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Abstract—The paradigm of cloud computing has spontaneously
prompted a wide interest in market-based resource allocation
mechanisms by which a cloud provider aims at efficiently
allocating cloud resources among potential users. Among these
mechanisms, auction-style pricing policies, as they can effectively
reflect the underlying trends in demand and supply for the
computing resources, have attracted a research interest recently.
This paper conducts the first work on a framework for truthful
online cloud auctions where users with heterogeneous demands
could come and leave on the fly. Our framework desirably
supports a variety of design requirements, including (1) dynamic
design for timely reflecting fluctuation of supply-demand rela-
tions, (2) joint design for supporting the heterogeneous user
demands, and (3) truthful design for discouraging bidders from
cheating behaviors. Concretely speaking, we first design a novel
bidding language, wherein users’ heterogeneous demands are
generalized to regulated and consistent forms. Besides, building
on top of our bidding language we propose COCA, an incentive-
Compatible (truthful) Online Cloud Auction mechanism based
on two proposed guidelines. Our theoretical analysis shows that
the worst-case performance of COCA can be well-bounded.
Further, in simulations the performance of COCA is seen to
be comparable to the well-known off-line Vickrey-Clarke-Groves
(VCG) mechanism [11].

I. INTRODUCTION

Cloud computing is meant to offer on-demand network

access to configurable computing resources, and promises

to deliver to cloud users fast and flexible provisioning of

resources with the freedom from long-term investments [10].

Such a paradigm has spontaneously prompted a wide interest

in dynamic and market-based resource allocation mechanisms

in order to regulate the supply and demand relationship of

cloud resources at market equilibrium, and provide satisfactory

resource allocation in terms of economic incentives for both

cloud consumers and providers [5].

As a quick and efficient approach to selling goods at market

value, auction-style pricing polices have been widely applied,

reflecting the underlying trends in demand and supply for the

computing resources. Indeed, an auction-style pricing policy,

so called Spot Instance [1], has been adopted by Amazon to

dynamically allocate cloud resources among potential users.

Such a design has attracted significant attentions from the re-

search community, and prompted a number of studies [2], [12],

[13], [17] focusing on auction-style cloud pricing mechanism

design.

A. Design Requirements and Related Work

Typical methods such as [1] and [17] apply a pricing policy

that changes periodically, to simplify the cloud provider’s

operations. On the downside, cloud users often suffer from this

simplicity. For example, a cloud user with an uninterruptible

job which lasts for more than one period will face the threat of

being outbid and losing its cloud usage in any of these periods.

Plus, as the price only changes periodically (once per hour;

or less frequently in many cases [1], [17]), the fluctuation of

supply-demand relations, which is always drastic due to the

inherent dynamics and burst nature of user demands, can not

be timely and efficiently reflected.

Cloud users often have a variety of application and valuation

types (i.e., with heterogeneous demands). For instance, users

who have analytic or batch jobs to run are job-oriented:

they mostly concern about whether their jobs can be finished

in time [14], [16]. An SaaS provider provisioning for the

peak demand is resource-aggressive, attaining enough cloud

resources in a specific time interval (rush hours) is of his

primary consideration [9], [10]. Existing studies [2], [10], [12]

only consider cloud users with a single valuation type for

simplicity. Moreover, users’ valuations could be multi-minded:

a bidder may have a valuation of $10 in total for five VMs,

while having a valuation of $8 in total if he get three of

them. Current designs [1], [12], [13], [17] can not reflect such

complicated form of user demands.

Last but not the least, the cloud market could be vulnerable

to selfish user behaviors: cloud users may manipulate auction

outcomes and gain unfair advantages via untruthfully revealing

their preference on cloud resources. These strategic (or so-

called cheating) behaviors will hinder other qualified users,

significantly degrade auction efficiency, and greatly discourage

users from participation. Truthful designs [12], [13] have

been proposed under one-time or periodic auction settings,

which are unable to serve cloud users come on-the-fly. [2]

tried to investigate truthful auction policies under Bayes-Nash

Equilibrium [11] in a spot market model, which is not practical

as users are assumed to have only two different valuations.

B. Overview of Our Proposed Framework

This paper conducts the first work on a framework, as

shown in Fig. 1, for truthful online cloud auctions where
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users with heterogeneous demands could come and leave on

the fly. First, cloud auctions are all carried out in an online

manner, i.e., bidders can request cloud resources whenever

they need, and their requests are processed by the cloud

provider instantaneously. Such flexibility, in accordance with

the “pay as you go” cloud paradigm, makes online auctions

particularly attractive in practice [6]. Plus, a bidding language

is implemented in the client side to translate user-specific de-

mands into requests, by which users’ heterogeneous demands

can be restricted to regulated and consistent forms while the

details of the requirements can still be revealed. Finally, each

request is then submitted to the server side through web service

interfaces, and a truthful (also called incentive-compatible)

online auction mechanism is implemented so that cloud users

can be rationally motivated to reveal their truthful valuations

in their requests.
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Fig. 1. Infrastructure of the framework for truthful online cloud auctions
with heterogeneous user demands

To that end, our first contribution is a novel bidding lan-

guage for our online cloud auction: We categorize bidders into

three typical valuation types, and each of them can be specified

by a valuation function, where users’ valuations change with

respect to the allocation they get. By doing so, each type of the

valuation function can then be mapped into a corresponding

request form which is more concise and regulated.

