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Abstract. In this paper, we propose and analyze several methods to estimate a rigid transformation from a set of

3­D matched points or matched frames, which are important features in geometric algorithms. We also develop

tools to predict and verify the accuracy of these estimations. The theoretical contributions are: an intrinsic model

of noise for transformations based on composition rather than addition; a unified formalism for the estimation

of both the rigid transformation and its covariance matrix for points or frames correspondences, and a statistical

validation method to verify the error estimation, which applies even when no “ground truth” is available. We

analyze and demonstrate on synthetic data that our scheme is well behaved. The practical contribution of the paper

is the validation of our transformation estimation method in the case of 3­D medical images, which shows that an

accuracy of the registration far below the size of a voxel can be achieved, and in the case of protein substructure

matching, where frame features drastically improve both selectivity and complexity.

1. Introduction

Many algorithms in Computer Vision concern match­

ing tasks, whose aim is to find the correspondence

between two representations of an object. Matching

tasks are closely related, but not equivalent, to regis­

tration processes, which involve the evaluation of a ge­

ometric transformation. The main problem of match­

ing methods is generally to reduce the complexity of

associating features, such as in (Ayache & Faugeras,

1986) or (Huttenlocher & Ullman, 1987) for Align­

ment, (Grimson, 1992) for Interpretation Trees, (Lam­

dan & Wolfson, 1988; Wolfson, 1990) or (Rigoutsos

& Hummel, 1993) for Geometric Hashing, (Besl &

McKay, 1992) or (Zhang, 1994) for Iterative Closest

Point (ICP) methods.

In the following, we do not discuss matching meth­

ods per se, but the estimation of the 3­D motion. The

traditional approach is to apply a least squares method

using, for example, the singular value decomposition

in (Arun et al., 1987) and (Umeyama, 1991), or the

quaternion representation in (Horn, 1987). Some au­

thors, such as (Zhuang & Huang, 1994), concentrate

on the robustness of that estimation.

Uncertainty handling is a central topic in several

works, like (Durrant­Whyte, 1988a; Durrant­Whyte,

1988b) or (Ayache, 1991; Zhang & Faugeras, 1992).

There are fewer studies, however, dealing with the

precision of the estimated motion, which is our main

concern here. Early experimental works can be found

in (Fang & Huang, 1984), (Snyder, 1989), or (Haralick

et al., 1989). A theoretical evaluation of the errors

on the rotation estimation is introduced in (Kanatani,

1993) and (Kanatani, 1994). The present paper is

the continuation of the work presented in (Pennec &

Thirion, 1995).

As previous studies deal principally with point­to­

point correspondences, one of our contributions is a

method which applies also to frame­to­frame corre­

spondences (a frame is a local coordinate system, i.e.

a point with a trihedron). This raises some interesting

problems in error modeling: a common assumption

is that errors in geometric features can be modeled

with an additive error on the parameters of the feature

representation. We demonstrate that some important

invariance properties are not conserved with this type

of noise and we strongly believe that the assumption

of additivity should be replaced by the composition

with an error motion. This idea leads us to the devel­
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204 Pennec and Thirion

opment of a formalism which unifies the handling of

the error for the application, composition and estima­

tion of rigid motions, in the case of point­to­point or

frame­to­frame correspondences.

Section 2 investigates rigid motions and the han­

dling of uncertainty on geometric features, from the

probabilistic point of view. Section 3 describes the

statistical point of view, in particular the noise model

which should be used. We present a method to esti­

mate a rigid motion and its covariance matrix from a

set of matched points or a set of matched frames. In a

similar framework, we are able to estimate the fusion

of several rigid motions. Those estimates are used to

evaluate the noise process on the features used, and

sort matched primitives (points or frames) in order to

reject outliers, that is, matched primitives which are

“obviously” incompatible with the estimated motion.

Section 4 describes our robust motion estimation al­

gorithm based on the theoretical results of section 2.

It can be placed after, or better, embedded within your

favorite matching algorithm. Essentially, this algo­

rithm is the iteration of three processes: motion esti­

mation, noise process estimation and outliers rejection.

It gives, from an initial set of matched primitives with

or without a priori knowledge of their covariance, a

final rigid motion and its covariance matrix, an estima­

tion of the noise process on features, and the sorted set

of matched primitives compatible with that motion.

Another contribution is presented in section 5, where

we describe an a posteriori method to validate statis­

tically our motion estimation algorithm. This statisti­

cal validation applies even when no “ground truth” is

available.

Finally, we present in section 6 experimental results

showing the performance of our registration algorithm

and its statistical validation. Those results are given for

synthetic data, and also for real data, namely 3D medi­

cal images, for which the evaluation of the precision of

the registration is vital. Another application example

is presented with 3D protein substructure matching.

2. Probabilistic features and rigid motions

2.1. Representation of rigid motion and frames

Let B = {o, i, j,k} be the canonical right­handed or­

thonormal coordinate system of Euclidean space R
3

(we have thus o = (0, 0, 0)⊤ and [i, j,k] = Id). Let

F = {t, i′, j′,k′} be another right­handed orthonor­

mal coordinate system (i.e. a frame), which coordi­

nates are expressed in B. The rigid motion from B to

F can be written in homogeneous coordinates

M =

[
R t

0 1

]
with R = [i′, j′,k′]

Let R be a rotation of angle θ around the unit axis

n. Using the rotation vector r = θn (see (Ayache,

1991) and appendix A.1), we can also represent the

rigid motion M by the six dimensional vector f⊤ =
(r⊤, t⊤).

We note that f represents both the rigid motion M

and the frame F , with respect to the canonical co­

ordinate system B. Other representations could have

been chosen for the rotation, e.g. quaternions, Euler’s

angles. . . but f would still represent the same rigid mo­

tion or feature frame. For convenient notation within

the text, we write f = (r, t) and call it indifferently a

frame or a rigid motion when there is no ambiguity.

2.2. Utility of frames in geometric computations

The use of frame features instead of points is motivated

by three main reasons. Firstly, frames are natural fea­

tures emerging from some geometric problems. For

instance, extremal points (defined in (Thirion & Gour­

don, 1995)) are points on an iso­surface optimizing a

differential geometry criterion. Since they lie on a sur­

face, they are provided with the two principal curvature

directions t1, t2 and the surface normal n (see Fig. 1),

which forms a frame.

curvature

direction

Maximal

principal

Normal

Crest line
n

t2

k1

t1

Fig. 1. Frame features naturally arise from geometric problems.

Top: (extremal) points on iso surfaces. Bottom: geometric descrip­

tion of an amino acid.
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In protein substructure matching, an amino acid lo­

cation is characterized by the position of 3 atoms in a

specific geometry (see figure 1). Since the constraints

are identical for every amino acid, the shape of the

triangle is not discriminant and the only geometric de­

scriptor of an amino acid is its pose, which is again

described by a frame. For computer vision applica­

tions, we could also think to model each vertex of a

polyhedral scene by a frame.

The second reason is that more information is

available, thus higher selectivity and/or accuracy (for

complexity reasons, however, the extra information

should be statistically relevant in order to be useful).

The introduction of normals in (Feldmar et al., 1994)

allows, for instance, an easy search for seed matches

by the use of bitangents, and an improvement of the

accuracy in the pose estimation. In the same way,

using frame features instead of points allows one to

exploit the maximum information about the features

(see section 6), and can lead to a drastic reduction

of the problem complexity as in (Pennec & Ayache,

1994). Last but not least, frames and rigid motions are

equivalent objects from a mathematical viewpoint, and

knowing how to handle uncertainty on rigid motions is

also necessary.

2.3. Operations on frames and motions

Rigid motions can be composed, inverted and applied

to points: the composition (operator ◦), inverse ((−1))

and apply (⋆) operations on rotation vectors (see ap­

pendix A.1), can be easily extended to motions in the

following way.

• Application of f = (r, t) to point x:

y = f ⋆ x = r ⋆ x + t

• Composition of f1 = (r1, t1) by f2 = (r2, t2):

f = f2 ◦ f1 =

∣∣∣∣
r2 ◦ r1

r2 ⋆ t1 + t2

• Inverse of f = (r, t):

f (−1) =

∣∣∣∣
r(−1)

r(−1) ⋆ (−t)

Due to the equivalence of frames and motions, the

application of a rigid motion f to a frame fm is simply

the composition fs = f ◦ fm. We note that in this

formula, fm and fs have the same interpretation (frame

or motion), but f is always a motion.

2.4. Probabilistic features

Estimated or measured values of geometric features are

corrupted by measurement errors. Let x be the exact

representation of such a feature and x̂ the measured

one. From a probabilistic point of view, x̂ is the obser­

vation or realization of a n­D random vector character­

ized by its probability density function (pdf) ρx. For

computational reasons, however, a common assump­

tion is to retain only the first and second order centered

moments of the pdf, i.e. the expectation vector and

covariance matrix of the representation considered as

a random vector. This approach was mainly developed

in robotics (Smith & Cheeseman, 1987; Smith et al.,

1987; Durrant­Whyte, 1988a; Durrant­Whyte, 1988b)

with some applications in computer vision (Zhang &

Faugeras, 1992). We note that no assumption is made

about the physical noise process. The expectation and

the covariance matrix of an “uncertain feature” are de­

fined by

x̄ = E(x̂) =

∫
y.ρx(y).dy

Σxx = E
(
(x̂ − x̄)(x̂ − x̄)⊤

)

The probabilistic feature x̂ is then treated as the

couple (x̄,Σxx). A common hypothesis is that the

noise is centered, i.e. E(x̂) = x̄ = x. In this case,

a probabilistic feature is the couple (x,Σxx) and a

deterministic feature has a null covariance matrix.

It is now interesting to see how to generalize our

group operations on probabilistic features. For that

purpose, we use the classical first order approximation

of Jacobians.

Propagation through an explicit function Let x =
(x̄,Σxx) be an m­D random vector and h a p­

dimensional C1 function acting on x. Then the p­D

random vector z = h(x) is determined, up to the first

order, by z = (z̄,Σzz) where

{
z̄ = h(x̄)

Σzz = Jh.Σxx.J⊤
h

(1)

with

Jh =
∂h(x)

∂x
=




∂h1

∂x1
. . . ∂h1

∂xm

...
. . .

...
∂hp

∂x1
. . .

∂hp

∂xm



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The Jacobian matrix Jh generally depends on the point

xwhere it is computed, and we denote by Jh|x its value

whenever the application point needs to be specified.

