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Abstract

A novel framework called 2D Fisher Discriminant Analy-
sis (2D-FDA) is proposed to deal with the Small Sample
Size (SSS) problem in conventional One-Dimensional Lin-
ear Discriminant Analysis (1D-LDA). Different from the
1D-LDA based approaches, 2D-FDA is based on 2D im-
age matrices rather than column vectors so the image ma-
trix does not need to be transformed into a long vector be-
fore feature extraction. The advantage arising in this way
is that the SSS problem does not exist anymore because
the between-class and within-class scatter matrices con-
structed in 2D-FDA are both of full-rank. This framework
contains unilateral and bilateral 2D-FDA. It is applied to
face recognition where only few training images exist for
each subject. Both the unilateral and bilateral 2D-FDA
achieve excellent performance on two public databases:
ORL database and Yale face database B.

1 Introduction
When only ¢ samples are available in an n-dimensional vec-

tor space with ¢ < n, the sample covariance matrix C is
calculated from the samples as

C=

o~ | =

Z(Xi —m)(x; —m)” (1)

where m is the mean of all the samples. (x; — m)’s
are not linearly independent, because they are related by
2221 (x;—m) = 0. Thatis, C is a function of (t—1) or less
linearly independent vectors. Therefore, the rank of Cis
(t—1) orless. This problem, which is called a Small Sample
Size (SSS) problem [1], is often encountered in face recog-
nition where ¢ is very small and n is very large. In conven-
tional LDA of face patterns, the criterion of measuring the
discriminatory power of the projection vectors is to maxi-
mize the between-class scatter and meantime to minimize
the within-class scatter of the projected samples. The op-
timal projection (transformation) can be readily computed
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by solving a generalized eigenvalue problem. However, be-
cause of the SSS problem, the within-class covariance ma-
trix, S, is singular so that the numerical problem is intro-
duced in solving the optimal discriminating directions.

To solve the SSS problem in 1D-LDA based face recog-
nition, various schemes have been proposed so far. Swets
and Weng’s discriminant eigenfeatures [2], Belhumeur et
al’s Fisherface [3] and Zhao’s discriminant component
analysis [4] all used a two-stage PCA+LDA approach. Us-
ing PCA, the high dimensional face data are projected to a
low dimensional space and then LDA is performed in this
PCA space. However, the removed subspace may also con-
tain some helpful information for recognition, and this re-
moval may result in a loss of discriminative information.
Chen et al. [5] suggested that the null space spanned by the
eigenvectors of S,, with zero eigenvalues contains the most
discriminative information, hence an LDA method in the
null space of S,, was proposed, called N-LDA. However,
as explained in [5], with the existence of noise, when the
number of training samples is large, the null space of S,,
becomes small, and much discriminative information out-
side this null space will be lost. Another shortcoming is
that this approach involves solving the eigenvalue problem
for a very large matrix. A similar idea was proposed in [7]
where the N-LDA is performed in the range space of S;.

Yu and Yang [6] proposed the Direct LDA (D-LDA) al-
gorithm which also incorporates the concept of null space.
It first removes the null space of the between-class scatter
matrix, Sy, and seeks a projection to minimize the trace of
within-class covariance in the range space of S;. Because
the rank of S is smaller than that of S,,, removing the null
space of S, may lose part of or the entire null space of S,,,
which is very likely to be full-rank after the removing oper-
ation.

Wang and Tang [8] presented a random sampling LDA
for face recognition with small number of training samples.
This method can be regarded as a combination of weak clas-
sifiers. This paper concludes that both Fisherface and N-
LDA encounter respective over-fitting problem for different
reasons. A random subspace method and a random bag-



ging approach are proposed to solve them. A fusion rule
is adopted to combine these random sampling based classi-
fiers. A dual-space LDA approach [9] for face recognition
was proposed to simultaneously apply discriminant analy-
sis in the principal and null subspaces of the within-class
covariance matrix. The two sets of discriminative features
are then combined for recognition.

