
 38

BULGARIAN ACADEMY OF SCIENCES

CYBERNETICS AND INFORMATION TECHNOLOGIES • Volume 14, No 2

Sofia • 2014 Print ISSN: 1311-9702; Online ISSN: 1314-4081

DOI: 10.2478/cait-2014-0018

A Framework for Visual Dynamic Analysis
of Ray Tracing Algorithms

Hristo Lesev, Alexander Penev
Plovdiv University “Paisii Hilendarski”, 4000 Plovdiv
Emails: hristo.lesev@gmail.com apenev@uni-plovdiv.bg

Abstract: A novel approach is presented for recording high volume data about ray
tracing rendering systems’ runtime state and its subsequent dynamic analysis and
interactive visualization in the algorithm computational domain. Our framework
extracts light paths traced by the system and leverages on a powerful filtering
subsystem, helping interactive visualization and exploration of the desired subset of
recorded data. We introduce a versatile data logging format and acceleration
structures for easy access and filtering. We have implemented a plugin based
framework and a tool set that realize all ideas presented in this paper. The
framework provides data logging API for instrumenting production-ready,
multithreaded, distributed renderers. The framework visualization tool enables
deeper understanding of the ray tracing algorithms for novices, as well as for
experts.
Keywords: Visual, dynamic, analyzer, ray tracing, debugging.

1. Introduction

Algorithms for ray tracing in computer graphics are widely used to generate
production-ready images, animations and feature length films. Such rendering
algorithms operate on huge amounts of data, and in recent years the need these
algorithms to be physically correct has added additional difficulties with debugging
and dynamic analysis of the algorithms in the ray tracing domain.

Our main goal is to create a modular architecture of a framework that enhances
visualization and dynamic analysis of ray tracing algorithms in computer graphics
domain.

 39

Achieving this goal will require solving several tasks derived from the specific
nature of the problem. A typical production-ready ray tracing system involves
tracing billions of rays and takes a very long time to converge to a result. This
involves an enormous amount of data flowing through the system and makes
conventional debugging not a preferred option. Another aspect of the problem is
that the complex recursive nature of the ray tracing algorithms hampers the step by
step debugging of the system’s workflow.

Like most computer graphics algorithms, ray tracing has a domain-specific
concrete visual representation of the data. However, the existing symbolic
debuggers do not reach the level of visual representation of the data in the
computational domain of the algorithm that would be helpful to the developer.

Stochastic ray tracers rely heavily on random numbers and this makes static
analysis rather useless. Ray tracing is parallel by nature and thus deprives the
developers from the convenience of traditional debugging.

These challenges involve solving several different tasks, such as: recording the
algorithm state at every stage of its execution, filtering huge volumes of data, and
domain-specific data visualization. These tasks can be reflected directly into a set of
subsystems that will build the desired framework.

Although our main goal is focused on helping developers in the
implementation and analysis of computer graphics algorithms, we believe that the
framework visual nature can be of great use in education.

We identify several target audiences that will benefit from using the described
framework. These include:

● developers – for faster debugging of problematic algorithms and developing
new algorithms;

● students – for better understanding of the ray tracing matter;
● end users – to help the support of the system by recording execution state

logs.

2. Related work

Since the early days of the modern computer era, visual analysis has always been a
field of intensive research. Modern integrated development environments (IDEs)
have powerful tools for dynamic analysis of widely used algorithm fragments and
data structures, but they are designed to work on a source code itself and thus cover
a wide area of applications. In computer graphics domain the underlying data have
a very specific visual representation, such as rays in 3D space, scene geometry,
energy, time coherence, etc., that cannot be shown by general purpose debugging
tools.

