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Abstract—In this paper, we create a framework for training-
based channel estimation under different channel and interference
statistics. The minimum mean square error (MMSE) estimator for
channel matrix estimation in Rician fading multi-antenna systems
is analyzed, and especially the design of mean square error (MSE)
minimizing training sequences. By considering Kronecker-struc-
tured systems with a combination of noise and interference and
arbitrary training sequence length, we collect and generalize sev-
eral previous results in the framework. We clarify the conditions
for achieving the optimal training sequence structure and show
when the spatial training power allocation can be solved explicitly.
We also prove that spatial correlation improves the estimation
performance and establish how it determines the optimal training
sequence length. The analytic results for Kronecker-structured
systems are used to derive a heuristic training sequence under
general unstructured statistics.

The MMSE estimator of the squared Frobenius norm of the
channel matrix is also derived and shown to provide far better
gain estimates than other approaches. It is shown under which
conditions training sequences that minimize the non-convex MSE
can be derived explicitly or with low complexity. Numerical ex-
amples are used to evaluate the performance of the two estimators
for different training sequences and system statistics. We also
illustrate how the optimal length of the training sequence often
can be shorter than the number of transmit antennas.

Index Terms—Arbitrary correlation, channel matrix estimation,
majorization, MIMO systems, MMSE estimation, norm estima-
tion, Rician fading, training sequence optimization.

I. INTRODUCTION

W
IRELESS communication systems with antenna arrays
at both the transmitter and the receiver have gained

much attention due to their potential of greatly improving
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the performance over single-antenna systems. In flat fading
systems, the capacity and spectral efficiency have been shown
to increase rapidly with the number of antennas [1], [2].
These results are based on the idealized assumption of full
channel state information (CSI) and independent and identi-
cally distributed (i.i.d.) channel coefficients. In practice, field
measurements have shown that the channel coefficients often
are spatially correlated in outdoor scenarios [3], but correlation
also frequently occurs in indoor environments [4], [5]. When it
comes to acquiring CSI, the long-term statistics can usually be
regarded as known, through reverse-link estimation or a negli-
gible signaling overhead [6]. Instantaneous CSI needs however
to be estimated with limited resources (time and power) due to
the channel fading and interference.

In this paper, we consider training-based estimation of
instantaneous CSI in multiple-input multiple-output (MIMO)
systems. Thus, the estimation is conditioned on the received
signal from a known training sequence, which potentially can
be adapted to the long-term statistics. By nature, the channel is
stochastic, which motivates Bayesian estimation—that is, mod-
eling of the current channel state as a realization from a known
multi-variate probability density function (PDF). There is also a
large amount of literature on estimation of deterministic MIMO
channels which are analytically tractable but in general provide
less accurate channel estimates, as shown in [7], [8]. Herein,
we concentrate on minimum mean square error (MMSE) esti-
mation of the channel matrix and its squared Frobenius norm,
given the first and second order system statistics.

Training-based MMSE estimation of MIMO channel ma-
trices has previously been considered for Kronecker-structured
Rayleigh fading systems that are either noise-limited [9]–[11]
or interference-limited [12]. In these papers, optimization of
the training sequence was considered under various limitations
on the long-term statistics, and analogous structures of the
optimal training sequence were derived. These results reduce
the training optimization to a convex power allocation problem
that can be solved explicitly in some special cases. When
mentioning previous work, it is worth noting that simplified
channel matrix estimators have been developed in [8] and [13]
and claimed to be MMSE estimators, but we show herein that
these estimators are in general restrictive.

In the present work, we collect previous results in a frame-
work with general system properties and arbitrary length of
the training sequence. The MMSE estimator is given for Kro-
necker-structured Rician fading channels that are corrupted by
some Gaussian disturbance, where disturbance denotes a com-
bination of noise and interference. The purpose of our frame-

1053-587X/$26.00 © 2010 IEEE
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work is to enable joint analysis of different types of disturbance,
including the noise-limited and interference-limited scenarios
considered in [9]–[12] and certain combinations of both noise
and interference. In this manner, we show that the MSE mini-
mizing training sequence has the same structure and asymptotic
properties under a wide range of different disturbance statistics.
We give statistical conditions for finding the optimal training
sequence explicitly, and propose a heuristic solution under gen-
eral unstructured statistics. Finally, we prove analytically that
the MSE decreases with increasing spatial correlation at both
the transmitter and the receiver side. Based on this observation,
we show that the optimal number of training symbols can be
considerably fewer than the number of transmit antennas in cor-
related systems. This result is a generalization of [14], where
completely uncorrelated systems were considered, and similar
observations have been made in [15], [16].

Although estimation of the channel matrix is important for
receive and transmit processing, knowledge of the squared
Frobenius norm of the channel matrix provides instantaneous
gain information and can be exploited for rate adaptation and
scheduling [17], [18]. The squared norm can be determined
indirectly from an estimated channel matrix, but as shown in
[16] this approach gives poor estimation performance at most
signal-to-interference-and-noise ratios (SINRs). The MMSE
estimator of the squared channel norm was introduced in [16]
for Kronecker-structured Rayleigh fading channels, assuming
the same training structure as for channel matrix estimation.
Herein, the estimator is proved and generalized to Rician fading
channels, along with the design of MSE minimizing training
sequences. Although the MSE is non-convex, we show that
the optimal training sequence can be determined with limited
complexity.

A. Outline

In Section II, the system model and the training-based estima-
tion framework is introduced. The MMSE channel matrix esti-
mator is given and discussed in Section III for arbitrary training
sequences. In Section IV, MSE minimizing training sequence
design is considered. The general structure and asymptotic prop-
erties are derived. It is also shown under which covariance con-
ditions there exist explicit solutions, and how the estimation per-
formance and the optimal length of the training sequence varies
with the spatial correlation. Section V derives the MMSE es-
timator of the squared channel norm and analyzes training se-
quence design with respect to its MSE. The error performance of
the different estimators are illustrated numerically in Section VI
and conclusions are drawn in Section VII. Finally, proofs of the
theorems are given in Appendix A.

