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Abstract

Background: The relationship between germline genetic variation and breast cancer survival is largely unknown,

especially in understudied minority populations who often have poorer survival. Genome-wide association studies

(GWAS) have interrogated breast cancer survival but often are underpowered due to subtype heterogeneity and

clinical covariates and detect loci in non-coding regions that are difficult to interpret. Transcriptome-wide

association studies (TWAS) show increased power in detecting functionally relevant loci by leveraging expression

quantitative trait loci (eQTLs) from external reference panels in relevant tissues. However, ancestry- or race-specific

reference panels may be needed to draw correct inference in ancestrally diverse cohorts. Such panels for breast

cancer are lacking.

Results: We provide a framework for TWAS for breast cancer in diverse populations, using data from the Carolina

Breast Cancer Study (CBCS), a population-based cohort that oversampled black women. We perform eQTL analysis

for 406 breast cancer-related genes to train race-stratified predictive models of tumor expression from germline

genotypes. Using these models, we impute expression in independent data from CBCS and TCGA, accounting for

sampling variability in assessing performance. These models are not applicable across race, and their predictive

performance varies across tumor subtype. Within CBCS (N = 3,828), at a false discovery-adjusted significance of 0.10

and stratifying for race, we identify associations in black women near AURKA, CAPN13, PIK3CA, and SERPINB5 via

TWAS that are underpowered in GWAS.

Conclusions: We show that carefully implemented and thoroughly validated TWAS is an efficient approach for

understanding the genetics underpinning breast cancer outcomes in diverse populations.

Keywords: Transcriptome-wide analysis (TWAS), Breast cancer, Expression quantitative trait loci (eQTL), Survival,

Polygenic traits

Background
Breast cancer remains the most common cancer among

women in the world [1]. Breast cancer tends to be more ag-

gressive in young women and African American women,

though underlying germline determinants of poor out-

comes are not well-studied. Cohorts that represent under-

studied minority populations, like the Carolina Breast

Cancer Study (CBCS), have identified differences in health-

care access, socioeconomics, and environmental exposures

associated with disparities in outcome [2–4], but more tar-

geted genomic studies are necessary to interrogate these

disparities from a biologic and genetic perspective.

Few genome-wide association studies (GWAS) have

studied the relationship between germline variation and

survival outcomes in breast cancer, with most focusing

instead on genetic predictors of risk [5, 6]. Recently,

GWAS have shown evidence of association between can-

didate common germline variants and breast cancer sur-

vival, but these studies are often underpowered [7, 8].
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Furthermore, the most significant germline variants

identified by GWAS, in either risk or survival, are often

located in non-coding regions of the genome, requiring

in vitro follow-up experiments and co-localization ana-

lyses to interpret functionally [9]. It is important to seek

strategies for overcoming these challenges in GWAS, es-

pecially because several studies in complex traits and

breast cancer risk have shown that regulatory variants

not significant in GWAS account for a large proportion

of trait heritability [10–12].

Novel methodologic approaches that integrate mul-

tiple data types offer advantages in interpretability and

statistical efficiency. Escala-García et al. have suggested

that aggregating variants by integrating gene expression

or other omics may better explain underlying biological

mechanisms while increasing the power of association

studies beyond GWAS [7]. To alleviate problems with

statistical power and interpretability, a recent trend in

large-scale association studies is the transcriptome-wide

association study (TWAS). TWAS aggregates genomic

information into functionally relevant units that map to

genes and their expression. This gene-based approach

combines the effects of many regulatory variants into a

single testing unit that increases study power and pro-

vides more interpretable trait-associated genomic loci

[13–15]. Hoffman et al. and Wu et al. have recently con-

ducted TWAS for breast cancer risk and have reported

several significant associations for genes with breast can-

cer susceptibility, showing increased power over GWAS

[15, 16]. However, these studies either draw from ances-

trally homogeneous reference panels like subsets of

women of European ancestry from the Genotype-Tissue

Expression (GTEx) project [16] or study populations of

European descent from the Breast Cancer Association

Consortium (BCAC) [15]. It is not known whether these

models can be informative in African American women

and other groups, though work in race-specific polygenic

risk scores suggests that race-specific expression models

may be more informative [17]. Recent findings have sug-

gested that stratification by race or ancestry may be neces-

sary to construct proper tests of association across race or

ancestry [18, 19]. However, many cohorts, especially large-

scale genetic cohorts, may not have a sufficient sample

size in minority populations to power these tests.

Here, we provide a framework for TWAS for complex

disease outcomes in diverse study populations using

transcriptomic reference data from the Carolina Breast

Cancer Study (CBCS), a multi-phase cohort that in-

cludes an over-representation of African American

women [20]. We train race-stratified predictive models

of tumor expression from germline variation and care-

fully validate their performance, accounting for sampling

variability and disease heterogeneity, two aspects that

previous TWAS in breast cancer have not considered.

This framework shows promise for scaling up into larger

GWAS cohorts for further detection of risk- or

outcome-associated loci (Additional file 4).

Results
Race-specific germline eQTL analysis

To assess the association between germline genomic

variation and tumor expression of 406 autosomal genes,

targeted by the CBCS because of their association with

breast cancer progression, we first conducted a full cis-

trans expression quantitative trait loci (eQTL) analysis,

stratifying on race and controlling for key biological co-

variates and population stratification (see “Methods”).

We discuss the relationship between self-reported race

and ancestry in CBCS in Additional file 1: Supplemental

Results, showing the relationship between race and gen-

etic ancestry in Additional file 2: Figure S1.

We evaluated associations between the tumor expres-

sion levels of 406 autosomal genes and 5,989,134 germ-

line SNPs in samples derived from 621 self-identified

African American women (AA) and 578 self-identified

white women (WW). SNPs and genes found in associ-

ation in an eQTL will be called eSNPs and eGenes, re-

spectively. At a Benjamini-Bogomolov [21] FDR-

corrected P value (BBFDR < 0.05) and after quality con-

trol as mentioned in “Methods” (Additional file 2: Figure

S2), we identified 266 cis-eQTLs and 71 trans-eQTLs in

the AA sample across 32 eGenes, and 691 cis-eQTLs

and 15 trans-eQTLs in the WW sample across 24

eGenes. Of these eGenes, 4 are in common across race:

PSPHL, GSTT2, EFHD1, and SLC16A3. Expression levels

of PSPHL and GSTT2 have been previously reported to

be governed by respective cis-deletions and serve as dis-

tinguishing biomarkers for race [22–25]. The majority of

significant eQTLs in both the AA and WW samples

were found in cis-association with respective eGenes.