For a function h(x,y) of two independent parameters,

the mean is simply z̄ = h(x̄, ȳ) and the covariance

matrix

Σzz = Jhx
ΣxxJ

⊤
hx

+ Jhy
ΣyyJ

⊤
hy

with

Jhx
=

∂h(x,y)

∂x
and Jhy

=
∂h(x,y)

∂y

The composition of functions is often used to sim­

plify the calculus. Let h1, h2 and h be three multi­

dimensional functions such as h(x) = (h1 ◦ h2)(x) =
h1(h2(x)). The Jacobian of h is then

Jh

∣∣∣∣
x

= Jh1

∣∣∣∣
h2(x)

. Jh2

∣∣∣∣
x

Propagation through an implicit function Let x =
(x̄,Σxx) be a m­D random vector and Φ : R

m ×
R

p → R
p a C1 function. We want to investigate the

p­dimensional random vector y implicitly defined by

Φ(x,y) = 0. From the implicit function theorem,

y = ϕ(x) exists around a given point (x0,y0) such

as Φ(x0,y0) = 0 if and only if
∂Φ

∂y
can be inverted at

this point and we have in this case

∂y

∂x
=

∂ϕ

∂x
= −

(
∂Φ

∂y

)−1
∂Φ

∂x

Using a first order Taylor series expansion, ȳ is implic­

itly defined by Φ(x̄, ȳ) = 0 and the covariance matrix

is given by

Σyy =

(
∂Φ

∂y

)−1
∂Φ

∂x
Σxx

∂Φ

∂x

⊤ (
∂Φ

∂y

)−⊤

(2)

Minimizing a criterion Let C be a function of class

C2 from R
m × R

p to R
+ (i.e. a criterion). We now

define the p­dimensional random vector ŷ as the argu­

ment for which the criterion is minimum for a given x:

ŷ = ArgMiny (C(x,y))

A necessary condition to obtain a minimum is

Φ(x, ŷ) =
∂C

∂y

⊤
∣∣∣∣∣
(x,ŷ)

= 0

and

H =
∂2C

∂y2

∣∣∣∣
(x,ŷ)

positive definite

We are then back to the case of an implicit function

and since the Hessian matrix H is symmetric, the co­

variance matrix of ŷ at the minimum is

Σŷŷ = H−1 ∂̂Φ

∂x
Σxx

∂̂Φ

∂x

⊤

H−1 (3)

This propagation scheme will be used in section 2 for

the rigid motion minimizing the least squares criteria.

2.5. Propagation of uncertainty for rigid motions

To use the above framework on frames and rigid mo­

tions, we need to determine the Jacobians of the three

basic operations: composition, inversion of frames,

and application of a motion to a point. Appendix A.1

describes the tedious computations related to rotations,

in particular the Jacobian of the composition of rotation

vectors.

Application of a frame (f ,Σff ) to a point (x,Σxx)
Let J⋆ be the Jacobian of y = f ⋆ x with respect to

f = (r, t) and R the rotation matrix associated to the

rotation vector r.

J⋆ = ∂(f⋆x)
∂f

= ∂(r⋆x+t)
∂(r,t) =

[
∂(r⋆x)

∂r
; I3

]

∂(f⋆x)
∂x

= ∂(r⋆x+t)
∂x

= R

The computation of the Jacobian
∂(r⋆x)

∂r
is detailed

in appendix A.1.4. The covariance matrix of y is then

Σyy = J⋆ Σff J⊤
⋆ + R Σxx R⊤ (4)

Composition of frame (f1,Σ11) by (f2,Σ22) Let J1

(resp. J2) be the Jacobian of f = f2 ◦ f1 with respect

to f1 = (r1, t1) (resp. f2 = (r2, t2)). Then

J1 =
∂(f2 ◦ f1)

∂f1
=

[
∂(r2◦r1)

∂r1
0

0 R2

]

J2 =
∂(f2 ◦ f1)

∂f2
=

[
∂(r2◦r1)

∂r2
0

∂(r2⋆t1)
∂r2

I3

]
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The computation of the Jacobian of r1 ◦ r2 with re­

spect to the rotation vectors r1 and r2 are detailed in

appendix A.1.4. The covariance on f is simply given

by

Σff = J1 Σ11 J⊤
1 + J2 Σ22 J⊤

2 (5)

Inversion of frame (f ,Σff ) Let JI be the Jacobian

of f (−1) = (r(−1) , r(−1) ⋆ (−t)) with respect to f =
(r, t). As r(−1) = −r, we have:

JI = −

[
I3 0

∂(r(−1)⋆t)
∂r(−1) R⊤

]

using once again the Jacobian of the application of

a rotation vector to a point (appendix A.1.4). The

covariance of f (−1) is then

Σf (−1)f (−1) = JI Σff J⊤
I (6)

We have now completed the computations needs to

propagate the covariance matrices through the three

basic operations on frames and points.

2.6. The noise model

The problem is now slightly different. In the previ­

ous sections, we considered that the pdf (or the mean

value and the covariance matrix) of the probabilistic

geometric features were known. In the real world, this

can be a very strong assumption, in particular when

we begin with simple measurements without any idea

of their noise. In such a case, a natural assumption

is to say that all measurements are corrupted by the

same noise process. This is the notion of Identically

Independently Distributed (IID) measurements (An­

derson, 1958). For points, the common assumption is

to impose the same covariance matrix on all point mea­

surements, which corresponds effectively to the same

additive noise. Regarding frames, we have to be more

careful.

Some paradoxes in standard geometric probabilities

(see for instance the Bertrand paradox in (Kendall &

Moran, 1963)) can be avoided by defining the uniform

pdf over a differential manifold (i.e. the set of geomet­

ric features of a given type) as the pdf which remains

invariant by the action of any transformation of a given

(Lie) group. The transformations considered can be,

for instance, the rigid motions: if we have a uniform

distribution over our manifold, this distribution has to

remain uniform when we apply the same rigid motion

to all the features (for other examples, see (Pennec &

Ayache, 1996)).

For our purpose, we have to impose a similar invari­

ance property on the noise process. Let f̂1 and f̂2 be

measurements of two frames f1 and f2, corrupted by

the same noise process. Then f̂ ′1 = f ◦ f̂1 and f̂ ′2 = f ◦ f̂2
are measurements of f ′1 = f ◦ f1 and f ′2 = f ◦ f2 and

have to be corrupted by the same noise process (pos­

sibly different from the first one). This simply means

that two identical (or comparable) distributions remain

identical by a change of the reference frame, which

seems reasonable. A related assumption is usually re­

quired for criterions: if y minimizes C(x,Y), it is

desirable to have a criterion invariant by a given group

of transformation (i.e. C(f ⋆ x, f ⋆ Y) = C(x,Y)
for any transformation f ) in order to obtain the trans­

formed result f ⋆y minimizing the criterion C(f ⋆x,Y)
on transformed data.

Why additive noise is not adapted Let f̂1 and f̂2 be

measurements of the frames f1 and f2, corrupted (in­

dependently) by the same noise process of covariance

Σ. If the two noises are centered, this means that

f̂i = fi + δf i with E(δf i) = 0 and

E
(
δf i. δf⊤i

)
= Σ

If we change our view­point, i.e. apply a global

motion f to exact and measured values, we obtain f̂ ′i =

f ◦ f̂i = f ′i + δf ′i with E(δf ′i) = 0. The first order

approximation of Jacobians gives us the propagation

of covariance matrices:

E
(
δf ′i. δf ′⊤i

)
= Ji.Σ.J⊤

i

with

Ji =
∂(f ◦ fi)

∂fi

In general Ji depends on f and fi, therefore J1 6= J2:

the covariance matrix Σ′
11 of f̂ ′1 is thus different from

the covariance matrix Σ′
22 of f̂ ′2. The two measure­

ments are no longer corrupted by the same noise pro­

cess. As we can see, using an additive noise hypothesis

can lead to paradoxes since the result of the computa­

tions depends upon the chosen reference frame.

A simple example with rotation vectors We consider

an example with rotations only, represented by their ro­
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tation vectors. Let r1 = (π
2 , 0, 0)⊤ and r2 = (0, 0, 0)⊤

be two rotation vectors with the same covariance:

Σ11 = Σ22 = Σ = σ2




0 0 0
0 1 0
0 0 1




If we apply a global clockwise rotation of π/2
around the x axis, represented by the rotation vec­

tor r = (−π
2 , 0, 0)⊤, we obtain the new rotation vec­

tors r′1 = (0, 0, 0)⊤ and r′2 = (−π
2 , 0, 0)⊤. Com­

puting the Jacobians and propagating covariances, we

find that Σ′
11 = 8

π2 Σ, which is significantly different

from Σ′
22 = π2

8 Σ (the ratio is approximately 1.5: see

Fig. 2).

It is normal that covariance matrices change accord­

ing to the motion, but since they change differently at

different positions, we cannot define identical distribu­

tions as additive noises (with different means) sharing

the same covariance matrix: if these matrices are iden­

tical in one coordinate system, they are not in another

one. Since the IID hypothesis is used in most usual

statistical methods (and will be used in the following),

it is important to define it well.

A compositive noise model In order to satisfy the

invariance constraint, we propose to model the mea­

surement process by the composition of the exact value

with a noise (motion): let f be the exact representation

of a frame and f̂ the measured one, then f̂ = f ◦e where

e is a small rigid motion around the identity. In this

process, f is a deterministic frame, whereas e and f̂ are

probabilistic.

With this noise model, the invariance property is

automatically verified: if g is the global motion to

be applied, f̂ ′ = g ◦ f̂ = (g ◦ f)◦ e = f ′ ◦ e. We

note that this compositive noise model corresponds to

the left composition f ◦ e by the exact frame. We

could not have used the right composition e ◦ f since

in this case, the transformation of f̌ = e ◦ f by g gives

f̌ ′ = g◦e◦f 6= e◦f ′. We can then characterize a noise

process on frames by a “random frame” e measuring

the identity (i.e. the canonical frame). A centered noise

corresponds to E(e) = Id, and is entirely defined by

its covariance matrix: e = ( Id,Σ). From now on,

the noise on frames is a compositive noise model, and

we use the probabilistic measurement e of identity to

represent it.

We note that this is also an additive noise in the

local frame, or more specially in the tangent space of

the manifold at the expected point.

Validity of the additive noise It is interesting to note

that, for 2D rotations (with angular representation) or

for translations (i.e. points), the composition corre­

sponds to the addition. In these cases, compositive

and additive noise models are identical, which have

provided a wrong intuition for more complex cases.

More generally, the additive noise model corresponds

to the compositive one as soon as the action of the

transformation group on features (or on itself) is lin­

ear in the considered representation, in which case the

tangent space corresponds to the space itself. There

exists in this case a matrix F for each motion f such

that f ⋆ x = F.x (or f ◦ g = F.g) and the Jacobian

∂(f ⋆ x)/∂x = F is thus independent of the position

x of the feature.

The relevance of the compositive noise model to real

cases will be shown in section 7 with the analysis of

the estimated noise on extremal points.

3. Uncertainty and frames: the statistical point of

view

In the first part, we focus on how to model a priori

information about uncertainty, and how to propagate it

through the usual geometric computations. However,

rx rz

ry

r1

r2 r’1

r’2

Rotation of vector r

rx
rz

ry

Σ1 = Σ

Σ2 = Σ Σ′
1

Σ′
2

Fig. 2. The same covariance matrix on two rotation vectors in one reference frame generally leads to different covariance matrices in another

reference frame. The circle is the intersection of the definition domain of the rotation vector with the (ry, rz) plane.
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in real cases, we often need to estimate this information

a posteriori from data. This is the goal of statistics.

The first section is devoted to the estimation of a

rigid motion between two sets of matched features,

while considering that the noise process on features

is known. The following question is thus: how can

we estimate this noise process on features? The last

section of this part deals with outliers detection.

3.1. Estimation of a rigid motion

In this section, we address two main problems of es­

timation. The first is the estimation of a rigid motion

(f ,Σff ) from two sets of matched geometric features,

namely points or frames. This is the registration prob­

lem. The second is the fusion of several measurements

(fi,Σfifi) of the same motion in order to get a more

accurate estimation. This is a data fusion problem.

