consistent representation may be made automatically. However, when a

118

modeled-unit is dissagregated into a set of modeled-units, additional declarations are required by

the modeler that allocate the species, reactions, and fluxes of the abstract unit to its subunits.

4.4.5 Material Characterization

When a material-content is associated with a modeled-unit, the complementary semantic

relationships has-material-content and is-material-content-of interrelating the modeled-units must be

added to the corresponding specifications. Additional assignments of chemical species and

boundary fluxes may also be made for consistency. When a phase is associated with a material-

content, the semantic relationship has-vapor-phase, has-liquid-phase, or has-solid-phase identifying

the phase must be added to the specification of the material-content, and the semantic relationship

is-phase-in identifying the material-content must be added to the specification of the phase.

Additional assignments of chemical species and reactions may also be made for consistency.

Declaration of a vessel geometry for a material-content requires addition of the semantic

relationship has-vessel-geometry identifying the type of geometry to the specification of the

material-content. Material characterization operators that make these desired modifications are

listed in Table 4-15.

Use of these operators will be illustrated by the following declarations:

FLASH is-a modeled-unit

has-species BENZENE

has-species TOLUENE

has-convective-input feed

has-convective-output overhead

has-convective-output bottoms

The operations Add_material_content(“FLASH_MATL”), Add_material_content(FLASH,

FLASH_MATL), Add_vapor_phase(“FLASH_MATL_V”), Add_phase(FLASH_MATL,

FLASH_MATL_V), Add_liquid_phase(“FLASH_MATL_L”), and Add_phase(FLASH_MATL,

FLASH_MATL_L) will result in the following declarations:

119

Table 4-15: Material Characterization Operators

Operator Actions

∀ u ∀ m [modeled_unit(u) ∧ material_content(m)

∧ Add_material_content(u, m)

⇒
Add_new_complementary_edges

(u, m, “has-material-content”, “is-material-content-of”),
∀ s [has_species(u, s) ∧ ¬has_species(m, s)

⇒
Add_species(m, s)],

∀ s [has_species(m, s) ∧ ¬has_species(u, s)

⇒
Add_species(u, s)],

∀ f [flux(f) ∧ (has_input_flux(u, f) ∨ has_output_flux(u, f))

⇒
Allocate_flux(m, f, m)]]

1. Specifies m is material-content
of modeled-unit u.

2. Adds species in u to m if
necessary.

3. Adds species in m to u if
necessary.

4. Adds boundary fluxes of u to m.

∀ m ∀ p [material_content(m) ∧ phase(p) ∧ Add_phase(m, p)

⇒
vapor_phase(p) ⇒ Add_new_edge(m, p, “has-vapor-phase”),

liquid_phase(p) ⇒ Add_new_edge(m, p, “has-liquid-phase”),

solid_phase(p) ⇒ Add_new_edge(m, p, “has-solid-phase”),
Add_new_edge(p, m, “is-phase-in”),
∀ s [has_species(p, s) ∧ ¬has_species(m, s)

⇒
Add_species(m, s)]]

∃ u [modeled_unit(u) ∧ has_material_content(u, m)

∧ ¬has_reaction(u, r)

⇒
Add_reaction(u, r)]]

1. Specifies p is phase in material-
content m.

2. Adds species in p to m if
necessary.

3. Adds reactions in p to modeled-
unit associated with m if
necessary.

∀ s ∀ m [string(s) ∧ material_content(m) ∧ Add_geometry(m, s)

⇒
∆v(vertex(v)),
label(v) := s,
Add_new_edge(m, v, “has-vessel-geometry”)]

Specifies geometry of material-
content m.

FLASH is-a modeled-unit

has-species BENZENE

has-species TOLUENE

has-convective-input feed

has-convective-output overhead

has-convective-output bottoms

FLASH_MATL is-a material-content

is-material-content-in FLASH

120

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

has-boundary-flux feed allocated-to self

has-boundary-flux overhead allocated-to self

has-boundary-flux bottoms allocated-to self

has-species BENZENE

has-species TOLUENE

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

FLASH_MATL_L is-a liquid phase

is-phase-in FLASH_MATL

Note that additional declarations must be made by the modeler allocating the chemical species and

the outgoing convective fluxes to the phases of the material-content.

4.4.6 Mechanistic Characterization

Mechanistic characterizations in a phenomena-based model regarding transport mechanisms of

fluxes and thermodynamic characterizations of phases require that the semantic relationship is-

modeled-by identifying the assumed mechanism be added to the specifications of the corresponding

modeling elements. Kinetic rate laws of reactions require specification of rate equations using

semantic relationships has-forward-kinetics and has-reverse-kinetics. Mechanistic characterization

operators that make these desired modifications are listed in Table 4-16.

Use of these operators will be illustrated by the following declarations:

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

has-species BENZENE

has-species TOLUENE

The operation Specify_equation_of_state(FLASH_MATL_V, “redlich-kwong”) will result in the

following declarations:

FLASH_MATL_V is-a vapor phase

is-phase-in FLASH_MATL

has-species BENZENE

121

has-species TOLUENE

is-modeled-by equation-of-state redlich-kwong

Table 4-16: Mechanistic Characterization Operators

Operator Actions

∀ f ∀ s [flux(f) ∧ string(s) ∧ Specify_mechanism(f, s)

⇒
∆v(vertex(v)),

∆t(string(t)),
t := “transport-mechanism ” + s,
Add_vertex(v, t),
Add_new_edge(f, v, “is-modeled-by”)]

Specifies transport mechanism of flux
f.

∀ p ∀ s [(phase(p) ∨ convective_flux(p)) ∧ string(s)

∧ Specify_equation_of_state(p, s)

⇒
∆v(vertex(v)),

∆t(string(t)),
t := “equation-of-state ” + s,
Add_vertex(v, t),
Add_new_edge(f, v, “is-modeled-by”)]

Specifies equation of state for phase
or convective flux p.

∀ p ∀ s [phase(p) ∧ string(s) ∧ Specify_activity_coefficient_model(p, s)

⇒
∆v(vertex(v)),

∆t(string(t)),
t := “activity-coefficient-model ” + s,
Add_vertex(v, t),
Add_new_edge(f, v, “is-modeled-by”)]

Specifies activity coefficient model of
phase p.

∀ r ∀ e [reaction(r) ∧ equation(e) ∧ Specify_forward_kinetics(r, e) ⇒
Add_new_edge(r, e, “has-forward-kinetics”)]

Specifies forward kinetic rate law of
reaction r.

∀ r ∀ e [reaction(r) ∧ equation(e) ∧ Specify_reverse_kinetics(r, e) ⇒
Add_new_edge(r, e, “has-reverse-kinetics”)]

Specifies reverse kinetic rate law of
reaction r.

4.4.7 Behavioral Characterization

Behavioral characterizations of modeled-units and materials in a phenomena-based model require

that the semantic relationship is-modeled-as identifying the assumed behavior be added to the

specifications of the corresponding modeling elements. Behavioral characterization operators that

make these desired modifications are listed in Table 4-17.

Use of these operators will be illustrated by the following declarations:

FLASH_MATL is-a material-content

is-material-content-in FLASH

122

has-vapor-phase FLASH_MATL_V

has-liquid-phase FLASH_MATL_L

The operation Specify_behavior(FLASH_MATL, “constant-pressure”) will result in the following

declarations:

FLASH_MATL is-a material-content

is-material-content-in FLASH

has-vapor-phase FLASH_MATL_V

has-vapor-phase FLASH_MATL_L

is-modeled-as constant-pressure

Table 4-17: Behavioral Characterization Operators

Operator Actions

∀ m ∀ s [modeled_unit(m) ∧ string(s) ∧ Specify_behavior(m, s)

⇒
∆v(vertex(v)),
Add_vertex(v, s),
Add_new_edge(m, v, “is-modeled-as”)]

Specifies a behavioral assumption for
modeled-unit m.

∀ m ∀ s [material_content(m) ∧ string(s) ∧ Specify_behavior(m, s)

⇒
∆v(vertex(v)),
Add_vertex(v, s),
Add_new_edge(m, v, “is-modeled-as”)]

Specifies a behavioral assumption for
material-content m.

4.5 Model Consistency Operators

Before a mathematical model is derived from the physicochemical description, the consistency of

the phenomena-based model should be verified. An inconsistency is detected when logical

operators make conflicting assertions about the state of the phenomena-based model. For

example, consider the following logical statements:

∀ x [A(x) ⇒ B(x)]

∀ x [C(x) ⇔ B(x)]

If, for a given x, A(x) is true and C(x) is false, then a logical inconsistency exists since B(x)

(asserted by the first implication) and ¬ B(x) (asserted by the second if-and-only-if implication)

123

cannot be true simultaneously.

The most readily ascertained inconsistencies in a phenomena-based model description

involve the hierarchical and topological allocation of fluxes, chemical species, and chemical

reactions in the model. In this section, operators that express necessary conditions for the state of

a phenomena-based model will be described. When these operators make assertions that conflict

with the hierarchical structure, topological structure, material-content, and chemical content

analysis operators defined in an earlier section, the existence of modeling inconsistencies is

detected. In a computer-aided environment, these operators may be used to provide feedback to

the modeler on the consistency of the phenomena-based model description, and possible

alternatives to resolve the problem. As an extension, additional operators may be defined that

invoke “chemical engineering judgement” for reviewing model simulation results in order to

evaluate and critique mechanistic assumptions made during model development.

4.5.1 Hierarchical Consistency

The hierarchical structure of a phenomena-based model allows the model to be viewed at multiple

levels of detail, where composite systems may be viewed as abstract control volumes or as

aggregates of more refined control volumes. For conservation principles to be expressed

consistently among the varying levels of detail, certain conditions must be true. Several rules for

the hierarchical consistency of a phenomena-based model are listed in Table 4-18. These

operators are applied iteratively throughout the hierarchical tree of modeled-units, ensuring

consistency among all levels of modeling detail.

The first operator in Table 4-18 states that any chemical species assumed to be present in

an composite parent unit must also be assumed to be present at least one subunit of the parent.

Conversely, the second operator states that any chemical species assumed to be present in a

subunit must also be present in the parent unit. Essentially, these operators state that the set of

species assumed for the parent unit must equal the union of the sets of species assumed for each

of the subunits, or ✁
subunits

iSS =

where

1. S is the set of species assumed to be present in the composite unit, and

124

2. Si is the set of species assumed to be present in the i
th subunit of the composite

unit.

Similarly, in the case of chemical reactions, the third and fourth operators state that✂
subunits

iRR =

where

1. R is the set of reactions assumed to occur in the composite unit, and

2. Ri is the set of reactions assumed to occur in the ith subunit of the composite unit.

These rules enforce that consistent conservation equations are derived, regardless of the level of

abstraction or refinement.

The fifth and sixth operators in Table 4-18 state that any flux entering (or leaving) the

boundary of a composite unit must enter (or leave) the boundary of one of the subunits of the

composite unit. Conversely, the seventh and eighth operators state that any flux entering (or

leaving) the boundary of a subunit of a composite unit that does not leave (or enter) the boundary

of another subunit of the composite unit (i.e., it is not an internal flux) must enter (or leave) the

boundary of the composite unit. The final related operator states that any internal flux between

two subunits of a composite unit cannot be a boundary flux of the composite unit. Essentially,

these rules state that

∩

−

= ✄✄✄

subunits

out

i

subunits

in

i

subunits

in

i

in
FFFF

and

∩

−

= ☎☎☎

subunits

in

i

subunits

out

i

subunits

out

i

out
FFFF

where

1. F
in is the set of fluxes assumed to enter the boundaries of the composite unit,

2. F
out is the set of fluxes assumed to leave the boundaries of the composite unit,

3. Fi
in is the set of fluxes assumed to enter the boundaries of the i

th subunit of the

composite unit, and

4. Fi
out is the set of fluxes assumed to leave the boundaries of the ith subunit of the

composite unit.

These rules enforce that the net flux of a conserved quantity into (or out of) a composite system

125

will equal the sum of the net fluxes of the conserved quantity into (or out of) each of its subunits.

If a phenomena-based model were to be viewed as a static entity, these hierarchical

consistency operators might seem irrelevant, since this abstraction is a many-to-one mapping that

can be automated. For example, why maintain the species and reaction assignment assumptions

for the parent unit separately, when they may be inferred as needed from the species and reaction

assignment assumptions for the subunits? Similarly, why maintain the boundary flux assumptions

when they may similarly be inferred from the boundary fluxes of the subunits? However, model

development is in fact an evolutionary process. During hierarchical model development of a

complex process, modelers can readily overlook these details, neglecting to carry over

assumptions (such as the presence of species and reactions) from one level to the next refined

level. By tracking and maintaining these assumptions at each level independently, such oversights

may be detected and pointed out to the modeler for rectification.

126

Table 4-18: Hierarchical Consistency Operators

Operator Actions

∀ m ∀ s [modeled_unit(m) ∧ species(s) ∧ has_species(m, s)

∧ has_subunits(m)

⇒
∃ x(has_subunit(m, x) ∧ has_species(x, s))]

Verifies that all species assigned to a
parent unit are also assigned to at least

one subunit of the parent unit.

∀ m ∀ p ∀ s [modeled_unit(m) ∧ modeled_unit(p) ∧ species(s)

∧ has_subunit(p, m) ∧ has_species(m, s)

⇒
has_species(p, s)]

Verifies that all species assigned to any
subunit of a parent unit are also

assigned to the parent unit.

∀ m ∀ r [modeled_unit(m) ∧ reaction(r) ∧ has_reaction(m, r)

∧ has_subunits(m)

⇒
∃ x(has_subunit(m, x) has_reaction(x, r))]

Verifies that all reaction assigned to a
parent unit are also assigned to at least

one subunit of the parent unit.

∀ m ∀ p ∀ r [modeled_unit(m) ∧ modeled_unit(p) ∧ reaction(r)

∧ has_subunit(p, m) ∧ has_reaction(m, r)

⇒
has_reaction(p, r)]

Verifies that all reactions assigned to
any subunit of a parent unit are also

assigned to the parent unit.

∀ m ∀ f [modeled_unit(m) ∧ flux(f) ∧ has_input_flux(m, f)

∧ has_subunits(m)

⇒
∃ s (has_subunit(m, s) ∧ has_input_flux(s, f))]

Verifies that any flux to a parent unit is
also a flux to a subunit of the parent

unit.

∀ m ∀ f [modeled_unit(m) ∧ flux(f) ∧ has_output_flux(m, f)

∧ has_subunits(m)

⇒
∃ s (has_subunit(m, s) ∧ has_output_flux(s, f))]

Verifies that any flux from a parent
unit is also a flux from a subunit of the

parent unit.

∀ f ∀ s ∀ m ∀ p [flux(f) ∧ modeled_unit(s) ∧ modeled_unit(m)

∧ modeled_unit(p) ∧ from(f, s) ∧ to(f, m) ∧ has_subunit(p, s)

∧ ¬has_subunit(p, m)

⇒
has_output_flux(p, f)]

Verifies that any flux from a subunit of
a parent unit to a unit that is not a

subunit of the parent unit is also a flux
from the parent unit.

∀ f ∀ s ∀ m ∀ p [flux(f) ∧ modeled_unit(s) ∧ modeled_unit(m)

∧ modeled_unit(p) ∧ from(f, m) ∧ to(f, s) ∧ has_subunit(p, s)

∧ ¬has_subunit(p, m)

⇒
has_input_flux(p, f)]

Verifies that any flux to a subunit of a
parent unit to a unit that is not a

subunit of the parent unit is also a flux
to the parent unit.

∀ f ∀ p ∀ s1 ∀ s2 [flux(f) ∧ modeled_unit(p) ∧ modeled_unit(s1)

∧ modeled_unit(s1) ∧ from(f, s1) ∧ to(f, s2)

∧ has_subunit(p, s1) ∧ has_subunit(p, s2)

⇒
¬has_input_flux(p, f) ∧¬ has_output_flux(p, f)]

Verifies that any flux between two
subunits of a parent unit is not a flux to

or from the parent unit.

127

4.5.2 Material Characterization Consistency

The conditions for consistency of the material characterization of a phenomena-based model are

related to those for hierarchical consistency. The associated rules are listed in Table 4-19.

The first two operators in Table 4-19 states that any chemical species assumed to be

present in an material unit (i.e., a modeled-unit with a material-content) must also be present in its

material-content and that, conversely, and chemical species assumed to be present in the material-

content must also be present in the associated modeled-unit. Essentially, these operators state

that

S
u = S

where

1. S
u is the set of species assumed to be present in the material unit, and

2. S is the set of species assumed to be present in material-content of the material

unit.

The third operator in Table 4-19 states that any chemical species assumed to be present in an

material-content must also be assumed to be present at least one phase of the material-content.

Conversely, the second operator states that any chemical species assumed to be present in a phase

must also be present in the material-content. Essentially, these operators state that✆
phases

iSS =

where

1. S is the set of species assumed to be present in the material-content, and

2. Si is the set of species assumed to be present in the i
th phase of the material-

content.

Similarly, in the case of chemical reactions, the fifth and sixth operators state that✝
phases

iRR =

where

1. R is the set of reactions assumed to occur in the modeled-unit associated with the

material-content, and

2. Ri is the set of reactions assumed to occur in the ith phase of the material-content.

128

The seventh and eighth operators state that any flux entering or leaving the boundaries of a

material unit must be a boundary flux of its material-content. Essentially,

B = Fin ∪ Fout

where

1. B is the set of boundary fluxes of a material-content,

2. F
in is the set of fluxes assumed to enter the boundaries of the associated modeled-

unit, and

3. F
out is the set of fluxes assumed to leave the boundaries of the associated modeled-

unit.

The above material characterization consistency operators may be viewed as extensions to the

hierarchical consistency operators, where a material-content is viewed as the single subsystem of

the modeled-unit, and the phases are viewed as subsystems of the material-content.

The final two rules in Table 4-19 require that convective or species boundary fluxes

leaving a material-content must either be “allocated” as leaving a particular phase of the material-

content, or this allocation must be determined from an associated vessel geometry and the port

position of the flux relative to the geometry. For example, a convective flux leaving a vapor-

liquid equilibrium system must be allocated to the vapor or liquid phase, determining the state of

the material transported by the convective flux. Since conservation equations will be derived for

the overall modeled-unit, and not the individual phases, the fluxes between the phases of a

material-content are not modeled. Therefore, all energy fluxes, and convective and species fluxes

entering a material-content, do not need to be allocated to a particular phase. This method of

model derivation is possible since phases in a material-content are by definition assumed to be in

thermodynamic equilibrium. Deriving conservation equations in this manner also avoids the

generation of high-index DAE models (that are difficult in initialize consistently for numerical

solution) associated with dynamic models of equilibrium systems (Ponton and Gawthrop, 1991).

129

Table 4-19: Material Characterization Consistency Operators

Operator Actions

∀ u ∀ m ∀ s [modeled_unit(u) ∧ material_content(m) ∧ species(s)

∧ has_material_content(u, m) ∧ has_species(u, s)

⇒ has_species(m, s)]

Verifies that any species assigned to a
material unit is also assigned to the

associated material-content.

∀ u ∀ m ∀ s [modeled_unit(u) ∧ material_content(m) ∧ species(s)

∧ has_material_content(u, m) ∧ has_species(m, s)

⇒ has_species(u, s)]

Verifies that any species assigned to a
material-content is also assigned to the

associated material unit.

∀ m ∀ s [material_content(m) ∧ species(s) ∧ has_species(m, s)

⇒
∃ p(phase(p) ∧ has_phase(m, p) ∧ has_species(p, s))]

Verifies that any species assigned to a
material-content is also assigned to at

least one phase of the material-content.

∀ p ∀ s ∀ m [phase(p) ∧ species(s) ∧ material_content(m)

∧ has_species(p, s) ∧ has_phase(m, p)

⇒ has_species(m, s)]

Verifies that any species assigned to a
phase is also assigned to the associated

material-content.

∀ u ∀ m ∀ r [modeled_unit(u) ∧ material_content(m) ∧ reaction(r)

∧ has_material_content(u, m) ∧ has_reaction(m, r)

⇒
∃ p(phase(p) ∧ has_phase(m, p) ∧ has_reaction(p, r))]

Verifies that any reaction assigned to a
material unit is also assigned to at least

one phase of the associated material-
content.

∀ p ∀ r ∀ m ∀ u [phase(p) ∧ reaction(r) ∧ material_content(m)

∧ has_reaction(p, r) ∧ has_phase(m, p)

∧ modeled_unit(u) ∧ has_material_content(u, m)

⇒ has_reaction(u, s)]

Verifies that any reaction assigned to a
phase is also assigned to modeled-unit of

the associated material-content.

∀ u ∀ m ∀ f [modeled_unit(u) ∧ material_content(m) ∧ flux(f)

∧ has_boundary_flux(u, f)

⇒
has_boundary_flux(m, f)]

Verifies that any boundary flux of a
material unit is a boundary flux of the

associated material-content.

∀ u ∀ m ∀ f [modeled_unit(u) ∧ material_content(m) ∧ flux (f)

∧ has_boundary_flux(m, f)

⇒
has_boundary_flux(u, f)]

Verifies that any boundary flux of a
material-content is a boundary flux of the

associated material unit.

∀ u ∀ m ∀ f [modeled_unit(u) ∧ material_content(m) ∧ flux (f)

∧ has_material_content(u, f) ∧ has_convective_output(u, f)

⇒
∃ p(phase(p) ∧ has_phase(m, p) ∧ allocated_to(m, p, f))

∨ ∃ g(geometry(g) ∧ has_geometry(m, g)

∧ allocated_to(m, g, f))]

Verifies that any convective flux from a
material unit is allocated to a phase or

the geometry of the associated material-
content.

∀ u ∀ m ∀ f [modeled_unit(u) ∧ material_content(m) ∧ flux (f)

∧ has_material_content(u, f) ∧ has_species_input(u, f)

⇒
∃ p(phase(p) ∧ has_phase(m, p) ∧ allocated_to(m, p, f))

∨ ∃ g(geometry(g) ∧ has_geometry(m, g)

∧ allocated_to(m, g, f))]

Verifies that any species flux from a
material unit is allocated to a phase or

the geometry of the associated material-
content.

4.5.3 Species Topology Rules

In sequential modular flowsheet simulators, the common paradigm for declaring relevant chemical

species is to assume a flowsheet wide basis. In other words, a set of chemical species is declared

130

for the entire flowsheet, and these species are assumed to occur in every system is the flowsheet.

Therefore, trivial balance equations are calculated for those species that are not present (i.e., the

flow rates of the species in all streams connected to the unit is zero). In an equation-based model,

however, such an assumption would unnecessarily increase the number of and complexity of the

model equations, making subsequent structural analysis and numerical solution less robust and

more time consuming. Furthermore, the inclusion of trivial equations often leads to numerical

singularities during solution. To avoid these difficulties, the MODEL.LA modeling language

allows a finer allocation of chemical species to individual modeled-units and even individual

phases within the phenomena-based model. This prevents the derivation of unnecessary model

equations (e.g., balances for species that are not present in a particular modeled-unit) and reduces

the complexity of equations that are derived (e.g., terms representing the contribution of a zero

concentration species to an equation that describes the specific enthalpy of a phase are not

included).

The methodology of localized species allocation does introduce the possibility of

inconsistencies in the phenomena-based model definition. Operators that detect these

inconsistencies are listed in Table 4-20. The first operator state that all species entering a system

due to transport by a flux must appear in that system. For species fluxes, the transported species

is assigned directly. For convective fluxes, the species transported are determined by species

present in the upstream, or source, unit. If the source unit is a blackbox, all species in the

modeled-unit are assumed to be transported by the flux. If the source unit is a material unit and

the flux is allocated to the geometry of the material-content, all species in the material-content are

assumed to be transported by the flux. If the source unit is a material unit and the flux is allocated

to a phase of the material-content, all species in the phase are assumed to be transported by the

flux. The second operator states that for any species flux, the source unit must also contain the

species transported by the flux. The third operator states that any species participating in a

reaction that is assumed to occur in a modeled-unit or phase, must appear in that modeled-unit or

phase. Finally, the last operator is applied for steady-state models only. Since there is no initial

holdup of species considered in the modeled-units of a steady-state model, any species appearing

in a modeled-unit must be transported to the modeled-unit by a flux, or appear there due to a

chemical reaction.

131

Table 4-20: Species Topology Consistency Operators

Operator Actions

∀ f ∀ s ∀ m [flux(f) ∧ species(s) ∧ modeled_unit(m)

∧ has_convective_input(m, f) ∧ transports_species(f, s)

⇒
has_species(m, s)]

For convective fluxes from a blackbox
source unit, verifies that any species in
the source unit appears in the sink unit.

∀ f ∀ s ∀ m [flux(f) ∧ species(s) ∧ species_flux(f, s) ∧ modeled_unit(m)

∧ has_species_output(m, s)

⇒
has_species(m, s)]

For species fluxes, verifies that the
transported species appears in the

source unit.

∀ r ∀ m ∀ s[reaction(r) ∧ reaction_element(m) ∧ species(s)

∧ has_participant(r, s) ∧ has_reaction(m, r)

⇒
has_species(m, s)]

Verifies that all participating species in
a reaction that occurs in a modeled-

unit or phase appears in the modeled-
unit or phase.

∀ s ∀ m [species(s) ∧ modeled_unit(m) ∧ has_species(m, s)

⇒
∃ f (flux(f) ∧ transports_species(f, s) ∧ has_input_flux(m, f)

∨ ∃ r (reaction(r) ∧ has_product(r, s) ∧ has_reaction(m, r)]

In steady-state models, verifies any
species in a modeled-unit is

transported to the modeled-unit by a
flux, or appears as a product of a

reaction assigned to the modeled-unit.

The methodology of localized species allocation does increase the number of declarations

that a modeler must make during model formulation. However, this burden is usually outweighed

by the benefits of reduced computational complexity, memory, and time required during

derivation, analysis, and solution of the resulting model equations. Finally, if localized allocation

does not apply (i.e., all species are assumed to occur in all systems in the process model) a

specification in the derivation context of the phenomena-based model definition may assume the

global species declaration paradigm, thus making localized unit-by-unit allocations unnecessary.

4.6 Model Completeness Operators

In addition to inconsistencies, a phenomena-based model should be checked for model

incompleteness. Various aspects regarding the complete specification of a phenomena-based

model are dictated by the context-free grammar that describes the syntax of the MODEL.LA

modeling language. In the context of the phenomena-based model digraph, these specifications

can expressed as logical operators that convey necessary decisions and assumptions for each of

the modeling elements. Completeness operators also verify that complementary relationships

exist between associated modeling elements. Selected examples of such operators are listed in

Table 4-21.

132

Table 4-21: Model Completeness Operators

Operator Actions

∀ p ∀ s [modeled_unit(p) ∧ modeled_unit(s) ∧ has_subunit(p, s)

⇔
is_subunit_of(m, u)]

Verifies that the complementary
associations are made for composite

unit and subunits.

∀ m [distributed_unit(m) ⇒
∃ s (coordinate_system(s) ∧ has_coordinate_system(m, s))

∧ ∃ d (distributed_dimension(d) ∧
has_distributed_dimension(m, d))]

Verifies that every distributed unit
has a coordinate system selected with

at least one distributed dimension

∀ m [material_content(x)

⇒
∃ u (modeled_unit(u) ∧ is_material_content_of(m, u))

∧ ∃ p (phase(p) ∧ has_phase(m, p))

∧ ∃ s (species(s) ∧ has_species(m, s))]

Verifies that every material-content
is associated with a modeled-unit
and has at least one phase and one

chemical species.

∀ m ∀ u [material_content(m) ∧ modeled_unit(u)

∧ has_material_content(u, m)

⇔
is_material_content_of(m, u)]

Verifies that the complementary
associations are made for materials

and modeled-units.

∀ m ∀ p [material_content(m) ∧ phase(p) ∧ has_phase(m, p)

⇔
is_phase_in(p, m)]

Verifies that the complementary
associations are made for all

materials and phases.

∀ p [phase(p)

⇒
∃ m (material_content(m) ∧ is_phase_in(p, m))

∧ ∃ s (species(s) ∧ has_species(m, s))

∧ (∃ e (equation_of_state(e) ∧ has_equation_of_state(p, e))

∨ ∃ a (activity_coefficient_model(a)

∧ has_activity_coefficient_model(p, a)))]

Verifies that every phase is
associated with a material-content,
has at least one chemical species,

and is characterized mechanistically.

∀ f [flux(f)

⇒
∃ m (modeled_unit(m) ∧ from(f, m))

∧∃ m (modeled_unit(m) ∧ to(f, m))

∧∃ t (transport_mechanism(t) ∧ has_transport_mechanism(f, t))

Verifies that every flux has a source
and sink unit, and is characterized

mechanistically.

∀ f [convective_flux(f)

⇒
∃ e (equation_of_state(e) ∧ has_equation_of_state(f, e))

Verifies that the material transported
by every convective flux is

characterized mechanistically.

∀ f [species_flux(f) ⇒
∃ s (species(s) ∧ transports_species(f, s))]

Verifies that every species flux has a
species associated with it

∀ f ∀ m [flux(f) ∧ modeled_unit(m) ∧ to(f, m)

⇔
has_input_flux(m, f)]

Verifies that the complementary
associations are made for all input

fluxes and modeled-units.

∀ f ∀ m [flux(f) ∧ modeled_unit(m) ∧ from(f, m)

⇔
has_output_flux(m, f)]

Verifies that the complementary
associations are made for all output

fluxes and modeled-units.

∀ r [reaction(r)⇒
∃ s (species(s) ∧ has_reactant(r, s))

∧ ∃ s (species(s) ∧ has_product(r, s))]

Verifies that every reaction has
reactant and product species

selected.

133

Similar to model inconsistency operators, model incompleteness is detected when the

completeness operators make assertions about the state of the phenomena-based model that

conflict with the hierarchical structure, topological structure, material-content, and chemical

content analysis operators. In a computer-aided environment, these operators may be used to

provide feedback to the modeler on the completeness of the phenomena-based model description.

4.7 Model Derivation Operators

The semantics of the MODEL.LA modeling language are best characterized by the set of logical

operators that map the phenomena-based model description into the corresponding mathematical

equation-based representation. In this manner, the procedural operators defined in this section

formally describe the impact of individual modeling assumptions made on the resulting

mathematical model. With these formalisms, the modeling logic of MODEL.LA makes it possible

to not only automatically derive a mathematical models from the phenomena-based description,

but also to explain the basis of the resulting equations, terms, and variables of the model in terms

of the operators and the assumptions that produced it.

In this section, elements that represent the mathematical model are also introduced. The

set of mathematical equations composing the model is identified by the predicate

model_equations(x). An equation is identified by the predicate equation(x). The predicate

generic_variable(x) identifies any elementary variable (e.g., a), or any composite variable (e.g.,

sin(a)+b*c) resulting from any combination of elementary or binary mathematical operations.

Finally, variables appearing in courier font represent elementary variables associated with each

modeling element (e.g., temperature(x)). These mathematical modeling elements and

operations are assumed to be intrinsic.

4.7.1 Chemical Species Conservation Equation Derivation

Each modeled-unit in a phenomena-based model represents a control volume defined by the

modeler. Consequently, equations expressing the conservation of mass for all relevant chemical

species are derived for each modeled-unit. This relationship is expressed generically for species i

as:

134

∑∑∑ +−=
reactions

jij

fluxes
output

ij

fluxes
input

ij

i nn
dt

dN ξυ

where:

1. Ni is the molar holdup of species i within the boundaries of the modeled-unit,

2. nij is the molar flux of species i crossing the boundaries of the modeled-unit due to the

j
th flux into or out the modeled-unit,

3. νij is stoichiometry of species i in reaction j, and

4. ξ j is the molar extent of the jth reaction that is assumed to occur within the boundaries

of the modeled-unit.

This derivation holds at any level of modeling detail, for both composite and elementary modeled-

units. The logical operators that characterize this mathematical model deriviation based on

chemical species conservation are listed in Table 4-22.

135

Table 4-22: Species Conservation Derivation Operators

Operator Actions

∀ X ∀ m ∀ s [model_equations(X) ∧ modeled_unit(m) ∧ species(s)

∧ has_species(m, s)

⇒
include_species_balance(X, m, s)]

Identifies when an equation
expressing the conservation of mass

of species s in modeled-unit m is
required in the set of model equations

X.

∀ X ∀ m ∀ s [model_equations(X) ∧ modeled_unit(m) ∧ species(s)

∧ include_species_balance(X, m, s)

⇒
∆e(equation(e)),
species_balance(m, s, e),
X := X ∪ e]

Creates equation e, which expresses
conservation of mass of species s in

modeled-unit m, and adds e to the set
of model equations X.

∀ m ∀ s ∀ e [modeled_unit(m) ∧ species(s) ∧ equation(e)

∧ species_balance(m, s, e)

⇒
∆v1(generic_variable(v1)),
species_accumulation_term(m, s, v1),
∆v2(generic_variable(v2)),
species_boundary_flux_terms(m, s, v2),
∆v3(generic_variable(v3)),
species_source_terms(m, s, v3),
e := v1 = v2 + v3]

Creates terms of equation e, which
express conservation of mass of

species s in modeled-unit m.