However, we saw a higher proportion of significant

trans-eQTLs in the AA sample (Additional file 2: Figure

S3). The locations and strengths of top eQTLs for all

406 autosomal genes are shown in Fig. 1a, with minor

allele frequencies of significant eSNPs plotted in Add-

itional file 2: Figure S4. We followed up this eQTL ana-

lysis with a functional enrichment analysis to assess

whether significant eQTLs (BBFDR < 0.05) overlapped

with DNaseI hypersensitive sites in MCF-7 breast cancer

cells and/or transcription factor binding sites in T-47D

breast cancer cells (see “Methods”). We found that only

eQTLs identified in WW women showed significant

overlap in both DNaseI cleavage hotspots and transcrip-

tion factor binding sites in relevant cancer cells at

Bonferroni-corrected P < 0.05 (Additional file 3:

Table S1).

As discussed in detail in Additional file 1: Supplemen-

tal Results, we further adjusted our eQTL models for a
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Fig. 1 CBCS eQTL results across race and compared with GTEx. a Cis-trans plot of top eQTL by gene stratified by self-reported race. Each point

represents the top eQTL for a given gene. The color and size of each point reflects the Benjamini-Bogomolov FDR-adjusted P value (BBFDR) for

that eQTL. eGenes with BBFDR < 0.01 are labeled. b Comparison of effect sizes of eGenes with significant cis-eQTLs in CBCS (Y-axis) and GTEx (X-

axis) over tissue type, stratified by race. eGenes are colored by the GTEx tissue that shows the largest effect size. GTEx effect sizes on the X-axis

are multiplied by the sign of the correlation between the genotypes of the GTEx and CBCS eSNPs
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computationally derived estimate of tumor purity, which

showed little effect on the strength and location of top

eQTLs by eGene (Additional file 2: Figures S5 and S6).

We do not consider tumor purity in any downstream

analyses and train predictive models on bulk tumor ex-

pression. We also assessed if conditioning on local an-

cestry would harmonize the eQTL results across race.

While 78% of loci had a small increase in significance con-

ditioning on local ancestry, it was not sufficient to bring the

tests from the two groups into accordance (Additional file 2:

Figure S7). Local ancestry adjustment is discussed further

in Additional file 1: Supplemental Results.

We lastly sought to evaluate the source of the signifi-

cant eQTLs we detect in CBCS. Similarly to previous

pan-cancer gerrmline eQTL analyses [26], we cross-

referenced eGenes found in CBCS with eGenes detected

in relevant healthy tissues from Genotype-Tissue Ex-

pression (GTEx) Project: mammary tissue (breast), sub-

cutaneous adipose, and EBV-transformed lymphocytes

(immune) (see “Methods”). We attributed all but 7 of

the cis-eGenes from CBCS across both AA and WW

women found in GTEx to one of these three tissue types

(Fig. 1b), with the effect sizes of the top eQTLs for these

eGenes correlating very well between CBCS and GTEx

(see Additional file 2: Figure S8). We also found ad-

equate overlap of cis-eSNPs in these GTEx tissues and

TCGA-BRCA based on the P value of SNP-gene associ-

ation (see Additional file 2: Figure S9). Note that, in

GTEx v7, adipose (N = 298) has a larger sample size than

mammary tissue (N = 183) and lymphocytes (N = 114).

We were unable to replicate CBCS trans-eQTLs in

GTEx and TCGA-BRCA [27]. The majority of CBCS

trans-eQTLs were identified in AA women, and the

sample sizes of individuals of African descent is low in

GTEx version 7 and TCGA-BRCA.

Race-specific predictive models of tumor expression

Using the significant germline eQTLs of tumor ex-

pression as motivation, we used tumor expression and

genotyping data from 628 AA women and 571 WW

women from CBCS to build predictive models of

tumor RNA expression levels for each gene’s breast

tumor expression (see “Methods”). Mean cis-

heritability (cis-h2) of the 406 genes is 0.016 (SE =

0.019) in AA women and 0.015 (SE = 0.019) in WW

women, as estimated by GREML-LDMS analysis [28].

For downstream analysis, we only consider genes with

cis-h2 significantly greater than 0 at a nominal P value

less than 0.10 from the relevant likelihood ratio test.

Considering only these genes, the mean cis-h2 of genes

is 0.049 (SE = 0.016) in AA models and 0.052 (SE =

0.016) in WW models. Of the predictive models built

for these genes, 125 showed a fivefold cross-validation

prediction performance (CV R2) of at least 0.01 (10%

Pearson correlation between predicted and observed

expression with P < 0.05) in one of the two predictive

models. Figure 2a shows the CV R2 of these 153 genes

across race. The median CV R2 for the 153 genes was

0.011 in both AA and WW women. Cis-h2 and CV R2 are

compared in Additional file 2: Figure S10. We also show

mean CV and external validation (EV) R2 with quantiles

for prioritized genes across the training set and both ex-

ternal test sets in Additional file 3: Table S2.

Based on model performance in CBCS, we selected 46

genes in AA women and 57 genes in WW women for

association analyses between predicted tumor gene ex-

pression and breast cancer survival, using data from all

patients from CBCS with genotype data. These genes

were selected because they showed a CV R2 > 0.01 (10%

correlation between observed and predicted expression

in the CBCS training set) and cis-h2 ≥ 0 with nominal

P < 0.10 in a given race strata.

Evaluation of predictive models in independent data

Predictive performance was strong across race and bio-

logical and molecular subtype in two external samples:

The Cancer Genome Atlas (TCGA) and a held-out CBCS

sample set. We defined the imputed expression of a given

gene in an external cohort as the GReX, or the germline

genetically regulated tumor expression, of that gene.

The first sample is derived from TCGA breast tumor

tissues with 179 AA and 735 WW women. We com-

pared predictive performance by calculating an external

validation R2 (EV R2) with squared Spearman correla-

tions. Of the 151 genes modeled in CBCS training data

with significant cis-h2, 149 genes were measured via

RNA-seq in TCGA. A comparison of predictive per-

formance in TCGA for these 149 genes is shown in

Fig. 2b, showing adequate performance in AA women

(33 genes with EV R2 > 0.01) and poor performance in

WW women (7 genes with EV R2 > 0.01). The top pre-

dicted gene in cross-validation from CBCS for both

races, PSPHL, was not present in the TCGA normalized

expression data and could not be validated. Another top

cross-validated gene, GSTT2, was present in TCGA ex-

pression data and was validated as the top genetically

predicted gene in TCGA by EV R2.