B. Notations

Boldface (lower case) is used for column vectors, , and
(upper case) for matrices, . Let , , and denote the
transpose, the conjugate transpose, and the conjugate of ,
respectively. The Kronecker product of two matrices and

is denoted , is the column vector obtained
by stacking the columns of , is the matrix trace,
and is the -by- diagonal matrix with

at the main diagonal. The squared Frobenius norm
of a matrix is denoted and is defined as the sum of
the squared absolute values of all the elements. The functions

and
give the maximal and minimal value of the input parameters,
respectively. is used to denote circularly symmetric
complex Gaussian random vectors, where is the mean and

the covariance matrix. The notation is used for definitions.

II. SYSTEM MODEL

We consider flat and block-fading MIMO systems with a
transmitter equipped with an array of transmit antennas
and a receiver with an array of receive antennas. The
symbol-sampled complex baseband equivalent of the flat
fading channel when transmitting at channel use is modeled
as

(1)

where and are the transmitted and
received signals, respectively, and represents
arbitrarily correlated Gaussian disturbance. This disturbance
models the sum of background noise and interference from
adjacent communication links and is a stochastic process in .
The channel is represented by and is modeled
as Rician fading with mean and the positive
definite covariance matrix , which is de-
fined on the column stacking of the channel matrix. Thus,

. In the estimation parts of this
paper, the channel and disturbance statistics are known at the
receiver. In the training sequence design, the statistics are also
known to the transmitter.

Herein, estimation of the channel matrix and its squared
Frobenius norm are considered. The receiver knows the
long-term statistics, but in order to estimate the value of some
function of the unknown realization of , the transmitter typ-
ically needs to send a sequence of known training vectors that
spans . We consider training sequences of arbitrary length

under a total power constraint, and in Section IV-A the op-
timal value of is studied.

Let the training matrix represent the training
sequence. This matrix fulfills the total power constraint

and its maximal rank is ,
which represents the maximal number of spatial channel
directions that the training can excite. The columns of

are used as transmit signal in (1) for channel uses
(e.g., ). The combined received matrix

of the training trans-
mission is

(2)

where the combined disturbance matrix
is uncorrelated with the channel

. The disturbance is modeled as ,
where is the positive definite covariance
matrix and is the mean disturbance.

The multipath propagation is modeled as quasi-static block
fading; that is, the channel realization is constant during
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the whole training transmission and independent of previous
channel estimates.

A. Preliminaries on Spatial Correlation and Majorization

A measure of the spatial channel correlation is the eigenvalue
distribution of the channel covariance matrix; weak correlation
is represented by almost identical eigenvalues, while strong
correlation means that a few eigenvalues dominate. Thus,
in a highly correlated system, the channel is approximately
confined to a small eigensubspace, while all eigenvectors are
equally important in an uncorrelated system. In urban cellular
systems, base stations are typically elevated and exposed to
little near-field scattering. Thus, their antennas are strongly spa-
tially correlated, while the non-line-of-sight mobile users are
exposed to rich scattering and have weak antenna correlation if
the antenna spacing is sufficiently large [19].

The notion of majorization provides a useful measure of the
spatial correlation [20]–[22] and will be used herein for various
purposes. Let and be
two non-negative real-valued vectors of arbitrary length . We
say that majorizes if

(3)

where and are the th largest ordered elements of and
, respectively. This majorization property is denoted .

If and contain eigenvalues of channel covariance matrices,
then corresponds to that is more spatially correlated
than . Majorization only provides a partial order of vectors,
but is still very powerful due to its connection to certain order-
preserving functions:

A function is said to be Schur-convex if
for all and , such that . Similarly,

is said to be Schur-concave if implies that .

III. MMSE ESTIMATION OF CHANNEL MATRICES

There are many reasons for estimating the channel matrix
at the receiver. Instantaneous CSI can, for example, be used for
receive processing (improved interference suppression and sim-
plified detection) and feedback (to employ beamforming and
rate adaptation). In this section, we consider MMSE estimation
of the channel matrix from the observation during training trans-
mission. In general, the MMSE estimator of a vector from an
observation is

(4)

where denotes the expected value and is the con-
ditional (posterior) PDF of given [23, Section 11.4]. The
MMSE estimator minimizes the MSE, , and
the optimal MSE can be calculated as the trace of the covari-
ance matrix of averaged over . The MMSE
estimator is the Bayesian counterpart to the minimum variance

unbiased (MVU) estimator developed for deterministic chan-
nels [23, Section 3.4].

By vectorizing the received signal in (2) and applying
, the received training signal

of our system can be expressed as

(5)

where . Then, by pre-subtracting the mean dis-
turbance from , it is straightforward to apply the
results of [23, Chapter 15.8] to conclude that the MMSE esti-
mator, , of the Rician fading channel matrix is

(6)

where . The error co-

variance
becomes

(7)

and the is

(8)

We stress that the general MMSE estimator in (6) is in fact linear
(affine), but nonetheless it has repeatedly been referred to as the
linear MMSE (LMMSE) estimator [10]–[12] which is correct
but could lead to the incorrect conclusion that there may exist
better non-linear estimators. The MMSE estimator in (6) is also
the maximum a posteriori (MAP) estimator of [23, Chapter
15.8] and the LMMSE estimator in the case of non-Gaussian
fading and disturbance (with known first and second order statis-
tics, independent fading and disturbance, and possibly unknown
types of distributions [23, Chapter 12.3]).

Note that the computation of (6) only requires a multiplica-
tion of with a matrix and adding a vector, both of which
depend only on the system statistics. Thus, the computational
complexity of the estimator is limited.

Remark 1: For Rayleigh fading channels, the MMSE es-
timator in (6) has the general linear form

. A special kind of linear estimators with the alter-
native structure were studied in [8] and [13] and
claimed to give rise to LMMSE estimators. In general, this
claim is incorrect, which is seen by vectorizing the estimate;

and thus the estimators in [8] and
[13] belong to a subset of linear estimators with .
The general MMSE estimator belongs to this subset when
applied to Kronecker-structured systems with identical re-
ceive channel and disturbance covariance matrices,1 while the
difference between and increases with
the difference in receive-side correlation and how far from
Kronecker-structured the statistics are.

