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Abstract 

Background: Artificial intelligence (AI) has the potential to transform our healthcare systems significantly. New AI 
technologies based on machine learning approaches should play a key role in clinical decision-making in the future. 
However, their implementation in health care settings remains limited, mostly due to a lack of robust validation pro-
cedures. There is a need to develop reliable assessment frameworks for the clinical validation of AI. We present here an 
approach for assessing AI for predicting treatment response in triple-negative breast cancer (TNBC), using real-world 
data and molecular -omics data from clinical data warehouses and biobanks.

Methods: The European “ITFoC (Information Technology for the Future Of Cancer)” consortium designed a frame-
work for the clinical validation of AI technologies for predicting treatment response in oncology.

Results: This framework is based on seven key steps specifying: (1) the intended use of AI, (2) the target population, 
(3) the timing of AI evaluation, (4) the datasets used for evaluation, (5) the procedures used for ensuring data safety 
(including data quality, privacy and security), (6) the metrics used for measuring performance, and (7) the procedures 
used to ensure that the AI is explainable. This framework forms the basis of a validation platform that we are building 
for the “ITFoC Challenge”. This community-wide competition will make it possible to assess and compare AI algorithms 
for predicting the response to TNBC treatments with external real-world datasets.

Conclusions: The predictive performance and safety of AI technologies must be assessed in a robust, unbiased and 
transparent manner before their implementation in healthcare settings. We believe that the consideration of the 
ITFoC consortium will contribute to the safe transfer and implementation of AI in clinical settings, in the context of 
precision oncology and personalized care.
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Background

Artificial intelligence (AI) has the potential to transform 

our healthcare systems considerably and will play a key 

role in clinical decision-making in the future [1]. AI has 

been in the spotlight since the 1980’s, when the first 

“expert systems” simulating the clinical reasoning for 

clinical decisions emerged [2]. With the huge increase in 

medical data over the last few decades, new approaches 

have been developed (principally machine learning (ML), 

including neural networks). ML techniques trained on 

clinical datasets [2] have already proved useful for diag-

nostic applications [3–5] and risk prediction [6].

Despite the enthusiasm surrounding AI, their use in 

healthcare settings remains limited. AI technologies 

require rigorous assessment before they can be used 

in clinical practice [7]. For example, the first AI-based 

device to receive market authorization from the FDA 

was assessed with a large prospective comparative clini-

cal trial including 900 patients from multiple sites [4]. 

AI technologies must satisfy stringent regulations for 

approval as medical devices, because (1) the decision 

support provided is optimized and personalized con-

tinuously in real time, according to the phenotype of the 

patient [7]; (2) the performance of AI depends strongly 

on the training datasets used [8], resulting in a large risk 

of AI performing less well in real practice [9–11] or on 

another group of patients or institutions [9]. It is, there-

fore, essential to assess the performance and safety of AI 

before its introduction into routine clinical use.

Robust evaluations are required for AI to be trans-

ferred to clinical settings, but, in practice, only a few 

such systems have been validated with external datasets 

[12, 13]. A recent literature review reported that most 

studies assessing AI did not include the recommended 

design features for the robust validation of AI [9]. �ere 

is, therefore, a need to develop frameworks for the robust 

validation of the performance and safety of AI with reli-

able external datasets [14, 15].

Finding, accessing and re-using reliable datasets is a 

real challenge in medicine (contrasting with other FAIR 

data collections [16]). However, with the development 

of clinical data warehouses within hospitals, it should 

become easier to obtain access to “real datasets”. �e 

benefit of using real-world data for research purposes 

[17], and, particularly, for generating complementary evi-

dence during AI life cycles, has been highlighted by the 

European Medicines Agency [18]. Real-world data from 

clinical data warehouses may, therefore, constitute a 

valuable source of reliable external datasets for validating 

AI before its implementation in healthcare settings.

Guidelines on the regulation of AI technologies include 

high-level directions, but not specific guidance on the 

practical steps in AI evaluation [19]. Here, we propose 

a framework for assessing the clinical performance and 

safety of AI in the context of precision oncology. More 

precisely, the objective is to use real-world data collected 

from clinical data warehouses and biobanks to assess AI 

technologies for predicting the response to anti-cancer 

drugs. We developed this framework as part of the Euro-

pean Flag-Era project ‘ITFoC (Information Technology 

for the Future of Cancer)’ [20], to validate AI algorithms 

with -omics and clinical data for the prediction of treat-

ment response in triple-negative breast cancer (TNBC). 