Recently, Two-Dimensional Principal Component Anal-
ysis (2D-PCA)[11] method has been discussed. 2D-PCA
is based on 2D image matrices rather than column vec-
tors as opposed to traditional 1D-PCA based approaches,
thus the covariance matrix is quite small and can be evalu-
ated more accurately in 2D-PCA than that in 1D-PCA. This
makes the 2D-PCA achieve higher recognition rate than 1D-
PCA. However, like 1D-PCA, 2D-PCA is only good at im-
age representation rather than discrimination. When there
are large pose- and illumination-variations in face images,
the top eigenvectors in 2D-PCA do not model identity infor-
mation but these external variations. It can be expected that
2D-PCA will be inferior to LDA based algorithms in such
cases. Our experiments will also verify this conclusion in
the later part of this paper.

To overcome the shortcoming in 2D-PCA and mean-
while to solve the SSS problem in 1D-LDA based algo-
rithms, a novel 2D-FDA framework containing unilateral
2D-FDA and bilateral 2D-FDA is proposed. Similar to
2D-PCA, 2D-FDA constructs the between-class and within-
class covariance matrices using the 2D image matrices, but
different from 2D-PCA, the Fisher’s criterion is adopted to
find more discriminant information. In contrast to the S
and S,, of 1D-LDA, the S; and S, obtained by 2D-FDA
are not singular. As a result, the 2D-FDA has three im-
portant advantages over the 2D-PCA and 1D-LDA based
algorithms. Firstly, the features are extracted using Fisher
discriminant analysis instead of PCA, thus the discriminat-
ing ability is better than 2D-PCA. Secondly, it does not
encounter SSS problem anymore when the training sample
size is small. Thirdly, it takes full advantage of the discrim-
inative information in the face space, and does not discard
any subspace which may be valuable for recognition. In ad-
dition, within the framework of 2D-FDA, bilateral 2D-FDA
is further developed. It shows better performance than its
unilateral counterpart because incorporating bilateral pro-
jections extracts more discriminant information. Experi-
ment results on ORL database and Yale face database B
clearly demonstrate these advantages.

2 Unilateral 2D-FDA

Let W = [wy,Wa, ..., wq| denotes an m x d projection
matrix, where w; is an m-dimensional column vector, i =
1,...,d. The idea is to project image X, an m X n matrix,

onto W by the following linear transformation:
Y = wW'X )

Thus, we obtain a d x n projected feature matrix Y for
each image. As in 1D-FDA, the discriminatory power of the
projection vectors W can be measured by the Fisher crite-
rion [1], i.e., maximizing the between-class and meantime
minimizing the within-class scatter of the projected sam-
ples. From this point of view, the Fisher criterion in 2D-
FDA is adopted as follows:

_ det(PSy)

J(W) = det(PS,)

3

where PS;, and PS,, are the between-class and within-class
covariance matrices of the projected samples respectively,
det (o) denotes the determinant of a matrix.

Lemma 1: Let Sy, S,, be the between-class and within-
class covariance matrices of the original image matrix.

Then, J(W)=7§§f§;’v"§§3"v‘()) .

__Proof : Let M be the mean of all the training samples,
M, be the mean of tE i-th class, M be the mean of all the
projected samples, Mf be the mean of the ¢-th projected
class.

Then, PS, = i, Li(M; — M')(M; - M) =
YE L L(WITM; — WIM) (WI'M; -WTM)”
YF L LiWT(M; - M) (M; - M) W=W"S, W, where
L is the total class number, L; is the nlmber ﬁf tra_ining
samples in the i-th class, Sb:ZiL:1 L;(M; — M) (M; —
M) Similarly, we can obtain PS,, = W*S, W, where
Sw=31il1 2055 (X] = M) (X] - My)"

Therefore, the Fisher criterion in Eq.3 can be converted
to:

B det(WT'S, W)

J(W) = det(WTS,W)

“)
The vectors in W that maximize Eq.4 are called the op-
timal discriminating projection axes. O
Since the above projection in Eq.2 is a unilateral left-
multiplication, the 2D-FDA obtained in this way is called
Unilateral 2D Fisher Discriminant Analysis (U2DFDA).
For U2DFDA, we have the following theorem:
Theorem 1: The S,, in U2DFDA is not singular.
Proof : Since S,,=Y"; ; Y"1 (X! - M) (X! - M,)7,

another form of S,, can be written as S,, = & gw‘1>§w,
where @5, = [Qs‘lsw’ 2511), T gw]’ (bZSw = [(X% -
E)a(xf _E)a ’(Xle _Mz)]’l = ]-7 aL’.] =
1,---,L;. X! is the j-th training sample in the i-th class.