∀ m ∀ s ∀ v [modeled_unit(m) ∧ species(s) ∧ generic_variable(v)

∧ species_accumulation_term(m, s, v)

⇒
v := d(molar_holdup(m, s))/dt]

Defines term v, which expresses
accumulation of mass of species s in

modeled-unit m.

∀ m ∀ s ∀ v1 [modeled_unit(m) ∧ species(s) ∧ generic_variable(v1)

∧ species_boundary_flux_terms(m, s, v1)

⇒
∀ f [flux(f) ∧ transports_species(f, s) ∧ has_input_flux(m, f)

⇒
v1 := v1 + species_mole_flux(f, s)]

∀ f [flux(f) ∧ tranports_species(f, s) ∧ has_output_flux(m, f)

⇒
v1 := v1 – species_mole_flux(f, s)]]

Defines composite term v1, which
expresses transport of mass of species
s across boundaries of modeled-unit

m.

∀ m ∀ s ∀ v [modeled_unit(m) ∧ species(s) ∧ generic_variable(v)

∧ species_source_terms(m, s, v)

⇒
∀ r [reaction(r) ∧ has_reaction(m, r) ∧ has_species(r, s)

⇒
v := v + stoichiometry(r, s) *

reaction_extent(m, r)]]

Defines composite term v, which
expresses generation and

consumption of mass of species s
within boundaries of modeled-unit m

due to chemical reactions.

136

Alternatively, for a composite modeled-unit, the net molar holdup for any species may be

expressed as a summation of the individual molar holdups for each of its subunits:

∑=
subunits

iji NN

where:

1. Ni is the molar holdup of species i within the boundaries of the composite modeled-

unit, and

2. Nij is the molar holdup of species i within the boundaries of the j
th subunit of the

composite modeled-unit.

The logical operators that characterize this mathematical model derivation expressing the

aggregation of control volumes into a composite control volume are listed in Table 4-23.

Table 4-23: Species Aggregation Derivation Operators

Operator Actions

∀ X ∀ m ∀ s [model_equations(X) ∧ modeled_unit(m) ∧ species(s)

∧ has_subunits(m) ∧ has_species(m, s)

⇒
∆e(equation(e)),
sum_composite_species_holdup(m, s, e),
X := X ∪ e]

Creates equation e, which expresses
holdup of mass of species s in composite

modeled-unit m, and adds e to set of
model equations X.

∀ m ∀ s ∀ e [modeled_unit(m) ∧ species(s) ∧ equation(e)

∧ sum_composite_species_holdup(m, s, e)

⇒
∆v1(generic_variable(v1)),
v1 = molar_holdup(m, s),
∆v2(generic_variable(v2)),

∀ u [modeled_unit(u) ∧ has_subunit(m, u)

∧ has_species(u, s)

⇒
v2 := v2 + molar_holdup(u, s)]
e := v1 = v2]

Creates terms of equation e, which
express holdup of mass of species s of

composite modeled-unit m, by summing
over the individual holdups of species s

for each subunit of m.

137

For each convective flux, the molar flux of species i is expressed as:

nxn ii *=

where:

1. ni is the molar flux of species i due to the convective flux,

2. xi is the mole fraction of species i in the material transported by the convective flux,

and

3. n is the total molar flux due to the convective flux.

The logical operator that characterizes this mathematical model derivation is listed in Table 4-24.

Table 4-24: Convective Species Transport Derivation Operator

Operator Actions

∀ X ∀ f ∀ s [model_equations(X) ∧ convective_flux(f) ∧ species(s)

∧ transports_species(f, s)

⇒
∆e(equation(e)),
e := species_mole_flux(f, s)

= species_mole_fraction(f, s)*mole_flux(f),
X := X ∪ e]

Creates equation e, which expresses
transport of mass of species s due to
convective flux f as fraction of total
mass transport, and adds e to set of

model equations X.

4.7.2 Energy Conservation Equation Derivation

Equations expressing the conservation of energy are also derived for each modeled-unit. This

relationship is expressed generically as:

∑∑ −=
fluxes
output

i

fluxes
input

i ee
dt

dU

where:

1. U is the holdup of internal energy within the boundaries of the modeled-unit, and

2. ei is the flux of energy crossing the boundaries of the modeled-unit due to the ith flux

into or out of the modeled-unit.

This derivation holds at any level of modeling detail, for both composite and elementary modeled-

units. The form of the accumulation term assumes that changes in the potential and kinetic energy

of the system are negligible. If this assumption is not valid, the derivation can be readily extended

to account for these effects. The logical operators that characterize this mathematical model

deriviation based on energy conservation are listed in Table 4-25.

138

Table 4-25: Energy Conservation Derivation Operators

Operator Actions

∀ X ∀ m [model_equations(X) ∧ modeled_unit(m)

⇒
include_energy_balance(X, m)]

Identifies when an equation expressing
the conservation of energy in modeled-
unit m is required in the set of model

equations X.

∀ X ∀ y [model_equations(X) ∧ modeled_unit(m)

∧ include_energy_balance(X, m)

⇒
∆e(equation(e)),
energy_balance(m, e),
X := X ∪ e]

Creates equation e, which expresses
conservation of energy for modeled-
unit m, and adds e to set of model

equations X.

∀ m ∀ e [modeled_unit(m) ∧ equation(e) ∧ energy_balance(m, e)

⇒
∆v1(generic_variable(v1)),
energy_accumulation_term(m, v1),
∆v2(generic_variable(v2)),
energy_boundary_flux_terms(m, v2),
e := v1 = v2]

Creates terms of equation e, which
express conservation of energy in

modeled-unit m .

∀ m ∀ v [modeled_unit(m) ∧ generic_variable(v)

∧ energy_accumulation_term(m, v)

⇒
y := d(internal_energy(m))/dt]

Defines term v, which expresses
accumulation of internal energy in

modeled-unit m.

∀ m ∀ v1 [modeled_unit(m) ∧ generic_variable(v1)

∧ energy_boundary_flux_terms(m, v)

⇒
∀ f [flux(f) ∧ has_input_flux(m, f)

⇒
v1 := v1 + energy_flux(f)]

∀ f [flux(f) ∧ has_output_flux(m, f)

⇒
v1 := v1 - energy_flux(f)]]

Defines composite term v1, which
expresses transport of energy across

boundaries of modeled-unit m.

139

Alternatively, for a composite modeled-unit, the net holdup of internal energy may be expressed

as a summation of the individual holdups of internal energy for each of its subunits:

∑=
subunits

iUU

where:

1. U is the holdup of internal energy within the boundaries of the composite modeled-

unit, and

2. Ui is the holdup of internal energy within the boundaries of the i
th subunit of the

composite modeled-unit.

The logical operators that characterize this mathematical model derivation expressing the

aggregation of control volumes into a composite control volume are listed in Table 4-26:

Table 4-26: Internal Energy Aggregation Derivation Operators

Operator Actions

∀ X ∀ m [model_equations(X) ∧ modeled_unit(m) ∧ has_subunits(m)

⇒
∆e(equation(e)),
sum_composite_internal_energy_holdup(m, e),
X := X ∪ e]

Creates equation e, which expresses
holdup of internal energy of composite

modeled-unit m, and adds e to set of
model equations X.

∀ m ∀ e [modeled_unit(m) ∧ equation(e)

∧ sum_composite_internal_energy_holdup(m, e)

⇒
∆v1(generic_variable(v1)),
v1 = internal_energy(m),
∆v2(generic_variable(v2)),

∀ u [modeled_unit(u) ∧ has_subunit(m, u)

⇒
v2 := v2 + internal_energy(u)]

e := v1 = v2]

Creates terms of equation e, which
express holdup of internal energy of

composite modeled-unit m, by summing
over the individual holdups of internal

energy for each subunit of m.

140

For each convective and species flux, the energy flux is expressed as:

nhe *=

where:

1. e is the energy flux due to the flux,

2. h is the specific enthalpy of the material transported by the flux, and

3. n is the total molar flux due to the flux.

Again, effects due to potential and kinetic energy are assumed to be negligible, but can readily be

appended. The logical operator that characterizes this mathematical model derivation is listed in

Table 4-27:

Table 4-27: Energy Transport Derivation Operator

Operator Actions

∀ X ∀ f ∀ v [model_equations(X)

∧ (convective_flux(f) ∨ species_flux(f))

⇒
∆e(equation(e)),
e := energy_flux(f) =

specific_enthalpy(f)*mole_flux(f)
X := X ∪ e]

Creates equation e, which expresses
transport of energy due to convective of

species flux f as product of specific
enthalpy and total mass transport, and

adds e to set of model equations X.

4.7.3 Chemical Reaction Rate Equation Derivation

For each rate-based volumetric reaction in a phase, where the rate of reaction is defined as a

function of the intensive properties of the phase, the extent of reaction is expressed as:

Vrr reverseforward)(−=ξ

where:

1. ξ is the net extent of reaction in the phase,

2. rforward and rreverse are the forward and reverse rates of reaction, respectively, and

3. V is the total volume of the phase.

The logical operators that characterize this mathematical model deriviation are listed in Table

4-28.

141

Table 4-28: Chemical Reaction Rate Derivation Operators

Operator Actions

∀ X ∀ p ∀ r [model_equations(X) ∧ phase(p) ∧ reaction(r)

∧ has_reaction(p, r)

⇒
∆e(equation(e)),

∆v(generic_variable(v)),
net_rate_of_reaction(p, r, v),
e := extent_of_reaction(p, r) = v * volume(p)
X := X ∪ e]

Creates equation e, which expresses net
rate of reaction of reaction r in phase p,
and adds e to set of model equations X.

∀ p ∀ r ∀ v [phase(p) ∧ reaction(r) ∧ generic_variable(v) ∧
reversible(r)

∧ net_rate_of_reaction(p, r, v)

⇒
v := forward_rate_of_reaction(p, r)

-reverse_rate_of_reaction(p, r)]

Creates variable v, which expresses net
rate of reaction for reversible reaction r.

∀ p ∀ r ∀ v [phase(p) ∧ reaction(r) ∧ generic_variable(v)

∧ irreversible(r) ∧ net_rate_of_reaction(p, r, v)

⇒
v := forward_rate_of_reaction(p, r)]

Creates variable v, which expresses net
rate of reaction for irreversible reaction r.

4.7.4 Material-Content Characterization Equation Derivation

An elementary modeled-unit modeled as a blackbox is not associated with any internal intensive

quantities. However, when an elementary modeled-unit is assumed to contain a material-content,

the control volume defined by the modeled-unit is assumed to encompass a region with no internal

boundaries containing one or more phases at equilibrium. For such a system, additional equations

are derived to capture the intensive characterization of these phases. Furthermore, each extensive

quantity characterizing a modeled-unit with a material-content is derived as a summation of the

corresponding quantity for each phase in the material-content. This is expressed generically as:

∑=
phases

iBB

where:

1. B is the holdup in the material-content of extensive quantity B (e.g., volume, internal

energy, species moles, etc.), and

2. Bi is the corresponding holdup of quantity B in the ith phase of the material-content.

The logical operators that characterize this mathematical model derivation are listed in Table

4-29.

142

Table 4-29: Material-Content Aggregation Operators

Operator Actions

∀ X ∀ m [model_equations(X) ∧ material_content(m)

⇒
∆e(equation(e)),
decompose_volume(m, e),
X := X ∪ e]

Creates equation e, which decomposes
volume of material-content m as

summation of volumes of individual
phase, and adds e to set of model

equations X.

∀ m ∀ e [material_content(m) ∧ equation(e) ∧ decompose_volume(m, e)

⇒
∆v1(generic_variable(v1)),
v1 := volume(m),
∆v2(generic_variable(v2)),
sum_phase_volumes(m, v2)),
e := v1 = v2]

Creates terms of equation e, which
decompose volume of material-

content m as summation of volumes of
individual phases.

∀ m ∀ v1 [material_content(m) ∧ generic_variable(v)

∧ sum_phase_volumes(m, v)

⇒
∀ p [phase(p) ∧ has_phase(m, p)

⇒
v := v + volume(p)]]

Creates composite term v, which
expresses summation of volumes for

each phase of material-content m.

∀ X ∀ m [model_equations(X) ∧ material_content(m)

⇒
∆e(equation(e)),
decompose_internal_energy(m, e),
X := X ∪ e]

Creates equation e, which decomposes
internal energy of material-content m
as summation of internal energies of
individual phase, and adds e to set of

model equations X.

∀ m ∀ e [material_content(m) ∧ equation(e)

∧ decompose_internal_energy(m, e)

⇒
∆v1(generic_variable(v1)), v1 := internal_energy(m),

∆v2(generic_variable(v2)), sum_phase_internal_energy(m,
v2)),
e := v1 = v2]

Creates terms of equation e, which
decomposes internal energy of

material-content m as summation of
internal energies of individual phases.

∀ m ∀ v1 [material_content(m) ∧ generic_variable(v)

∧ sum_phase_internal_energy(m, v)

⇒
∀ p [phase(p) has_phase(m, p)

⇒
v := v + internal_energy(p)]]

Creates composite term v, which
expresses summation of internal

energies for each phase of material-
content m.

∀ X ∀ m ∀ s [model_equations(X) ∧ material_content(m) ∧ species(s)

∧ has_species(m, s)

⇒
∆e(equation(e)),
decompose_species_holdup(m, s, e),
X := X ∪ e]

Creates equation e, which decomposes
holdup of species s of material-

content m as summation of holdups of
species s of individual phases, and
adds e to set of model equations X.

∀ m ∀ s ∀ e [material_content(m) ∧ species(s) ∧ equation(e)

∧ decompose_species_holdup(m, s, e)

⇒
∆v1(generic_variable(v1)),
v1 := species_holdup(m, s),

Creates terms of equation e, which
decomposes holdup of species s of

material-content m as summation of
holdups of species s of individual

phases.

143

∆v2(generic_variable(v2)),
sum_phase_species_holdup(m, s, v2)),
e := v1 = v2]

∀ m ∀ s ∀ v1 [material_content(m) ∧ species(s) ∧ generic_variable(v)

∧ sum_phase_species_holdup(m, s, v)

⇒
∀ p [phase(p) ∧ has_phase(m, p) ∧ has_species(s)

⇒
v := v + species_holdup(p, s)]]

Creates composite term v, which
expresses summation of holdups of
species s for each phase of material-

content m.

Equations expressing physical, thermal, and chemical equilibria among phases of a material-

content are derived by equating the corresponding equilibrium quantities for each phase. This

relationship is expressed generically as:

iBB =

where:

1. B is the equilibrium quantity of the material-content (e.g., temperature, pressure,

chemical species fugacity), and

2. Bi is the corresponding quantity of the ith phase of the material-content.

The logical operators that characterize this mathematical model deriviation based on

thermodynamic equilibrium are listed in Table 4-30.

144

Table 4-30: Phase Equilibrium Derivation Operators

Operator Actions

∀ X ∀ m ∀ p [model_equations(X) ∧ material_content(m) ∧ phase(p)

∧ has_phase(m, p)

⇒
∆e(equation(e)),
thermal_equilibrium(m, p, e),
X := X ∪ e]

Creates equation e, which expresses
thermal equilibrium for phase p of

material-content m, and adds e to set
of model equations X.

∀ m ∀ p ∀ e [material_content(m) ∧ phase(p) ∧ equation(e)

∧ thermal_equilibrium(m, p, e)

⇒
e := temperature(m)= temperature(p)]

Creates terms of equation e, which
express thermal equilibrium for

phase p of material-content m, by
equating temperature of phase to

overall material-content temperature.

∀ X ∀ m ∀ p [model_equations(X) ∧ material_content(m) ∧ phase(p)

∧ has_phase(m, p)

⇒
∆e(equation(e)),
physical_equilibrium(m, p, e),
X := X ∪ e]

Creates equation e, which expresses
physical equilibrium for phase p of

material-content m, and adds e to set
of model equations X.

∀ m ∀ p ∀ e [material_content(m) ∧ phase(p) ∧ equation(e)

∧ physical_equilibrium(m, p, e)

⇒
e := pressure(m)= pressure(p)]

Creates terms of equation e, which
express physical equilibrium for

phase p of material-content m, by
equating pressure of phase to overall

material-content pressure.

∀ X ∀ m ∀ p ∀ s [model_equations(X) ∧ material_content(m) ∧ phase(p)

∧ species(s) ∧ has_phase(m, p) ∧ has_species(p, s)

⇒
∆e(equation(e)),
chemical_equilibrium(m, p, s, e),
X := X ∪ e]

Creates equation e, which expresses
chemical equilibrium of species s for
phase p of material-content m, and
adds e to set of model equations X.

∀ m ∀ p ∀ s ∀ e [material_content(m) ∧ phase(p) ∧ species(s) ∧
equation(e)

∧ chemical_equilibrium(m, p, s, e)

⇒
∆v2(generic_variable(v1)),
fugacity_model(p, s, v1),
e := fugacity(m, s)= v1]

Creates terms of equation e, which
express chemical equilibrium of
species s for phase p of material-
content m, by equating fugacity of

species s for phase to overall
material-content fugacity of species

s.

∀ p ∀ s ∀ e ∀ v [phase(p) ∧ species(s) ∧ equation_of_state(e)

∧ has_equation_of_state(p, e) ∧ generic_variable(v)

∧ fugacity_model(p, s, v)

⇒
v1 := mole_fraction(p, s) *

 fugacity_coefficient(p, s) * pressure(p)]

Creates composite term v, which
expresses fugacity of species s for
phase p modeled using equation of

state e.

∀ p ∀ s ∀ a ∀ v [phase(p) ∧ species(s) ∧ activity_coefficient(a)

∧ has_activity_coefficient(p, a) ∧ generic_variable(v)

∧ fugacity_model(p, s, v)

⇒
v1 := mole_fraction(p, s) *
activity_coefficient(p, s) * vapor_pressure(p, s)]

Creates composite term v, which
expresses fugacity of species s for

phase p modeled using activity
coefficient model a.

145

4.7.5 Phase Characterization Equation Derivation

The total molar holdup of a phase is derived as a summation over the individual species molar

holdups in the phase. This is expressed generically as:

∑=
species

iNN

where:

1. N is the total molar holdup in the phase, and

2. Ni is the total molar holdup of the ith species in the phase.

The logical operators that characterize this mathematical model deriviation are listed in Table

4-31.

Table 4-31: Phase Species Aggregation Operators

Operator Actions

∀ X ∀ p [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
decompose_molar_holdup(p, e),
X := X ∪ e]

Creates equation e, which expresses
total molar holdup of phase p as

summation of individual species molar
holdups, and adds e to set of model

equations X.

∀ p ∀ e [phase(p) ∧ equation(e) ∧ decompose_molar_holdup(m, e)

⇒
∆v1(generic_variable(v1)),
v1 := molar_holdup(p),
∆v2(generic_variable(v2)),

∀ s [species(s) has_species(p, s)

⇒
v2 := v2 + species_holdup(p, s)]
e := v1 = v2]

Creates terms of equation e, which
expresses total molar holdup of phase p

as summation of individual species
molar holdups.

The sum of species mole fractions of a phase must equal unity. This is expressed generically as:

1=∑
species

ix

where:

1. xi is the mole fraction of the ith species in the phase.

The logical operators that characterize this mathematical model deriviation are listed in Table

4-32.

146

Table 4-32: Species Fraction Summation Operators

Operator Actions

∀ X ∀ p [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
sum_species_mole_fractions(p, e),
X := X ∪ e]

Creates equation e, which expresses
summation of individual species molar

fraction of phase p as equal to unity, and
adds e to set of model equations X.

∀ p ∀ e [phase(p) ∧ equation(e) ∧ sum_species_mole_fractions(m, e)

⇒
∆v(generic_variable(v)),

∀ s [species(s) has_species(p, s)

⇒
v := v + species_mole_fraction(p, s)]
e := v = 1]

Creates equation e, which expresses
summation of individual species molar

fraction of phase p as equal to unity, and
adds e to set of model equations X.

The total species molar holdup of a phase is equal to the product of the species mole fraction and

the total molar holdup of the phase. This is expressed generically as:

NxN ii =

where:

1. Ni is the total molar holdup of the ith species in the phase,

2. xi is the mole fraction of the ith species in the phase, and

3. N is the total molar holdup in the phase.

The logical operator that characterizes this mathematical model deriviation is listed in Table 4-33

Table 4-33: Species Holdup Derivation Operators

Operator Actions

∀ X ∀ p ∀ s [model_equations(X) ∧ phase(p) ∧ species(s)

∧ has_species(p, s)

⇒
∆e(equation(e)),
e := species_molar_holdup(p, s) =

 species_mole_fraction(p, s) * molar_holdup(p),
X := X ∪ e]

Creates equation e, which expresses
total molar holdup of phase p as

product of molar fraction and molar
holdup of species s, and adds e to

set of model equations X.

Note that for a given phase, the set of equations formed by the operator in Table 4-33, the

operators in Table 4-32, and the operators in Table 4-31 contains one redundant equation that

must be excluded from the mathematical model. With regard to the structural analysis of the

degrees of freedom of the model equations, it is best to include both summation equations, and

147

eliminate one of the equations formed by the operator in Table 4-33.

The total species molar holdup of a phase is equal to the product of the species

concentration and the total volume of the phase. This is expressed generically as:

VcN ii =

where:

1. Ni is the total molar holdup of the ith species in the phase,

2. ci is the molar concentration of the ith species in the phase, and

3. V is the total volume of the phase.

The logical operator that characterize this mathematical model deriviation is listed in Table 4-34.

Table 4-34: Species Concentration Derivation Operators

Operator Actions

∀ X ∀ p ∀ s [model_equations(X) ∧ phase(p) ∧ species(s)

∧ has_species(p, s)

⇒
∆e(equation(e)),
e := species_molar_holdup(p, s)

= species_concentration(p, s) * volume(p),
X := X ∪ e]

Creates equation e, which expresses
total molar holdup of species s for phase

p as product of molar species
concentration and volume, and adds e to

set of model equations X.

The equations derived by the operator in Table 4-34 introduce the definition of molar species

concentrations into the model, which are frequently used in mechanistic characterizations of

species transport mechanisms and reaction rate laws.

The total molar holdup of a phase is equal to the product of the density and the total

volume of the phase. This is expressed generically as:

VN ρ=

where:

1. N is the total molar holdup of the phase,

2. ρ is the molar density of the phase, and

3. V is the volume of the phase.

The operators that characterize this mathematical model deriviation are listed in Table 4-35.

148

Table 4-35: Phase Density Derivation Operators

Operator Actions

∀ X ∀ p ∀ s [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
e := molar_holdup(p)

= molar_density(p) * volume(p),
X := X ∪ e]

Creates equation e, which expresses total
molar holdup of phase p as product of

molar density and volume, and adds e to set
of model equations X.

The equations derived by the operator in Table 4-35 introduce the definition of molar density (or

its inverse, specific volume) into the mathematical model.

The total internal energy of a phase is equal to the product of the specific internal energy

and the total molar holdup of the phase. This is expressed generically as:

uNU =

where:

1. U is the total internal energy of the phase,

2. u is the specific internal energy of the phase, and

3. N is the total molar holdup of the phase.

The logical operators that characterize this mathematical model deriviation are listed in Table

4-36.

Table 4-36: Phase Internal Energy Derivation Operators

Operator Actions

∀ X ∀ p ∀ s [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
e := internal_energy(p)

= specific_internal_energy(p)
* molar_holdup(p),

X := X ∪ e]

Creates equation e, which expresses
total internal energy of phase p as

product of specific internal energy and
molar holdup, and adds e to set of

model equations X.

4.7.6 Mechanistic Characterization Equation Derivation

Mechanistic characterizations of fluxes and reactions introduce additional relationships into the

mathematical model. Constitutive equations for flux transport mechanisms are used to derive the

net rate of flux of the transported material, energy, or species as a function of the properties of the

149

two interconnected modeled-units. Reaction rate laws are used to derive the rate of reaction in a

phase as a function of properties (e.g., temperature, species concentrations, partial pressures, etc)

of that phase. Operators that characterize these mathematical model derivations are listed in

Table 4-37.

Table 4-37: Mechanistic Characterization Operators

Operator Actions

∀ X ∀ p ∀ r ∀ l [model_equations(X) ∧ phase(p) ∧ reaction(r)

∧ rate_law(l) ∧ has_reaction(p, r) ∧ has_rate_law(r, l)

⇒
∆e(equation(e)),
reaction_rate_law_of_reaction(p, r, e),
X := X ∪ e]

Creates equation e, which expresses rate
of reaction for reaction r in phase p

using an assumed kinetic rate law, and
adds e to set of model equations X.

∀ X ∀ p ∀ m [model_equations(X) ∧ flux(p)

∧ transport_mechanism(m)

∧ has_transport_mechanism(f, ml)

⇒
∆e(equation(e)),
transport_mechanism_rate_law(f, m, e),
X := X ∪ e]

Creates equation e, which expresses rate
of transport for flux f using an assumed
transport mechanism, and adds e to set

of model equations X.

∀ f ∀ m ∀ e [energy_flux(f) ∧ mechanism(m) ∧ equation(e)

∧ has_mechanism(m, f) ∧ surface_convection(m)

∧ transport_mechanism_rate_law(f, m, e)

⇒
∆v1(variable(v1)),
source_temperature(f, v1),
∆v2(variable(v2)),
sink_temperature(f, v2),
e := energy_flux(f) = U_coeff(f)*Area(f)*(v1-v2)]

Creates terms of equation e, which
expresses rate of energy transport for

flux f modeled using constitutive
equation for surface convection .

The final operator in Table 4-37 illustrates the use of an assumed transport mechanism in

generating the form of a particular constitutive equation that characterizes an energy flux which is

modeled as driven by a surface convection mechanism.

4.7.7 Thermodynamic and Physical Properties of Phases Equation Derivation

Physical and thermodynamic property correlations for each phase in the model are expressed

generically as:

),,(xPTfB =

where:

1. B is the thermodynamic or physical property of the phase,

2. T is the temperature of the phase, and

150

3. P is the pressure of the phase.

4. x is the vector of species mole fractions in the phase.

Operators that characterize these mathematical model derivations are listed in Table 4-38.

Table 4-38: Physical and Thermodynamic Phase Property Operators

Operator Actions

∀ X ∀ p [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
molar_density(p, e),
X := X ∪ e]

Creates equation e, which expresses
molar density of phase p as function of

properties of p, and adds e to set of
model equations X.

∀ X ∀ p [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
specific_enthalpy(p, e),
X := X ∪ e]

Creates equation e, which expresses
specific enthalpy of phase p as function
of properties of p, and adds e to set of

model equations X.

∀ X ∀ p [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
specific_internal_energy(p, e),
X := X ∪ e]

Creates equation e, which expresses
specific internal energy of phase p as

function of properties of p, and adds e to
set of model equations X.

∀ X ∀ p [model_equations(X) ∧ phase(p)

⇒
∆e(equation(e)),
heat_capacity(p, e),
X := X ∪ e]

Creates equation e, which expresses
heat capacity of phase p as function of

properties of p, and adds e to set of
model equations X.

∀ X ∀ p ∀ e ∀ s [model_equations(X) ∧ phase(p) ∧ species(s)

∧ has_species(p, s) ∧ equation_of_state(e)

∧ has_equation_of_state(p, e)

⇒
∆e(equation(e)),
fugacity_coefficient(p, s, e),
X := X ∪ e]

Creates equation e, which expresses
fugacity coefficient of species s for

phase p as function of properties of p,
and adds e to set of model equations X.

∀ X ∀ p ∀ a ∀ s [model_equations(X) ∧ phase(p) ∧ species(s)

∧ has_species(p, s) ∧ activity_coefficient(a)

∧ has_activity_coefficient(p, a)

⇒
∆e(equation(e)),
activity_coefficient(p, s, e),
X := X ∪ e]

Creates equation e, which expresses
activity coefficient of species s for phase

p as function of properties of p, and
adds e to set of model equations X.

∀ X ∀ p ∀ s [model_equations(X) ∧ liquid_phase(p) ∧ species(s)

∧ has_species(p, s)

⇒
∆e(equation(e)),
vapor_pressure(p, s, e),
X := X ∪ e]

Creates equation e, which expresses
vapor pressure of species s for phase p
as function of properties of p, and adds

e to set of model equations X.

151

To complete this specification, additional operators are required that access a database of pure

chemical species properties used to form the requisite property correlation of the phase.

4.7.8 Thermodynamic and Physical Properties of Fluxes Equation Derivation

Physical and thermodynamic property correlations for the transported material of each convective

flux in the model are expressed generically as:

),,(xPTfB =

where:

1. B is the thermodynamic or physical property of the transported material,

2. T is the temperature of the transported material,

3. P is the pressure of the transported material, and

4. x is the vector of species mole fractions of the transported material.

Logical operators that characterize these mathematical model derivations are listed in Table 4-39.

Table 4-39: Physical and Thermodynamic Flux Property Operators

Operator Actions

∀ X ∀ f [model_equations(X) ∧ convective_flux(f)

⇒
∆e(equation(e)),
density(f, e),
X := X ∪ e]

Creates equation e, which expresses
molar density of convective flux f as

function of properties of f, and adds e to
set of model equations X.

∀ X ∀ f [model_equations(X) ∧ convective_flux(f)

⇒
specific_enthalpy(f, e),
X := X ∪ e]

Creates equation e, which expresses
specific enthalpy of convective flux f as
function of properties of f, and adds e to

set of model equations X.

To complete this specification, additional operators are required that access a database of pure

chemical species properties used to form the requisite property correlation of the tranported

material.

4.8 Model Explanation

The process of mathematical model generation from a phenomena-based description is illustrated

conceptually in Figure 4-8. The state of the model digraph (determined by the phenomena-based

modeling assumptions) activates operators that create mathematical model equations.

Suboperations of these operators then create the individual terms and variables of these equations.

152

The record of operators applied and the preconditions that activated them during model

derivation provide means for explaining the reasoning behind the derivation of a mathematical

model. As a result, this provides a direct link between the assumptions made by the modeler in

creating a phenomena-based model description, and the equations and terms of the resulting

mathematical model.

mathematical model

equation

term

term

term

term

term

operatoroperator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

term

term

term

term

term

equation
q

q

Jacket
Jacket

modeled-unit
modeled-unit

is-a

has-energy-input

flux
flux

is-a
transports

energy
energyis-internal-unit-of

Jacketed_cstr
Jacketed_cstr

is-modeled-by

 mechanism
surface-convection

 mechanism
surface-convection

has-subunit

to

derivation operators

phenomena-based model

Figure 4-8: Mathematical Model Derivation

153

4.9 Extensions to Modeling Logic Operators

The declarative and procedural operators introduced in this chapter, which are all based on low-

level intrinsic operators that act on the underlying phenomena-based model digraph, provide the

basis for the description of high-level modeling logic. This logic may be readily extended to

encompass additional operators for model analysis, construction, consistency, completeness, and

derivation. For example, a high-level operator may be defined that asserts when a system is

adiabatic:

∀ x [adiabatic(x) ⇔
modeled_unit(x) ∧ ¬ ∃ y (flux(y) ∧ (has_energy_input(x, y) ∨ has_energy_output(x, y)))]

Other high-level analysis operators may be defined that build upon low-level operators. In a

similar manner, operators that introduce additional mechanistic characterizations, along with their

impact on the resulting mathematical model equations, may be defined. Furthermore, these

logical operators, through knowledge of the underlying modeling assumptions, may be extended

to analyze numerical results from the solution of mathematical model equations to detect possible

inconsistencies in mechanistic characterizations using chemical engineering guidelines. Most

importantly, supervisory logic operators may even be defined that interact with the modeler in a

given context to guide him or her toward completion of certain modeling goals.

4.10 Supervisory Logic Operators

The modeling logic of MODEL.LA provides a formal basis for describing the analysis,

construction, consistency and completeness of a phenomena-based model, and the derivation and

explanation of the mathematical model from the phenomena-based description. This modeling

logic may be readily extended to capture other domain-dependent modeling knowledge that

guides the modeling activity based on goals of engineering problem. This knowledge can be

integrated into the modeling logic framework as supervisory logic which interacts with the

engineer to guide and structure the decisions made during model development. The process of

supervisory logic interacting with the modeler in constructing a phenomena-based model is

illustrated conceptually in Figure 4-9. The context of a given modeling problem, declared by the

engineer, activates supervisory operators that initiate applicable modeling tasks. These operators

interact with the modeler and activate model construction operators that refine the description of

154

the phenomena-based model.

term

term

term

term

term

equation
q

q

Jacket
Jacket

modeled-unit
modeled-unit

is-a

has-energy-input

flux
flux

is-a
transports

energy
energyis-internal-unit-of

Jacketed_cstr
Jacketed_cstr

is-modeled-by

 mechanism
surface-convection

 mechanism

surface-convection

has-subunit

to

phenomena-based model

q
q

Jacket
Jacket

modeled-unit
modeled-unit

flux
flux

energy
energy

Jacketed_cstr
Jacketed_cstr

 mechanism

surface-convection

 mechanism
surface-convection

operatoroperator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

construction operators

operatoroperator
sub-

operator
sub-

operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

sub-
operator

supervisory

operator

supervisory

operator

supervisory logic

EngineerEngineer
supervisory

operator

supervisory

operator

supervisory

operator

supervisory

operator

Figure 4-9: Supervisory Logic Operators

These supervisory logic operators may lend varying degrees of support to the modeling activity,

including:

1. Full automation, where, based on assertions made from preconditions by the

modeling logic operators, the logic can automatically refine the description of a

phenomena-based model.