�is framework could help AI developers and institutions 

to design clinically trustworthy decision support systems, 

and to assess them with a robust methodology.

Methods

Breast cancer is the most common cancer in women 

worldwide [21, 22]. �e most aggressive type is triple-

negative breast cancer (TNBC), characterized by a lack 

of estrogen receptor, progesterone receptor and human 

epidermal growth factor expression, together with a high 

histologic grade and a high rate of mitosis [23]. TNBC 

accounts for 10–20% of all breast cancers, and has a very 

poor prognosis, with chemotherapy the main therapeutic 

option [23, 24]. New targeted and personalized therapies 

are, therefore, urgently required [23].

In recent decades, cancer treatments has followed a 

“one-size-fits-all” approach based on a limited set of 

clinical criteria. Recent advances, rendering sequenc-

ing techniques more widely available, are providing new 

opportunities for precision oncology, the personaliza-

tion of treatment based on a combination of clinical and 

molecular data, and improvements in drug efficacy, with 

fewer side effects.

In this context, many AI models have been developed, 

based on the detailed molecular characterization of indi-

vidual tumors and patients. �ey model the effects and 

adverse effects of drugs in the context of TNBC treat-

ment [25, 26]. However, these AI models often lack clini-

cal validation, and require further external evaluation. 

�e ITFoC (Information Technology for the Future of 

Cancer) consortium [20], a multidisciplinary group from 

six European countries, has proposed a new approach 

to the unbiased validation of these AI models. �is 
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approach involves evaluating the performance and safety 

of these AI models through robust clinical evaluation 

with reliable and external real-world datasets, before 

their implementation in healthcare settings. �e ITFoC 

consortium has designed a framework to meet this goal. 

�is framework is based on seven key steps specifying 

(Fig. 1): (1) the intended use of AI, (2) the target popula-

tion, (3) the timing of AI evaluation, (4) the datasets used 

for evaluation, (5) the procedures used for ensuring data 

safety (including data quality, privacy and security), (6) 

the metrics used for measuring performance, and (7) the 

procedures used to ensure that the AI is explainable.

Results

�e framework designed by the “ITFoC consortium” 

follows seven principles that we consider essential for 

the assessment of AI technologies. �is framework was 

developed to support a community-based programming 

contest to be held during “Pink October”. �is “ITFoC 

challenge”, will open a platform enabling various teams 

(academic, research, and MedTech organizations) to test 

their AI-based approaches with TNBC datasets provided 

by our partners for the purpose of this competition.

We describe here the framework and the paral-

lel actions planned for the setting up of the “ITFoC 

challenge”.

Step 1: Specify the intended use of AI

�e first step in AI assessment is accurately defining its 

intended use (for medical purposes) [7], together with 

its input (i.e. the data required to run the AI), and out-

put (i.e. the results provided by AI) parameters.

Once the intended use of AI is clearly stated, it is 

important to be sure that:

• AI is used only to address questions that are relevant 

and meaningful for the medical community. Indeed, 

AI may be irrelevant if it is used in a correct, but not 

useful manner in healthcare settings [27]. It is, there-

fore, important to define clearly the benefits of AI for 

a particular clinical scenario.

• AI complies with ethical, legal and social standards 

[27, 28]. As stated by the High-Level Expert Group 

on AI established by the European Commission [29], 

AI should (1) comply with all applicable laws and 

regulations, (2) adhere to ethical principles and val-

ues, (3) not disadvantage people from particular soci-

odemographic backgrounds or suffering from certain 

conditions, (4) not increase discrimination based on 

ethnicity or sex.

Fig. 1 The seven key steps needed for the clinical validation of AI technologies
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Planned actions

In the “ITFoC challenge”, we aim to assess AI with the fol-

lowing intended use: predicting the response of TNBC 

patients to treatment, regardless of their origin or ethnic 

background. More precisely, AI should be able to predict, 

at the time of diagnosis, whether particular patients are 

likely to respond to standard treatment, so that prob-

able non-responders can be offered alternative treatment 

options.

�e expected clinical impact is an improvement in 

survival rates for TNBC patients, particularly those not 

responding to standard treatment.