1In this special case, the estimation of each row of � can be separated into
independent problems with identical statistics.
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IV. TRAINING SEQUENCE OPTIMIZATION FOR CHANNEL

MATRIX ESTIMATION

Next, we consider the problem of designing the training se-
quence to optimize the performance of the MMSE estimator
in (6). The performance measure is the MSE and thus from (8)
the optimization problem can be formulated as

(9)

Observe that the MSE depends on the training matrix and on
the covariance matrices of the channel and disturbance statistics,
while it is unaffected by the mean values. Thus, the training ma-
trix can potentially be designed to optimize the performance by
adaptation to the second order statistics [9]–[12]. The intuition
behind this training optimization is that more power should be
allocated to estimate the channel in strong eigendirections (i.e.,
large eigenvalues). Observe that training optimization is useful
in systems with dedicated training for each receiver, while mul-
tiuser systems with common training may require fixed or code-
book-based training matrices (if users do not have the same
channel statistics).

For general channel and disturbance statistics, the MSE mini-
mizing training matrix will not have any special form that can be
exploited when solving (9). However, if the covariance matrices

and are structured, the optimal may inherit this structure.
Previous work in training optimization has showed that in Kro-
necker-structured systems with either noise-limited [9]–[11] or
interference-limited [12] disturbance, the optimal training ma-
trix has a certain structure based on the transmit-side channel
covariance and temporal disturbance covariance. Herein, this re-
sult is generalized by showing that the same optimal structure
appears in systems with both noise and interference. Then, we
will show how the training matrix behaves asymptotically and
under which conditions there exist explicit solutions to (9). Fi-
nally, we analyze how the statistics and total training power de-
termines the smallest length of the training sequence necessary
to achieve the minimal MSE.

Since the training matrix only affects the channel matrix,
, from the right hand (transmit) side in (2), we consider covari-

ance matrices that also can be separated between the transmit
and receive side. Thus, the covariance between the transmit an-
tennas is identical irrespectively of where the receiver is lo-
cated, and vice versa [24]. This model is known as the Kro-
necker-structure and is naturally applicable in uncorrelated sys-
tems. In practice, for example insufficient antenna spacing leads
to antenna correlation, but field measurements have verified the
Kronecker-structure for certain correlated channels [3], [4]. In
general, certain weak scattering scenarios can be created and
observed where the Kronecker-structure is not satisfied [25],
and thus the Kronecker model should be seen as a good ap-
proximation that enables analysis. We will show numerically
in Section VI that training sequences optimized based on this
approximation perform well when applied for estimation under
general conditions. In our context, we define Kronecker-struc-
tured systems in the following way.

Definition 1: In a Kronecker-structured system, the channel
covariance, , and disturbance covariance matrix, , can be
factorized as

(10)

Here, and represent the spatial
covariance matrices at the transmitter and receiver side, respec-
tively, while and represent the
temporal covariance matrix and the received spatial covariance
matrix.

We also assume that and have identical eigenvec-
tors. This means that the disturbance is either spatially uncor-
related or shares the spatial structure of the channel (i.e., ar-
riving from the same spatial direction). This assumption was
first made in [12] for estimation of interference-limited systems.
Under this assumption, we can jointly describe several types of
disturbance, including the following examples:

• Noise-limited, with some variance ;
• Interference-limited, for a set of

interferers with temporal covariance ;2

• Noise and temporally uncorrelated interference,
;

• Noise and spatially uncorrelated interference,
.

To simplify the notation, we will use the following eigenvalue
decompositions:

(11)

(12)

where the eigenvalues of and
are ordered in decreasingly and

increasingly, respectively. The diagonal eigenvalue matrices
, and

are arbitrarily ordered.
Next, we provide a theorem that derives the general structure

of the MSE minimizing training sequence, along with its asymp-
totic properties.

Theorem 1: Under the Kronecker-structured assumptions,
the solution to (9) has the singular value decomposition

, where has on its
main diagonal. The MSE with such a training matrix is convex
with respect to the positive training powers , and the
training powers should be ordered such that decreases

with (i.e., in the same order as ). The MSE minimizing
power allocation, , is achieved from the following
system of equations:

(13)

2It worth noting that since a flat and block fading channel model was assumed
in (1), the potential temporal covariance in � primarily originate from the
interfering signals and not from their channels. Also observe that if � �� �,
the interference will be received from the same spatial direction as the training
signal.
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for all such that and
otherwise. The Lagrange multiplier is chosen

to fulfill the constraint .
The limiting training matrix at high power is given by

for all , where . At low power
, let be the minimum of the multiplicities of the largest

and the smallest . Then, the limiting training matrix
is given by allocating all power in an arbitrary manner among

, while for .
Proof: The proof is given in Appendix A.

The theorem showed that the MSE minimizing training ma-
trix in Kronecker-structured systems has a special structure
based on the eigenvectors of the channel at the transmitter side
and the temporal disturbance; the th strongest channel eigendi-
rection is assigned to the th weakest disturbance eigendirec-
tion (i.e., in opposite order of magnitude). In other words, the
strongest channel direction is estimated when the disturbance is
as weak as possible (and vice versa). This was proved in [12]
for interference-limited systems, and Theorem 1 generalizes it
to cover various combinations of noise and interference.

At high training power, the power should be allocated to the
statistically strongest eigendirections of the channel, and

proportionally to the square root of the weakest eigendirec-
tions of the disturbance. At low training power, all power should
be allocated in a single direction where a certain combination
of strong channel gain and weak disturbance is maximized.
These asymptotic results unify previous results, including the
special cases of uncorrelated noise [9], [11] and single-antenna
receivers [26].

Although the structure of the MSE minimizing training
sequence is given in Theorem 1, the solution to the remaining
power allocation problem is in general unknown. Since the
problem is convex, the solution can however be derived with
limited computational effort. The following corollary sum-
marize results on when the power allocation can be solved
explicitly.

Corollary 1: If and , then equal power
allocation ( for all ) minimizes the MSE.

If , then MSE minimizing power allocation is given
by

(14)

where the Lagrange multiplier is chosen to fulfill the power
constraint .

