
A Framework of Greedy Methods for Constructing
Interaction Test Suites

Renée C. Bryce and Charles J. Colbourn
Computer Science and Engineering

Arizona State University
Tempe, Arizona 85287-8809

{rcbryce,colbourn}asu.edu

Myra B. Cohen
Computer Science and Engineering
University of Nebraska-Lincoln
Lincoln, NE 68588-0115
myra@cse.unl.edu

ABSTRACT
Greedy algorithms for the construction of software interac-
tion test suites are studied. A framework is developed to
evaluate a large class of greedy methods that build suites
one test at a time. Within this framework are many instan-
tiations of greedy methods generalizing those in the litera-
ture. Greedy algorithms are popular when the time for test
suite construction is of paramount concern. We focus on the
size of the test suite produced by each instantiation. Experi-
ments are analyzed using statistical techniques to determine
the importance of the implementation decisions within the
framework. This framework provides a platform for optimiz-
ing the accuracy and speed of “one-test-at-a-time” greedy
methods.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
testing tools

General Terms
Algorithms, Measurement, Experimentation

Keywords
Covering arrays, greedy algorithm, mixed-level covering ar-
rays, pair-wise interaction coverage, software interaction test-
ing

1. INTRODUCTION
Software systems are complex, and exhaustive combina-

torial testing involves an exponential number of possible pa-
rameter settings. Interaction testing is a method to reduce
the number of tests performed, and can yield high coverage
with few tests, thereby reducing testing cost [1, 15, 22, 23,
33]. We illustrate this next.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE’05,May 15–21, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005 ...$5.00.

Consider the modular system in Table 1. There are three
pieces of hardware, three operating systems, three network
connections, and three memory configurations that can be
integrated. Different end users may use different combina-
tions of components. To exhaustively test all combinations
requires 34= 81 test configurations. The four components
are factors, and the three values for each factor are its levels.

We reduce the 81 tests required for exhaustive testing by
employing pair-wise interaction testing. Instead of testing
every combination, all individual pairs of interactions are
tested. The resulting test suite is shown in Table 2, and has
only 9 tests. Each possible pair of values for factors appears
in at least one test.

Table 1: A small modular system
Hardware Operating

System
Network
Connection

Memory

PC Windows XP Dial-up 64MB
Laptop Linux DSL 128MB
PDA BeOs Cable 256MB

Interaction testing can offer significant savings. Indeed
a system with 20 factors and 5 levels each would require
520 = 95, 367, 431, 640, 625 exhaustive test configurations.

Interaction testing techniques can be applied for interac-
tions of t > 2 (factor,value) selections; t is the strength of the
test. For pairwise testing, t = 2. An appropriate value for
t to provide adequate coverage depends on the complexity
of the system under test, and is not known. Initial research
by Kuhn et al. [22, 23] indicates that choosing 2 ≤ t ≤ 6
can be effective. Kuhn [22] reports in one study that more
than 70% of defects were caught with 2-way coverage; ap-

Table 2: A small interaction test suite
Test
No.

H/ware Operating
System

Network Memory

1 PC Windows XP Dial-up 64MB
2 PC Linux DSL 128MB
3 PC BeOS Cable 256MB
4 Laptop Windows XP Cable 128MB
5 Laptop Linux Dial-up 256MB
6 Laptop BeOS DSL 64MB
7 PDA Windows XP DSL 256MB
8 PDA Linux Cable 64MB
9 PDA BeOS Dial-up 128MB

proximately 90% with 3-way coverage; and 95% with 4-way
coverage. In another study, 109 software-controlled medical
devices recalled by the US Food and Drug Administration
(FDA) are examined [23]. Pair-wise testing uncovered 97%
of the flaws. Only three devices required coverage higher
than two.