Step 2: Clearly specify the target population

�e second step in AI assessment is accurately defining 

the target population. AI must be evaluated on inde-

pendent datasets similar to the target population of the 

AI technology. �e population is defined during the 

development phase, by specifying patient and disease 

characteristics, in a similar manner to the definition 

of eligibility criteria in conventional clinical trials. �e 

sets of patients selected for the assessment should be 

representative of the target population, and consecu-

tive inclusion or random selection should be used for 

patient recruitment, at multiple sites, to limit the risk 

of spectrum bias (i.e. the risk of the patients selected 

not reflecting the target population) [15], and to ensure 

that the results can be generalized.

Contrary to the AI validation and training stages, 

which require large datasets, AI evaluation does not 

necessarily require ‘big data’ [15]. As in randomized 

clinical trials, the study sample should be determined 

according to the study hypothesis, expected effect (e.g. 

superiority, non-inferiority) and degree of importance 

(differences important or unimportant) [15].

Planned actions

In the “ITFoC challenge”, the target population is “women 

who have been diagnosed with TNBC”. We need to assess 

AI performance in terms of treatment response. We 

must therefore select patients who have already received 

first-line treatment (making it possible to compare the 

predicted and observed responses in a retrospective mul-

ticentre cohort of TNBC patients).

Step 3: Specify the timing of AI evaluation

�e third step in AI assessment is clearly defining the 

timing of the evaluation. As in drug development, vari-

ous phases can be distinguished for AI evaluation (Fig. 2):

• �e “fine-tuning” phase is an essential part of AI 

development. It is equivalent to the “preclinical 

phase” in drug development, when drugs are tested 

in a laboratory setting. Here, AI is evaluated inter-

nally in three steps: training, internal validation, and 

testing. �e training step involves training the algo-

rithm on a subset of so-called “training” data. �e 

internal validation involves fine-tuning the algorithm 

or selecting the most optimized parameters. �e test 

step corresponds to the final internal assessment of 

the performance of the algorithm.

• �e “clinical validation” phase follows the internal 

validation and testing of AI. It is equivalent to phases 

I and II of clinical trials, in which drug efficacy and 

safety are assessed in a limited number of patients. 

Here, the performance and safety of AI are assessed 

with external data. �e goal is to check that AI will 

not result in lost opportunities for patients through 

the generation of false-positive or false-negative pre-

dictions (i.e. for patients predicted to respond to a 

treatment who do not in reality, and vice-versa).

• Finally, patient outcomes are assessed after clini-

cal validation with external datasets. �is phase is 

equivalent to the phase III of clinical trials, in which 

new drugs are compared to standard treatment in 

randomized controlled trials (RCT). Here, AI is 

implemented in healthcare settings, and its effect on 

patient outcomes and the efficiency of the healthcare 

system is assessed with real patients, via a RCT.

Planned actions

In the “ITFoC challenge”, we will focus on the “clini-

cal validation” phase. Akin to early-phase drug trials, 

the goal will be to determine whether the AI developed 

is sufficiently accurate and safe for transfer into clinical 

practice for further assessment in RCTs.

Step 4: Specify the datasets used for AI evaluation

�e fourth step in AI assessment is the selection of reli-

able and representative datasets:

• Publicly accessible datasets [1] are available through 

public repositories (e.g. ArrayExpress [30], GEO [31]) 

or are released by research and/or medical institu-

tions (e.g. TCGA, or ICGC collections). However, 

most are more suitable for bioinformatics than for 

clinical informatics [1].

• Patient databases store retrospective or prospective 

datasets generated by clinical trials or routine care 

(real-world data).

• ‘Clinical trial’ datasets are collected in the con-

trolled environment of a specific clinical trial 
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Fig. 2 Evaluation of AI-timing
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(Table  1), from a restricted population that may 

not be representative of the general population. 

�e data collection process is time-consuming 

and costly, but the resulting data should be homo-

geneous, highly reliable and should have a well-

structured format. However, such datasets are not 

generally made publicly available, for the follow-

ing reasons [32]: the potential loss of competitive 

advantage for the organization funding the study; 

the possibility of invalidating the results published 

through secondary analyses; the costs associated 

with data sharing and, finally, due to ethical and 

scientific considerations. Moreover, data collec-

tion is usually limited to predefined sets of vari-

ables, and it may, therefore, be difficult to re-use 

secondarily these data to address questions not 

included in the initial protocol [32].

• Real-world datasets are usually stored in clinical 

data warehouses (Table 1). �ese datasets are col-

lected throughout patient care and have various 

clinical sources (structured and unstructured clin-

ical records, laboratory, pharmacy, and radiology 

results, etc.) [17, 33]. �e collection of these data 

is less time-consuming and costly than that for 

clinical trial datasets. However, their exploitation 

requires careful data quality management, because 

they are highly variable and were initially collected 

for clinical purposes rather than for research [34–

37].

