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Abstract— This paper presents a framework for 3D vision
based bearing only SLAM using a single camera, an interesting
setup for many real applications due to its low cost. The
focus in is on the management of the features to achieve real-
time performance in extraction, matching and loop detection.
For matching image features to map landmarks a modified,
rotationally variant SIFT descriptor is used in combination with
a Harris-Laplace detector. To reduce the complexity in the map
estimation while maintaining matching performance only a few,
high quality, image features are used for map landmarks. The
rest of the features are used for matching.

The framework has been combined with an EKF implementa-
tion for SLAM. Experiments performed in indoor environments
are presented. These experiments demonstrate the validity and
effectiveness of the approach. In particular they show how the
robot is able to successfully match current image features to the
map when revisiting an area.

I. INTRODUCTION

One key competence for a fully autonomous mobile robot
system is the ability to build a map of the environment
from sensor data and use it to localize. Natural landmark
detection and incremental building of consistent maps for
SLAM purposes have been a center point of robotic research
for the last several years, [1], [2], [3], [4], [5]. For large scale
and complex environments especially regarding full 3D, the
problem is still an open research topic. Solving the SLAM
problem with vision as the only external sensor is now the
goal of much of the effort in the area [6], [7], [8], [9], [10].
Monocular vision is especially interesting as it offers a highly
affordable solution in terms hardware.

In this paper, we present a framework for the management
of visual features in SLAM. When designing this framework
the following properties were desirable; i) produce few but
stable landmarks, ii) robust matching of features, iii) means
for finding the distance to landmarks for initialization in the
map, iv) fast and robust detection of loop closing situations.

The first of these requirements is important when working
for example in an EKF setting where the computational
complexity grows quadratically with the number of features.
We also want to keep the number of outliers low since most on-
line SLAM methods handle such measurements poorly. The
emphasize of the paper is not the actual estimation of the
map but rather the management of the measurement to make
such estimation possible. We show experimental results where

the output from the framework is fed into an EKF SLAM
implementation.

The main contributions in this paper are: a method for
vision landmark initialization, the use of Harris-Laplace for
feature detection together with a modified SIFT descriptor
that is rotationally variant for robust data association and
a representation that allows for fast and reliable matching
between the current camera frame and landmarks in the map.

We distinguish between recognition features and location
features. A single location feature will be associated with sev-
eral recognition features. The recognition features’ descriptors
then give robustness to the match between the location features
and the features in the current image. The location features are
used to build a 3D SLAM map of the environment suitable
for robot localization.

II. RELATED WORK

Single camera SLAM is an instance of bearing only SLAM.
Each image in itself does not contain enough information to
determine the location of a certain landmark. Solving for the
location requires that images from multiple view points are
combined. This approach is similar to what in the computer
vision society if referred to as the structure-from-motion
problem (SFM). The major difference is that the SFM methods
are commonly run off-line and consider batch processing of
all the images acquired in the sequence while SLAM requires
incremental and computationally tractable approaches suitable
for on-line and real-time processing. Furthermore, the SFM
methods do not assume feedback from information sources
such as odometry that are commonly used in SLAM. The
fact that a landmark cannot be initialized from a single
frame means that a solution to bearing only SLAM must
explicitly address this problem. Different solutions for initial
state estimation in bearing only SLAM have been proposed.

A combination of bundle adjustment, commonly used in
regular structure-from-motion approaches, and Kalman filter
has been proposed in [11]. It has been shown that even if the
method is less optimal than a regular Kalman filter approach,
it gives better reconstruction results. In [8], a framework
for vSLAM is presented based on a structure-from-motion
approach from multiple views. It is mentioned that for cases
when the robot performs only translational motion along the
optical axis, the 3D triangulation is significantly uncertain



due to very little or no disparity between matched features.
Similarly to our approach, the reconstruction is performed
using multiple images.

In [6], a particle filter approach is used to represent the
unknown initial depth of features. In principle the initial
distribution of particles would need to cover all possible range
values for a feature. The convergence of the particle filters
depends on the camera movements and may not occur at all.
In [12] where the initial state is approximated using a Gaus-
sian Sum Filter (GSM) for which computational load grows
exponentially. In [13], an approximation to GSM approach is
taken that performs undelayed initialization with an additive
growth in the problem size. Features are extracted using a
Harris point detector. This commonly leads to a high number
of features, which is a problem for SLAM. According to [13]
the features have to be (and are) pruned but no details of how
this is done are provided.