155

2. Structured interaction, where, by presenting the modeler with possible decisions

and querying him/her about which assertions should be made, the logic can

proceed to refine the description of a phenomena-based model.

3. Integrated documentation, where the modeler is responsible for guiding the

direction of the modeling activity by selecting assertions and modeling tasks

carried out, while the logic records and integrates the rationale stated by the

modeler for carrying out the tasks into a record of the modeling activity.

For example, the supervisory logic operator listed in Table 4-1 is based on a methodology for the

hierarchical design of continuous chemical plants (Douglas, 1985, 1988). The operator provides

an explicit framework for the modeling task of creating the input-output description of a

continuous chemical plant. The first two suboperators (which are examples of full automation)

create a modeled-unit and label it “input_output_plant”. In the next two suboperators (which are

examples of structured interaction), the modeler defines the chemical species and reactions

assumed to occur within the plant. The fifth and sixth suboperators automatically assign the

species and reactions to the plant. In the seventh suboperator, for each species that is designated

as a raw material by the modeler, a feed stream is added to the plant from the surroundings.

Similarly, in the eighth suboperator, for each species that is designated as a product by the

modeler, a convective product stream is added from the plant to the surroundings. In the ninth

suboperator, for each species that is designated as a byproduct by the modeler, a waste stream is

added from the plant to the surroundings. In the final suboperation (which is an example of

integrated documentation), the modeler provides a rationale for the decisions made at this level.

156

Table 4-40: Level-1 Supervisory Operator

Supervisory Operator Suboperation

[Level_1()
⇒
∆m (modeled_unit(m)),
label(m) :=“input_output_plant”),
Define_species(),
Define_reactions(),
∀ s [species(s)

⇒
Add_species(m, s)],

∀ r [reaction(r)

⇒
Add_reaction(m, r)],

∀ s [species(s) ∧ raw_material(s)

⇒
∆n (source(n)),

∆f (convective_flux(f)), label(f) := label(s) + “_feed”,
Add_convective_flux(f, n, m)],

∀ s [species(s) ∧ product(s)

⇒
∆n (sink(n)),

∆f (convective_flux(f)), label(f) := label(s) + “_product”,
Add_convective_flux(f, m, n)],

∃ s [species(s) ∧ raw_material(s)

⇒
∆n (sink(n)),

∆f (convective_flux(f)), label(f) := “byproducts”,
Add_convective_flux(f, n, m)],

Document_decisions()]

(1)
(2)
(3)
(4)
(5)

(6)

(7)

(8)

(9)

(10)

The next Level-2 for the hierarchical design of the plant may be represented by the operator in

Table 4-41. The first six suboperations refine the input-output plant into two subunits,

representing a reaction section and a separation section. All species are added to both subunits,

then all reactions are added to only the reaction section. A convective effluent stream is then

added from the reaction section to the separation section. The raw material input streams from

level-1 to the plant are then allocated to the reaction section, and the product and byproduct from

level-1 from the plant are then allocated from the separation section. Recycle streams are then

added from the separation section to the reaction section for each raw material that is not

completely reacted (as decided by the modeler). The modeler then documents the decisions

157

made.

Table 4-41: Level-2 Supervisory Operator

Supervisory Operator Suboperation

∃ m [Level_2() ∧ modeled_unit(m) ∧ label(m) :=“input_output_plant”)

⇒
∆x (modeled_unit(x)),
label(x):= “reaction_section”,
∆p (modeled_unit(p)),
label(p):= “separation_section”,
Add_subunit(m, x);
Add_subunit(m, p);
∀ s [species(s)

⇒
Add_species(r, s),
Add_species(p, s)],

∀ r [reaction(r)

⇒
Add_reaction(m, r)],

∆f (convective_flux(f)),
label(f) := “effluent”,
Add_convective_flux(f, x, p),
∀ f [flux(f) ∧ has_input(m, f)

⇒
Allocate_flux(f, x)],

∀ f [flux(f) ∧ has_output(m, f)

⇒
Allocate_flux(f, p)],

∀ s [species(s) ∧ raw_material(s) ∧ ¬ completely_reacted(s, x)

⇒
∆f (convective_flux(f)),
label(f) := label(s) + “_recycle”,
Add_convective_flux(f, p, x)],

Document_decisions()]

(1)
(2)
(3)
(4)
(5)
(6)
(7)

(8)

(9)
(10)
(11)
(12)

(13)

(14)

(15)

The applicability of these supervisory logic operators in this simple example are dependent on a

particular modeling context, the hierarchical design of a continuous chemical plant. A wide

variety of such examples may be formulated for various modeling goals. Thus, while these

operators are treated as distinct from the core MODEL.LA modeling logic, they can provide the

most powerful means for assisting the process of model development.

158

159

Chapter 5

The MODEL.LA Modeling Environment

In the previous two chapters, the context-free grammar of the MODEL.LA modeling language,

which specifies the syntax of the modeling language, and the framework of modeling logic

operators, which specifies the semantics of the modeling language elements, were introduced.

The modeling elements and semantic relationships of the modeling language provide the

vocabulary that allows an engineer to articulate assumptions about the structure, physicochemical

phenomena, and mechanistic characterizations of a process. The modeling logic operators

provide a framework that formally describes the impact of these phenomena-based assumptions

on the resulting mathematical model, and makes it possible to systematize the modeling process.

This framework enables the computer to understand the implication of the modeling assumptions,

to assist the modeler in constructing the phenomena-based model description, to detect model

inconsistencies and incompleteness, to automatically derive mathematical models, and to explain

the terms and equations of the resulting mathematical model in terms of the modeling

assumptions. The phenomena-based modeling language and logical framework has been

described independently of any computer-aided implementation. However, without such an

implementation, it would be impossible to test and evaluate these phenomena-based concepts in a

meaningful manner.

In this chapter, the implementation of the modeling language and logical framework of

MODEL.LA in a computer-aided modeling environment is presented through discussion of its

functionality, graphical user interface, and overall structure. This software acts as an interface

between the modeler and the underlying modeling language and logic and provides an interactive

environment for phenomena-based modeling of dynamic or static systems of arbitrary structure

160

(with lumped or spatially distributed properties), hierarchical levels of detail, and multi-context

depictions.

5.1 Software Structure

The MODEL.LA modeling environment is designed for personal computers running 32-bit

Microsoft Windows operating systems. The overall software structure of MODEL.LA is

depicted graphically in Figure 5-1.

ModelerModeler

Model Generator
 -- Modeling Language
 -- Modeling Logic

Model Generator
 -- Modeling Language
 -- Modeling Logic

GUI

Material

 Properties

Operations Manager
 -- Process Control
 -- Schedules
 -- Design Equations

Operations Manager
 -- Process Control
 -- Schedules
 -- Design Equations

Numerical Engine
 -- Specification
 -- Solution
 -- Display of Results

Numerical Engine
 -- Specification
 -- Solution
 -- Display of Results

gPROMS

Properties Manager
 -- Physical
 -- Thermodynamic

Properties Manager
 -- Physical
 -- Thermodynamic

Databases

Mathematical

Models

External

Constraints

Figure 5-1: MODEL.LA Modeling Environment Software Structure

The four primary components of MODEL.LA are the

1. Model Generator,

2. Properties Manager,

3. Operations Manager, and

4. Numerical Engine.

The details of each of these components will be discussed in the remainder of this chapter.

5.2 Model Generator

The key component of the MODEL.LA modeling environment is the Model Generator. The

Model Generator integrates the modeling language, which provides a basis for description of

phenomena-based models, and the modeling logic operators, which enable the computer to

understand and analyze the modeling assumptions, assist the modeler in constructing the

161

phenomena-based model description, detect model inconsistencies and incompleteness,

automatically derive mathematical models, and explain the terms and equations of the resulting

mathematical model. The modeler interacts with the modeling environment through a graphical

user interface (GUI).

Hierarchical TreeFlowsheet

Properties View

Modeling Assistant

Figure 5-2: MODEL.LA Graphical User Interface

The primary GUI of MODEL.LA is illustrated in Figure 5-2. It consists of four key

components:

1. Flowsheets provide graphical means of declaring and depicting topological and

hierarchical structure,

2. Hierarchical Tree provides a graphical overview of the hierarchical structure of a

phenomena-based model,

3. Properties View displays the textual language-based assumptions that characterize

the phenomena-based modeling elements, and

162

4. Modeling Assistant provides the modeler with a palette of modeling options and

decisions available for declaring, characterizing, and analyzing the elements of a

phenomena-based model during the course of the modeling activity.

In addition to these elements, the GUI of the Model Generator uses a rich set of contextual

menus and dialogs for specification of the topological structure, hierarchical structure, chemical

characterization, and the mechanistic description of a phenomena-based model. The interactive

nature of the modeling environment provides the modeler with immediate feedback during model

development. Also, the corresponding MODEL.LA language-based description is automatically

generated after each interaction and displayed in the Properties View.

Figure 5-3: Declaration of a Modeled-Unit

5.2.1 Topological Structure

The topological structure of a phenomena-based model is declared using an intuitive flowsheet

163

approach where icons, depicting modeled-units, are interconnected by arrows, depicting fluxes

between the modeled-units. Flux arrows are color-coded indicating the transport of material

(blue), energy (red), or a selected chemical species (green).

Figure 5-4: Declaration of a Convective Flux

Modeled-units are added to the flowsheet using the Add New Process Units tab of the

Modeling Assistant (shown at the bottom of Figure 5-2). The modeler declares a modeled-unit by

selecting the appropriate icon (e.g., Blackbox Unit) on the Modeling Assistant and dropping it on

the flowsheet. The new modeled-unit, which is automatically given a default name, can be

renamed by the modeler by selecting the Rename Selected Unit option on the Edit Process Units

tab of the Modeling Assistant (shown at the bottom of Figure 5-3). For example, in Figure 5-3, a

modeled-unit has been declared by the modeler and renamed Jacketed_CSTR. The Hierarchical

Tree is automatically updated to reflect this addition, and the Properties View shows all

assumptions made for the selected modeled-unit. If desired, the default icon for a modeled-unit

164

may also be replaced with more descriptive icons using a right-click menu option. Such icons do

not change the phenomena-based description of a modeled-unit, but can be used to give graphical

clues as to the purpose of the modeled-unit. For example, in Figure 5-4, the default icon for the

Jacketed_CSTR is replaced with an icon depicting a jacketed well-stirred tank.

Fluxes are added to the flowsheet using the Add New Fluxes tab of the Modeling Assistant

(shown at the bottom of Figure 5-4). The modeler declares a flux by selecting the appropriate

icon (e.g., Convective Flux) on the Modeling Assistant and dragging on the flowsheet from the

source modeled-unit to the sink modeled-unit. The flux can be renamed by selecting the Rename

Selected Flux option on the Edit Fluxes tab of the Modeling Assistant (as shown in Figure 5-18).

For example, in Figure 5-4, a convective flux has been declared from the surrounding environment

to the Jacketed_CSTR and renamed reactants_input. As for modeled-units, the Properties View

shows all assumptions made for the selected flux.

Figure 5-5: Decomposition Flowsheet

165

Figure 5-6: Jacketed_CSTR Decomposition

5.2.2 Hierarchical Structure

The hierarchical structure of a phenomena-based model is declared using a series of

decomposition flowsheets where internal subunits may be declared within the boundary of a

composite modeled-unit. A particular modeled-unit is decomposed by selecting the Specify

Internal Subunits option on the Edit Process Units tab of the Modeling Assistant (shown at the

bottom of Figure 5-5). For example, Figure 5-5 illustrates the initial decomposition flowsheet for

the Jacketed_CSTR modeled-unit. In a decomposition flowsheet, the boundaries of the composite

modeled-unit appear as a dashed outline. Subunits of the composite modeled-unit may be added

within this boundary in the same manner as in the top-level flowsheet. Boundary fluxes to or

from the composite modeled-unit initially appear terminating at the dashed boundary.

Subsequently, these fluxes must be allocated to the subunits. For example, in Figure 5-5, the

166

Jacketed_CSTR has four boundary fluxes, each of which must be eventually allocated to a subunit

of the Jacketed_CSTR. Internal fluxes may also be declared between any two subunits of a

composite modeled-unit. Figure 5-6 shows the final hierarchical structure of the Jacketed_CSTR,

which has been decomposed into two subunits, a Vessel and a Jacket. The reactants_input and

products_output boundary fluxes have been allocated to the Vessel, and the coolant_inlet and

coolant_outlet boundary fluxes have been allocated to the Jacket. Additionally, an internal energy

flux, q_exchange, has been declared from the Vessel to the Jacket. If desired, these subunits may

be likewise decomposed down to an arbitrary level of detail.

In addition to the disaggregation of an existing modeling unit into a set of new subunits, a

set of existing modeled-units may also be aggregated into a new composite modeled-unit. This

action is declared by the modeler using the Modeled-Unit Aggregation Dialog (Figure 5-7) where

a set of modeled-units may be selected for aggregation into a new composite modeled-unit.

Figure 5-7: Modeled-Unit Aggregation Dialog

Two special cases of the composite modeled-unit are the staged and the distributed

composite units. Staged modeling units may be declared by selecting the Staged Unit icon on the

Add Process Units tab of the Modeling Assistant and dragging it to a flowsheet. In a staged

modeled-unit, the unit is refined into a series of identical subunits. In the decomposition

flowsheet of the staged modeled-unit, only three subunits appear. Assumptions made for the

representative (second) subunit are automatically propagated to the other subunits in the staged

system. Fluxes in the staged system are declared only between the first two subunits. An

167

identical flux is then automatically created between every two subsequent adjacent subunits in the

staged system. For example, in Figure 5-8, the rectifying section of a distillation column is

modeled as a staged system with 15 staged subunits. Fluxes in the staged system are declared

between the first two subunits, Rectifying_1 and Rectifying_2. For example, a convective flux

identical to flux Lr is propagated between every two adjacent subunits in the stage. Thus, stage

Rectifying_10 has a convective input flux, Lr_8, and a convective output flux, Lr_9, resulting

from declaration of Lr.

Figure 5-8: Example Staged Modeled-Unit

Distributed modeling units may be declared by selecting the Distributed Unit icon on the

Add Process Units tab of the Modeling Assistant and dragging it to a flowsheet. A distributed

unit represents a process unit whose state is characterized internally by spatially distributed

properties. The assumed distribution of such a modeled-unit is declared using the Spatial

Distribution Dialog, shown in Figure 5-9, where the coordinate system, distributed dimensions,

168

and desired solution methods are selected. Distributed modeled-units assumptions are declared

using a differential element subunit, along with boundary subunits for each of the distributed

dimensions. The balance equations for such a unit are in the form of partial differential equations

(PDEs). In these systems, differential fluxes are added to or from the representative differential

element subunit for each distributed dimension. Fluxes to or from the boundary elements

determine the boundary conditions of the PDE balance equations for the distributed unit.

Figure 5-9: Spatial Distribution Dialog

For example, Figure 5-10, a model of the classic heated fin example (Bird et al, 1960) is

illustrated. The fin is modeled with a rectangular coordinate system distributed along the z-

dimension (as shown in Figure 5-9). An energy flux, qz, is assumed along the z-axis. There is

also an energy flux, Tw, at the initial boundary of the z-axis, and another, qw, to the surroundings

along the length of the z-dimension. The no flux boundary condition at the final z-axis boundary

is established since there is no boundary flux declared at the final boundary element of the z-axis.

The corresponding steady-state model equations derived are listed in Table 5-1.

169

Table 5-1: Heated Fin Model Equations

1. Unit fin_z energy balance
 z := (zmin, fin, zmax, fin)

 (-evol, qw, source(z)) - (∂earea, qz, source(z)/∂zfin) = 0

2. Unit fin_z1 boundary energy balance
earea, qz(z_coord_min_fin) = eTw, source/((xmax, fin - xmin, fin)*(ymax, fin - ymin, fin))

3. Unit fin_z2 boundary energy balance
earea, qz(z_coord_max_fin) = 0

4. Flux qz flux integrated
 z := (zmin, fin, zmax, fin)

 eqz, source(z) = (earea, qz, source(z)*(xmax, fin - xmin, fin))*(ymax, fin - ymin, fin)

Subsequent mechanistic characterizations of the energy fluxes assume a temperature fixed

by Tw at the initial z-boundary, Fourier conduction by qz along the z-axis, and surface convection

by qw at the outer boundary along the z-dimension, thus completing the heated fin example. The

additional model equations derived from these assumptions are shown in Table 5-2.

Table 5-2: Heated Fin Model Equations with Mechanistic Characterizations

1. Unit fin_z energy balance
 z := (zmin, fin|+, zmax, fin|-)

 (-evol, qw, source(z)) - (∂earea, qz, source(z)/∂zfin) = 0

2. Unit fin_z1 boundary energy balance
earea, qz(z_coord_min_fin) = eTw, source/((xmax, fin - xmin, fin)*(ymax, fin - ymin, fin))

3. Unit fin_z2 boundary energy balance
earea, qz(z_coord_max_fin) = 0

4. Flux Tw thermal equilibrium
Tfin_z1(z_coord_min_fin) = TTw, source

5. Flux qw energy flux
 z := (zmin, fin, zmax, fin)

 evol, qw, source(z) = (Uo, qw(z)*(Tfin_z(z) - Tqw, sink(z)))/lqw(z)

6. Flux qz energy flux
 z := (zmin, fin, zmax, fin)

 earea, qz, source(z) = (-(kf, qz(z)*(∂Tfin_z(z)/∂zfin)))

7. Flux qz flux integrated
 z := (zmin, fin, zmax, fin)

 eqz, source(z) = (earea, qz, source(z)*(xmax, fin - xmin, fin))*(ymax, fin - ymin, fin)

170

Figure 5-10: 1-D Distributed Heated Fin Example

5.2.3 Chemical Characterization

The chemical characterization of a phenomena-based model is characterized by declarations of

chemical species, chemical reactions, material-contents, and phases. Chemical species and

chemical reactions are declared by selecting the Declare Chemical Species and Declare Chemical

Reactions options, respectively, on the Specify Species and Reactions tab of the Modeling

Assistant (shown at the bottom of Figure 5-11).

• Chemical Species: In MODEL.LA, chemical species are selected from database using the

Project Species Selection Dialog shown in Figure 5-11. Chemical species in the database are

listed in the DATABASE group, and chemical species currently declared in the phenomena-based

model are listed in the PROJECT group. In Figure 5-11, four chemical species have been

declared for the model: acetic acid, water, 1-butanol, and n-butyl acetate. In addition to the

171

chemical species listed in the database (which currently contains the set of over 1400 chemical

compounds from the DIPPR database compiled by AIChE (1982)), new chemical species may be

declared by the modeler for inclusion in a model. Once chemical species are added to a

phenomena-based model, the modeler may assign these to the individual modeled-units, material-

contents, and phases in the model, and use them to define chemical reactions.

Figure 5-11: Project Species Selection Dialog

• Chemical Reactions: Chemical reactions in a phenomena-based model are declared using the

Project Reaction Dialog, shown in Figure 5-12, where participating species, their stoichiometry,

and other characterizations are declared. In Figure 5-12, the reversible reaction of acetic acid and

1-butanol to form water and n-butyl acetate has been declared. Once chemical reactions have

been declared in a phenomena-based model, the modeler may assign these to the individual

modeled-units and phases in the model.

172

Figure 5-12: Project Reaction Dialog

Chemical species and reactions are assigned to a modeled-unit by selection of the Assign

Reactions and Species option on the Edit Process Units of the Modeling Assistant. This activates

the Modeled-Unit Chemical Content Characterization Dialog, shown in Figure 5-13. Here,

chemical species and reactions declared for the phenomena-based model may be assigned to a

particular modeled-unit.

173

Figure 5-13: Modeled-Unit Chemical Content Characterization Dialog

• Material-Contents: A material-content is declared for a modeled-unit by selection of the

Specify Material Content on the Edit Process Units tab of the Modeling Assistant. This activates

the Material Content Declaration Dialog (as shown in Figure 5-14). Here the chemical species,

geometry (Figure 5-15), phases, and allocation of boundary fluxes to phases (Figure 5-16) for a

material-content are declared.

174

Figure 5-14: Material-Content Declaration Dialog

Figure 5-15: Material-Content Geometry Declaration Dialog

175

Figure 5-16: Material-Content Flux Allocation Dialog

The declaration of a geometry for a material-content introduces relationships into the

mathematical model that express the height of the phases that compose the material-content as a

function of material volume. The available geometrical configurations are summarized in Table

5-3. Declaration of a geometry allows the allocation of boundary fluxes (e.g., convective outputs

streams) to be determined by geometry during model simulation. In such cases, a port height for

the boundary flux is designated. The properties of the material transported by the flux is

determined by the phase whose height overlaps that of the port height. For example, in Figure

5-17 a material-content is shown with two phases, phase-1 and phase-2, and three convective

output boundary fluxes, flux-1, flux-2, and flux-3, allocated to the vessel geometry. The material

transported by flux-1 is characterized by the properties of phase-1 since the port height of flux-1

overlaps that of phase-1. Similarly, the material transported by flux-2 is characterized by the

properties of phase-2. However, no material is transported by flux-3 since the port height of the

flux exceeds that of the entire material-content. Note that this allocation is not necessarily known

a priori and must be determined during model simulation. Thus, the allocation of boundary fluxes

to vessel geometry introduces conditional discontinuities into the mathematical model.

• Phases: Phases declared for a material-content are also assigned chemical reactions and

species using appropriate tab on the right side of the Material-Content Declaration Dialog

(shown in Figure 5-14).

176

Table 5-3: Geometric Vessel Configurations for a Material-Content

Geometry

Geometric Relationships

V=vessel volume, Hmaterial=material-content height

Vmaterial = material-content volume

Vessel

Parameters

Rectangular HHLWHV material == ,
L=length,

 W=width,

H=height

Vertical cylinder HHHRV
material

== ,2π R=radius,

H=height

Horizontal cylinder RHLRV
material

2 ,2 ==π R=radius,

L=length

Horizontal cylinder
(with vessel void)

2
1arcsin

2)(),ent(circlesegm

),,ent(circlesegm*

,

2
2

2

2

r

r

h
r

hrhrhrh

RHLV

LRV

materialmaterial

π

π

+

 −+

−−≡

=
=

R=radius,

L=length

Sphere RHRV
material

2 ,
3

4 3 ==
π

R=radius

Sphere
(with vessel void)

)3(
3

 ,
3

4 23
materialmaterialmaterial

HRHVRV −== ππ
R=radius

Cone HHHRV
material

== ,
3

2π R=radius,

H=height

Vertical annulus HHHRRV
material

=−= ,)(2
1

2
2π

R1=inner radius,

R2=outer radius,

H=height

Horizontal annulus RHLRRV
material

2 ,)(2
1

2
2 =−=π

R1=inner radius,

R2=outer radius,

L=length

Horizontal annulus
(with vessel void)

î

≤≤+

+<≤−
−−

−<≤

=

+

 −+

−−≡

−=
−=

;2 ,

;

),),((entcirclesegm

;0 ,0

,
2

1arcsin

2)(),ent(circlesegm

],),ment([circleseg*

,)(

212
2
1

1212

112

12

2
2

2

2

2
1

2
2

RHRRR

RRHRR

RRRH

RRH

A

r

r

h
r

hrhrhrh

ARHLV

LRRV

material

material

material

material

inner

innermaterialmaterial

π

π

π

R1=inner radius,

R2=outer radius,

L=length

Slanted cylinder with
constant cross sectional

area
HH

HA
V

material
=⋅= ,

sinθ

A=cross

sectional area,

H=height,

θ = slant angle

177

vessel void

phase-1

phase-2

height flux-1 port

height flux-2 port

height flux-3 port

flux-2

flux-1

flux-3

height phase-1

height phase-2

Figure 5-17: Example Vessel Geometry and Flux Allocation

5.2.4 Phenomena-Based Mechanistic Characterization

• Phases: The physical state of a phase is selected when the phase is declared. Thermodynamic

characterizations of phases are also declared in the Material-Content Declaration Dialog (shown

in Figure 5-14). Either a P-V-T equation of state or, for incompressible phases, an activity

coefficient model may be selected to characterize the thermodynamic behavior of a phase.

• Fluxes: Fluxes are characterized by selecting the Edit Flux Properties option in the Edit

Fluxes tab on the Modeling Assistant (as shown in Figure 5-18).

Figure 5-18: Modeling Assistant: Edit Fluxes Tab

This activates the appropriate flux characterization dialog for the selected convective, energy, or

selected chemical species flux, as shown in Figure 5-19, Figure 5-20, and Figure 5-21,

respectively.

178

Figure 5-19: Convective Flux Characterization Dialog

Figure 5-20: Energy Flux Characterization Dialog

179

Figure 5-21: Species Flux Characterization Dialog

• Reactions: Kinetic rate laws are declared for rate-based (i.e., reversible or irreversible)

reactions by selecting the Rate Law button on the Project Reaction Dialog (shown in Figure

5-12). This activates the Reaction Rate Law Dialog shown in Figure 5-22. Rate laws are

declared separately for forward and reverse rates of reaction. Template forms available for

reaction rate laws are listed in Table 5-4. If another form of a kinetic rate law is required, it may

be declared as a user-defined equation in the Operations Manager.

180

Figure 5-22: Project Reaction Rate Law Dialog

181

Table 5-4: MODEL.LA Reaction Rate Law Templates

For reaction: a R a R a R b P b P b Pr r p p1 1 2 2 1 1 2 2+ + + ↔ + + +... ...

Define:
i
p

p

iii
r

r

ii m

P

m

P

m

P

n

R

n

R

n

Ri ccccccreactionF *...****...**)(2

2

1

1

2

2

1

1
=

where:
iRc represents the molar concentration (or partial pressure) of reactant Ri,

iPc represents the molar concentration (or partial pressure) of product Pi, and

n represents an exponent specified by the modeler.

For both forward and reverse reaction, rate law may be specified as one of:

• no denominator terms: rate k F reaction= 1 1* ()

• two denominator terms: rate
k F reaction

k F reaction
=

+
1 1

2 21

* ()

* ()

• three denominator terms: rate
k F reaction

k F reaction k F reaction
=

+ +
1 1

2 2 3 31

* ()

* () * ()

• four denominator terms:

rate
k F reaction

k F reaction k F reaction k F reaction
=

+ + +
1 1

2 2 3 3 4 41

* ()

* () * () * ()

Rate constant models may be specified for each ki:

• Constant: constki =

• Arrhenius:)
RT

E
(*Ak i

ii

−
= exp

• Modified Arrhenius:)
RT

E
(TAk in

ii
i

−
= exp**

182

5.2.5 Phenomena-Based Model Summary

At any point during the modeling activity, a complete summary of all assumptions and

declarations made for a phenomena-based model is available for display in the Project Data

Summary Dialog (as illustrated in Figure 5-23).

Figure 5-23: Project Data Summary Dialog

This dialog groups all modeling assumptions by element type. Here, comments for any modeling

elements may be documented and edited. Hypertext is used to facilitate navigation of the

phenomena-based assumptions.

In addition, the assumptions of any modeled-unit in a phenomena-based model may be

saved, along with its topological and hierarchical structure, as a template in a model library for

183

reuse in the same or any other modeling project. A model template is added to a model by

selecting the Unit from Template Library icon on the Add Process Units tab of the Modeling

Assistant and dragging it to a flowsheet. This activates the Modeled-Unit Template Selection

Dialog (Figure 5-24), where the appropriate template library file is selected.

Figure 5-24: Modeled-Unit Template Selection Dialog

5.2.6 Mathematical Model Derivation

When the modeler completes the phenomena-based model description, MODEL.LA analyzes

model for any inconsistencies or incompleteness (e.g., missing assumptions, inconsistent species

allocation, and unallocated fluxes). If any are detected, they are described to the modeler in the

Model Inconsistency Dialog (illustrated in Figure 5-25). Such inconsistencies must be remedied

184

before a mathematical model can be derived.

Figure 5-25: Model Inconsistency Dialog

When the phenomena-based model is completed, a derivation context for the mathematical model

is specified using the Simulation Options Dialog shown in Figure 5-26. The level of detail for a

hierarchical model may also be specified by selecting the desired resolution in the Hierarchical

Tree. The model equations are then generated from first principles based on the modeling logic

operators described in the previous chapter. The model equations which are automatically

derived include conservation equations, equilibrium relationships, transport mechanisms, rate

laws, geometry constraints, extensive property decompositions, etc. These equations are

supplemented with thermodynamic and physical property correlations constructed by the

MODEL.LA Properties Manager, and additional constraints from the Operations Manager. The

model equations derived for the Jacketed_CSTR model in this section are given in Appendix D.

185

Figure 5-26: Simulation Options Dialog

5.3 Properties Manager

The MODEL.LA Properties Manager constructs correlations that describe thermodynamic and

physical properties of mixtures (i.e., phases) based on the selected state, equation of state or

activity coefficient model, and selected chemical species for each phase. These properties are

expressed as equation-based functions of pressure, temperature, and composition, and are

appended to the model equations derived by the Model Generator. These correlations are

dependent on the constant and temperature-dependent pure species properties and binary

interaction parameters declared in the database. Supplementary details regarding the MODEL.LA

Properties Manager are given in Appendix B.

186

5.3.1 Pure Species Properties

The MODEL.LA Properties Manager currently accesses the DIPPR database, which contains

data on 36 constant and temperature-dependent properties of over 1400 chemical species. A

modeler may add additional species to the database as necessary. Each species is characterized by

a set of identification properties (Figure 5-27), constant properties (Figure 5-28), temperature-

dependent properties (Figure 5-29), and UNIFAC groups (Figure 5-30) that are displayed and

may be edited using dialogs.

5.3.2 Binary Interaction Parameters

In addition to pure species property data, the MODEL.LA Properties Manager stores data on

binary interaction parameters for equations of state (Figure 5-31) and activity coefficient models

(Figure 5-32). These data are also displayed and edited using dialogs.

5.3.3 Material Behavior Analysis

The MODEL.LA Properties Manager provides several features to facilitate the study of the

behavior of phases that are declared by the modeler, independently of model equations derived by

the Model Generator. The thermodynamic and physical properties of these phases are based on

assigned species and assumed equation of state or activity coefficient models in a phenomena-

based model, along with pure component data and binary interaction parameters from the

database. The Phase Equilibrium Calculations Dialog (Figure 5-33) of the Properties Manager

is used to perform flash calculations for multiphase systems. The Phase Properties Dialog

(Figure 5-34) displays and plots correlations for physical and thermodynamic properties of single

phases. Finally, the Phase Diagram Dialog (Figure 5-35) is used to generate phase diagrams for

multiphase systems.

187

Figure 5-27: Species Database: Identification Properties

Figure 5-28: Species Database: Constant Properties

188

Figure 5-29: Species Database: Temperature Dependant Properties

Figure 5-30: Species Database: UNIFAC Groups Properties

189

Figure 5-31: Species Database: Binary Interaction Parameters for Equations of State

Figure 5-32: Species Database: Binary Interaction Parameters for Activity Coefficient Models

190

Figure 5-33: Phase Equilibrium Calculations Dialog

Figure 5-34: Phase Properties Calculations Dialog

191

Figure 5-35: Phase Diagram Dialog

5.4 Operations Manager

The MODEL.LA modeling language is designed to represent chemical processes in terms of

interacting physicochemical phenomena. From this phenomena-based description, the

corresponding model equations are derived from first principles whenever a mathematical model

is required. There are several situations, however, where additional relationships are needed to

describe certain modeling objectives and complete the mathematical model. The MODEL.LA

Operations Manager provides facilities for the modeler to introduce these additional relationships

integrated within the context of the phenomena-based model description. Supplementary details

regarding the MODEL.LA Operations Manager are given in Appendix C.

In MODEL.LA, the modeler may introduce four different types of relationships in the

Operations Manager, including:

1. User Equations,

2. Process Controllers,

3. External Models, and

4. Operational Schedules.

The declaration of each of these types of relationships will be discussed in the remainder of this

192

section.

5.4.1 User Equations

User Equations represent generic equations added to the mathematical model by the modeler.

Such equations are declared using the User-Entered Equation Dialog illustrated in Figure 5-36.

Figure 5-36: User-Entered Equation Dialog

Here the modeler may construct arbitrary mathematical equations that interrelate variables

associated with the phenomena-based model and also additional variables, parameters, and

numerical constants that the modeler defines. These equations are stored symbolically and

193

subsequently appended to the model equations derived from the phenomena-based representation.

