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Abstract: A novel approach is presented for recording high volume data about ray 
tracing rendering systems’ runtime state and its subsequent dynamic analysis and 
interactive visualization in the algorithm computational domain. Our framework 
extracts light paths traced by the system and leverages on a powerful filtering 
subsystem, helping interactive visualization and exploration of the desired subset of 
recorded data. We introduce a versatile data logging format and acceleration 
structures for easy access and filtering. We have implemented a plugin based 
framework and a tool set that realize all ideas presented in this paper. The 
framework provides data logging API for instrumenting production-ready, 
multithreaded, distributed renderers. The framework visualization tool enables 
deeper understanding of the ray tracing algorithms for novices, as well as for 
experts. 
Keywords: Visual, dynamic, analyzer, ray tracing, debugging. 

1. Introduction 

Algorithms for ray tracing in computer graphics are widely used to generate 
production-ready images, animations and feature length films. Such rendering 
algorithms operate on huge amounts of data, and in recent years the need these 
algorithms to be physically correct has added additional difficulties with debugging 
and dynamic analysis of the algorithms in the ray tracing domain. 

Our main goal is to create a modular architecture of a framework that enhances 
visualization and dynamic analysis of ray tracing algorithms in computer graphics 
domain. 
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Achieving this goal will require solving several tasks derived from the specific 
nature of the problem. A typical production-ready ray tracing system involves 
tracing billions of rays and takes a very long time to converge to a result. This 
involves an enormous amount of data flowing through the system and makes 
conventional debugging not a preferred option. Another aspect of the problem is 
that the complex recursive nature of the ray tracing algorithms hampers the step by 
step debugging of the system’s workflow.  

Like most computer graphics algorithms, ray tracing has a domain-specific 
concrete visual representation of the data. However, the existing symbolic 
debuggers do not reach the level of visual representation of the data in the 
computational domain of the algorithm that would be helpful to the developer. 

Stochastic ray tracers rely heavily on random numbers and this makes static 
analysis rather useless. Ray tracing is parallel by nature and thus deprives the 
developers from the convenience of traditional debugging.  

These challenges involve solving several different tasks, such as: recording the 
algorithm state at every stage of its execution, filtering huge volumes of data, and 
domain-specific data visualization. These tasks can be reflected directly into a set of 
subsystems that will build the desired framework. 

Although our main goal is focused on helping developers in the 
implementation and analysis of computer graphics algorithms, we believe that the 
framework visual nature can be of great use in education. 

We identify several target audiences that will benefit from using the described 
framework. These include: 

● developers – for faster debugging of problematic algorithms and developing 
new algorithms; 

● students – for better understanding of the ray tracing matter; 
● end users – to help the support of the system by recording execution state 

logs. 

2. Related work 

Since the early days of the modern computer era, visual analysis has always been a 
field of intensive research. Modern integrated development environments (IDEs) 
have powerful tools for dynamic analysis of widely used algorithm fragments and 
data structures, but they are designed to work on a source code itself and thus cover 
a wide area of applications. In computer graphics domain the underlying data have 
a very specific visual representation, such as rays in 3D space, scene geometry, 
energy, time coherence, etc., that cannot be shown by general purpose debugging 
tools. 

Most of the existing tools in the field of visualizing algorithms and data focus 
on the visualization of the abstract representations of the data structures 
implemented by the algorithm considered, such as trees, lists, arrays, graphs, etc. 
Another focus shift is towards program visualization and algorithm visualization. 
Such tools and systems are described in [12, 13, 14]. They indirectly show how the 
logic of the algorithm is working, but are not related in any way to the domain of 
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computation, in which the algorithm processes its data. This approach contributes 
little to the process of understanding complex algorithms in the computer graphics 
domain, such as ray tracing. The majority of the available visual frameworks are 
designed to simplify the creation of interactive tutorials and examples of how 
different algorithms operate with input data. However, very few frameworks are 
capable of doing dynamic analysis of these algorithms and thus they do not 
empower software developers. Rather than making snapshots of the runtime data on 
“interesting events” [18, 15], our approach leverages logging the algorithm’s state 
and letting the end user dynamically filter only the subset he is interested in during 
the particular analysis, without the need to run the algorithm again. 