Proof: In the first case, the conditions in (13) are identical
for all and thus the solutions are identical. In the second case,
an explicit expression for each can be achieved from (13)
since each term of the sum is identical. See [12, Theorem 5.3]
for details.

The first part of the corollary represents the case of uncorre-
lated transmit antennas and temporal disturbance, and has pre-
viously been shown in [9] for noise-limited systems. The water-
filling solution in the second part of the corollary was derived
in [12] for interference-limited disturbance, but is also valid in

noise-limited systems with uncorrelated receive antennas as was
shown in [9]–[11].

Next, we give a theorem that shows how the MSE with an
optimal training sequence depends on the spatial correlation at
the transmitter and receiver side.

Theorem 2: The MSE with the MSE minimizing training ma-
trix is Schur-concave with respect to the eigenvalues of (for
fixed ). If , then the MSE is also Schur-concave with
respect to the eigenvalues of (for fixed ).

Proof: The proof is given in Appendix A.
The interpretation of the theorem is that the MSE with an op-

timal training matrix will decrease with increasing spatial cor-
relation. This result is intuitive if we consider the extreme: it
is easier to estimate the channel in one eigendirection with full
training power, than in two eigendirections where each receive
half the training power. This analytical behavior provides in-
sight to the selection of parameters like the length of training
sequence, , and the total training power ; as the spatial cor-
relation increases, less power is required to achieve a given
MSE and this power will be concentrated in the most important
eigendirections of the channel. This will be further analyzed in
Section IV-A.

To summarize the results of this section, we have showed
the structure of the MSE minimizing training matrix in Kro-
necker-structured systems and analyzed the allocation of power
between the eigendirections. Based on these results, we propose
a heuristic training matrix that can be applied under general
system conditions. Observe that even when Kronecker-struc-
tured approximations are used in the training sequence design,
the general MMSE estimator in (6) should always be applied
without these approximations.

Heuristic 1: Let and .
Let their eigenvalue decompositions be and

, where the eigenvalues are ordered decreas-
ingly and increasingly, respectively. Then, the training matrix

, with diagonal elements in

that are calculated by inserting the eigenvalues in and
into (14), should provide good performance and minimize the
MSE under the Kronecker-structured conditions given in Corol-
lary 1.

It will be illustrated numerically in Section VI that this
heuristic training matrix yields good performance, even when
the covariance matrices are far from being Kronecker-struc-
tured.

A. Optimal Length of Training Sequences

The results of this paper are derived for an arbitrary training
sequence length . Next, we will provide some guidance on
how to select this variable under different system statistics and
based on the rank of . Recall from Theorem 1 that all power is
allocated in a single eigendirection for low (i.e.,

). Corollary 1 gave a waterfilling solution to the power alloca-
tion, and thus strong eigendirections receive more power than
weak and only a subset of with cardinality
will receive any power. Under these conditions, the rank of
is equal to , which in principle means that the training power
is spread in the temporal dimension at the best channel uses



1812 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 3, MARCH 2010

out of the allocated for training. Unless the disturbance varies
heavily over time, it is not worth wasting channel uses
just waiting for better disturbance conditions. Thus, we should
select . This observation is formalized by the following
general theorem.

Theorem 3: Let denote the singular value
decomposition of the training matrix for and suppose
that . If , then identical MSE is achieved by
the -dimensional training sequence . Here,

denotes the minor matrix that contains column to
of the given matrix .

Proof: The proof is given in Appendix A.
The interpretation of Theorem 3 is that the optimal training

sequence length in noise-limited systems is equal to the rank
of . In this case, optimal means that it is the smallest length

that can achieve the minimal MSE. In general, the rank of
can only be determined numerically. In certain Kronecker-

structured systems, the rank can however be derived explicitly.
This is shown by the following corollary, which also relaxes the
requirement of uncorrelated disturbance.

Corollary 2: In a Kronecker-structured system with
, the MSE minimizing training matrix will have

rank if

(15)

and otherwise have if where the positive
integer that fulfills

(16)
In addition, if and there exist an

integer in that factorizes as

, for some and

. Then, identical MSE is achieved
by the -dimensional training sequence

.
Proof: The proof is given in Appendix A.

According to the corollary, is rank deficient in systems
with pronounced spatial correlation and/or limited total training
power . Corollary 2 relaxed the conditions in Theorem 3 by
proving that the optimal training sequence length also depend
on under certain correlated disturbances. The condi-
tions for this are for example satisfied when .

Theorem 3 and Corollary 2 constitute a generalization of [14],
where it was shown that the optimal training sequence length in
spatially uncorrelated and noise-limited systems is exactly equal
to . Observe that the generalized results in Corollary 2 stands
in contrast to the belief that the training sequence length needs
to be at least of length in correlated systems [27].

Under general system statistics, one can expect that is
rank deficient when the training power is limited and there is

a strong eigenvalue spread in either or (i.e., strong spatial
or temporal correlation). Even if the disturbance is correlated
so that Theorem 3 cannot be applied, the training sequence
length can sometimes be reduced towards with only
a slight degradation in MSE and with an improved overall
data throughput. The optimal training sequence length under
non-Kronecker conditions will be illustrated numerically in
Section VI.

V. MMSE ESTIMATION OF SQUARED CHANNEL NORMS

In many applications, it is of great interest to estimate the
squared Frobenius norm of the channel matrix. This norm
corresponds directly to the SINR in space-time block coded
(STBC) systems and has a large impact on the SINR in many
other types of systems [17], [28]. The channel norm can be esti-
mated indirectly from an estimated channel matrix, for example
using the estimator in (6). This will however lead to suboptimal
performance and gives poor estimates at low training power (see
Section VI). Thus, we consider training-based MMSE estima-
tion of in this section.

Analysis of the squared channel norm is considerably more
involved than for the channel matrix. The next theorem gives a
general expression for the MMSE estimator and its MSE, and
special expressions for Kronecker-structured systems. In order
to derive these expressions, we limit the analysis to training
matrices with the structure . It is our conjec-
ture that the MSE minimizing training matrix has this form,3 as
was proved in Theorem 1 for channel matrix estimation. This
training matrix structure is also of most practical importance,
since the same training signalling will be used to estimate both

and .