Many papers on pose estimation focus on closed­

formed solutions in the case of point­to­point corre­

spondences (see the references in the introduction and

especially (Kanatani, 1993)), but fewer deal with the

uncertainty estimation of the pose found (see however

(Csurka et al., 1995)). Moreover, we also want to

estimate the rigid motion from frame­to­frame corre­

spondences, and no classical method easily applies to

such a problem.

However, a unified framework for estimation with

uncertainty has been developed using the Extended

Kalman Filter (EKF) in (Ayache, 1991). We recall

in section 2 the basic principles of this algorithm and

introduce the notations and framework for motion es­

timation. In the following sections, we apply it to rigid

motion estimation from point matches, from frames

correspondences, and from a set of measurements of

this motion. A special section (2) will be devoted to the

computation of the uncertainty of the motion estimated

by a standard least­squares on points.

Kalman Filtering Assume we have a set of measure­

ments (or data) {χi} and we search a state variable g

such that, for each exact data χi, we have the vectorial

relation

zi(χi,g) = 0

This is called the measurement equation. In our case,

the state g is the sought rigid motion and the data are

couples of matched points or frames, or simple mea­

surements of this rigid motion (section 2). Since we

are working with noisy data, we only know the mea­

sured values of data χ̂i = χi + ωi (the observation).

The additive noises ωi are assumed to be independent,

white and centered with a known covariance Ωi:

E(ωi) = 0 E(ωi. ω
⊤
i ) = Ωi

and E(ωi. ω
⊤
j ) = 0 for i 6= j

The measurement equations are generally not linear,

but assuming we know a good estimate ĝ of the state

g, we can linearize them around the estimates and

solve the problem with standard linear optimization

techniques, namely here Kalman Filtering. This is

the basis of the Extended Kalman Filtering technique.

Since Kalman Filtering is a recursive filter, we assume

that we have at each step i an estimate ĝi−1 of the

state vector. We can then linearize the measurement

equation around (χ̂i, ĝi−1) with a first order Taylor

series expansion. Taking the following notations:

ẑi = zi(χ̂i, ĝi−1)

Mi =
∂̂zi

∂g
=

∂zi

∂g

∣∣∣∣
(χ̂i,ĝi−1)

∂̂zi

∂χ
=

∂zi

∂χ

∣∣∣∣
(χ̂i,ĝi−1)

the Taylor expansion of the measurement equation

zi(χi,g) = 0 gives

ẑi +
∂̂zi

∂g
.(g − ĝi−1) +

∂̂zi

∂χ
.(χi − χ̂i) ≃ 0

This equation can be re­written in the linear form

Mi . g = γi + νi where γi is the linearized

measurement γi = Mi.ĝi−1 − ẑi and νi is a centered

noise

νi =
∂̂zi

∂χ
.(χ̂i − χi)

of covariance Σii:

Σii =

(
∂̂zi

∂χ

)
Ωi

(
∂̂zi

∂χ

)⊤
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Assuming that an initial estimate (ĝ0 , Ĝ0) of the

state is given, a reasonable (weighted) least­squares

criterion to minimize can be constructed on the basis

of Mahalanobis distances:

C =
1

2
(ĝ0 − g)⊤Ĝ−1

0 (ĝ0 − g)

+
1

2

∑

i

(γi − Mi.g)⊤Σ
(−1)
ii (γi − Mi.g)

The recursive solution for the minimization of this cri­

teria is called the Kalman Filter ((Jazwinsky, 1970;

Ayache, 1991)). At each step, the input is an estimate

(ĝi−1, Ĝi−1) of the state and the linearized measure­

ment (γi,Σii), and the output is the updated estimation

of the state (ĝi, Ĝi). We just recall here the equations

of the filter:

Ki = Ĝi−1.M
⊤
i .(Σii + Mi.Ĝi−1.M

⊤
i )−1

ĝi = ĝi−1 − Ki.ẑi

Ĝi = ( Id − Ki.Mi).Ĝi−1

(7)

For linear transformation of Gaussian variables, the

Kalman Filter produces the optimal estimate of the

state (in the sense of minimum error variance), which

turns out to be also the maximum likelihood estimate.

Moreover, it preserves the Gaussian nature of the ran­

dom variables and thus there is no loss of information

in keeping only the mean value and covariance matrix.

If the Gaussian assumption is removed, the Filter

remains the best linear estimator, but is no longer the

best one amongst all non­linear estimators. In the gen­

eral case of non­linear transformations with any type

of noise (which is our case in this article), the Extended

Kalman Filter only represent a sub­optimal non linear

estimator, but appears to provide accurate estimates in

practice. However, some care has to be taken about the

initial state and the order of the measurements.

Estimation from matched points Assume that we

have two sets of matched points xi and yi, one trans­

formed into the other with a rigid motion f such that

yi = f ⋆ xi. During the measurement process, these

points are corrupted by additive noise: we only mea­

sure x̂i = xi + δxi and ŷi = yi + δyi and we want

to estimate the motion f and the covariance Σff of this

estimation. We assume that the errors δxi and δyi are

independent with covariances Σxixi
and Σyiyi

.

The error vector is in this case the classical difference

in position zi = ŷi − f ⋆ x̂i (and the measurement

equation is zi = 0). The sought state is a rigid motion

g = (r, t), and the observation vector is (χ̂i,Ωi):

χ̂i =

∣∣∣∣
x̂i

ŷi
Ωi =

[
Σxixi

0

0 Σyiyi

]

If R is the rotation matrix corresponding to the ro­

tation vector r of the motion g, we have ∂zi/∂χi =
[−R; Id] and hence

Σzizi
= Σyiyi

+ RΣxixi
R⊤ (8)

The EKF process is then the following.

• Initialize the state with Identity or a least squares

estimate with a large covariance matrix (100 to

1000 times the least­squares covariance, for ex­

ample), in order to minimize the influence of the

initial state on both the estimation and its uncer­

tainty.
• For each couple of matched points (x̂i, ŷi):

Compute ĥi = ŷi − ĝi−1 ⋆ x̂i

Compute Mi = ∂h
∂g

= −∂(g⋆x)
∂g

estimated at

(x̂i, ĝi−1)
ComputeΣzizi using Eq.(8) with rotation Ri−1.

Update (ĝi−1, Ĝi−1) to (ĝi, Ĝi) using Eq.(7).

Least squares In the isotropic case (more specially

when Σxixi
= Σyiyi

= σ2 Id), the covariance on

the error vector becomes Σzizi
= 2σ2 Id, and the

criterion reduces to a simple least squares

C =
1

2

∑

i

‖ŷi − f ⋆ x̂i‖
2 =

1

2

∑

i

z⊤i .zi

which can be solved exactly by several techniques.

One consists in computing the barycenters of the two

sets and searching for the rotation using quaternions

(see (Horn, 1987)).

The covariance matrix can be determined using

equation (3) with some important simplifications: as­

suming that χ = (x1, . . .xn,y1, . . .yn)⊤ is the vec­

tor of all observations and f the state, the associated

implicit function characterizing an optimum is

Φ(χ, f) =
∂C

∂f

⊤

=
∑

i

(
∂zi

∂f

)⊤

zi = 0

The values of the errors zi being often small around

the minimum, we can neglect in the derivatives of Φ
the terms of the form z.z′′ with respect to the terms of
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the form z′.z′ (see (Gill et al., 1981, section 4.7)). We

obtain thus

H =
∂Φ

∂f
≃

∑

i

(
∂zi

∂f

)⊤ (
∂zi

∂f

)

∂Φ

∂χ
≃

∑

i

(
∂zi

∂f

)⊤ (
∂zi

∂χ

)

The covariance matrix of the state is then given by
equation 3:

Σff =H
−1

�
∑

i

�
∂zi

∂f

�
⊤
�

∂zi

∂�

�
Σ��

�
∂zi

∂�

�
⊤
�

∂zi

∂f

��

H
−1

= H
−1

�
∑

i

�
∂zi

∂f

�
⊤

Σzizi

�
∂zi

∂f

��

H
−1

In our case, the error vectors zi are independent and

have identical diagonal covariances: zi = (0, 2σ2 Id)
(it is under this assumption that the least­squares es­

timator is optimal). The central term in the previous

equation collapse then into 2σ2H and the covariance

of the motion can then be simplified in

Σ
f̂ f̂

= 2σ2H−1HH−1 = 2σ2H−1 (9)

with

H =
∑

i

(
∂(f̂ ⋆ xi)

∂ f̂

)⊤ (
∂(f̂ ⋆ xi)

∂ f̂

)

Estimation from matched frames We now face the

following problem. Assume we have two sets of

matched frames {fmi
} and {fsi

} (m for model and s
for scene), transformed one into another with a global

rigid motion f such that fsi
= f ◦ fmi

. We only have

access to their measured values f̂si
= fsi

◦ esi
and

f̂mi
= fmi

◦ emi
and we want to estimate the rigid

motion f and the uncertainty Σff of that estimate. We

assume moreover that the compositive noises are in­

dependent and centered: emi
= ( Id,Σmimi

) and

esi
= ( Id,Σsisi

).
Combining the two measurement equations with the

hypothesis and isolating the error term, we get our error

vector:

zi = f̂ (−1)
si

◦ f ◦ f̂mi
= e(−1)

si
◦ emi

(10)

Here, we are using a particular aspect of our repre­

sentation for frames: identity corresponds to a null

translation and a null rotation vector. This allows us to

solve this estimation problem using the EKF.

An initial estimate is easily obtained with the first

couple of frames: ĝ0 = f̂s0 ◦ f̂
(−1)
m0 . From the obser­

vation vector:

χ̂ =

∣∣∣∣∣
f̂m

f̂
(−1)
s

Ω =

[
Σfmfm 0

0 Σ
f
(−1)
s f

(−1)
s

]

and the estimations Ĵ1, Ĵ2, Ĵ3 and Ĵ4 at (f̂mi
, f̂si

, ĝi−1)
of the following Jacobians:

J1 = ∂(g◦fm)
∂g

J2 =
∂(f (−1)

s ◦(g◦fm))
∂f

(−1)
s

J3 =
∂(f (−1)

s ◦(g◦fm))
∂(g◦fm) J4 =

∂((f (−1)
s ◦g)◦fm))

∂fm

we can simplify the Jacobians of the error vector:

∂z

∂g
= J3.J1

∂z

∂χ
= [J4 ; J2]

and its covariance matrix is given by

Σzz = Ĵ4Σfmfm Ĵ⊤
4 + Ĵ2Σf

(−1)
s f

(−1)
s

Ĵ⊤
2 (11)

The EKF estimation can thus be summarized as:

• Initialize the state with

(ĝ0 , Ĝ0) = (f̂s0 ◦ f̂ (−1)
m0

, Σ
(fs0◦f

(−1)
m0

)(fs0◦f
(−1)
m0

)
)

• For each couple of matched frames (f̂mi
, f̂si

):

Compute ẑi = f̂
(−1)
si ◦ ĝi−1 ◦ f̂mi

and the Ja­

cobians Ĵ1, Ĵ2, Ĵ3, Ĵ4.

Compute Mi = Ĵ3.Ĵ1 and Σzizi using Eq.(11).

Update (ĝi−1, Ĝi−1) to (ĝi, Ĝi) using

Eqs.(7).