Most of the existing tools in the field of visualizing algorithms and data focus
on the visualization of the abstract representations of the data structures
implemented by the algorithm considered, such as trees, lists, arrays, graphs, etc.
Another focus shift is towards program visualization and algorithm visualization.
Such tools and systems are described in [12, 13, 14]. They indirectly show how the
logic of the algorithm is working, but are not related in any way to the domain of

 40

computation, in which the algorithm processes its data. This approach contributes
little to the process of understanding complex algorithms in the computer graphics
domain, such as ray tracing. The majority of the available visual frameworks are
designed to simplify the creation of interactive tutorials and examples of how
different algorithms operate with input data. However, very few frameworks are
capable of doing dynamic analysis of these algorithms and thus they do not
empower software developers. Rather than making snapshots of the runtime data on
“interesting events” [18, 15], our approach leverages logging the algorithm’s state
and letting the end user dynamically filter only the subset he is interested in during
the particular analysis, without the need to run the algorithm again.

Our intent is to reveal the processed data and the work done by the algorithm
in the context of the problem it solves, by visualizing the closest physical
equivalence of the virtual data. An example of such a system is given in [1], and
this task is achieved by a highly visual approach of domain-specific data. Similar
ideas are presented in [15] and [16].

One of the recent tools for domain-specific ray tracing data visualization is
rtVTK [2]. Its concept is similar to our goals as it tries to implement unified
programming interface for logging runtime data of ray-based algorithms execution,
and builds a visual tool for analyzing the stored data. The main advantages of the
toolkit are its plugin nature and layered visualizing, but on the other hand the
filtering of the collected data is very vague. We think that filtering must have a
central role in such a system, since it makes the visualization and analysis of huge
data volumes possible. Modern production ray tracers are highly parallel and
require adequate handling of the incoming log stream. Unfortunately, it is unclear
whether rtVTK is capable of working in a parallel mode. The approach we choose
for instrumentation of highly parallel algorithms, such as ray tracing, is similar to
the ideas in [17].

In [3] and [4] powerful tools for realtime editing of the traced light paths based
on visual interaction with the user, are given. They allow the selection of specific
parts of the traced paths according to different filtering criteria, such as spatial
position, ray type, pars of the scene interacted with the light, etc. These types of
filtering are important to achieve our primary goal for better visualization of the
data. The two papers throw no light on implementing such filters and in our opinion
this is a must for this kind of systems. Being oriented mainly towards real time
editing and focused on non physical correct modifications of the light transport,
their work does not include logging and analysis of the runtime data.

In our implementation we use a modification of the light path notation
described in [5] and [6] to filter specific light paths while doing visual analysis.

3. Implementation

The framework presented in this paper tries to enhance the process of development
and analysis of computer graphics algorithms in three main areas: collecting data of
the algorithm run time, easy searching and filtering through the stored information
and visualizing the recorded data in the spatial domain of the computation.

 41

Ray
Tracer

Log File
Cloud
storage

Analyzer Tool

Log StreamAPI

…

On‐line

Off‐line

VP1

VPn

…
FP1

FPm

…

Acceleration
structures

AP1

APk

…

Visualization
Subsystem

Data Filtering and Analysis
SubsystemFramework

Filtering
Plugins

Visualization
Plugins

Lo
gg
in
g

Su
bs
ys
te
m

Fig. 1. System architecture

Each of these areas defines an autonomous subsystem in the framework
architecture (Fig. 1). The tools currently implemented in the framework are focused
on analyzing the stochastic ray tracing applications, but the plugin based
architecture of the core enables the programmer to build new tools accurately,
reflecting the analysis task that he/she faces. Each of the three subsystems provides
its own extension interface.

3.1. Ray data logging subsystem

We introduce a simple data logging API for instrumentation existing rendering
applications. The following pseudocode demonstrates the use of the API in a
recursive ray tracer.