Recently, a SLAM system using stereo vision and Rao-
Blackwellised particle filter was presented in [9]. Visual fea-
tures are detected using Difference-of-Gaussians and matched
using SIFT descriptor. Two important problems were raised
but not solved in this work. The first is related to the large
number of detected features which make the approach inap-
propriate for large-scale and textured environments. One of the
contributions of our work is that we deal with this problem
by using a feature detector that gives raise to fewer features
(presented in more detail in Section IV). In our work we keep
the number of features low enough to allow for an EKF to be
used in real-time. The second problem raised in [9] relates
to the management and correspondence of SIFT features
where matching is performed by one-to-all comparison. It is
mentioned that better strategy would be to implement KD-
trees using a limited number of features. This is the approach
taken in our work which is an additional contribution. We use
Harris corner features across different scales represented by a
Laplacian pyramid for feature detection. For feature matching,
we take a combination of a modified SIFT descriptor and a
KD-tree.

Finally, as mentioned by [8], [9] and many others, feature
matching becomes even more difficult when only a narrow
field of view camera is used. We show that even in this case,
our approach gives good matching results.

A single SIFT descriptor is not discriminative enough in
itself to solve the data association problem. Especially in man-
made environments where structures like corners give raise to
many SIFT points with very similar descriptors. When used
for object recognition [14] it is a combination of descriptors
extracted from the object that provide the discriminative
strength. This idea is used in the vSLAM approach [8] where
the SIFT points are used to recognize places. In [15] “chunks”
of SIFT points are used to present landmarks in an outdoor
environment. In this work we let the position of the landmark
be defined by a series of single modified SIFT points from
different view points but let each such point be accompanied
with a chunk of descriptor that make the matching robust.

Detecting that a loop has been closed is one of the more

challenging problem in SLAM. In [16] a portion of the map
of laser scans near the current robot pose is correlated with
older parts of the map every few scans to detect loops. In [10]
visually salient so called “maximally stable extremal regions”
or MSERs are encoded using SIFT descriptors. Images are
taken every few meters or seconds and compared to a database
to detect loop closing events. As we will see later our
framework also allows us to detected loop closing situations
in an effective way.

III. LANDMARK INITIALIZATION

In this work we have adopted a delayed approach to SLAM,
but we go about it differently then the above mentioned
delayed approaches. The idea is to let the SLAM estimation
lag behind N frames and use these N frames to i) determine
which points make good landmarks and ii) find an estimate of
their 3D location. This way the landmarks can be initialized
with an estimate of the depth immediately in the SLAM
process. This allows linearization directly without the need
to apply multiple hypotheses [13] or particle filtering [6]
techniques to estimate the depth. Landmarks for which the
depth cannot be determined in N frames are not passed on to
the SLAM process. Analysis over multiple frames makes it
possible to determine landmark quality as well. Every time
a new landmark is passed on to the SLAM module it is
accompanied with an estimate of its depth which allows for it
to be fully initialized directly. Figure 1 shows the information
flow in the system.

Fig. 1. The flow of data in the system. The image and odometry information
is processed in the tracking module where matches are found between
consecutive frames. The output is delayed N frames to the SLAM module.
If an estimate of the current robot pose it desired one can be calculated by
predicting forward the pose from the SLAM module using odometry or other
dead-reckoning sensors.

As the input to the SLAM process is lagging N frames so
is its output. In applications where an estimate of the current
position of the robot is needed, for example for controlling
the motion of the robot, we can use odometry and other
dead-reckoning sensors to predict forward from the last pose
estimated by SLAM. For typical values for N, the addition to
the prediction error is small. This additional error is the price
that we be pay for being able to initialize landmarks using
bearing-only information and to be able to apply additional
checks on feature quality.

The location features are those image features that are
selected for use as map landmarks for SLAM. When selecting
location features the following criteria are considered:



• Detection in more than some minimum number of frames
• Determination of the 3D landmark position by triangula-

tion.
• The resulting 3D point is stable over time in the image.
The first requirement removes the noise and dynamic fea-

tures. The second removes the features which the robot motion
makes impractical. The baseline for the triangulation depends
on the landmark location and the trajectory followed by the
robot. The third requirement removes features that lack sharp
positions in all images. Two reasons that a feature may lack
sharp image positions are parallax or a lack of a strong
maximum in scale space. The stability test is a threshold on the
maximum perpendicular distance from the triangulated point
to the bearings.

IV. FEATURE DESCRIPTION

In a recent study, Mikolajczyk and Schmid [17] analyzed a
large number of interest point descriptors and their behaviors
under changes, such as scale and illumination. The descriptor
that turned out to be most robust in this study was the SIFT
descriptor originally proposed in [14]. It was also concluded
that the point detector used was less significant.

