
A framework for the verification of

parameterized infinite-state systems∗

Francesco Alberti1,3, Silvio Ghilardi2, Natasha Sharygina1

1 University of Lugano, Lugano, Switzerland
2 Università degli Studi di Milano, Milan, Italy

3 Verimag, Grenoble, France

Abstract. We present our tool, developed for the analysis and verifi-

cation of parameterized infinite-state systems. The framework has been

successfully applied in the verification of programs handling unbounded

data-structures. In such application domain, being able to infer quanti-

fied invariants is a mandatory requirement for successful results. We will

describe the techniques implemented in our system and discuss how they

contribute in achieving important results in the analysis of parameter-

ized distributed and timed systems, as well as of programs with arrays

of unknown length.

1 Introduction

Efficient and automatic static analysis of imperative programs is still an open
challenge. A promising line of research investigates the use of model-checking
coupled with abstraction-refinement techniques [11, 20, 27, 30, 35, 36] including
Lazy Abstraction [12, 32] and its later improvements that use interpolants dur-
ing refinement [34]. An intrinsic limitation of the approaches based on Lazy
Abstraction is that they manipulate quantifier-free formulæ to symbolically rep-
resent states. However, when defining properties over arrays, universal quantified
formulæ are needed, e.g., as in specifying the property “the array is sorted”. The
tool we present mcmt (in the new version 2.5) is based on a novel approach [4],
in which Lazy Abstraction is used in combination with the backward reach-
ability analysis of array-based systems [28]; recent acceleration techniques for
arrays [8, 9] have also been significantly (although not yet completely) included
in the latest version of the tool.

2 The Tool

mcmt takes as input a transition system (v, τ(v,v0), ι(v)) representing the en-
coding of an array-based system [28]: this can be a parameterized distributed
system, a network of timed automata, an imperative program, etc. The essential
nature of the specification system is its parametricity : a finite (but unspecified)

∗The work of the first author was supported by Swiss National Science Foundation

under grant no. P1TIP2 152261.

303



number of components takes part in it, the components being interpreted as
single processes, agents, array cells, etc. Formally, the array based system is
specified by fixing a tuple v of state variables, a formula ι(v) describing initial
states and a formula τ(v,v0) relating current variables v with their updated
counterparts v0. State variables are typed and some of them represent arrays,
modeled as free function symbols from a sort of indexes INDEX to some elements
ELEM1, . . . , ELEMk sorts. The type of indexes is natural numbers, whereas the
types of elements can be integers, Boolean, reals, enumerated data-types, etc. A
set of formulæ {Uk(v)} representing unsafe states is also given to the tool; each
Uk represents an undesired property, e.g. a violation of an assertion in the code.
Next we describe the main features of the tool.

Symbolic Reachability Analysis - This module implements a classical back-
ward reachability analysis [1–3]. Starting from the set of unsafe states, it repeat-
edly computes the pre-images with respect to the transition relation. It halts
once it finds (the negation of a) safe inductive invariant S for the input system
or when a run from an initial state to an unsafe state is found. The symbolic
reachability search is based on the safety and the covering tests: the former
checks the violation of an assertion while the latter tests fix-points.
Lazy Abstraction - The search for a safe inductive invariant on the original
(concrete) system may require a lot of resources or it cannot be computed be-
cause of possible divergence. To mitigate this problem, mcmt extends the Lazy
Abstraction paradigm by allowing existentially quantified formulæ to represent
states. Moreover, mcmt is able to introduce new quantified predicates on the
fly, by means of Term Abstraction or Acceleration, see below.
Acceleration - Acceleration is a well established technique in model-checking:
the acceleration (i.e. the transitive closure) of a relation encoding systems evo-
lution (like loops in programs) allows us to compute ‘in one shot’ the reachable
set of states after an arbitrary but finite number of execution steps. This has the
great advantage of keeping under control sources of (possible) divergence arising
in the reachability analysis. Definability results for accelerations are well known
in numerical domains like difference bounds constraints [17, 21], octagons [14]
and finite monoid affine transformations [26] (the paper [16] presents a general
approach covering all these domains); however, little is known for more complex
data structures like arrays (but see [15]). In [8,9] it is shown that the acceleration
of relations corresponding to some classes of guarded assignments over arrays
lead to formulæ in decidable fragments of the theory of arrays; as a consequence,
some common classes of imperative programs over arrays (including those im-
plementing searching, initializing, finding, copying, comparing functions) have
decidable reachability problems. Acceleration for arrays is another way of in-
troducing quantifiers in formulæ describing reachable states; it is only partially
implemented in mcmt, where it is exploited for over-approximations in abstrac-
tion/refinements loops.
Quantifier Handling - The presence of quantified formulæ imposes partic-
ular attention during the satisfiability tests: available SMT-Solvers might not
be able to deal automatically with such quantified formulæ. mcmt provides a