Second, we present COCA, a truthful (incentive-compatible)

online cloud auction mechanism building on top of our

proposed bidding language. The main building blocks of

COCA include: (1) a payment-function-based payment rule

which is uniquely determined by the allocation result and the

request submission time, and (2) an allocation rule that tries

to maximize bidders’ utility. COCA ensures truthfulness by

introducing a nondecreasing auxiliary pricing function in terms

of the current supply-demand relations. Further our extensive

theoretical analysis shows that the worst-case performance

of COCA can be well-bounded. Finally, in simulations the

performance of COCA is seen to be comparable to the well-

known off-line VCG mechanism.

The remainder of the paper proceeds as follows: Section II

introduces our auction model and biding language. Section III

presents COCA mechanism for online auctions Section IV

conducts the competitive analysis of COCA. Preliminary sim-

ulation results are illustrated in Section V. Finally Section VI

concludes the paper.

II. AUCTION MODEL AND BIDDING LANGUAGE

A. Online Auction Model for Cloud Resources

The auction procedure is shown in the left part of Fig. 2,

cloud user (bidder) i with a specific valuation vi (defined

below) for the cloud resource arrives at an arbitrary time,

maps (translates) his valuation into a request (bid) ri, and

then submits ri to the resource provider. After receiving the

request, the resource provider is committed to determine the

allocation γi and the payment payi immediately according to

the adopted auction mechanism.
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Fig. 2. An illustrative example of the online cloud auction.

Resource—as shown in Fig. 3, we consider one cloud

resource provider (e.g., a large data-center) who has a large

number of computational resources [1], [10] with a fixed

capacity Q in an infinite time interval [0,∞].
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Fig. 3. The cloud resource and the presentation of allocation γi.

Allocation & Payment—an allocation γi presents how the

resources are allocated to a cloud user i. A typical allocation

γA, as shown in Fig. 3, presents the usage of cloud resource

from 6:00 to 9:00 with a fixed 10 units of cloud capacity. As

such, if we denote the start time (end time) of an allocation

γi as t−γi
(t+γi

) (as is shown in Fig. 3 for allocation A), an

allocation γi =
⋃ t=t+γi

t=t−γi
γi(t) can be regarded as a function

of t, where γi(t) is the instantaneous quantity of resources

allocated to the user at time t. Additionally, like γB in Fig. 3,

the capacity allocated is not necessarily time-invariant, in this

paper we assume that γi(t) can be varying within the range

[0, q], and we denote all possible allocations to some user i as

a set Γi. Moreover, we use γ∗
i ∈ Γi to denote the allocation

decision: the allocation finally determined for bidder i by the

adopted auction mechanism, and we use payi ∈ R to represent

the amount of money user i is required to pay.

Valuation—the valuation of bidder i is a function vi : Γi →
R, representing the benefit bidder i obtains from receiving
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Fig. 4. The valuation function of three types of users.

a certain allocation γi of the cloud resource. Note that the

valuation is known only to the bidder himself. Consider a

cloud user with a job of size 40 (it takes 40 units of resource

capacity running for one time unit to finish the job), who has

a valuation of $10 if the job is carried out within [6:00,9:00].

The corresponding valuation function is presented in the right

part of Fig. 2.

Utility— the utility ui(γi) refers to the “net profit” bidder i
gets from an allocation γi [11], that is, ui(γi) = vi(γi)−payi.
As bidders are assumed to be selfish, they may untruthfully

reflect their bidding parameters in their requests in order to

maximize their utility.

Social welfare— as a commonly used criterion to evaluate

the performance (outcome) of an auction mechanism, social

welfare refers to the sum of all the valuations of the allocated

resources. Specifically, for any request sequence τ , the social

welfare is defined as E(τ) =
∑

i∈τ vi(γ
∗
i ).

Request—to apply for cloud resources, a cloud user i
submits a request ri to the provider representing his valuation

for the resource. A request is always represented as a set of

bidding parameters. Recall the example shown in the right

part of Fig. 2, obviously, in this case a concise request form

of ri = {6:00,9:00,$10, 40} is enough to reflect the entire

valuation function. Here we call such mapping from valuations

to requests as bidding language. Besides, we denote the

submission time of request i (the time i arrives at the market)

as tsubi . Note that we allow users to reserve resources, that is,

in the above example user i can submit his request at anytime

before 6:00.

B. Bidding Language for Heterogeneous User Demands

In this subsection, we turn to the mapping from valuations

to requests. In practice, the user valuations are heterogeneous

and often have complicated forms in the cloud market. This

leads to a dilemma: how can we present such heterogeneous

valuation in requests with a concise and regulated form? In

response, we put forward in this paper a bidding language, by

which the representation of requests captures as many features

of the heterogeneous demands as possible, while keeping itself

concise and consistent.

