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A Framework for Validation of Rule-Based Systems
Rainer Knauf, Avelino J. Gonzalez, and Thomas Abel

Abstract—This paper describes a complete methodology for the
validation of rule-based expert systems. This methodology is pre-
sented as a five-step process that has two central themes: 1) to
create a minimal set of test inputs that adequately cover the do-
main represented in the knowledge base and 2) a Turing Test-like
methodology that evaluates the system’s responses to the test in-
puts and compares them to the responses of human experts.

The development of minimal set of test inputs takes into con-
sideration various criteria, both user-defined, and domain-specific.
These criteria are used to reduce the potentially very large set of
test inputs to one that is practical, keeping in mind the nature and
purpose of the developed system.

The Turing Test-like evaluation methodology makes use of only
one panel of experts to both evaluate each set of test cases and com-
pare the results with those of the expert system, as well as with
those of the other experts. The hypothesis being presented here is
that much can be learned about the experts themselves by having
them anonymously evaluate each other’s responses to the same test
inputs. Thus, we are better able to determine the validity of an ex-
pert system.

Depending on its purpose, we introduce various ways to express
validity as well as a technique to use the validity assessment for the
refinement of the rule base.

Lastly, the paper describes a partial implementation of the test
input minimalization process on a small but nontrivial expert
system. The effectiveness of the technique was evaluated by
seeding errors into the expert system, generating the appropiate
set of test inputs and determining whether the errors could be
detected by the suggested methodology.

Index Terms—Expert system validation, rule-based systems, test
case validation.

I. INTRODUCTION

T
HERE is abundant evidence of the need for an integrated

approach toward validation and verification of complex

systems (cf. [8]) ranging from mathematically well-based

formal approaches ([4]) and approaches that also use formal

approaches but that are more driven by practical considerations

[27] to high-level philosophical and psychological approaches

focusing on human factor issues [23]. Newer trends in research

are focused on technologies to accompany the system devel-

opment by an integrated validation and verification (V&V)

concept of all aspects at the different stages of development
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and implementation, starting at the high-level design and

going down to the operational details [16] and on adapting

technologies of database integrity checking to V&V of rule

bases [9]. In [25], there is an overview on various directions of

actual research in V&V of knowledge-based systems.

Boehm [5] as well as O’Keefe and O’Leary [22] developed

a very intuitive approach that characterizes verification and

validation as building the system right and building the right

system, respectively. Both are considered a part of a general

evaluation strategy (see [17] or [21]). This perspective is

adapted here. Verification is basically the test of whether or not

a system follows its (formal) specification. The present paper is

focused on the validation issue and provides a methodology to

get evidence that a given system really does what it should do in

the eyes of experts and users. This methodology is constructed

for a frequently used kind of rule-based systems. The rules

are based HORN-Logic with single propositional expressions

as their then-part and conjunctions of expressions in their

if-part, which can be either single propositional expressions or

comparsion expressions with attributes and values.

In [26], the authors clearly point out that “the inability to ade-

quately evaluate systems may become the limiting factor in our

ability to employ systems that our technology and knowledge

will allow us to design.”

There has been one quite comprehensive approach to the val-

idation of knowledge-based systems described in the literature.

This is the ESPRIT-II project VALID during 1989–1992, as sur-

veyed in [20]. This project’s goal was to undertake a comprehen-

sive approach to the problem of Validation for existing knowl-

edge-based systems (KBS). In order to do so, several methods

for different validation issues were created and different expert

systems were considered. The project’s main result was a val-

idation environment in which different expert systems can be

validated. To relate this to our present endeavour, we need to

make more explicit the validation concept that underlies the

mentioned project.

Two points are important to relate our present work to the

project mentioned. First, VALID makes enormously strict as-

sumptions about the object to be validated. The high degree of

assumed formal knowledge is nicely illustrated in [18], where

a Petri net approach is invoked for validation within VALID.

Second, after the completion of VALID, it has been recognized

that there is still a flaw in testing methodologies: “It seems that

testing is a mandatory step in the KBS validation. However,

no substantiated testing methodology for KBS is available and

often knowledge engineers are guideless in the testing phase”

[20]. This paper is a contibution to bridge this gap.

The core objective of validation and verification (V&V) of an

intelligent system is actually very simple: to ensure that, when

provided with a legal set of inputs, the system will produce an

1083–4419/02$17.00 © 2002 IEEE
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answer, solution, or behavior that is equivalent to that provided

by the best human experts.

For a large knowledge-based system, providing this assurance

can be a daunting task that may require a significant effort on the

part of the development team. However, its importance is such

that it clearly deserves such a serious treatment, as an invalid

expert system can at best lead to loss of credibility by the users

and, at worst, to disastrous results.

We concentrate on the validation portion of the V&V

problem, as that is the one more closely related to ensuring

appropriate response to inputs. In general, the validation

process can be considered to be part of a larger process of

system improvement. So, our philosophy is that validation

should not only provide a statement of validity, but also serve

as the mechanism for finding the invalid parts of the system

and how to repair them.

The best possible means to predict the validity of a system is

to subject it to actual conditions for an arbitrary period of time.

It is hoped that during this time the system would be subjected

to all potential situations and its performance could be measured

from the correctness of its response to these. However, this begs

two questions: 1) How can it be assured that the system will in

fact see all potential sets of inputs to which it may reasonably

have to respond and 2) how can it be easily and definitively

determined that the responses are correct? Our work attempts

to answer these questions and here we present an approach to

validating intelligent systems effectively as well as efficiently.

The heart of the presented methodology is a TURING test–like

systematic interrogation of the system being validated.