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

304



specific instantiation procedure, adapted from [29] to address this issue. To be
effective, this procedure implements caching of information inside of specific
data-structures used to represent formulæ. On one hand the caching increases
the amount of space, on the other hand it cuts the number of instantiations due
to constant-time checks.
Refinement - This module receives an abstract counterexample and it checks
first if the counterexample has a concrete counterpart. If so a feasible execution
violating an assertion corresponding to some satisfied Uk is returned to the user.
Otherwise the formulæ representing the states along the abstract execution trace
have to be strengthened, possibly by adding new predicates, in order to rule out
spurious executions. In the current implementation, refinement is performed by
means of a form of interpolation guided by term abstraction.
Term Abstraction - Term Abstraction [4] is a novel technique applied during
the abstraction phase to select the “right” over-approximation to be computed,
and during the refinement phase to “lift” the concrete infeasible counterexample
to a more abstract level, by eliminating some terms. Term Abstraction (imple-
mented also in the safari tool [5]) is the main heuristic which distinguishes
mcmt from other tools based on abstraction-refinement. It works as follows.
Suppose we are given a list of undesired terms t1, . . . , tn (called term abstrac-

tion list). The underlying idea is that terms in this list should be abstracted
away for achieving convergence of the model checker. Iteratively, these terms are
abstracted out (if possible) from formulæ over-approximating sets of reachable
states; one way to do this is to replace them by fresh free constants, so that they
are likely not to occur anymore in interpolants or in formulæ to which quantifier
elimination is applied. mcmt retrieves automatically from the input system a list
of terms to be abstracted. The terms to be abstracted are usually set to iterators
or variables representing the lengths of the arrays or the bounds of loops. The
user can also suggest terms to be added to the list.
Specification Syntax - mcmt has its own specification language (roughly, an
extension of the specification language of the underlying SMT-Solver Yices).
Even though it has been significantly improved, it is still rather low level. Such
a language is exploited by the booster verifying compiler4.

3 Implementation and Related Work

mcmt is written in C and can be downloaded from http://users.mat.

unimi.it/users/ghilardi/mcmt/. Information on the usage of the tool
and a full description of all the options can be found on the User Manual that
can be downloaded from mcmt’s website. The use of the appropriate options is
crucial not only for performances, but also for convergence (some benchmarks
can be solved by plain backward search, in some cases run-time invariant search
can be exploited to speed up the tool, for imperative programs it is essential
to use abstraction/refinement mode or acceleration or both). mcmt relies on

4The interested reader is pointed to the booster web-page, http://inf.usi.

ch/phd/alberti/prj/booster for more information about it.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

305



the SMT-Solver Yices (see http://yices.csl.sri.com/) to decide satisfi-
ability queries; the solver can be linked to the model-checker on a client/server
architecture via API. mcmt distribution includes about 100 examples files taken
from different sources (cache coherence and mutual exclusion problems, timed
and fault tolerant systems, imperative programs, etc); more examples related to
specific case studies [6, 7, 18, 19] can be reached from mcmt web-page. A Table
covering few experimental results is attached in the Appendix below.

Current literature on infinite state model checking is extremely large, how-
ever it is much more limited if we restrict to papers and tools handling para-
metric specifications. For distributed systems, the best performing tool (result-
ing from an extension and a re-implementation on a parallel architecture of
mcmt framework) is probably Cubicle [22, 23]. In software model checking,
unbounded arrays problems have been attacked from various viewpoints, includ-
ing abstract interpretation [24, 25, 31], program transformations [10], predicate
abstraction [35, 36] and template/constraints generation [13, 33, 37]. An experi-
mental tool comparison is difficult for various practical reasons; however, since
most benchmarks are taken from common sources, from the results reported in
the above mentioned papers, it seems that mcmt compares well, both in terms
of performances and in terms of solved instances.