One challenge here is that a single request type can not

reveal the diversity of users’ valuation types. As such, after

extensively investigating a great number of user requirements

in cloud computing [4], [5], [10], [12], we categorize bidders

into three typical valuation types, each with a corresponding

valuation function. After that, each of the valuation functions is

mapped into a corresponding concise request form respective-

ly. As a result, each bidder can translate his specific valuation

into a concise request according to his own type.

Valuation TYPE I: Job-oriented users. Analytic and batch

jobs account for a large population in the cloud market [4],

[10]. Generally, a job-oriented bidder i has a job with size

sizei, and the job should be carried out within a time period

[ai, di] (ai denotes the earliest available time, and di denotes

the deadline). Typically, bidder i has a valuation b totali if

the job is finished before the deadline di, otherwise the longer

the delay delayi is, the less the valuation will be [16]. To

model this, we assume each bidder has a specific penalty rate

pen ratei representing his valuation loss per unit delay time.

As shown in Fig. 4(a), we can specify the valuation function

vi(γi) of job-oriented users as:

vi(γi) =

{

b totali − delayi · pen ratei if
∫ di+delayi
ai

γi(t) ≥ sizei

0 elsewhere
(1)

where delayi = max(t+γi
− di, 0) uniquely corresponds to a

given allocation γi. Recall the example shown in the right

part of Fig. 2, obviously it belongs to such valuation type

with pen ratei equals ∞. Accordingly, a request with the

form: ri = {ai, di, pen ratei, b totali, sizei} is capable of

reflecting the TYPE I valuation function.

Valuation TYPE II: Resource-aggressive users. For an-

other typical kind of bidders, the biggest concern is to get

sufficient number of resources in a specific time period. Such

requirement is widely considered in traditional auction market

settings, and it is also quite common in the cloud market. As an

example, for an SaaS Provider who wants to provision for his

peak-load during the rush hours [ai, di] [4], the more resources

he acquires within such period, the more benefit he may get.

As is shown in Fig. 4(b), such a valuation function vi of TYPE

II can be specified as a nondecreasing function bi(·), with
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respect to the total quantity of resource total rsci allocated to

bidder i within the preferred time period [ai, di]. So we have:

vi(γi) = bi(total rsci), where total rsci =
∫ di

ai
γi(t)dt.

Accordingly, the request i of TYPE II can be organized as:

ri = {ai, di, bi(total rsci)}.

Valuation TYPE III: Resource-aggressive users with

time-invariant capacity requirements. Some users may be in

need of time-invariant computing power. So for the third type,

we consider users that require an invariable capacity of com-

puting power (as the resource model in [3], [10]). Typically,

such a cloud user i may request cloud resources of invariable

capacity for a time length li, within a preferred time duration

[ai, di] (li ≤ di − ai). And the valuation can be presented

by a concavely increasing function bi(·) with respect to the

invariant capacity inv capi allocated to him. For example, a

user may have a valuation of $10 in total if inv capi = 5 (5

VMs allocated to him), or a valuation of $8 if inv capi = 3.

Accordingly, we have vi(γi) = bi(inv capi) · li, where

inv capi = γi(t) for all t ∈ [t−γi
, t+γi

]. Such a request can

be organized as: ri = {ai, di, li, bi(inv capi)}.

Assumptions: First, aiming at a compelling user experi-

ence, preemption [7] is not allowed. Second, we do not assume

any specific distribution of bidding parameters in the request

ri — we only apply a very general assumption that the unit

valuation (the valuation for one unit resource per unit time) is

within a known interval [p, p], and the job length of Type III

bidders is within the interval [l, l].

C. Performance Metrics for the Auction Mechanism

Truthfulness (also called incentive-compatibility) is one of

the most critical property of auction mechanism [11]. As

mentioned in Section I, an auction could be vulnerable to

market manipulation without truthfulness-guaranteed.

Definition 1. (Truthfulness) An auction mechanism A is said

to be truthful if, for any bidder i, regardless of the behaviors

of other bidders, declaring a bid that truthfully reveals his

valuation can maximize his utility.

Existing pricing designs for cloud market [12], [13], [17]

typically target at achieving the “optimal” allocation perfor-

mance on revenue or social welfare. However, the optimal

solution generally needs further information of the variation

of user demands, which is very hard to estimate. To this end,

in this paper we focus on an alternative problem: without as-

sumptions on any specific distribution information on bidders’

arrival or valuation, how can we achieve a good worst-case

performance on social welfare? To evaluate the worst-case

performance of an auction mechanism by its social welfare, a

commonly adopted way is competitive analysis [8], [9] — to

compare the allocation performance against the optimal offline

solution — VCG mechanism.

Definition 2. (Competitive ratio on social welfare) An auction

mechanism A is ζ-competitive with respect to the social wel-

fare if for every bidding sequence τ , EA(τ) ≥ EV CG(τ)/ζ.

Accordingly, ζ is the competitive ratio of A.

To that end, next in Section III we propose the online

auction mechanism, called COCA, along with the proof for

the truthfulness, followed by Section IV where we conduct

extensive competitive analysis on COCA.

III. MECHANISM DESIGN: ENSURING TRUTHFULNESS

In this section, we first present our design methodology

on ensuring truthfulness under our auction model, and then

propose a truthful (incentive-compatible) online cloud auction

mechanism, called COCA, building on top of our proposed

bidding language in the previous section.