We also imputed expression into entirely held-out sam-

ples from CBCS data (1121 AA and 1070 WW women)

that have gene expression for a subset of the genes (166 of

417 genes) in the CBCS training set. These samples were

largely derived from Phases I and II of CBCS (see

“Methods”). A comparison of imputation performance in

CBCS for 50 genes (genes with cis- h2 ≥ 0.01 in CBCS

training set) is shown in Fig. 2c, showing adequate per-

formance in both AA and WW women (18 and 15 genes

with EV R2 > 0.01 in AA and WW women).
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Predictive models are not applicable across race

We find that the predictive accuracy of most genes was

lower when expression was imputed in AA women using

models trained in the WW sample. We employed the

WW predictive models to impute expression into AA

samples from TCGA and held-out CBCS data. We

compare the performances of the WW model and AA

model in the AA sample in Fig. 2d (TCGA) and 2e

(CBCS). In held-out CBCS samples, with the WW

model, we could only predict PSPHL and GSTT2 at R2 >

0.01 in the AA sample, as the expression of these genes

is modulated mostly by strongly associated cis-eSNPs. In

Fig. 2 Predictive performance of models in cross-validation, external validation, and across race. a Comparison of cross-validation R2 across race in

CBCS. Cross-validation R2 in CBCS WW women (X-axis) and CBCS AA women (Y-axis) for each of the 151 analyzed genes. Scales are logarithmic.

Dotted lines represent R2 = 0.01. Colors represent the model with which a given gene can be predicted at R2 > 0.01. b Comparison of validation

R2 across race in TCGA for 149 analyzed genes found in TCGA expression data. c Comparison of validation R2 across race in held-out CBCS

samples for 50 analyzed genes. d Comparison of R2 of genes in TCGA AA sample imputed from WW models (X-axis) and the AA models (Y-axis).

e Comparison of R2 of genes in held-out CBCS AA sample imputed from WW models (X-axis) and the AA models (Y-axis)
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TCGA, our WW models performed adequately in AA

women, though the WW models predicted fewer

genes at R2 > 0.01 than the AA models.

Evaluation of predictive performance across subtype

While predictive accuracy of expression models was

stable across datasets, there was greater heterogeneity

across biological and molecular subtype. In part, this is

due to small sample sizes within race and subtype-

specific strata. Upon first inspection, we see vast differ-

ences in the performance of our models across subtype

(Additional file 2: Figure S11), with a large majority of

genes performing at EV R2 > 0.01 in rarer subtypes, like

HER2-enriched breast cancers. However, we recognized

sample sizes in the TCGA validation set were relatively

small, especially when considering AA women and

women of certain subtype, e.g., as low as 16 AA women

with HER2-enriched breast cancer. As overall correlation

between observed and imputed expressions are near 0, we

sought to account for sampling variability when imputing

into groups of women with such small sample sizes.

We employed a permutation scheme: permuting ob-

served expression values among samples 10,000 times to

generate a null distribution for EV R2. We then tested

for the null hypothesis R2 = 0, controlling for false dis-

covery, according to this null distribution. Add-

itional file 2: Figure S12 displays q-values in Manhattan

form [29], showing that the proportion of genes with EV

R2 significantly different from 0 is similar across sub-

types. We inverted this permutation test [30] to con-

struct a confidence interval for EV R2. We find that the

EV R2 of several genes are highly variable across sub-

types, even when accounting for differences in sample

size and therefore sampling variation. Key examples of

such genes with variable EV R2 across subtypes are

shown in Fig. 3. We also find little effect of GReX on

PAM50 subtype calls (Additional file 2: Figure S13), with

more details in Additional file 1: Supplemental Results.

Predicted expression associated with breast cancer-specific

survival

To assess association between imputed gene expression

and breast cancer-specific survival, we constructed race-

stratified cause-specific proportional hazard models for

3828 samples from CBCS (1865 AA and 1963 WW),

where we model time to mortality due to breast cancer.

We find high power of detection of survival-associated loci

over genes with varied cis-heritabilities (Additional file 2:

Fig. 3 Predictive performance of key genes, accounting for sampling variability. Validation R2 across PAM50 molecular subtype and estrogen

receptor status, stratified by race, for example genes with highly variable R2 in TCGA (a) and held-out CBCS (b). Squared Spearman correlation (Y-

axis), denoted R2, between observed and predicted gene expression is plotted for different genes (X-axis), stratified by PAM50 subtype and

estrogen receptor status. Points are colored and shaped according to subtype. Error bars provide 90% confidence intervals inverted from the

corresponding permutation test
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Figure S16), with details included in Additional file 1: Sup-

plemental Results. Of the genes evaluated, we detected 4

whose GReX were associated with breast cancer-specific

survival at FDR-adjusted P < 0.10 in AA women, shown in

Table 1 and Fig. 4. We did not identify any genes with

GReX associated with survival in WW women.

An association between increased GReX and increased

risk of breast cancer-specific mortality was identified for

CAPN13 (2p23.1). We also found protective associations

between higher GReX of AURKA (20q13.2), PIK3CA

(3q26.32), and SERPINB5 (18q21.33) and lower risk of

breast cancer mortality (Fig. 4c). Of these 4 loci, associa-

tions with survival have been reported with SNPs near

the same chromosomal region as AURKA, PIK3CA, and

SERPINB5 [8, 31–35], though none of these reported

SNPs were utilized in constructing the GReX of this

gene. Furthermore, the GReX of these four genes were

not significantly correlated (P > 0.05 for all pairwise

Spearman correlation tests), and the sets of SNPs used

in constructing the GReX of these four genes had no

pairwise intersections, providing evidence that their in-

dependent association with breast cancer-specific sur-

vival was not a pleiotropic effect from shared or

correlated SNPs.

To determine whether the associations between predicted

gene expression and breast cancer-specific survival were in-

dependent of GWAS-identified association signals, we per-

formed conditional analyses adjusted for the most

significant GWAS-identified survival-associated SNPs clos-

est to the TWAS-identified gene by adjusting the cause-

specific proportional hazards model for the genotype from

this SNP. We found that the association for PIK3CA had a

small change in effect size after adjustment for its adjacent

survival-associated SNP, and its SNP-adjusted association

was insignificant, while the other genes’ associations

remained significant after adjustment (Table 2). This condi-

tional analysis suggests that the GReX of AURKA, CAPN13,

and SERPINB5 may be associated with breast cancer-

specific survival independent of the GWAS-identified vari-

ant. No previously reported survival-associated SNPs were

found significant at the genome-wide significance level in

our dataset, and none of the closest survival-associated

SNPs used in conditional adjustment were significant

(Fig. 4a). This supports our observation that correctly

analyzed TWAS using relevant tissue gene expression may

increase power for association testing.