Buchanan and Shortliffe [6] describe a Turing test approach

in their evaluation of MYCIN that shares some commonalities

with our technique. While comprehensive in nature, they do not

attempt to generalize it to serve for all knowledge-based sys-

tems. Our approach formalizes the technique as much as feasible

and the result is a generic, albeit conceptual, one to be usable by

many types of knowledge-based systems. The main differences

between Buchanan’s Turing test and the one suggested here are

as follows. 1) They use two separate panels of different experts,

respectively for the test case solving session and for the session

that rates the “goodness” of the solutions. Our approach uses

only one. 2) They do not formally consider the fact that the ex-

pert’s competences may vary within the different experts as well

as within the different test cases; our approach does.

Our procedure results in a near-complete automation of the

validation process. Complete automation, in our opinion, will

remain an elusive goal because of the need to employ expert

validators.

A. Steps in the Proposed Validation Process

The process of intelligent system validation can be said to be

composed of the following related steps [15].

1) Test case generation: Generate and optimize a set of test

input combinations (test data) that will simulate the inputs

to be seen by the system in actual operation. We refer to

the pairs [TestData, ExpectedOutput] as test cases. There

are two competing requirements in this step: 1) coverage

of all combinations of inputs that are possible, thus ex-

panding the number of test cases to ensure completeness

in coverage and 2) efficiency minimizing the number of

test cases to make the process practical. A workable com-

promise between these constraints is central to our pro-

posed technique.

2) Test case experimentation: Since intelligent systems

emulate human expertise, it is clear that human opinion

needs to be considered when evaluating the correctness

of the system’s response. But human experts can vary

in their competence, their own self-image and their bias

for or against automation. Thus, it is important that an

efficient method exist to fairly evaluate the correctness

of the system’s outputs given imperfect human expertise.

This step, therefore, consists of exercising the resulting

set of test data (from step 1) by the intelligent system as

well as by the one or more validating experts in order to

obtain and document the responses to each test data by

the various sources.

3) Evaluation: This step interprets the results of the exper-

imentation step and determines errors attributed to the

system and reports it in an informal way.

4) Validity assessment: This step analyzes the results re-

ported above and reaches conclusions about the validity

of the system.

5) System refinement: In order to improve the final system,

this step provides guidance on how to correct the errors

detected in the system as a result of the previous four

steps. This, hopefully, leads to an improved system.

These steps are iterative in nature, where the process can be

conducted again after the improvements have been made. Fig. 1

illustrates the steps outlined.

The methodology to implement these steps and its application

to a frequently used kind of rule-based systems will be described

in the following sections. A detailed description of all steps as

well as the research behind this work can be found in [16].

II. GENERATION OF TEST CASES

One standard that does exist, however impractical it may be

in most cases, is the exhaustive testing of the knowledge-based

system. That is, generate a set of test cases which covers all con-

tingencies possible in the operation of the system. For systems

which have more than a few inputs, the combinations of values

of these inputs can be prohibitively large, thus making exhaus-

tive testing quite impractical [10]. Nevertheless, it is not neces-

sary in most cases to have a truly exhaustive set of test cases and

yet still be able to test the system in a functionally exhaustive

fashion. As stated by Chandrasekaran [7], the test cases should

reflect the problems to be seen by the system.

A functionally exhaustive set of test cases can be made con-

siderably smaller than a naively exhaustive set by eliminating

functionally equivalent input values and combinations of input

values which subsume other values. Nevertheless, even this

functionally exhaustive set is usually too large for practical

purposes. Thus, there is a need for further reduction. Of course,

one has to pay for it with a loss of functional exhaustivity.



KNAUF et al.: FRAMEWORK FOR VALIDATION OF RULE-BASED SYSTEMS 283

Fig. 1. Steps in the proposed validation process.

A reasonable way to reduce the functional exhaustive set of

test cases is to use validation criteria, which can be domain-,

input-, output-, expert-, validator-, or user-related in nature.

These criteria are useful in determining a test sufficiency level

for each test case of the functional exhaustive set. This test

sufficiency level can be used as an indicator for the decision

whether or not a given test case is really needed from a practical

standpoint.

Due mainly to simplification reasons, but also because of

its practical relevance, we consider rule-based systems with an

input of an -dimensional “input space,” in which each di-

mension is “atomic,” i.e., not compound in any way and an

output of a set of possible output values.

The main test case generation idea described here is 1) to

generate a “quasi exhaustive” set of test cases ( ) [3],

[12] and 2) to define some validation criteria and to use them

for a reduction of down to a “reasonable” set of test

cases ( ) as described in [1].

A. Generation of Potential Test Cases

A frequently used kind of rule-based system, at least

for classification problems, uses HORN clauses of the kind

. is

usually a single expression of the propositional calculus and

the set of attributes forms the input space of the system.

Data Description: Formally, the rules can be described as

follows.

• is a set of variables designating

the input sensor data and ranging between and

with a “normal value” .

•
1 is a set of single expressions about sensor

data.

• is a set of outputs (final conclu-

sions).

• is a set of intermediate con-

clusions.

• 2

is a set of rules in which

1) right-hand-side right designates the if-part of a rule;

2) left-hand-side left designates the then-part of a rule.

1< is the set of real numbers.
2M expressesM [ (M �M) [ (M �M �M) � � � = M

Fig. 2. Regions of influence for a two-input problem.

The input of the system is formed by a set of points of

the -dimensional input space:

. The output of the system is the set

of final conclusions, i.e., . A test case is a pair [ ]

with the test data and an associated

solution .

A region of influence is one (or several) convex subspace(s) of

formed by the intersection of the projection of the values of the

sensors which have a direct effect on a particular final conclu-

sion ( ). Thus, values of the related sensors, which as a group

fall within this region, will be able to identify a particular final

conclusion. Fig. 2 shows the various regions of influence for a

two input problem. In fact, these regions are expressed by the

rules. Since an expert who expresses a rule does not necesarily

care for other rules, it may happen that these regions overlap

each other and/or that there are several different areas of the

input space that are mapped to the same final conclusion.

The lines demarcating the regions from other regions are

called the region boundaries.