Fusion of rigid motions or frames Consider now a

set {f̂i} of measurements of the same frame f such

as f̂i = f ◦ ei. The goal is to estimate the frame

(f ,Σff ). Assuming an error ei = ( Id,Σii) on each

measurement, the error vector is

zi = f̂
(−1)
i ◦ f = e

(−1)
i (12)

An initial estimate is easily obtained with the first

frame: ĝ0 = f̂0. The measurement χ̂ is now simply

χ̂ = f̂ (−1) and its covariance matrix Ω = Σf (−1)f (−1) .

The EKF process can thus be summarized as:
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• Initialize the state with (ĝ0 , Ĝ0) = (f̂0,Σf0f0)
• For each measurement of frame f̂i:

Compute ẑi = f̂
(−1)
i ◦ ĝi−1

Compute Mi =
∂(f (−1)◦g)

∂g
and Ĵ1 = ∂(f (−1)◦g)

∂f (−1)

estimated at (f̂
(−1)
i , ĝi−1)

Compute Σzizi
= Ĵ1Σf (−1)f (−1) Ĵ⊤

1

Update (ĝi−1, Ĝi−1) to (ĝi, Ĝi) using

Eqs.(7).

3.2. Estimation of the noise process on features

In the previous section, we assumed that the noise

process corrupting the measurements was known, and

we estimated the motion. We are now trying to estimate

the noise process while the motion is known (or already

estimated). In fact, we only estimate its covariance

matrix since the mean value should be null with our

hypotheses (which is verified experimentally).

Estimation of the noise on points

Anisotropic noise: Let {xi} and {yi} be two sets of

matched points with measured values x̂i = xi + δxi

and ŷi = yi + δyi, and f̂ be an estimate of the motion

f = (r, t) linking them together (yi = f ⋆ xi).

The error vector zi = ŷi − f̂ ⋆ x̂i is, up to the first

order, zi = δyi−r⋆δxi if we assume an exact motion

(this assumption will be removed later).

Assuming that each measurement error δxi and δyi

comes from noise processes of covariances Σxx and

Σyy, the covariance on the error vector zi should be

Σzz = Σyy + RΣxxR
⊤, which can be estimated by

Σ̂zz =
1

N

∑

i

zi z⊤i (13)

If we assume that one set of points is exact, then we

can solve for the uncertainty of the other:

Σxx = 0 =⇒ Σ̂yy = Σ̂zz

and

Σyy = 0 =⇒ Σ̂xx = R⊤Σ̂zzR

If we assume that both sets have the same noise Σ, we

obtain Σ̂zz = Σ+RΣR⊤, which is uniquely solvable

for Σ unless R is a rotation of angle θ = π/2 or θ = π
(see (Koch, 1988) for a solving method). If the rotation

between the two sets is small, the covariance on points

is approximated at first order by

Σ̂xx = Σ̂yy =
Σ̂zz

2
=

1

2 N

∑

i

zi z⊤i

Isotropic noise: We have in this case Σxx = Σyy =
Σ = σ2 Id, and hence the covariance matrix of the

error vector should be Σzz = 2 σ2 Id. Using the

estimation proposed in equation (13) and taking the

trace, we obtain:

Tr(Σ̂zz) = 2σ̂2. d =
1

N

∑
‖zi‖

2

where d is the dimension of the space (d = 3 in our

case). Since Ĉ = 1
2

∑
‖zi‖

2 is the value of the least­

squares criterion at the minimum, the variance estima­

tion can be summarized as

σ̂2 =
Ĉ

d N

Estimation of the noise on frame features

Standard noise process: With the same notations as

in the previous sections, and neglecting once again the

error on the estimate f̂ of the motion f , the error is:

ei = f̂ (−1)
si

◦ f̂ ◦ f̂mi
= e(−1)

si
◦ emi

Assuming a common underlying process of mea­

surement errors esi
= emi

= ( Id,Σ), we can deter­

mine that e
(−1)
si = ( Id,Σ) (since the Jacobian of the

inversion is − Id at the origin), hence ei = ( Id, 2Σ).
It should be noted that the covariances behave here as

usual, but only because errors are close to identity. An

estimator of the covariance Σ = Σmimi
= Σsisi

of

frame features is given by

Σ̂ =
1

2 N

∑

i

ei e⊤i

A simplified model: In some cases, for example with

a small number of matches, the estimation of the above

covariance matrix can be unstable. We can use instead

a kind of isotropic model of noise with a standard devi­

ation σθ for the rotation part and σd for the translation

part. Splitting the error vector into a rotation and a

translation component e⊤i = (e⊤θi
, e⊤di

), we can then

estimate the variances by

σ̂2
θ =

∑
‖eθi

‖2

6 N
and σ̂2

d =

∑
‖edi

‖2

6 N
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Discussion about noise estimation: Several problems

arise in the covariance estimation scheme: assuming

a Gaussian noise model with outliers (contaminated

Gaussian for instance), it is clear that estimating the

covariance matrix on all points, including outliers, will

produce a significant elevation of the covariance.

On the other side, estimating on inliers only will

induce an under­estimation which corresponds, on a

theoretical point of view, to the following partial inte­

gration on the inlier domain D

Σ′ =

∫

D

(x − x̄).(x − x̄)
⊤

.ρ(x).dx

instead of the whole space R
d for the real covariance

matrix Σ.

With the Gaussian assumption, and a χ2 threshold on

the Mahalanobis distance selection (see the following

section), this equation reduces to Σ′ = α(χ).Σ where

the correction factor α is defined by an integral of

the χ2 distribution. In practice, this factor is only

slightly inferior to one with standard values of the χ2

threshold, and we prefer to compute the covariance

with matches that have a Mahalanobis distance less

than 1.5 or 2 times the χ2 threshold. This includes

only the outliers that are almost inliers and ensures a

very small underestimating bias with usual values of

the χ2 threshold. This remains, however, the weak

point of our method concerning robustness, at least

theoretically (see section 4.2).

Another bias in the covariance estimation comes

from the lest­squares technique we choose to deter­

mine the motion (which is indeed not exact): if one

set of features is an exact model, the residuals are a

good estimation of the real error, but when both sets

of features are corrupted by noise, the residue min­

imization makes the residuals slightly inferior to the

real error. From (Bard, 1974), the number of observa­

tions N in all our covariance estimations should thus

be replaced by N ′ = N − l/m, where m is the di­

mension of the vectorial equations and l the number

of parameters we have estimated. In our case, this is

a rigid motion estimation, so l = 6. If we estimate it

from point matches, we have m = 3 whereas m = 6
from frames. We should then replace N with N ′ is the

previous equations, where

• N ′ = N − 2 for points,
• N ′ = N − 1 for frames.

3.3. Rejecting outliers: Mahalanobis distance and

χ2 test

Another interesting problem that arises within this

framework is compatibility. For a given motion, we

want to know, for instance, if a scene feature is com­

patible with a model feature, i.e. if the scene feature

can be considered as the transformation of the model

feature modulo measurement errors. Considering sets

of matched features, we may also want to sort the

matches by saliency. These two problems are impor­

tant for the estimation since least squares techniques

are known to be sensitive to outliers, and the EKF is

moreover order dependent: a preliminary phase where

matches are sorted by relevancy and outliers rejected

often gives substantial improvements on the quality of

the estimation.

A related question is to determine when two mea­

surements originate from the same object and differ

only because of measurement error, This can be used,

for instance, for clustering motions, i.e. to find sub­

groups of consistent motions. A fusion could then be

used within each subgroup to obtain a better estimate

of the motion.

Such problems are traditionally tackled via Maha­

lanobis distances for sorting hypotheses and χ2 tests

for rejecting outliers. Until now, we did not need to as­

sume Gaussian distributions on our random variables.

For the χ2 test, however, this assumption is required.

Two main reasons allow us to assume that the distribu­

tions of the noise is Gaussian: firstly, the measurement

errors are often the sum of independent errors and thus

tend toward a Gaussian process by the Central Limit

Theorem. Secondly, when the mean and variance of

an unknown distribution are the only information avail­

able (which is our case), a simple maximum entropy

derivation gives the Gaussian distribution as the one

that assumes the minimal information (Bard, 1974).

Two points and a motion Let (x,Σxx) and (y,Σyy)
be two measured points and (f ,Σff ) a rigid motion. We

want to test the validity of the hypothesis y = f ⋆ x.

We saw in section 2.4 how to compute (f ⋆
x,Σ(f⋆x)(f⋆x)) from (x,Σxx) and (f ,Σff ). If the

motion was independent of the data x and y, then the

covariance on the error vector z = y− f ⋆x should be

zero with covariance Σ = Σyy + Σ(f⋆x)(f⋆x). In our

case, the motion is computed from the data and the in­

dependence assumption does not hold. Thus we have

to use the covariance of the residue (Förstner, 1987):
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Σ = Σyy +

(
∂(f ⋆ x)

∂x

)
.Σxx

(
∂(f ⋆ x)

∂x

)⊤

which does not take into account the uncertainty due

to the motion (it is often very small with respect to the

features uncertainty). A χ2 test is then well suited to

verify if z is compatible with its theoretical covariance.

The squared Mahalanobis distance µ2 is

µ2 = z⊤Σ(−1)z

The statistical test says that the hypothesis is good

if µ2 ≤ ε, where the threshold ε is set such that, if the

hypothesis is true, we will choose it with the probability

α. Some values of ε and α for this 3­D χ2 test are given

found in table 1: for example, if µ2 > 11.34, there is

less than 1% of probability that y be a measurement of

f ⋆ x. We can thus reject this match.

Two frames and a motion Let (fm,Σmm) and

(fs,Σss) be two measured frames and (f ,Σ) a rigid

motion. We want to test the hypothesis that fs = f ◦fm.

From section 2.4 we can compute the covariance Σ on

the error vector e = f
(−1)
s ◦ f ◦ fm (with the same

remark as for points concerning the independence of

the motion) and use the squared Mahalanobis distance

µ2 = e⊤Σ(−1)e and a 6­D χ2 test to decide if the

hypothesis is true or not (see table 1).

Two frames Let (f1,Σ11) and (f2,Σ22) be two mea­

sured frames. We want to test the hypothesis that they

are measurements of the same frame f . Let Σ be the

covariance on the error vector e = f
(−1)
1 ◦ f2. We

can once again use the squared Mahalanobis distance

µ2 = e⊤Σ(−1)e and a 6­D χ2.

3.4. Conclusion: uncertainty and rigid motions

We introduce in this section a new model of noise

based on composition and show why it is better adapted

than the classical additive noise. Estimation problems

within this framework require the computation of a co­

variance matrix of the estimate: the Extended Kalman

Filter provides a unified formalism to handle this. At

Table 1. Table of the χ
2 distribution for 3 and 6 degrees of freedom.

α Dim 50% 90 % 95 % 99%

ε 3 2.37 6.25 7.81 11.34

ε 6 5.35 10.65 12.59 22.46

last, the Mahalanobis distances and χ2 tests allow the

comparison and discrimination of hypotheses based on

frames and rigid motions.

This framework can be used in a large number of

vision problems. We present in the next section an

application to registration; but we could also use this

framework for matching algorithms (see (Pennec &

Ayache, 1994)). Further applications include the clus­

tering of rigid motions between image structures, or

rigid motions in a displacement field, in order to detect

and isolate objects. This can also prove to be useful

when dealing with the accumulation stage of geometric

hashing or Hough transform algorithms.