Primarily for reasons of low computational cost, the original
version of the SIFT descriptor uses feature points determined
by the peaks of a series of Difference of Gaussians on varying
scales. In our implementation, we instead use the so called
Harris-Laplace features, [18]. In the ordinary version of Harris
corner detector, corners are detected in points where the
product of the ellipse axis lengths defined by eigenvalues of
the second order gradient matrix reaches a local maximum.
Features detected this way are rotationally and translationally
invariant. However, in SLAM applications, the scale of a point
will change significantly and it is therefore important for the
feature representation to be scale invariant.

Therefore peaks are found both spatially as well as in scale
using Laplacian pyramids, thus making scale invariance possi-
ble. The reason for choosing Harris-Laplace was the fact that
they respond to regions of high curvature, instead of blob-like
image structures obtained by series of Difference of Gaussians.
This leads to features more accurately localized spatially,
which is essential when features are used for reconstruction
and localization, instead of just recognition.

In a sparse, indoor environment many of the detected fea-
tures come from corners features. The original SIFT descriptor
assigns canonical orientation at the peak of smoothed gradient
histogram. This means that similar corners but with a signifi-
cant rotation difference may be matched to each other: a false
match is shown on the left in Fig. 21. To avoid this an extra
matching step has to be added that compares the orientation
of the two points. Given that the robot is assumed to move on
a flat surface, which means that the camera undergoes planar
motion, rotational invariance is not as important as in cases
where a full camera pose change is present. In fact, it leads

1In Figure 2 we have pruned features found at low scales (up to 4th order)
to make the image less cluttered.

Fig. 2. Feature detection using Harris-Laplace approach and matching using
left) orientation independent and right) orientation dependent SIFT descriptor.

to a more difficult matching problem. Therefore, we have
implemented a rotationally ’variant’ SIFT descriptor where
we avoid the canonical orientation at the peak of smoothed
gradient histogram and leave the gradient histogram as it is.
Another problem related to corner-like features is that it is
difficult to estimate their dominant scale since they tend to
be equally strong across different scales. Thus the location of
these features in the images can move due to scale changes.

V. FEATURE TRACKING

We are now able to extract interest points from an image
frame. The SIFT descriptor of a certain location changes as
the robot moves through the environment. However, features
will not move far between frames and the descriptors will
not change significantly so we can track them and update the
descriptor as we go along. This way each landmark/point in the
world, pi, will have a set of descriptors d j associated with it.
These descriptors describe the landmark from different vantage
points.

A buffer with the points extracted from the last N frames is
stored in memory. To manage the matching between frames,
lists with associated points are maintained. Figure 3 shows
the basic organization of this frame memory. Note that the
association list on the right hand side ideally corresponds to
different landmarks in the world. These lists can be analyzed
to judge the quality of the corresponding landmark candidate.
The output from the tracking module is a selection of the
points in the oldest frame. The output consists of the points
that correspond to already initialized landmarks or meet the
criteria listed at the end of Section III for the first time in this
frame and thus can be initialized.

A. Feature Motion Estimation and Matching

Provided that we have an estimate for how the camera has
moved between frames (here we use odometry) we can predict
the position of features in a new frame using standard optical



Fig. 3. A schematic view of the frame memory that stores the points in the
N last frames and the associations between points.

flow equations. The prediction allows us to reduce the search
windows which increases the speed of matching and can help
eliminate some “impossible” matches.

Detected features that do not match the predicted positions
of landmarks currently in the frame memory are matched
against a database with initialized landmarks. This allows the
detection of loop closing situations. As described in the next
section this can be done fast and for the experiments we have
not put any limitations on the database search. In a truly large
scale setting one could direct the search by, for example, only
querying the part of the database corresponding to the same
floor of the building. The first time the location of a landmark
has been established through triangulation and it has met the
other criteria listed in Section III and thus passed on to SLAM
estimation it is added to the database as a new location feature
discussed further in Section VI.

VI. DATABASE MANAGEMENT

The frame memory described in Section V deals with the
tracking of points in the image. However, as soon as the
camera turns away from a scene the points will drop out of
the tracking window after not being seen for N frames. An
important task in SLAM is to be able to detect when the robot
is revisiting an area. For this purpose it is common to use a
database of old points which can be searched for matches.

Here we let each landmark in our database have a set of
descriptors that describe the landmark from different vantage
points. Each descriptor describes the appearance of the land-
mark in some image. These different descriptors are provided
by the frame memory that matches the landmark frame for
frame. We add a new descriptor for a landmark when it
is further than some threshold away from any of the other
descriptors as measured in the descriptor space. Figure 4 shows

the structure of the database where the landmarks are denoted
with F1, F2, . . . , FN . The dashed box contains the descriptors
for each of the landmarks. We use a KD-tree representation
and a Best-Bin-First [19] search strategy for the data base.
This allows very fast descriptor matching even with a very
large number of points. In [20] 200,000 points are matched in
real-time.