The “quasi-exhaustive” set of test cases has to meet

the following requirements.

1) For each there is at least one testcase in .

2) The test data should be able to reflect the boundary

conditions between different regions of influence.

3) The cardinality of should be as small as pos-

sible. does not consider the overlaps.

The fact that in case of overlaps one test case may serve for sev-

eral final conclusions is utilized in the concept of the reasonable

set of test cases (see next section).
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The Approach: The process is based upon the following

ideas:

1) break down the range of an input into non–overlapping

subranges where its values are considered to be equivalent

in terms of its effects on the final conclusions;

2) compute an initial set of potential test data based upon

combinations of values within these subranges;

3) sort these data into several sets of data for each final

conclusion ;

4) filter each seperately by eliminating those test cases

within each that are subsumed by others.

This approach can be realized by the following steps.

Step 1: Computation of Dependency Sets: The first step is

to compute the rule dependency sets and the sensor

dependency sets for each . only contains

rules and only contains variables on which

depends. This is easily carried out by tracing the rules backward

from the final conclusions to the sensor inputs.

Step 2: Computation of Critical- and -Values: A particular

value of variable is called critical, iff that value marks a dif-

ference in the effect of on one of its dependent final con-

clusions. Critical values are determined by inspection of the

rule left-hand sides, where values of are described in rela-

tion to either constants or other variables. If an is related to

another variable , then all the critical values of must be

considered also. All critical values of one variable form the

set of critical values . These critical values bound the sub-

ranges of functionally equivalent values for each variable and

they define the regions of influence. For example, for a rule

, the values 2.5 and 4 are ele-

ments of .

Next, we compute a -value for each .

These values will allow us to surround the boundaries of

the resulting regions of influence. Having all critical value

sets we establish a -value for each generated

from . This is because a small change in a sensor input

may distinguish two different final conclusions. One intuitive

approach for computing of each variable is to ensure

that is half of the smallest difference between any “pair

of critical values” that are members of . In case, for

example , the smallest difference is

0.4 and therefore . If , then is set

to the half of the smallest difference between any pairs of

.

Step 3: Computation of the Sets of Potential Test Case Values

(PTC-Values): The next step is to compute all sets

of all PTC-Values of which contribute

in any way to . This has to be done by searching through each

and . contains all PTC-Values of , which are in

any way responsible for . We have to look for each ,

whether is an element of or not and, if , whether

there is a relationship between and a fixed value or another

. There are three cases that have to be distinguished.

1)

In that case, does not contribute to and would

be empty. Because each variable of a test data has to be

assigned with a value, the PTC-Value of is set to its

normal value: .

2) and is compared with at least one fixed value

In that case there are three PTC-Values for each value

is compared with ,

and . These three values have to be

added to .3

3) and is compared with another variable

There are three possible subcases here.

a) If , then define three PTC-Values for each

, namely ,

and , which have to be added to .4

b) If and there is a joint interval of and ,

namely between and , then create

a temporary set with (note that )

Those elements of that are between

and (inclusively) are added

to both and .

c) If and there is no joint interval of and

,5 then both sets and will be equal to

the set of their normal values: and

Step 4: The Set of All Potential Test Data: Having completed

the procedure to calculate PTC-Values for all leads us to

sets .

will be the union of all test data that can be

created from each by computing the cross product of the

sets

Step 5: Minimizing the Set of All Potential Test Data: The

huge cardinality of 6 forces us to minimize the number of test

cases and to find the minimized set of functionally necessary

3If there are values being created which go beyond the borders of s or s ,
then those values have to be substituted with the appropriate minimum or max-
imum value.

4Here, we do the same as above with values beyond the borders.
5In this case for each relation (<;�;=; 6=;�; >) and any value of s and s

we are able to decide whether the expression being treated is true or false.
By the way, such cases indicate a mistake of knowledge acquisition, because
such expressions are always true or always false (not depending on the values
of the two sensor data variables). The expression can be removed in case of
always being true, resp. the whole rule can be removed in case of always being
false.

6Note that in the worst case, i.e., if all V has the same cardinality c , the
cardinality of only one M will be equal to the mth power of c ! Nevertheless,
if card(S ) � card(S) then the number of potential test data (card(P ))
decreases significantly.
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TABLE I
HANDLING OF SENSOR DATA VARIABLES BEING IN DIFFERENT RELATIONS TO VALUES OR ANOTHER SENSOR DATA VARIABLE

ones ( ). As described in more detail below, to reduce

the cardinality of we first sort into different sub-

sets and then we minimize all the subsets

separately, through which sets will be gen-

erated. is the union of each . represents the set

of negative test data for all final conclusions, i.e., those test data

that will not identify any final conclusion.

Step 5.1: Sorting Into Subsets : First we have to

sort all –tuples . Due to the necessity of keeping the

two parts of the test case (test data and solution ) together,

we represent as an -tuple [ ], where each

contains those test data that are positive ones

for and contains all test data being negative for all

. In case a test case is positive for multiple , it belongs to

each of the associated . We have to check for each ,7

whether the system maps to a final conclusion . If any is

true, then will be an element of of positive test data for the

proof of , i.e., [ ] is a positive test case, otherwise will be

an element of the set of negative test data .

Step 5.2: Minimizing All the Sets : The approach for min-

imizing each set individually (with the exception of ) con-

sists of the following steps.

1) Segregate the largest possible subset of –tuples

which differ in only one value (let’s say, ) from the

set . Thus, is a subset of the considered that

contains –tuples with identical values at positions

and different values at the remaining position.

7In former publications we checked only, whether a test data t 2 M maps
to the associated conclusion f . As a result of the evaluation of our technology
(see Section VI) we changed this strategy.
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Fig. 3. Generation of QuEST .

Fig. 4. Criteria-based test case selection for XPS validation.

2) With this segregated subset , look through and

gather all expressions in which is compared to any

value or another variable . For each member of this

subset, the relations between and either or a con-

stant value must be one of the 12 cases shown on Table I.