4. A practical and robust algorithm for motion

estimation

The output of a feature­based matching algorithm usu­

ally consists in two sets of matched features. The basic

idea is that if we can compute a reliable estimation of

the motion, and the confidence that we have in it, we

can give a confidence value on the registration at each

point of the image.

The method is the following. We take as input of the

evaluation step two sets of matched features and com­

pute the rigid motion between them. Assuming that

all the features are corrupted by the same noise pro­

cess, we compute statistics (i.e. the covariance matrix

of the process) on features, and use this information

to recompute the rigid motion and its associated co­

variance. This iterative process can be continued until

convergence. This allows us to predict a variance on

the position of each registered point of the image.

4.1. The iterative process

The considered features are again points and frames,

but initially without any uncertainty information1.

Without loss of generality, such a framework can be

extended to other types of features. In order to use an

EKF, we first need to estimate the features covariance

matrix (this is detailed in section 3.2). We start with

1. A least squares estimate of f , using point posi­

tions only, or directly a least median of squares on

frames (see section 4.2).

2. Estimate the noise process on features.

3. Order matches by increasing Mahalanobis dis­

tances.
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We now have enough information on the features

to start the iterative process. Step 1 can be ignored

if a reliable motion is provided, as step 3 if matches

are already sorted with respect to some other criterion.

This ordering of matches is, however, needed to ensure

the robustness of the EKF: since the equations are lin­

earized in the EKF, the estimate is order­dependent. If

the differences are usually not significant, some spe­

cial cases can lead to quantitative errors. Step 2 is not

used if an estimation of the noise process (even a gross

estimation) is given on input (which is what we usually

do unless it is the first time we use a new type of data).

Ordering also helps outliers rejection for the motion

computation while keeping these matches for other

purposes. In protein substructure matching, for in­

stance in (Pennec & Ayache, 1994), we want to com­

pute the motion with reliable amino­acids matches

(which can have some precise interactions with other

molecules), but we also want to see less constrained

matches that point out other structural similarities.

The iterative process itself is as follows.

1. Estimate the motion (f ,Σff ) from the matches us­

ing an EKF (in decreasing significance order) until

the Mahalanobis distance of the matches becomes

larger than a predetermined ε threshold (this is the

χ2 test to reject outliers).

2. Estimate the noise process with all features (see

section 3.2).

3. Sort matches by their Mahalanobis distance. Out­

liers are the tail of the list.

The process is repeated until convergence, or for a

preset maximum number of iterations (typically 5 to

10). Convergence means in particular that the current

estimate of the motion is exactly the same as at the

previous step.

The estimation of the noise process is the weak point

of our scheme for robustness since it is relatively error­

prone. This step is dismissed if a reliable estimation of

this noise is furnished, but when it comes to a new type

of data, we need to estimate it. In practice, we estimate

the noise on features (i.e. its covariance matrix) only

once per three or four iterations in order to stabilize the

convergence (in this case around 15 to 20 iterations),

and results on real data appear to be quite accurate.

A rigorous treatment of this point would require the

robust estimation of a covariance matrix.

4.2. Variations on the algorithm

Since a frame is composed of a point and a trihedron,

we can also apply point techniques to frames. On this

basis, we can then distinguish four ways of estimat­

ing both the motion and the noise process: EKF on

frames with complete or simplified noise model, EKF

on points with a complete noise model (on points),

and standard least­squares on points (isotropic noise

model).

The appropriate method depends upon the number

of matches, the relative quality of the trihedron and the

isotropy of the noise. A comparison of the different

methods is presented in section 6.1.

In terms of robustness (see (Huber, 1981; Meer et al.,

1991) for a review on robust statistics), the algorithm

we propose belongs to the class of iterative redescend­

ing M­estimators (i.e. robust algorithms based on least

squares). However, the breakdown point (the max­

imum amount of outliers before failure) is not very

high. The algorithm can be robustified to a breakdown

point of about 0.5 by using a least median of squares

between the initialization step (in order to have an esti­

mation of the noise process) and the iterative process,

that achieve the goal of efficiency (i.e. reaches a vari­

ance on the estimate close to the lowest possible one).

This is particularly easy and cheap in complexity for

frames. Indeed, a single match determines a unique

motion between the model and scene sets: for each of

the N frame matches, we classify the other matches by

increasing Mahalanobis distances and take the value

of the median for the score of this match. The match

minimizing the median squared Mahalanobis distance

is then used as the initial motion for the iterative pro­

cess. The complexity of O(N2 log N) can be drasti­

cally reduced by a Monte Carlo sampling (see (Meer

et al., 1991)).

4.3. Final Precision evaluation

From (f̂ ,Σff ), we can compute for each point x of

the model image (or object) its transformation ŷ =
f̂ ⋆ x and the uncertainty Σŷŷ = Σ(f̂⋆x)(f̂⋆x). This

information could be used directly as an input for other

statistical algorithms but is too rich to give a simple idea

of the level of accuracy for the end user. In order to

give a more intuitive information, we compute instead

the RMS error expectation at this point: if y = f ⋆x is

the real location of the transformed point x, we shall
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find it in ŷ = f̂ ⋆ x. The expectation of the squared

distance d2 = ‖y − ŷ‖2 between them is

σ2(ŷ) = E
(
(ŷ − y)⊤(ŷ − y)

)
= Tr(Σŷŷ)

In the case of 3­D medical images, and in order

to characterize the precision with a single value, we

can estimate (among other measurements) the averaged

RMS for the 8 vertices of the 3D image (we call this

value the typical boundary precision σcorner), which

is representative of the maximum error, or estimate the

averaged RMS on the position of the matches frames

(the typical object precision σobject).

4.4. Conclusion on registration and accuracy

From two sets of matched features, and a χ2 thresh­

old ε, we propose a method to estimate the motion

f and its precision Σff , discard outliers, and provide

an estimation of the noise process on features. Then

we extract from the motion uncertainty a single value

characterizing the registration accuracy.

5. A statistical validation of registration methods

We have now a way to estimate motions and asso­

ciated covariances, but what confidence can we have

in it ? We propose in this section a method to esti­

mate the accuracy of a registration algorithm when no

“ground truth” is available. It also validates the esti­

mation process for feature based registration methods

which generate covariance matrices. This is a sta­

tistical method which only assumes that the noise on

features is centered.

5.1. External markers

We believe that no method can give an exact reference

for the motion, but when a method A is one order of

magnitude more accurate than a method B, A can serve

as a reference for an experimental validation of B. This

means that all methods are ultimately statistical.

Debates about the use of external markers are typical

in the case of 3D medical image registration problems.

Here, validation methods are vital (literally), because

the registration can be used to plan a surgical proce­

dure. In fact, external markers have a very strong ad­

vantage in matching methods, because we can extract

features corresponding to physical and discriminable

objects and obtain an “exact” matching. But regarding

registration, we have to keep in mind that the mea­

surements of marker positions are corrupted just as the

measurement of any other landmark, which implies

the elaboration of a theoretical model of the markers,

and the application of a statistical method to evalu­

ate the motion and its uncertainty. Other authors have

concluded experimentally that, for the case of high res­

olution medical images, marker­based techniques are

probably much less accurate than image­based tech­

niques (see (van den Elsen, 1993)).

Hence, marker­based techniques are not more de­

terministic than other registration methods, and the re­

sults of the present paper could also be applied to them

(generally, markers are modeled as points or frames).

5.2. Analytical methods

Ideally, we might think of modeling analytically the

whole process, from the physical object positions to

the final estimated motion. For real cases, this implies

modeling object deformations (nothing is really rigid),

evaluating the distortions due to image acquisition and

reconstruction process, evaluating the errors in the ex­

traction of feature points, before considering the errors

made during registration. This is generally impossible

to do in practice, when all this also depends on the

shape of the object, and the tuning of the acquisition

device.

5.3. An a posteriori estimation of the errors

The method that we present now applies when there is

no ground truth for the motion, and when the analytical

determination of the errors is impossible (the majority

of cases). We consider the registration method as a

black box which takes two representations of the same

object as input, and gives an estimated rigid motion as

output.

Assuming independence of couples of matched fea­

tures, we can subsample the matches in order to get

several independent estimates of the unknown motion,

and compare them. In particular, we can split the set

of matches in two sets approximately equal in size and

obtain two estimates of f :

f̂1 = f ◦ e1 and f̂2 = f ◦ e2

The two motions should be very close, and we can

study their “difference” e = (f̂2)(−1)◦ f̂1 = (e2)(−1)◦
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e1 which does not depend on the exact motion f and

should be close to identity.

If matches are randomly subsampled to a fixed num­

ber M of matches, in order to conserve independence

and a similar distribution of matches in space, then

the estimation errors e1 and e2 follow the same law

of covariance Σ(M). If moreover both the feature

extraction and the registration method are unbiased2

(which means that E(e1) = E(e2) = Id), then we

can derive that the covariance of (e2)(−1) is also Σ

and the measured error e should then have a covari­

ance Σee(M) = 2Σ(M).

Repeating the experiment with n homogeneous sets

of matches, we can estimate the covariance matrix of

the estimation of f from M feature matches by

Σ(M) =
1

2 n

n∑

i=1

ei e⊤i

5.4. A posteriori validation of the uncertainty

Our estimation scheme produces not only a motion

estimation f̂ but also a covariance estimation on it Σ
f̂ f̂

.

The goal of this section is to verify a posteriori that the

distribution of f̂ has for mean value f with the given

covariance. We consider first the case of synthetic

data where the exact motion f is known. Since every

experiment is based on a different exact motion and

produce a different covariance matrix on the estimate,

we have to “normalize” our results in order to obtain

several estimates of the same distribution.

To normalize the mean motion, we compute for

each registration the error vector e = f (−1) ◦ f̂ (for

simpler notations, the index of the registration exper­

iment is omitted). Its distribution should have a zero

mean, but its covariance matrix is given, since f is ex­

act, by Σee = J.Σ
f̂ f̂

.J⊤ with J = ∂e/∂ f̂ . A new

change of variables is needed to normalize the dis­

tributions with respect to this covariance: under the

Gaussian hypothesis, the Mahalanobis distance with

identity µ2 = e⊤ Σ(−1)
ee e should be χ2

6 distributed.

We can now repeat this experiment on M pairs of

images to obtain M independent values µ2
i and verify

if it is really χ2
6 distributed. The Kolmogorov­Smirnov

test (Press et al., 1991) is well adapted to do that (re­

ferred from now on to the K­S test), but since it only

gives a binary answer, we also use the fact that the

mean value of a χ2
6 distribution is 6 and its variance is

12: We call validation index the estimated mean value

of µ2
i :

I = µ̄2 =
1

M

∑
µ2

i

and its variance is computed accordingly with

σ2
I =

1

M − 1

∑
(µ2

i − µ̄2)2

This index can be interpreted as an indications on

how the estimation method under­estimates (I > 6)

or over­estimates (I < 6) the error on the estimated

motion. It is a kind of relative error on the error esti­

mation.