Fig. 4. Each landmark in the database has a set of descriptors that corresponds
to location features seen from different vantage points. To validate a match,
each of these descriptors keeps a list of the other descriptors found in the
same frame. We refer to these as recognition descriptors. These provide the
ability to “recognize” it again.

The SIFT descriptor is only locally unique. In man-made
indoor environment there will be many structures with similar
descriptors. For this reason it is not enough to match a single
landmark descriptor against the database. However, by includ-
ing all the descriptors from the scene where the descriptor
in question was found the matching becomes very robust [8].
We refer to these other descriptors as recognition descriptors
and the corresponding image features as recognition features.
That is, when matching a feature to the database we first
look for matches between its location descriptor and the
descriptors in the database. Then, we verify the match using
the corresponding two sets of recognition descriptors.

As a final confirmation for a database match we confirm
that the displacement in image coordinates for the descriptor is
consistent with the transformation between the two frames es-
timated from the matched recognition descriptors from above.
The relative positions of the location and recognition features
should be similar in the two frames. In the current imple-
mentation we simplify the calculation and only look at the
2D point displacement in the image. This final confirmation
eliminates matches that are close in the environment and thus
share recognition descriptors. As an example we observe that
the SIFT descriptor for the upper left corner of the mail box
in Figures 2 is very similar to the one for the upper left corner
of the piece of glass to the left and they will have the similar
recognition features when extracted from this frame.

To summarize the matching has the following steps
1) Match with the set of descriptors for the location features

(dashed box in Figure 4) to get matching candidates.
2) Validate the candidates by matching using all extracted



descriptors from the current frame and the recognition
descriptors associated with the location feature descrip-
tor from the last step.

3) Confirm by checking the motion, in the images, of all
the matches from the above two steps.

These steps have allowed very robust matching against the
database as will be demonstrate in Section VIII.

VII. SIMULTANEOUS LOCALIZATION AND MAPPING

The framework presented above handles the detection,
selection, initialization and matching but not the position
estimation. In this paper we use an EKF implementation for
SLAM, however the framework can also be combined with
other SLAM methods. Each point in the map is represented
by its three Cartesian coordinates (x,y,z).

As in [6] we look for new features to add to the map only
when we do not have enough previously initialized features
in the current view. We divide the image into three regions.
As long as there are at least two landmarks in a regions we
do not initialize any new landmarks there. This reduces the
number of landmarks and thus increases computational speed.
The idea with the region is that we want to have a certain
spread of the points so that we can handle motion in either
direction without the risk of loosing all the points from one
frame to the next as they the move in the image.

VIII. EXPERIMENTAL EVALUATION

The experimental evaluation has been carried out on a
PowerBot platform from ActivMedia. It has a non-holonomic
differential drive base with two rear caster wheels. The camera
used in the experiments is a Canon VC-C4 pan-tilt-zoom CCD
camera. An image resolution of 320x240 pixels was used.
Images are grabbed at 10Hz. To make sure that the images
in the buffer in fact produce a baseline for triangulation a
lower threshold for the camera movement between images are
used. In the experiments images were discarded if the camera
had not moved more than 3cm or turned more than 1◦.

In the first series of tests we took the robot to an atrium with
many possible loops. Figure 5 shows the map with the visual
3D landmarks marked with red (dark) boxes. A map built
previously using a laser scanner is overlayed for comparison.
The trajectory followed by the robot in the experiment is
also shown in the figure. The total time for the experiments
was roughly 9 minutes during which the robot completed 3
loops for a total of about 100m distance traveled. The time to
process the data was about 7 minutes on a 1.8GHZ computer.
This shows that we are able to run the system in real-time
even though we are matching every unmatched features to the
database in every used frame. In total 2611 images, roughly
half of the acquired, were used.

The time to perform the tracking over frame has constant
complexity. The matching to the database uses the KD-tree in
the first step which makes this first step fast. This typically
results in a few possible matching candidates. Depending on
the scene, a typical frame has between 40-100 points. Out
of these, as many as half often do not match any of the old

features in the frame memory and are thus matched to the
database. A typical landmark in the database has around 10
descriptors acquired from different viewing angles.

Fig. 5. Map built using the framework presented in this paper combined
with an EKF implementation for SLAM. The red squares show the location
of landmarks. Superimposed on this map is a map made previously with a
laser scanner.