As we deal with case-only data, we wished to inspect

any collider bias that arises from unmeasured confounders

that are associated with both breast cancer incidence and

survival (see Additional file 2: Figure S17) [36]. Since a

case-control dataset was not readily available to us to test

associations between the GReX of genes with breast can-

cer risk, we construct the weighted burden test, as in FU-

SION [14], for the GReX of AURKA, CAPN13, PIK3CA,

and SERPINB5 in the GWAS summary statistics for breast

cancer risk in AA women available from BCAC using the

iCOGs dataset and additional GWAS [37–39]. We find

that none of the GReX of these genes are significantly as-

sociated with breast cancer incidence (Z > 1.96, P < 0.05),

suggesting minimal presence of collider bias in our esti-

mates of association with survival for the GReX of these

four genes.

Lastly, we examined the association of the GReX of

these four genes with breast cancer-specific survival in

AA women, stratified by estrogen receptor (ER) subtype.

We find that overall associations with survival are often

driven by significant associations in a single subtype,

though there is evidence of significant hazardous associ-

ation in both ER subtypes for CAPN13 (Additional file 2:

Figure S14). We also did not detect a survival association

with the total expression of these 4 genes, as estimated

from breast cancer-specific Cox models (Additional file 2:

Figure S15).

Discussion
In this paper, we studied the relationship between breast

cancer-specific survival and germline genetics using a

TWAS framework. This study is the first systematic

TWAS for breast cancer-specific survival, motivated by a

full cis-trans eQTL analysis with one of the largest sam-

ple sizes for breast tumor gene expression in African

American women. Our analyses underscore the import-

ance of accounting for sampling variability when validat-

ing predictive models for TWAS and incorporating race

or ancestry in these models, an aspect which confounds

naïve comparisons involving imputed GReX across valid-

ation subgroups of different sample size.

Table 1 Genes with GReX found in association with breast cancer-specific survival in AA women

Region Gene Hazard ratio (90% CI)a Z-statistica P valuea GReX R2 (h2)b

20q13.2 AURKA 0.83 (0.73, 0.95) −2.52 1.5 × 10−3 0.021 (0.055)

2p23.1 CAPN13 1.22 (1.07, 1.41) 2.76 5.4 × 10−4 0.011 (0.047)

3q26.32 PIK3CA 0.85 (0.74, 0.97) −2.34 3.2 × 10−3 0.020 (0.033)

18q21.33 SERPINB5 0.82 (0.72, 0.93) −2.85 3.4 × 10−4 0.010 (0.026)

aHazard ratio and FDR-adjusted 90% confidence intervals, Z-statistic, and P value of association of GReX with breast cancer-specific survival
bCross-validation R2 of gene expression in AA models
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Our race-stratified eQTL analysis reveals a strong cis-

signal between germline variants and tumor expression

of several genes, which is both differential across race

and not exclusively attributable to healthy breast tissue.

We also identified considerably more trans-eQTLs in

the AA sample. This result may reinforce race

differences in eQTL architecture as the ratio of detected

trans-eQTLs to cis-eQTLs is not directly linked to sam-

ple size [40]. Differences in allele frequencies and linkage

disequilibrium may contribute to observed differences in

cis-eQTLs, as reported by Mogil et al. [18], and we

hypothesize that such differences may likewise affect

Fig. 4 GWAS and TWAS results in AA women. a Manhattan plot of traditional GWAS on breast cancer survival. Genomic regions found to be

significantly associated with survival in TWAS are represented in various colors. No SNVs reach Benjamini-Hochberg FDR-adjusted genome-wide

significance. b Manhattan plot of TWAS on breast cancer survival. Genomic regions found to be significant at FDR-adjusted P < 0.10 are

highlighted in red. The blue line represents a cutoff of FDR-adjusted α = 0.05 and the dotted black line represents a cutoff of FDR-adjusted α = 0.10. c

Caterpillar plot of log-hazard rates with FDR-adjusted 90% confidence levels (X-axis) and genomic position (Y-axis). Results shown are significant at

nominal P < 0.10. Genes highlighted in red represent genes with GReX significantly associated with survival at FDR-adjusted P < 0.10

Table 2 Genes with GReX found in association with breast cancer-specific survival

Gene Closest survival-associated SNPa Distance to closest
survival-associated SNPa

Hazard ratio, adjusting for adjacent
GWAS-SNP (90% CI)b

P value, adjusting for adjacent
risk SNPsb

AURKA rs202100873 87.1 kb 0.84 (0.74, 0.94) 0.027

CAPN13 rs72068647 266.9 kb 1.18 (1.04, 1.33) 0.046

PIK3CA rs66487567 271.9 kb 0.88 (0.78, 1.00) 0.096

SERPINB5 rs376302305 89.4 kb 0.84 (0.75, 0.94) 0.028

aTop survival-associated SNP in cis-region of the given gene from GWAS for survival and distance of top cis-SNP from gene
bFDR-adjusted hazard ratio, 90% confidence interval, and P value for association of GReX and breast cancer-specific survival, adjusting for adjacent

survival-associated SNPs
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trans-eQTLs. Alternatively, there is a prevailing thought

in literature about trans genetic regulation in admixed

populations that the genetic diversity in individuals of

African ancestry leads to added power of eQTL detec-

tion [41, 42]. These race differences in eQTLs motivated

the racial stratification of our predictive expression

models [43]. We discuss both in-sample and out-of-

sample predictive performance in Additional file 1:

Supplemental Results.

An important implication of our work is the race-

specificity of TWAS methods. We find that expression

models trained in WW women generally have poor per-

formance in AA women. Epidemiological studies have

stressed accounting for differences in race by stratifica-

tion or adjustment for admixture estimates when con-

structing polygenic scores [44]. Our observations suggest

that this epidemiological note of caution extends to cre-

ating predictive models for RNA expression. Previous

TWAS studies of breast cancer risk have either used

models trained in a sample of predominantly European

ancestries [16] or imputed into large cohorts of strictly

patients of European descent [15]. Hoffman et al. ex-

clude SNPs that were monomorphic in any of the 14 dif-

ferent ancestral populations they analyze [16], though

this may not capture all effects of ancestry on genetic

regulation of expression, including the possibility for in-

teractions. We contend that accounting for ancestry or

stratifying by race may be necessary to draw correct in-

ference in large, ancestrally heterogeneous cohorts.