A. Design Methodology on Ensuring Truthfulness

1) How to determine the payment: Under our proposed

auction model, the payment of a bidder i can be generally

considered as a function: payi = pi(γi, tsubi , ri).
1 However

it may not be the simplest form of the payment function

as the parameters are not totally independent. Indeed, the

following lemma shows that the payment function can be

further simplified as payi = pi(γi, tsubi).

Lemma 1. For any truthful auction algorithm A, given γi
and tsubi , the payment should be uniquely determined for any

bidder i regardless of his request ri.

Proof: We prove it by contradiction. Given some γi and

tsubi , assume that there are two different requests ri and r
′
i

with pi(γi, tsubi , ri) > pi(γi, tsubi , r
′
i
). In this case, a bidder

with true request ri will increase his utility by declaring r
′
i
.

Therefore the auction is no longer truthful, completing the

contradiction.

Next we discuss how γi and tsubi are correlated to the

payment function pi(γi, tsubi).

Definition 3. (Monotonic with allocation) We say γi � γ′
i

if ∀t, γi(t) ≥ γ′
i(t). A payment function pi is monotonic with

allocation if for any tsubi and any allocation γi � γ′
i, we have

pi(γi, tsubi) ≥ pi(γ
′
i, tsubi).

Definition 4. (Monotonic with submission time) A payment

function is monotonic with submission time if for any allo-

cation γi and any submission time tsubi ≤ t′subi , we have

pi(γi, t
′
subi

) ≥ pi(γi, tsubi).

Given the above definitions, we are now ready to present

the following theorem:

Theorem 1. For any truthful online auction mechanism A,

the payment for any bidder i can be determined by a pay-

ment function pi(γi, tsubi), which should be monotonic with

submission time and monotonic with allocation.

Proof: We prove it by contradiction. First, assume that pi
is not monotonic with allocation, that is, there exists a bidder

i with two possible allocation decisions γ′
i � γi, such that

pi(γi, tsubi) > pi(γ
′
i, tsubi). Denote r

′
i

and ri as the requests

1The function can be more formally written as payi = pi(γi, tsubi , ri,Φ),
where Φ denotes all the parameters which can not be directly affected by the
user strategy. Note that it is not necessary to explicitly show Φ in our analysis
about truthfulness due to Φ’s independence of user strategy.
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lead to these two allocations respectively, then bidder i with

truthful request ri will increase his utility by declaring request

r
′
i
. That’s a contradiction with the fact that A is truthful.

Second, we assume that pi is not monotonic with submis-

sion time. That is, for some request ri with submission time

tsubi , pi(γi, tsubi) ≥ pi(γi, t
′
subi

) holds for some t′subi >
tsubi . In this case, user i may increase his utility by declaring

the same request ri at such a later submission time t′subi . That

is also a contradiction with the fact that A is truthful.

Theorem 1 provides a payment rule which serves as a neces-

sary condition to ensure truthfulness. Intuitively, a bidder may

strategically delay his submission time, or try to manipulate

the allocation decision by reporting an untruthful request r′
i
,

so a later submission time, or a “better” allocation should lead

to a higher payment.
2) How to determine the allocation: In response to the

above payment function, we resort to a general allocation rule.

Proposition 1. (N. Nisan et al. [11]) For any truthful auc-

tion mechanism A, the auction mechanism optimizes for all

bidders, i.e., the allocation decision maximizes the utility gain

for each bidder i.

Proposition 1 provides a generalized necessary condition

to ensure truthfulness. Following this route, we present our

guideline of how to determine the allocation under our auction

model: For any auction mechanism A, denote all possible

allocations results to some bidder i as a set ΓiA, then for

any bidder i we will try to maximize his utility according to

the constraint ΓiA and his request ri. More formally we have

γ∗
i = argmaxγi∈ΓiA

(ṽi(γi)− pi(γi, tsubi)) (2)

where ṽi(γi) is the valuation function learned from request ri,

and γ∗
i is the allocation finally determined for bidder i.

It is worth mentioning that ΓiA may not be equivalent

to Γi, which is the general set of all possible allocations.

On one hand, the auction mechanism A may restrict the

possible allocation results. As an extreme example, an auction

mechanism which refuses all the user requests (ΓiA = ∅) is

always truthful as it satisfies Equ. 2. On the other hand, in an

online auction the possible allocation results at some time can

also be restricted by the previous allocation decisions. More

specifically, for some bidder i, ΓiA may be restricted for the

reason that all the resources in a certain period have already

been allocated to bidders with submission time earlier than

tsubi .

B. COCA: A Truthful Online Cloud Auction Design
Motivated by the aforementioned design methodology, let’s

turn to the design of COCA in detail. We start with intro-

ducing how we construct the payment function pi for every

coming bidder i such that it is monotonic with allocation and

submission time.
1) Payment function construction: Intuitively, COCA’s pay-

ment function is committed to reflecting the current supply and

demand relationship — the resource should be charged more

in “hot” time periods (where there are a greater number of user

demands). Similar to [9], COCA exploits an auxiliary pricing

function P (x) with respect to the current utilization rate U to

help the resource provider decide the payment function.