Pseudocode
 for each pixel in the image
 pick a ray from the eye through the pixel
 trace(ray)

 trace(ray)
 beginPacket(ray.ID)
 find nearest intersection with scene
 addToPacket(ray.ID, “parent”, ray.parentID)
 addToPacket(ray.ID, “hitInfo”, ray.hitInfo)
 shade(ray, ray.hitInfo.material)
 endPacket(ray.ID)

 shade(ray, material)
 for each light source
 calculate direct light
 addToPacket(rayID, “light K contribution”, light_energy)
 pick new random ray direction depending on material properties
 trace(newRay)
 addToPacket(rayID, “indirect contribution”, indirect_energy)

 42

A data logging subsystem uses three functions – beginPacket and endPacket
for creating in-memory data structure for the packet, and addToPacket to store the
arbitrary data that the developer might need to analyse later. The logging API has
no additional requirements towards the instrumented ray tracer except for assigning
a unique ID number for each newly spawned ray. Unique naming of the traced rays
is common practice in today’s renderers and we think this does not limit the
developers using the framework in any way. Ray IDs are used to retrieve parent-
child relations in the tree of the traced rays.

The current design of the data logging subsystem enables using the API in
multithreaded and distributed renderers.

3.2. Data log streaming

Data captured during the logging phase is structured as a stream of data packets.
The huge amounts of data due to the number of traced rays and the lack of
consistency in packets’ arriving time caused by the parallel execution environment
lead to issues with scale and storage. In addition, we wanted our framework to be
used for instrumenting production-ready distributed renderers, in which actual data
storage might be on a different machine than the one running the ray tracer
application. These constraints made the streaming data architecture a preferred
solution.

Currently the framework implements three ways of handling a data log stream:
● storing the stream as a file for later analysis;
● transferring it in a cloud based storage;
● on-line – a real time view of the incoming packets in a visualization

application.
Most of the time data logging is excessively used during the implementation

and testing phase of the project lifecycle. Once the render system is deployed to a
client’s environment, the developer has little or no information about its operation
and the problems encountered during its usage, thus making the remote support
look like debugging a black box. We try to make this box a grey one by enabling
the system to use a data logging API and send the recorded information to a secure
cloud storage where it can be analysed later by the developer.

The data log stream consists of numerous packets, any of which having an
arbitrary length. The packet is a key-value container that stores the state of the
analysed algorithm. In the current implementation most packets contain information
about rays traced through the scene, their position, direction, time, color, etc.
Another usage of the packets is to store meta data about the scene, geometry,
material properties, light sources, etc., and these packets are later used for
visualizing the collected ray data within the spatial domain of computation.

Each packet consists of a packet header and a packet body (Fig. 2a). The
header section contains the packet size and the unique ID in the data stream. The
packet body contains the data payload represented as a key-value dictionary of the
user defined attributes. When saved as a file, the packet body can be compressed to
further minimize the disk space usage.

 43

The framework does not impose any constraints on the data that can be stored
as an attribute value. All relations among packages are also stored as attributes. For
example, all packets that store traced rays are part of the light path graph and have
to maintain a parent-child relation, where each child ray packets has an attribute
with a value the ID of the parent packet (Fig. 2a).

When a complex scene is rendered, the number of stored packets can easily
exceed a billion. This will make real time analysis and visualization of the stored
data a difficult task to achieve. We address this issue by adding indices at the end of
the stream. Building of the indices is done as a post processing operation after the
data logging is complete. The indices are stored in the stream as packets.

The current implementation uses a simple packet start position index for easy
finding of individual packets, kd-tree [8] – for spatial indexing when searching
through the origins of the traced rays, and B-tree [9] – for searching through the rest
of the packet attributes. A light path parent-child relation is kept in a separate graph
based index, which allows easy extraction of all packets composing a valid subpath
of the graph. The need for having these helper structures is determined by the
expected high number of logged packets and the demand for filtering them as fast
as possible, as well as the usage of the framework in real life scenarios (see the
examples in 3.3).