References

1. P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability theo-
rems for infinite-state systems. In Proc. of LICS, pages 313–321, 1996.

2. P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Regular model checking
without transducers. In TACAS, volume 4424 of LNCS, pages 721–736, 2007.

3. P. A. Abdulla, G. Delzanno, and A. Rezine. Parameterized verification of infinite-
state processes with global conditions. In CAV, pages 145–157, 2007.

4. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. Lazy Ab-
straction with Interpolants for Arrays. In LPAR-18, pages 46–61, 2012.

5. F. Alberti, R. Bruttomesso, S. Ghilardi, S. Ranise, and N. Sharygina. SAFARI:
SMT-Based Abstraction for Arrays with Interpolants. In CAV, pages 679–685,
2012.

6. F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Automated support
for the design and validation of fault tolerant parameterized systems - a case study.
In Proc. of AVOCS, 2010.

7. F. Alberti, S. Ghilardi, E. Pagani, S. Ranise, and G. P. Rossi. Brief announcement:
Automated support for the design and validation of fault tolerant parameterized
systems - a case study. In DISC, pages 392–394, 2010.

8. F. Alberti, S. Ghilardi, and N. Sharygina. Definability of accelerated relations in
a theory of arrays and its applications. In FroCoS, pages 23–39, 2013.

9. F. Alberti, S. Ghilardi, and N. Sharygina. Decision procedures for flat array prop-
erties. In TACAS, pages 15–30, 2014.

10. E. De Angelis, F. Fioravanti, M. Proietti, and A. Pettorossi. Verifying Array
Programs by Transforming Verification Conditions. In VMCAI, 2014.

11. T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. Automatic Predicate Ab-
straction of C Programs. In PLDI, pages 203–213, 2001.

12. D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software model
checker Blast. STTT, 9(5-6):505–525, 2007.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

306



13. N. Björner, K. McMillan, and A. Rybalchenko. On solving universally quantified
Horn clauses. In SAS, pages 105–125, 2013.

14. M. Bozga, C. Girlea, and R. Iosif. Iterating octagons. In TACAS, LNCS, pages
337–351, 2009.

15. M. Bozga, P. Habermehl, R. Iosif, F. Konecný, and T. Vojnar. Automatic verifi-
cation of integer array programs. In CAV, pages 157–172, 2009.

16. M. Bozga, R. Iosif, and F. Konecny. Fast acceleration of ultimately periodic rela-
tions. In CAV, LNCS, 2010.

17. M. Bozga, R. Iosif, and Y. Lakhnech. Flat parametric counter automata. Funda-

menta Informaticae, (91):275–303, 2009.
18. R. Bruttomesso, A. Carioni, S. Ghilardi, and S. Ranise. Automated Analysis of

Parametric Timing Based Mutual Exclusion Protocols. In NASA Formal Methods

Symposium, 2012.
19. A. Carioni, S. Ghilardi, and S. Ranise. MCMT in the land of parameterized timed

automata. In In proc. of VERIFY, 2010.
20. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-Guided

Abstraction Refinement. In CAV, pages 154–169, 2000.
21. H. Comon and Y. Jurski. Multiple counters automata, safety analysis and pres-

burger arithmetic. In CAV, volume 1427 of LNCS, pages 268–279. Springer, 1998.
22. S. Conchon, A. Goel, S. Krsti, A. Mebsout, and F. Zadi. Cubicle: a Parallel SMT-

based Model-Checker fro Parameterized Systems. In Proc. of CAV, LNCS, 2012.
23. S. Conchon, A. Goel, S. Krsti, A. Mebsout, and F. Zadi. Invariants for Finite

Instances and Beyond. In Proc. of FMCAD, 2013.
24. P. Cousot, R. Cousot, and F. Logozzo. A Parametric Segmentation Functor for

Fully Automatic and Scalable Array Content Analysis. In POPL, 2011.
25. I. Dillig, T. Dillig, and A. Aiken. Fluid Updates: Beyond Strong vs. Weak Updates.