Reserved resource utilization rate U : Note that COCA

allows a bidder to reserve resources that are not available in

the current time period. To that end, we define a variable —

the reserved resource utilization rate U (we call it utilization

rate for short henceforth). Formally, denote all the allocation

decisions γ∗
i , i = 1, 2... made by time t2 as a set Γt2 , then

we have U(t1, t2) =
∑

γ∗

i ∈Γt2
γ∗
i (t1)/Q. Obviously we have

U ∈ [0, 1]. With such a definition, U can clearly reflect the

status of how the cloud resources are allocated (reserved) at

time t1 according to the allocation decisions made by time

t2. As an example, Fig.5 shows the utilization rate within

one day (t1 ∈ [0:00,24:00]) by the time t2= 10:00. A high
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Fig. 5. The utilization rate U(t1, t2) with t2 = 10:00 and the auxiliary
pricing function P (x).

utilization rate is observed at U (11:00,10:00), which indicates

that the resources at time t1A =11:00 have almost been sold

out by 10:00. On the contrary, a low value at U (15:00,10:00)

implies that there are still a lot of unallocated resources at

time t1B =15:00 by 10:00. Specifically, we denote U(t1, tsubi)
(U(t1, t

+
subi

)) as the utilization rate at time t1 before (after)

the allocation of request ri submitted at tsubi . Accordingly we

have U(t1, t
+
subi

) − U(t1, tsubi) = γi(t1)/Q. In addition, it’s

obvious that ∀t1, t2, we have t2 ≤ t′2 ⇒ U(t1, t2) ≤ U(t1, t
′
2).

Auxiliary pricing function P (x): To help the resource

provider determine the payment function, in COCA we in-

troduce an auxiliary pricing function P (x) which is prede-

termined by the resource provider before the auction process.

P (x) explicitly presents the “marginal price” with respect to

the utilization rate. That is, for any piece of allocation γi with
{
t+γi

− t−γi
= Δl → 0

γi(t) = Δq → 0 ∀t ∈ [t−γi
, t+γi

]
(3)

The payment for such γi is calculated as:

pi(γi, tsubi) = P (U(t−γi
, tsubi)) ·Δl ·Δq. (4)

where U(t−γi
, tsubi) presents the utilization rate reserved at

t−γi
by the time user i submits his request.

In such a way, the total payment for any bidder i can be

calculated by summing up all such pieces of allocations, thus

our payment function has the following form:

pi(γi, tsubi) =

∫ t+γi

t−γi

∫ U(t,tsubi
)+γi(t)

U(t,tsubi
)

P (x) ·Qdxdt (5)

It is noted that given a nondecreasing P (x), the payment

function satisfies all the necessary conditions given in Theorem
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1 to ensure truthfulness. Here we just introduce the concept of

P (x) without discussing about how we construct it. Later in

Section IV we will show that COCA’s allocation performance

with respect to social welfare greatly depends on the choice

of such P (x).
2) Mechanism description: We now describe our design of

COCA, shown in Algorithm 1, step by step:

• Step 1: Lines 4-5 (Constructing payment function)

For any bidder i, the payment function is given as

pi(γi, tsubi) =
∫ t+γi
t−γi

∫ U(t,tsubi
)+γi(t)

U(t,tsubi
) P (x) ·Qdxdt, where

P (x) can be any nondecreasing function.

• Step 2: Lines 6-18 (Allocation rule) The allocation tries

to maximize the utility gain for each bidder i according

to his request ri, that is

γ∗
i = argmaxγi

(ṽi(γi)− pi(γi, tsubi))
s.t. ∀t, U(t, tsubi) + γi(t)/Q ≤ 1

where ṽi(γi) is the valuation function learned from the

request ri.

• Step 3: Lines 19-20 (Payment rule) Determine the

payment according to the payment function pi and the

allocation decision γ∗
i : payi = pi(γ

∗
i , tsubi).

• Step 4: Lines 21-22 (Updating the utilization rate)

Update the utilization rate U according to the allocation

decision γ∗
i .

Following the above steps, we present our detailed de-

sign of COCA in Algorithm 1. It is shown that as bidders

are categorized to the three valuation types introduced in

Section II-B, corresponding allocation rules can be applied

accordingly. Meanwhile, such a design spontaneously balances

the workload. Since according to the allocation rule, users will

be more likely to be allocated in time durations where the

current unitization rate is lower, as the payment will be lower

according to pi(γi, tsubi) (with a nondecreasing P (x)).

C. Proof of Truthfulness

Let r′i be any untruthful request derived from the truthful

request ri by making arbitrary changes on the reported valu-

ation function ṽi(γi) (changing any of its bidding parameters

or his request type). In this case we have:

Lemma 2. When COCA is applied, the utility bidder i can

get by submitting ri is no less than the utility he can get by

submitting any such r
′
i �= ri.