The result is that all potential test data that do not match

any of the conditions described in Table I are removed

from that subset. Therefore, all potential test data that are

subsumed by other ones will be removed. The remaining

set is .

3) Let the new set be the minimized set:

.

4) Repeat this (go to step 1) with until no subset

is creatable from .

5) The minimized subset is the set computed in

step 3).

This procedure should be carried out for each of the sets .

In the end, the minimized set of test cases able to test the system

quasi exhaustively is the union of all sets , i.e.,

. To sum up and illustrate the technology of generating

; see Fig. 3.

B. Criteria-Based Strategy to Reduce a Set of Potential Test

Cases

This subsection describes a methodology to reduce the

quasiexhaustive set of test cases down to a “reason-

able” (in the sense of “manageable” by a validation technology)

set of test cases . The steps of developing out of

are illustrated in Fig. 4.

The basic concept is that certain criteria about the system or

associated factors influence the importance of each test case in
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the . After the relevant criteria have been identified,

they are ranked and rated. The ranking describes the quantitative

relations inbetween the particular criteria; the rating describes a

criterion’s influence on the investigated domain for the consid-

ered output. Based on the results of this process, a test inten-

sity level can be computed that forms the basis for reducing the

quasi–exhaustive set of test cases down to a “reason-

able” set of test cases . By removing those test cases that

are of less importance than a certain threshold, the suite of test

cases can be reduced significantly.

1) Criteria Identification: Abel developed a catalog of cri-

teria (cf. [1] and [2]), which should be considered in order to

answer the question of how important a certain test case is for

the system’s validity. This catalog contains conceptual criteria

and human criteria, which are motivated by the scenarios of de-

veloping, using and validating the system. Abel classifies the

criteria into two main groups:

a) Conceptual Criteria:

Domain Related Criteria (DRC) (criticality, complexity,

sensitivity, domain coverage, domain robustness, …),

Input Related Criteria (IRC) (criticality, sensitivity,

characteristics, …) and Output Related Criteria (ORC)

(probability, criticality, sensitivity, costs, robustness, …)

b) Human Criteria:

Expert Related Criteria (ERC) (competence, credibility,

availibility, …), Validator Related Criteria (VRC) (objec-

tivity, competence, independence, neutrality, …) and User

Related Criteria (URC) (acceptable level of performance,

maintainability, effectiveness, usability, …)

Identifying the relationships between a given criterion and

its influence on the Test Case Selection Stage is best done by

the user community, in collaboration with the development

team and the expert. The involved individuals must establish a

common ground about defining the criteria and how it should

be used in the validation of the system. We found this to be

beyond the scope of our work and leave it for future research.

2) Ranking and Rating: After indentifying the relevant cri-

teria out of this catalog, Abel et al. (cf. [1]) suggest a Criteria

Ranking as a first step toward the criteria-based reduction of

test cases. The criteria having a measurable influence on the do-

main have to be identified. For each criteria, a rank has to be

established by using a Criteria Assessment Scale. A rank ex-

presses a criterion’s importance related to the other ones.

3) Intensity Level Generation: The second step is a Domain

Assessment, which uses the ranked domain–related criteria

(DRC) as well as the output-related criteria (ORC). The result

of it is a Global Test Necessity Level of the entire system and

a Local Test Necessity Level for each of the system’s outputs.

Here, all the assessible characteristics of the whole domain

and the different conclusions (outputs) have to be rated using

the ranked criteria. We propose the use of the same kind of

scale as for ranking and rating and a two–level–assessment: 1)

assess/rate the domain using the ranked DRC and determine

a Global Test Necessity Level and 2) assess/rate all

hypotheses separately using the ranked and determine a

Local Test Necessity Level for each final conclusion

(output) .

4) Test Case Selection: To answer the question of which of

the test cases have to be selected out of the quasi-exhaustive set

of test cases ( ) to become a member of the “reason-

able” set of test cases ( ), ABEL et al. suggest that a Test

Sufficiency Level should be determined for each of the mem-

bers of the . This can be performed by considering 1)

the input space of the system; 2) the dependency sets of the out-

puts and the critical values of each input dimension; and 3) the

regions of influence. By comparing this test sufficiency level

of each test data with the test necessity level of its solution (a

system’s output), it is determined whether or not a test case of

the should belong to the . Loosely speaking,

the more a test case 1) has relevant input data that is relevant

for other test cases as well; 2) has relevant input data that con-

tributes to outputs with high rated local test necessity level; 3)

has relevant input data within an important interval of its range;

and 4) is situated near a border of a region of influence, the more

this test case has a claim to become a member of . For

more detailed information about the quantitative considerations

of test case selection see [1].

5) Formal Description of the Steps Above: Let us define

( ) 1) assessible Domain Related

Criteria ; 2) assessible Output Related Criteria ;

3) one assessment scale having an odd quantity ( ) of

ordered scale values ; 4) outputs (final

conclusions) , the domain “outputs;” 5) sensor variables

, is the domain’s Sensor Set, the

domain “inputs;” 6) Sensor Dependency Sets , ( ,

is the set of all sensors depends on); 7) minimized

(quasi–exhaustive) sets , ( )

of positive test cases ( contains well–selected test cases ([3])

implying ); 8) sets of critical values; and 9)

sets of potential test case values. The sets , ,

and were generated during the Test Case Generation

Stage as shown in Section II-A.

Assessing the Domain: Each criterion (resp. ) is

given a rank (resp. ) using the criteria assess-

ment scale . As a result of using the complete “ex-

pressivity” of the assessment scale, the highest of these ranks

should be . Since these values are normalized with respect

to their maximum value, it does not have to (but Should) be

. Having done this, there is a –tuple of DRC—rankings

and a –tuple of

—rankings .