Theorem 4: The MMSE estimator of , with the
observation and training sequence , is

(17)

where and are defined in (6)
and (7), respectively. The corresponding MSE is

.
In Kronecker-structured systems with the eigenvalue decom-

positions in (11) and a training matrix with the structure
, the estimator in (17) can be evaluated as

(18)

3If the mean channel component is strong and has different directivity than
the strongest eigenvectors, it might be necessary to permute the eigenvectors in
� when constructing the MSE minimizing training matrix�. To simplify the
notation, this has been ignored herein, but it is only a matter of reordering the
eigenvalues in (11).
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where and are the th elements of

and , respectively. The corresponding MSE is

(19)

Proof: The proof is given in Appendix A.
The explicit estimator in (18), and its MSE, can also be ex-

pressed as matrix multiplications for simplified implementation,
see [16] for examples.

A. Training Sequence Design for Channel Norm Estimation

Next, we consider minimization of the MSE of the explicit es-
timator in (18) by training sequence optimization, which means
that we seek the training power allocation in that
minimizes the MSE. The optimization principles in this section
will be similar to those for training matrix estimation, but the
MSE of squared norm estimation is not always convex in the
training powers, which makes it difficult to derive explicit solu-
tions. The following theorem will however give necessary con-
ditions on the convexity, and provide equations that can be used
to determine the solution. We will also analyze the asymptotic
behaviors of the power allocation.

Theorem 5: The MSE in (19) is convex in the training power
if for all . In general, the MSE can

however be non-convex in training powers, but the set of that
minimizes the MSE is always given as one of the solutions to
the following system of equations:

(20)
for all active (among ) and otherwise.
The Lagrange multiplier is chosen to fulfill the power
constraint .

The limiting training matrix at high power is given by

, where
.

At low power , the limiting solution is given by for

and for all . If the solution has multiplicity, the
power can be distributed arbitrarily among the different .

Proof: The proof is given in Appendix A.
Although the MSE cannot be guaranteed to be convex, The-

orem 5 showed that the limiting training sequences at high and

low training power can be derived explicitly. Observe that the
MSE in (19) depends on the mean value of the channel, while the
MSE for channel matrix estimation is independent of the mean.
The limiting solutions are however similar in the sense that all
power is allocated in a single eigendirection at low power and
are spread in all spatial direction at high power. The defi-
nition of the strongest direction at low training power and the
proportional power distribution at large power are however dif-
ferent, which means that the MSE minimizing training matrices
usually are different for matrix and squared norm estimation.

The next theorem shows that under certain conditions, the
training power allocation can be solved with low complexity,
and a unique solution exists if all eigendirections are required
to carry a minimal amount of training power.

Corollary 3: If , then MSE minimizing power
allocation is given by either or

(21)

for , where

and

The Lagrange multiplier is chosen to fulfill the
power constraint and the solutions in (21) are only fea-
sible if and when they
are positive. Depending on , solutions in the interval

are given

by , while the interval

can be achieved by in
(21). Thus, if for some , then will never
give a feasible solution for .

If training sequence optimization is combined with the
additional constraints

for all and , the
resulting MSE is guaranteed to be convex in the training powers

. Then, the system of equations in (20) has a unique solution.
In the special case , the constraint can be relaxed to

and the optimal
power allocation is given by in (21) for all active (i.e.,
those larger than the new lower bound).

Proof: The proof is given in Appendix A.
The corollary has two important implications. Firstly, in an

interference-limited system or in the case of uncorrelated re-
ceive antennas, the worst case complexity of finding the solution
to the potentially non-convex problem scales with the number
of transmit antennas as . Secondly, if we impose the ad-
ditional constraint that all eigendirections are allocated a min-
imum amount of training power, the power allocation is assured
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to be convex and has a unique solution. Observe that in some
cases (e.g., for channels with strong mean components), the sug-
gested additional constraint in Corollary 3 can be identical to

for some and then the MSE is convex with respect to
this without the need of imposing any constraints.

To summarize the results of this section, we have derived an
explicit MMSE estimator of the squared channel norm based on
the type of training matrices derived in Theorem 1. The power
allocation in the training sequence has been analyzed and solved
in certain cases. Based on these results, we conclude this section
with a heuristic training matrix that can be applied in general
Kronecker-structured systems.

Heuristic 2: The training matrix , with diag-

onal elements in from

(22)

where the Lagrange multiplier is chosen to ful-
fill the power constraint , should
provide good performance in Kronecker-structured
systems. Here, ,

, ,

and for all . If

and , then the
power allocation in (22) will minimize the MSE.

VI. NUMERICAL EXAMPLES

In this section, the performance of the MMSE estimators and
the training sequence design will be illustrated numerically. The
MSE performance of the channel matrix estimator was thor-
oughly evaluated in [12] for interference-limited Kronecker-
structured systems. Thus, we consider the opposite setting of
a noise-limited non-Kronecker-structured system, and we will
compare the MMSE estimation performance with other recently
proposed estimators. This section will also illustrate the advan-
tage of direct MMSE estimation of the squared channel norm
over indirect calculation from an estimated channel matrix. Fi-
nally, we will illustrate how the smallest necessary length of the
training sequence depends on the spatial correlation and avail-
able training power.

To illustrate the performance of the training sequence de-
sign for channel matrix estimation in Section IV under general
channel conditions, we consider the Weichselberger model [25].
This model has recently attracted much attention for its accurate
representation of measurement data. According to this model,
the channel matrix can be expressed as , where

are unitary matrices and has indepen-
dent elements with variances given by the corresponding ele-
ments of the coupling matrix . The unitary matrices will not
affect the performance when MSE minimizing precoding design
is employed, and can therefore be selected as identity matrices.
Without loss of generality, we always scale the coupling ma-
trices as to make sure that the training SINR can
be described by the training power constraint:

. To enable comparison with other estima-
tors, the channel is zero-mean, but recall from the MSE expres-

Fig. 1. The average normalized MSEs of channel matrix estimation as a func-
tion of the total training power in a system with the Weichselberger model and
� -distributed coupling matrices. The performance of four different estimators
with MSE minimizing training matrices is compared. The performance with the
training matrix design in Heuristic 1 is also given.

sion in (8) that the performance is unaffected by non-zero mean
components.