This method can be generalized to validate our es­

timation scheme with real data: randomly splitting

the set of matches in two (approximately equal) sets,

we compute two estimates (f̂1,Σf1f1) and (f̂2,Σf2f2)
which are two independent measures of the exact mo­

tion f . Their “difference” e = (f̂2)(−1) ◦ f̂1 can now

be used just as above. Some results with synthetic and

real data are given in sections 6.1 and 6.2.

5.5. Conclusion on statistical validation

We show in this section that all validation methods

are ultimately statistical and present a quite general

method to estimate the quality of a registration process,

independently of our previous method. This leads us to

the validation of our uncertainty prediction with both

synthetic and real data.

6. Experiments

The first part of this section deals with the comparison

of the four different methods on synthetic data, and

shows how to choose the best method among isotropic

or anisotropic noise and points or frames features. We

will see through these experiments that all the methods

are perfectly validated in their own domain. The sec­

ond and third part focuses on real data, with 3D medical

image registration and protein substructure matching.

6.1. Synthetic data experiments

For our synthetic experiments, we have used lists of

associated frames or points with a Gaussian error dis­

tribution on the positions and on the orientations and

a uniform random placement in 256x256x256 voxels
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images (one voxel equal one millimeter). The exact

motion is chosen randomly but the translation is lim­

ited to a third of the image size in order to obtain

an overlap between the two images. The covariance

matrix of the simulated noise process is given by the

experiments on 3D medical images (see the covariance

matrix of table 2). We use a χ2 value of 16 for frames

and 8 for points, which corresponds to a 96% confi­

dence interval, and limit the number of iterations to a

maximum of 15.

We also run several other sets of experiments using

a real model randomly moved and perturbed, and a

uniform model of noise with the same covariance. All

those experiments showed very similar results.

Anisotropic versus simplified noise model We have

presented in section 3.2 two models of noise for points

(iso and anisotropic) and their equivalent for frames.

The question we investigate here is which one should

we use, and does the anisotropic model provide an

improved accuracy of the registration? In these exper­

iments, frames are generated with a compositive model

of noise and points with an additive one.

We claim that the relevant parameter to decide which

method is the most suited is the number of matches.

Indeed, the estimation of the 21 parameters (resp. 6

for points) of the covariance matrix is less stable than

the estimation of the 2 (resp. 1) parameters of the

simplified model, in particular with a small number of

samples. However, for a sufficient number of matches,

we can estimate the whole covariance matrix with a

good confidence, even if the original noise is isotropic.

In figures 3 and 4, we plot on the top the valida­

tion index (ideally 6) and its standard deviation. The

dotted lines represent the theoretical mean value and

standard deviation of a χ2
6 distribution. We also in­

dicate experiments where the K­S test at 5% rejects

the validation. On the bottom of the figures, we plot

the typical precisions as a function of the number of

matches for isotropic methods and the gain in preci­

sion obtained using anisotropic methods. Each sample

point is the averaged result of 100 trials.

As expected, the validation index shows that

isotropic methods need less matches to have a good

uncertainty prediction than anisotropic methods ones:

about 10 points are needed for the isotropic method

on points to be reliable, versus 15 to 20 matches for

the anisotropic one. For frames, these figures are as

expected a little bigger: respectively 15 to 20 and 30 to

40 matches are needed. On the other hand, anisotropic

methods lead to a more accurate motion estimation: in

this case, it is roughly 1.25 times more accurate for

frames and between 1.15 and 1.4 times more accurate

for points. However, we note that these values are just

examples and do vary with the anisotropy of the origi­

nal noise. From now on, we use the simplified model

of noise for less than 40 matches with frames (20 with

points) and the anisotropic one otherwise.

The difficult and possibly inaccurate point in our our

scheme is therefore the covariance matrix estimation

which is, as we have already noted, not really robust.

In order to verify the robustness and accuracy of the

remainder of the algorithm, we run another series of

experiments where we fix the covariance on features

(i.e. we consider that it is already known and we do
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Typical boundary precision

Typical object precision
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Isotropic model of noise: LSQ on Points

Validation index
K-S test : rejected
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12.0
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Anisotropic model of noise: EKF on Points
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K-S test : rejected

Ratio of isotropic over anisotropic precisions

Fig. 3. Validation index with respect to the number of matches for anisotropic (top right) and simplified (top left) noise model on point features.

The typical precisions are presented for the isotropic model (bottom left), along with the ratio between isotropic and anisotropic precisions

(bottom right).
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Fig. 4. Validation index with respect to the number of matches for anisotropic (top right) and simplified (top left) noise model on frame

features. The typical precisions are presented for the isotropic model (bottom left), along with the ratio between isotropic and anisotropic

precisions (bottom right).

not have to estimate it) and introduce about 10% of

outliers. In all cases, even with 5 points or frames

matches, the Kolmogorov­Smirnov test (at 5%) suc­

cessfully validate the rigid motion and its uncertainty

estimation.

Comparison of Frame and Point based methods An

interesting question is what improvement in accuracy is

brought by the use of frames instead of points ? Since

we add trihedra to points in order to make frames,

frame methods should be at least as accurate as point

ones. On the other hand, the extraction of trihedra from

real images is usually based on higher derivatives than

the point position. Hence, points are usually less noisy

than trihedra and we do not expect a breakthrough for

accuracy in using frames. However, as points become

noisier and noisier, there should be sensible improve­

ment with frames.

We choose to run the experiment with a random

number of points between 150 and 250, a fixed standard

deviation of σθ =0.02 rad for the orientation sampling,

and a standard deviation increasing from σd =0.2 mm

to 2.8 mm on point position sampling.

Since the typical precisions do vary with the number

of matches and the noise process, but in a similar way

for both methods, we plot in figure 5 the ratio of typical

precisions (standard deviations) for point and frame

with respect to the standard deviation on position. Each

sample is the averaged result of a set of 50 synthetic

“images”.

Using frames in spite of points can then lead to

an sensible improvement in accuracy, particularly

with a small number of matches, or when points be­

comes noisy with respect to trihedrons. On the other

hand, several experiments showed that the frame based

method remain at least as accurate as the point based

one even when trihedrons become very noise. In gen­

eral, we should then use the maximal amount of infor­

mation we have on features and thus the frame based

method if we can define trihedrons.

Table 2. Estimated covariance matrix for the compositive noise on extremal points (expressed in the local frame).

Σee =

er
⊤

et
⊤





















0.0024 0.0000 −0.0000 0.0002 −0.0011 0.0000
0.0000 0.0030 −0.0000 0.0001 −0.0000 0.0000

−0.0000 −0.0000 0.0373 −0.0006 −0.0003 0.0001

0.0002 0.0001 −0.0006 0.2276 0.0011 0.0008
−0.0011 −0.0000 −0.0003 0.0011 0.3157 −0.0015

0.0000 0.0000 0.0001 0.0008 −0.0015 0.0838
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Fig. 5. Ratio between Point and Frame based precisions methods

with respect to standard deviation on position. The error bar is the

standard deviation in 50 trials.

6.2. Real data experiments: 3D medical imaging

We present results from an experiment performed us­

ing 3D Magnetic Resonance images (MRI). The im­

ages were provided by R. Kikinis from the Brigham

and Woman’s Hospital, and are part of an extensive

study of the evolution of the Multiple Sclerosis (MS)

disease. The same patient recieved a complete 3D MR

examination several times during one year (typically

24 different 3D acquisitions). The aim is to register

Fig. 6. The same slices from four registered 3D MR images of

the Multiple Sclerosis study. Note the evolution of two MS lesions

(white spots). One is growing in the anterior left hemisphere, one

is shrinking in the right posterior hemisphere. There is two weeks

between each acquisition.

precisely in 3D all those images in order to segment

the lesions and evaluate very accurately their evolution

(MS lesions are white spots in the images in figure 6).

The images are first echo, 256 × 256 × 54 voxels,

the voxel size is 1 mm × 1 mm × 3 mm. We have

already presented an algorithm to perform, fully au­

tomatically, the registration of the images in (Thirion,

1994). However, there is a need to estimate accurately

the errors in these registrations. The registered images

are resampled using a tri­linear interpolation method.

The same slices of several different 3D MRI are pre­

sented in figure 6, after resampling with the estimated

motions. Figure 7 presents the differences between im­

ages and shows visually the quality of the registration,

and also that the evolutions of the lesions are clearly

detected.

Points and frames in medical images Our registration

algorithm relies on the extraction of feature points in

3D medical images, defined with differential geometry

criteria (see figure 8). In our case, these are the Ex­

tremal Points, as defined in (Thirion & Gourdon, 1993),

which are those points of the object surface for which

both principal curvatures are extremal. The interesting

thing is that not only do we get some invariant mea­

surements associated with those points (the principal

curvatures), which are used to reduce the complexity

of the matching process, but we get also the principal

Fig. 7. Differences between images after registration, with respect

to the first one. The intensity is multiplied by 5, and shifted such

that no difference is a gray value. The growing lesion appear as a

white disk, and the shrinking lesion as black a disk.
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Fig. 8. Lines of extremal curvature on the brain circumvolutions.

The extremal points, which are used in the registration, are specific

points of those lines.

directions, which form, with the normal to the surface

and the extremal point itself, an orthonormal basis, that

is, a frame (see figure 1 in section 2.2).

Typically, we extract about 2000 extremal points

from a 3.5 million voxels image. Our matching al­

gorithm produces about 600 pairs of associated ex­

tremal points between two images, with a residual

mean square error (RMS) of about 1mm. With a den­

sity fewer than 0.1% of extremal points in the image,

the probability of false matches is very low.

Results With 24 different images, we could have gen­

erated 576 couples of images. In order to achieve in­

dependence, we have restricted our experiments to 58

randomly chosen registrations. For each registration,

we randomly split the list of matches in two approx­

imately equal lists and compute the validation index

I from the two rigid motion estimates. We fuse then

the two motion estimates in order to compute the final

motion and its uncertainty.

We find a typical boundary precision around

σcorners = 0.114 mm and a typical object precision far

below the voxel size: σobject = 0.060. The validation

index is I = µ̄ = 6.19 with a variance of σ2
I = 17.05

(remember that the theoretical values are 6 and 12)

and the K­S test validate our results for real data with

a significance level of 0.16. These values were found

using frames and showed an improvement of 10% in

accuracy with respect to points.

Analysis of the estimated noise on features These ex­

periments showed an interesting difference between

the point and frame noise model. Indeed, point based

methods gave a quite isotropic noise of standard devi­

ation σ = 0.5, whereas the frame based method gave

the covariance matrix on frame features displayed in

Table 2 .

As said in the synthetic experiments section, this co­

variance is roughly diagonal, with standard deviations

σrx
= 0.05, σry

= 0.055, σrz
= 0.20 for the rotation

vector part (in radian), and σdx
= 0.5, σdy

= 0.55,

σdz
= 0.25 for the position part (in mm), which gives

a mean standard deviation on position of σ = 0.46,

comparable with the one computed on points only.

In order to interpret these values, we have to remem­

ber that, with the compositive noise model, the error

vector is expressed in the local frame. In our case, the

frame is defined by {t1, t2, n} where t1 and t2 are the

two principal directions of the surface at the extremal

point and n the normal. As far as the rotation vector is

concerned, the values of the standard deviations show

that the expected error rotation around the n (= z) axis

is four times the expected error rotation around the t1

or t2 axes. This means that the normal n is about

four times more stable than the principal directions.