The dimension of ®g,, is m X (n ZiL:1 L;), where m and

n are the image’s height and width. Since rank(®%, ®s.,)
= rank(®s,®%,) = rank(®L,) = rank(®s,) and



rank(®s,) = m!, additionally, the dimension of S,, is
m X m, we can conclude that S,, is of full rank. O

In this way, the optimal projection vectors W,,; can
be obtained by directly solving the following generalized
eigen-value problem.

S, SyW = AW (5)

where A is the diagonal matrix whose diagonal elements are
eigenvalues of S, S.

The classification method is adopted as the one used in
2D-PCA [11]. In 1D-FDA based methods, the final di-
mension for classification is fixed to (C' — 1), where C
is the number of classes. However, in 2D-FDA, the opti-
mal number of Fisher feature vector, d, is not fixed. Since
the S,, is invertible, d can be at most equal to the im-
age’s height. However, the optimal d for classification is
database-dependent, i.e., the optimal d is different for dif-
ferent databases. In our experiments, we will discuss the
optimal dimensions for different databases.

3 Bilateral 2D-FDA

The above section describes a method of extracting
the optimal discriminant directions via a left-multiplying
U2DFDA. What if the projection is a right-multiplying op-
eration? That is,

Y =XW (6)

In fact, it is trivial to check that the right-multiplying
U2DFDA can be converted into left-multiplying U2DFDA
by transposing the image matrix. Therefore, the right-
multiplying Fisher feature matrix Y, = XW, and W,
can be obtained using Eq.5, where S,,:Z:Z,L:1 L;(M;—M)T
(M; = M) and S,,=3;", 374, (XI = M) (X] — M),

Will the left-multiplying and right-multiplying U2DFDA
achieve the same recognition rate or will they recognize
the same batch of face images? Our experimental results
show that sometimes they have the same recognition rate,
but most of the time, their performance is different. The
reason is that the calculations of S and S,, are different in
the left-multiplying and right-multiplying U2DFDA. It can
also be found that either in left-multiplying U2DFDA or
right-multiplying U2DFDA, the calculations of S; and S,,
solely emphasize the dependency (correlation) among the
row or column vectors of the image matrix and neglects the
other one. Therefore, it may lose some information which

1t is known that rank(®s,) < min(m,n3> % L;) and
m <L (n ZiL=1 L;) in the area of visual pattern recognition, there is,
rank(®s, ) < m. Further, we take an assumption that the rows of ®g,,
are independent of each other (the experiment results will demonstrate that
this assumption can be well satisfied in the benchmark databases), it can
be obtained that rank(®s,,) = m.

is helpful for discrimination. Considering this, a bilateral-
projection scheme which is called Bilateral 2D Fisher Dis-
criminant Analysis (B2DFDA) is proposed by combining
Y, = W/X and Y, = XW,, where W; = [wi,
wh oo ,wldl], W, = [w],wj, -, wy ] are the left- and
right-multiplying optimal projection vectors respectively, d;
is the number of left-multiplying projection directions and
it can be equal to the image’s height at most. d,. is the num-
ber of right-multiplying projection directions and it can be
equal to the image’s width at most.

After performing the left- and right-multiplying
U2DFDA, Y, and Y, are obtained for each image. They
are combined together for recognition. The steps for
recognition is as follows: firstly Y; and Y,. are transformed
into 1D vectors for each images, then PCA is applied onto
these vectors. Finally, two shorter vectors can be obtained
for each image and they are combined into one vector for
classification.

4 The Essence of 2D-FDA

The covariance matrices in the U2DFDA appear to be phys-
ically meaningful in the matrix space rather than in the vec-
tor space. However, Theorem 2 will give another perspec-
tive to make the U2DFDA physically meaningful even in
vector space, and will explicitly explain its essence. The
similar explanation for 2DPCA has been made in [10].
Theorem 2: In the left-multiplying U2DFDA, the
U2DFDA performed on the image matrices is essentially
the conventional LDA method performed on the columns
of the image matrices if each column is viewed as a compu-
tational unit.

Proof : Since S, =Y | Y7 (X! — M;) (X! — My)?,

another form of S,, can be written as S,, = & gw‘1>£w.
Bso = (977,05, L 0p"] and @7 = [(X] —
M), (X7 — M), -+, (X5 — My)J=[((X5(5,1) — M(:

1), (XEGn) = M(:,n))), -+, (X7 (5, 1) = MG(:
1)), -, (XEi(;,n) — M (:,n)))], where X! is the j-th
training sample in the i-th class, and A(:, ¢) is the i-th col-
umn of matrix A. Therefore, S,, is constructed directly by
the columns of the centered training image matrices. Simi-
larly, Sy is also constructed using the columns.