Split-sample validation involves randomly splitting 

datasets into separate parts, which are then used for 

both the development and internal evaluation of AI [12, 

15]. �is method is relevant only during the develop-

ment phase, and cannot be used to validate the gen-

eralizability of AI. Indeed, there is a risk of overfitting 

bias (i.e. the AI fits too exactly to the training data), and 

spectrum bias (i.e. the internal dataset is not represent-

ative of the population on which the AI will be used). 

Validation on completely independent external data-

sets is required to overcome these limitations and for 

validation of the generalizability of AI [15]. Geographic 

sampling (i.e. using datasets collected by independent 

investigators from different sites) could considerably 

limit both biases, and improve the estimation of AI 

generalizability in healthcare settings [15].

Planned actions

In the “ITFoC challenge”, we are working with retrospec-

tive real-world datasets collected from the clinical data 

warehouses and biobanks of multiple hospitals, ensuring 

that the TNBC population is broadly represented.

The inclusion criteria for datasets are:

• A follow-up period of at least three years, to ensure 

the standardized evaluation of treatment response

• High-quality data extracted from a clinical data ware-

house or from a dedicated cancer database

• Biological samples must be available in biobanks for 

additional -omics analyses, if required.

• Patients must have signed a consent form for the 

reuse of their data and the reuse of their samples for 

research purposes

�e objective is not to acquire thousands of patient 

datasets of variable quality, but to collect a representative 

set of high-quality patient data.

Step 5: Specify the procedures used to ensure data safety

�e fifth step in AI assessment is ensuring data safety, 

including data quality, privacy and security, during the 

evaluation phase.

Table 1 Clinical trial versus Real-world datasets for AI evaluation

Clinical trial datasets Real-world datasets

Setting Experimental Real world

Population Representativeness Selective sample Large sample

Type Homogeneous Heterogeneous

Size +/− ++++

Time period for recruitment and follow-
up

Limited Long

Data Type Clinical +/− -omics Clinical +/− -omics

Collected by Dedicated specialist professionals Various healthcare professionals

Quality +++ +/−

Need for data management +/− +++

Need for anonymization + +
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Data quality

Standardization is strongly recommended, to guarantee 

the quality, sharing, portability and reusability of data 

for AI evaluation [38]. Standardization is defined as the 

representation of heterogeneous data with consensual 

specifications [38]. It includes specifications for both data 

fields (i.e. variables) and their value sets (i.e. codes) [38]. 

Standardization is highly dependent on the type of data-

sets involved.

Clinical data Clinical data are highly complex, for sev-

eral reasons: (1) they come from different sources (e.g. 

electronic health records, reimbursement claims data), 

(2) they have various formats (e.g. free text, numbers, 

images), and representations (e.g. structured, semi-struc-

tured, unstructured); (3) the level of granularity is highly 

variable, ranging from general to fine-grained concepts; 

(4) datasets are not complete (e.g. missing data); (5) data-

set content varies within and between institutions.

Various common data models can be used to standard-

ize clinical datasets. �ese models include the CDISC 

(Clinical Data Interchange Standards Consortium) model 

for “clinical trial datasets”, which can be used to ensure 

information system interoperability between healthcare 

and clinical research, and the OMOP (Observational 

Medical Outcomes Partnership) common data model for 

real-world datasets. �e data values must also be harmo-

nized by the use of terminologies ensuring interoperabil-

ity between AI systems, such as the ICD 10 (International 

Classification of Diseases) for the standardization of 

medical diagnoses, LOINC (Logical Observation Iden-

tifiers Names and Codes) for biological tests, Med-

DRA (Medical Dictionary for Regulatory Activities) for 

adverse events, and so on. Most standard terminologies 

are integrated into the UMLS (Unified Medical Language 

System) metathesaurus, which can be used as a global 

thesaurus in the biomedical domain.

-Omics data -Omics data are complex: (1) they are 

generated by different techniques, with different bioin-

formatic tools; (2) they may be based on different types 

of NGS (next-generation sequencing) data, such as 

WGS (whole-genome sequencing), WES (whole-exome 

sequencing), and RNA-sequencing, or on data from prot-

eomics and metabolomics platforms; (3) their integration 

and interpretation remain challenging, due to their size 

and complexity, and the possibility of experimental and 

technical errors during sample preparation, sequencing 

and data analysis [39].