Dunietz et al. relate interaction coverage to code cover-
age; they suggest that t-way interaction coverage for “small”
t reduces redundancy in block coverage while still identify-
ing many faults [15]. High code coverage from interaction
testing is also achieved by Burr et al. [1]. Yilmaz et al. [33]
use interaction testing to provide fault localization. In these
studies, interaction testing provides a significant reduction
in the number of tests while succeeding in identifying and
isolating faults [1, 15, 33].

Interaction testing is not new. In 1926, Fisher [16] pio-
neered interaction tests in agricultural experiments, assess-
ing the contributions of different fertilizers to crop yield in
the context of soil heterogeneity and environmental factors
such as erosion, sun coverage, rainfall, and pollen. Test-
ing was limited by available resources. It might have taken
hundreds of years to test exhaustively. Fisher applied inter-
action testing so that every pair of factors affecting the yield
was included exactly once. Since 1926, interaction testing
has been widely used. For instance, interaction testing has
been applied to combinatorial high throughput experiments
(CHTE) [2], to test interactions that occur in cell signaling
pathways [26], and to software testing [4, 6, 22, 23].

The underlying combinatorial object in all of these is a
“mixed level covering array”, defined formally later. Avail-
able algorithms for the construction of covering arrays arise
from many different sources [10]. Combinatorial methods
can offer fast constructions; they rely on the existence of
specific algebraic or combinatorial objects [10, 18]. For ex-
ample, TConfig [30, 31, 32] develops a recursive construction
method based on orthogonal arrays. AETG [5] and CTS [19]
can use a library of combinatorial objects, and CTS in ad-
dition employs combinatorial constructions. See also [21].
Until this time, the most severe limitation is that the com-
binatorial tools are most appropriate for a restricted set of
parameters. If the time to generate a covering array is of
utmost concern, and the sizes of the problems fit within a
specific range of parameters, then algebraic methods address
this well. However, when large ranges of parameters arise,
more general techniques are needed.

Exact algorithms (integer programming and backtrack-
ing) have met success only for very small problems. Heuris-
tic search has been more effective. Simulated Annealing
(SA) [8, 9] and Tabu search [25] have produced many of
the smallest available covering arrays. In these approaches,
transformations are repeatedly applied to the current puta-
tive covering array, and a transformation is “accepted” using
an heuristic decision rule (see [7, 8, 9, 25] for details).

If the size of the test suite is the overriding concern, sim-
ulated annealing or tabu search often yields the best re-
sults. However the substantial time required (and perhaps
the complexity of implementing such methods) has led to the
widespread use of simpler heuristics, such as hill-climbing [8]
and greedy methods. See [8, 25] for data on accuracy and
execution time of simulated annealing and tabu search. It
may also be undesirable that randomization without the use
of stored seeds in these types of methods produce different
results each time the method is used.

Many algorithms for the construction of covering arrays
are greedy, and generate one test at a time. Some examples
of these algorithms include AETG [4, 5, 6], DDA [11], and
TCG [28]. Combinatorial algorithms for generating designs
and coverings one row at a time have a long history. Wells
[29] discussed this strategy thirty years ago, and it was used
to great benefit by Gibbons [13, 17]. Greedy variants have
been treated in [12, 20], but the first such method for cov-
ering arrays was AETG [5].

In this paper, we focus on generalizing one-test-at-a-time
greedy algorithms because they appear to provide general,
fast techniques for the construction of test suites; our focus is
therefore on the size of a test suite that can be constructed
rapidly. This exploration does not encompass all greedy
methods; IPO [27], for example, adjoins both new factors
and new tests using a different greedy strategy. See also [3,
14].

We begin with some formal definitions. A covering array,
CAλ(N ; t, k, v), is an N × k array. In every N × t subarray,
each t-tuple occurs at least λ times. In our application, t is
the strength of the coverage of interactions, k is the number
of components (factors), and v is the number of symbols for
each component (levels). In all of our discussions, we treat
only the case when λ = 1, i.e. that every t-tuple must be
covered at least once.