It can be seen that there are not so many features as typically
seen in similar work using SIFT like features [9], [21]. This
shows a clear benefit of using only the most stable point
features for SLAM and the rest for recognition/matching as
in our work.

From the figure it can also be seen that most features lie
on walls or very close to one. Note also that some of the
landmarks are detected fairly high up on the walls, in the
ceiling or even on a lamp hanging down in the upper left
region at the turn of the trajectory in Figure 5. The region in
the upper right corner warrants some comments. The bottom
row of images in Figure 6 show this part of the environment.
There are many objects in this region at different depths. Also
the walls shown in the 3D map are extensions of the 2D laser
scans to constant height walls. Here the laser scan is at the
height of the bench and not the wall making the points on
the actual wall appear behind the virtual one. Some of the
spread in depth for the landmarks is also due to not having
seen the landmarks from different angles as the robot was
always approaching this section straight on and not passing
by it, producing a large baseline, like in other cases along
the trajectory. This provides uncertain information about the
depth. This is a problem often brought up in regular computer
vision applications. The error is inversely proportional to the
baseline and increases with the square of the depth [22].



Fig. 6. The situation when the robot is closing the loop for the first time
by re-observing a feature toward the back. The observed features are marked
in cyan (light) in the upper part. The matched pair of features are circled in
the lower two images. The image on the right is from the first time the robot
was here.

Figure 6 shows the situation as the robot is just closing
the loop for the first time by re-observing one of the earliest
detected landmarks. The two lines protruding from the robot
show the bearing vectors defined by the observations. It is the
landmark furthest away from the robot, toward the wall in the
back, which is re-observed. The two images in figure 6 show
the image from the first time it was detected (right) and the
image at which loop closing takes place (left). The landmark
in question is marked with a red circle in the images2.

Notice that we do not use the information from the SLAM
process at all in the experiments when performing the match-
ing with the database. We believe this is a great advantage
and shows the robustness of the matching. Not relying on
a position estimate to narrow down the matching means for
example that this method could be used to perform global
localization, that is, finding the robot position without prior
knowledge which we plan to show in the future.

Figure 7 shows two other loop closing situations from two
other experiments. The first one is from the atrium area as
well and the second is from an office type environment

Summarizing the experiments, it has been shown that we
are able to extract few and stable landmarks for SLAM using
a modified SIFT descriptor and Harris-Laplace for feature
detection. We have also shown that we can perform robust
matching, initialize the position of landmark using a narrow
field of view camera and perform loop closing detection in
real-time.

2Notice that the images are stored only for debugging and illustration
purposes. All that is need to be stored for the actual processing is the
descriptors extracted from the images.

Fig. 7. Two other loop closing situations, one from the atrium area and
one from an office type environment. After returning to an area the robot
successfully matches landmarks from the previous time it was there. The
circles show the matched pair of features. The right hand side shows the
image from the data base.

It is worth pointing out once again that we are in essence
able to detect previously visited areas in every frame in real-
time by matching unmatched landmarks to the database. We
perform this loop detection completely without any input from
the SLAM estimation process or any other form of position
information. In fact, our system could as well be used for place
recognition completely separate from SLAM. This is a topic
of future research.

IX. CONCLUSION

In this paper, we have presented a framework for selecting
vision features for SLAM and for managing a database of them
for robust matching. The robustness of matching is achieved by
using many scale invariant features to define each match. Then
having confirmed the match using many features we use only
one of them for SLAM. The selection is based on its usefulness
for SLAM as opposed to the usefulness for matching. Thus
only well localized features are used for the SLAM estimation.

The features are extracted from the images using Harris-
Laplace corner detection combined with a scale space maxi-
mization. This leads to rotationally variant features that have
relatively well defined image locations. The rotational variant
features are more suitable to SLAM problems where the
camera is not rotating around its optical axis. Rotational
invariance in this case just adds false matches.

The selection of the features to use for SLAM estimation
is based on three criteria. First the persistence of the feature
over many frames eliminates spurious and dynamic features.
Second the motion of the robot must allow the range to
the feature to be determined through triangulation. This will
allow us to linearize the bearing measurements in our SLAM
algorithm. The third criteria is the stability over time of the
bearing to the feature. Thus the feature must give consistent
bearings over a number of frames. Some vision features that



lack good localization in the image will tend to drift about
and not give good stability across frames. If the best fit
triangulation point is too far from some bearing vector the
feature is rejected.

We have validated our ideas using a robot moving in indoor
environments. We have shown that we can build a map of
points found using a single narrow field of view camera. We
also showed that we could match the features again when
returning to the same location by using the image information
only.
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