Global Test Necessity Level : All the ranked DRC

will be given criteria–dependent ratings . The difference

between a rating and a ranking is that the ranking describes the

proportions among the criteria, i.e., how important a criterion is

compared to the other ones, whereas the rating describes a crite-

rion’s influence on the investigated domain, i.e., how important

a criterion is with respect to the domain.

The weights of the domain criteria are

with . The Global Test Neces-

sity Level has to be normalized to the maximum weight

of all DRC, i.e., .

Local Test Necessity Levels : Having ranked all

ORC, the next step is to provide criteria–dependent ratings to all

outputs of the domain as well. A –tuple of ratings
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Fig. 5. Regions of influences with different test necessity levels.

with is generated for each

output .

These tuples can be represented as an [ ]–matrix

...
...

...
. . .

...

Each entry describes the rating of a criterion for the

output 8 . The th ranked and summated row can be considered

as an output’s weight ,

which is a description of its Validation Necessity as well. The

(normalized) Test Necessity Level of an output is

Assessing the Test Cases : The results of the preceding

“Ranking and Rating Sessions” are 1) one Global Test Neces-

sity Level ( ) (2) distinctive Local Test

Necessity Levels ( ). These have to be

consulted in order to decide which test cases can be neglected

in the following test case evaluation stage, i.e., which test cases

are sufficient for system validation.

At first, a Test Sufficiency Level for each test case

has to be generated. Finally, will be fomed as

.

Computation of the Test Sufficiency Level for a Test Case

: The decision of which test cases are to remain in the

is influenced by the domain’s sensor dependency sets. Imagine

a two input problem, the outputs can be represented as areas,

regions of influence ([3]), that are situated in the domain’s input

space delimited by the sensors’ value ranges (see Fig. 5).

The following obvious statements can intuitively be realized.

1) If a sensor belongs to more sensor dependency sets than

another sensor, then this one is possibly of a higher im-

portance for the validation process.

2) Sensors belonging to sensor dependency sets of higher

rated outputs are certainly more important than other sen-

sors.

8A summed row is an expression of the (local) importance of the concerned
output referring to the other ones. A summed column is an expression of the
(local) influence of the concerned criterion referring to the other ones. The
higher the sums the higher their importances (resp. influences).

3) There can be more or less important intervals of a sensor’s

value range.

4) The importance of a sensor value can be influenced by its

distance to the domain’s and/or sensor’s boundaries.

The degrees of “greyness” of the different outputs

( ) are descriptions of their importance ( ). The

regions of influences are commonly partly covered by others.

The darker distinctive areas in the input space are the more

important is the corresponding interval of the sensor’s value

range.

can be generated by 1) getting the weights of all sen-

sors using all and 2) getting the weights of all

sensor values originated during the Test Case Genera-

tion Stage using all and generating a test sufficiency level

by using and for each .

Computing is done based on first computing

with iff and

otherwise. The extreme cases of the equation above

are 1) no output depends on the value of the considered

sensor variable , i.e., and 2) all outputs de-

pend on the value of the considered sensor variable , i.e.,

. The normalized weight is, i.e.,

.

Computing can be done as9

with

iff

iff

iff

iff

iff

Here, the test necessity levels of the outputs are weighted

depending on to what degree the considered sensor data con-

tributes to it.

1) In case it does not contribute at all, the weight is zero.

Otherwise, i.e., in case it contributes, this degree depends

on whether or not there are values of in the (sub-)set of

potential test case values and the set of critical values

.

2) In case it has no particular value in either the potential test

case value (sub-)set or the set of critical values ,

it is set to one.

3) In case it has such a value in but not one in , it is

two.

4) In case it has such a value in but not one in , it is

three.

5) In case it has a value in both, it is four.

The normalized weight is related to the max-

imum weight of all sensor values of sensor (let

there be different values of ), i.e.,

.

9The c and c values (1 … 4) are very intuitively chosen here based on the
authors’ experience. If the investigated application field of the expert system
allows other weights of c (resp. c ), the factors can be adjusted.
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Fig. 6. Survey of the TURING test to estimate an AI system’s validity.

Computing : A test data is considered as an

-tuple of sensor values [3], which can be represented

as The weight of a test data is

The Test Sufficiency Level of a test case is

Summary: A Test Necessity Level value for each

output representing the necessity of a validation of output

is generated. In other words: How extensively do I have to in-

vestigate an output to get a credible validity statement?

A Test Sufficiency Level value is generated for each

test data of the test cases in . This value, , ex-

presses the sufficiency of for a validation of a final conclusion.

In other words: Up to which level is a test case sufficient for a

validation of an output having a certain Test Necessity Level?10

To get a sufficient, but nevertheless credible validity state-

ment for an output , it’s only necessary to check with test

cases having a that is lower or equal to . In other

words: During the Test Case Evaluation Stage we only need to

take into consideration test cases having a lower or equal Test

Sufficiency Level than the Test Necessity Level of a par-

ticular output, i.e., .

III. TURING TEST EXPERIMENTATION WITH TEST CASES

Here, we describe some ideas on developing a validity state-

ment based on a TURING test—like methodology with a “rea-

sonable” set of test cases .

10Note, that the Test Suficiency Level is 1—“normalized weight”, i.e., a low
level means a high sufficiency.

A. Proposed Technique—An Overview

The suggested methodology is quite similar in concept to the

TURING test. It involves the system to be validated, a panel of

experts and the set to produce 1) a test case associated

validity statement for each test data and 2) a global validity

degree of the entire system.

The idea of the TURING test methodology, as illustrated in

Fig. 6, is divided into four steps: 1) solving of the test cases by

the panel as well as the system; 2) randomly mixing the test case

solutions and removing their authorship; 3) rating all (anony-

mous) test case solutions; and 4) evaluating the ratings.

B. Solving Test Cases

Solving test data sets by (human) experts

and the system leads to solved test cases

[ ] with the solution . is either a “real”

output or “unknown” by its provider: .