This combinatorial object is fundamental when all factors
have an equal number of levels. However, software systems
are typically not composed of components (factors) that
each have exactly the same number of parameters (levels).
Then the mixed-level covering array can be used. A mixed
level covering array, MCAλ(N ; t, k, (v1, v2, . . . , vk)), is an
N × k array. Let {i1, . . . , it} ⊆ {1, . . . , k}, and consider the
subarray of size N×t obtained by selecting columns i1, . . . , it
of the MCA. There are

∏t
i=1 vi distinct t-tuples that could

appear as rows, and an MCA requires that each appear at
least once. We use an “exponential” notation for the col-
lection (vi : i = 1, . . . , k) of numbers of levels: gu1

1 · · · gus
s is

used to represent a tuple of
∑s

i=1 ui numbers, of which ui

are equal to gi for 1 ≤ i ≤ s.

2. FRAMEWORKOFGREEDYMETHODS
Greedy algorithms [4, 6, 11, 28] have been proposed to

obtain competitive results in accuracy, efficiency, and con-
sistency. Adaptability for seeds (required tests) and avoids
(forbidden tests) has also been examined. Published meth-
ods work well on different types of data. While a framework
can be used to provide a taxonomy of the several known
methods [7], our interest extends beyond these specific meth-
ods. We do not propose yet another greedy algorithm, but
rather define and study a framework of several thousand in-
stantiations giving greedy methods. The framework is there-
fore studied to identify the impact of fundamental decisions
in its instantiation.

The generation of covering arrays and mixed-level cov-
ering arrays that fall within the greedy framework can be
described at a high level. The overall goal in constructing a
covering array is to create a 2-dimensional array in which all
t-tuples associated with a specified input are covered. Using
a greedy approach, this collection is built one row at a time
by fixing each factor with a level value. The order in which
factors are fixed may vary, as can the scheme for choosing
levels (values that can be selected for a factor). A row may
be selected from multiple candidates. When more than one

set MinArray to ∞
// Layer One - Repetition decision

repeat RepetitionCount times

start with no rows in C
N=0
while there are uncovered t-tuples in C

// Layer Two - Candidate decision

repeat CandidateCount times
start with an empty test (row) R
set Best = 0
while free factors remain

// Layer Three - Factor ordering decisions
rank all free factors according to a

factor ordering selection criterion

among factors tied for best, select a subset T

using a first factor tie-break
among factors in T , select a subset F

using a second factor tie-break
// Layer Four - Level selection decisions
let f be the lexicographically first factor in F
rank all possible values for f in R using

a level selection criterion
among all best values for f , select a subset V

using a first level tie-break
among values in V , select a subset W

using a second level tie-break
let v be the lexicographically first value in W
fix factor f to value v in test R

end while
If R covers σ > Best t-tuples uncovered

in C, set Best = σ, B = R
end repeat
add row B to C
N++

end while
if C has N < MinArray rows, set MinArray = N

and BestArray = C
end repeat
report BestArray

Figure 1: Framework Pseudocode

candidate is permitted, several rows are constructed and one
is chosen to add to the covering array. Once all t-tuples have
been covered, the covering array is complete. The goal is to
construct the smallest covering array possible, so if random
selections occur, the covering array can be regenerated nu-
merous times to select the best result.

Let us look at a generic method of this type as shown in
Figure 1. We generate one row at a time; at a given step, a
row has some factors for which level values have been chosen
(fixed), and the remaining factors free.

To instantiate this method, a number of decisions must be
made, shown in boxes in the skeleton of pseudocode in Fig-
ure 1. The four major decision points (layers of the frame-
work) are: layer one - the number of repetitions; layer two
- the number of test candidates; layer three - factor order-
ing (including tie-breaking); and layer four - level selection
(including tie-breaking). The specification of these four lay-
ers dominate the accuracy and efficiency of such algorithms.

Naturally the framework could extend to further levels of
tie-breaking.