Proof: Denote ui(ri) and ui(r
′
i) as the utility bidder

i gets by submitting request ri and r
′
i respectively. By the

allocation rule we have

ui(ri) = maxγi
(vi(γi)− pi(γi, tsubi))

≥ vi(γ
′
i)− pi(γ

′
i, tsubi) = vi(γ

′
i)− p′i(γ

′
i, tsubi) = ui(r

′
i)
(6)

where γ′
i is the allocation i gets by submitting request r

′
i.

Thus, we always have ui(ri) ≥ ui(r
′
i), which suffices to

complete the proof.

Theorem 2. COCA is a truthful auction mechanism.

Algorithm 1 COCA Mechanism Design

Input:
1) The request sequence τ : {r1, r2, r3, ...r∞}, such that tsub1 <
tsub2 < ... < tsub∞ ;
2) A nondecreasing auxiliary pricing function P (x)

Output:
1) The allocation decision γ∗

i for each request ri;
2) Payment decision payi for each request ri

1: Initialization of the utilization rate :
2: ∀ t ∈ [0,∞], U(t, tcurrent) = 0 % tcurrent refers to the current

time.
3: for i = 1 to ∞ do
4: Constructing payment function :

5: pi(γi, tsubi) =
∫ t+γi

t
−

γi

∫ U(t,tsubi
)+γi(t)

U(t,tsubi
) P (x) ·Qdxdt

6: Allocation rule :
7: Check the type typei of ri;
8: switch typei
9: case 1 % Allocation determination for Type I bidder:

γ∗
i = argmax{γi}(b totali − pen ratei · delayi − pi(γi, tsubi))

s.t. ∀t, U(t, tsubi) + γi(t)/Q ≤ 1
∫ di+delayi
ai

γi(t) ≥ sizei

where delayi = max(t+γi
− di, 0)

% Find the allocation that maximizes i’s utility if the job is
accepted.

10: if btotali − pen ratei · delay
∗
i − pi(γ

∗
i , tsubi) < 0 then

11: set γ∗
i = ∅

% If the maximum utility of accepting the job is negative,
then reject the job.

12: end if
13: end case
14: case 2 % Allocation determination for Type II bidder:

γ∗
i = argmax{γi}(bi(total rsci)− pi(γi, tsubi))

s.t. ∀t, U(t, tsubi) + γi(t)/Q ≤ 1

where total rsci =
∫ di
ai

γi(t)dt
% Find the allocation that maximizes i’s utility.

15: end case
16: case 3 % Allocation determination for Type III bidder:

γ∗
i = argmax{γi}(bi(inv capi) · li − pi(γi, tsubi))

s.t. ∀t, U(t, tsubi) + γi(t)/Q ≤ 1
∀t1, t2 ∈ [t−γi

, t+γi
], inv capi = γi(t1) = γi(t2)

% Find the allocation that maximizes i’s utility.
17: end case
18: end switch
19: Payment rule :
20: payi = pi(γ

∗
i , tsubi)

21: Updating the utilization rate :
22: ∀t ∈ [t∗−γi

, t∗+γi
], U(t, tcurrent) = U(t, tcurrent) + γ∗

i (t)
23: end for

Proof: We adopt the notations in the above lemma, and

additionally denote r
′′
i as the request derived from changing

the submission time tsubi to t′′subi of any request r′i. First, it is

derived from Lemma 2 that γ∗
i maximizes ui(γi). Therefore,

if we denote the allocation decision for reporting ri, r
′
i and r

′′
i
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as γ∗
i , γ′

i and γ′′
i respectively, the following inequation holds:

ui(ri) = vi(γ
∗
i )− pi(γ

∗
i , tsubi) ≥ vi(γ

′′
i )− pi(γ

′′
i , tsubi).

(7)

Second, note that the true submission time is defined as the

time that a user arrives at the market, which is also the first

time he is aware of his demand. Thus, it’s not possible for

any user to report a submission time earlier than his true

submission time [8]. Since P (x) is nondecreasing, according

to Equ. (5), we have pi(γi, tsubi) ≤ pi(γi, t
′′
subi

) for any γi
and t′′subi ≥ tsubi . Hence the following inequations holds:

vi(γ
′′
i )− pi(γ

′′
i , tsubi) ≥ vi(γ

′′
i )− pi(γ

′′
i , t

′′
subi

) = ui(r
′′
i ) (8)

Equ. (7) and Equ. (8) imply that ui(ri) ≥ ui(r
′′
i ). This

result, together with Lemma 2, can demonstrate that, reporting

the true request ri always results in a better utility than

reporting any untruthful request r′
i

or r′′
i

. That is, the theorem

holds.

IV. MECHANISM DESIGN: ACHIEVING A NONTRIVIAL

COMPETITIVE RATIO ON SOCIAL WELFARE

Based on the above mechanism design of COCA, truthful-

ness can be ensured by the implementation of a nondecreasing

auxiliary pricing function P (x). Now we have the following

two problems still unsolved — (i). how to determine the

auxiliary pricing function P (x)? (ii). how can COCA achieve

a nontrivial competitive ratio on social welfare (defined in

Section II-B)? In this section we show that the answers to

these two questions are closely correlated — the competitive

ratio highly depends on the auxiliary pricing function P (x).
Moreover, we show that the competitive ratio of COCA can

be well-bounded by appropriately constructing the auxiliary

pricing function P (x).