Our intent is to reveal the processed data and the work done by the algorithm 
in the context of the problem it solves, by visualizing the closest physical 
equivalence of the virtual data. An example of such a system is given in [1], and 
this task is achieved by a highly visual approach of domain-specific data. Similar 
ideas are presented in [15] and [16]. 

One of the recent tools for domain-specific ray tracing data visualization is 
rtVTK [2]. Its concept is similar to our goals as it tries to implement unified 
programming interface for logging runtime data of ray-based algorithms execution, 
and builds a visual tool for analyzing the stored data. The main advantages of the 
toolkit are its plugin nature and layered visualizing, but on the other hand the 
filtering of the collected data is very vague. We think that filtering must have a 
central role in such a system, since it makes the visualization and analysis of huge 
data volumes possible. Modern production ray tracers are highly parallel and 
require adequate handling of the incoming log stream. Unfortunately, it is unclear 
whether rtVTK is capable of working in a parallel mode. The approach we choose 
for instrumentation of highly parallel algorithms, such as ray tracing, is similar to 
the ideas in [17]. 

In [3] and [4] powerful tools for realtime editing of the traced light paths based 
on visual interaction with the user, are given. They allow the selection of specific 
parts of the traced paths according to different filtering criteria, such as spatial 
position, ray type, pars of the scene interacted with the light, etc. These types of 
filtering are important to achieve our primary goal for better visualization of the 
data. The two papers throw no light on implementing such filters and in our opinion 
this is a must for this kind of systems. Being oriented mainly towards real time 
editing and focused on non physical correct modifications of the light transport, 
their work does not include logging and analysis of the runtime data. 

In our implementation we use a modification of the light path notation 
described in [5] and [6] to filter specific light paths while doing visual analysis. 

3. Implementation 

The framework presented in this paper tries to enhance the process of development 
and analysis of computer graphics algorithms in three main areas: collecting data of 
the algorithm run time, easy searching and filtering through the stored information 
and visualizing the recorded data in the spatial domain of the computation. 
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Fig. 1. System architecture 

Each of these areas defines an autonomous subsystem in the framework 
architecture (Fig. 1). The tools currently implemented in the framework are focused 
on analyzing the stochastic ray tracing applications, but the plugin based 
architecture of the core enables the programmer to build new tools accurately, 
reflecting the analysis task that he/she faces. Each of the three subsystems provides 
its own extension interface. 

3.1. Ray data logging subsystem 

We introduce a simple data logging API for instrumentation existing rendering 
applications. The following pseudocode demonstrates the use of the API in a 
recursive ray tracer. 

Pseudocode 
 for each pixel in the image 
   pick a ray from the eye through the pixel 
   trace(ray) 
 
 trace(ray) 
   beginPacket(ray.ID) 
   find nearest intersection with scene 
   addToPacket(ray.ID, “parent”, ray.parentID) 
   addToPacket(ray.ID, “hitInfo”, ray.hitInfo) 
   shade(ray, ray.hitInfo.material) 
   endPacket(ray.ID) 
 
 shade(ray, material) 
   for each light source 
     calculate direct light 
     addToPacket(rayID, “light K contribution”, light_energy) 
     pick new random ray direction depending on material properties 
     trace(newRay) 
     addToPacket(rayID, “indirect contribution”, indirect_energy) 
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A data logging subsystem uses three functions – beginPacket and endPacket 
for creating in-memory data structure for the packet, and addToPacket to store the 
arbitrary data that the developer might need to analyse later. The logging API has 
no additional requirements towards the instrumented ray tracer except for assigning 
a unique ID number for each newly spawned ray. Unique naming of the traced rays 
is common practice in today’s renderers and we think this does not limit the 
developers using the framework in any way. Ray IDs are used to retrieve parent-
child relations in the tree of the traced rays. 

The current design of the data logging subsystem enables using the API in 
multithreaded and distributed renderers. 

3.2. Data log streaming 

Data captured during the logging phase is structured as a stream of data packets. 
The huge amounts of data due to the number of traced rays and the lack of 
consistency in packets’ arriving time caused by the parallel execution environment 
lead to issues with scale and storage. In addition, we wanted our framework to be 
used for instrumenting production-ready distributed renderers, in which actual data 
storage might be on a different machine than the one running the ray tracer 
application. These constraints made the streaming data architecture a preferred 
solution. 