Regarding the position, we can see that the coordinate

along the normal to the surface is 3 to 4 times more

stable than coordinates in the tangent plane, which is

in accordance with what was expected for extremal

points.

The compositive noise model exhibits here an

anisotropy which is not detectable with a classical

noise: the absence of orientation information leads to

a quasi isotropic noise for points, and an additive noise

on frames would fail to detect this regularity since the

error would not be expressed in local frames. This

effect therefore constitutes an a posteriori justification

of our compositive noise model with real data.

Discussion Our matching algorithm tries to estimate

the motion of a single rigid substructure, with the

largest number of common extremal points, which is

the brain in those images. However, with that level

of accuracy, the assumption of a global rigid motion

does not hold any more, and we can distinguish sev­

eral structures undergoing slightly different motions.

The skull, for example, can move (quite rigidly) with

respect to the brain, and the skin surface is subject to
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large deformations (this is very clear with animated

sequences spanning the one year study). The points

corresponding to those structures have been rejected as

outliers, but, with the help of the framework developed

in this paper, we can think to classify and discriminate

substructures. This is an improvement of our registra­

tion method that we are currently implementing.

Even for the brain itself, there are local deforma­

tions, for example due to the studied MS lesions, which

are larger than the typical boundary error we measured,

but because we are interested in an average motion for

the whole structure of interest (here the brain), it makes

sense to search for such an accurate motion. In fact,

our registration is so accurate that it allows us to visual­

ize, for the first time, the dynamic effect of the lesions

on the surrounding brain tissues.

6.3. 3D substructure matching of proteins

Most biological actions of proteins depend on some

typical parts of their three­dimensional structure,

called 3D motifs. To automatically discover corre­

sponding 3D motifs between proteins, we proposed

in (Pennec & Ayache, 1994) a new 3D substructure

matching algorithm based on the geometric hashing

technique. The key feature of the method is the intro­

duction of a 3D reference frame attached to each amino

acid (see figure 1 in section 2.2). This allows to com­

pute for every couple of amino acids 6 invariants, that

are used in the first step of the algorithm: a geometric

hashing aimed to recognize possible correspondences

between individual model and scene frames. The intro­

duction of frame features instead of points drastically

reduce the complexity of both the preprocessing and

recognition stages, typically from O(n4) to O(n2). A

clustering step based on motions performs then the ag­

gregation of compatible matches. Individual motions

within a cluster are fused using the scheme of section 2

in order to obtain a unique and accurate global motion.

The last step is an alignment test realized as a kind of

“iterative closest frame” (by analogy with ICP (Besl

& McKay, 1992)), where our robust motion estimation

scheme is embedded.

The noise on frame features is fixed on input and

determines the type of common substructures the al­

gorithm extracts. A small noise produces small but

very accurate sets of matches, whereas a large noise

favors more global substructure matches. For all our

experiments, we use the atom coordinates of proteins

provided by Brookhaven National Laboratory’s Protein

Data Bank (Bernstein et al., 1977; Abola et al., 1987).

Visualization is done using the RasMol program of R.

Sayle (Sayle & Bissel, 1992).

Detection of the Helix­Turn­Helix motif Structural

motifs can be defined as the super­secondary struc­

ture. They are the simple combination of a few sec­

ondary structure elements. Some of them are associ­

ated with particular functions or are simple parts of

larger structural and functional assemblies. For in­

stance, the Helix­Turn­Helix motif is responsible for

the binding of DNA within many procaryotic proteins.

Some of them bind tightly to the DNA at a promoter of

a gene, preventing RNA polymerase from fixing and

hence blocking the initiation of the transcription. They

are repressors. Conversely, activators bind next to the

promoter and help polymerase to bind.

We choose to compare two proteins known to bind

DNA: the tryptophan repressor of E. Coli (PDB code

2WRP (Lawson et al., 1988), 105 amino­acids) and

phage 434 CRO (PDB code 2CRO (Mondragon et al.,

1989), 65 amino­acids), whose Helix­Turn­Helix se­

quence were determined in (Brennan & Matthews,

1989; Harrison & Aggarwal, 1990).

Looking for a 3D binding motif, we used a quite

small model of isotropic noise (σθ = 0.1 rad = 5 deg

and σd = 0.35 Å ). The algorithm ends up with only

the correct matches from (15 MET ­ 66 MET) to (36

ALA ­ 87 ASN). The last match (37 GLY ­ 88 SER)

is indeed very arguable considering the distance after

registration and especially the difference in orientation.

The typical object precision due to the registration (on

the 22 matched amino­acids) is given to σobj = 0.29
Å. We show in figure 9 the two proteins and the regis­

tration found in figure 10. The only two other common

substructures found score 13 and 8 matches and corre­

spond to alpha helices, which are very stable secondary

structure elements.

Discussion In order to test the stability of our algo­

rithm, we also did the experiment with a noise two

times larger (σθ = 10 deg and σd = 0.7 Å ). We just

find four additional matches preceding the beginning

of the HTH motif ( from (7 LYS ­ 61 LEU) to (11 ILE

­ 64 GLY)). The two other clusters now score 14 and

9 matches. This shows that the detection of the HTH

motif is very stable, and we argue that this is mainly

due to the selectivity brought by the use of frames.

Indeed, the orientation of an amino acid is crucial

to determine the position of collateral chains and most
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Fig. 9. The CRO protein (2CRO) of phage 434 on the left and the tryptophan repressor of E. Coli (2WRP) on the right. The matched part (the

HTH motif) is displayed in black.

interactions of the protein happen within these side

atoms. The position of these atoms is then not only

determined by the position of the backbone but also

its orientation and using just points to represent amino

acids generally leads to a significant amount of addi­

tional matches with non compatible orientations. This

implies a drastic reduction of selectivity for the match­

ing process. In this case, frames bring rather more

selectivity than more precision.

7. Conclusion

We developed a new formalism to handle uncertainty

for rigid motion evaluation, which consider residual

errors as residual geometric motions, and not as an ad­

ditive noise applied to the measurements coordinates or

Fig. 10. Registration found between the HTH motifs of 2CRO and

2WRP. We can see that not only the backbone is very well matched,

but also collateral chains are pretty well conserved.

to the parameters of the unknowns. This leads to new

formulae for the equations of measurement which are

used within the Extended Kalman Filter framework to

evaluate both the motion and its covariance matrix, in

the case of 3­D points or 3­D frames matches. We pro­

vide a quite general scheme to estimate approximately

the accuracy of a registration method, and a more pre­

cise way to validate the predictions of our registration

scheme. Several experiments on both synthetic and

real data validate our framework and justify the com­

positive noise model. A practical result is to show that,

in the case of 3D medical images, a precision of the

registration far below the voxel size can be achieved.

In the case of 3D protein substructure matching, frame

features drastically improve the selectivity and reduce

the complexity of the process.

This work also opens new theoretical questions

about the noise on geometric features under a given

type of motion, and offer numerous possibilities of ex­

tensions: other types of features, more general trans­

formation groups, and also other high level algorithms

based on this framework, such as clustering or match­

ing.

Appendix

A.1. Rotations

A.1.1. Geometric parameters: axis and angle

Let R be a 3D rotation matrix (RR⊤ = Id and

det(R) = 1). It is characterized by its axis n (unit

vector) and its angle θ. The relationship between these
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two representations are given by Rodrigues formula

(see for instance (Kanatani, 1993)).

R = Id + sin θ Sn + (1 − cos θ)Sn
2

= cos θ Id + sin θ Sn + (1 − cos θ)n.n⊤

(A1)

The matrix Sn is the skew matrix corresponding to

(left) cross product: for all vector v we have Snv =
n×v. If the coordinates of n are (nx, ny, nz), the

matrix Sn is

Sn =




0 −nz ny

nz 0 −nx

−ny nx 0




and we have the relation Sn
2 = n.n⊤ − Id, used

to derive the second part of equation A1. Note that

Sn uniquely determines the vector n. Conversely, let

Tr(R) be the trace of R; the parameters are:





θ = arccos

(
Tr(R) − 1

2

)

Sn =
R − R⊤

2 sin θ

(A2)

The last equation is valid only when θ ∈]0;π[. Indeed,

for θ = 0 (i.e. identity) the rotation axis n is not

determined, and sin(θ) = 0 for reflections (θ = π).

R close to identity: θ is small Since the axis n is not

defined for identity, there is a singularity and a numer­

ical instability around it. However, we can compute

the rotation vector with a Taylor expansion:

Sr = θ Sn = θ
2 sin θ (R − R⊤)

= 1
2

(
1 + θ2

6

)
(R − R⊤) + O

(
θ4

)

R close to a reflection: π−θ is small The axis is this

time well defined, but we have to use another equation.

From Rodrigues formula, we get R + R⊤ − 2 Id =
2(1 − cos θ)Sn

2, and since Sn
2 = n.n⊤ − Id, we

have

n.n⊤ = Id +
1

2(1 − cos θ)

(
R + R⊤ − 2 Id

)

Let ̺ = (1− cos θ)−1; taking diagonal terms in the

last equation gives n2
i = 1 + ̺.(Ri,i − 1) and thus

ni = εi

√
1 + ̺.(Ri,i − 1)

The off diagonal terms are used to determine the signs

εi: considering that the sign of n1 is ε ∈ {−1;+1},

we can compute that

sign(nk) = ε.sign(R1,k + Rk,1)

If we have an exact reflection, the sign ε does not

matter since rotating clockwise or counter­clockwise

gives the same result, but for a quasi­reflection, this

sign is important. In this case, the vector w =
2 sin θ n is very small but not identically null: it

can be computed without numerical instabilities with

Sw = R − R⊤. Since θ < π, the largest component

wk in absolute value of this vector must have the same

sign as the corresponding component nk of vector n.

A.1.2. Rotation vector

The representation of a rotation by its axis and angle

values or by a unit quaternion are very useful for a

lot of problems, but they are not minimal: there are

quadratic constraints needed to enforce unitary vectors.

This is a problem for most minimization techniques,

and especially the extended Kalman filter (EKF).

A minimal representation is obtained with the rota­

tion vector r = θ n. Some problems of uniqueness are

encountered around θ = π and four charts are theoret­

ically needed to define an atlas (a set of differentiable

maps covering the complete manifold). The rotation

vector can be computed from the rotation matrix with

the equations of section A.1.1. Conversely, Rodrigues

formula allows us to compute the rotation matrix from

the rotation vector:

R = Id +
sin θ

θ
Sr +

(1 − cos θ)

θ2
Sr

2

with θ = ‖r‖. In order to avoid numerical instabilities,

we have to use a Taylor expansion for a small θ:

sin θ
θ = 1 − 1

6θ2 + O
(
θ4

)

(1−cos θ)
θ2 = 1

2 − 1
24θ2 + O

(
θ4

)

A more developed presentation of the rotation vector

is given in (Ayache, 1991).

Operations on rotation vectors Let r be a generic ro­

tation vector. The associated rotation matrix is denoted
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by R and the parameters by θ = ‖r‖ and n = r/‖r‖).

We are interested in this section in applying r to the

vector x: y = r ⋆ x, inverse it: r(−1), and compose

rotation vectors r1 and r2: r = r2 ◦ r1. The two first

operations are easy to perform:

r ⋆ x = R.x and r(−1) = −r

The composition is more complex. Of course we

can compute the associated rotation matrices, multiply

them, (R = R2.R1) and come back from R to the ro­

tation vector r, but it would be difficult to differentiate.