The output set is formed by all upcoming solutions:

.

C. Making the Solutions Anonymously

To ensure that the human experts not be aware of a solution’s

author (and especially which is the system’s solution and which

is their own), each one of the human experts gets the

upcoming solved test cases without any information about the

authorship.

D. Rating the Solutions

With a rating and a certainty the ex-

perts express their opinion about the solution ( : “correct”,

: “incorrect”) and their confidence to be valid ( :

“sure,” : “unsure”). Additionally, they have the chance to

express a lack of competence by
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. Each rating is assigned to a solution of the expert

of a test data and an evalu-

ating (human) expert and has the certainty ,

i.e., the two subscripts of the considered solution are preceeded

by a subscript that indicates the rating expert.

E. Evaluating the Ratings

This procedure is done by the validity meter, which has

solved test cases and rated test case

solutions (each solved test case is rated by experts). The

output of the evaluation procedure described here is a validity

degree for each test data .

The procedure is performed by calculating an average rating

of the system’s solution by the experts, each one weighted by

the considered expert’s competence for as well as by his/her

certainty. Additionally, it provides a global validity of the entire

system .

1) Estimating an Expert’s Competence: The first step to-

ward a validity statement is to estimate the competence of each

expert. We prefer to do that for each expert and for each test case

separately due to the fact that not all experts are equally com-

petent for a given test case and a certain expert’s competence

is not equal for all test cases. The competence estimation of an

expert for a test data is based on 1) his/her own evaluation

to be competent; 2) his/her certainty while rating other experts’

solutions; 3) his/her consistency in the solving and the rating

process;11 4) his/her stability;12 and 5) the other experts’ ratings

of his/her solution.

The competence estimation of an expert for a test data

is based on …

1) …self-evaluation of competence, as indicated by giving

the solution and/or the rating

2) …his/her certainty while rating other experts’ so-

lutions, as indicated by the ratio between the

number of certain ratings and the number of ratings

altogether:

3) …his/her consistency in the solving and the rating

process, as indicated by the rating of the own solution:

;

4) …his/her stability, as indicated by the certainty of the own

solution’s rating:

5) …the other experts’ ratings of his/her solution,

as indicated by their average ratings, weighted

by their certainties:

.

There are three main sources of competence estimation: 1)

intentional reflection: self-estimation and certainty ( ,

); 2) nonintended reflection: consistency and stability

11Does he/she give his/her own solution good marks?
12Is he/she certain while rating his/her own solution?

( , ); and 3) external (foreign) competence

estimation ( ). These are taken into account equally as

2) Estimating the System’s Validity: Thus, the average

rating of the system’s solution by the experts, each one

weighted by the considered expert’s competence for as well

as by his/her certainty is

This is an estimation of the system’s validity for a test data .

The entire expert system’s validity can be estimated by

the average local validity for each test case :

. Depending on some domain- and user-related

validation criteria (see previous section) each system can be as-

sociated with a minimum validity , which is a threshold

value for the validity statement. That is, of course, the objec-

tive of this part of the research: The system is called valid, iff

and invalid otherwise.

IV. EVALUATION AND VALIDITY ASSESSMENT

Depending on its purpose there are several ways to express a

system’s validity. Besides the two validity assessment that are

the result of the experimentation, there can be calculated at least

two other useful validity assessments. The four ways to express

validity that are considered useful by the authors are as follows.

1) Global (average) validity

.

2) Validities associated with outputs

3) Validities associated with rules

4) Validities associated with test data
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1) and 2) might be useful for (potential) system users and/or

managers, 3) for system developers, namely knowledge engi-

neers, and 4) is the basis of formal system refinement.

V. SYSTEM REFINEMENT

The basic idea to refine the system consists of finding the

“guilty” rules and systematically replacing them by “better

ones.” A rule is considered “guilty” if a conclusion that received

“bad marks” by the expert panel forms the conclusion-part

(then-part) of this rule. This is performed by the following

steps.

1) Finding guilty rules: Analyze which test cases used which

rules and which validity degree has been associated with

the system’s solution of these test cases. The “last” rule,

i.e., the rule which has exactly this solution in its then-

part, is called “guilty.” Generate an “optimal solution”

for each of these test cases, which is either the system’s

solution or a solution provided by a human expert.

2) Reduction of the set of guilty rules: Repair those guilty

rules that have the same optimal solution for all test cases

using this rule.

3) Replacing the if-part of the remaining guilty rules: Re-

pair the remaining guilty rules by a reduction system that

systematically constructs (one or more) new rule(s) as a

substitute for the guilty rule.

4) Recompiling the new rules and removing unused rules:

Recompile the upcoming substitutes by utilizing rules

that infer intermediate hypotheses. Remove unused rules.

Each of these steps is explained in the following subsections.

A. Finding Guilty Rules

All rules having a conclusion part which is a final solution

, are the subject of the following considerations.

1) There is a rule-associated validity for each of these rules

.

2) There is a set of test cases with test data

and all solution parts which came up in the experimenta-

tion by any

3) can be split into subsets

according to their different solution parts

.

4) Analogously to , a validity

of each solution can be com-

puted, but only based on the test cases of —can be

computed

5) The “optimal validity” of is the maximum of all

among the solutions occurring in . The

associated solution is the “optimal solution” of :

.

is an upper limit of the reachable rule-associated

validity of . If , there is a solu-

tion within which got better marks by the experts than

the system’s solution. Thus, if ,

is a guilty rule.

B. Reduction of the Set of Guilty Rules

If all test cases in that used a guilty rule have the same

optimal solution that was different from the system’s so-

lution, the conclusion-part of this rule has to be substituted by

.

is “optimal solution” to

if-part if-part

C. Replacing the If-Part of the Remaining Guilty Rules

1) of a guilty rule is split into subsets

according to the solution

for each that got the highest validity .