In Programming Languages and Systems. 2010.
26. A. Finkel and J. Leroux. How to compose Presburger-accelerations: Applications

to broadcast protocols. In FST TCS 02, pages 145–156. Springer, 2002.
27. C. Flanagan and S. Qadeer. Predicate abstraction for software verification. In

POPL, pages 191–202, 2002.
28. S. Ghilardi, E. Nicolini, S. Ranise, and D. Zucchelli. Towards SMTModel-Checking

of Array-based Systems. In Proc. of IJCAR, LNCS, 2008.
29. S. Ghilardi and S. Ranise. MCMT: A Model Checker Modulo Theories. In IJCAR,

pages 22–29, 2010.
30. S. Graf and H. Säıdi. Construction of Abstract State Graphs with PVS. In CAV,

pages 72–83, 1997.
31. N. Halbwachs and Mathias P. Discovering Properties about Arrays in Simple

Programs. In PLDI’08, pages 339–348, 2008.
32. T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy Abstraction. In

POPL, pages 58–70, 2002.
33. D. Larraz, E. Rodŕıguez-Carbonell, and A. Rubio. SMT-based array invariant

generation. In VMCAI, pages 169–188, 2013.
34. K. L. McMillan. Lazy Abstraction with Interpolants. In CAV, 2006.
35. M. N. Seghir, A. Podelski, and T. Wies. Abstraction Refinement for Quantified

Array Assertions. In SAS, pages 3–18, 2009.
36. S.Lahiri and R. Bryant. Predicate Abstraction with Indexed Predicates. TOCL,

9(1), 2007.
37. S. Srivastava and S. Gulwani. Program Verification using Templates over Predicate

Abstraction. In PLDI, 2009.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

307



A Some experimental data

We report in the Table below some experimental data on benchmark problems;
we made a selection including both easy well known problems and more chal-
lenging ones. The experiments were run on a laptop Intel(R) Core(TM) i3 CPU
2.27GHz with 4GB RAM running Linux Ubuntu 12.04.

In the second column we indicate the class of the problem: (M) mutual exclu-
sion, (C) cache coherence, (D) other distributed protocols (timed, fault tolerant,
etc.), (S) sequential program for arrays, (S+) sequential program for arrays with
nested loops. In column 3-8 we respectively give the depth of the search tree, the
number of nodes generated by the tool in the search tree, the number of sub-
sumed or subcovered nodes, the number of calls to the SMT solver, the number
of invariants found by the tool in forward search and the number of refinements
applied in abstraction/refinement mode. In the last column we put the total
time in seconds and in the last-but-one column the options used (A=acceleration,
AR=abstraction/refinement, I=invariant search).5 For each problem we reported
the result in the best configuration we found for the tool.

Problem kind d #n #del #SMT #inv #ref heur time

Illinois (C) 4 8 0 212 0 0 - 0.06
German (C) 26 2121 255 117121 0 0 - 60.76
German buggy (C) 16 1300 203 24275 0 0 - 14.28
Bakery (M) 2 1 0 29 0 0 - 0.00
Szymanski (M) 11 17 5 1092 12 0 I 0.21
Szymanski atomic (M) 19 63 7 5470 32 0 I 1.82
Distributed Lamport (M) 23 248 42 19622 7 0 I 27.18
Crash (D) 13 113 21 1731 0 0 - 0.75
Fischer (D) 10 16 2 363 0 0 - 0.08
Fischer buggy (D) 6 16 0 307 0 0 - 0.06
Lynch-Shavit full (D) 25 1103 99 56638 0 0 - 33.39
Strcpy (S) 4 4 2 48 0 0 A 0.01
Strcmp (S) 6 10 4 128 0 0 A 0.02
Max in array (S) 7 13 6 166 0 0 A 0.04
Reverse (S) 4 8 5 101 0 0 A 0.03
Palindrome (S) 4 7 4 107 0 0 A 0.04
AllDifferent (S+) 7 49 39 871 0 8 A+AR 0.40
BubbleSort (S+) 5 14 10 200 0 0 A 0.07
InsertionSort (S+) 18 98 56 3874 0 2 AR 1.43
SelectionSort (S+) 8 101 77 6059 8 11 AR+ I 4.98

5Corresponding command line options: -Z gives acceeration, -i1, -i2, -i3,

-a, -I give different invariant searches in normal mode, -AN gives abstraction-
refinement (with max N refinements per node), -CN gives abstraction-refinement (with
max N refinements per node) together with a specific form of invariant search.

F. Alberti et al. A framework for the verification of parameterized infinite-state systems

308