-Omics data can be standardized at any stage from data 

generation to data interpretation. For example, MIAME 

(minimum information about a microarray experi-

ment) [40] and MAGE (microarray gene expression data 

modeling and exchange standards) have been developed 

for microarray experiments [41]. �e most widely used 

format for variant identification is VCF (variant clinical 

format), which includes a number of fields for genomic 

coordinates, reference nucleotide, and variant nucleotide, 

for example, but also metadata adding meaningful infor-

mation relating to variants: e.g. gene symbol, location, 

type, HGVS (human genome variation society) nomen-

clature, predicted protein sequence alterations and 

additional resources, such as cross-references to cancer-

specific and general genomic databases and prior in silico 

algorithm-based predictions.

Standardization of clinical and -omics data Standardi-

zation makes it possible to combine data from multiple 

institutions. It also ensures the consistency of datasets, 

and improves the quality and reliability of clinical and 

-omics data. �ese aspects are crucial, to maximize the 

chances of predicting the real impact of AI on the health-

care process. Indeed, the ultimate performance of AI 

depends strongly on the quality of data used for evalua-

tion [12, 13].

Planned actions In the “ITFoC” challenge, we will apply 

a range of internationally accepted standards for breast 

cancer data, to overcome issues of data heterogeneity 

and variability associated with the use of data of different 

provenances [34, 35] and to ensure access to high-quality 

real-world datasets [38]

Clinical datasets will be standardized with the OMOP 

common data model [42] for data structure and the OSI-

RIS model [43] for data content. �e OMOP CDM is sup-

ported by the OHDSI consortium (Observational Health 

Data Sciences and Informatics), and OSIRIS is supported 

by the French National Institute of Cancer. Both stand-

ards include a list of concepts and source values, con-

sidered the minimal dataset necessary for the sharing of 

clinical and biological data in oncology. Items and values 

are structured and standardized according to interna-

tional medical terminologies, such as ICD 10, LOINC, 

SNOMED CT. A standardized TNBC data model based 

on these models will be used: items will be added, 

removed and/or transformed, and values will be adapted 

to TNBC data (e.g. the values of the “biomarker” item are 

limited to RO, RP and HER2 receptors, Ki67). �e instan-

tiated model contains the dataset specifications provided 

to participants in this challenge. �e database will be 

populated locally through dedicated extract-transform-

load pipelines.

It may not be possible to extract -omics data directly 

from clinical data warehouses, because these data are 
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not widely collected in routine care. If not already pre-

sent in the electronic health record of the patient, -omics 

data will be generated from patient samples stored in 

biobanks. For the challenge, WES data, RNA-sequencing 

data, microRNA expression levels and metabolomic data 

will be obtained from primary tumor samples, and from 

blood samples as a control. Data quality will be ensured 

by using only freshly frozen tumors with a celll content of 

more than 30% (as determined by a pathologist). Multi-

level -omics data contain a wealth of potentially relevant 

information, including molecular variants (directly or 

indirectly) affecting clinically significant pathways. �eir 

incorporation into the challenge dataset should greatly 

increase the predictive power of the AI technologies 

evaluated.

Data privacy

�e patients’ right to privacy must be respected. Patients 

must be informed about the storage and use of their 

data, and must have signed a consent form authorizing 

the collection and use of their data for research [44, 45]. 

Within Europe, data privacy is regulated by the General 

Data Protection Regulation (GDPR) [45]), which protects 

patients against the inappropriate use of their data. Such 

regulations ensure that (1) patients can choose whether 

or not to consent to the collection of their data, (2) 

patients are informed about the storage and use of their 

data (principle of transparency), (3) data are stored in 

an appropriate manner (principle of integrity), (4) data 

are used only for certain well-defined purposes, and (5) 

patients have the right to change their minds and to with-

draw consent at any time.

Planned actions In the “ITFoC challenge”, data privacy 

will be respected:

• Only datasets from patients who have signed a con-

sent form authorizing the reuse of their data and 

samples for research will be included in the chal-

lenge.

• �e clinical data will be pseudo-anonymized by 

state-of-the-art methods (and in accordance with the 

GDPR), without altering the scientific content. Any 

clinical information that could be used, directly or 

indirectly, to identify the individual will be removed 

(e.g. dates will be transformed into durations (com-

puted as a number of days)).