We define the normalized MSE as
. In Fig. 1, we give the normalized

MSEs averaged over 5,000 scenarios with different coupling
matrices with , , and independent -distributed
elements. The performance of four different estimators
with MSE minimizing training matrices are compared: the

MVU/ML channel estimator [8], the
one-sided linear estimator in [8], [13] that was incorrectly
claimed to be the linear MMSE estimator, the two-sided
Bayesian linear estimator proposed in [27], and the MMSE
estimator in (6). The MVU/ML estimator4 is unaware of the
channel statistics (i.e., non-Bayesian), and it is clear from Fig. 1
that this leads to poor estimation performance. The two-sided
linear estimator also performs poorly under the given premises,
but can provide good performance in special cases [27]. The
performance gap between the one-sided linear estimator and
the MMSE estimator (which is also linear) is noticeable,
while the difference between employing the optimal training
matrix and the one proposed in Heuristic 1 is small. It should
be pointed out that the use of independent -distributed
elements in the coupling matrix induces a spatially correlated
environment with a few dominating paths. In less correlated
scenarios, the difference between the estimators decreases, but
the order of quality is usually the same.

In Fig. 2, the performance of the MMSE estimator is shown
for a uniform training matrix , MSE mini-
mizing training matrix (achieved numerically), and the simple
explicit training matrix proposed in Heuristic 1. The one-sided
linear estimator is given as a reference. In this simulation, we
used the coupling matrix that was proposed in [29, Eq. 28] to
describe an environment with two small scatterers, two big scat-
terers, and one large cluster. It is clear that the gain of employing
an MSE minimizing training sequence is substantial, and the
heuristic approach captures most of this gain although uniform
training is asymptotically optimal at high training power.

Next, we illustrate the optimal length of the training sequence
for varying spatial correlation and training power. Recall from
Theorem 3 that the optimal length in noise-limited systems is

4For this problem, the maximum likelihood (ML) estimator is equivalent to
the MVU [23, Theorem 7.5].
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Fig. 2. The normalized MSEs of channel matrix estimation as a function of
the total training power in a system with the Weichselberger model and the cou-
pling matrix proposed in [29, Eq. 28]. The MMSE estimator with three different
training matrices is compared with the one-sided linear estimator.

Fig. 3. The average optimal training sequence length (smallest length that min-
imizes the MSE) as a function of the total training power� . The system follows
the Weichselberger model where the �th column of the coupling matrix has in-
dependent � -distributed elements scaled by � , for different �. Decreasing
� means increasing spatial correlation.

equal to the rank of the training matrix. We consider coupling
matrices with , , and independent -distributed
elements, and we induce random transmit-side correlation by
scaling the th column by for different values on . The
average optimal training sequence length (i.e., average rank of

) is shown in Fig. 3 for both an MSE minimizing training
matrix and the training matrix proposed in Heuristic 1. The
average length is given as a function of the total training power
and for the spatial correlation induced by .
In the case of identically distributed elements of the coupling
matrix , there is sufficient spatial correlation to have

at low training power. As the spatial correlation
increases (i.e., decreases), the optimal training length de-
creases and the convergence towards full rank becomes slower.
The heuristic training approach is clearly overestimating the
training length, which explains the performance difference in
Fig. 1. An important observation is that the conclusion of [14]
that the optimal length in an uncorrelated system is equal to
the number transmit antennas does not hold in general. Careful
system analysis is always required to determine the optimal
length under general statistics, and the loss in performance by
employing an even shorter training sequence may be minor
compared with the gain of having more data symbols.

Finally, we illustrate the performance of squared norm esti-
mation. The normalized MSEs for channel squared norm esti-

Fig. 4. The normalized MSEs of channel squared norm estimation as a func-
tion of the total training power in a system with uncorrelated receive antennas
and a transmit antenna correlation of 0.8. The MMSE estimator is compared
with indirect estimation from an MMSE estimated channel matrix for different
training matrices.

mation, defined as , are
given in Fig. 4 as a function of the total training power. In
this case, we limit the simulation to Kronecker-structured sys-
tems (i.e., rank-one coupling matrices), since the explicit es-
timator in Theorem 5 is based on this assumption. We con-
sider uncorrelated receive antennas and a correlation between
adjacent transmit antennas of 0.8, using the exponential model
[30]. The performance of the MMSE estimator in Theorem 5 is
compared with indirect calculation of the squared norm from a
channel matrix that is estimated using (6). In both approaches,
uniform and optimal training sequences are considered. For the
MMSE estimator, the performance with a channel matrix opti-
mized training sequence is also shown for comparison. This is
probably the most important case in practice; the training se-
quence will be used to optimize estimation of the channel ma-
trix (or some receive filter), but the received training signal can
simultaneously be used to calculate an MMSE estimate of the
squared norm (e.g., for the purpose of feedback). The first ob-
servation from Fig. 4 is that the indirect approach yields poor
performance at low SINR (even worse than the purely statis-
tical estimator which would give unit normalized
MSE) and is not even asymptotically optimal at high SINR. The
performance of the MMSE estimator can be considerably im-
proved by proper training sequence design. A training sequence
designed for channel matrix estimation will improve the perfor-
mance over uniform training at low SINR, but they both share
the same suboptimal asymptotic behavior.

VII. CONCLUSION

A framework for training-based estimation of Rician fading
MIMO channel matrices has been introduced, for the purpose
of joint analysis under different noise and interference condi-
tions. The MMSE estimator was analyzed in terms of the MSE
minimizing training sequence and the optimal training structure
was derived in Kronecker-structured systems. The limiting so-
lutions at high and low training power were given, along with
sufficient conditions for when the training optimization can be
solved explicitly. Based on these results, a heuristic training se-
quence was proposed for arbitrary system statistics.