Our data also suggests that predictive performance

may vary by molecular subtype. Previous groups have

shown the predictive utility of catering polygenic risk

scores to breast cancer subtype [45, 46], a phenomenon

we investigated in our predictive models of tumor ex-

pression. Even after accounting for sampling variability

in prediction, we found that several genes have varied

degrees of GReX across subtype and race. Not only does

this finding suggest that TWAS predictive models may

need to account for subtype heterogeneity, we reinforce

the importance of sampling variability in validation of

predictive models in external cohorts. For example, Wu

et al. trained their models in a relatively small set of 67

women from GTEx and validated their 12,824 models in

a validation set of 86 women from TCGA without ac-

counting for sampling variability of predictive perform-

ance [15]. A recent multi-tissue TWAS in ovarian

cancer from Gusev et al. considered validation of their

predictive models by leveraging multiple independent

cohorts to assess replication rates [47]. We recommend

such an approach if multiple independent cohorts are

accessible. But, in TWAS evaluation in a single tissue,

studies should place a strong emphasis on validation, ac-

counting for sampling variability of prediction R2 prior

to imputation in larger cohorts.

While many of the most significant findings here are

methodological in nature, we also have data to suggest

that four genomic loci in AA women may merit further

investigation relative to breast cancer survival. Two of

these 4 TWAS-identified genes have strong functional

evidence in breast cancer survival literature. Mutations

in AURKA and PIK3CA have previously been shown to

be significantly associated with breast cancer survival rates

[31–33]. Less is known about the involvement of SER-

PINB5 and CAPN13 in breast cancer survival, though they

have been identified in studies into breast cancer progres-

sion [48–52]. These four loci merit further studies for valid-

ation and functional characterization, both in large GWAS

cohorts and using in vitro studies. We did not observe any

significant association between the total expression of these

4 genes and breast cancer-specific survival. This suggests

that the germline-regulated component of the tumor ex-

pression of these genes—a small fraction of the total

expression variation—may be associated with survival out-

comes. Numerous factors, including copy number alter-

ations, epigenetic or post-transcriptional regulation, and

exposures and technical artifacts in measurement contrib-

uted to the total expression measured in the tumor. Thus,

we do not expect that significant GReX association implies

total expression association, or vice versa.

We also observed that 3 of the 4 associations were

driven by very strong effect sizes within a single subtype.

Though we cannot contextualize this result, it highlights

an often-overlooked modeling consideration. In a cohort

that is both biologically and ancestrally heterogeneous,

as in CBCS, investigators should consider modeling

choices beyond simple linear adjustments for subtype

and race. Akin to the logic of Begg et al. and Martínez

et al., it may be prudent in future TWAS to stratify pre-

dictive models on both race and biological subtype to in-

crease power to detect outcome-associated loci that are

strongly present within only one such strata or have het-

erogeneous effects across strata [53, 54].

Since the CBCS analysis was a case-only study, we were

wary of potential collider bias by unmeasured confounders

associated with both breast cancer risk and progression [36,

55–57], which may affect the effect sizes of association be-

tween survival and GReX of genes. None of the GReX of

these four genes showed significant transcriptome-wide as-

sociations with breast cancer risk in iCOGs data [37–39],

suggesting that our estimates of association may be free of

the collider bias. As Escala-García et al. highlights, germline

variation can affect breast cancer prognosis via tumor eti-

ology (risk of developing a tumor of a certain subtype), or

via mechanisms that are relevant post-tumorigenesis, such

as the cellular response to therapy or the host-tumor

micro-environment [7]. Ideally, in future TWAS and inte-

grated omic analyses of breast cancer survival, it is prudent

to consider joint models of breast cancer risk and survival
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to account for pleiotropic effects of germline genotype and

any associations with unmeasurable confounders [56].

One limitation of our study is that data on somatic

amplifications and deletions were not yet available for

the CBCS cohort we analyzed. Removing the somatic

copy number variation signal from tumor expression

profiles may improve our estimates of cis-heritability

and perhaps the predictive performance of our models,

though previous TWAS in ovarian cancer shows the ef-

fect to be qualitatively small (approximately less than 2%

change in heritability) [47]. Furthermore, not all genes in

the CBCS Nanostring panel have a significant heritable

component in expression regulation. These genes, like

ESR1, which have a significant role in breast cancer eti-

ology [58], could not be investigated in our study. Lastly,

since CBCS mRNA expression is assayed by the Nano-

string nCounter system, we could only analyze 94 aggre-

gated locations on the human transcriptome across race.

However, the Nanostring platform allows the CBCS to

robustly measure expression from FFPE samples on a

targeted panel of breast cancer and race-related genes,

allowing us to leverage the large sample size from all

three phases of the CBCS. One of the greatest strengths

of our study is that the CBCS affords us both a large

training and test set of AA and WW women for race-

stratified predictive models. Such data is important in

drawing inference in more ancestrally heterogeneous

populations. Accordingly, the statistical power of our

study is high to detect associations for genes with rela-

tively high cis-heritability. Future studies in large GWAS

cohorts, such as those within the Breast Cancer Associ-

ation Consortium, will elucidate how to account for an-

cestral and biological heterogeneity in detecting survival-

associated loci.

Conclusion
We have provided a framework of transcriptome-wide

association studies (TWAS) for breast cancer outcomes

in diverse study populations, considering both ancestral

and subtype-dependent biological heterogeneity in our

predictive models. From a more theoretical perspective,

this work will inform the utilization of TWAS methods

in polygenic traits and diverse study populations, stres-

sing rigorous validation of predictive models prior to im-

putation and careful modeling to capture associations

with outcomes of interest in diverse populations.

Methods
Data collection

Study population

The Carolina Breast Cancer Study (CBCS) is a

population-based study conducted in North Carolina

(NC) that began in 1993; study details and sampling

schemes have been described in previous CBCS work

[20, 59]. Patients of breast cancer aged between 20 and

74 years were identified using rapid case ascertainment

in cooperation with the NC Central Cancer Registry,

with self-identified African American and young women

(ages 20–49) oversampled using randomized recruitment

[20]. Randomized recruitment allows sample weighting

to make inferences about the frequency of subtype in

the NC source population. Details regarding patient re-

cruitment and clinical data collections are described in

Troester et al. [2].