Data security

AI evaluation should be hosted and managed on a secure 

platform [46], that can ensure that confidentiality, integ-

rity and/or the availability of patient information are not 

compromised deliberately or accidentally [44]. Any plat-

form used for AI evaluation should implement the strict-

est control over access, to ensure that data are available 

only to authorized parties [44], only for the duration of 

the evaluation [44], and that any personal data (including 

both data directly linked to a patient, such as surname, 

and indirectly linked to the patient, such as diagnosis 

date) are removed [47].

Planned actions In the “ITFoC challenge”, data security 

will be ensured by using a dedicated ITFoC data space. 

Workflows will be created between local clinical data 

warehouses and the local ITFoC data space, for standardi-

zation of the datasets with respect to the standard TNBC 

model. Each standardized dataset will be transferred to a 

secure platform, on which it will be stored (Fig. 3).

Participants will assess their AI technologies with the 

same datasets hosted on a secure platform, but they will 

not be allowed to access datasets directly. Clinical and 

-omics data will be inaccessible throughout the duration 

of the challenge, and participants will be provided only 

with the specifications of the datasets.

Step 6: Specify the metrics used for measuring AI 

performance

�e sixth step in AI assessment is defining the metrics 

used to evaluate the performance of the AI algorithm.

�e intrinsic performance of the AI itself is assessed 

during the “fine-tuning” and the “clinical validation” 

phases. Discrimination performance is measured in 

terms of sensitivity and specificity for binary outputs [15]. 

By plotting the effects of different levels of sensitivity and 

specificity for different thresholds, a ROC (receiver oper-

ating characteristics) curve can be generated [48]. �is 

ROC curve represents the discrimination performance of 

a particular predictive algorithm [15]. �e most common 

metric used is the AUC (area under the ROC Curve), the 

values of which lie between 0 and 1. Algorithms with high 

levels of performance have a high sensitivity and specific-

ity, resulting in an AUC close to 1 [15, 48].

Calibration performance is measured for quantitative 

outputs, such as probabilities [15]. It is used to determine 

whether predicted probabilities agree with the real prob-

abilities [15]. �e predicted probabilities are plotted on 

the x-axis, and the observed real probabilities are plotted 

on the y-axis, to generate a calibration plot [15]. �is plot 

can be used to estimate the goodness of fit between the 

predicted and real probabilities [49]. Bland–Altman plots 

can also be used to analyze the agreement between the 

predicted and the observed probabilities [50].

A more detailed discussion of the statistical methods 

used to measure AI performance is beyond the scope of 

this article but can be found elsewhere [49].
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Fig. 3 Data workflow for the ITFoC challenge
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�e clinical performance of AI in real clinical settings is 

assessed during the “patient outcome assessment” phase. 

AI metrics, such as AUC, are not always understood by 

clinicians [51], and do not necessarily reflect clinical effi-

cacy [52]. �ere is a need to determine the effect of AI 

on patient outcomes in real-life conditions. Ideally, the 

effects of AI should be compared to a gold standard [53] 

or baseline (i.e. standard procedure) in an RCT using 

standard statistical approaches [15].

Planned actions

In the “ITFoC challenge”, we will assess the performance 

of AI itself with the binary criterion “predicted response 

to treatment” during the clinical validation phase. For 

each AI algorithm, various metrics will be reported, 

including AUC, confusion matrix, sensitivity, specificity, 

positive and negative predictive values.

�e evaluation will be carried out by a scientific com-

mittee, independent of the ITFoC organizational com-

mittee. �is scientific committee will include members 

from various disciplines (e.g. bioinformaticians, medical 

doctors, data scientists, statistical and machine-learning 

experts) and from various international institutions (aca-

demic, research and hospital institutions).

Step 7: Specify the procedures to ensure AI explainability

�e seventh step in the assessment of AI is examining the 

underlying algorithm [54, 55]. �is step has two expected 

benefits. First, it may prevent an inappropriate represen-

tation of the dataset used for training/validation. Sec-

ond, it may reveal the learning of unanticipated artifacts 

instead of relevant inputs [54].

�e input data must be analyzed first [54]. �e type 

(structured or unstructured), format (e.g. text, numbers, 

images), and specifications (e.g. variables used) of the 

data must be assessed. A better comprehension of the 

input data should ensure that the data used by the AI are 

comprehensive and relevant to clinical practice.

�e underlying algorithm should also be analyzed [54]. 