5.4.2 Process Controllers

While equations that introduce continuous process control laws may be defined as User

Equations, the MODEL.LA Operations Manager allows control structures to be introduced

explicitly as elements in the process modeling flowsheet. This methodology enforces an intuitive

distinction between the model behavior that is the result of physicochemical phenomena

(exemplified by the conservation equations) and the behavior that stems from external intervention

(due to manual or automatic manipulations of process parameters).

Figure 5-37: Declaration of Control Structures

Controllers are introduced by the modeler using the Edit Control Loops tab of the

Modeling Assistant (illustrated at the bottom of Figure 5-37). Controllers may represent process

controllers, valves, sensors, actuators, etc. Conservation equations are not derived for a

194

controller. Rather, each controller in the model relates a set of one or more input variables to a

set of one or more output variables through a set of control laws (i.e., equations). Transmission

lines establish links between the input and output variables of the controller and process variables

associated with the phenomena-based model that are being measured or manipulated by the

controller. The associated variable of a transmission line is selected using the Transmission

Variable Selection Dialog illustrated in Figure 5-38.

Figure 5-38: Transmission Variable Selection Dialog

In defining process control relationships, the modeler may select from a set of predefined

control law templates (e.g., PID control) or may define an arbitrary set of equations to serve as

the control laws. Control laws are specified using the Control Law Specification Dialog,

illustrated in Figure 5-39. A restriction is imposed that each control structure is structurally self-

consistent (i.e., given the set of controller inputs, the controller laws provide a well-defined set of

mathematical equations that may be used to uniquely calculate the set of controller outputs. At

solution time, the equations represented by the process controller are appended and solved

simultaneously with the conservation equations generated by the Model Generator.

195

Figure 5-39: Control Law Specification Dialog

5.4.3 External Models

The concept of a structurally self-consistent process controller modeling element has been

extended to also incorporate elements modeled outside of MODEL.LA. These external

components, modeled using the gPROMS equation-based modeling language (Barton, 1992),

may be incorporated as external models on the MODEL.LA process modeling flowsheet. Each

such external model is associated with a gPROMS model definition file. Transmission lines are

again used to establish links between the input and output variables of the external model and

process variables associated with the phenomena-based model. The gPROMS External Model

Definition Dialog (illustrated in Figure 5-40) is used to relate process variables to variables

196

appearing in the external model definition file. In a similar manner, the open-architecture features

of the gPROMS language may be used to send, retrieve, and incorporate runtime data from

external applications during model simulation.

Figure 5-40: gPROMS External Model Definition Dialog

5.4.4 Operational Schedules

In the definition of a combined discrete/continuous model in gPROMS, processes are formed by

the application of tasks to instances of models. A gPROMS model encompasses a set of

continuous mathematical equations meant to describe the behavior of a modeled system. Tasks,

which represent discrete procedures such as control actions or disturbances, may be imposed on

the modeled system. Both models and tasks may be defined hierarchically through inheritance

from other models or tasks, respectively. Tasks are used to compose schedules, which specify the

sequential or concurrent (i.e., parallel) execution of selected tasks. Furthermore, alternative tasks

197

may be executed conditionally, based on run-time process conditions, or iteratively, where a task

is executed repeatedly until some conditions are met.

In a similar manner, the definition of tasks and schedules may be incorporated into the

definition of a phenomena-based model using the Operations Manager of MODEL.LA. The task

element, declared on the MODEL.LA process model flowsheet, represents the discrete

manipulation of a process variable (e.g., volumetric flow rate). This allows discrete events, such

as opening a valve or charging a reactor, to be modeled. Such tasks are used to compose

schedules, which are comprised of a set of actions and events executed sequentially or in parallel.

Different types of actions and events allow the declaration of complex schedules involving

sequential and parallel branches with actions triggered by a multitude of conditions. Separation of

schedules from the phenomena-based model allows different schedules to be implemented for the

same model.

Figure 5-41: Specification of Operational Schedule

198

In MODEL.LA, there are two primary steps in declaration of a schedule. The tasks are

first declared on the process model flowsheet and then these tasks are used to compose the

schedule. Similar to a process controller, each task on the process model flowsheet is associated

with a set of one or more measured variables, represented by transmission lines incident to the

task icon, and a set of one or more manipulated variables, represented by transmission lines

incident from the task icon.

Once the necessary tasks have been declared on the process model flowsheet, a schedule

can be defined. In MODEL.LA, schedules are defined graphically using flowcharts (as illustrated

in Figure 5-41). A schedule is composed of a structured sequence of tasks and/or other schedules

(allowing a hierarchical description of composite schedules). Every task in a schedule is

composed of an event followed by an action. When control passes to the event and its condition

is satisfied, the action is triggered.

Events in a schedule flowchart are depicted as arrows that interconnect icons which

represent actions. Events may be of type void, when, while or end while. When control is passed

to a void event, the associated action is immediately triggered. When control is passed to a when

event, the associated action is triggered once the condition defined for the event is satisfied. At

the conclusion of an action associated with a void or when event, control is passed to the

subsequent event. When control is passed to a while event, if the condition defined for the while

event is not satisfied, control immediately passes to the subsequent end while event in the

schedule and the action following the end while event is then triggered. If the condition defined

for the while event is satisfied, the associated action is triggered and execution of the schedule

continues from that point until an end while event is triggered. At that point, control returns to

the previous while event. In this manner, the while event allows the definition of iterative task

execution. A condition defined for a when or while event may be a function of a time event (e.g.,

time < 1 hour), a state event (e.g., temperature ≥ 300 K), or both. In the case of a state event, the

event must be associated with a task that measures the required input variable.

Each action in a schedule is associated with a task that results in the manipulation of some

process variable when the action is triggered. Each schedule must consist of an initial event

(representing the start of the schedule), one or more intermediate actions, and at least one end

action (which represent termination of the schedule). Conditional branches in a schedule may also

199

be defined to specify alternative paths in a schedule. Here, the branch taken in the schedule is

determined during the simulation by the validity of the conditional defined by the modeler.

Parallel branches may also be defined to introduce the concurrent execution of two or more

branches in a schedule. Finally, composite actions may be defined which embed an entire sub-

schedule or operating procedure, allowing a hierarchical abstraction of complex schedules.

Figure 5-42: Discrete/Continuous Behavior of Scheduled Process Model

The introduction of Operational Schedules introduces a hybrid discrete and continuous behavior

into a phenomena-based model simulation. Figure 5-42 illustrates the such behavior for the model

shown in Figure 5-41. In this example, the Reactor is charged to a volume of 10 m3, then drained

into a Storage vessel once the rate of reaction in the Reactor falls below a certain level. This is

repeated (using a while task in the schedule) until the volume of material in the Storage vessel

exceeds 100 m3.

200

5.5 Numerical Engine

Once the model equations are derived by the Model Generator and supplemented with additional

correlations and relationships from the Properties Manager and Operations Manager, the

complete mathematical model is passed to the Numerical Engine of MODEL.LA. Here, the

modeler is guided through specification of design variables, initial guesses, an index analysis and

initial condition for dynamic models, solution of the equations, and display of results. The entry

point into the Numerical Engine for the modeler is the Numerical Engine Toolbar (Figure 5-43).

Figure 5-43: Numerical Engine Toolbar

Figure 5-44: Model Equations Dialog

201

5.5.1 Display of Model Equations

The modeler may view the complete set of model equations at any time by selecting the option

View Equations on the Numerical Engine Toolbar. This activates the Model Equations Dialog

(Figure 5-44). Equations, terms, and variables, are all related to the modeling elements that

produced them through the use of subscripts and headings. Also, the basis of each equation (e.g.,

Acetic Acid balance) is displayed.

5.5.2 Design Variable Specification

The first task in the specification of the mathematical model is the selection of the design (or

known) variables. The modeler initiates this action by selecting the Design Variables option on

the Numerical Engine Toolbar. This activates the Design Variable Specification Dialog (Figure

5-45).

Figure 5-45: Design Variable Specification Dialog

The number of variables that must be specified (also referred to as the number of degrees of

freedom) is equal to the number of variables minus the number of equations in the mathematical

202

model. The Design Variable Specification Dialog displays all variables in the mathematical

model, grouped according to modeling element (e.g., Vessel) or variable type (e.g., temperature).

As the modeler selects each desired design variable, the structural consistency of the selection is

immediately verified using an incidence matrix (Steward, 1962). If the selection conflicts with any

preselected design variables, a list of the conflicting variables is presented for exchange with the

most recent selection by generation of all feasible Steward paths (Steward, 1965). At any point in

the selection the modeler may request that a structurally consistent set of design variables be

proposed to fill the remaining degrees of freedom, which are determined using the path

augmentation algorithm described by Duff (1981a, 1981b). The modeler may review these

suggested variables and for each that is not a desirable design variable, the alternative variables to

replace it are presented for exchange.

Figure 5-46: High Index Diagnosis Dialog

203

5.5.3 Index Analysis

For dynamic models, a structural index analysis (Pantelides, 1988) is performed immediately after

the complete specification of the degrees of freedom design variables. If a structurally high index

mathematical model is detected, the singular subset of equations or other cause of the index

problem is presented in the High Index Diagnosis Dialog (illustrated in Figure 5-46). In such a

case, the numerical solution is not allowed to proceed until the problem is reformulated.

Techniques for the reduction of high index models have been discussed by Moe (1995).

5.5.4 Initial Conditions

For dynamic models, a set of initial conditions must also be specified. The modeler initiates this

action by selecting the Initial Conditions option on the Numerical Engine Toolbar. This activates

the Initial Conditions Specification Dialog (Figure 5-47).

Figure 5-47: Initial Condition Specification Dialog

Since initial conditions are specified in a manner analogous to the specification of degrees of

freedom, the functionality of this dialog is essentially the same as the Design Variable

204

Specification Dialog.

5.5.5 Initial Guess Specification

Once the proper number of design variables are specified to satisfy the degrees of freedom, the

modeler may specify initial guesses for any or all unknown variables. The modeler initiates this

action by selecting the Initial Guesses option on the Numerical Engine Toolbar. This activates

the Initial Guesses Variable Specification Dialog (Figure 5-48).

Figure 5-48: Initial Guesses Specification Dialog

Rough order-of-magnitude estimates for all variables are provided by default based on their type

(e.g., temperature variables are set to 298 K). The modeler may specify a different estimate for

any variable or set of variables of a particular type. The Numerical Engine will also automatically

calculate initial guesses for all unknown thermodynamic and physical properties based on guessed

values of temperature, pressure and composition.

5.5.6 Solution of Model Equations

Once the mathematical model is structurally well-posed through specification of design variables

and initial conditions (if necessary), the model is prepared for numerical solution. The modeler

205

initiates this action by selecting the Simulation option on the Numerical Engine Toolbar. This

activates the Numerical Solver Specification Dialog (Figure 5-49).

Figure 5-49: Numerical Solver Specification Dialog

For steady-state models, the model is ready for solution. For dynamic models, the modeler must

additionally specify the length of simulation time and the time interval at which results are to be

recorded. The Numerical Engine then automatically generates a gPROMS input file, launches the

solver for solution of the model, and reads the simulation results back into the MODEL.LA

process variables (thus retaining robust initial guesses for subsequent simulations). Alternatively,

for steady-state (algebraic) models, the modeler may select to use the built-in interactive solver of

the Numerical Engine (illustrated in Figure 5-50). This solver presents the modeler with a block-

by-block decomposition of the model equations, and uses a Newton-Raphson method to solve

each block of equations individually. If a block of equations does not converge, the user may

view the value of the unknown variables at the last iteration, update their guesses, and restart the

solution procedure.

206

For steady-state or dynamic models, the modeler may also choose a Design Variable

Variation Simulation. Here, a design variable of interest is selected for variation over a specified

range. The mathematical model is then solved repeatedly where for each solution the variable of

interest is incremented through the specified range over a designated number of intervals.

Figure 5-50: MODEL.LA Block Solver Dialog

5.5.7 DAE Systems Numerical Solution Methods

The original implementation of gPROMS (Barton, 1992) utilized the numerical package

DASOVL (Jarvis, 1993) for the solution of DAE systems. A DAE system may be expressed as:

0),,,(=tyxxf ✞
where x is the n-dimensional vector of unknown variables, y is m-dimensional vector of known

variables, t is the independent variable,
dt
dxx ≡

✟
, and f is the set of equations represented as an n+m

207

dimensional vector-valued function. Many DAE solvers such as DASOLV and DASSL (Petzold,

1982) are based on a method first proposed by Gear (1971). This method substitutes a difference

approximation for x✠ which is based on the backwards differentiation formula family of methods.

By fitting a kth order polynomial to k+1 values of x, the time derivatives at a given integration step

are approximated as:

∑
=

−≈
k

i

inn

n

n x
h

x
0

1 α✡

where subscripts such as n refer variable values at the nth integration step, α is a scalar multiplier,

and h is the current step size. This expression may be rearranged to give:

n

n

n
k

i

inn

nn

n

n
h

x
x

hh

x
x γααα

+=+≈ ∑
=

−
0

1

0 1☛

where γn at each iteration is a constant computed from terms from previous iterations.

Substituting this expression into the DAE system for each integration step yields :

0),,,(0 =+ nnnnn

n

tyxx
h

f γα

Thus, the resulting set of algebraic equations can be solved at each integration step using a

Newton-based method. DAE solvers such as DASOLV and DASSL also automatically adjust the

integration step size and order of integration of BDF methods so that error estimates satisfy a

user-specified tolerance.

The BDF solution methods described above are limited to the solution DAE systems

whose index does not exceed unity. Furthermore, these methods are appropriate for the solution

of continuous DAE systems. Introduction of discrete changes into the mathematical model

requires reinitialization of the mathematical model (i.e., a new initial value problem must be

solved) at the point of discontinuity. This of course requires the localization of these discrete

events by the solver that implements DAE solution routines. The introduction of time events,

whose exact time of occurrence is known in advance, simply requires integration to the specified

time points. However, the introduction of state events, whose exact time of occurrence is not

known in advance but rather determined by state conditions that come true during the integration,

require identification and localization during the solution procedure. The implementation of

routines for the identification and localization of state events in gPROMS is discussed in Barton

208

(1992). An efficient algorithm that “guarantees the location of all state event in strict time order”

for initial value problems in DAE systems with discontinuities has described by Park and Barton

(1996).

5.5.8 IPDAE Systems Numerical Solution Methods

The extension of gPROMS to encompass the numerical solution of IPDAE systems (Oh, 1995)

involved the integration of solution methods classified as belonging to the family of methods of

lines. In these methods, a two-step approach is used. First the distributed spatial dimensions are

discretized into finite dimensional representations, yielding a DAE approximation of the IPDAE

system. The DAEs are then integrated over the desired solution time using appropriate numerical

techniques. The discretized results from solution of the DAEs are interpreted as approximations

to the continuous behavior of the IPDAE system.

The solution methods for IPDAE systems implemented in gPROMS and accessible

through MODEL.LA for the modeling of spatially distributed systems are listed in Table 5-5.

Table 5-5: Summary of gPROMS IPDAE Solution Methods

Numerical Method Orders of Approximation

Centered Finite Difference Method (CFDM) 2, 4, 6

Backward Finite Difference Method (BFDM) 1, 2

Forward Finite Difference Method (FFDM) 1, 2

Upwind-Biased Finite Difference Method (UFDM) 2

Orthogonal Collocation on Finite Elements Method (OCFEM) 2, 3, 4

Common features of these discretization methods (Oh, 1995) include:

• the spatial variation of each distributed variable φ(z), z∈ [ZL
, Z

U] is approximated in

terms of the values of variable as φ(zi) at a finite and fixed set of positions zi∈ [ZL
,

Z
U],

• equations that are distributed over the domain [ZL
, Z

U] are enforced at some of the

points {zi} while other desirable properties of the solution (e.g., continuity) are

enforced at others, and

• the partial derivatives of φ(z) at the points {zi} and integrals over the domain

209

[ZL
, Z

U] are approximated in terms of the values φ(zi).

In gPROMS, finite difference methods are based on polynomial approximations of the distributed

variables about the grid points {zi} which are uniformly spaced at a distance h apart. A nth order

polynomial approximation can be constructed in terms of the values of the variable at n+1

consecutive points on the grid (i.e., zi, …, zi+n). This approximation may be expressed as:

∑
=

+≈
n

j

n

jji zLzz
0

][)()()(φφ

where Lj
[n](z) is a nth degree Lagrange polynomial defined as

∏
≠= ++

+

−
−

≡
n

jkk kiji

kin

j
zz

zz
zL

,0

][)(

The first spatial derivative of φ(z) at each grid point zi+q, q=0..n, may then be approximated as

nqz
dz

dL
zz

dz

d n

j

qi

n

j

jiqi ..0 ,)()()(
0

][

=≈ ∑
=

+++ φφ

For the first order forward and backward finite difference methods, respectively, the resulting

expressions are:

h

zz
z

dz

d

h

zz
z

dz

d

ii

i

ii

i

)()(
)(

)()(
)(

1

1

φφφ

φφφ

+−
≈

+−
≈

−

+

Likewise, for second order backward, centered, and forward finite difference approximations,

respectively, the resulting expressions are:

h

zzz
z

dz

d

h

zz
z

dz

d

h

zzz
z

dz

d

iii

i

ii

i

iii

i

2

)(3)(4)(
)(

2

)()(
)(

)()(4)(3
)(

12

11

21

φφφφ

φφφ

φφφφ

+−
≈

+−
≈

−+−
≈

−−

+−

++

Finally, an example of a biased upwind approximation is given as

h

zzzzz
z

dz

d iiiii

i
24

)(2)(12)(36)(20)(6
)(3211 +++− +−+−−

≈
φφφφφφ

An orthogonal collocation method approximates the solution of IPDAE systems by

weighted combinations of orthogonal polynomials of degree n, and demands that the describing

210

equations be satisfied exactly at a finite set of points, called collocation points. In gPROMS, this

method has been implemented in conjunction with a finite element approach, where the domain is

divided into elements and an orthogonal collocation method is applied in each element. This

solution method is termed orthogonal collocation method on finite elements. The function φ(z) in

element I is approximated as

mIzLzz
n

j

In

j

I

j

I ..1)()()(
0

][=≈ ∑
=

φφ

where the position of the jth point in element I is denoted by zI
j. Thus, the first-order derivative of

the approximated solution φ(z) at position q in element I becomes:

nqmIzzA
Edz

zd n

j

I

j

n

jqI

I

q
..0,..1)()(

1)(

0

][==≈ ∑
=

φ
φ

where EI is the length of element I and A is a constant matrix defined by:

nqjz
zd

dL
A q

n

jn

jq ..0,)ˆ(
ˆ

][

][=≡

where I

i
Ezzz /)(ˆ −≡ . As an example, second-order approximations of first-order spatial

derivatives in element I are given by the expressions

I

III

I

I

II

I

I

III

I

E

zzz
z

dz

d

E

zz
z

dz

d

E

zzz
z

dz

d

)(3)()(
)(

)(4)(4
)(

)()()(3
)(

210
2

20
1

210
0

φφφφ

φφφ

φφφφ

++−
≈

−
≈

+−−
≈

with normalized collocation points at 0, 0.5, and 1.

In gPROMS, selection of an appropriate solution method, order of approximation, and

discretization for the solution of IPDAE systems is solely the responsibility of the modeler.

Obviously, the development of robust and reliable generic solvers for these systems remains an

important continuing area of research.

5.5.9 Display of Numerical Results

After a successful (i.e., converged) simulation, the Numerical Engine displays the numerical

results in tabular and graphical form, with variables organized by modeling element (as illustrated

211

in Figure 5-51). The results may also be exported in spreadsheet format. For distributed systems,

OLE automation is used to automatically create surface plots (which are animated for dynamic

simulations) in Microsoft Excel.

Figure 5-51: Numerical Results Display Dialog

5.6 Summary of MODEL.LA Modeling Environment

The MODEL.LA Modeling Environment provides an experimental framework for testing the

concepts of phenomena-based modeling language and logic described earlier in this thesis. It also

integrates state-of-the-art computer-aided modeling features, including an interactive graphical

interface, incorporation of thermodynamic and physical property database information, description

of process control and operational schedules, assistance for consistent specification of degrees of

freedom and initial conditions for mathematical models, solution of the model equations using an

equation-based modeling tool, and graphical display of results. In this manner, this high-level

212

modeling tool extends modeling assistance to all aspects of the process modeling activity, from

declaration of the phenomena-based assumptions, generation of mathematical model equations,

specification of the mathematical model, numerical solution, and display of results. At any point

during these activities, the modeler is free to revisit the modeling assumptions, make any desired

additions or modifications, and get immediate feedback on the impact of these assumptions on the

resulting mathematical model and observed process behavior. In order to provide further details

on the implementation of MODEL.LA, the following chapter describes the underlying software

design of the modeling environment.

213

Chapter 6

Software Design of the

MODEL.LA Modeling Environment

The previous chapter provided an overview of the functionality, graphical user interface, and

overall structure of the phenomena-based MODEL.LA Modeling Environment. This description

concentrated on the use of the environment from a modeler’s perspective. In this chapter, details

regarding the software design of the MODEL.LA environment are presented. This description

offers insight into and provides documentation for the construction of the underlying software

system.

6.1 The Object Modeling Technique

In order to present the software design of the MODEL.LA Modeling Environment, a widely-used

graphical notation known as the Object Modeling Technique (Rumbaugh et al, 1991), or OMT, is

utilized. OMT is a methodology that captures multiple views of a system. The two primary

views of the OMT methodology are the object model and the functional model. The object

model represents the static, structural, “data” aspects of a systems. It describes the structure of

objects in a system—their identity, their relationships to other objects, their attributes, and their

operations. Objects are the units into which aspects of the real-world environment are divided.

The functional model represents the transformational, “function” aspects of a system. The

functional model specifies the meaning of the operations in the object model and the actions in the

dynamic model. It specifies the results of a computation without specifying how or when they are

computed. If desired, control information may be embedded into the functional model, or may be

214

represented as a separate dynamic model.

OMT utilizes a graphical notation to describe these software models. Depiction of the

object model, which uses rectangles to represent classes of objects and lines to represent their

interrelations, is similar to a semantic network. The functional model is depicted using data flow

diagrams. Information included in these graphical models is usually presented selectively,

abstracting certain details in order to highlight particular aspects of the system.

OMT is designed for the modeling and design of object-oriented systems. As a result,

there is a natural mapping into an object-oriented programming language representation. In this

work, the MODEL.LA Modeling Environment has been implemented in C++, an object-oriented

programming language derived from the procedural language C. However, OMT is a generic

representation that does not depend on the programming language used for implementation. In

fact, a system such as MODEL.LA designed using the object modeling technique may be

subsequently implemented in any object-oriented, procedural, or database programming language.

6.2 MODEL.LA Modeling Element Object Models

The object model depicts classes of objects in a system as rectangles. Each class is characterized

by a name and, optionally, attributes and operations. In this work, object classes and their

attributes are depicted using the graphical OMT notation illustrated in Figure 6-1.

Class-Name

attribute-name-1 : data-type-1

attribute-name-2 : data-type-2

…

Figure 6-1: Object Modeling Notation for Classes

Interrelations between these classes are represented using lines (or links), which are referred to as

associations. Associations are bi-directional, and may be labeled to characterize their purpose.

Associations that are optional are indicated by a hollow circle at the end of the link. Associations

that may occur an arbitrary number of times are indicated by a filled circle at the end of the link.

Other constraints on the number of associations between two classes are indicated by numbers

that label the end of the link (e.g., 2+ indicates a link that occurs 2 or more times). A class

hierarchy is established by structuring object classes as a tree, where a superclass is connected by

a line to the apex of a triangle and its subclasses are connected by lines to a horizontal bar

215

attached to the base of the triangle. Subclasses inherit all attributes and associations from their

superclass. Object classes that are aggregates of a set of other object classes are also depicted

using a tree structure, where a link originating from a hollow diamond attached to the base of the

aggregate class branches to a set of one or more constituent classes.

The modeling elements introduced in Chapter 3 are represented as classes that provide the

basis for the design of the MODEL.LA Modeling Environment. These classes are introduced in

Figure 6-2 as subclasses of a Modeling Element class. This class has an attribute name, that

uniquely identifies an instance of the class in a phenomena-based model, an attribute comments,

that records any textual information specified by the modeler regarding an instance of the

modeling element, and an association to multiple instances of object class Variable, which

represent mathematical variables (e.g., temperature) associated with an instance of the modeling

element.

Modeling Element

name: string

comments: string

Modeled-Unit Material-Content Phase Flux Reaction Species

has-variable
Variable

Figure 6-2: Modeling Element Class Object Model

For simplicity, Figure 6-2 does not include any attributes or associations for the modeling element

subclasses. These features are introduced incrementally in the remainder of this section.

However, before introducing the object models of the modeling element classes, two additional

superclasses are first presented. Figure 6-3 illustrates the object model for the class Species

Container. An instance of a Species Container is associated with a set of instances of class

Species. In a phenomena-based model, these correspond to modeled-units, material-contents, and

phases. Therefore, in the object model these modeling element classes appear as subclasses of the

Species Container class.

216

Species Container

Modeled-Unit Material-Content Phase

has-species
Species

Figure 6-3: Species Container Class Object Model

Similarly, Figure 6-4 illustrates the object model for the class Reaction Container. An instance of

a Reaction Container is associated with a set of instances of class Reaction. In a phenomena-

based model, these correspond to modeled-units and phases, which consequently appear as

subclasses of the Reaction Container class.

Reaction Container

Modeled-Unit Phase

has-reaction
Reaction

Figure 6-4: Reaction Container Class Object Model

All attributes and associations of the superclasses presented above are inherited by the

Modeled-Unit class, whose object model is illustrated in Figure 6-5. Additionally, instances of the

Modeled-Unit class possess five additional types of associations. Hierarchical structure is

captured by associations with instances of other modeled-units. Abstraction is indicated by an

association with another modeled-unit representing its parent, while decomposition is indicated by

an association to a set of other modeled-unit representing subunits. Alternatively, the material-

content of a modeled-unit without subunits is captured by an association to an instance of a

Material-Content. Topological structure is captured by links to instances of the Port class. The

Port class has a directionality attribute indicating whether it is an input or output to the system.

Finally, spatially distributed modeled-units are associated with instances of the Spatial

Distribution class. This class is decomposed into a Coordinate System whose Rectangular,

Cylindrical, or Spherical subclasses have boolean attributes indicating which dimensions are

distributed, and instances of the Discretization class for each distributed dimension, which has

attributes indicating the number of discretization nodes, order of approximation, minimum and

217

maximum domain, and an association to a numerical Solution Method selected for the partial

differential equations that characterize the system.

parent

Port

 directionality: integer

owns

Coordinate
System

Species Container

 subunit

has-internal-unit

Material-Content Spatial Distribution

has-material-content

Variable ReactionSpecies

Modeling Element Reaction Container

has-spatial-distribution

Modeled-Unit

Rectangular

 x-distributed: boolean

 y-distributed: boolean

 z-distributed: boolean

Cylindrical

 r-distributed

 theta-distributed

 z-distributed

Spherical

 r-distributed

 theta-distributed

 phi-distributed

Discretization

 nodes: integer

 order: integer
 minimum: real

 maximum: real

BFDM CFDM FFDM …

1-3

Solution Method

Figure 6-5: Modeled-Unit Class Object Model

218

The object model for the Flux class is illustrated in Figure 6-6. All types of fluxes share

three types of associations that represent the topology of a phenomena-based model. The

connectivity of a flux is indicated by associations with instances of the Port class. In addition, for

fluxes attached to modeled-units with a material-content, a flux may be associated with a Phase or

Geometry to which it is allocated. An instance of a flux is characterized as either a Convective

Flux, an Energy Flux, or a Species Flux, indicating the type of transport. Transport mechanisms

for these types of fluxes are indicated by respective associations with a Convective Mechanism, an

Energy Mechanism, or a Species Mechanism. Additionally, Convective Fluxes have a state

attribute that indicates the physical state of the material transported, and an association with an

Equation of State that characterizes the physical behavior of the material. A Species Flux is also

associated with a Species indicating the selected chemical species being transported.

FluxPort
attached-to

Modeling Element

Phase

Geometry

allocated-to

allocated-to

Convective
Flux

 state: integer

Energy
 Flux

Species
Flux

Species
transports

Equation of
State

Convective
Mechanism

Energy
Mechanism

Species
Mechanism

Pressure-
Driven

Francis
Weir

Surface
Convection

Surface
Radiation

Fourier
Conduction

Surface
Convection

Fickian
Diffusion

Chemical
Equilibrium

… …

…

Variable

0-2

0-2

Figure 6-6: Flux Class Object Model

219

The object models for the Material-Content class and the associated Phase class are

illustrated in Figure 6-7. In addition to inherited Species associations, the Material-Content class

is associated with a Geometry class, which represents a geometric characterization of the vessel

that contains it. In addition to inherited Species and Reaction associations, the Phase class is

associated with an Equation of State class or an Activity Coefficient Model class that represent

the thermodynamic characterization of a phase in a phenomena-based model. As described in the

object model for the Flux class, both the Geometry and the Phase classes may be associated with

an instance of a Flux.

has-phase

Variable

ReactionSpecies

Modeling Element

Reaction Container

1+

Species Container

Material-Content Phase

has-geometry

Geometry

Rectangular Conical Annular …

has-equation-of-state

Ideal
Gas

Redlich
Kwong

Peng
Robinson

…

Equation of State

has-activity-coefficient-model

Ideal Margules NRTL …

Activity Coefficient Model

Flux
allocated-to allocated-to

0-2

0-2

Figure 6-7: Material-Content Class and Phase Class Object Models

220

The object model for the Reaction class is illustrated in Figure 6-8. Each reaction is

composed of instances of the Participant class, the Catalyst class, and the Rate Law class. These

classes are used to characterize the stoichiometry, participating species, and kinetic rate law for a

reaction in a phenomena-based model.

Reaction

 reversibility: integer

Rate LawCatalystParticipant

Reaction Container
has-reaction

Stoichiometry

 value: real

Species Equation

VariableModeling Element

Figure 6-8: Reaction Class Object Model

The final modeling element object model is illustrated in Figure 6-9 for the Species class. Each

species has a database ID attribute that uniquely identifies a species in the Properties Database of

the MODEL.LA Modeling Environment.

Species Container
has-species

Species

 database ID: integer

VariableModeling Element

Figure 6-9: Species Class Object Model

221

The primary associations between the modeling element classes are illustrated in the

integrated object model in Figure 6-10. This object model summarizes the structure of instances

and associations of modeling element classes that characterize a phenomena-based model.

Port

owns

has-phase

0-2

0-2

has-species

has-material-content

1+

attached-to

Geometry

has-geometry

Material-Content

Spatial
Distribution

has-spatial-distribution

Phase

Flux

allocated-toallocated-to

Modeled-Unit

parent

 subunit

has-internal-unit

Species
Container

Species

has-speciesReaction
Container

Reaction

Figure 6-10: Modeling Elements Integrated Object Model

222

6.3 MODEL.LA Modeling Environment Object Models

In the preceding section, the object models for the MODEL.LA modeling elements were

presented. In this section, these object models are integrated into the object models of the

MODEL.LA Modeling Environment. The composition of the MODEL.LA object model is

illustrated in Figure 6-11. As discussed in Chapter 5, the MODEL.LA environment is composed

of the Model Generator, the Properties Manager, the Operations Manager, and the Numerical

Engine. All of these software elements interact with the modeler through a Graphical Interface

during the construction of a phenomena-based model and subsequent mathematical model

derivation, specification, and solution.

MODEL.LA

Operations
Manager

Properties
Manager

Model
Generator

Numerical
Engine

Graphical
Interface

Figure 6-11: MODEL.LA Modeling Environment Object Model

Figure 6-12 illustrates the object model for the Phenomena-Based Model class. In

addition to associations with the phenomena-based modeling elements, a Phenomena-Based

Model has attributes that capture the name of the model, the developer, and any textual comments

that provide supplementary information about the model.

owns owns owns owns owns owns

Modeled-Unit Material-Content Phase Flux Reaction Species

Phenomena-Based Model

Project name: string

Project developer: string

Project comments: string

Figure 6-12: Phenomena-Based Model Object Model

223

In MODEL.LA, phenomena-based model descriptions are used to derive mathematical

models. The object model for the Mathematical Model class is illustrated in Figure 6-13.

Instances of a Mathematical Model are composed of instances of Equations, Variables, and an

operational Schedule. Subclasses of Equations include Conservation Equations, Constitutive

Equations, Property Correlations, and Control Laws.

Mathematical
Model

Equation Variable Schedule

Conservation
Equation

Constitutive
Equation

Property
Correlation

Control
Law

Figure 6-13: Mathematical Model Object Model

The object model for the Model Generator is illustrated in Figure 6-14. The Model

Generator is associated an instance of a Phenomena-Based Model. The Model Generator uses

elements of the Phenomena-Based Model to construct the elements of an associated

Mathematical Model. Conservation Equations are constructed and associated with Modeled-

Units and Constitutive Equations are generated and associated with Modeled-Units, Fluxes,

Reactions, Material-Contents, and Phases. The Model Generator is also associated with the

Properties Manager, for generation of Property Correlations for Phases, and the Operations

Manager for generation of Control Laws and Operational Schedules. Finally, an association with

the Numerical Engine allows solution of the resulting Mathematical Model.