Currently the framework implements three ways of handling a data log stream: 
● storing the stream as a file for later analysis; 
● transferring it in a cloud based storage; 
● on-line – a real time view of the incoming packets in a visualization 

application. 
Most of the time data logging is excessively used during the implementation 

and testing phase of the project lifecycle. Once the render system is deployed to a 
client’s environment, the developer has little or no information about its operation 
and the problems encountered during its usage, thus making the remote support 
look like debugging a black box. We try to make this box a grey one by enabling 
the system to use a data logging API and send the recorded information to a secure 
cloud storage where it can be analysed later by the developer. 

The data log stream consists of numerous packets, any of which having an 
arbitrary length. The packet is a key-value container that stores the state of the 
analysed algorithm. In the current implementation most packets contain information 
about rays traced through the scene, their position, direction, time, color, etc. 
Another usage of the packets is to store meta data about the scene, geometry, 
material properties, light sources, etc., and these packets are later used for 
visualizing the collected ray data within the spatial domain of computation. 

Each packet consists of a packet header and a packet body (Fig. 2a). The 
header section contains the packet size and the unique ID in the data stream. The 
packet body contains the data payload represented as a key-value dictionary of the 
user defined attributes. When saved as a file, the packet body can be compressed to 
further minimize the disk space usage. 
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The framework does not impose any constraints on the data that can be stored 
as an attribute value. All relations among packages are also stored as attributes. For 
example, all packets that store traced rays are part of the light path graph and have 
to maintain a parent-child relation, where each child ray packets has an attribute 
with a value the ID of the parent packet (Fig. 2a). 

When a complex scene is rendered, the number of stored packets can easily 
exceed a billion. This will make real time analysis and visualization of the stored 
data a difficult task to achieve. We address this issue by adding indices at the end of 
the stream. Building of the indices is done as a post processing operation after the 
data logging is complete. The indices are stored in the stream as packets. 

The current implementation uses a simple packet start position index for easy 
finding of individual packets, kd-tree [8] – for spatial indexing when searching 
through the origins of the traced rays, and B-tree [9] – for searching through the rest 
of the packet attributes. A light path parent-child relation is kept in a separate graph 
based index, which allows easy extraction of all packets composing a valid subpath 
of the graph. The need for having these helper structures is determined by the 
expected high number of logged packets and the demand for filtering them as fast 
as possible, as well as the usage of the framework in real life scenarios (see the 
examples in 3.3). 
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Fig. 2. Log stream structure (a); light paths filtering (b) 

3.3. Ray packet filtering 

Filtering can be done in several extensible ways. Here we shall use а simple 
predicate filtering by packet attributes and a combination of simple predicates. 

Some of the most important filters we currently use are: 
• the attribute values; 
• the ray type; 
• spatial filtration – regions of world space that rays hits; 
• the time or timespan; 
• ID of the thread that spawned this packet. 
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Next, we shall give more formal definitions of the filtering foundations 
implemented in the described system. 

Let  
);,( ENG =  { },,...,, 21 ngggN =  { } ...,,1   kiNNeNNE i =∀×∈=×⊆ , 

where G is a multigraph with a set of nodes N with elements ig  i=1, …, n, 
representing Data Log Packets. The edges in the graph (denoted as set E) are 
defined by ID-ParentID relations (and others) between the packets in the log. 

For performing analysis in the ray tracing domain, one must consider the 
relations between all tracked rays forming ray paths in the traced graph. 

Let  
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where R is a relation between the nodes in G, set by the predicate P. These relations 
represent the part of the data that will be visualized and analysed. 

Definition 1. An Active Set is a subset of all nodes in G.  
Active Sets are used for visualizing data as a part of the Log analysis process. 

Active Sets are not required to be generated by any edges in the graph. 

Definition 2. An Active Path is an ordered Active Set formed by nodes in G. 
Active Path is a sequence of connected data packets. In the system described 

we use ID-ParentID attributes as relations between the nodes in the path. These 
relations represent rays generated sequentially during the ray tracing simulation of a 
light path. 

Definition 3. A Filter is a predicate defining an Active Path/Active Set in 
graph G. 