Packet

ID

Entities
…
…
…

Packet

ID

Entities

…
…

Parent ID

Packet

ID

Entities

…
…

Parent ID

Simple
Index
List of
Packets
offsets

Kd‐tree
Index

List of
spatially
ordered
Packets

Ray‐graph
Index

List of light
paths
traced

… …

…

g1

g2

g4
Br(p)

g2.ID=g3.ParentID

g3

Light 1

Object2

Object1

g8.RayType=light

g1.RayType=cam
g1.Time=0.1
g1.a1=5

g1.HitPoint

(a) (b)

Fig. 2. Log stream structure (a); light paths filtering (b)

3.3. Ray packet filtering

Filtering can be done in several extensible ways. Here we shall use а simple
predicate filtering by packet attributes and a combination of simple predicates.

Some of the most important filters we currently use are:
• the attribute values;
• the ray type;
• spatial filtration – regions of world space that rays hits;
• the time or timespan;
• ID of the thread that spawned this packet.

 44

Next, we shall give more formal definitions of the filtering foundations
implemented in the described system.

Let
);,(ENG = { },,...,, 21 ngggN = { } ...,,1 kiNNeNNE i =∀×∈=×⊆ ,

where G is a multigraph with a set of nodes N with elements ig i=1, …, n,
representing Data Log Packets. The edges in the graph (denoted as set E) are
defined by ID-ParentID relations (and others) between the packets in the log.

For performing analysis in the ray tracing domain, one must consider the
relations between all tracked rays forming ray paths in the traced graph.

Let
==),(00 PGR Ø,

{ } 0111)()(),(
11

RgPNgPGR ii ∪∈== ,

{ } 12
2

22),(),(),(
2121

RggPNggPGR iiii ∪∈== , …,

{ } 1),...,,(),...,,(),(
2121 −∪∈== jiiij

j
iiijj RgggPNgggPGR

jj
, …,

where R is a relation between the nodes in G, set by the predicate P. These relations
represent the part of the data that will be visualized and analysed.

Definition 1. An Active Set is a subset of all nodes in G.
Active Sets are used for visualizing data as a part of the Log analysis process.

Active Sets are not required to be generated by any edges in the graph.

Definition 2. An Active Path is an ordered Active Set formed by nodes in G.
Active Path is a sequence of connected data packets. In the system described

we use ID-ParentID attributes as relations between the nodes in the path. These
relations represent rays generated sequentially during the ray tracing simulation of a
light path.

Definition 3. A Filter is a predicate defining an Active Path/Active Set in
graph G.

Relations jR define a set of Active Paths with length less than or equal to j in

graph G generated using a filter jP .
Examples of different filters are given below, see also Fig. 2b:

(1)])5.0,1.0[Time.()3.()5.()(
1111 211 ∈∧>∧=== iiii gagaggP

In this example filter defining simple Active Set is shown using attributes a1,
a2 and Time. In ray tracing domain the time of the ray is an important attribute for
visualizing the process development in a certain time frame:
(2) ∧=∧=∨>==)..()6.()5.(),(11212 212121

agagagagggP iiiiii

).ParentIDID.())(HitPoint.(
111 iiri ggpBg ∈∧∈∧

Filter 2P is defining Active Path by enforcing the requirement that the parent of

2i
g must be

1i
g . Another interesting part of the predicate is a spatial relation defined

 45

by)(pBr , it requires the starting point of the ray
1i

g to be in the volume enclosed
by a sphere with radius r and center p (Fig. 2b):
(3)

1 2 1 2
(, ,...,) (.RayType cam) (.RayType ref)

jj i i i i iP g g g g g l= = = ∧ = ∧

3
(.RayType ref) ... (.RayType light)

ji ig l g∧ = ∧ ∧ = ∧

1 1(.Ray Objectig∧ ∩ ≠ Ø
2 2) (.Ray Objectig∧ ∩ ≠Ø ∧∧ ...)

1 2 2 3
(.ID .ParentID) (.ID .ParentID) ...i i i ig g g g∧ = ∧ = ∧ ∧

1
(.ID .ParentID).

j ji ig g
−

∧ =

Filter jP defines Active Path with length j and describes a common situation for
filtering data gathered by ray tracing application. The first part of the predicate will
extract a set of rays shot from the camera (RayType=Cam), reflected multiple
times in the scene (RayType=refl) and finishing the path in a light source
(RayType=light). There are also sub predicates that require specific rays like

1i
g

and
2i

g to be bounced by concrete objects in the scene Object1 and Object2. jP is
an equivalent to light path expressions described in [6].