224

Modeled-
Unit

Material-
Content

PhaseFlux Reaction Species

Phenomena-Based Model

Model Generator

Properties
Manager

Operations
Manager

Mathematical
Model

Equation Variable Schedule

Conservation
Equation

Constitutive
Equation

Property
Correlation

Control
Law

1+

Numerical
Engine

Figure 6-14: Model Generator Object Model

The object model of Figure 6-14 illustrates the structure of the Model Generator and its

associations with the other elements of the MODEL.LA Modeling Environment, the Properties

Manager, the Operations Manager, and the Numerical Engine. In the remainder of this section,

the object model for these software elements are presented.

The object model for the Properties Manager is illustrated in Figure 6-15. The Properties

Manager is associated with a Phase and the set of Species contained in the phase.

Characterizations of the phase and its species enable construction of a Property Correlation for

the thermodynamic or physical property identified by attribute property ID. Pure Species

Properties relationships are obtained through an association with a Properties Database. When

necessary, a Departure Function or Excess Property relationship is constructed by the

225

appropriate Equation of State Model Manager or Activity Coefficient Model Manager.

Phase

Species

 database ID: integer

Equation of State
Model Manager

Properties
Database

Species Property

Properties
Manager

 property ID: integer

Margules
Manager

NRTL
Manager

UNIFAC
Manager

…

Ideal
Gas

Manager

Redlich
Kwong

Manager

Peng
Robinson
Manager

…

Activity Coefficient
Model Manager

Departure Function Excess Property

Property Correlation

Figure 6-15: Properties Manager Object Model

226

The object model for the Properties Database of the Properties Manager is illustrated in

Figure 6-16. The Properties Database is composed of DIPPR Data tables (consisting of

identification data, constant property data, and temperature-dependent property correlation data),

UNIFAC Data tables for VLE and LLE activity coefficient models, and Binary Parameter Data

tables for binary species interaction parameters for equations of state and activity coefficient

models.

Identification Data

 species ID: integer

 property code: integer
 property value: string

Constant Data

 species ID: integer

 property code: integer
 property value: real

 property units: string

Temperature-Dependant
Data

 species ID: integer

 property code: integer

 property correlation: integer
 parameter A: real
 parameter B: real

 parameter C: real
 parameter D: real

 parameter E: real
 minimum temperature: real
 maximum temperature: real

 property units: string

UNIFAC Data

 species ID: integer

 group-1: string
 group-1 count: integer

...

 group-n: string
 group-n count: integer

Activity Coefficient Data

 species 1 ID: integer

 species 2 ID: integer
 value-A: real
 temperature-1: real

…
 value-A: real

 temperature-n: real
 value-B: real
 temperature-1: real

…
 value-B: real

 temperature-n: real
 value-C: real
 temperature-1: real

…
 value-C: real

 temperature-n: real

Equation of State Data

 species 1 ID: integer

 species 2 ID: integer
 value: real

Properties
 Database

DIPPR Data Binary Parameter Data

Figure 6-16: Properties Database Object Model

227

The object model for the Operations Manager is illustrated in Figure 6-17. The

Operations Manager is associated with instances of Controllers, Transmission Lines, Tasks, and

Schedules. Each Controller is associated with Transmission Lines and a Control Law. Each

Transmission Line is associated with a Manipulated Variable or a Measured Variable. Each

Task is also associated with Transmission Lines. A Schedule is composed of Events and Actions.

Events are associated with Tasks, whose Measured Variables are used to construct Conditionals

for When events and While events. Events trigger associated Actions. Elementary Actions are

characterized by a change in an associated Manipulated Variable. Condition events are

associated with a Conditional that determines the path taken at a branch in a schedule. Finally, a

Composite event is itself associated with an instance of a Schedule. allowing a hierarchical

composition of complex schedules.

Schedule

Event Action

While If NotWhen End WhileVoid If

Manipulated
Variable

Measured
Variable Conditional

Operations
Manager

Task

ElementaryCondition Parallel

21+

Initial End Composite

Controller

Transmission Line

1+1+

Control Law

Figure 6-17: Operations Manager Object Model

228

The object model for the Numerical Engine is illustrated in Figure 6-18. In addition to the

Mathematical Model containing model Equations, Variables, and operational Schedule, the

Numerical Engine is associated with a Degrees of Freedom Incidence Matrix for consistent

specification of design variables and detection of high index model formulations, an Initial

Conditions Incidence Matrix for consistent specification of initial conditions for dynamic models,

gPROMS for solution of the mathematical model, and a Results Display for tabular and graphical

analysis of the resulting model behavior.

Equation Variable

 name: string

 value: real

 units: string

 role: integer

Schedule

Numerical
Engine

Degrees of
Freedom
Incidence

Matrix

gPROMS
Input File

gPROMS
Excel

Results
Display

Initial
Conditions
Incidence

Matrix

Mathematical
Model

gPROMS
Output File

Figure 6-18: Numerical Engine Object Model

The object models described in this section and the previous section specify the static structure of

the MODEL.LA Modeling Environment. These object models provide a basis for the

phenomena-based modeling activities. In the following section, the functional model of the

modeling environment is discussed, illustrating how these elements are used during subsequent

mathematical model derivation and solution.

229

6.4 Functional Model of the MODEL.LA Modeling Environment

The functional models of the object modeling technique capture how output values are calculated

from input values in a program. It consists of multiple data flow diagrams which show the flow

of values from external inputs, through operations and internal data stores, to external outputs. A

data flow diagram consists of processes (represented by ellipses) that transform data, data flows

(represented by arrows) that move data, actor objects (represented by rectangles) that produce

and consume data, and internal data stores (represent by two horizontal lines) that hold data for

subsequent use.

A high-level functional model describing mathematical model derivation and solution is

illustrated in Figure 6-19. The Phenomena-Based Model is represented as a static data store.

Assumptions from the Phenomena-Based Model are used to derive the model equations.

Variable specifications (i.e., design variables and initial conditions) for these equations are

combined which the equations for model solution. The resulting numerical results are stored in

the Model Behavior data store for subsequent analysis.

Phenomena-
Based Model

assumptions

Model
Behavior

numerical

results
model

solution

model equations

variable

specifications

mathematical

model

derivation

model

specification

Figure 6-19: Overall Model Derivation and Solution Functional Model

In the remainder of this section, the abstract processes of this overall functional model are further

specified by refined functional models.

230

Figure 6-20 illustrates the functional model for the process of mathematical model

derivation. The phenomena-based model assumptions are used to derive conservation equations,

constitutive relationships, and property correlations. Additionally, the Operations Manager

provides control structures for construction of control laws, and the active schedule is used to

generate an operational schedule, thus completing the mathematical model.

Phenomena-
Based Model

model

assumptions derive conservation

equations

derive constitutive

relationships

construct property

correlations

construct control

laws

generate operational

schedule

Operations

Manager

control structures

active schedule

Mathematical
Model

conservation

equations

constitutive

relationships

control

laws

operational

schedule

property

correlations

Figure 6-20: Model Derivation Functional Model

231

The functional model for the process that generates a property correlation is illustrated in

Figure 6-21. The Model Generator supplies a phase for which the desired property correlation is

to be constructed. The list of assumed species is extracted and stored in the Phase Species data

store. Properties of these pure species are accessed from a Property Database using the proper

species id. These pure species correlations are stored in a Pure Species Properties data store.

When necessary, the assumed equation of state model or activity coefficient model is extracted

from the phase and used to construct the appropriate departure function, excess property

relationship, or overall property correlation. Relevant data from these processes are combined to

form the overall phase property correlation which is added to the Mathematical Model data

store.

construct
excess

property

combine

contributions

Mathematical
Model

phase
property

correlation

construct
departure
function

Pure Species
Properties

Property
Database

Phase
Species

phase

extract
species

extract
equation of
state model

extract activity
coefficient

model activity coefficient
model

equation of

state model

species

species

property
correlation

excess
property

relationship

departure
function

access pure
species

properties

species id

Model
Generator

construct

property
correlation

property

correlation

Binary
Parameters

Figure 6-21: Property Correlation Generation Functional Model

232

The functional model for mathematical model specification and solution is illustrated in

Figure 6-22. Model equations from the Mathematical Model are used for specification of degrees

of freedom. An incidence matrix is used to maintain a structurally consistent set of selected

design variables. If the model is dynamic, once design variables have been selected, a structural

index analysis is performed on the model equations before specification of initial conditions. The

structurally well-posed mathematical model is then solved. Numerical results are stored for

subsequent display and analysis of the behavior of the model.

Mathematical
Model

model

equations degrees of freedom

specification
Degrees of Freedom

Incidence Matrix

design variables

index

analysis

initial condition

specification

Initial Conditions
Incidence Matrix

initial conditions

mathematical model
solution

Model
Behavior

numerical results

results

display

Steward paths

design variables

initial conditions

Steward paths

Figure 6-22: Mathematical Model Specification and Solution Functional Model

233

Finally, the functional model for mathematical model solution is illustrated in Figure 6-23.

The mathematical model is combined with selected design variables and initial conditions to

formulate a gPROMS input file. gPROMS is then executed for model solution and results are

stored in a gPROMS output file. These numerical results are then processed by the Numerical

Engine of MODEL.LA.

gPROMS
input file

gPROMS
execution

gPROMS
output file

numerical
results Numerical

Engine

Mathematical
Model

Degrees of Freedom
Incidence Matrix

Initial Conditions
Incidence Matrix

Figure 6-23: Model Solution Functional Model

6.5 Summary of MODEL.LA Modeling Environment Software Design

This chapter has presented an overview of the software design of the MODEL.LA Modeling

Environment using the object modeling technique. The static structure of MODEL.LA has been

presented using object models. These object models illustrate how object classes are used to

represent the phenomena-based modeling elements and the associated software elements.

Functional models were then presented to illustrate the use of these object classes during model

derivation and solution. In order to demonstrate the resulting utility of the phenomena-based

modeling approach embodied by the MODEL.LA Modeling Environment, the following chapter

illustrates its use in application to a variety of chemical process modeling examples.

234

235

Chapter 7

Phenomena-Based Modeling Examples

The previous two chapters provided an overview of the functionality, graphical user interface,

structure, and software design of the phenomena-based MODEL.LA Modeling Environment. In

this chapter, the practical use of this environment is illustrated through application to a series of

phenomena-based modeling examples. These examples include:

1. The hierarchical design of a chemical plant for the hydrodealkylation of toluene to

produce benzene,

2. The hierarchical design and economic analysis of a chemical plant for the

production of acetic anhydride from acetone and acetic acid,

3. A study of the open-loop and closed-loop behavior of a distillation column with

side stripper for the separation of a mixture of benzene, toluene, and o-xylene,

4. A dynamic model of a chemical plant with a 1-D spatially distributed reaction and

separation unit operations, and

5. A dynamic model of a 2-D spatially distributed tubular reactor with a cooling

jacket.

These examples were selected to illustrate the use of the MODEL.LA Modeling Environment in

modeling non-trivial processes in order to facilitate comparison of the phenomena-based modeling

approach with existing computer-aided modeling approaches.

7.1.1 HDA Plant

The HDA plant case study illustrates the hierarchical design of a plant for the hydrodealkylation

of toluene to produce benzene. It is based on an example given in Douglas (1988), which is an

236

adaptation of an AIChE student design problem described in (McKetta, 1977). Design objectives

and constraints are given in Table 7-1.

Table 7-1: Design Objectives for HDA Plant

1. Reaction information
a. Reactions:

Toluene + H2 → Benzene + CH4

2 Benzene ↔ Diphenyl + H2

b. Reaction inlet temperature > 1150 °C (to get a reasonable reaction rate); reactor pressure = 500 psia
c.

S
tedene ConverMoles Tolu

tctor Outleene at ReaMoles Benz
y Selectivit ==

x
 Reactorene Fed toMoles Tolu

ctorted in Reaene ConverMoles Tolu
 Conversion ==

97.0 ,
)1(

0036.0
1

544.1
<

−
−= x

x
S

d. Gas phase
e. No catalyst

2. Production rate of benzene: 265 mol/hr
3. Product purity of benzene: xD=0.9997
4. Raw materials: Pure toluene at ambient conditions; H2 stream containing 95% H2, 5% CH4 at 550 psia,

100°F

5. Constraints: H2/aromatic ≥ 5 at the reactor inlet (to prevent coking); reactor outlet temperature < 1300°F (to

prevent hydrocracking); rapidly quench reactor effluent to 1150°F, x < 0.97 for the product distribution
correlation

In this example, the base case design of the HDA plant is modeled. In order to concentrate on

phenomena-based modeling aspects in this initial example, the economic analysis is neglected.

However, if desired, pricing and cost correlations may be readily added to the model as user-

defined equations, as is done for the subsequent Acetic Anhydride plant example.

Following the hierarchical design methodology for a continuous plant, the plant is first

modeled at an abstract input-output level, where only raw material, product, byproduct, and

waste streams are included. Thus, the HDA Plant illustrated in Figure 7-1 is modeled with two

convective input streams for raw materials hydrogen and toluene, two convective output streams

for product benzene and byproduct diphenyl, and a convective output stream representing a

gaseous purge of methane. Complete recycle of toluene and hydrogen is assumed. Declaration of

the two reactions of interest and their assignment to the HDA Plant are also illustrated in Figure

237

7-1.

Figure 7-1: Input-Output Level Design for HDA Plant

Continuing with the hierarchical design approach, the input-output level view of the HDA

plant is decomposed into a reaction section and a separation section (as illustrated in window

Plant of Figure 7-2). Raw materials feeds to the plant are allocated to the reaction section, and

an effluent stream is declared from the reaction section to the separation section. Vapor and

liquid recycle streams for hydrogen and toluene, respectively, are also declared. For convenience,

a mixing point is defined before the reaction section, so that the 5/1 ratio of H2/Aromatics at the

reactor inlet may be readily specified, and a split point is defined for the vapor recycle to establish

a purge stream of the same composition as the gaseous recycle stream.

238

Figure 7-2: Reaction and Separation Section Design for HDA Plant

A preliminary structure for the design of the separation section is illustrated in window

Separation_section of Figure 7-2. The effluent stream from the reaction section is fed to a flash

(where vapor and liquid phases are modeled assuming ideal thermodynamic behavior). The vapor

stream from the flash is recycled, and the liquid stream (after a portion is split to serve as a quench

for the reactor effluent) is fed to a liquid separation section (i.e., Train) where toluene, benzene,

and diphenyl are to be separated. Simulation of this design, however, indicates that trace amounts

of methane are present in the liquid stream from the flash. Consequently, methane must also be

separated in the liquid separation section. This requires an additional output stream from the

liquid separation section. To accommodate this, however, the overall input-output level design of

the HDA plant must first be modified (as illustrated in window hda04.la of Figure 7-3). The

methane output stream, out_methane, is then allocated to the separation section, and subsequently

the liquid separation section. For this base case design, the liquid separation section is modeled as

239

a distillation train, as illustrated in window Train of Figure 7-3. A series of three columns are

proposed to separate methane, benzene, and diphenyl as products, before recycling the remaining

toluene.

Figure 7-3: Separation Section Design for HDA Plant

Until this point in the design, only mass balances have been considered in modeling the HDA

plant. To consider energy integration, energy balances must also be included. The resulting

design of the reaction section, with energy integration, is illustrated in window Reaction_section

of Figure 7-4. The feed stream to the furnace is first preheated in a heat exchanger. The

preheated feed is further heated to the specified inlet temperature in a furnace, requiring a heat

duty modeled as an energy input stream. The reactor effluent is then quenched with a portion of

the liquid stream from the flash in the separation section. The resulting stream is used to preheat

the reactor feed in the heat exchanger, before being cooled. The resulting material consists of a

vapor and liquid at equilibrium. This is modeled as two separate streams that are fed to the

240

separation section. Energy integration is then considered for the separation section (illustrated in

window Separation of Figure 7-4) of the HDA Plant. Here, the energy required to compress the

vapor recycle stream and pump the liquid recycle stream are also included in the model.

Figure 7-4: Reaction Section with Energy Integration for HDA Plant

The details for each of the distillation columns of the distillation train are then specified. Each

column is modeled in a similar manner, illustrated by the benzene distillation column shown in

Figure 7-5. Each distillation column consists of a column, a condenser, and a reboiler. Energy

fluxes from the condenser and to the reboiler are declared. The column consists of a rectifying

section and a stripping section, which are both modeled as staged units. Each stage in the

rectifying section and stripping section, along with the condenser and reboiler, are modeled as

material modeled-units with ideal vapor and liquid phases at equilibrium. Material is fed to the

top stage in the stripping section, and withdrawn from the liquid phases of the condenser and

reboiler, respectively. Vapor flows upward through the column through a series of vapor

241

convective streams, and liquid flows downward through the column through a series of liquid

convective streams. The stabilizer column, for removal of methane, is modeled in a similar

manner, except material is withdrawn from the vapor phase of the condenser. Also, the stripping

section of the stabilizer column, which consists of only two stages, and the rectifying section of

the toluene column, which consists of only one stage, are not modeled as staged units but as

independent vapor-liquid equilibrium material units. The resulting hierarchical structure of the

stabilizer and toluene columns is illustrated in window Hierarchical Tree of Figure 7-5.

Figure 7-5: Distillation Column Design for HDA Plant

Simulation of the final base case design of the HDA plant is illustrated in Figure 7-6. Displayed

are profiles of the liquid mole fraction of benzene in the rectifying and stripping sections of the

benzene column.

242

Figure 7-6: Simulation Results for HDA Plant Base Case Design

7.1.2 Acetic Anhydride Plant

This example is based on an AIChE student design problem described in (McKetta, 1977). The

primary design objective is to design a plant for the production of acetic anhydride from raw

materials acetone and acetic acid. Additional design objectives and constraints are given in Table

7-2. As in the previous example, the plant is designed hierarchically. The initial input-output

level design of the plant is shown in Figure 7-7. At this level the plant has two raw material

streams, a product stream, and a gaseous stream for reaction byproducts. Complete recycle of

raw materials is assumed. Declaration of the three reactions of interest and their assignment to

the overall plant are illustrated in Figure 7-8. Expressions for yield and conversion are entered as

user-defined equations.

243

Table 7-2: Design Objectives for Acetic Anhydride Plant

1. Reaction information

a. Reactions:

Acetone → Ketene + Methane

2 Ketene → Ethylene + 2 CO

Ketene + Acetic Acid → Acetic Anhydride

b. Furnace specifications (to crack acetone):

temperature = 700 °C
gas phase

c. Quench reactor specifications (to produce acetic anhydride):

Temperature = 80 °C
liquid phase

acetic acid concentration = 50 mol %
d.

naceted in Furone ConverMoles Acet

in FurnaceFormedeon MonoxidMoles Carb
Yield Ketene

1 −=

Furnaceone Fed toMoles Acet

naceted in Furone ConverMoles Acet
 ConversionAcetone

 =

ConversionAcetoneYieldKetene
3

4
1 −=

2. Production rate of acetic anhydride: 16.58 lb-mol/hr
3. Product purity of acetic anhydride: 99 mole %
4. Raw materials: Pure acetone and acetic acid at ambient conditions
5. Cost data:

a. Acetone: $24/lb-mol
b. Acetic Acid: $23/lb-mol
c. Acetic Anhydride: $51.50/lb-mol

244

Figure 7-7: Input-Output Level Design for Acetic Anhydride Plant

245

Figure 7-8: Chemical Species and Reactions for Acetic Anhydride Plant Design

246

Results from the numerical simulation (illustrated in Figure 7-9) of the input-output level

view of the plant determine the maximum economic potential of the plant ($650,000/yr) and a

lower bound on the value of ketene yield required (0.83) for the plant to be profitable.

Figure 7-9: Simulation Results for Input-Output Level Design of Acetic Anhydride Plant

Following the hierarchical design approach, the input-output level view of the plant is

decomposed into a reaction subsystem and a separation subsystem (illustrated in Figure 7-10).

The assumption of full recycle of raw materials is maintained. A gaseous stream (consisting of

mostly reaction byproducts) and a liquid stream (consisting of mainly product and unreacted raw

materials) from the reaction subsystem to the separation subsystem are assumed. At this level, the

concept of per pass conversion of acetone is defined in terms of acetone feed rates to the reaction

section, thus allowing recycle rates of acetone to be calculated as a function of ketene yield. This

illustrates the tradeoff between high product yield and high recycle requirements. As a result of

the ketene yield to acetone conversion design correlation, as ketene yield approaches unity,

247

acetone conversion approaches zero, requiring a high rate of acetone recycle (e.g., a value of .95

for ketene yield results in acetone conversion of 0.04 and acetone recycle of 450 lb-mol/hr).

Figure 7-10: Reaction and Separation Section Design for Acetic Anhydride Plant

The design continues with the configuration of reactors in the reaction subsystem (illustrated in

Figure 7-11). At this level, energy balances are also introduced. The pure acetone raw material

stream is mixed with the acetone recycle stream and fed to an acetone cracking furnace which

operates at 700°C. The effluent stream from this reactor (containing unstable ketene) is then

rapidly quenched with pure and recycled acetic acid in a two-phase quench reactor. To maintain

the quench reactor at 80°C, a liquid stream is withdrawn from the reactor, cooled with water in a

heat exchanger, and recirculated back to the reactor. At this level, equipment sizing and cost

correlations are introduced for the reactors and heat exchanger as user-defined equations. Also,

energy costs for the required furnace duty are included in economic potential calculations.

248

Figure 7-11: Reactor Design for Acetic Anhydride Plant

Since the quench reactor operators at conditions of vapor-liquid equilibrium, two effluent

streams are fed to the separations subsystem. Initial design (illustrated in Figure 7-12) of the

separations subsystem concentrates on the gaseous stream. To reduce loss of raw materials and

product in the gaseous stream, the stream is first cooled to condense most of the valuable

components, then separated in a flash. Additionally, a gas absorber is used to recover most of the

remaining valuable components in the gaseous stream leaving the flash. An acetic acid stream

from the liquid separation subsystem is used as the solvent in the absorber. The gaseous

byproducts stream from the absorber leaves the plant, while the liquid solvent stream returns to

the liquid separations subsystem.

249

Figure 7-12: Separations Subsystem Design for Acetic Anhydride Plant

The liquid separations subsystem is then designed to separate three liquid streams: the

quench reactor liquid effluent stream, the liquid stream condensed from the quench reactor vapor

stream, and the used liquid solvent stream. Most of the anhydride product is in the quench

reactor liquid effluent stream, so this stream is fed to a distillation column to separate the

anhydride product as a bottoms stream. The remaining two streams, along with the acetone/acid

overhead stream from the anhydride column are fed to a second distillation column. The

overhead stream from this column is mostly pure acetone, while the bottoms stream is mostly

pure acetic acid. The acetone stream is recycled to the acetone cracking furnace, while the acetic

acid stream is split so that a portion is used as a solvent in the gas absorber and the remainder is

recycled to the quench reactor.

The Kremser equation (King, 1980) is introduced as a user-defined equation to estimate

the number of stages in the gas absorber (10 stages), and the rectifying (6 stages) and stripping

250

section (13 stages) of the anhydride column. Since the three streams separated by the

Acetone/Acid column have varying concentrations, they are fed to different trays in the column.

The Kremser equation is then again used to estimate the number of stages in each section of the

column. These calculations result in a 23 stage column, where the liquid from the flash is fed to

the fourth stage, the anhydride column overhead is fed to the ninth stage, and the absorber solvent

is fed to the fourteenth stage. The absorber and columns are then modeled as explicit VLE stages

where each section is modeled as a staged unit.

Sizing and cost correlations for the separation subsystem equipment are added as user-

defined equations, and the economic potential of this base-case design is then evaluated through

numerical simulation. These results (shown in Figure 7-13) reveal that the design is not profitable

at any value for ketene yield.

Figure 7-13: Economic Potential for Base Case Design of Acetic Anhydride Plant

251

7.1.3 Dynamic Distillation Column Example

The following phenomena-based model is based on a SPEEDUP example model file. It is a

dynamic model of a distillation column with a side stripper for the separation of benzene, toluene,

and o-xylene. The process is illustrated in Figure 7-14.

Figure 7-14: BTX Dynamic Distillation

A saturated 0.45/0.45/0.1 mole percent liquid mixture of benzene/o-xylene/toluene is fed to the

fourteenth tray of a twenty tray distillation column. A sidestream is withdrawn from the eighth

tray of the column and fed to the top of a six tray side stripper. A benzene-rich overhead stream

is drawn from the top of the column, while o-xylene-rich and toluene-rich bottoms streams are

drawn from the column and side stripper, respectively. Ideal vapor liquid equilibria are assumed

for all trays in the column and side stripper. All tray-to-tray vapor flows in the column and side

stripper are modeled using a pressure-driven transport mechanism, and all tray-to-tray liquid flows

are modeled using Francis Weir overflow transport mechanisms.

252

Figure 7-15: PI Control of Dynamic Distillation Column

The process was first modeled at steady state, with molar purity specifications of the benzene,

toluene, and o-xylene streams set at 95%, 85%, and 95%, respectively, to determine nominal

values for the reflux flow rate, side stripper feed stream flow rate, and energy inputs to both

reboilers. Results from the steady-state simulation were then used to initialize a dynamic

simulation for a study of the open-loop dynamic response of the process to disturbances in feed

concentration and feed flow rate. Four PI controllers were then added to the process, as

illustrated in Figure 7-15. These controllers are summarized in Table 7-3.

253

Table 7-3: PI Controllers of BTX Dynamic Distillation

Controller Measured Variable Setpoint Manipulated Variable

Ctrl0
vapor mole fraction of

benzene in tray 20
xbenzene=0.95 reflux flow rate

Ctrl1
temperature differential
between trays 13 and 14

Ttray 13 - Ttray 14 =10°C
flow rate of side stripper

feed stream

Ctrl2
mole fraction of o-xylene

bottoms stream
xo-xylene=0.95

energy input to column
reboiler

Ctrl3
mole fraction of toluene

bottoms stream
xtoluene=0.85

energy input to side
stripper reboiler

The resulting closed-loop response of the process to a disturbance in the feed flow rate is

illustrated in Figure 7-16.

Figure 7-16: Closed Loop Dynamic Response of BTX Distillation Column

254

7.1.4 1-D Spatially Distributed Reaction and Separation Processes

The following phenomena-based model is based on an example by Heydweiller et al (1977). The

model is of a process with three unit operations, a mixer, a tubular reactor, and a countercurrent

absorption column. A gPROMS model of this process also appears in (Oh, 1995).

Specifications for the reaction of interest are summarized in Table 7-4.

Table 7-4: Reaction Data for 1-D Spatially Distributed Reaction and Separation Process

1. Stoichiometry:
A + B → 2 C

2. Rate Law:

BAA cckr ⋅=
3. Gas phase

4. Isothermal

Figure 7-17: 1-D Spatially Distributed Reaction and Separation Process

255

The structure of the process is illustrated in Figure 7-17. Reactants are mixed with a

recycle stream and fed to a tubular reactor. The reactor effluent enters the bottom of a

countercurrent absorption column where C is partially absorbed into a liquid phase product

stream. The remaining vapor is recycled.

The structure of the reactor and two-phase absorption column are illustrated in Figure

7-18. The reactor, and gas and liquid phases of the absorber are each modeled as 1-D spatially

distributed systems. The reactor has convective and Fickian diffusive flux of all species along the

distributed z-dimension. The vapor and liquid phases of the absorber have convective flow along

their respective distributed z-dimensions, and diffusion of C occurs from the gas to the liquid

phase (with the rate of diffusion proportional to the deviation from equilibrium).

Figure 7-18: Structure of 1-D Spatially Distributed Tubular Reactor and Gas Absorption Column

256

The model equations derived by MODEL.LA from this phenomena-based model

description include 1st-order partial differential, differential and algebraic equations. These

equations are submitted symbolically to gPROMS and solved numerically using the partial

differential equations modeling capabilities of the solver. The solution methods specified for

solution of the resulting partial differential equations are summarized in Table 7-7:

Table 7-5: Solution Methods for 1-D Spatially Distributed Reactor and Absorption Column

1. Tubular Reactor

a. Domain: 0 to 1 m

b. Elements: 10

c. Order of Approximation: 2

d. Solution Method: Centered Finite Difference

2. Absorption Column Gas Phase

a. Domain: 0 to 1 m

b. Elements: 10

c. Order of Approximation: 1

d. Solution Method: Backward Finite Difference

3. Absorption Column Gas Phase

a. Domain: 0 to 1 m

b. Elements: 10

c. Order of Approximation: 2

d. Solution Method: Centered Finite Difference

Once the model equations are solved, the discretized results for spatially distributed variables are

read by MODEL.LA, and OLE automation is used to load the simulation results into Microsoft

Excel and generate surface plots of selected variables. Figure 7-19 displays results for the rate of

reaction in the reactor, and the concentration of C in both the vapor and liquid phases of the

absorption column.

257

Figure 7-19: 1-D Spatially Distributed Reactor and Absorption Column Results

7.1.5 2-D Tubular Reactor

The final phenomena-based modeling example is a dynamic model of a 2-D spatially distributed

tubular reactor with a cooling jacket. It is based on an example by Froment and Bischoff (1990),

modified to introduce radial as well as axial distribution. A gPROMS model of this reactor

appears in (Oh, 1995).

Specifications for the reaction of interest are summarized in Table 7-6. The structure of

the reactor is illustrated in Figure 7-20. The reactor is declared to be cylindrical with radial and

axial distribution. Axially, there is convective flux, Fickian diffusive flux of o-xylene and oxygen,

and Fourier conductive flux of energy. Radially, there is also diffusion of o-xylene and oxygen

and energy conduction. At the outer radial boundary, there is energy transport, modeled by a

surface convection mechanism, to a lumped cooling jacket.

258

Table 7-6: Reaction Data for 2-D Spatially Distributed Tubular Reactor Example

1. Stoichiometry:

o-xylene + 3 oxygen → phthalic anhydride + 3 water

2. Rate Law:

oxygenxyleneoxyleneo
pp

RT

E
Ar −−

−⋅=)exp(

3. Gas phase

Figure 7-20: 2-D Spatially Distributed Tubular Reactor Example

The model equations derived by MODEL.LA, including integral, 2nd–order partial differential,

differential and algebraic equations, are given in Appendix E. These equations are formulated as a

gPROMS input file and solved using the solution methods summarized in Table 7-7 for the

resulting partial differential equations.

259

Table 7-7: Solution Methods for 2-D Spatially Distributed Tubular Reactor Example

1. Radial (r) Dimension:

a. Domain: 0 to 0.0127 m

b. Elements: 5

c. Order of Approximation: 2

d. Solution Method: Centered Finite Difference

2. Axial (z) Dimension:

a. Domain: 0 to 3 m

b. Elements: 14

c. Order of Approximation: 1

d. Solution Method: Backward Finite Difference

Figure 7-21: 2-D Spatially Distributed Tubular Reactor Simulation Results

260

To facilitate analysis of the behavior of 2-D spatially distributed processes, MODEL.LA uses

OLE automation to load the simulation results into Microsoft Excel, generate surface plots, and

animate these plots. An excerpt from the results for the 2-D spatially distributed tubular reactor,

which exhibits a hot spot near the reactor inlet at the radial center, is illustrated in Figure 7-21.

7.2 Summary of Model Examples

The examples in this chapter illustrate the use of the MODEL.LA Modeling Environment in a

variety of modeling contexts. These examples and the form of the resulting mathematical models

are summarized in Table 7-8.

Table 7-8: Summary of Phenomena-Based Modeling Examples

Example
Steady-State or

Dynamic Process

Type of

Mathematical Model

Number of

Equations
Comments

HDA Plant Steady-State Algebraic 3293 Hierarchical design

Acetic Anhydride Plant Steady-State Algebraic 3894
Hierarchical design

with economic
analysis

BTX Distillation Dynamic DAE 2266
Open loop and

closed loop control
structures

1-D Reaction and Separation Dynamic PDAE 138 Isothermal process

2-D Tubular Reactor Dynamic IPDAE 93
Non-isothermal

process

261

Chapter 8

Conclusions and Recommendations

This final chapter summarizes the primary research contributions of this work and the potential

impact envisioned it may have on chemical process modeling in engineering practice and in

undergraduate education. It concludes with recommendations for future research.

8.1 Research Contributions

The main contributions of this research include:

1. The development of a high-level phenomena-based modeling language for the

representation of chemical process models in terms of interacting physicochemical

phenomena.

2. The description of modeling logic, which allows systematization of the model

development process through explicit representation of modeling tasks as

operators that act on a language-based model description.

3. The integration of the phenomena-based modeling language and logic into a

computer-aided modeling environment that enables rapid, reliable, and

documented chemical process model development from first principles.

Each of these aspects will now be discussed.

8.1.1 Phenomena-Based Modeling Language

The phenomena-based modeling language of MODEL.LA provides a high-level language for

representing chemical processes in terms of interacting physicochemical phenomena. This

language is designed to enable chemical engineers and computers to communicate in a language

based on the principles of chemical engineering science. The high-level nature of this language

262

can allow all chemical engineers, not just modeling experts, to develop and use chemical process

models formulated from first principles. Compared to mathematical equation-based models, the

resulting models are much easier to construct, edit, debug, analyze, reuse, and understand.