�e code, documented scripts, and the computer envi-

ronment should be evaluated by independent research-

ers. Ideally, independent researchers should even run the 

pipeline, check the underlying AI methods and evaluate 

the explainability of the outputs [54]. However, AI devel-

opers may be reluctant to share their codes openly, for 

scientific or economic reasons. In such cases, alternatives 

can be found, such as a trusted neutral third party signing 

a confidentiality form, or a virtual computing machine 

running the code with new datasets [54], or the provision 

of documentations about the AI.

Planned actions

In the “ITFoC challenge”, we aim at explain why some AI 

successfully predict treatment response, whereas oth-

ers fail. Each AI developer participating in the challenge 

should provide the data specifications used by the AI. 

We will encourage the AI developers to share their codes 

openly. Alternatively, they could opt for restricted code 

sharing with the scientific committee (the scientific com-

mittee will sign a confidentiality agreement).

Discussion

We describe here the framework designed by the ITFoC 

consortium for the assessment of AI technologies for 

predicting treatment response in oncology. �is frame-

work will be used to construct a validation platform for 

the “ITFoC Challenge”, a community-wide competition 

for assessing and comparing AI algorithms predicting 

the response to treatments in TNBC patients from real-

world datasets.

Use of real-world datasets for validating AI technologies

�e systematic and rigorous validation of AI technologies 

is essential before their integration into clinical practice. 

Such evaluation is the only way to prevent unintentional 

harm, such as misdiagnosis, inappropriate treatment or 

adverse effects, potentially decreasing patient survival. 

To date, only a few AI-based solutions have actually been 

clinically validated [9], mostly exclusively on internal 

datasets, with no external validation. RCTs in which AI 

technologies are compared to the gold standard (i.e. rou-

tine care delivered by medical experts) are the strongest 

and most reliable approach for assessing AI performance 

and safety [56]. Such trials provide a more detailed evalu-

ation, including a range of relevant parameters, such as 

patient benefits in terms of quality of life, acceptance by 

physicians, integration into the clinical workflow, and 

economic impact. However, RCTs are costly, both finan-

cially and in terms of time required, and should be pre-

ceded by early-phase studies [4].

Here, we support the idea that when AI technologies 

reach a state of sufficient “maturity”, they should undergo 

clinical validation with external real-world datasets. �is 

would make it possible to measure the performance 

and safety of AI quickly and reliably in conditions close 

to those encountered in real-life. �is validation pro-

cess would save both money and time, due to the use of 

real-world datasets from clinical data warehouses. At the 

end of this early validation step, if the performance of a 

specific AI technology falls short of expectations (e.g. if 

it fails to predict response to treatment, or is considered 

unsafe), then it can be rejected (as in early-phase trials 

for drugs), and no further evaluation in RCTs is required. 

If an AI is validated clinically with these real-world 
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datasets, it can be considered a good candidate and 

allowed to progress to the next stage in evaluation (i.e. an 

RCT). �e validation process outlined here (“validation 

step with retrospective real-world datasets”) should thus 

be an integral part of the entire AI evaluation process, 

constituting the decisive step concerning whether or not 

to perform a RCT.

Use of a community-wide competition to assess AI 

technologies

We propose here to organize the “validation step” in the 

form of a community-wide competition. Competition-

based approaches are increasingly being seen as relevant 

in the medical informatics domain, with participating 

teams usually tackling a challenge over a limited time 

period, with access to an anonymized dataset for the test-

ing of methods. For example, the i2b2 (Informatics for 

Integrating Biology and the Bedside) project includes 

a “Natural Language Processing” challenge for assess-

ing methods for understanding clinical narratives [57]. 

Competition-based approaches have also been developed 

in oncology (e.g. the Sage Bionetworks—DREAM Breast 

Cancer Prognosis Challenge, designed for developing 

computational models that can predict breast cancer 

survival [58, 59]; and the Prostate DREAM Challenge, 

for identifying prognostic models capable of predicting 

survival in patients with metastatic castration-resistant 

prostate cancer [46]). �e utility of these crowdsourced 

challenges for the community has clearly been demon-

strated. �ey have multiple advantages: (1) they allow the 

development of models that outperform those developed 

with traditional research approaches [58, 60], (2) they 

encourage collaboration between teams for the improve-

ment of models [60], and (3) they provide more trans-

parent results, because both favorable and unfavorable 

results are published [58, 60].