The filter types are realized as plugins of the system (FP in Fig. 1). Some of
them can use acceleration structures that can be stored as packets.

The filters can be configured using various user controls exposed by the
Graphical User Interface (GUI). For example, we could use regular expressions, as
shown in (3), to filter by the ray type or simple expressions for filtering packet’s
attributes, etc. All of the described configurations are presented to the user to easily
build more sophisticated filtering predicates.

For faster searching, some filters can use different acceleration structures. The
acceleration structures are generated once after the logging phase has finished and
before the analysis has begun. They are added to the system as plugins (AP in
Fig. 1). If one filter tries to use a certain acceleration structure, it asks the plugin
system whether there is an acceleration plugin of this type and uses the result.
Otherwise, the filter uses default searching logic. In general, one filter can use more
than one acceleration structure to do different kinds of searches or to choose the
optimal one depending on the current case. If the needed structure is not present in
the log file, the filter plugin can enforce the acceleration plugin to create it and store
it in the file.

The acceleration structures we have currently implemented in the system are:
● a simple index – for fast finding a packet by ID or other attributes. Used in

simple filters generating Active Sets using filters like the one in (1);
● a point based kd-tree – for spatial searches. Used for fast constructing

Active Sets using the spatial information stored in their elements, as shown in (2).
It could be used in combination with other filters for extracting concrete Active
Paths;

● a ray path graph – for extracting light paths from the ray trees, following
the idea in example (3).

 46

3.4. Logged data stream visualization

The visualization of the collected data in the domain of computation is of great
importance when analyzing computer graphics algorithms. Plugin based
architecture of the visualization subsystem enables the development of specific
viewers (VP in Fig. 1) for different packet attributes the user wants to display.

We have implemented an interactive GUI application (Fig. 3a) for displaying
the data stream. Rendering scene geometry and configuration is essential for
visualizing traced rays in the context of the computation. Scene geometry, light
sources and materials are obtained from the stream meta data packets. Currently, an
OpenGL [10] rendering plugin is implemented for displaying the geometry on the
screen. Procedural geometry types are supported via polygonization plugins
communicating with the OpenGL viewer plugin.

The application is MVC based [11], which allows not only extending the data
viewers and the available data representations but also implementing new ways for
interacting with the scene, such as controller plugins.

The next step towards visual analysis is visualizing the traced Active Set and
specific graph paths meeting specific filtering criteria defined by one or more filters
(Definition 3). For every filtering plugin there is a corresponding application
controller exposing the filter properties to the user. When the filtering configuration
changes, the ray graph viewer is called to display the filtered Active Paths.

We have provided numerous built-in controllers for data filtering
manipulation, including complex light path expressions as in (3), via GUI elements
(Fig. 3b): sliders for controlling the visible timespan of the ray graph, 3D picking
mode for selecting different parts of the geometry for filtering by ray-object
interaction, sphere helper creation mode for defining 3D regions of the scene space
for spatial filtering origins of the traced rays (2), a simple expression editor for
attribute filtering, including ray types and ray subpaths (3).

4. Results and applications

The described framework and its accompanying tools are implemented as a set of
C# libraries that can be used by both managed and unmanaged applications. During
the framework testing we have instrumented the experimental rendering system
“RayTracer” [7] with the presented logging API. “RayTracer” is a multithreaded
stochastic ray tracer with the support of physically correct materials composed of
BRDFs, realistic light sources and the ability to combine different Global
Illumination (GI) algorithms for calculating light propagation in the scene.

Tests were performed involving production heavy scenes and complex lighting
setups (Fig. 3a). The overhead of the data logging measured in terms of render time
is linear with respect to the number of the traced rays.