A. Competitive Analysis for a Single Bidder Type

In this subsection, we consider the scenario where the

cloud users in a request sequence τ only belong to a single

request type. In the following analysis, we will show how the

competitive ratio of COCA on social welfare is determined by

the choice of the auxiliary pricing function P (x).
1) Competitive analysis for Type II bidders: Recall that

we apply a general assumption that the unit valuation (the

valuation for one unit resource per unit time) is within a

known interval [p, p]. Under such assumption, denote the social

welfare achieved when VCG (COCA) is applied as EV CG

(ECOCA), we have the following theorem for Type II bidders:

Theorem 3. For any request sequence τ consisting of Type

II bidders, we have ECOCA(τ) ≥ EV CG(τ)/(1 + g2), where

g2 = max{x∈[P−1(p),1]}(P (x)/
∫ x

0
P (u)du). 2

Theorem 3 indicates that any sequence composed of Type II

bidders has a competitive ratio of 1+ g2, where g2 is directly

determined by the auxiliary pricing function P (x). Thus, we

2As P is not necessarily strictly increasing, here we simply denote P−1(x)
as the maximal value y which satisfies x = P (y).

can minimize the competitive ratio by solving the following

optimization problem:

min{P (x)} g2 = max{x∈[P−1(p),1]}P (x)/
∫ x

0
P (u)du

s.t. P−1(p) = P−1(p) +
∫ p

p
(P−1(x))′dx ≤ 1

where the inequality constraint implicitly insures that the

quantity of resource allocated at any time should be less

than Q (i.e.,utilization rate less than one). To solve this, we

use a similar technique in [15], figuring out an auxiliary

pricing function P1(x) such that the competitive ratio can be

minimized.

Corollary 1. For any request sequence τ consisting of Type

II bidders, with auxiliary pricing function

P1(x) =

{
p/e(1−x)·r 1/r ≤ x ≤ 1

p 0 ≤ x < 1/r
(9)

COCA is (1 + r)-competitive where r = 1 + ln(p/p).

2) Competitive analysis for Type I bidders: Achieving a

good competitive ratio in the general case with no further

constrains or assumptions is more difficult for Type I bidders.

The reason is that a user of high unit valuation together with a

very high penalty rate may be directly rejected if he is blocked

by previous allocations. Instead, here we consider a common

but less general case in which the resources haven’t been

fully utilized: we call it the underload case if when COCA

is applied, for all t we have U(t,∞) ≤ 1 − q/Q. Note that

since the resource provider always has a very large resource

capacity Q, 1− q/Q will be very close to 1, accordingly the

underload case defined above is very likely to happen if there

are not so many bidders with high unit valuation asking for a

same time period. The following theorem shows that for Type

I bidders, we can achieve a competitive ratio comparable to

that of Type II bidders in such underload case.

Theorem 4. For any request sequence τ consisting of Type

I bidders, we have ECOCA(τ) ≥ EV CG(τ)/(1 + g1) in the

underload case, where g1 = max{x∈[P−1(p),1]}(P (min(1, x+

q/Q))/
∫ x

0
P (u)du).

Observe that g1 is quite similar to g2. Then according to

Theorem 4, in the following corollary we show that auxil-

iary function P1(x) can also be applied to achieve a good

competitive ratio for Type I bidders in the underload case.

Corollary 2. For any request sequence τ consisting of Type I

bidders, with auxiliary pricing function P1(x), COCA is (1+
e · r)-competitive in the underload case if q ≤ Q/r, where

r = 1 + ln(p/p).

3) Competitive analysis for Type III bidders: In the fol-

lowing analysis for Type III bidders, we show the relation

between the competitive ratio and the choice of P (x) in both

the general case and the underload case.

Theorem 5. For any request sequence τ consisting of Type III

bidders, ECOCA(τ) ≥ EV CG(τ)/(1+g1) holds in the under-
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load case. And for the general case, we have ECOCA(τ) ≥

EV CG(τ)/(1+g1+g3), where g3 = l·p/l·
∫ (1−q/Q)/2

0
P (u)du.

Theorem 5 indicates that the competitive ratio has a more

complex form in the general case, where both g1 and g3 have

to be considered in order to achieve a good competitive ratio.

The following corollary shows that we can obtain a non-trivial

competitive ratio for both the underload case and the general

case, by using auxiliary function P1(x) and P3(x) respectively.

Corollary 3. For any request sequence τ consisting of bidders

of Request Type III, with auxiliary pricing function P1(x),
COCA is (1 + e · r1)-competitive in the underload case if

q ≤ Q/r1, where r1 = 1+ ln(p/p). And for the general case,

with auxiliary pricing function

P3(x) =

{
(p · l/l)/e(0.5·(1+q/Q)−x)·r3 1/r3 ≤ x ≤ 1

p 0 ≤ x < 1/r3
(10)

COCA is (1 + 2e · r3)-competitive if q ≤ Q/r3, where r3 =
(1 + ln(p · l/p · l))/(0.5 · (1 + q/Q)).