We derived a framework from these competition-

based approaches. Our approach is based on the same 

principles as these existing challenges, but focusing on 

the combination of real-world data collected from clini-

cal data warehouses (rather than data collected through 

RCTs), and -omics data generated by next-generation 

sequencing techniques. �e results of the “ITFoC chal-

lenge” will provide essential proof-of-principle evidence 

for the use of real-world datasets for validating AI tech-

nologies in a competition setting, as an essential precur-

sor to RCTs.

Accelerating AI transfer to healthcare settings

We propose a framework for the clinical validation of AI 

technologies before their transfer to clinical settings and 

clear actions in the domain of TNBC treatment. Both the 

framework and the planned actions can be generalized 

to other questions in oncology, with minor adaptations. 

For instance, for diagnosis, other datasets could be con-

sidered (e.g. images, signals). Likewise, we propose here 

the use of real world dataset from various healthcare 

centres, to guarantee the volume and representativeness 

of the dataset. Similarly, when dealing with rare can-

cers, the datasets may come from various centers, and 

may even be extended to other sources, such as clinical 

research data. Dataset from other sources have already 

been successfully used for the assessment of AI in breast 

and prostate cancers [46, 58]. Furthermore, the metrics 

used to assess AI performance may also differ, depend-

ing on the type of cancer and the intended use of AI (e.g. 

for diagnosis, the primary outcome could be compared to 

the diagnosis made by an oncologist).

We believe that a platform, as described here, could 

help to accelerate AI transfer to healthcare settings in 

oncology. AI systems are currently considered to be 

medical devices that can only be implemented in health 

centers after the demonstration of their safety and effi-

cacy through a large prospective RCT [4]. However, this 

is time-consuming and expensive, and there is a risk of 

patient outcome studies becoming obsolete by the time 

the results become available [15]. �e use of a valida-

tion platform has several advantages: (1) several AI tech-

nologies can be assessed in parallel for the same price 

(whereas a RCT is usually designed to assess a single 

AI technology); (2) the platform can be re-used for fur-

ther AI evaluations; (3) new datasets can easily be added 

to the platform; (4) transparency is guaranteed, as the 

results are communicated even if unfavorable. For all 

these reasons, validation platforms constitute a credible 

route towards establishing a rigorous, unbiased, trans-

parent and durable approach to the assessment of AI 

technologies.

Supporting precision medicine

Clinical care decision are traditionally driven by patient 

symptoms and disease characteristics. In precision 

oncology, the scope is extended to the patient pheno-

type, preclinical symptoms, tumor characteristics and 

the complex molecular mechanisms underlying disease 

[61]. Recent advances in genetics and sequencing tech-

nologies are now enabling clinicians to include molec-

ular aspects of the disease in their clinical decision 

processes, and advances in metabolomics have facili-

tated considerations of the functional activity of can-

cer cells [62, 63]. �e use of -omics data in routine care 

(e.g. genomic, metabolomic or proteomic data [64]), is 

strongly supported by the European Medicines Agency 

[18], and could lead to significant improvements in 

patient care.
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Here, we provide support for the idea that -omics anal-

ysis should be part of the clinical decision process. �e 

“ITFoC Challenge” aims to demonstrate the benefits of 

integrating clinical data warehouses and biobanks into 

the clinical care process, in accordance with the findings 

of previous studies [65, 66]. By combining clinical and 

-omics data, AI tools may facilitate the delivery of treat-

ments that are personalized according to the characteris-

tics of the patients and their tumors, thereby increasing 

of the chances of survival and decreasing side effects. By 

designing the “ITFoC Challenge”, we aim to encourage 

the development of AI based on clinical and -omics data 

for the prediction of treatment response in cancer, and 

the personalization of cancer treatment.

Conclusions

We hereby propose a framework for assessing AI tech-

nologies based on real-world data, before their use in 

healthcare settings. �is framework includes seven 

key steps specifying: (1) the intended use of AI, (2) 

the target population, (3) the timing for AI evaluation, 

(4) the datasets selected for evaluation, (5) the proce-

dures used to ensure data safety, (6) the metrics used to 

measure performance, and (7) the procedures used to 

ensure that the AI is explainable. �e proposed frame-

work has the potential to accelerate the transfer of AI 

into clinical settings, and to boost the development of 

AI solutions using clinical and -omics data to predict 

treatment responses and to personalize treatment in 

oncology. Here, we applied this framework to the estab-

lishment of a community-wide competition in the con-

text of predicting treatment responses in TNBC.
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