In addition, we proved analytically that the MSE improves
with the spatial correlation at both the transmitter and the re-
ceiver side. This result was used to clarify how the optimal
length of the training sequence depends on the system statistics
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and the total training power. An interesting result was that the
optimal training sequence length can be considerably smaller
than the number of transmit antennas in systems with strong
spatial correlation. This was proved analytically for certain Kro-
necker-structured systems.

Finally, the framework was extended to MMSE estimation
of the squared Frobenius norm of the channel, using the same
type of training sequences as for channel matrix estimation. Al-
though the MSE of this estimator can be non-convex, the lim-
iting solutions at high and low training power were derived and
it was shown under which conditions the solution can be derived
explicitly or with low complexity.

APPENDIX A
COLLECTION OF LEMMAS AND PROOFS

In the appendix, we will first state two lemmas and then apply
them when proving the theorems of this paper. The first lemma
provides the necessary structure of the training matrix when the
weighted sum of MSEs is minimized, and is essentially a gen-
eralization of [12, Corollary 5.1] where a single MSE was min-
imized (i.e., ).

Lemma 1: Let and be positive coeffi-
cients, and let and be diagonal ma-
trices with strictly positive elements ordered decreasingly and
increasingly, respectively. Then, the optimization problem

(23)

is solved by being a rectangular diagonal matrix
that satisfies and gives decreasingly ordered di-
agonal elements of (i.e., the same order as for ).

Proof: We will derive the structure of the optimal by
contradiction; that is, for every that fulfill the constraint we
can find a solution that satisfy the given structure and achieves
a smaller or identical function value. Observe that the function

is strictly convex in each eigenvalue of its argument
matrix. Therefore, if the constraint is not fulfilled with equality
for a given , we can always achieve a smaller function value
by replacing it by for some and still satisfy the
constraint.

Suppose that fulfills the constraint with equality, and let
its singular value decomposition be denoted .
We will first show that can be removed if the diagonal
elements of are reordered. For this purpose we introduce

and let its singular value decomposition be de-
noted , where the singular values in are
ordered decreasingly. Now, observe that only appears in the
cost function as and thus we
can modify without affecting the function value. Using the
new notation, the power constraint can be expressed as

(24)

where denotes the th largest eigenvalue. The last in-
equality is given in [22, Theorem 20.A.4] and is fulfilled with
equality if and only if is diagonal with elements in
the opposite order of , which means that would
minimize the constraint. For this , we have the relationship

(25)

which is satisfied if and the diagonal values of is
ordered such that is in decreasing order. If this is not
fulfilled for the given , we can always find a better solution
that fulfills them by first reordering the elements of and
removing which will give strict inequality in the constraint.
Then, a smaller function value is achieved by scaling the new
solution to achieve equality in the constraint. Thus, the optimal
solution has the structure , where is ordered
as described.

Finally, for a solution of the type , we will show
that we always can reduce the function value by selecting

. Let , and observe that

(26)

As mentioned in the beginning of the proof, each component
of the sum is strictly convex in its eigenvalue. Thus, (26) is a
Schur-convex function for all [20, Proposition 2.7]. Recall that

is a linear combination of and with positive
coefficients for each . Then, we have from [20, Theorem 2.11]
that each is minimized when the eigenvalues of

and are added together in opposite order. If ,
we can therefore decrease the function value by replacing it by
an identity matrix, without affecting the power constraint.

To summarize, we have showed that for every given , we can
reduce the cost function by removing the unitary matrices of its
singular value decomposition, reordering the diagonal elements,
and scaling the remaining matrix to satisfy the constraint with
equality.

The next lemma provides a simple condition to determine if
a function that originates from an optimal power allocation is
Schur-convex or Schur-concave.

Lemma 2: Consider a continuous and twice continuously dif-
ferentiable function of two non-negative vectors

and . For every that
is convex and the Hessian and all its square minors are non-sin-
gular with respect to , the solution to the optimization

(27)
is differentiable. The partial derivatives of the solution at op-
timal power allocation are

(28)

Then, the function is Schur-convex with respect to if
and only if for all , and
Schur-concave if and only if .
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Proof: Since the cost function is convex with respect to
for every given and the domain of is closed, the Karush-
Kuhn-Tucker (KKT) conditions guarantee the existence of one
or several solutions to (27) and these are given by the following
system of stationarity equations

(29)

for all (otherwise ), where the Lagrangian mul-
tiplier makes sure that [31]. Let denote
the index set of all non-zero and those for which
the corresponding equation in (29) also would be satisfied with
equality (i.e., on those that are on the boundary of becoming
active). Observe that the Jacobian of the equation system in
(29) for these will be identical to a minor of the Hessian of

with respect to , and thus non-singular by assumption.
If we denote the power allocation solution in (27) as a function

, we can then apply the Implicit function the-
orem to conclude all elements in with indexes in are
differentiable with respect to [32, Theorem 9.28]. For those

with , this variable can be replaced with a zero
in the optimization problem without affecting the solution, and
thus its derivative can be defined as being zero.

We can now use that is differentiable with respect to
to calculate the partial derivative of with respect to :

(30)

Since for and
for , we have that

(31)

where the last equality follows from that implies
that . Thus, we have proved (28). The last
sentence of the lemma follows directly from Schur’s condition
in [22, Theorem 3.A.4], which states that is Schur-convex
if and only if

(32)

for all and , and Schur-concave if the conditions are fulfilled
with inverted inequalities.

Finally, we give the proofs of Theorems 1–5 and Corollary 3.
Proof of Theorem 1: First, we derive the structure of

the MSE minimizing training matrix. For Kronecker-struc-
tured systems, the MSE can be expressed as

. By taking
the conjugate transpose of the training transmission model
in (2) and then applying the results of [23, Chapter 15.8] in

the same manner as in Section III, we achieve an alternative
expression of the MSE:

(33)

where the second equality follows from that the identical eigen-
vectors of and are not affecting the trace and that the
trace of block matrices is equal to the sum of the traces for each
block.