Therefore, the left-multiplying U2DFDA performed on
the image matrices can be viewed as the conventional LDA
performed on the columns of all the training samples if each
column is viewed as a computational unit. O
Theorem 3: In the right-multiplying U2DFDA, the
U2DFDA performed on the image matrices is essentially
the conventional LDA method performed on the rows of the
image matrices if each row is viewed as a computational
unit.

The proof of Theorem 3 is similar to that of Theorem 2.



S Experiment Results

The proposed U2DFDA and B2DFDA methods are tested
on two commonly used face image databases, ORL and
Yale face database B (YaleB). The ORL database is used
to evaluate the performance of 2D-FDA under conditions
where the pose, face expression and face scale vary. The
YaleB is used to examine the performance of 2D-FDA when
illumination varies significantly.

The ORL face database contains images from 40 indi-
viduals, each providing 10 different images. The facial ex-
pressions and facial details (glasses or no glasses) also vary.
The images were taken with a tolerance for some tilting and
rotation of the face of up to 20 degrees. Moreover, there is
also some variation in the scale of up to about 10 percent.
All images normalized to a resolution of 46x56.

From YaleB, altogether 640 images for 10 subjects are
used (64 illumination conditions under the same frontal
pose) in our experiments. All the images are preprocessed
and normalized by translation, rotation, and scaling such
that the two outer eye corners are in fixed positions. The
image size is 50x40.

5.1 Random Grouping of Training and Test-
ing Sets

To test the recognition performance with different training
numbers, k (2 < k < 9 for ORL database and 2 < k < 12
for YaleB) images of each subject are randomly selected for
training and the remaining p-k (p is the total number of im-
ages for each subject, for ORL database, p equals 10; for
YaleB, p is 64) images of each subject for testing. For each
number k, 50 times of random selections are performed on
ORL database and 100 times for YaleB. The final recogni-
tion rate is the average of all.

5.2 Experiment Setup

The first experiment is to investigate the performance of
U2DFDA with different number of Fisher feature vectors.
Without losing generality, the right-multiplying mode is
used in U2DFDA. The maximum size of the Fisher fea-
ture matrix is 56 x 46 for ORL database, i.e., containing at
most 46 56-dimensional Fisher feature vectors; for YaleB,
the maximum size of the Fisher feature matrix is 50 x 40,
i.e., containing at most 40 50-dimensional Fisher feature
vectors. We change the number of Fisher feature vectors
from 1 to 46 for ORL database and from 1 to 40 for YaleB
to see the effect on performance. It has been shown via the-
oretical analysis that there is no SSS problem in 2D-FDA.
In order to verify this argument again through experiment,
we focus on testing the performance of 2D-FDA when there
are only few training samples for each subject, say, only 2, 3

or 4 training samples for each subject. Fig.1 (a) to (c) show
the performance of U2DFDA on ORL database. The opti-
mal number of the Fisher feature vectors in all the three tri-
als is 3. Fig.1 (d) to (f) show the performance of U2DFDA
on YaleB. The optimal number of the Fisher feature vectors
in the three trials is 31, 27 and 23 respectively. From the
experiment results, it can be seen that the optimal number
of Fisher feature vectors for classification in U2DFDA is
different on different database. Even on the same database,
the optimal number will vary when the number of training
samples for each subject is different.

The second experiment compares B2DFDA with
U2DFDA. By fixing the optimal number of the Fisher fea-
ture vectors of the right-multiplying U2DFDA, we change
the number of the Fisher feature vectors of the left-
multiplying U2DFDA (from 1 to 56 for ORL database and
from 1 to 50 for Yale face database B) and apply B2DFDA.
Fig.1 (a) to (c) show the comparison of B2DFDA and
U2DFDA on ORL database while Fig.1 (d) to (f) show the
comparison results on Yale face database B. From this ex-
periment, we find that B2DFDA can achieve higher recog-
nition rate than U2DFDA, e.g., with an increase of up to 5
percentage on YaleB. Additionaly, its performance variation
with dimension change is smaller than that of U2DFDA.