Date of death and cause of death were identified by

linkage to the National Death Index. All diagnosed with

breast cancer have been followed for vital status from

diagnosis until date of death or date of last contact.

Breast cancer-related deaths were classified as those that

listed breast cancer (International Statistical Classifica-

tion of Disease codes 174.9 and C-50.9) as the under-

lying cause of death on the death certificate. By the end

of follow-up, we identified 674 deaths, 348 of which

were due to breast cancer. In total, we compiled 3828

samples (1865 AA and 1963 WW) from all phases of

CBCS with relevant survival and clinical variables. All

3828 samples have associated germline genotype data.

Of these 3828 samples, we consider 1388 (621 AA and

578 WW) samples with Nanostring nCounter expression

data for eQTL analysis and training of predictive expres-

sion models.

CBCS genotype data

Approximately 50% of the SNPs for the OncoArray were

selected as a “GWAS backbone” (Illumina HumanCore),

which aimed to provide high coverage for the majority

of common variants through imputation. The remaining

SNPs were selected from lists supplied by six disease-

based consortia, together with a seventh list of SNPs of

interest to multiple disease-focused groups. Approxi-

mately 72,000 SNPs were selected specifically for their

relevance to breast cancer. The sources for the SNPs in-

cluded in this backbone, as well as backbone manufac-

turing, calling, and quality control, are discussed in

depth by the OncoArray Consortium [60]. All samples

were imputed using the October 2014 (v.3) release of

the 1000 Genomes Project dataset [61] as a reference

panel in the standard two-stage imputation approach,

using SHAPEIT2 for phasing and IMPUTEv2 for imput-

ation [62–64]. All genotyping, genotype calling, quality

control, and imputation was done at the DCEG Cancer

Genomics Research Laboratory [60].

From the provided genotype data, we excluded vari-

ants (1) with a minor frequency less than 1% based on

genotype dosage and (2) that deviated significantly from

Hardy-Weinberg equilibrium at P < 10−8 using the ap-

propriate functions in PLINK v1.90b3 [65, 66]. Finally,
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we intersected genotyping panels for the AA and WW

samples, resulting in 5,989,134 autosomal variants and

334,391 variants of the X chromosome. CBCS genotype

data was coded as dosages, with reference and alterna-

tive allele coding as in the National Center for Biotech-

nology Information’s Single Nucleotide Polymorphism

Database (dbSNP).

CBCS gene expression data

Paraffin-embedded tumor blocks were requested from

participating pathology laboratories for each sample,

reviewed, and assayed for gene expression using Nano-

string as discussed previously [2]. In total, 1388 samples

with invasive breast cancer from the CBCS were ana-

lyzed for a total of 406 autosomal genes and 11 genes on

the X chromosome. All assays were performed in the

Translational Genomics Laboratory at the University of

North Carolina at Chapel Hill.

We used the NanoStringQCPro package in Bioconduc-

tor to first eliminate samples that did not have sufficient

Nanostring data quality [67]. Next, we normalized distri-

butional differences between lanes with upper-quartile

normalization [68]. Unwanted technical and biological

variation (i.e., tissue heterogeneity) was estimated in the

resulting gene expression data with techniques from the

RUVSeq package from Bioconductor [69]. Unwanted

variation was controlled using the distribution of 11 en-

dogenous housekeeping genes on the Nanostring gene

expression panel. Ultimately, we removed two dimen-

sions of unwanted variation from the variance-stabilized

transformation of the gene expression data [70, 71]. We

lastly used principal component analysis to detect and

remove any significant, potential outliers. A final inter-

section of samples that had both genotype and gene ex-

pression data gave us a final sample of 1199 subjects

(628 AA women and 571 WW women).

TCGA genotype data

Birdseed genotype files of 914 of WW and AA women

were downloaded from the Genome Data Commons

(GDC) legacy (GRCh37/hg19) archive. Genotype files

were merged into a single binary PLINK file format (BED/

FAM/BIM) and imputed using the October 2014 (v.3) re-

lease of the 1000 Genomes Project dataset as a reference

panel in the standard two-stage imputation approach,

using SHAPEIT v2.837 for phasing and IMPUTE v2.3.2

for imputation [62–64]. We excluded variants (1) with a

minor allele frequency of less than 1% based on genotype

dosage, (2) that deviated significantly from Hardy-

Weinberg equilibrium (P < 10−8) using appropriate func-

tions in PLINK v1.90b3 [65, 66], and (3) located on sex

chromosomes. We further excluded any SNPs not found

on the final, quality-controlled CBCS genotype data. Final

TCGA genotype data was coded as dosages, with refer-

ence and alternative allele coding as in dbSNP.

TCGA expression data

TCGA level-3 normalized RNA expression data were

downloaded from the Broad Institute’s GDAC Firehose

(2016/1/28 analysis archive) and subsetted to the 417

genes analyzed in CBCS. A total of 412 of these 417

were available in TCGA expression data.

Computational methods

Deconvolution of bulk tumor RNA

A study pathologist analyzed tumor microarrays (TMAs)

from 176 of the 1199 subjects to estimate area of dissec-

tions originating from epithelial tumor, assumed here as

a proxy for the proportion of the bulk RNA expression

attributed to the tumor. Using these 176 observations as

a training set and the normalized gene expressions as

the design matrix, we trained a support vector machine

model tuned over a 10-fold cross-validation [72, 73].

The cross-validated model was then used to estimate

tumor purities for the remaining 1023 samples from

their gene expressions. We do not consider tumor purity

in final eQTL models and all downstream analyses.

eQTL analysis

Using the 1199 samples (621 AA, 578 AA) with expres-

sion data, we assessed the additive relationship between

the gene expression values and genotypes with linear re-

gression analysis using MatrixeQTL [74], in the follow-

ing model:

Eg ¼ Xsβs þ XCβC þ ϵg ;

where Eg is the gene expression of gene g, Xs is the vec-

tor of genotype dosages for a given SNP s, C is a matrix

of covariates, βs and βC are the effect sizes on gene ex-

pression for the SNP s and the covariates C, respectively,

and ϵ is assumed to be Gaussian random error with

mean 0 and common variance σ2 for all genes g.