B. Competitive Analysis for the Mixture Arrival Case

In Section IV-A we assume users in a request sequence to

be of a single type. Since we have three request types, what

competitive ratio can we achieve if bidders of different types

come in a mixed manner? To answer this question, we conduct

competitive analysis for the mixture arrival case as follows.

Theorem 6. For any request sequence τ consisting of bidders

of Type I, II, and III, ECOCA(τ) ≥ EV CG(τ)/(3+2 ·g1+g2)
holds in the underload case.

Theorem 6 tells us how the competitive ratio in the mixture

case is determined by the competitive ratio under the scenario

where only a single bidder type is considered. Finally, ac-

cording to Theorem 3 to Theorem 6, a non-trivial bound on

competitive ratio is given in the following proposition.

Proposition 2. For any request sequence τ consisting of

bidders of Request Type I, II and III, with auxiliary pricing

function P1(x), COCA is O(log(p/p))-competitive in the

underload case as long as q ≤ Q/ln(p/p).

The above proposition shows that the competitive ratio on

social welfare can be well-bounded by appropriately con-

structing the auxiliary function P (x), as for any fixed pricing

mechanism, the competitive ratio is at least O(p/p).

V. SIMULATION RESULTS

In this section we propose simple simulations to evaluate

COCA under illustrative bid distributions and arrival models.

We focus on examining the allocation performance of COCA

on social welfare compared with the off-line VCG mechanism.

We haven’t compared COCA with existing online auction

mechanisms because no prior solutions have achieved the

generalized truthfulness in our online cloud auction setting.

We consider a cloud resource provider of a fixed capacity

Q = 104 (i.e., the provider is able to host up to 104 VMs

TABLE I
IMPLEMENTATION CONFIGURATION

tsubi ai di q β
[1, 500] [tsubi ,min(tsubi + 100, 500)] [ai, 500] 100 p/p

Type li sizei bi(·)
I - [103, 105] b totali = ρi · sizei; ρi ∈ [1, β]
II - - bi(total rsci) = ρi · total rsci
III [5, 200] - bi(inv capi) = ρi · inv capi · li

simultaneously), and here a simple simulation model is used:

the bidding parameters are assumed to be uniformly distributed

(detailed settings refer to Table I), and the (marginal) unit

valuation is a fixed number ρ ∈ [1, β], where β = p/p, which

refers to the ratio between the highest and lowest unit valuation

(mentioned in the assumptions in Section II). Moreover, we

assume a penalty rate of ∞ for Type I bidders. We run each

online auction for 500 time units, and the number of requests

generated in a bidding sequence is modeled by a variable

uniformly distributed from 100 to 2,000. Each of the following

simulations has been carried out for 3,000 runs.

Fig. 6 shows the allocation performance of COCA on social

welfare compared with the optimal solution (VCG mechanism)

over 3,000 runs. We first run the simulations for each of the

three request types respectively. As is discussed in Section IV,

we use auxiliary pricing function P1(x) for Type I and Type

II users. It can be observed in Fig. 6(a) and Fig. 6(b) that

the worst performance in 3,000 runs is always better than

the performance lower bound (1 over the competitive ratio)

calculated in Section IV-C, and the average performance is

always over 50% compared with the optimal allocation. In Fig.

6(c), we show the allocation performance for Type III users

when P1 and P3 are used respectively. It can be observed that

P1 outperforms P3 in both average performance and worst

performance. Briefly speaking, the reason is that there exist

some extreme “bad” cases for Request Type III when we

analyze the performance lower bound shown in Fig. 6(c). To

achieve a better lower bound, P3 has to be constructed in

such a way where the allocation performance in most cases

becomes less satisfactory. However the possibility that the

extreme case appears is too small, so it hardly happens in

3,000 runs under our simulation model. In Fig. 6(d), we plot

the performance of COCA for the mixture arrival case, where

bidders of different types come in a mixed manner. It is

observed that the performance is very similar to the single-

arrival case shown above.

Overall, from the simulation results we can conclude that:

first, it is clearly observed that the ratios of COCA over VCG

in terms of social welfare are quite close to 1 in all cases,

indicating that COCA is comparable to the off-line VCG

mechanism (i.e., the optimal solution) under our simulation

model; second, with β = p/p increases exponentially, the

worst performance of COCA (in 3,000 runs) decreases very

slowly in all cases. Such results are in good agreement with

the theoretical analysis in Section IV, that COCA achieves a

competitive ratio of O(log(p/p)) rather than O(p/p).
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(a) Type I Bidders (b) Type II Bidders (c) Type III Bidders (d) The mixture arrival case

Fig. 6. Allocation performance of COCA compared with VCG mechanism (with 5th and 95th percentiles).

VI. CONCLUSION

This paper conducts the first work on truthful online auction

design in cloud computing where users with heterogeneous

demands could come and leave on the fly. First, for cloud

consumers with heterogeneous demands we propose a novel

bidding language, by which user-specific demands can be

revealed in a concise and regulated request form. Second we

propose the first truthful online cloud auction mechanism, CO-

CA, which is composed of the design of a payment function,

an allocation rule and a payment rule. We also implement

competitive analysis on COCA in terms of social welfare,

which shows that the worst-case performance of COCA can

be well-bounded.
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