Furthermore, the phenomena-based model representation preserves modeling knowledge, by

explicitly retaining the assumptions behind a process model.

8.1.2 Formalized Modeling Logic

The MODEL.LA modeling logic operators provide a basis for systematizing the process of model

development by explicitly characterizing modeling tasks that are currently carried out in an

informal and implicit manner. These operators allow the computer to understand the procedural

and declarative aspects of the modeling activity. This enables it to provide assistance for

analyzing and constructing phenomena-based models, to detect inconsistencies and

incompleteness in the phenomena-based model description, and to derive and explain the resulting

mathematical model equations. In addition, by recording operators activated during model

development, explicit documentation of the modeling activity that produces a process model can

be maintained.

8.1.3 Computer-Aided Modeling Environment

The motivation behind the development of the phenomena-based language and logic of

MODEL.LA is to enhance the modeling capability and productivity of any chemical engineer.

However, the concepts of phenomena-based language and logic expressed on paper alone would

essentially limit the impact of this work to an academic exercise. The MODEL.LA modeling

environment embodies these ideas of language and logic, and provides a system that enables

phenomena-based modeling of dynamic systems of arbitrary structure and spatial distribution,

hierarchical levels of detail, and multicontext depictions. Components of the MODEL.LA

environment provide automated mathematical model derivation, incorporation of thermodynamic

and physical property data, integration of control structures, operational task scheduling, and

external models, and assistance for analysis, specification, and solution of the resulting

mathematical model. The features of the MODEL.LA environment enable evaluation of the

phenomena-based modeling methodology through application to wide variety of modeling

examples and case studies. Such examples have highlighted the enhanced productivity, reliability,

263

and maintainability of models developed in this environment.

8.2 Potential Impact on Modeling in Engineering Practice

The industrial use of the MODEL.LA modeling environment was subjected to preliminary

evaluation at modeling workshops which took place at the Mitsubishi Chemical Corporation in

Kurashiki, Japan and the Dow Chemical Corporation in Midland, Michigan. At each location, 15-

20 process engineers assessed the use of the MODEL.LA environment in application to dynamic

process simulation, spatially distributed system modeling, and hierarchical process design.

These experiments revealed that the high-level phenomena-based modeling approach of

MODEL.LA can have a unique impact on chemical process modeling by:

1. Reducing the time required for equation-based process model development by an

order of magnitude,

2. Enabling process models to be readily used and reused in different contexts (e.g.,

process design, steady state or dynamic optimization, training, controller design),

3. Enforcing the consistency and completeness of assumptions that characterize

complex process models,

4. Supporting the multiple resolution modeling and analysis of hierarchical and

spatially distributed systems, and

5. Retaining the knowledge and explicit assumptions behind the development of a

process model.

Specifically with regard to process design, MODEL.LA can have a unique impact by:

1. Accelerating process model development and thus increasing the number of

alternatives that can be considered,

2. Allowing experts in varying backgrounds to readily contribute to a design in a

collaborative manner by raising the level of model development from the equation

or procedural level to the knowledge level,

3. Providing complete flexibility in process specification, since models are not limited

to an existing library, and

4. Facilitating evolutionary process development by allowing addition of detail in a

hierarchical manner.

264

In summary, the MODEL.LA modeling environment can enhance process modeling in engineering

practice by not only guiding and expediting the process of model development, but also by

transforming the product of modeling from a procedural or mathematical equation-based

representation to an chemical engineering phenomena-based representation.

8.3 Potential Impact on Undergraduate Chemical Engineering Education

The pedagogical approach of chemical engineering education was established many decades ago

by the concept of unit operations. Unit operations were identified as common types of equipment

(e.g., distillation column) that were then characterized by generalized sets of equations or other

methods of analysis (e.g., McCabe-Thiele diagrams for distillation columns). These classic set

pieces of instruction were developed to concisely introduce methods of analysis to students and

engineers. In the 1960s, an emphasis on more fundamental concepts (i.e., transport phenomena)

introduced more science and mathematics into the chemical engineering curriculum, yet also

within the context of what have become classic set pieces of analysis (e.g., heated fin, Navier-

Stokes equations, etc.). “To a large extent,” writes Cussler (1999), “[chemical engineering

curricula] reflect the scheme first suggested in 1917.” As a result of this tradition that often limits

instruction to the analysis of idealized situations, the education of many contemporary students is

left incomplete.

The Bloom Taxonomy of Educational Objectives (Bloom, 1956) identifies six ascending

levels of understanding: (i) translation (i.e., memorization), (ii) interpretation (i.e., paraphrased

repetition), (iii) application (i.e., “analysis” in an engineering context), (iv) analysis (i.e.,

“modeling” in an engineering context), (v) synthesis (i.e., creative design), and (vi) evaluation

(i.e., critical appraisal). Unfortunately, most of the current curricula focuses only on the first

three levels, and does not adequately nurture higher-level understanding in students. Creative

exercises, coupled with computer-based material, are one way to allow students to develop these

higher-level thinking skills (Montgomery and Felder, 1996).

The MODEL.LA modeling environment allows students to develop models at the high-

level of elementary physical and chemical phenomena that they assume to occur in a chemical

process. This enables students to freely express their assumptions of what constitutes the physical

and chemical makeup of a model, while being guided through a structured process of model

265

development.

8.3.1 Structuring of Modeling Activities

While students are free to express their own notions of the assumptions behind a chemical process

model, the framework of the MODEL.LA modeling environment enforces an explicit, yet natural,

structure on the process of model development. Key tasks that a student must tackle during this

process are summarized below:

1. Decide what are the appropriate control volumes (i.e., systems) for a process,

2. Declare how these systems interact through transport of mass and energy,

3. Specify and characterize chemical species, reactions, and materials present in the

process,

4. Refine and specify the internal content of the control volumes,

5. Characterize the boundary interactions mechanistically,

6. Check the model for consistency and prepare it for solution, and

7. Specify values of known parameters, solve the model, and analyze the results.

These tasks simply represent good modeling practice, whether a student is using MODEL.LA,

another computer-aided modeling tool, or paper and pencil. However, only in MODEL.LA are

all of these steps always explicit. This rigor helps to enforce a sound modeling methodology in

students, and provides a framework for subsequent model development with or without

computer-aided assistance.

8.3.2 Classroom Deployment of MODEL.LA

MODEL.LA was deployed in the senior-year Integrated Chemical Engineering (10.490) course at

MIT during the Fall 1998 semester. The educational context of this course focused on

hierarchical process synthesis. These experiments were designed to investigate the pedagogical

use of MODEL.LA in the classroom. Using questionnaires (with 34 responses from 38

participating students), the instructional experiments at MIT revealed how students benefited the

most from use of MODEL.LA:

1. The students recognized in MODEL.LA the basic principles of chemical

engineering science and felt confident invoking them during the modeling of

processing systems (85% of the respondents indicated good to excellent

266

recognition and usage of the principles).

2. In contrast to traditional flowsheet design, 100% of respondents preferred the

evolutionary, hierarchical modeling approach of MODEL.LA, which enabled

group members to distribute the work load, while maintaining the consistency and

integrity of the overall design.

3. A significant majority (70%) of respondents indicated that MODEL.LA allowed

them to effectively shift the focus of attention from the algebraic manipulation of

modeling equations to the engineering problem at hand (i.e. how to synthesize a

chemical processing scheme).

4. Almost all of the respondents (90%) found the graphic user interfaces of

MODEL.LA very natural to their modeling tasks, and far more “relevant”,

“intuitive”, “effective”, and “powerful” than other computer-aided modeling

system they had used (including programming languages, spreadsheets, flowsheet

simulators, and equation-based modeling tools).

5. Students also suggested that MODEL.LA be incorporated into several other

undergraduate core courses in chemical engineering, including, (i) Introductory

Course in Chemical Engineering, (ii) Thermodynamics, (iii) Separation Processes,

(iv) Kinetics and Reaction Engineering, (v) Chemical Engineering Laboratory, and

(vi) Process Design.

MODEL.LA was also deployed at the University of California at Berkeley using small-size groups

of sophomore students. The educational context in these groups focused on learning the art of

modeling. In written evaluations, these students commented that MODEL.LA was successful in

(i) focusing their learning on the concepts and phenomena behind a problem, (ii) providing a

physical feel for a model that is missing from equation writing, and (iii) deepening their

understanding of phenomena and behavior with rapidly produced numerical feedback.

8.3.3 Pedagogical Use of MODEL.LA

By taking responsibility for mathematical model derivation, MODEL.LA can allow students to

freely express their notions of what assumptions characterize an adequate process model, without

trepidation over subsequent mathematical manipulations. Of course, students must master

267

mathematical model derivation skills. However, students must not dissociate description of the

underlying physical and chemical phenomena from the problem-solving activity.

Based on the preliminary experiments described above, the following proposes the

appropriate pedagogical use of MODEL.LA in undergraduate chemical engineering education:

1. For novice students, MODEL.LA acts as a virtual laboratory, where students use

predefined models to investigate qualitative cause-and-effect interactions between

phenomena, process parameters and observed behavior (e.g., adding heat to a

vapor-liquid equilibrium system).

2. For beginning students, who are comfortable writing balance equations for

blackbox systems, MODEL.LA helps students extend these models to more

complex systems by familiarizing them with the functional form, limitations, and

parameters of the equations at every stage of assumption-making. This approach

seeks to instill a disciplined approach to modeling so that students are not

immediately overwhelmed when faced with a new problem-solving context.

3. For intermediate students, MODEL.LA provides a toolbox where the seemingly

disjoint concepts taught in various core chemical engineering courses can be

integrated, applied in the context of open-ended problem-solving, and truly

understood through such applications.

4. For advanced students, MODEL.LA allows them to concentrate on matters of

process synthesis, where they investigate operating alternatives and generate novel

process structures using the building blocks of elementary physical and chemical

phenomena, not the hard-wired unit operation models of commercial simulators.

MODEL.LA allows these students to concentrate on the creative “what-if” aspects

of synthesis, without being bogged down or intimidated by the mathematical

manipulations required to investigate new ideas.

8.3.4 Unique Impact on Undergraduate Education

It is envisioned that appropriate pedagogical use of MODEL.LA can result in a unique impact on

the use of process modeling in chemical engineering undergraduate education. Several such

aspects are summarized below:

268

1. An advanced background in mathematics for the student will not be a

prerequisite. Many students are overwhelmed by modeling because they are

dismayed or distracted by the intricacies of the mathematical calculations involved.

The declarative phenomena-based modeling language approach can alleviate this

by allowing students to concentrate on the chemical engineering concepts and

principles employed during the process of modeling, disjoint of any complex

mathematical activity. Obviously, mathematical skills are indeed a critical

educational requirement for engineering students. However, beginning students

who do not yet possess these skills should not be restricted from exercises that

nurture creative and critical thinking.

2. The learning rate of the student can be increased. Students are currently taught

the set pieces of the foundation material early in the chemical engineering

curriculum, but then struggle to apply these concepts later in senior-year

laboratory and design projects. While it is through this type of struggle that the

student begins to truly understand and appreciate the basic principles, this learning

should take place far earlier in the curriculum. The MODEL.LA modeling

environment can allow the student to apply these concepts within the core courses

to non-idealized situations where decisions beyond “picking the right equation”

must be made. Students may develop their understanding by experimenting with

their ideas and assumptions, and then be given immediate feedback so they may

evaluate the impact of their decisions. This will enable students to gain a deeper

understanding of basic principles when they are first taught by making the link

between concepts and open-ended engineering problem solving.

3. The scope of engineering problems the students investigate can be broadened.

The culmination of most chemical engineering curricula is one or more senior-year

design projects which, ideally, should force students to integrate all the knowledge

they have learned in the core courses. Typically, the task is to design and optimize

a system of interrelated processes and operations in order to meet certain

objectives. However, in many cases the challenge to the student becomes not

integrating chemical engineering knowledge, but learning how to use some unit

269

operation-based flowsheet simulator. This experience may benefit certain students

who will use such simulators later in their professional careers. However, a

flowsheet simulator is not an appropriate pedagogical tool for this situation

because by definition its focus is on the use of predefined unit operation models. A

phenomena-based tool will enable students to integrate all concepts they have

learned in application to a design problem. While the student may still implement

such units as “heat exchangers”, “packed towers” or “reactors”, they will be

defined through a physicochemical phenomena-based approach, where all

assumptions become explicit and understood, rather than just selected as “black

boxes”. With the assistance of the high-level environment such as MODEL.LA,

students may even feel inspired to play with the design of novel processing units.

8.4 Directions for Future Research

Use of the MODEL.LA modeling environment in undergraduate education and industrial practice

reinforced several of the anticipated benefits of the phenomena-based modeling approach. In

addition, these experiences also revealed several opportunities for future directions of research

and development.

8.4.1 Phenomena-Based Modeling Language Extensions

The phenomena-based modeling language of MODEL.LA reflects the focus of the traditional

chemical engineering curricula, in that it is best suited for the modeling of processes that involve

traditional petrochemical materials. Likewise, few simulation tools currently exist that are well-

suited for the modeling of specialty chemicals. To address this need, the modeling language of

MODEL.LA should be extended to fully encompass the modeling of solids, aggregate phases,

electrolytes, polymers, biological systems, etc. This would require the addition of appropriate

mechanistic characterizations of these materials and associated phenomena, along with the

corresponding logic for derivation of the requisite model equations (including formulation of

population balances).

8.4.2 Integration with Molecular Modeling Tools

The chemical processing industry places a growing emphasis on both product, as well as process,

270

design (Cussler, 1999). While a variety of molecular simulation algorithms and computer-aided

tools are available for such purposes, there has been little progress in incorporating these tools in

a generic manner into macroscopic (i.e., continuum) modeling tools. Ideally, the macroscopic

modeling capabilities of MODEL.LA could be integrated with molecular modeling tools for true

multi-scale modeling, where thermodynamic and physical properties and transport mechanisms

determined through simulation on a molecular level are solved simultaneously with the modeling

continuum processes on a macroscopic level.

8.4.3 Implementation of Supervisory Logic

The discussion of supervisory logic in this work proposes a basic template for incorporating

contextual modeling knowledge that can enable the computer to guide the modeling activity.

Significant further research would be required to explore the implementation of such guidance.

Ideally, a language is needed that would allow the modeler to express the context of a particular

modeling task. Rules that would allow the computer to recognize a particular context and

implement appropriate guidance (by proposing alternatives and critiquing decisions) would then

need to be formulated. Appropriate mechanisms that would allow the computer to subsequently

analyze simulation results to verify assumptions made during the modeling activity would also be

desirable.

8.4.4 Standardization and Integration with External Modeling Tools

The growing consensus in the process engineering community is that no one modeling tool is

capable of meeting all the modeling needs of the chemical process industry. Rather, certain

specialized models or tools are frequently required for a specific modeling objective. To address

this need, standardization of computer-aided modeling tools has been proposed by organizations

such as Global CAPE-OPEN (formerly CAPE-OPEN). These standards propose that all chemical

process modeling tools be capable of communicating through standard interfaces. In theory, this

approach would allow the integration of any number of modeling tools, databases, numerical

solvers, etc., in a single model formulation. Extension of the MODEL.LA modeling environment

to encompass these standards is anticipated as primarily a matter of software engineering, but may

be a pivotal requirement for its widespread acceptance for modeling in the chemical process

industry.

271

8.5 Conclusions

Since the concept of phenomena-based chemical process modeling was proposed nearly a decade

ago, several proponents and skeptics have voiced their conflicting opinions on its potential

benefits and ultimate feasibility. This research effort has sought to resolve this debate by (i)

developing a phenomena-based modeling language that encompasses the modeling of dynamic,

hierarchical, and spatially distributed processes, (ii) presenting a formalized modeling logic that

explicitly represents the declarative and procedural aspects of the modeling activity, and (iii)

integrating these concepts of language and logic in a computer-aided modeling environment in

order to provide an experimental apparatus suitable evaluating these ideas. Through application

of this environment to the modeling of a wide range of examples, as well as its deployment in

classroom and industrial settings, the potential benefits of rapid, reliable, and documented

chemical process modeling that may be realized from this high-level phenomena-based approach

have been demonstrated.

272

273

Bibliography

Abelson, H., G.J. Sussman and J. Sussman (1996). Structure and Interpretation of Computer

Programs. MIT Press, Cambridge.

AIChE (1982). Design Institute for Physical Property Data (DIPPR). American Institute for

Chemical Engineers, New York.

Aris, R. (1979). Mathematical Modeling Techniques. Pitman Publishing Ltd., London.

Barton, P.I. (1992). The Modelling and Simulation of Combined Discrete/Continuous

Processes. Ph.D. Thesis, Imperial College of Science, Technology and Medicine.

Barton, P.I. and C.C. Pantelides (1993). gPROMS - A combined discrete/continuous modelling

environment for chemical processing systems. Simulation Series, 25, pp. 25-34.

Bird, R.B., W.E. Stewart, and E.N. Lightfoot (1960). Transport Phenomena. Wiley, New York.

Bloom, B.S. (1956). Taxonomy of Educational Objectives, Handbook 1: Cognitive Domain.

David McKay, New York.

Cho. J.H. (1997). Computer Aids for Mathematical Model Building. Ph.D. Thesis, Imperial

College of Science, Technology and Medicine.

Cussler, R.A. (1999). Do changes in the chemical industry imply changes in curriculum?

Chemical Engineering Education, 33, No. 1, pp. 12-17.

Denn, M.M. (1986). Process Modeling. Wiley, New York.

Douglas, J.M. (1985). Hierarchical design procedure for continuous plants. AIChE Journal. 33,

pp. 353-362.

Douglas, J.M. (1988). Conceptual Design of Chemical Processes. McGraw-Hill, New York.

Duff, I.S., (1981a). On algorithms for obtaining a maximum transversal. ACM Trans. Math.

Softw., 4, pp. 315-330.

274

Duff, I.S., (1981b). Algorithm 575. Permutations for a zero-free diagonal. ACM Trans. Math.

Softw., 4, pp. 387-390.

Feehery, W. and P.I. Barton (1996). A differentiation-based approach to dynamic simulation and

optimization with high-index differential-algebraic equations. In M. Berz, C. Bischof, G.

Corliss, and A. Griewank (Eds.), Computational Differentiation, SIAM. pp. 239-253.

Felder, R.M. and R.W. Rousseau (1986). Elementary Principles of Chemical Processes. John

Wiley, NY.

Foss, A.S. (1995). Report of Modeling Conversations at Berkeley. University of California at

Berkeley Faculty Interviews.

Froment, G.F. and K.B. Bischoff (1990). Chemical Reactor Analysis and Design. Wiley, New

York.

Gear, C.W. (1971). Simultaneous numerical solution of differential-algebraic equations. IEEE

Transactions on Circuit Theory, 18, pp. 89-95.

Heydweiller, J.C., R.F. Sincovec, and L.T. Fan (1977). Dynamic simulation of chemical

processes described by distributed and lumped parameter models. Comp. Chem. Eng., 1,

pp. 125-131.

Jarke, M. and W. Marquardt (1995). Design and evaluation of computer-aided process modeling

tools. Preprints of ISPE ’95 .

Jarvis, R.B. (1993). Robust Dynamic Simulation of Chemical Engineering Processes. Ph.D.

Thesis, Imperial College of Science, Technology and Medicine.

King, C.J. (1980). Separation Processes. McGraw-Hill, New York.

Kowalski, R. (1979). Logic for Problem Solving. North-Holland, New York.

Lloyd, M. (1985). Graphical function chart programming for programmable controllers (Grafcet).

Control Engineering, 32, pp.73-76.

Maher, M.L. (1988). Expert systems for structural design. Expert Systems in Engineering, IFS

Publications, New York.

Marquardt, W. (1992). An object-oriented representation of structured process models. Comp.

Chem. Eng., 16, suppl., pp. S329-S336.

275

Marquardt, W. (1996). Trends in computer-aided process modeling. Comp. Chem. Eng., 20, No.

6/7, pp. 591-609.

McKetta, J.J., (1977). Encyclopedia of Chemical Processing and Design. Dekker, New York.

Moe, H.I. (1995). Dynamic Process Simulation Studies on Modeling and Index Reduction.

Ph.D. Thesis, Norwegian Institute of Technology.

Mohr, C.M. (1995). Summary of Faculty Interviews. Massachusetts Institute of Technology

Faculty Interviews.

Montgomery, S. and H.S. Fogler (1996). Selecting computer-aided instruction software.

Journal of Engineering Education, 85, No. 1, pp. 53-60.

Nilsson, B. (1993). Object-Oriented Modeling of Chemical Processes. Ph.D. Thesis, Lund

Institute of Technology.

Nilsson, B. (1995). Experiences of developing process model libraries in OMOLA. Preprints of

ISPE ’95 .

Oh, M. (1995). Modelling and Simulation of Combined Lumped and Distributed Processes.

Ph.D. Thesis, Imperial College of Science, Technology and Medicine.

Oh, M. and C.C. Pantelides (1996). Modelling and simulation language for combined lumped and

distributed parameter systems. Computers & Chemical Engineering. 20, pp. 611-633.

Pantelides, C.C. (1988). The consistent initialization of differential-algebraic systems. SIAM J.

Sci. Stat. Comput., 9, No. 2, pp. 213-231.

Pantelides, C.C. and H.I. Britt (1995). Multipurpose process modeling environments. In L. T.

Biegler and M. F. Doherty (Eds.), Foundations of Computer-Aided Process Design,

AIChE Symposium Series, 91, No. 304, pp. 128-141.

Park, T. and P.I. Barton, (1996). State event location in differential-algebraic models. ACM

Transactions on Modelling and Computer Simulation, 6, pp. 137-165.

Perkins, J.D. and R.W.H. Sargent (1982). SPEEDUP—A computer program for steady-state and

dynamic simulation and design of chemical processes. AIChE Symposium Series, No.

214, pp. 1-11.

Perkins, J.D., R. W. H. Sargent, R. Vazquez-Roman and J. H. Cho (1996). Computer generation

of process models. Comp. Chem. Eng., 20, No. 6/7, pp. 635-639.

276

Petri, C.A. (1963). Fundamentals of a theory of asynchronous information flow. Proceedings of

IFIP Congress, No. 62, pp. 386-390.

Petzold, L.R. (1982). Differential/algebraic equations are not ODEs. SIAM Journal of Scientific

and Statistical Computing, 3, pp. 367-384.

Piela, P. (1989). ASCEND—An Object Oriented Environment for the Development of

Quantitative Models. Ph.D. Thesis, Carnegie Mellon University.

Piela, P., T.G. Epperly, K.M. Westerberg, and A.W. Westerburg (1991). Ascend: An object-

oriented computer environment for modeling and analysis: The modeling language.

Comp. Chem. Eng., 15, 53-72.

Ponton, J.W., P.J. Gawthrop (1991). Systematic construction of dynamic models for phase

equilibrium problems. Comp. Chem. Eng., 15, 803-808.

Preisig, H.A. (1995). MODELLER—An object-oriented computer-aided modelling tool. In L.

T. Biegler and M. F. Doherty (Eds.), Foundations of Computer-Aided Process Design,

AIChE Symposium Series, 91, No. 304, pp. 328-331.

Rumbaugh, J., M. Blaha, W. Premerlani, R. Eddy, and W. Lorensen (1991). Object-Oriented

Modeling and Design. Prentice-Hall, New Jersey.

Sipser, M. (1998). Introduction to the Theory of Computation. PWS Publishing, Boston.

Steward, D.V., (1962). On an approach to techniques for the analysis of the structure of large

systems of equations. SIAM Rev., 4, pp. 321-342.

Steward, D.V., (1965). Partitioning and tearing systems of equations, J. SIAM Numer. Anal. Ser.

B., 2, No. 2. 345-365.

Sussman, G.J., and G.L. Steele (1980). Constraints--a language for expressing almost-

hierarchical descriptions. Artificial Intelligence, 14, pp. 1-39.

Stephanopoulos, G., G. Henning, and H. Leone (1990a). MODEL.LA. A modeling language for

process engineering—I: The formal framework. Comp. Chem. Eng., 14, No. 8, pp. 813-

846.

Stephanopoulos, G., G. Henning, and H. Leone (1990b). MODEL.LA. A modeling language for

process engineering—II: Multifaceted modeling of processing systems. Comp. Chem.

Eng., 14, No. 8, pp. 847-869.

277

Tester, J.W. and M. Modell (1997). Thermodynamics and Its Applications. Prentice-Hall, New

Jersey.

Vazquez-Roman, R. (1992). Computer Aids for Process Model-Building. Ph.D. Thesis, Imperial

College of Science, Technology and Medicine.

Woods, E.A., (1993). The Hybrid Phenomena Theory. Ph.D. Thesis, Norwegian Institute of

Technology.

Zeigler, B.P. (1984). Multifaceted Modeling and Discrete Event Simulation. Academic Press,

London.

278

279

Appendix A

MODEL.LA Context-Free Grammar

• Overall Phenomena-Based Model
<phenomena-based model> → <structural characterization> <chemical characterization> <derivation context>

<structural characterization> → <modeled-units> <fluxes>

<chemical characterization> → <chemical species list> <chemical reactions> <material-contents> <phases>

<derivation context> → <dynamic assumption> <mole or mass basis> <level of resolution>
<intensive or extensive characterization> <energy balance inclusion>…

• Element Lists
<modeled-units> → <modeled-units> <modeled-unit> | <modeled-unit>

<fluxes> → <fluxes> <flux> |

<chemical species list> → <chemical species list> <chemical species> |

<chemical reactions> → <chemical reactions> <chemical reaction> |

<material-contents> → <material-contents> <material-content> |

<phases> → <phases> <phase> |

• Modeled-Unit
<modeled-unit> → <unit identification> <hierarchical structure> <topological structure> <chemical content>

<modeled-unit behavioral characterizations>

<unit identification> → [modeled-unit id] is-a modeled-unit

<hierarchical characterization> → <parent unit> <internal characterization>

<parent unit> → is-internal-unit-of [modeled-unit id] |

<internal characterization> → <subunits> | <spatial distribution> | <material> | <blackbox>

<subunits> → <subunits> <subunit> | <subunit>

<subunit> → has-internal-unit [modeled-unit id]

<spatial distribution> → has-spatial-distribution <coordinate system> <differential subunits>

<coordinate system> → <rectangular coordinate> | <cylindrical coordinate> | <spherical coordinate>

<rectangular coordinate> → rectangular <x-characterization> <y-characterization> <z-characterization>

<cylindrical coordinate> → cylindrical <r-characterization> <theta-characterization> <z-characterization>

<spherical coordinate> → spherical <r-characterization> <theta-characterization> <phi-characterization>

<x-characterization> → <distributed x-dimension> | <undistributed x-dimension>

280

<y-characterization> → <distributed y-dimension> | <undistributed y-dimension>

<z-characterization> → <distributed z-dimension> | <undistributed z-dimension>

<r-characterization> → <distributed r-dimension> | <undistributed r-dimension>

<theta-characterization> → <distributed theta-dimension> | <undistributed theta-dimension>

<phi-characterization> → <distributed phi-dimension> | <undistributed phi-dimension>

<distributed x-dimension> → has-distributed-dimension x <distributed solution specification>

<distributed y-dimension> → has-distributed-dimension y <distributed solution specification>

<distributed z-dimension> → has-distributed-dimension z <distributed solution specification>

<distributed r-dimension> → has-distributed-dimension r <distributed solution specification>

<distributed theta-dimension> → has-distributed-dimension theta <distributed solution specification>

<distributed phi-dimension> → has-distributed-dimension phi <distributed solution specification>

<undistributed x-dimension> → has-undistributed-dimension x <undistributed solution specification>

<undistributed y-dimension> → has-undistributed-dimension y <undistributed solution specification>

<undistributed z-dimension> → has-undistributed-dimension z <undistributed solution specification>

<undistributed r-dimension> → has-undistributed-dimension r <undistributed solution specification>

<undistributed theta-dimension> → has-undistributed-dimension theta <undistributed solution specification>

<undistributed phi-dimension> → has-undistributed-dimension phi <undistributed solution specification>

<distributed solution specification> → <solution method> <nodes> <minimum> <maximum>

<solution method> → has-solution-method <difference method>

<difference method> → BFDM | CFDM | FFDM | UFDM | OCFEM

<nodes> → has-nodes <integer>

<minimum> → has-minimum <number>

<maximum> → has-maximum <number>

<undistributed solution specification> → <minimum> <maximum>

<differential subunits> → <differential subunits> <differential subunit> | <differential subunit>

<differential subunit> → has-differential-subunit [modeled-unit id]

<material> → has-material-content [material-content id]

<blackbox> →

<topological structure> → <boundary inputs> <boundary outputs>

<boundary inputs> → <boundary inputs> <boundary input> |

<boundary outputs> → <boundary outputs> <boundary output> |

<boundary input> → <convective input> | <energy species input> | <species input>

<boundary output> → <convective output> | <energy output> | <species output>

<convective input> → has-convective-input [flux id]

<convective output> → has-convective-output [flux id]

<energy input> → has-energy-input [flux id]

<energy output> → has-energy-output [flux id]

<species input> → has-species-input [flux id] [species id]

<species output> → has-species-output [flux id] [species id]

<chemical content> → <species content list> <reactions content>

<species content list> → <species content list> <species content> |

<species content> → has-species [species id]

<reactions content> → <reactions content> <reaction content> |

<reactions content> → has-reaction [reaction id]

281

<modeled-unit behavioral characterizations> → <modeled-unit behavioral characterizations>
<modeled-unit behavioral characterization> |

<modeled-unit behavioral characterization> → is-modeled-as <modeled-unit behavioral type>

<modeled-unit behavioral type> → is-modeled-as no-holdup | adiabatic |…

• Flux
<flux> → <flux identification> <flux type> <flux connectivity>

<flux identification> → [flux id] is-a flux

<flux type> → <convective flux> | <energy flux> | <species flux>

<convective flux> → <convective type> <equation of state> <convective mechanism>

<convective type> → transports material <phase state>

<convective mechanism > → is-modeled-by transport-mechanism <convective mechanism type>

<convective mechanism type> → constant | pressure-driven | francis-weir |…

<energy flux> → <energy type> <energy mechanism>

<energy type> → transports energy

<energy mechanism > → is-modeled-by transport-mechanism <energy mechanism type>

<energy mechanism type> → constant | surface-convection | fourier-conduction | surface-radiation |

shaft-work | thermal-equilibrium |…

<species flux> → <species type> <species mechanism>

<species type> → transports species [species id]

<species mechanism > → is-modeled-by transport-mechanism <species mechanism type>

<species mechanism type> → constant | surface-diffusion | fickian-diffusion | knudsen-diffusion |

partial-pressure-diffusion | chemical equilibrium | partition-coefficient |…

<flux connectivity> → <source unit> <sink unit>

<source unit> → from [modeled-unit id]

<sink unit> → to [modeled-unit id]

• Material-Content
<material-content> → <material-content identification> <modeled-unit association> <phase instances>

<species content> <vessel geometry> <flux allocations> <material-content behavioral characterizations>

<material-content identification> → [material-content id] is-a material-content

<modeled-unit association> → is-material-content-in [modeled-unit id]

<phase instances> → <phase instances> <phase instance> | <phase instance>

<phase instance> → <vapor phase> | <liquid phase> | <solid phase>

<vapor phase> → has-vapor-phase [phase id]

<liquid phase> → has-liquid-phase [phase id]

<solid phase> → has-solid-phase [phase id]

<vessel geometry> → has-vessel-geometry <geometry type> |

<geometry type> → rectangular | spherical | vertical-cylinder | horizontal-cylinder |

vertical-annulus | horizontal-annulus | conical |…

<flux allocations> → <flux allocations> <flux allocation> |

<flux allocation> → has-boundary-flux [flux id] allocated-to <allocated element>

282

<allocated element> → [phase id] | geometry | self

<material-content behavioral characterizations> → <material-content behavioral characterizations>
<material-content behavioral characterization> |

<material-content behavioral characterization> → is-modeled-as <material-content behavioral type>

<material-content behavioral type> → constant-volume | constant-pressure | include-PV-work |

has-vessel-void…

• Phase
<phase> → <phase identification> <material-content association> <thermodynamic characterization>

<chemical content>

<phase identification> → [phase id] is-a <phase state> phase

<phase state> → vapor | liquid | solid

<material-content association> → is-phase-in [material-content id]

<thermodynamic characterization> → <equation of state> | <activity coefficient>

<equation of state> → is-modeled-by equation-of-state <equation of state type>

<equation of state type> → ideal-gas | incompressible | van-der-waals | redlich-kwong |

redlich-kwong-soave | peng-robinson |…

<activity coefficient> → is-modeled-by activity-coefficient-model <activity coefficient model>

<activity coefficient model> → ideal | margules | van-laar | wilson | nrtl | unifac |…

• Chemical Species
<chemical species> → <species identification> <database id>

<species identification> → [species id] is-a chemical-species

<database id> → has-database-id <integer>

• Chemical Reaction
<chemical reaction> → <reaction identification> <participants> <kinetics>

<reaction identification> → [reaction id] is-a chemical-reaction

<participants>→<reactants> <reversibility> <products> <catalyst>

<reactants> → <reactants> <stoichiometry> | <stoichiometry>

<stoichiometry> → + <number> [species id]

<reversibility> → ⇒ |⇔|==

<products> → <products> <stoichiometry> | <stoichiometry>

<catalyst> → has-catalyst [species id] |

<kinetics> → <forward rate law><reverse rate law>

<forward rate law> → has-forward-kinetics [equation]

<reverse rate law> → has-reverse-kinetics [equation] |

• Miscellaneous
[modeled-unit id] → <string>

[flux id] → <string>

[material-content id] → <string>

[phase id] → <string>

283

[reaction id] → <string>

[species id] → <string>

<string> → <letter><characters>

<characters> → <letter>|<digit>|_|

<letter> → A|B|C|D|E|F|G|H|I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W|X|Y|Z|a|b|c|d|e|f|g|h|i|j|k|l|m|n|o|p|q|r|s|t|u|v|w|x|y|z

<digit> → 1|2|3|4|5|6|7|8|9|0

<integer> → <sign><digits>

<sign> → + | - |

<digits> → <digits><digit>|<digit>

<number> → <integer><fraction>

<fraction> → .<digits>|

284

285

Appendix B

Properties Manager

This appendix provides additional details regarding the features and functionality of the

MODEL.LA Properties Manager.