The framework main purpose is helping the developers who work in computer
graphics domain to produce better quality rendering algorithms by visualizing the
work done by the algorithm in the context of the computation.

 47

Education is another area that can benefit from the described framework.
Interactive visualization of the ray tracing algorithm was included as part of the
computer graphics course for undergraduate students in Plovdiv University “Paisii
Hilendarski”. We noticed that the ability to analyze recorded data and interact step
by step with the implemented rendering algorithms provided the students with
deeper understanding of how light-matter interaction is computed.

(a) (b)

Fig. 3. Screenshots of the visual analyzer tool: interactive light path visualization (a);
filtering UI controls (b)

Interactive visualization allowed the students to animate the process of light
propagation. This helped them to gain confidence to try and work on improving the
rendering algorithms instead of just implementing the classical ones. The course
instructors also benefit from the interactive visualization by having the chance to
demonstrate the non intuitive parts of the rendering algorithms and to address the
common pitfalls in their implementation.

The framework plugin architecture empowered us to implement different data
filters and controls for best serving both developers and students (Fig. 3b). The
option to send the collected data over the network proved invaluable for remote
debugging and helped us to test the framework in a heterogeneous environment.

Of particular interest to us was the source code-logged state relation, in which
the line number of the executed code is logged in every packet. This allows to
highlight certain parts of the source to identify the lines responsible for some types
of behaviour. This proved to be of great use for developers who are used to more
classical source code debugging tools provided by the modern IDEs.

5. Conclusion

In this paper we proposed a plugin based software architecture for a framework for
logging and dynamic analysis of computer graphics algorithms based on the ray
tracing paradigm. The architecture proves to be very extensible and ready for

 48

analyzing production heavy rendering systems. A powerful filtering subsystem
helps the framework users to easily process huge volumes of collected data.

A fully functional prototype of the logging system was implemented based on
the described architecture. The implementation allows the collection of data from
multithreaded ray tracing algorithms executed on a single machine, as well as
collection of data from distributed rendering environment over the network. The
implementation strictly follows the plugin decomposition proposed in this paper.

The prototype constructively demonstrated the practical application of the
proposed architecture. Several different filters were implemented for data extraction
and analysis, including light path expression filtering, spatial filtering, time based
filtering, executor thread ID filtering, etc.

We noticed that the interactive visualization tool of the framework and the
implemented user controls for filter building were of great help for understanding
how the analyzed algorithms work. This ability to interact with the data in the
computational domain of the algorithm proves to be invaluable for developers in the
debugging phase of the project and for students in the field of computer graphics
algorithms.

In future numerous features can be introduced in the framework to further help
its users. Such an extension is a differential filter which will work on two or more
logs, analyzing their ray trees and showing how changing ray tracing parameters or
the system source code affect the behaviour of the analyzed algorithm. Another
valuable addition to the visualization subsystem would be an interactive ray tracer.
It can easily visualize a different type of geometry consisting not only of triangles,
but described by functions, such a ray tracer will eliminate the need for writing a
visualization plugin for every new geometry type that we want to show during the
analysis phase. We believe that implementing a simple ray tracer as a visualization
plugin will help future developments.

Acknowledgements: The work is partially funded by the Fund Research of the Plovdiv University
“Paisii Hilendarski” under Contract No NI13-FMI-002/2013.

R e f e r e n c e s

1. R u s e l l, J. An Interactive Web-Based Ray Tracing Visualization Tool. Undergraduate Honors
Program Senior Thesis. Department of Computer Science, University of Washington, 1999.

2. G r i b b l e, C., J. F i s h e r, D. E b y, E. Q u i g l e y, G. L u d w i g. Ray Tracing Visualization
Toolkit. – In: Proceedings of ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, ACM, New York, NY, USA, 2012, 71-78. doi: 10.1145/2159616.2159628.

3. S c h m i d t, T., et al. Path-Space Manipulation of Physically-Based Light Transport. – ACM
Transactions On Graphics (TOG), Vol. 32, 2013, No 4, Article 129, 129:1-129:8.
doi: 10.1145/2461912.2461980.