The new if-part(s) of the new rule(s) instead of a

remaining guilty rule are expressions of

a set of new alternative rules

for each and will be noted as a set of sets

.

The corresponding rule set of is

.

2) is the set of Positions (dimensions of the input

space), at which the are not identical. The

generation of the if-parts is managed by a Reduction

System, which is applied to Triples [ ] until

becomes the empty set .

3) The starting point of the reduction is [ ] with

.

are those positions, where all test data have

the same (identical) value and is the set of the

remaining positions:

.

Table II shows the reduction rules used to reconstruct the re-

maining guilty rules. The reduction system terminates if the sit-

uation [ ] is reached. A deeper discussion on the reduc-

tion technique can be found in [16].

D. Recompiling the New Rules and Removing the Unused

Rules

In case the if-part of a new rule contains a subset of expres-

sions that is the if-part of another rule having an intermediate

solution as the then-part, this subset has to be replaced by the

corresponding intermediate solution

-part

-part -part - -

-part -part - -

-part - -
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TABLE II
REDUCTION RULES TO CONSTRUCT BETTER RULES SYSTEMATICALLY

Lastly, we remove those rules, which have an intermediate

hypothesis as the then-part, which is not used in the if-part of

any rule

-part

-part - -

-part

VI. EVALUATION AND ANALYSIS OF THE METHODOLOGY

We applied part of the above technique to a nontrivial expert

systems to determine its effectiveness as well as its usefulness.

More specifically, this exercise put into practice the concept of

the . We empirically evaluated the validity of our hy-

pothesis that the represents an equivalent, yet much

smaller, set of test cases to that of the exhaustive set ( ). We

studied how well the was able to identify seeded er-

rors in the knowledge base when test cases in the were

executed by the system under test and its response was judged

by experts.

For reasons of practicality, the small but robust expert

system chosen dealt with classification of bird types. Called

the Ornithologist, it represents a classification expert system.

The system is rule based and consists of 71 rules capable of

classifying 65 different types of birds, i.e., there are six rules

that infer intermediate results. The Ornithologist uses up to

14 different inputs, but it does not need all of them at all

times. Nevertheless, at least two inputs are always necessary to

identify a bird. A typical rule looks like this:

IF AND AND AND

AND

THEN American Black Duck, Anas

rubripes

Here, is an intermediate hypothesis and both

as well as are boolean inputs.



KNAUF et al.: FRAMEWORK FOR VALIDATION OF RULE-BASED SYSTEMS 293

The cardinality of the exhaustive set of test cases was theoret-

ically computed to be 35,108,736,000—a clearly unmanageable

number. This was computed as the combination of the system’s

14 inputs and their possible values. Most of the inputs were dis-

crete, each having two or three possible values, except for the

length of the bird. For this input, the continuous range was de-

composed into intervals of 0.10 inch. Alternatively, the

generated by our proposed technique resulted in 317 test cases,

a large but manageable number. Moreover, the number of test

cases in the set was determined to be an additional 1063.

Thirty-six errors were seeded in the expert system. In lieu of

having an expert, the original system was deemed to be valid

by definition and thus served as the “expert”. A seeded error

was said to be properly identified if the original (unchanged)

system provided a different answer from the modified system

when a test case that made use of the purposely modified rule

was presented to both systems. This discrepancy would cause

the knowledge engineer to investigate the rule which the test

cases tested and presumably find the error.

Of the 36 errors seeded, 26 were properly found. Ten errors

were not detected for various reasons. Nine of these ten would

have been detected if minor adjustments to the gen-

erating procedure had been made. Thus, these were considered

to be easily correctable errors in the procedure. The last unde-

tected error, however, brought to light a serious limitation that

could only be corrected by including the set of test cases

as part of the . Of course, this had the effect of in-

creasing the size of the from 317 to 1380 cases. While

significantly larger than before, it still represents a manageable

number, especially when the test for reasonableness is yet to be

done which will further reduce that number. Thus, the conclu-

sion was that with the inclusion of , we had high confidence

that the indeed represented the equivalent of the ex-

haustive set of test cases. For detailed information on the per-

formed experiments, refer to [19]; a more general analysis is

presented in [16].

A. Analysis of Technique

The problem of classification is a generalization of the

diagnosis problem, where the symptoms can be classified as

those observed when a specific type of malfunction occurs in

the system being monitored and/or diagnosed. In fact, some

of the ideas contained in this technique originally came about

from work by one of the authors in a diagnostic expert system

for large turbine generators [11].

In this section we extrapolate the results obtained and discuss

the amount of effort and cost involved in implementing this pro-

cedure in a full expert system development project. Again, the

estimates are based on the experiences of one of the authors in

the above-mentioned project.

This analysis focuses on the following issues: 1) applicability

of this technique to real-world expert systems; 2) effort involved

in applying this technique to the validation of a reasonably-sized

expert system; and 3) computational cost (complexity) of the

technique.

1) Applicability to Real World Expert Systems: We believe

that this technique could be used for most rule-based systems

employed in the real world. We define real-world expert sys-

tems as those either in use, or contemplated for use in solving

real problems. One main group of such systems and the one

on which we focus, represents those that deal with engineering

or other technical problem/opportunities. Examples of such are

diagnosis, classification, monitoring, control, design, analysis,

data filtering and others. These are systems for which rule-based

expert systems represent a viable problem-solving technique.

But there are some caveats. 1) The expert system must be

rule-based. 2) Since the test case generation technique is based

on the rule-base structure, it is necessary that the internal rule

structure of the expert system be made visible to the test per-

sonnel. 3) It is furthermore assumed that the system has already

been verified through acceptable means to ensure its consis-

tency, completeness and satisfaction of specifications. 4) The

specification must spell out the validation criteria in detail as

part of the specification. Lacking this, the may not be sig-

nificantly smaller than the , making the process much

more costly.