• Purpose

The purpose of the MODEL.LA Properties Manager is to construct equation-based correlations

that describe the thermodynamic and physical properties of pure chemical species and mixtures.

Within the MODEL.LA Modeling Environment, these property equations supplement the

conservation and constitutive equations that are derived by the MODEL.LA Model Generator

from the phenomena-based model description.

The Properties Manager also provides additional facilities for the analysis of the

thermodynamic and physical behavior of pure chemical species and mixtures, independently from

a phenomena-based modeling context.

• Properties of Pure Chemical Species

The Properties Manager integrates a database of thermodynamic and physical properties for pure

chemical species. The constant value and temperature-dependent properties contained in this

database mirror those of the DIPPR pure species database (AIChE, 1982). Use of this common

format enables straightforward incorporation of data provided by DIPPR (which currently

encompasses the measured and predicted properties of over 1400 species), and is also readily

extended to incorporate the property data of other species through a standard representation.

Through use of the Properties Manager, the modeler is not required to access and

manipulate the pure species property database tables directly. Rather, the data is accessed

through a series of graphical dialogs. A list of all chemical species contained in the database is

286

accessed using the Project Species Dialog (illustrated in Figure 5-11). Species identification

properties for each species, accessed using the dialog of Figure 5-27, are summarized in Table B-

1. Constant value properties for each species, accessed using the dialog of Figure 5-28, are

summarized in Table B-2. Temperature dependant properties for each species, accessed using the

dialog of Figure 5-29, are summarized in Table B-3. Each temperature-dependent property is

characterized by a temperature-dependent correlation with up to five parameters, and a

temperature range, characterized by a minimum and maximum bounds, over which the correlated

data is valid. Available correlations are summarized in Table B-4. The database also contains

UNIFAC group characterizations for each species, used for calculation of activity coefficients for

vapor-liquid equilibrium and liquid-liquid equilibrium systems, which are accessed using the dialog

illustrated in Figure 5-30. The structure of the properties database is summarized by the object

model illustrated in Figure 6-16.

Within a phenomena-based modeling context, pure species thermodynamic and physical

property data are primarily used for the construction of thermodynamic and physical property

correlations of mixtures of components (i.e., phases in a phenomena-based model).

Table B-1: Pure Species Identification Properties

1. Database Index

2. Common Name

3. IUPAC Name

4. CAS Registry Number

5. Molecular Formula

6. Structural Formula

7. Chemical Group

287

Table B-2: Pure Species Constant Value Properties

Property Units Conditions

8. Molecular Weight

9. Critical Temperature

10. Critical Pressure

11. Critical Volume

12. Critical Compressibility Factor

13. Melting Point

14. Triple Point Temperature

15. Triple Point Pressure

16. Normal Boiling Point

17. Liquid Molar Volume

18. Enthalpy of Formation of Ideal Gas

19. Gibbs Free Energy of Formation of Ideal Gas

20. Absolute Entropy of Ideal Gas

21. Enthalpy of Fusion at Melting Point

22. Net Enthalpy of Combustion

23. Acentric Factor

24. Solubility Parameter

25. Dipole Moment

26. van der Waals Reduced Volume

27. van der Waals Area

28. Lower Flammability Limit

29. Upper Flammability Limit

30. Auto-ignition Temperature

kg/kg-mol

K

Pa

m3/kg-mol

—

K

K

Pa

K

m3/kg-mol

J/kg-mol

J/kg-mol

J/kg-mol K

J/kg-mol

J/kg-mol

—

J1/2/m3/2

c m

m3/kg-mol

m2/kg-mol

vol % in air

vol % in air

K

—

—

—

—

—

1 atm

—

—

1 atm

298.15 K

298.15 K

298.15 K and 1atm

298.15 K and 1atm

—

298.15 K

—

298.15 K

—

—

—

—

—

—

288

Table B-3: Pure Species Temperature-Dependent Properties

Property Units Conditions

31. Liquid Density

32. Solid Density

33. Heat of Vaporization

34. Ideal Gas Heat Capacity

35. Liquid Heat Capacity

36. Solid Heat Capacity

37. Vapor Pressure

38. Second Virial Coefficient

39. Absolute Liquid Viscosity

40. Vapor Viscosity

41. Liquid Thermal Conductivity

42. Vapor Thermal Conductivity

43. Surface Tension

kg-mol /m3

kg-mol /m3

J/kg-mol

J/kg-mol K

J/kg-mol K

J/kg-mol K

Pa

m3/kg-mol

Pa s

Pa s

W/ m K

W/ m K

N/m

1 atm below normal boiling point

—

—

—

1 atm below normal boiling point

—

—

—

1 atm below normal boiling point

—

—

1 atm or below

1 atm below normal boiling point

289

Table B-4: Pure Species Temperature-Dependent Property Correlations

Correlation

Number

Correlation

Y = property, T = temperature (K) , TC = critical temperature (K)
Parameters

100 432 ETDTCTBTAY ++++= A, B, C, D, E

101

 +++= E

DTTC
T

B
AY)ln(exp A, B, C, D, E

102

2
1

T

D

T

C

AT
Y

B

++
=

A, B, C, D

103

 −+=

D
T

C
BAY exp A, B, C, D

104
983 T

E

T

D

T

C

T

B
AY ++++= A, B, C, D, E

105 D

C
T

B

A
Y

)1(1 −+
= A, B, C, D

106

32

)1(rrr ETDTCTB

r
TAY

+++−=

C

r
T

T
T =

A, B, C, D, E

107

22

)/cosh(

)/(

)/sinh(

)/(

+

+=

TE

TE
D

TC

TC
BAY A, B, C, D, E

114
523

2
52432

2
2 tDCDttC

ADtACtB
t

A
Y −−−−−+=

CT

T
t −=1

A, B, C, D

115

 ++++=

2

2)ln(exp
T

E
DTTC

T

B
AY A, B, C, D, E

290

• Properties of Phases

Correlations that describe the physical and thermodynamic properties of phases in a phenomena-

based model are constructed by the Properties Manager based on pure component species data

and, when appropriate, equation of state or activity coefficient models selected by the modeler to

characterize the thermodynamic behavior of the phase. Thermodynamic equation of state models

supported by the Properties Manager are listed in Table B-5. Further details regarding these

equations of state and the suggested mixing rules shown are discussed in Reid et al (1984). The

equation of state mixing rules introduce binary interaction parameters for each pair of chemical

species in the phase. These binary interaction parameters are also stored in the Properties

Manager database and may be accessed using the dialog shown in Figure 5-31. Thermodynamic

activity coefficient models supported by the Properties Manager are listed in Table B-6. Activity

coefficient correlations in Table B-6 are shown for binary systems. Generalized multicomponent

correlations used are also summarized in Reid et al (1984).

291

Table B-5: Properties Manager Equations of State

Equation of

State

Correlation

(kij = Binary Interaction Parameter)

Ideal Gas VRTP /=

van der Waals

2
V

a

bV

RT
P m

m

−
−

=

∑∑∑ =−=
i

iim

i j

ijjijim bxbkaaxxa)1()(2/1

ic

ic

i

ic

ic

i
P

RT
b

P

TR
a

,

,

,

2

,
2

8

64

27
==

Redlich-Kwong

)(2/1
m

m

m bVVT

a

bV

RT
P

+
−

−
=

∑∑∑ =−=
i

iim

i j

ijjijim bxbkaaxxa)1()(2/1

ic

ic

i

ic

ic

i
P

RT
b

P

TR
a

,

,

,

5.2
,

2 08664.0

42748.0
==

Redlich-
Kwong-Soave

)(

)(

m

m

m bVV

Ta

bV

RT
P

+
−

−
=

∑∑∑ =−=
i

iim

i j

ijjijim bxbkaaxxTa)1()()(2/1

ic

ic

iiri

ic

ic

i
P

RT
bTf

P

TR
Ta

,

,22/1
,

,

2
,

2 08664.0
)]1(1[

42748.0
)(=−+= ϖ

2
176.0574.148.0

iii
f ϖϖϖ −+=

Peng-Robinson

)()(

)(

mmm

m

m bVbbVV

Ta

bV

RT
P

−++
−

−
=

∑∑∑ =−=
i

iim

i j

ijjijim bxbkaaxxTa)1()()(2/1

ic

ic

iiri

ic

ic

i
P

RT
bTf

P

TR
Ta

,

,22/1
,

,

2
,

2 07780.0
)]1(1[

45724.0
)(=−+= ϖ

2
26992.054226.137464.0

iii
f ϖϖϖ −+=

Virial
(simplified)

mBV

RT
P

−
=

)()1()0(
ijij BB

P

RT
BBxxB ij

cij

cij

ij

i j

ijjim ϖ+==∑∑
2/1

,,,))(1(jcicijijc TTkT −=

292

Table B-6: Properties Manager Activity Coefficient Models

Activity

Coefficient

Model

Correlation

(shown for binary component mixtures)

Binary

Interaction

Parameters

Ideal Solution 1=γ —

Margules
(four suffix)

4
2

3
2

2
21 12)4(4)53(ln CxxCBxCBAT ++−++=γ A, B, C

van Laar

2

2

1
1 1ln

−

+=

Bx

Ax
AT γ A, B

Wilson

Λ+

Λ
−

Λ+
Λ

+Λ+=
2211

21

2121

12
221211)ln(ln

xxxx
xxxγ

 −=Λ

 −=Λ

T

a

V

V

T

a

V

V 21

2

1
21

12

1

2
12 exp exp

a12, a21

NRTL

+
+

+

=
2

1212

12
12

2

2121

21
21

2
21

)(
ln

Gxx

G

Gxx

G
x ττγ

211221121212
21

21
12

12 ln ln ττττ aGaG
T

g

T

g
−=−===

g12, g21, a12

UNIQUAC

+

−
+

+

+−

−Φ+

Φ
+

Φ
=

1212

12

2121

21
12

212112

2

1
12

1

1
1

1

1
1

)ln(ln
2

lnln

τθθ
τ

τθθ
τθ

τθθθγ

q

ql
r

r
lq

z

x

 ln ln 21
21

12
12

RT

u

RT

u
−=−= ττ

u12, u21

UNIFAC
based on UNIQUAC equation,

calculates interactions based on structural subgroups of components
—

293

The thermodynamic and physical properties correlations constructed by the Properties Manager

for phases are listed in Table B-7.

Table B-7: Thermodynamic and Physical Property Correlations for Phases

Property Units

1. Average Molecular Weight

2. Molar Density

3. Molar Volume

4. Component Fugacity

5. Component Fugacity Coefficient

6. Component Activity

7. Component Activity Coefficient

8. Internal Energy

9. Enthalpy

10. Gibbs Free Energy

11. Entropy

12. Helmholtz Energy

13. Heat Capacity

kg/kg-mol

kg-mol/m3

m3/kg-mol

Pa

—

—

—

J/kg-mol

J/kg-mol

J/kg-mol

J/kg-mol K

J/kg-mol

J/kg-mol K

The formulation of each of these property correlations for phases is a phenomena-based model is

now discussed.

1. Average Molecular Weight:

The average molecular weight of a phase is calculated as:

i

species

iave MWxMW ∑=

where

1. MWave is the average molecular weight of the phase,

2. xi is the mole fraction of the ith species component in the phase, and

3. MWi is the molecular weight of the ith species component in the phase.

2. Molar Density:

For phases modeled as incompressible (i.e., the density of the phase is not dependent on pressure),

the molar density is calculated assuming ideal solution behavior:

294

1

)(
),(

−

= ∑

species i

i

T

x
T

ρ
ρ x

where

1. ρ is the molar density of the phase,

2. xi is the mole fraction of the ith species component in the phase, and

3. ρi is the molar density of the ith species component in the phase.

For phases modeled using an equation of state, the molar density is calculated as:

),,(),,(
1 xx TPVTP

−=ρ

where

1. ρ is the molar density of the phase, and

2. V is the molar volume of the phase (determined by the equation of state model

selected for the phase).

3. Molar Volume:

For phases modeled as incompressible, the molar volume is calculated assuming ideal solution

behavior:

∑=
species i

i

T

x
TV

)(
),(

ρ
x

where

1. V is the molar volume of the phase,

2. xi is the mole fraction of the ith species component in the phase, and

3. ρi is the molar density of the ith species component in the mixture.

For phases modeled using an equation of state, the molar density is expressed as a function of

pressure, temperature, and composition:

0),,,(=xTVPf

where

1. P is the pressure of the phase,

2. V is the molar volume of the phase,

3. T is the temperature of the phase, and

4. x is the vector of mole fractions for all species in the phase.

295

As shown in Table B-5, non-ideal equation of state models will also contain a set of binary

interaction parameters for all pairs of species in the phase.

4. Fugacity:

For phases modeled as incompressible, the fugacity of each species in the phase is calculated

(neglecting the Poynting correction factor) as:

ivpiii Pxf ,γ=

where

1. fi is the fugacity of the ith species component in the phase,

2. xi is the mole fraction of the ith species component in the phase,

3. γi is the activity coefficient of the ith species component in the phase, and

4. Pvp,i is the vapor pressure of the ith species component in the phase.

For phases modeled using an equation of state, the fugacity of each species in the phase is

expressed as:

Pxf iii φ=

where

1. fi is the fugacity of the ith species component in the phase,

2. xi is the mole fraction of the ith species component in the phase,

3. φi is the fugacity coefficient of the ith species component in the phase, and

4. P is the pressure of the phase.

5. Fugacity Coefficient:

For phases modeled using an equation of state, the fugacity coefficient of each species in the

phase is determined by evaluation of the following integral:

()ZRTdV
V

RT

N

P
RT

V

iNVTi

i

j

∫∞ −

−

∂
∂−= lnln

][,,

φ

where

1. φi is the fugacity coefficient of the ith species component in the phase,

2. T is the temperature of the phase,

3. P is the pressure of the phase,

4. V is the molar volume of the phase,

296

5. Z is the compressibility factor of the phase, and

6. x is the vector of mole fractions for all species in the phase.

Integrated forms of this equation for the equations of state in Table B-5 are given in Reid et al

(1984).

6. Activity:

For incompressible phases modeled using an activity coefficient model, the activity of each species

in the phase is expressed as:

iii xa γ=

where

1. ai is the activity of the ith species component in the phase, and

2. γi is the activity coefficient of the ith species component in the phase.

7. Activity Coefficient:

For incompressible phases modeled using an activity coefficient model, the activity coefficient of

each species in the phase is expressed as:

),(xTfi =γ

where

1. γi is the activity coefficient of the ith species component in the phase,

2. T is the temperature of the phase, and

3. x is the vector of mole fractions for all species in the phase.

The activity model correlations for binary systems are summarized in Table B-6. Correlations for

multicomponent mixtures may be found in Reid et al (1984).

8, 9, 10, 11, 12. Internal Energy, Enthalpy, Gibbs Free Energy, Entropy, Helmholtz Energy :

For phases modeled as incompressible, thermodynamic variables are calculated using excess

properties based on the selected activity coefficient model:

∑∑ ++=
species

ii

species

ii

E xxRTGxGG ln

∑∑ −+=
species

ii

species

ii

E xxRSxSS ln

∑∑ ++=
species

ii

species

ii

E xxRTAxAA ln

297

∑+=
species

ii

E HxHH

∑+=
species

ii

E UxUU

where

1. G is the Gibbs free energy of the phase,

2. S is the entropy of the phase,

3. A is the Helmholtz energy of the phase,

4. H is the enthalpy of the phase,

5. U is the internal energy of the phase,

6. xi is the mole fraction of the ith species component in the phase, and

7. E (superscript) represents an excess property.

For phases modeled using an equation of state, the thermodynamic variables are calculated using

departure functions based on the selected equation of state model:

+

 −−=− ∫∞ V

V
RTVd

V

PT
PVTAVTA

O
VOO ln),(),(

+

 −
∂
∂=− ∫∞ V

V
RVd

V

PT
P

T
VTSVTS

O
VOO ln),(),(

)],(),([)],(),([),(),(
OOOOOO VTSVTSTVTAVTAVTUVTU −+−=−

RTPVVTUVTUVTHVTH
OOOO −+−=−)],(),([),(),(

)],(),([)],(),([),(),(
OOOOOO VTSVTSTVTHVTHVTGVTG −−−=−

where

1. A is the Helmholtz energy of the phase,

2. S is the entropy of the phase,

3. U is the internal energy of the phase,

4. H is the enthalpy of the phase,

5. G is the Gibbs free energy of the phase, and

6. O (superscript) represents a reference state property.

Integrated forms of the departure functions for the equations of state in Table B-5 are given in

Reid et al (1984). The use of departure functions for the calculation of thermodynamic mixtures

298

using equation of state models is discussed in detail by Tester and Modell (1997).

13. Heat Capacity:

For phases modeled as incompressible (i.e., the density of the phase is not dependent on pressure),

the molar heat capacity is calculated assuming ideal solution behavior:

)(),(, TcxTc ip

species

ip ∑=x

where

1. cp is the molar heat capacity of the phase,

2. xi is the mole fraction of the ith species component in the phase, and

3. cp,i is the molar heat capacity of the ith species component in the phase.

For phases modeled using an equation of state, the molar heat capacity is calculated using

a departure function based on the selected equation of state model:

R
VP

TPT
Vd

T

P
TVTcVTc

T

VV

V

OO

pp −
∂∂
∂∂

−

∂
∂=− ∫∞)/(

)/(
),(),(

2

2

2

where

1. cp is the molar heat capacity of the phase,

2. P is the pressure of the phase,

3. V is the molar volume of the phase,

4. T is the temperature of the phase, and

5. O (superscript) represents a reference state property.

• Analysis of Phase Behavior

Analysis of the thermodynamic and physical behavior of phases is facilitated through the Phase

Properties Dialog (illustrated in Figure 5-34). Here, property correlations constructed based on

pure species properties and selected equation of state or activity coefficient models may be

viewed and plotted.

299

Appendix C

Operational Schedules

This appendix provides additional details regarding the declaration of operational schedules

through use of the MODEL.LA Operations Manager.

• Purpose

The purpose of an operational schedule declared within the MODEL.LA Operations Manager is

to impose discrete actions on the behavior of an otherwise continuous process model. Within the

MODEL.LA Modeling Environment, this results in hybrid discrete and continuous behavior

exhibited during subsequent simulation of a phenomena-based process model.

• Hybrid Systems

The mathematical model derived from a phenomena-based model representation consists of a set

of continuous equations that are based on conservation principles. The behavior of such a model

is characterized by a set of state variables (e.g., mass, energy, temperature, composition, etc.) that

vary continuously in time. However, external discrete actions imposed on the system through

manipulation of some process quantity (e.g., set flow rate to zero) result in discontinuous process

behavior. Such models that exhibit both discrete and continuous behavior have been termed

hybrid systems.

The general structure of a hybrid system may be interpreted as shown in Figure C-1. The

state of a physical system is monitored by sensors that relay this information to an external control

system. Based on the state of the physical system, the control system may implement discrete (or

continuous) actions on the physical system through actuators that manipulate a variable or

variables associated with the physical system.

300

Physical
System

SensorActuator

Non-Physical
System

 (e.g., controller)

Figure C-1: Generic Structure of Hybrid System

• Operational Schedules

In chemical plants, the two predominant types of procedures that result in hybrid systems are

control procedures and operating procedures. In general, control procedures sample variables at

regular intervals of time, which may be interpreted as time events. At each time event an action is

performed—the value of a manipulated variable is changed based on a specified control law. In

general, operating procedures encompass both time events and state events. These operating

procedures may be interpreted as operational schedules that encompass a sequence of actions that

are performed on the process when some conditions are satisfied (i.e., time events or state

events). These operational schedules are an inherent part of the operation of a batch plant and

appear commonly during the startup, shutdown, and maintenance of a continuous plant.

Several formalisms have been proposed to describe discrete systems. Examples include

finite state automata (Sipser, 1998), DEVS formalism (Zeigler, 1984), Petri Nets (Petri, 1963),

and Grafcet (Lloyd, 1985). Computer-aided packages that allow the simulation of hybrid

discrete/continuous systems include gPROMS (Barton, 1992), OMOLA (Nilsson, 1993), and

ABACUSS (Feehery and Barton, 1996).

• Graphical Declaration of Schedules

In the MODEL.LA Operations Manager, operational schedules are declared using a graphical

syntax based on a set of graphical elements. A schedule is composed of a sequence of elementary

and/or composite actions. An elementary action represents the manipulation of a process variable.

A composite action is itself a schedule that is composed of a sequence of elementary and/or

composite actions. The sequence of actions carried out in a schedule is dictated by events that

link the actions. Certain events are associated with a condition based on a set of one or more

301

measured process variables. When an event has control in a schedule and the condition associated

with the event becomes true, the subsequent action in the schedule is triggered. Control then

passes to the subsequent event, as dictated by the topology of the schedule events.

In MODEL.LA, tasks are declared as icons on a process flowsheet where they are

associated with a one or more measured variables and one or more manipulated variable through a

set of transmission lines. Subsequently, these tasks are used in the construction of any number of

operational schedules in the MODEL.LA Operations Manager. Here, schedules are constructed

graphically as flowcharts. The graphical elements that are used to compose a schedule are

summarized in Table C-1. Each of these elements are now discussed.

1. Events:

An event in a schedule is represented by an arrow line that connects two actions. The orientation

of the arrow depicts the flow of control (i.e., sequence of manipulations) in a schedule. An event

may be of type void, when, while, end while, if, and if not.

1.A Void Event:

When control is passed to a void event, the subsequent associated action is immediately triggered.

In this manner, a sequence of actions connected by void events are used to trigger a set of actions

simultaneously.

1.B When Event:

When control is passed to a when event, the subsequent action is triggered once the conditional

defined for the event becomes true. A when event is associated with a task that has been declared

on the process flowsheet. Variables measured by the task are used to construct the conditional

associated with the when event.

302

Table C-1: Operational Schedule Elements

Element Icon Purpose

Event

(black arrow)

1. Void events trigger simultaneous actions

2. When event triggers action based on time or state event

3. While/end while events establish loop in schedule

4. If/if not events establish conditional branches in schedule

Initial Action

(green circle)

Establishes starting point of schedule

End Action

(red circle)

Establishes termination of branch in schedule

Elementary Action

(blue ellipse)

Represents manipulation of process variable

Composite Action

(olive ellipse)

Represents abstraction of sequence of events and actions

Condition Action

(yellow diamond)

Establishes conditional branches during execution of

schedule

Parallel Action

(black bar)

Establishes multiple independent execution paths in schedule

303

1.C While and End While Events:

A while event establishes the beginning of a loop of actions in the schedule. The closure of the

loop is established by a subsequent end while event. Similar to a when event, a while event is

associated with a task that has been declared on the process flowsheet. Variables measured by the

task are used to construct the conditional associated with the while event. When control is passed

to a while event, the associated action is activated if the conditional associated with the while

event is true. Execution then continues until control passes to the subsequent end while event in

the schedule. At that point control returns to the initial while event. In this manner, an iterative

loop of actions is established. When control is passed to a while event and the associated

conditional is not true, the action subsequent to the end while event that ends the loop is

triggered. In this manner, the loop is terminated.

1.D If and If Not Events:

A condition action establishes a pair of alternative branches encountered during the execution of a

schedule. Each condition action is associated a conditional and a subsequent if and an if not

event. When a condition action is triggered, control is passed to the if event if the conditional

associated with the condition action is true. If it is false, control is passed to the if not event.

Similar to a void event, when control is passed to an if or an if not event, the subsequent

associated action is immediately triggered.

2. Initial Action:

Every schedule must have exactly one initial action. It is represented in a schedule by a green

circle. The initial action establishes the starting point of the schedule. The initial action is

associated with a null action (i.e., no process manipulation occurs) and thus immediately passes

control to the subsequent event.

3. End Action:

Every path in a schedule must terminate at an end action. It is represented in a schedule by a red

circle. The end action is associated with a null action and represents termination of the

operational schedule.

4. Elementary Action:

An elementary action is represented in a schedule by a blue ellipse. It represents a change in the

value of a manipulated variable in the process. An elementary action is associated with a task that

304

has been declared on the process flowsheet. Variables manipulated by the task are used to

construct the action (represented by an equation) associated with the elementary action.

5. Composite Action:

A composite action represents an abstraction of a sequence of actions and events. It is represented

in a schedule by an olive ellipse. A composite action is itself a well-defined schedule. This

enables a hierarchical declaration of operational schedules. The actions and events that compose

a composite action are declared on a separate decomposition flowchart. When a composite action

is triggered, control passes to the initial action in the decomposition of the composite action.

Execution of the sub-schedule continues until an associated end action is triggered. Control is

then passed to the event subsequent to the composite action in the parent schedule.

6. Condition Action:

An condition action is represented in a schedule by a yellow diamond. A condition action

establishes a pair of alternative branches encountered during the execution of a schedule. A

condition action is associated with a null action. Therefore no process variable is manipulated.

Rather, the condition action is associated with a task that has been declared on the process

flowsheet. Variables measured by the task are used to construct the conditional associated with

the condition action. Each condition action is also associated with a subsequent if and if not

event. When the condition action is triggered, control is passed to the if event if the conditional is

true. If it is false, control is passed to the if not event.

7. Parallel Action:

An parallel action is represented in a schedule by a solid black bar. A parallel action enables the

execution of two or more simultaneous paths in a operational schedule. A parallel action is

associated with a null action. Therefore no process variable is manipulated. Rather, when a

parallel action is triggered, control is passed to all events immediately subsequent to the action.

Each path is then executed independently and concurrently. The overall operational schedule

terminates when all resulting paths in the schedule terminate at end actions.

• Schedule Construction

The first step in constructing a schedule in MODEL.LA is to declare the necessary tasks as icons

on the phenomena-based model flowsheet. Each task is associated with a set of measured process

variables (declared by transmission lines incident to the task) and a set of manipulated process

305

variables (declared by transmission lines incident from the task). For example, in Figure 5-41,

feed_task represents a task that measures the volume of the Reactor and Storage systems through

transmission lines reactor_vol_fill and storage_vol, respectively, and manipulates the volumetric

flow rate of the feed stream through transmission line feed_flow. The measured process variables

are used to construct conditionals for when events, while events, and condition actions. The

manipulated process variables are used to construct action equations for elementary actions.

Each schedule is constructed using the elements described in the preceding section. These

are presented to the modeler on the Modeling Assistant (illustrated at the bottom of Figure 5-41).

Rules for construction of a valid schedule are now presented.

− All schedules must contain exactly one initial action that has no events incident to

it and exactly one void, when, or while event incident from it.

− Every branch in a schedule must terminate at an end action, which must have

exactly one void, when, if, if not, or end while event incident to it and no events

incident from it.

− Every elementary, composite, condition, and parallel action in a schedule must

have exactly one event (of any kind) incident to it.

− Every elementary and composite action in a schedule must have exactly one void,

when, while, or end while event incident from it.

− Every condition element must have exactly one if and exactly one if not event

incident from it.

− Every parallel branch may have any number (greater than zero) of events incident

from it of type void, when, or while.

− Every loop established by a while event must terminate at a end while event.

− Every when event, while event, and condition element must either be associated

with a time event or a state event characterized by a conditional. Events

associated with state events must be associated with a task that measures the

variables used to construct the characterizing conditional.

− Every initial, final, conditional, and parallel events are by default associated with

null actions.

− Every elementary action must be associated with a task that manipulates a process

306

variable and an equation that characterizes the manipulation of the variable.

− Every composite action must be associated with a distinct, valid sub-schedule.

• Schedule Execution

For a given phenomena-based model description and set of tasks, any number of schedules may be

declared. However, when the model is simulated, only the selected active schedule (which may

integrate other sub-schedules through composite actions) is implemented for execution. The

schedule is posed in the gPROMS input language for simulation with the model equations derived

from the phenomena-based model description. Each elementary action in a schedule is declared

as a gPROMS TASK which RESETs the value of a process variable. Table C-2 illustrates the

declaration of the schedule depicted in Figure 5-41. The first four entries represent elementary

actions feed_on, feed_off, product_on, and product_off. Each action manipulates a process

variable from the phenomena-based model equations (contained in MODEL The_Model). The

main schedule and any composite action sub-schedules are also declared as gPROMS TASKs

which list the schedule actions in a SEQUENCE associated with the SCHEDULE of the TASK.

Elementary or composite actions linked by void events are listed sequentially in a SEQUENCE.

When events are declared as CONTINUE UNTIL statements that separate elementary or

composite events. While events are declared as WHILE [condition] DO statements that terminate

at End While events declared as END statements. Conditional actions are declared as

IF/THEN/ELSE statements. Finally, parallel actions are declared as PARALLEL statements.