Using the notation , , and
, we can apply Lemma 1 to conclude that the MSE

minimizing should be rectangularly diagonal, fulfill the ele-
ment ordering given in the theorem, and satisfy the power con-
straint with equality. With a training matrix of this type, the ar-
gument in (33) will be diagonal, and the MSE can be expressed
as

(34)

which is a convex function with respect to each (since
is a convex function for all ). Thus, the KKT

conditions give the necessary and sufficient condition for the
optimal power allocation [31, Ch. 5.5] and these are summarized
in (13).

Finally, we consider the two asymptotic cases. At high power,
we approximate the MSE in (34) as

(35)

which is minimized by for all (using
straightforward Lagrangian methods). At low power, we ap-
proximate (34) as

(36)

using a first order Taylor polynomial. This expression is mini-
mized by assigning all power in an arbitrary manner among the
strongest term/terms of the second sum.

Proof of Theorem 2: First, we will prove that the MSE in (34)
is Schur-concave with respect to the eigenvalues .
It is straightforward to show that the MSE is convex in the
power allocation, differentiable with respect to and for
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all , and that the determinant of the Hessian is non-zero if
the eigenvalues of and are distinct. Thus, we can apply
Lemma 2. According to the lemma, it is sufficient to show that

for all such that

, where MSE denotes the pre-optimization MSE in (34)
evaluated at the optimal solution. Thus, we can calculate the
partial derivatives of (34) as

(37)

and for . Observe

that the derivatives are positive and that and only
appear in the denominator of (37). From Theorem 1, we have
that whenever . Hence, it fol-

lows that and that the MSE is
Schur-concave.

Next, we have the case when , and then the MSE in
(34) can be expressed as

(38)

which is a concave function in for all . We apply [22,
Proposition 3.C.1] to conclude that parts and are both
Schur-concave with respect to , and thus the
MSE is Schur-concave.

Proof of Theorem 3: For , the MSE in (9) becomes

(39)

The theorem follows from that (39) is independent of and
that .

Proof of Corollary 2: The rank of is equal to the number
of active training powers . From Theorem 1, we have that the

th training power is active if and only if .
Suppose we only have active training powers, then

. Substitution into the power constraint gives

(40)

for . All will be active if and only if is larger
than the constraint for .

Finally, if there exist a that fulfills the requirements, then
can be factorized as

, where and
are independent. Thus, neither contain

information of the channel matrix nor is correlated with pre-
vious disturbance in , and will therefore not affect the

estimation. We can therefore use the shorter training sequence
without any loss in performance.

Proof of Theorem 4: In the general case, the integral expres-
sion of the MMSE estimator in (17) follows directly from the
definition of by exploiting that the posterior dis-
tribution, , is complex Gaussian
distributed with the mean and covariance matrix derived in [23,
Chapter 15.8].

To derive the explicit expressions, we begin with the one-
dimensional case with the received signal

, where is the training signal, , and
. Using Bayes’ formula or [23, Chapter 15.8], the

posterior distribution can be expressed as

(41)

We want to estimate , while the phase is
not of interest. To achieve the conditional distribution ,
we change variables in to (with the Jacobian 1/2)
and marginalize the distribution by integrating over the phase :

(42)

where , ,
, and is the modified

Bessel function of the first kind. The last equality in (42) fol-
lows by applying the formula [33,
Eq. 8.431.3]. The first and second order central moments of

are

(43)

respectively. These moments follows from straightforward
integration, by noting that ,

(for , ), and by iden-
tifying the Maclaurin expansion of . The MSE is achieved
by replacing in the expression of with its average

.
In the MIMO case, observe that the elements of

are independent. Since the Frobenius norm is the sum of the
squared magnitude of each element, we will have the sum of

independent variables that can be estimated separately.
Thus, the MMSE estimate and MSE in (18) and (19) follows
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from a MIMO transformation of (43), with replaced with its
average.

Proof of Theorem 5: A function is convex if and only if its
second derivative is non-negative. The second derivative of the
MSE in (19) with respect to is

(44)

which in general is negative in the neighborhood of
and thus the MSE is non-convex (for small values of ). If the
condition for convexity in the theorem is fulfilled, all terms in
the sum will however be positive at . Even if the MSE
is non-convex, the KKT conditions give necessary condition for
the optimal power allocation [31, Chapter 5.5]. By a straightfor-
ward Lagrangian approach, the power allocation that minimizes
(19) needs to fulfill the stationarity conditions in (20).

At high training power, the necessary condition in (20) can
be approximated and simplified as

(45)

which has the unique solution for all .
At low training power, the MSE in (19) can be approximated

as

(46)

using a first order Taylor expansions of the denominators and
disregarding terms with in the numerator. Hence, the MSE is
minimized by allocating all the power to the associated with

the largest . If
there is multiplicity in the largest value of the sum, the power
can be allocated freely among these eigendirections.

Proof of Corollary 3: The condition means that
for all , and therefore we can remove the depen-

dence of in the denominator of (20). For all active training
powers , the remaining expression in (20) can be for-
mulated as a third degree polynomial equation in :

, using the notation

. Its three solutions ( , 0, 1) are

(47)

where . Observe

that this expression has the form
, where are positive real-

valued constants. Thus, in order for any of the solutions to be
real-valued we need . If

, this condition can be expressed as

(48)

which has no solutions in the interval. For all

, we observe that
which satisfies the condition . Thus, for these

we can rewrite (47) as

(49)

where we used that with defined as in
the corollary. Since , will only give negative
solutions. For , 0, we see that the interval boundary

gives the coinciding solution
, while the limit gives

and , respectively. Thus, in order to show the intervals
for the solutions, it remains to show that is monotonically
decreasing in for and increasing in for . The
derivative of with respect to can be expressed as

(50)

where the multiplicative term outside the brackets is posi-
tive for all and . The bracketed term can be expressed
as for

. Then, the intervals follows

from the observation that
and .

Finally, we see that the second derivative of the MSE in (44)
is positive if we limit ourself to

, since then each term in
the sum is positive. Thus, the MSE will be convex with respect
to these and the KKT conditions in (20) becomes necessary
and sufficient. In the special case , we can strengthen
the condition since we know that the necessary KKT conditions
only give a single feasible solution if

. In both the general and special case,
these conditions need be combined with the original constraint

.
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