Relations jR  define a set of Active Paths with length less than or equal to j in 

graph G generated using a filter jP . 
Examples of different filters are given below, see also Fig. 2b: 

(1)    ])5.0,1.0[Time.()3.()5.()(
1111 211 ∈∧>∧=== iiii gagaggP  

In this example filter defining simple Active Set is shown using attributes a1, 
a2 and Time. In ray tracing domain the time of the ray is an important attribute for 
visualizing the process development in a certain time frame: 
(2)    ∧=∧=∨>== )..()6.()5.(),( 11212 212121

agagagagggP iiiiii   

).ParentIDID.())(HitPoint.(
111 iiri ggpBg ∈∧∈∧  

Filter 2P  is defining Active Path by enforcing the requirement that the parent of 

2i
g must be 

1i
g . Another interesting part of the predicate is a spatial relation defined 
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by )( pBr , it requires the starting point of the ray 
1i

g to be in the volume enclosed 
by a sphere with radius r and center p (Fig. 2b): 
(3) 

1 2 1 2
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−
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Filter jP  defines Active Path with length j and describes a common situation for 
filtering data gathered by ray tracing application. The first part of the predicate will 
extract a set of rays shot from the camera (RayType=Cam), reflected multiple 
times in the scene (RayType=refl) and finishing the path in a light source 
(RayType=light). There are also sub predicates that require specific rays like 

1i
g  

and 
2i

g to be bounced by concrete objects in the scene Object1 and Object2. jP  is 
an equivalent to light path expressions described in [6]. 

The filter types are realized as plugins of the system (FP in Fig. 1). Some of 
them can use acceleration structures that can be stored as packets. 

The filters can be configured using various user controls exposed by the 
Graphical User Interface (GUI). For example, we could use regular expressions, as 
shown in (3), to filter by the ray type or simple expressions for filtering packet’s 
attributes, etc. All of the described configurations are presented to the user to easily 
build more sophisticated filtering predicates. 

For faster searching, some filters can use different acceleration structures. The 
acceleration structures are generated once after the logging phase has finished and 
before the analysis has begun. They are added to the system as plugins (AP in  
Fig. 1). If one filter tries to use a certain acceleration structure, it asks the plugin 
system whether there is an acceleration plugin of this type and uses the result. 
Otherwise, the filter uses default searching logic. In general, one filter can use more 
than one acceleration structure to do different kinds of searches or to choose the 
optimal one depending on the current case. If the needed structure is not present in 
the log file, the filter plugin can enforce the acceleration plugin to create it and store 
it in the file. 

The acceleration structures we have currently implemented in the system are: 
● a simple index – for fast finding a packet by ID or other attributes. Used in 

simple filters generating Active Sets using filters like the one in (1); 
● a point based kd-tree – for spatial searches. Used for fast constructing 

Active Sets using the spatial information stored in their elements, as shown in (2). 
It could be used in combination with other filters for extracting concrete Active 
Paths; 

● a ray path graph – for extracting light paths from the ray trees,  following 
the idea in example (3). 
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3.4. Logged data stream visualization 

The visualization of the collected data in the domain of computation is of great 
importance when analyzing computer graphics algorithms. Plugin based 
architecture of the visualization subsystem enables the development of specific 
viewers (VP in Fig. 1) for different packet attributes the user wants to display. 

We have implemented an interactive GUI application (Fig. 3a) for displaying 
the data stream. Rendering scene geometry and configuration is essential for 
visualizing traced rays in the context of the computation. Scene geometry, light 
sources and materials are obtained from the stream meta data packets. Currently, an 
OpenGL [10] rendering plugin is implemented for displaying the geometry on the 
screen. Procedural geometry types are supported via polygonization plugins 
communicating with the OpenGL viewer plugin.  

The application is MVC based [11], which allows not only extending the data 
viewers and the available data representations but also implementing new ways for 
interacting with the scene, such as controller plugins. 

The next step towards visual analysis is visualizing the traced Active Set and 
specific graph paths meeting specific filtering criteria defined by one or more filters 
(Definition 3). For every filtering plugin there is a corresponding application 
controller exposing the filter properties to the user. When the filtering configuration 
changes, the ray graph viewer is called to display the filtered Active Paths. 