We calculated both cis- (variant-gene distance less

than 500 kb) and trans-associations between variants

and genes. Classical P values were calculated for Wald-

type tests of H0 : βs = 0 and were adjusted post hoc via

the Benjamini-Bogomolov hierarchical error control pro-

cedure, TreeQTL [21]. We conducted all eQTL analyses

stratified by race. Age, BMI, postmenopausal status, and

the first 5 principal components of the joint AA and

WW genotype matrix were included in the models as

covariates in C. Estimated tumor purity was also in-

cluded as a covariate to assess its impact on strength

and location of eQTLs. Any SNP found in an eQTL with

Benajmini-Bogomolov adjust P value BBFDR < 0.05 is

defined as an eSNP using TreeQTL [21]. The
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corresponding gene in that eQTL is defined as an eGene.

We exclude samples with Normal-like subtype, as classi-

fied by the PAM50 classifier, due to generally low tumor

content. We developed a formal quality control proced-

ure to follow-up on significant eQTLs by defining fur-

ther MAF cutoff based on additive genotypes (i.e., 0,1,

and 2 copies of the minor allele) and rigorous visual in-

spection (i.e., Additional file 2: Figure S2).

We downloaded healthy tissue eQTLs from the

Genotype-Tissue Expression (GTEx) Project and cross-

referenced eGenes and corresponding eSNPs between

CBCS and GTEx in healthy breast mammary tissue,

EBV-transformed lymphocytes, and subcutaneous adi-

pose tissue. We considered these tissues mainly due to

their high relative composition in bulk breast tumor

samples, as shown previously in many studies [75–78].

The Genotype-Tissue Expression (GTEx) Project was

supported by the Common Fund of the Office of the

Director of the National Institutes of Health, and by

NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The

data used for the analyses described in this manuscript

were obtained from the GTEx Portal on 05/12/19.

Functional enrichment of eQTLs

We assessed whether significant eQTLs (BBFDR < 0.05)

were functionally enriched in DNaseI cleavage hotspots

in the MCF-7 breast cancer cell line, ESR1 transcription

factor (TF) binding sites in the T-47D breast cancer cell

line, and any TF binding sites in the T-47D breast can-

cer cell line, downloaded from the ENCODE consortium

repository [79, 80]. Data for DNaseI hypersensitive sites

were generated by the UW ENCODE group [81, 82].

ChIP-seq data used in the TF binding site analysis was

generated by the Myers Lab at the HudsonAlpha Insti-

tute for Biotechnology and by the labs of Michael Sny-

der, Mark Gerstein, Sherman Weissman at Yale

University, Peggy Farnham at the University of Southern

California, Kevin Struhl at Harvard, Kevin White at the

University of Chicago, and Vishy Iyer at the University

of Texas, Austin. These data were processed into uni-

form peak calls by the ENCODE Analysis Working

Group pipeline developed by Anshul Kundaje. The clus-

tering of the uniform peaks was performed by UCSC.

The Factorbook motif identifications and localizations

(and valuable assistance with interpretation) were pro-

vided by Jie Wang, Bong Hyun Kim, and Jiali Zhuang of

the Zlab (Weng Lab) at UMass Medical School [83–85].

eQTL functional enrichment was categorized using

QTLtools [86] to count the observed number of eQTLs

found in a 1-kb window of a functional annotation

and estimate the mean expected number of eQTLs

found near the annotation over 10,000 replications.

Fisher’s exact test was then used to estimate the odds

ratio, 95% confidence interval, and P value to assess

how the observed number of eQTLs and the mean ex-

pected number of eQTLs differ, as described by Dela-

neau et al. [86].

Local ancestry adjustment for cis-eQTLs

For cis-eGenes that were identified in only one of AA or

WW women, we followed up with a cis-eQTL analysis

adjusted for inferred local ancestry. Reference genotypes

were downloaded from the 1000 Genomes Project ver-

sion 3 for Utah residents with Northern and Western

European ancestry (CEU) and Yoruban individuals from

Ibadan, Nigeria (YRI) [61]. Phased genotypes from the

assumed admixed samples from CBCS were then com-

pared to reference genotypes using RFMix v1.5.4 to esti-

mate the posterior probability of CEU and YRI ancestry

at a given haplotype, which is converted to an estimated

dosage of inherited YRI alleles [87, 88]. We then follow

Zhong et al.’s framework for adjusting eQTLs by esti-

mated local ancestry [89]. Briefly, for gene expression g,

dosage of SNP of interest s, covariates XC, and estimated

local ancestry l for the given SNP, we first residualize

and scale to zero mean and unit variance g, s, and l by

XC. We then fit the following linear model to estimate

the local ancestry-adjusted eQTL effects:

~g ¼ ~sþ~l þ ϵ;

where ~g;~s; and ~l are the residualized and scaled gene ex-

pression, SNP dosage, and estimated local ancestry, re-

spectively [89].

Estimation of cis-heritability

Cis-heritability (cis-h2) using genotypes within 500 kb of

the gene of interest was estimated using the GREML-

LDMS method, proposed to estimate heritability by cor-

rection for bias in linkage disequilibrium (LD) in esti-

mated SNP-based heritability [28]. We do not consider

the trans components in heritability estimation. Analysis

was conducted using GCTA v.1.92 [90]. Briefly, Yang

et al. shows that estimates of heritability are often biased

if causal variants have a different minor allele frequency

(MAF) spectrums or LD structures from variants used in

analysis. They proposed an LD and MAF-stratified

GREML analysis, where variants are stratified into

groups by MAF and LD, and genetic relationship matri-

ces (GRMs) from these variants in each group are jointly

fit in a multi-component GREML analysis. Extensive de-

tails are given by Yang et al. [28].

For downstream analysis, we only consider the 151

genes (81 in AA women and 100 in WW women) with

cis- h2 that can be estimated with nominal P value <0.10.
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Predictive tumor expression models

We adopt general techniques from PrediXcan and FU-

SION to estimate eQTL-effect sizes for predictive

models of tumor expression from germline variants [13,

14]. First, gene expressions were residualized for the co-

variates C included in the eQTL models (age, BMI, post-

menopausal status, and genotype PCs) given the

following ordinary least squares model:

Eg ¼ XCβC þ ϵg :

We then consider downstream analysis on ~Eg ≡ Eg−XC

β̂C .

For a given gene g, we consider the following linear

predictive model:

~Eg ¼ Xgwg þ ϵg ;

where ~Eg is the gene expression of gene g, residualized

for the covariate matrix XC, Xg is the genotype matrix

for gene g that includes all cis-SNPs for gene g (within

500 kb of either the 5′ or 3′ end of the gene) and all

trans-eQTLs with BBFDR < 0.01, wg is a vector of effect

sizes for eQTLs in Xg, and ϵg is Gaussian random error

with mean 0 and common variance for all g.