The third experiment is to test the performance of
U2DFDA and B2DFDA with different training numbers for
each subject. A comparison is made between 2D-FDA and
the state-of-the-art linear subspace methods. For Fisherface
[3], the PCA subspace is constrained to (N — ('), the re-
served dimension for classification is set to (C' — 1), where
N is the total number of training samples, C' is the num-
ber of classes. For D-LDA [6] and N-LDA [7], the dimen-
sion for classification are both set to (C' — 1). For 2D-
PCA and U2DFDA, we select the optimal numbers of Eigen
feature vector and Fisher feature vector for classification.
The optimal numbers of 2D-PCA and U2DFDA for ORL
database and YaleB are reported in (a) and (b) in Fig.2 re-
spectively. For B2DFDA, the numbers of the right- and left-
multiplying Fisher feature vector are set to be equal, both
being the optimal number in U2DFDA. Two observations
can be found from From Fig.2. Firstly, on ORL, for 2D-
PCA, with the increase of the number of training samples
for each subject, the optimal number also increases. Con-
trarily, for U2DFDA, the optimal number decreases. On
YaleB, for 2D-PCA, the optimal dimension is equally the
maximum number of Eigen feature vectors, for U2DFDA,
the optimal number drops as the number of training samples
increases. Secondly, the optimal number for U2DFDA are
smaller than that of 2D-PCA no matter what the number of
training samples for each subject is. Hence, from the point
view of storage-space requirement and computational load,
U2DFDA is more efficient than 2D-PCA.

Fig.3 (a) shows the average recognition rate of all the
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Figure 1: Comparison between U2DFDA and B2DFDA with different number of Fisher feature vectors. (a)-(c): Two, three
and four training samples respectively for each subject on ORL database; (d)-(f): Two, three and four training samples

respectively for each subject on YaleB.

algorithms on ORL. It can be seen that the performance
of U2DFDA and B2DFDA is much better than the other
methods when the number of training samples is small. 2D-
FDA outperforms the other linear LDA algorithms by up
to 7 ~ 12 percentage, and surpasses the 2D-PCA by up to
3.5 percentage. We can also find that B2DFDA does out-
perform U2DFDA as expected by the theoretical analysis.
2D-PCA is superior to the linear LDA based algorithms
on this database where there are no significant illumina-
tion variations. Fig.3 (b) shows the average recognition rate
on YaleB. The performance of 2D-FDA is still much better
than the other linear subspace methods when the number of
training samples for each subject is small, however, with the
increase of the number of training samples for each subject,
the performance of Fisherface surpasses that of U2DFDA
(when the training sample number is up to 7 for each sub-
ject). B2DFDA is much better than U2DFDA, with an in-
crease of 2 ~ 5 percentage. However, Fisherface will out-
perform B2DFDA when the number of training samples for
each subject increases up to a larger one (e.g., 15). This is
because, in Fisherface method, the the null space of S, is
discarded, whose rank is C' — 1. When the number of train-
ing samples for each subject is small (e.g., 2), the rank of
null space of S,, is comparable to the rank of range space

of Sy,. Therefore, discarding the whole null space of S, is
equivalent to losing a large quantity of discriminant infor-
mation. However, with the number of training samples in-
creasing, the rank of null space of S,, is much smaller than
the rank of range space of S,, and discarding the whole null
space of S, will lose relatively little useful information.

We also find that the performance of 2D-PCA is not so
good as that on ORL database. This is consistent with our
previous analysis that 2D-PCA is a good pattern represen-
tation methods but not a good discriminant one. When the
images are taken under large illumination variations, it’s top
eigenvectors mainly model the external illumination varia-
tion but not the identity information. This is a commonly
known drawback of PCA and 2D-PCA for face recognition
with significant illumination changes.

6 Conclusion

A 2D-FDA framework containing U2DFDA and B2DFDA
is proposed to solve the SSS problem in face recognition.
The key advantage of the 2D-FDA over the existing 1D-
LDA based algorithms is that the within-class scatter matrix
is generally not singular, which leads to the direct utilization
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Figure 2: (a) and (b) show the optimal number of Fisher
feature vector and Eigen feature vector in U2DFDA and
2D-PCA with different number of training samples for each
subject on the ORL and YaleB

of the Fisher criterion for optimal classification. Extensive
experimental work shows that the 2D-FDA framework out-
performs the current linear subspace methods.
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