4. R e i n e r, T., A. K a p l a n y a n, M. R e i n h a r d, C. D a c h s b a c h e r. Selective Inspection and
Interactive Visualization of Light Transport in Virtual Scenes. – Computer Graphics Forum /
Eurographics, Vol. 31, 2012, No 2, 711-718. doi: 10.1111/j.1467-8659.2012.03050.x.

5. H e c k b e r t, P. S. Adaptive Radiosity Textures for Bidirectional Ray Tracing. – In: Proceedings
of SIGGRAPH 1990, Vol. 24, 1990, ACM, New York, USA, 145–154.
doi: 10.1145/97879.97895.

 49

6. OSL, visited 25.11.2013.
https://code.google.com/p/openshadinglanguage/wiki/LightPathExpressions

7. L e s e v, H. Photorealistic Computer Graphics In Informatics Education Process. – In:
Proceedings of Conference “Education in the Information Society”, Institute of Mathematics
and Informatics of BAS and Plovdiv University “Paisii Hilendarski”, Plovdiv, Bulgaria,
2010, 141-146.

8. S a m e t, H. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.
9. B a y e r, R. The Universal B-Tree for Multidimensional Indexing: General Concepts. – In:

Proceedings of the Worldwide Computing and Its Applications. Berlin, Heidelberg,
Tsukuba, Japan, Springer, 1997, 198-209. doi: 10.1007/3-540-63343-X_48.

10. S h r e i n e r, D., G. S e l l e r s, J. M. K e s s e n i c h, B. M. L i c e a-K a n e. OpenGL
Programming Guide: The Official Guide to Learning OpenGL. Version 4.3. 8th Edition.
USA, Addison Wesley Professional, 2013.

11. K r a s n e r, G., S. P o p e. A Cookbook for Using the Model-View-Controller User Interface
Paradigm in Smalltalk-80. – Journal of Object-Oriented Programming, Vol. 1, 1988, No 3,
26-49.

12. M y e r s, B. INCENSE: A System for Displaying Data Structures. – In: Proceedings of the ACM
SIGGRAPH Computer Graphics, Vol. 17, 1983, No 3, ACM, New York, NY, USA,
115-125. doi: 10.1145/800059.801140.

13. M u k h e r j e a, S., J. T. S t a s k o. Toward Visual Debugging: Integrating Algorithm Animation
Capabilities within a Source-Level Debugger. – ACM Transactions on Computer-Human
Interaction (TOCHI), Vol. 1, 1994, No 3, 215-244. doi: 10.1145/196699.196702.

14. C a r l i s l e, M., T. A. W i l s o n, J. W. H u m p h r i e s, S. M. H a d f i e l d. RAPTOR: A Visual
Programming Environment for Teaching Algorithmic Problem Solving. – ACM SIGCSE
Bulletin, Vol. 37, 2005, No 1, 176-180. doi: 10.1145/1047124.1047411.

15. N a p s, T. L., B. S w a n d e r. An Object-Oriented Approach to Algorithm Visualization – Easy,
Extensible, and Dynamic. – ACM SIGCSE Bulletin, Vol. 26, 1994, No 1, 46-50.
doi: 10.1145/191033.191052.

16. N i k a n d e r, J., J. H e l m i n e n. Algorithm Visualization in Teaching Spatial Data Algorithms. –
In: Proceedings of the Information Visualization, 11th International Conference, IEEE,
Zurich, 2007, 505-510. doi: 10.1109/IV.2007.21.

17. K r a e m e r, E., J. T. S t a s k o. The Visualization of Parallel Systems: An Overview. – Journal of
Parallel and Distributed Computing, Vol. 18, 1993, No 2, 105-117.
doi: 10.1006/jpdc.1993.1050.

18. B r o w n, M. Algorithm Animation. Cambridge, MA, USA, MIT Press, 1988.