We choose to use the unit quaternion representation as

an intermediate step (see section (A.1.3) below). Let

r1 and r2 be two rotation vectors. We compute the

associated unit quaternions q1 and q2, and multiply

them: q = q2 ∗q1. Then we come back to the rotation

vector r(q):

r2 ◦ r1 = r(q(r2) ∗ q(r1))

A.1.3. Quaternions

Quaternions are the elements of a 4 dimensional al­

gebra on R which we shall note Q. This is also the

first non­commutative division ring (skew field) found

by Hamilton in 1843. We can construct this algebra

in several ways, but the we are interested in considers

a quaternion q ∈ Q as a couple q = (a,v), where

a ∈ R is the real part and v ∈ R
3 the so­called pure

part. The operations defined on quaternions to form

the algebra are :

• Addition : (a1,v1)+(a2,v2) = (a1+a2,v1+v2)
• Internal multiplication : (a1,v1) ∗ (a2,v2) =

(a1a2− < v1|v2 >,v1 × v2 + a1v2 + a2v1)
where ‘×’ and ‘< .|. >’ are the usual cross and

dot products on R
3

Moreover, we define the conjugate quaternion and the

norm

• (a,v) = (a,−v)
• |q|2 = ‖q‖2

Q = q̄ ∗ q = a2 + ‖v‖2
R3 = ‖q‖2

R4

This allows to write very simply the inverse quaternion

q−1 = q̄/|q|2 for q 6= 0. We shall note that the norm

is compatible with the product: |q1 ∗ q2| = |q1|.|q2|.

The set of quaternions (0,x) with x ∈ R
3 is trivially

identified with R
3 itself. Let x and y be two vectors

(elements of R
3). Their quaternion product is x ∗ y =

(− < x|y >,x × y) and q ∗ x ∗ q̄ is a vector for any

quaternion q.

A more detailed introduction to quaternions and

their properties is available in (Casteljau, 1987) and

(Altmann, 1986).

Quaternions and rotations Let q be a unit quaternion.

Then there exists θ ∈ [0, π] and n unit vector on R such

that q =
(
cos

(
θ
2

)
, sin

(
θ
2

)
n
)
. The map

Rq : Q −→ Q
x 7−→ y = q ∗ x ∗ q̄

is an inner automorphism of Q that conserves pure

quaternions (null real part). Its restriction to R
3 is the

vectorial rotation of R
3 with angle θ around the unit

vector n. In a symmetric way, we can match to every

rotation of R
3 two unit quaternions q and −q.

Let R ∼ q denote the association between rotation

matrix R and rotation quaternion q. As direct proper­

ties of this representation, we have:

• If R1 ∼ q1 and R2 ∼ q2 then R1.R2 ∼ q1 ∗q2.
• If R ∼ q then R−1 ∼ q̄

By definition, the application of R ∼ q to vector x is

• y = Rx = q ∗ x ∗ q̄

Conversions between unit quaternions and rotation

vectors Let r = θ n and q = ±(a,v) be related

to the same rotation R. We have then a = cos(θ/2)
and v = sin(θ/2) n. The conversion from rotation

vector to quaternion is then

q(r) =

(
cos(θ/2) ;

sin(θ/2)

θ
r

)

with θ = ‖r‖. Conversely, the rotation vector can be

written (the notation
‖q‖=1
=== means equal if ‖q‖ = 1)

r(q) = 2 sign(a) arcsin

(
‖v‖√

a2 + ‖v‖2

)
v

‖v‖

‖q‖=1
=== 2 sign(a)

arcsin(‖v‖)

‖v‖
v

More details will be found with Jacobians of these

operations.
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A.1.4. Jacobians

We now have to differentiate the previous operations.

These Jacobians (see section 2.4) are needed to prop­

agate the covariance matrices, and in the linearization

of the Extended Kalman Filtering equations. We recall

first the differentiation of some usual operators for 3D

vectors.

• Norm and Normalization:

∂‖x‖

∂x
=

x⊤

‖x‖

∂

∂x

(
x

‖x‖

)
=

−Sx
2

‖x‖3

• Dot product:

∂ < x|y >

∂x
= y⊤ ∂ < x|y >

∂y
= x⊤

• Cross Product:

∂x × y

∂x
= −Sy

∂x × y

∂y
= Sx

Inversion of a rotation vector: r(−1) = −r The dif­

ferentiation of the inversion is very simple since:

∂r(−1)

∂r
=

∂(−r)

∂r
= − Id (A3)

Application of a rotation vector: r ⋆ x = R.x The

problem is to compute the Jacobian
∂(r⋆x)

∂r
. Let α, β, γ

and δ be the following functions of θ with their Taylor

expansions for a small θ:

α = sin θ/θ = 1 − θ2

6 + O
(
θ4

)

β = (1 − cos θ)/θ2 = 1
2 − θ2

24 + O
(
θ4

)

γ = α′/θ = (cos θ − α)/θ2 = 1
3 − θ2

30 + O
(
θ4

)

δ = β′/θ = (α − 2β)/θ2 = − 1
12 + θ2

180 + O
(
θ4

)

With Rodrigues formula, we can then write

r ⋆ x = x + α.Sr.x + β.Sr
2.x

and taking into account the following derivatives

∂(Sr.x)
∂r

= −Sx
∂(Sr

2.x)
∂r

= Sx.Sr − 2Sr.Sx

and ∂θ/∂r = r⊤/θ, we can differentiate it using the

chain rule, which gives after factorizations

∂(r ⋆ x)

∂r
= −Sx

(
γ.r.r⊤ − β.Sr + α. Id

)

−Sr.Sx

(
δ.r.r⊤ + 2β. Id

) (A4)

Link with other works: Another way to differentiate

the rotation application is given by N. Ayache in (Ay­

ache, 1991): let η be the function η = (1 − α)/θ2

(η = 1
6 − θ2

120 + O
(
θ4

)
for a small θ), Ur the matrix

Ur = η Sr
2 + β Sr + Id

and du the infinitesimal vector du = Ur.dr. Then

he showed that, for any small increment dr of the

rotation vector r, the increment dR of the rotation

matrix R is given by dR = Sdu.R. To differentiate

the application, we can then write

(R + dR)x − R.x = dR.x = Sdu.R

= −S(R.x).du = −S(R.x).Ur.dr

and hence

∂(r ⋆ x)

∂r
= −S(R.x).Ur (A5)

which is only a factorized form of equation (A4). From

a computational point of view, the first form is much

faster, in particular if we note that

Sr.Sx = x.r⊤− < x|r > Id = x.r⊤ − Tr(x.r⊤) Id

Composition of two rotation vectors The most com­

plex part of these computations is the following: how to

compute the Jacobians of r2◦r1 with respect to the two

rotation vectors? From r = r2◦r1 = r(q(r2)∗q(r1)),
we can easily derive with the chain rule

∂r

∂r1
=

∂r

∂q
.
∂q

∂q1
.
∂q1

∂r1
(A6)

The formula being symmetrical for the derivation with

respect to r2. The problem is now to compute these

intermediate Jacobians.

From rotation vector r to unit quaternion q. Let q =
(a,v) be one of the unit quaternion associated with

This draft paper is provided to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other

copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. This work may not

be reposted without the explicit permission of the copyright holder.



3­D Registration Methods 227

rotation vector r, and θ = ‖r‖. From a = cos(θ/2)

and v = sin(θ/2)
θ r, we get

∂a

∂r
= −

sin(θ/2)

2

r⊤

θ
= −

v⊤

2

∂v

∂r
=

cos(θ/2)

2θ
r.r⊤ −

sin(θ/2)

2θ

(
Sr

θ

)2

Since Sr
2 = r.r⊤−θ2 Id, and introducing the follow­

ing functions of θ:

κ =
sin(θ/2)

θ
=

1

2
−

θ2

48
+ O

(
θ4

)

λ =
sin(θ/2)

θ3
−

cos(θ/2)

2θ2
=

1

24

(
1 −

θ2

40

)
+ O

(
θ4

)

we can summarize the results as follows

q =

∣∣∣∣∣∣

cos
(

θ
2

)

κ.r

∂q

∂r
=




−v⊤

2

κ Id − λ.r.r⊤


 (A7)

From unit quaternion q to rotation vector r. Let

q = (a,v) be a quaternion. The unit quaternion q

‖q‖

represent the rotation associated with rotation vector r.

We can get r from q with the following equation.

r(q) = 2sign(a) arcsin

(
‖v‖√

a2 + ‖v‖2

)
v

‖v‖

‖q‖=1
=== 2 sign(a)

arcsin(‖v‖)

‖v‖
v

If a is positive, we can derive that

∂r
∂a =

−2v

a2 + ‖v‖2

‖q‖=1
=== −2v

∂r

∂v
=

2a

a2 + ‖v‖2

v.v⊤

‖v‖2

−
2

‖v‖
arcsin

(
‖v‖

a2 + ‖v‖2

)
Sv

2

‖v‖2

‖q‖=1
=== 2

arcsin(‖v‖)

‖v‖
Id

+2

(
a −

arcsin(‖v‖)

‖v‖

)
v.v⊤

‖v‖2

For a negative, the above equations can be used for

q′ = −q and thus

∂r

∂a
=

∂r

∂a′
.
∂a′

∂a
= −2v′.(−1) = −2v

∂r

∂v
=

∂r

∂v′
.
∂v′

∂v

= −2
arcsin(‖v‖)

‖v‖
Id

+2

(
−a −

arcsin(‖v‖)

‖v‖

)
v.v⊤

‖v‖2

To summarize the calculi for ‖q‖ = 1, let µ = ‖v‖
and τ and υ the following functions of a and µ

τ = 2 sign(a)
arcsin(µ)

µ

= 2 sign(a)

(
1 +

µ2

6

)
+ O

(
µ4

)

υ =
2a − τ

µ2
= 2 sign(a)

µ
√

1 − µ2 − arcsin(µ)

µ3

= −2 sign(a)

(
2

3
+

µ2

5

)
+ O

(
µ4

)

where sign is the sign function with sign(0) = ±1
indifferently. We have then

r = τ.v

∂r

∂q
=

∂r

∂(a,v)
=

[
−2v ; τ Id + υ.v.v⊤

] (A8)

Composition of the two quaternions: q = q2 ∗ q1

Let qi = (ai,vi). We have then

q = q2 ∗ q1 =

∣∣∣∣∣∣

a1a2− < v1|v2 >

v2 × v1 + a2v1 + a1v2

The Jacobians can then be easily written

∂q

∂q1
=

∂(q2 ∗ q1)

∂q1
= a2 Id +




0 −v⊤
2

v2 Sv2


 (A9)

and (beware of the minus sign for the right­bottom

block of the matrix due to the cross product):

∂q

∂q2
=

∂(q2 ∗ q1)

∂q2
= a1 Id+




0 −v⊤
1

v1 −Sv1


 (A10)
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Computations concerning rotations are now com­

pleted: we can apply, inverse and compose rotation

vectors and compute the Jacobians of these operations.
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Notes

1. If the covariance matrix (the noise process) is already provided

with the feature, we can use it directly.

2. The absence of bias for the registration process can be verified

on synthetic data.
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