We have provided numerous built-in controllers for data filtering 
manipulation, including complex light path expressions as in (3), via GUI elements 
(Fig. 3b): sliders for controlling the visible timespan of the ray graph, 3D picking 
mode for selecting different parts of the geometry for filtering by ray-object 
interaction, sphere helper creation mode for defining 3D regions of the scene space 
for spatial filtering origins of the traced rays (2), a simple expression editor for 
attribute filtering, including ray types and ray subpaths (3). 

4. Results and applications 

The described framework and its accompanying tools are implemented as a set of 
C# libraries that can be used by both managed and unmanaged applications. During 
the framework testing we have instrumented the experimental rendering system 
“RayTracer” [7] with the presented logging API. “RayTracer” is a multithreaded 
stochastic ray tracer with the support of physically correct materials composed of 
BRDFs, realistic light sources and the ability to combine different Global 
Illumination (GI) algorithms for calculating light propagation in the scene. 

Tests were performed involving production heavy scenes and complex lighting 
setups (Fig. 3a). The overhead of the data logging measured in terms of render time 
is linear with respect to the number of the traced rays. 

The framework main purpose is helping the developers who work in computer 
graphics domain to produce better quality rendering algorithms by visualizing the 
work done by the algorithm in the context of the computation.  
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Education is another area that can benefit from the described framework. 
Interactive visualization of the ray tracing algorithm was included as part of the 
computer graphics course for undergraduate students in Plovdiv University “Paisii 
Hilendarski”. We noticed that the ability to analyze recorded data and interact step 
by step with the implemented rendering algorithms provided the students with 
deeper understanding of how light-matter interaction is computed. 

  
(a)                                                                (b) 

Fig. 3. Screenshots of the visual analyzer tool:  interactive light path visualization (a);  
filtering UI controls (b) 

Interactive visualization allowed the students to animate the process of light 
propagation. This helped them to gain confidence to try and work on improving the 
rendering algorithms instead of just implementing the classical ones. The course 
instructors also benefit from the interactive visualization by having the chance to 
demonstrate the non intuitive parts of the rendering algorithms and to address the 
common pitfalls in their implementation. 

The framework plugin architecture empowered us to implement different data 
filters and controls for best serving both developers and students (Fig. 3b). The 
option to send the collected data over the network proved invaluable for remote 
debugging and helped us to test the framework in a heterogeneous environment. 

Of particular interest to us was the source code-logged state relation, in which 
the line number of the executed code is logged in every packet. This allows to 
highlight certain parts of the source to identify the lines responsible for some types 
of behaviour. This proved to be of great use for developers who are used to more 
classical source code debugging tools provided by the modern IDEs. 

5. Conclusion 

In this paper we proposed a plugin based software architecture for a framework for 
logging and dynamic analysis of computer graphics algorithms based on the ray 
tracing paradigm. The architecture proves to be very extensible and ready for 
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analyzing production heavy rendering systems. A powerful filtering subsystem 
helps the framework users to easily process huge volumes of collected data. 

A fully functional prototype of the logging system was implemented based on 
the described architecture. The implementation allows the collection of data from 
multithreaded ray tracing algorithms executed on a single machine, as well as 
collection of data from distributed rendering environment over the network. The 
implementation strictly follows the plugin decomposition proposed in this paper. 

The prototype constructively demonstrated the practical application of the 
proposed architecture. Several different filters were implemented for data extraction 
and analysis, including light path expression filtering, spatial filtering, time based 
filtering, executor thread ID filtering, etc. 

We noticed that the interactive visualization tool of the framework and the 
implemented user controls for filter building were of great help for understanding 
how the analyzed algorithms work. This ability to interact with the data in the 
computational domain of the algorithm proves to be invaluable for developers in the 
debugging phase of the project and for students in the field of computer graphics 
algorithms. 

In future numerous features can be introduced in the framework to further help 
its users. Such an extension is a differential filter which will work on two or more 
logs, analyzing their ray trees and showing how changing ray tracing parameters or 
the system source code affect the behaviour of the analyzed algorithm. Another 
valuable addition to the visualization subsystem would be an interactive ray tracer. 
It can easily visualize a different type of geometry consisting not only of triangles, 
but described by functions, such a ray tracer will eliminate the need for writing a 
visualization plugin for every new geometry type that we want to show during the 
analysis phase. We believe that implementing a simple ray tracer as a visualization 
plugin will help future developments. 
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