307

Table C-2: Example gPROMS Schedule Translation

gPROMS Tasks

TASK feed_on
PARAMETER

The_Model AS MODEL The_Model
SCHEDULE

SEQUENCE
RESET The_Model.v_flux_feed := 0.1 ; END

END
END
TASK feed_off

PARAMETER
The_Model AS MODEL The_Model

SCHEDULE
SEQUENCE

RESET The_Model.v_flux_feed := 0.001 ; END
END

END
TASK product_on

PARAMETER
The_Model AS MODEL The_Model

SCHEDULE
SEQUENCE

RESET The_Model.v_flux_product := 0.1 ; END
END

END
TASK product_off

PARAMETER
The_Model AS MODEL The_Model

SCHEDULE
SEQUENCE

RESET The_Model.v_flux_product := 0.001 ; END
END

END
TASK main

PARAMETER
The_Model AS MODEL The_Model

SCHEDULE
 SEQUENCE

WHILE The_Model.V_Storagematl_L0 < 100 AND TIME <= 5000 DO
SEQUENCE

feed_on(The_Model IS The_Model);
CONTINUE UNTIL The_Model.V_Reactormatl_L0 >= 10 OR TIME > 5000
feed_off(The_Model IS The_Model);
CONTINUE UNTIL The_Model.r_rxn0_forw_Reactormatl_L0 <= 0.001 OR TIME > 5000
product_on(The_Model IS The_Model);
CONTINUE UNTIL The_Model.V_Reactormatl_L0 <= 0.1 OR TIME > 5000
product_off(The_Model IS The_Model);

 END
END

END
END

308

309

Appendix D

Jacketed-CSTR Model Equations

1. Unit Jacketed_Cstr species ACETIC_ACID mole quantity decomposition
NACETIC_ACID, Jacketed_Cstr = NACETIC_ACID, Vessel

2. Unit Vessel species ACETIC_ACID balance
∂NACETIC_ACID, Vessel/∂t = (nACETIC_ACID, reactants_input, source - nACETIC_ACID, products_output, source) + (-ext_rxn0Vessel, liq0)

3. Unit Vessel species ACETIC_ACID mole quantity decomposition
NACETIC_ACID, Vessel = NACETIC_ACID, Vessel, liq0

4. Unit Jacketed_Cstr species WATER mole quantity decomposition
NWATER, Jacketed_Cstr = NWATER, Vessel + NWATER, Jacket

5. Unit Vessel species WATER balance
∂NWATER, Vessel/∂t = (nWATER, reactants_input, source - nWATER, products_output, source) + ext_rxn0Vessel, liq0

6. Unit Vessel species WATER mole quantity decomposition
NWATER, Vessel = NWATER, Vessel, liq0

7. Unit Jacket species WATER balance
∂NWATER, Jacket/∂t = nWATER, coolant_inlet, source - nWATER, coolant_outlet, source

8. Unit Jacket species WATER mole quantity decomposition
NWATER, Jacket = NWATER, Jacket, liq0

9. Unit Jacketed_Cstr species 1_BUTANOL mole quantity decomposition
N1_BUTANOL, Jacketed_Cstr = N1_BUTANOL, Vessel

10. Unit Vessel species 1_BUTANOL balance
∂N1_BUTANOL, Vessel/∂t = (n1_BUTANOL, reactants_input, source - n1_BUTANOL, products_output, source) + (-ext_rxn0Vessel, liq0)

11. Unit Vessel species 1_BUTANOL mole quantity decomposition
N1_BUTANOL, Vessel = N1_BUTANOL, Vessel, liq0

12. Unit Jacketed_Cstr species n_BUTYL_ACETATE mole quantity decomposition
Nn_BUTYL_ACETATE, Jacketed_Cstr = Nn_BUTYL_ACETATE, Vessel

310

13. Unit Vessel species n_BUTYL_ACETATE balance
∂Nn_BUTYL_ACETATE, Vessel/∂t = (nn_BUTYL_ACETATE, reactants_input, source - nn_BUTYL_ACETATE, products_output, source) + ext_rxn0Vessel, liq0

14. Unit Vessel species n_BUTYL_ACETATE mole quantity decomposition
Nn_BUTYL_ACETATE, Vessel = Nn_BUTYL_ACETATE, Vessel, liq0

15. Phase Vesselmatl_L0 total moles decomposition into individual species moles
NVessel, liq0 = ((NACETIC_ACID, Vessel, liq0 + NWATER, Vessel, liq0) + N1_BUTANOL, Vessel, liq0) + Nn_BUTYL_ACETATE, Vessel, liq0

16. Phase Vesselmatl_L0 sum of individual species mole fractions
((xACETIC_ACID, Vessel, liq0 + xWATER, Vessel, liq0) + x1_BUTANOL, Vessel, liq0) + xn_BUTYL_ACETATE, Vessel, liq0 = 1

17. Phase Vesselmatl_L0 species ACETIC_ACID molar concentration
NACETIC_ACID, Vessel, liq0 = cACETIC_ACID, Vessel, liq0*VVessel, liq0

18. Phase Vesselmatl_L0 species WATER mole fraction
NWATER, Vessel, liq0 = xWATER, Vessel, liq0*NVessel, liq0

19. Phase Vesselmatl_L0 species WATER molar concentration
NWATER, Vessel, liq0 = cWATER, Vessel, liq0*VVessel, liq0

20. Phase Vesselmatl_L0 species 1_BUTANOL mole fraction
N1_BUTANOL, Vessel, liq0 = x1_BUTANOL, Vessel, liq0*NVessel, liq0

21. Phase Vesselmatl_L0 species 1_BUTANOL molar concentration
N1_BUTANOL, Vessel, liq0 = c1_BUTANOL, Vessel, liq0*VVessel, liq0

22. Phase Vesselmatl_L0 species n_BUTYL_ACETATE mole fraction
Nn_BUTYL_ACETATE, Vessel, liq0 = xn_BUTYL_ACETATE, Vessel, liq0*NVessel, liq0

23. Phase Vesselmatl_L0 species n_BUTYL_ACETATE molar concentration
Nn_BUTYL_ACETATE, Vessel, liq0 = cn_BUTYL_ACETATE, Vessel, liq0*VVessel, liq0

24. Phase Jacketmatl_L0 total moles decomposition into individual species moles
NJacket, liq0 = NWATER, Jacket, liq0

25. Phase Jacketmatl_L0 sum of individual species mole fractions
xWATER, Jacket, liq0 = 1

26. Phase Jacketmatl_L0 species WATER molar concentration
NWATER, Jacket, liq0 = cWATER, Jacket, liq0*VJacket, liq0

27. Unit Jacketed_Cstr reaction rxn0 extent decomposition
ext_rxn0Jacketed_Cstr = ext_rxn0Vessel

28. Unit Vessel reaction rxn0 extent decomposition
ext_rxn0Vessel = ext_rxn0Vessel, liq0

29. Flux reactants_input molar density
ntot, reactants_input, source = rhon, reactants_input*vreactants_input, source

30. Phase reactants_input_phase molecular weight from PPM

311

mwreactants_input = ((((xACETIC_ACID, reactants_input*60.0526) + (xWATER, reactants_input*18.0153)) + (x1_BUTANOL, reactants_input*74.1228)) + (xn_BUTYL_ACETATE,

reactants_input*116.16))

31. Flux reactants_input sum of species mole fractions
((xACETIC_ACID, reactants_input + xWATER, reactants_input) + x1_BUTANOL, reactants_input) + xn_BUTYL_ACETATE, reactants_input = 1

32. Phase reactants_input_phase density correlation from PPM
rhon, reactants_input = F(Treactants_input, xACETIC_ACID, reactants_input, xWATER, reactants_input, x1_BUTANOL, reactants_input, xn_BUTYL_ACETATE, reactants_input)

33. Flux reactants_input species ACETIC_ACID mole fraction
nACETIC_ACID, reactants_input, source = xACETIC_ACID, reactants_input*ntot, reactants_input, source

34. Flux reactants_input species WATER mole fraction
nWATER, reactants_input, source = xWATER, reactants_input*ntot, reactants_input, source

35. Flux reactants_input species 1_BUTANOL mole fraction
n1_BUTANOL, reactants_input, source = x1_BUTANOL, reactants_input*ntot, reactants_input, source

36. Flux reactants_input species n_BUTYL_ACETATE mole fraction
nn_BUTYL_ACETATE, reactants_input, source = xn_BUTYL_ACETATE, reactants_input*ntot, reactants_input, source

37. Flux products_output molar density
ntot, products_output, source = rhon, Vessel, liq0*vproducts_output, source

38. Flux products_output species ACETIC_ACID mole fraction
nACETIC_ACID, products_output, source = xACETIC_ACID, Vessel, liq0*ntot, products_output, source

39. Flux products_output species WATER mole fraction
nWATER, products_output, source = xWATER, Vessel, liq0*ntot, products_output, source

40. Flux products_output species 1_BUTANOL mole fraction
n1_BUTANOL, products_output, source = x1_BUTANOL, Vessel, liq0*ntot, products_output, source

41. Flux products_output species n_BUTYL_ACETATE mole fraction
nn_BUTYL_ACETATE, products_output, source = xn_BUTYL_ACETATE, Vessel, liq0*ntot, products_output, source

42. Flux coolant_inlet molar density
ntot, coolant_inlet, source = rhon, coolant_inlet*vcoolant_inlet, source

43. Phase coolant_inlet_phase molecular weight from PPM
mwcoolant_inlet = 18.0153

44. Flux coolant_inlet sum of species mole fractions
xWATER, coolant_inlet = 1

45. Phase coolant_inlet_phase density correlation from PPM
rhon, coolant_inlet = F(Tcoolant_inlet)

46. Flux coolant_inlet species WATER mole fraction
nWATER, coolant_inlet, source = xWATER, coolant_inlet*ntot, coolant_inlet, source

47. Flux coolant_outlet molar density

312

ntot, coolant_outlet, source = rhon, Jacket, liq0*vcoolant_outlet, source

48. Flux coolant_outlet species WATER mole fraction
nWATER, coolant_outlet, source = xWATER, Jacket, liq0*ntot, coolant_outlet, source

49. Unit Vessel energy balance
∂UVessel/∂t = (ereactants_input, source - eproducts_output, source) - eq_exchange, source

50. Unit Jacket energy balance
∂UJacket/∂t = (ecoolant_inlet, source - ecoolant_outlet, source) + eq_exchange, source

51. Flux reactants_input energy flux
ereactants_input, source = hreactants_input*ntot, reactants_input, source

52. Flux products_output energy flux
eproducts_output, source = hVessel, liq0*ntot, products_output, source

53. Flux coolant_inlet energy flux
ecoolant_inlet, source = hcoolant_inlet*ntot, coolant_inlet, source

54. Flux coolant_outlet energy flux
ecoolant_outlet, source = hJacket, liq0*ntot, coolant_outlet, source

55. Flux q_exchange energy flux
eq_exchange, source = Aq_exchange*(Uo, q_exchange*(TVessel - TJacket))

56. Phase Vesselmatl_L0 reaction rxn0 forward rate
r_rxn0_forwVessel, liq0 = (k_constforwrxn0*(cACETIC_ACID, Vessel, liq0

2
))*(c1_BUTANOL, Vessel, liq0)

57. Phase Vesselmatl_L0 reaction rxn0 reverse rate
r_rxn0_backVessel, liq0 = (k_constbackrxn0*(cWATER, Vessel, liq0))*(cn_BUTYL_ACETATE, Vessel, liq0)

58. Phase Vesselmatl_L0 reaction rxn0 extent
ext_rxn0Vessel, liq0 = (r_rxn0_forwVessel, liq0 - r_rxn0_backVessel, liq0)*VVessel, liq0

59. Phase Vesselmatl_L0 molar density
NVessel, liq0 = rhon, Vessel, liq0*VVessel, liq0

60. Phase Jacketmatl_L0 molar density
NJacket, liq0 = rhon, Jacket, liq0*VJacket, liq0

61. Unit Vessel extensive variable V_Vesselmatl decomposition
VVessel = VVessel, liq0

62. Unit Jacket extensive variable V_Jacketmatl decomposition
VJacket = VJacket, liq0

63. Phase Vesselmatl_L0 density correlation from PPM
rhon, Vessel, liq0 = F(TVessel, xACETIC_ACID, Vessel, liq0, xWATER, Vessel, liq0, x1_BUTANOL, Vessel, liq0, xn_BUTYL_ACETATE, Vessel, liq0)

64. Phase Jacketmatl_L0 density correlation from PPM
rhon, Jacket, liq0 = F(TJacket)

313

65. Unit Vessel extensive variable Un_Vesselmatl decomposition
UVessel = (NVessel, liq0*hVessel, liq0) - (PVessel*VVessel)

66. Phase Vesselmatl_L0 enthalpy correlation from PPM
hVessel, liq0 = F(TVessel, xACETIC_ACID, Vessel, liq0, xWATER, Vessel, liq0, x1_BUTANOL, Vessel, liq0, xn_BUTYL_ACETATE, Vessel, liq0)

67. Phase Vesselmatl_L0 heat capacity correlation from PPM
Cp n, Vessel, liq0 = F(TVessel, xACETIC_ACID, Vessel, liq0, xWATER, Vessel, liq0, x1_BUTANOL, Vessel, liq0, xn_BUTYL_ACETATE, Vessel, liq0)

68. Unit Jacket extensive variable Un_Jacketmatl decomposition
UJacket = (NJacket, liq0*hJacket, liq0) - (PJacket*VJacket)

69. Phase Jacketmatl_L0 enthalpy correlation from PPM
hJacket, liq0 = F(TJacket)

70. Phase Jacketmatl_L0 heat capacity correlation from PPM
Cp n, Jacket, liq0 = F(TJacket)

71. Connection reactants_input phase reactants_input_phase enthalpy correlation from PPM
hreactants_input = F(Treactants_input, xACETIC_ACID, reactants_input, xWATER, reactants_input, x1_BUTANOL, reactants_input, xn_BUTYL_ACETATE, reactants_input)

72. Connection coolant_inlet phase coolant_inlet_phase enthalpy correlation from PPM
hcoolant_inlet = F(Tcoolant_inlet)

73. Phase Vesselmatl_L0 molecular weight from PPM
mwVessel, liq0 = ((((xACETIC_ACID, Vessel, liq0*60.0526) + (xWATER, Vessel, liq0*18.0153)) + (x1_BUTANOL, Vessel, liq0*74.1228)) + (xn_BUTYL_ACETATE, Vessel,

liq0*116.16))

74. Phase Jacketmatl_L0 molecular weight from PPM
mwJacket, liq0 = 18.0153

314

315

Appendix E

2-D Spatially Distributed Tubular Reactor

Model Equations

1. Flux flow_z mole flux per area
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, flow_z, source(r,z) = rhon, Tube_reactor_rz, vap0(r,z)*vz, flow_z(r,z)

2. Unit Tube_reactor_rz species o_XYLENE balance
 r := (rmin, Tube_reactor|+, rmax, Tube_reactor|-); z := (zmin, Tube_reactor|+, zmax, Tube_reactor|-)

 ∂co_XYLENE, Tube_reactor_rz, vap0(r,z)/∂t = (((-(∂narea, o_XYLENE, flow_z, source(r,z)/∂zTube_reactor)) - (∂narea, o_XYLENE, a_z, source(r,z)/∂zTube_reactor)) - ((1/r)*(∂(narea,

o_XYLENE, a_r, source(r,z)*r)/∂rTube_reactor))) + (-r_rxn0_forw_Tube_reactor_rzmatl_V0Tube_reactor_rz, vap0(r,z))

3. Unit Tube_reactor_r1 boundary species o_XYLENE balance
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, o_XYLENE, a_r(r_coord_min_Tube_reactor,z) = 0

4. Unit Tube_reactor_r2 boundary species o_XYLENE balance
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, o_XYLENE, a_r(r_coord_max_Tube_reactor,z) = 0

5. Unit Tube_reactor_z1 boundary species o_XYLENE balance
 r := (rmin, Tube_reactor|+, rmax, Tube_reactor|-)

 narea, o_XYLENE, flow_z(r,z_coord_min_Tube_reactor) + narea, o_XYLENE, a_z(r,z_coord_min_Tube_reactor) = narea, o_XYLENE, reactants, source(r)

6. Unit Tube_reactor_z2 boundary species o_XYLENE balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, o_XYLENE, flow_z(r,z_coord_max_Tube_reactor) + narea, o_XYLENE, a_z(r,z_coord_max_Tube_reactor) = narea, o_XYLENE, products, source(r)

7. Flux a_z species o_XYLENE flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, o_XYLENE, a_z, source(r,z) = (-(Df, a_z(r,z)*(∂co_XYLENE, Tube_reactor_rz, vap0(r,z)/∂zTube_reactor)))

8. Flux a_r species o_XYLENE flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, o_XYLENE, a_r, source(r,z) = (-(Df, a_r(r,z)*(∂co_XYLENE, Tube_reactor_rz, vap0(r,z)/∂rTube_reactor)))

316

9. Unit Tube_reactor_rz species PHTHALIC_ANHYDRIDE balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor|+, zmax, Tube_reactor)

 ∂cPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z)/∂t = (-(∂narea, PHTHALIC_ANHYDRIDE, flow_z, source(r,z)/∂zTube_reactor)) +

r_rxn0_forw_Tube_reactor_rzmatl_V0Tube_reactor_rz, vap0(r,z)

10. Unit Tube_reactor_z1 boundary species PHTHALIC_ANHYDRIDE balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, PHTHALIC_ANHYDRIDE, flow_z(r,z_coord_min_Tube_reactor) = narea, PHTHALIC_ANHYDRIDE, reactants, source(r)

11. Unit Tube_reactor_z2 boundary species PHTHALIC_ANHYDRIDE balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, PHTHALIC_ANHYDRIDE, flow_z(r,z_coord_max_Tube_reactor) = narea, PHTHALIC_ANHYDRIDE, products, source(r)

12. Unit Tube_reactor_rz species OXYGEN balance
 r := (rmin, Tube_reactor|+, rmax, Tube_reactor|-); z := (zmin, Tube_reactor|+, zmax, Tube_reactor|-)

 ∂cOXYGEN, Tube_reactor_rz, vap0(r,z)/∂t = (((-(∂narea, OXYGEN, flow_z, source(r,z)/∂zTube_reactor)) - (∂narea, OXYGEN, b_z, source(r,z)/∂zTube_reactor)) - ((1/r)*(∂(narea,

OXYGEN, b_r, source(r,z)*r)/∂rTube_reactor))) + (-(3*r_rxn0_forw_Tube_reactor_rzmatl_V0Tube_reactor_rz, vap0(r,z)))

13. Unit Tube_reactor_r1 boundary species OXYGEN balance
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, OXYGEN, b_r(r_coord_min_Tube_reactor,z) = 0

14. Unit Tube_reactor_r2 boundary species OXYGEN balance
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, OXYGEN, b_r(r_coord_max_Tube_reactor,z) = 0

15. Unit Tube_reactor_z1 boundary species OXYGEN balance
 r := (rmin, Tube_reactor|+, rmax, Tube_reactor|-)

 narea, OXYGEN, flow_z(r,z_coord_min_Tube_reactor) + narea, OXYGEN, b_z(r,z_coord_min_Tube_reactor) = narea, OXYGEN, reactants, source(r)

16. Unit Tube_reactor_z2 boundary species OXYGEN balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, OXYGEN, flow_z(r,z_coord_max_Tube_reactor) + narea, OXYGEN, b_z(r,z_coord_max_Tube_reactor) = narea, OXYGEN, products, source(r)

17. Flux b_z species OXYGEN flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, OXYGEN, b_z, source(r,z) = (-(Df, b_z(r,z)*(∂cOXYGEN, Tube_reactor_rz, vap0(r,z)/∂zTube_reactor)))

18. Flux b_r species OXYGEN flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, OXYGEN, b_r, source(r,z) = (-(Df, b_r(r,z)*(∂cOXYGEN, Tube_reactor_rz, vap0(r,z)/∂rTube_reactor)))

19. Unit Tube_reactor_rz species WATER balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor|+, zmax, Tube_reactor)

 ∂cWATER, Tube_reactor_rz, vap0(r,z)/∂t = (-(∂narea, WATER, flow_z, source(r,z)/∂zTube_reactor)) + (3*r_rxn0_forw_Tube_reactor_rzmatl_V0Tube_reactor_rz,

vap0(r,z))

20. Unit Tube_reactor_z1 boundary species WATER balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, WATER, flow_z(r,z_coord_min_Tube_reactor) = narea, WATER, reactants, source(r)

317

21. Unit Tube_reactor_z2 boundary species WATER balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, WATER, flow_z(r,z_coord_max_Tube_reactor) = narea, WATER, products, source(r)

22. Unit Jacket species WATER balance
∂NWATER, Jacket/∂t = nWATER, cool_in, source - nWATER, cool_out, source

23. Unit Jacket species WATER mole quantity decomposition
NWATER, Jacket = NWATER, Jacket, liq0

24. Phase Tube_reactor_rzmatl_V0 sum of individual species mole fractions
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 ((xo_XYLENE, Tube_reactor_rz, vap0(r,z) + xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z)) + xOXYGEN, Tube_reactor_rz, vap0(r,z)) + xWATER, Tube_reactor_rz, vap0(r,z) = 1

25. Phase Tube_reactor_rzmatl_V0 species o_XYLENE molar concentration
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 co_XYLENE, Tube_reactor_rz, vap0(r,z) = xo_XYLENE, Tube_reactor_rz, vap0(r,z)*rhon, Tube_reactor_rz, vap0(r,z)

26. Phase Tube_reactor_rzmatl_V0 species PHTHALIC_ANHYDRIDE molar concentration
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 cPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z) = xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z)*rhon, Tube_reactor_rz, vap0(r,z)

27. Phase Tube_reactor_rzmatl_V0 species OXYGEN molar concentration
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 cOXYGEN, Tube_reactor_rz, vap0(r,z) = xOXYGEN, Tube_reactor_rz, vap0(r,z)*rhon, Tube_reactor_rz, vap0(r,z)

28. Phase Tube_reactor_rzmatl_V0 species WATER molar concentration
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 cWATER, Tube_reactor_rz, vap0(r,z) = xWATER, Tube_reactor_rz, vap0(r,z)*rhon, Tube_reactor_rz, vap0(r,z)

29. Phase Jacketmatl_L0 total moles decomposition into individual species moles
NJacket, liq0 = NWATER, Jacket, liq0

30. Phase Jacketmatl_L0 sum of individual species mole fractions
xWATER, Jacket, liq0 = 1

31. Phase Jacketmatl_L0 species WATER molar concentration
NWATER, Jacket, liq0 = cWATER, Jacket, liq0*VJacket, liq0

32. Phase reactants_phase molecular weight from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 mwreactants(r) = ((((xo_XYLENE, reactants(r)*106.167) + (xPHTHALIC_ANHYDRIDE, reactants(r)*148.118)) + (xOXYGEN, reactants(r)*31.9988)) + (xWATER,

reactants(r)*18.0153))

33. Flux reactants sum of species mole fractions
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 ((xo_XYLENE, reactants(r) + xPHTHALIC_ANHYDRIDE, reactants(r)) + xOXYGEN, reactants(r)) + xWATER, reactants(r) = 1

34. Flux reactants species o_XYLENE mole fraction
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

318

 narea, o_XYLENE, reactants, source(r) = xo_XYLENE, reactants(r)*narea, reactants, source(r)

35. Flux reactants species PHTHALIC_ANHYDRIDE mole fraction
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, PHTHALIC_ANHYDRIDE, reactants, source(r) = xPHTHALIC_ANHYDRIDE, reactants(r)*narea, reactants, source(r)

36. Flux reactants species OXYGEN mole fraction
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, OXYGEN, reactants, source(r) = xOXYGEN, reactants(r)*narea, reactants, source(r)

37. Flux reactants species WATER mole fraction
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, WATER, reactants, source(r) = xWATER, reactants(r)*narea, reactants, source(r)

38. Flux products total mole flux decomposition into individual species mole fluxes
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 narea, products, source(r) = ((narea, o_XYLENE, products, source(r) + narea, PHTHALIC_ANHYDRIDE, products, source(r)) + narea, OXYGEN, products, source(r)) + narea, WATER, products, source(r)

39. Flux flow_z differential species o_XYLENE mole flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, o_XYLENE, flow_z, source(r,z) = co_XYLENE, Tube_reactor_rz, vap0(r,z)*vz, flow_z(r,z)

40. Flux flow_z differential species PHTHALIC_ANHYDRIDE mole flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, PHTHALIC_ANHYDRIDE, flow_z, source(r,z) = cPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z)*vz, flow_z(r,z)

41. Flux flow_z differential species OXYGEN mole flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, OXYGEN, flow_z, source(r,z) = cOXYGEN, Tube_reactor_rz, vap0(r,z)*vz, flow_z(r,z)

42. Flux flow_z differential species WATER mole flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 narea, WATER, flow_z, source(r,z) = cWATER, Tube_reactor_rz, vap0(r,z)*vz, flow_z(r,z)

43. Phase cool_in_phase molecular weight from PPM
mwcool_in = 18.0153

44. Flux cool_in sum of species mole fractions
xWATER, cool_in = 1

45. Flux cool_in species WATER mole fraction
nWATER, cool_in, source = xWATER, cool_in*ntot, cool_in, source

46. Flux cool_out species WATER mole fraction
nWATER, cool_out, source = xWATER, Jacket, liq0*ntot, cool_out, source

47. Unit Tube_reactor_rz energy balance
 r := (rmin, Tube_reactor|+, rmax, Tube_reactor|-); z := (zmin, Tube_reactor|+, zmax, Tube_reactor|-)

 rhon, Tube_reactor_rz, vap0(r,z)*∂uTube_reactor_rz, vap0(r,z)/∂t = ((((((-(∂earea, flow_z, source(r,z)/∂zTube_reactor)) - (∂earea, a_z, source(r,z)/∂zTube_reactor)) - (∂earea, b_z,

source(r,z)/∂zTube_reactor)) - (∂earea, q_z, source(r,z)/∂zTube_reactor)) - ((1/r)*(∂(earea, a_r, source(r,z)*r)/∂rTube_reactor))) - ((1/r)*(∂(earea, b_r,

source(r,z)*r)/∂rTube_reactor))) - ((1/r)*(∂(earea, q_r, source(r,z)*r)/∂rTube_reactor))

319

48. Unit Tube_reactor_r1 boundary energy balance
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 (earea, a_r(r_coord_min_Tube_reactor,z) + earea, b_r(r_coord_min_Tube_reactor,z)) + earea,

q_r(r_coord_min_Tube_reactor,z) = 0

49. Unit Tube_reactor_r2 boundary energy balance
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 (earea, a_r(r_coord_max_Tube_reactor,z) + earea, b_r(r_coord_max_Tube_reactor,z)) + earea,

q_r(r_coord_max_Tube_reactor,z) = earea, q, source(z)

50. Unit Tube_reactor_z1 boundary energy balance
 r := (rmin, Tube_reactor|+, rmax, Tube_reactor|-)

 ((earea, flow_z(r,z_coord_min_Tube_reactor) + earea, a_z(r,z_coord_min_Tube_reactor)) + earea,

b_z(r,z_coord_min_Tube_reactor)) + earea, q_z(r,z_coord_min_Tube_reactor) = earea, reactants, source(r)

51. Unit Tube_reactor_z2 boundary energy balance
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 ((earea, flow_z(r,z_coord_max_Tube_reactor) + earea, a_z(r,z_coord_max_Tube_reactor)) + earea,

b_z(r,z_coord_max_Tube_reactor)) + earea, q_z(r,z_coord_max_Tube_reactor) = earea, products, source(r)

52. Unit Jacket energy balance
∂UJacket/∂t = (ecool_in, source - ecool_out, source) + eq, source

53. Flux reactants energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 earea, reactants, source(r) = hreactants(r)*narea, reactants, source(r)

54. Flux products energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 earea, products, source(r) = hproducts, source(r)*narea, products, source(r)

55. Flux flow_z energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, flow_z, source(r,z) = hTube_reactor_rz, vap0(r,z)*narea, flow_z, source(r,z)

56. Flux a_z energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, a_z, source(r,z) = ha_z, source(r,z)*narea, o_XYLENE, a_z, source(r,z)

57. Flux b_z energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, b_z, source(r,z) = hb_z, source(r,z)*narea, OXYGEN, b_z, source(r,z)

58. Flux q_z energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, q_z, source(r,z) = (-(kf, q_z(r,z)*(∂TTube_reactor_rz(r,z)/∂zTube_reactor)))

59. Flux a_r energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, a_r, source(r,z) = ha_r, source(r,z)*narea, o_XYLENE, a_r, source(r,z)

320

60. Flux b_r energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, b_r, source(r,z) = hb_r, source(r,z)*narea, OXYGEN, b_r, source(r,z)

61. Flux q_r energy flux
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, q_r, source(r,z) = (-(kf, q_r(r,z)*(∂TTube_reactor_rz(r,z)/∂rTube_reactor)))

62. Flux cool_in energy flux
ecool_in, source = hcool_in*ntot, cool_in, source

63. Flux cool_out energy flux
ecool_out, source = hJacket, liq0*ntot, cool_out, source

64. Flux q energy flux
 z := (zmin, Tube_reactor, zmax, Tube_reactor)

 earea, q, source(z) = Uo, q(z)*(TTube_reactor_r2(r_coord_max_Tube_reactor,z) - TJacket)

65. Flux q flux integrated
eq, source = (INTEGRAL ((earea, q, source(z)*rmax, Tube_reactor), dzTube_reactor))*(thetamax, Tube_reactor - thetamin, Tube_reactor)

66. Phase Tube_reactor_rzmatl_V0 species o_XYLENE partial pressure
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 po_XYLENE, Tube_reactor_rz, vap0(r,z) = xo_XYLENE, Tube_reactor_rz, vap0(r,z)*PTube_reactor_rz(r,z)

67. Phase Tube_reactor_rzmatl_V0 species PHTHALIC_ANHYDRIDE partial pressure
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 pPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z) = xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z)*PTube_reactor_rz(r,z)

68. Phase Tube_reactor_rzmatl_V0 species OXYGEN partial pressure
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 pOXYGEN, Tube_reactor_rz, vap0(r,z) = xOXYGEN, Tube_reactor_rz, vap0(r,z)*PTube_reactor_rz(r,z)

69. Phase Tube_reactor_rzmatl_V0 species WATER partial pressure
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 pWATER, Tube_reactor_rz, vap0(r,z) = xWATER, Tube_reactor_rz, vap0(r,z)*PTube_reactor_rz(r,z)

70. Phase Tube_reactor_rzmatl_V0 reaction rxn0 forward rate
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 r_rxn0_forw_Tube_reactor_rzmatl_V0Tube_reactor_rz, vap0(r,z) = ((A_rxn0_forw*exp((-

E_rxn0_forw)/(Rgas*TTube_reactor_rz(r,z))))*(po_XYLENE, Tube_reactor_rz, vap0(r,z)))*(pOXYGEN, Tube_reactor_rz, vap0(r,z))

71. Phase Jacketmatl_L0 molar density
NJacket, liq0 = rhon, Jacket, liq0*VJacket, liq0

72. Unit Jacket extensive variable V_Jacketmatl decomposition
VJacket = VJacket, liq0

73. Phase Tube_reactor_rzmatl_V0 density correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

321

 rhon, Tube_reactor_rz, vap0(r,z) = F(TTube_reactor_rz(r,z), PTube_reactor_rz(r,z))

74. Phase Jacketmatl_L0 density correlation from PPM
rhon, Jacket, liq0 = F(TJacket)

75. Phase Tube_reactor_rzmatl_V0 species o_XYLENE fugacity coefficient correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 fco_XYLENE, Tube_reactor_rz, vap0(r,z) = 1

76. Phase Tube_reactor_rzmatl_V0 species PHTHALIC_ANHYDRIDE fugacity coefficient correlation
from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 fcPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z) = 1

77. Phase Tube_reactor_rzmatl_V0 species OXYGEN fugacity coefficient correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 fcOXYGEN, Tube_reactor_rz, vap0(r,z) = 1

78. Phase Tube_reactor_rzmatl_V0 species WATER fugacity coefficient correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 fcWATER, Tube_reactor_rz, vap0(r,z) = 1

79. Phase Tube_reactor_rzmatl_V0 internal energy correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 uTube_reactor_rz, vap0(r,z) = F(xo_XYLENE, Tube_reactor_rz, vap0(r,z), TTube_reactor_rz(r,z), xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z), xOXYGEN, Tube_reactor_rz, vap0(r,z), xWATER,

Tube_reactor_rz, vap0(r,z))

80. Phase Tube_reactor_rzmatl_V0 enthalpy correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 hTube_reactor_rz, vap0(r,z) = F(xo_XYLENE, Tube_reactor_rz, vap0(r,z), TTube_reactor_rz(r,z), xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z), xOXYGEN, Tube_reactor_rz, vap0(r,z), xWATER,

Tube_reactor_rz, vap0(r,z))

81. Phase Tube_reactor_rzmatl_V0 heat capacity correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 Cp n, Tube_reactor_rz, vap0(r,z) = F(xo_XYLENE, Tube_reactor_rz, vap0(r,z), TTube_reactor_rz(r,z), xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z), xOXYGEN, Tube_reactor_rz, vap0(r,z),

xWATER, Tube_reactor_rz, vap0(r,z))

82. Unit Jacket extensive variable Un_Jacketmatl decomposition
UJacket = (NJacket, liq0*hJacket, liq0) - (PJacket*VJacket)

83. Phase Jacketmatl_L0 enthalpy correlation from PPM
hJacket, liq0 = F(TJacket)

84. Phase Jacketmatl_L0 heat capacity correlation from PPM
Cp n, Jacket, liq0 = F(TJacket)

85. Connection reactants phase reactants_phase enthalpy correlation from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor)

 hreactants(r) = F(xo_XYLENE, reactants(r), xPHTHALIC_ANHYDRIDE, reactants(r), xOXYGEN, reactants(r), xWATER, reactants(r), Treactants(r))

86. Flux a_z species o_XYLENE enthalpy from PPM

322

 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 ha_z, source(r,z) = 19080000 + ((74396*(TTube_reactor_rz(r,z) - 298.15)) + (131.755*((TTube_reactor_rz(r,z)
2
) - 88893.422)))

87. Flux b_z species OXYGEN enthalpy from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 hb_z, source(r,z) = 0 + ((26311.5*(TTube_reactor_rz(r,z) - 298.15)) + (4.7675*((TTube_reactor_rz(r,z)
2
) - 88893.422)))

88. Flux a_r species o_XYLENE enthalpy from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 ha_r, source(r,z) = 19080000 + ((74396*(TTube_reactor_rz(r,z) - 298.15)) + (131.755*((TTube_reactor_rz(r,z)
2
) - 88893.422)))

89. Flux b_r species OXYGEN enthalpy from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 hb_r, source(r,z) = 0 + ((26311.5*(TTube_reactor_rz(r,z) - 298.15)) + (4.7675*((TTube_reactor_rz(r,z)
2
) - 88893.422)))

90. Connection cool_in phase cool_in_phase enthalpy correlation from PPM
hcool_in = F(Tcool_in)

91. Phase Tube_reactor_rzmatl_V0 molecular weight from PPM
 r := (rmin, Tube_reactor, rmax, Tube_reactor); z := (zmin, Tube_reactor, zmax, Tube_reactor)

 mwTube_reactor_rz, vap0(r,z) = ((((xo_XYLENE, Tube_reactor_rz, vap0(r,z)*106.167) + (xPHTHALIC_ANHYDRIDE, Tube_reactor_rz, vap0(r,z)*148.118)) + (xOXYGEN,

Tube_reactor_rz, vap0(r,z)*31.9988)) + (xWATER, Tube_reactor_rz, vap0(r,z)*18.0153))

92. Phase Jacketmatl_L0 molecular weight from PPM
mwJacket, liq0 = 18.0153

93. user_equation
ntot, cool_in, source = ntot, cool_out, source