2) Cost of Implementing the Described Technique: Of

course, cost is an important consideration when testing any

type of system. In this section we analyze the probable costs,

making estimates based on the bird classification example

described above and our personal experiences in validating real

world diagnostic expert systems. We do not include the cost of

developing the tools that implement the techniques described.

We are assuming that the of 1380 test cases can

be further reduced by 75% to a Reasonable Set of Test cases

( ). This set would now be reduced to 345 test cases. While

still a nontrivial number, we feel that this number is quite con-

servative and based on the experience cited above, we believe

that it could even be reduced to 10% or less of the .

The costs involved would be broken down into the following.

1) The cost of each expert in responding to the test cases. 2)

The cost for a knowledge engineer to exercise the system with

the 345 cases. 3) The cost of each expert analyzing the cases/re-

sponses. 4) The cost of someone managing the test cases and

setting up the web site to facilitate testing. 5) The cost of a test

engineer compiling the results. These will be analyzed individ-

ually in the following.

The following quantitative considerations are based on the

authors’ personal experience of how long an expert needs to

solve a test case and review a given solution. For particular ap-

plications, these estimations may have to be modified to fit the

application domain.

For item 1, we estimate that each expert, if truly an expert,

will take no more than 5 min to do each test case. That implies

28.75 person-hours. Including breaks, distractions and all other

obstacles to concentration, we shall assume a person-week of

effort for each expert. Naturally, some test cases may take longer

than 5 min, but we think most of them will be answered almost

immediately, thus making this a conservative number.

Item 2: The time required for a knowledge engineer to exer-

cise the system should be minimal if the test cases are automat-

ically generated as suggested by our methodology. Continuing

our conservative trend, we shall assume one person-day of ef-

fort.
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For item 3, assuming a panel of three experts, there would

be 1380 test cases and responses to analyze by each of the ex-

perts. This number is obtained by multiplying the number of test

cases (345) by the number of responses provided for each one

(by the three experts plus the expert system). We assume that

the experts are working independently and there is no discus-

sion among them. The cases/responses could be accessed via

the web and the responses could also easily be handled in the

same manner. Given that the experts already have seen the test

cases and should be familiar with them, we assume 1 min for

each response. This equates to 23 h per expert. Once again, we

shall assume that interruptions, breaks etc. will result in a total

of one person-week for each expert.

Item 4 is fairly minimal, as this is quite mundane work done

by a technician. We assume one person-day to maintain our con-

servative philosophy.

Lastly, item 5, compilation of results would add another

person-day, assuming the availability of computerized tools

to analyze and manipulate the results. This task would also

include the knowledge engineer inspecting questionable results.

In summary, the effort spent by the panel of experts is 6

person-weeks and that of the knowledge engineer/technician is

three person-days. We assume a costing rate of $200 000 per

annum for the experts and $150 000 per annum for knowledge

engineer and technician. Assuming 250 working days per year

(50 weeks 5 days), it equates to $800 per day for each expert

($4000 per week) and $600 per day for KE/technician ($3000

per week).

The total, then, is estimated to be $25 800.

While the Ornithologist is not a large system, it is not a trivial

one. There are many systems in the real world that approximate

its size and complexity. Furthermore, the figures are quite con-

servative, from the time expended to the number of test cases

ultimately used.

3) Computational Complexity of System: A problem that

can become a limiting factor for the adoption of the proposed

methodology is its computational complexity. The most com-

plex of the components is that which generates the

and the . It turns out that the generation of

is a very complex issue, but this procedure is performed by

machines, i.e., without any human support. This it the price for

minimal work left to humans. We feel it is worth it to pay a

high machine complexity cost in order to have minimal work

left to humans.

Since the generaton of has been especially introduced

to limit the number of test cases for the experimentation, its

complexity is a function of the specified criteria and their

rating and ranking. This can be difficult to predict. However,

it can be as simple as linear if the criteria are independent

from each other, or as complex as quadratic if the criteria are

interdependent. These are considered tractable. The complexity

of , on the other hand, might be a real problem at first

sight. It depends exponentially on the number of inputs. The

exponent is determined by the type of the input. 1) Adding

a new input that has just two different values doubles the

number of test cases. 2) adding a new input that has different

(discrete) values multiplies the cardinality of by

. 3) adding an input with a continuous range of values, the

cardinality of will be muliplied by the number of its

critical values (see Section II).

On first view, there seems to be a way out of this dilemma by

dividing large knowledge bases into parts that are independent

from each other with respect to the inputs. Thus, we can com-

pute the s of these “sub-knowledge bases” separately.

By inspecting our generation procedure for , we found

out that this cannot lead to a limitation of the complexity, be-

cause this procedure already considers these dependencies und

uses them to minimize .

Nevertheless, even -complete problems can be solved in

a reasonable time if the is limited. Thus, segmentation (mod-

ularization) of the knowledge base can be used, not to reduce

the complexity of the algorithm, but rather, to reduce the of

the problem. Such a technique depends on a chunk of knowl-

edge being independent of other chunks. This technique was

also used successfully by Gonzalez et al. ([11]) to do a manual

generation of test cases.

Again, since can get very large we introduced the

concept of , which can be limited to any requested max-

imum number of test cases. Of course, the reliability of the up-

coming validity statements heavily depends on the coverage of

the domain with test cases, i.e., also on their number. Thus, one

has to find a reasonable compromise between a minimal number

of test cases and a most reliable resulting validity statement.

On one hand, generating test cases is the procedure with the

highest computational complexity, but on the other hand, it is

not the most expensive part of the methodology.

For performing the test case experimentation, it doesn’t

matter how long it takes to calculate -this is a proce-

dure that is performed automatically, i.e., without any human

support. It just needs computer ressources and we admit, this

can become a limitation. However, to hire human experts is

typically much more expensive than employing computer re-

sources. And the objective of the test case generation procedure

is to derive a test case set that is as small as possible to limit the

costs of the human resources.
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