We estimate wg with the best predictive of three

schemes: (1) elastic-net regularized regression with mix-

ing parameter α = 0.5 and λ penalty parameter tuned

over fivefold cross-validation [13, 91], (2) linear mixed

modeling where the genotype matrix Xg is treated as a

matrix of random effects and ŵg is taken as the best lin-

ear unbiased predictor (BLUP) of wg, using rrBLUP [92],

and (3) multivariate linear mixed modeling as described

above, estimated using GEMMA v.0.97 [93].

In these models, the genotype matrix Xg is pruned for

linkage disequilibrium (LD) prior to modeling using a

window size of 50, step size of 5, and LD threshold of

0.5 using PLINK v.1.90b3 [66] to account for redundancy

in signal. We believe that our LD-pruning thresholds

and window sizes are not stringent [94] and noticed that

LD-pruning the design matrix of genotypes lead to

greater CV R2 (Additional file 2: Figure S18). The final

vectors ŵg of effect sizes for each gene g are estimated

by the estimation scheme with the best fivefold cross-

validation performance. All predicted models are strati-

fied by race, i.e., an individual model of tumor expres-

sion for AA women and WW women for each gene g.

To impute expression into external cohorts, we then

construct the germline genetically regulated tumor ex-

pression GReXg of gene g given ŵg in the predictive

model as follows:

GReXg ¼ Xg;newŵg ;

where Xg, new is the genotype matrix of all available SNPs

in the feature set of ŵg in a GWAS cohort.

All final models are available here: https://github.com/

bhattacharya-a-bt/CBCS_TWAS_Paper.

Validation in TCGA

Using our stratified predictive models of tumor expres-

sion, we imputed expression in TCGA and measured

predictive accuracy of each gene through prediction R2,

defined here as the squared Spearman correlation be-

tween observed and imputed expression. It is important

to note that all variants in the CBCS-trained predictive

models are not represented in the TCGA genotype data.

Predictive performance in TCGA was also assessed

stratified by PAM50 intrinsic subtype and estrogen re-

ceptor status.

To account for sampling variability in calculating cor-

relations in validation cohorts of smaller sample sizes,

we calculated a permutation null distribution for each

gene by permuting observed expressions 10,000 times

and calculating a “null” prediction R2 at each permuta-

tion. The sample validation prediction R2 was compared

to this permutation null distribution to generate an em-

pirical P value for the sample R2, using Storey’s qvalue

package. We then calculated q-values from these empir-

ical P values, controlling for a false discovery rate of 0.05

[29]. Lastly, we constructed confidence intervals for R2

by inverting the acceptance region from the permutation

test [30].

Validation in CBCS

We used an entirely held-out sample of 2308 women

from CBCS as a validation set of Nanostring nCounter

data on a codeset of 166 genes. These samples were nor-

malized as outlined before. We used the same validation

methods as in TCGA, as well using a permutation

method to assess the statistical significance of predictive

performance, stratified by PAM50 subtype and estrogen

receptor status.

PAM50 subtyping

GReX in CBCS were first estimated as outlined above.

We residualized the original tumor expression E for

these imputed expression values to form a matrix of

tumor expression adjusted for GReX (~E). We then classi-

fied each subject into PAM50 subtypes based on both E

and ~E , using the procedure summarized by Parker et al.

[95, 96].

Survival modeling

Here, we defined a relevant event as a death due to

breast cancer. We aggregated all deaths not due to

breast cancer as a competing risk. Any subjects lost to
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follow-up were treated as right-censored observations.

We estimated the association of GReX with breast can-

cer survival by modeling the race-stratified cause-

specific hazard function of breast cancer-specific mortal-

ity, stratifying on race [97]. For a given gene g, the model

has form

λk tð Þ ¼ λ0k tð ÞeGReXgβgþZCβC ;

where βg is the effect size of GReXg on the hazard of

breast cancer-specific mortality, ZC represents the

matrix of covariates (age at diagnosis, estrogen receptor

status at diagnosis, tumor stage at diagnosis, and study

phase), and βC are the effect sizes of these covariates on

survival. λk(t) is the hazard function specific to breast

cancer mortality, and λ0k(t) is the baseline hazard func-

tion. We test H0 : βg = 0 for each gene g with Wald-type

tests, as in a traditional Cox proportional hazards model.

We correct for genomic inflation and bias using bacon, a

method that constructs an empirical null distribution

using a Gibbs sampling algorithm by fitting a three-

component normal mixture on Z-statistics from TWAS

tests of association [98].

Here, we consider only the 46 genes that have CV

R2 > 0.01 in AA women and the 57 genes that have CV

R2 > 0.01 in WW women for race-stratified survival

modeling. We adjust tests for βg via the Benjamini-

Hochberg procedure at a false discovery rate of 0.10.

For comparison, we run a GWAS to analyze the asso-

ciation between germline SNPs and breast cancer-

specific survival using GWASTools [99]. We use a similar

cause-specific hazards model with the same covariates as

in the TWAS models of association, correcting for false

discovery with the Benjamini-Hochberg procedure.

Inspection of collider bias

To assess collider bias when conditioning for breast can-

cer incidence in case-only studies, such as CBCS, we test

for association for the GReX of genes with breast cancer

risk using iCOGs summary statistics from BCAC [37–

39], using the weighted burden test identified by FU-

SION [14]. In summary, we compose a weighted Z test

statistic as follows:

~Z ¼
WZ

ðWΣs;sW
′Þ1=2

;

where Z is the vector of Z-statistics from iCOGs and

W ¼ Σe;sΣ
−1
s;s with Σe,s is the covariance matrix between

all SNPs represented in Z and the gene expression of the

given gene and Σs,s is the covariance among all SNPs.

Power analysis

Using survSNP [100], we generated the empirical power

of a GWAS to detect various hazard ratios with 3828

samples with 1000 simulation replicates at a significance

level of P = 1.70 × 10−8, corresponding to an FDR-

adjusted P = 0.10. We assume an event rate of 10% and a

relative allelic frequency of the risk allele of 0.1 and esti-

mate the 90th percentile of times-to-event as a landmark

time. Similarly, for genes of various cis-h2, we assessed

the power of TWAS to detect various hazard ratios at

P = 0.0096 (corresponding to FDR-adjusted P = 0.10)

over 1000 simulation replications from the empirical dis-

tribution function of the GReX of the given gene.
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