2.1 Layer one – Repetitions
Covering arrays may be generated a number of times,

keeping the smallest size. In the pseudocode of Figure 1,
the variable RepetitionCount represents the number of these
repetitions. Repetitions are only useful when some decision
is made randomly. More repetitions require lengthier exe-
cution times, and consistency from one run to the next are
not ensured.

2.2 Layer two – Candidates
An algorithm may generate a CandidateCount number of

rows, choosing the best one to add to the covering array
under construction.

2.3 Layer three – Factor ordering
There are infinitely many ways to specify factor ordering

selection criterion. While the framework does support hy-
brid rules, we have chosen in this initial study to focus only
on a few specific rules here. Factors may be ranked by the
number of levels associated with a factor; by number of un-
covered pairs involving this factor and the fixed factors; by
the expected number of pairs covered including both fixed and
free factors (density); or randomly. These are selected with
two goals in mind: we treat only heuristics that select ev-
ery factor by the same rule, and we examine ones motivated
by (not necessarily equivalent to) rules used in the available
algorithms.

TCG [28] orders factors in nonincreasing order by the
number of associated levels. AETG [4, 6] selects the first
factor as one having the most uncovered pairs left. Random
factor ordering is used for the remainder. While this “hy-
brid” factor ordering rule may be more effective than using
uncovered pairs or random ordering alone, we opt here to
include rules that treat every factor in the same manner.

DDA [11] orders factors using a density formula that cal-
culates the expected number of uncovered pairs. To make
this precise, we define the current factor as the factor for
which density is being calculated, ri,j as the number of un-
covered pairs between the current factor i and another factor
j, and λmax as the largest cardinality of the factors. The
density for factor i with respect to factor j is:

1. if both factors have more than one level involved in
uncovered tuples left,

δ = (
ri,j

λ2
max

)2

2. if only one factor has one level left and the other has
greater than one level remaining, then δ = (

ri,j

λmax
)2

3. if both factors have exactly one level left, then if a new
pair is covered, δ = 1.0, otherwise, δ = 0.0

The density of factor i is the summation of these local den-
sities over each factor j %= i.

Three of these factor ordering methods can suffer from
ties. To break ties, one of the following tie breaking schemes
may be used: take lexicographically first, take one at ran-
dom, or take one with the most uncovered pairs remaining.
Not all tie-breaking rules given succeed in completely resolv-
ing a tie; hence more rounds of tie-breaking may be neces-
sary. In our implementation, tie-breaking is taken to only

two levels which are referred to as first factor tie-break and
second factor tie-break in the pseudocode of Figure 1. In the
case that a tie moves beyond two levels, the tie is broken by
selecting the factor that is lexicographically first.

2.4 Layer four – Level selection
Level selection attempts to maximize the number of pairs

to be covered, or that are expected to be covered for a row.
Again, rules for level selection are potentially infinite. We
have chosen specific level selection criterion: by the number
of uncovered pairs involving this level (value) of the current
factor and the fixed factors; by the expected number of pairs
involving this level of the current factor covered including
both fixed and free factors; or randomly.

AETG [5, 4] and TCG [28] select based on the number of
uncovered pairs to be covered. DDA [11] selects a level based
on density, the expected number of pairs to be covered. This
is calculated as before (tentatively) fixing the current factor
to each possible level value in turn; the level leading to the
largest reduction in density is chosen. Random level selec-
tion is also included in our experiments, although it is not
represented in the published algorithms.

A level selection tie-break is needed. The following strate-
gies are used: take the lexicographically first, lexicographi-
cally last, random, least frequently used, least recently used,
or based on the level involved in the most uncovered pairs.
In our implementation, we limit the depth of tie-breaking
to first level tie-break and second level tie-break. If a tie-
break is necessary beyond two levels, a deterministic rule is
in place to select the lexicographically first.

3. FRAMEWORK EXPERIMENTS
Evidently many greedy algorithms can be developed within

the framework for the construction of covering arrays (AETG,
TCG, and DDA among them). We have not made an effort
to represent the nuances of each of these methods; for exam-
ple, AETG uses a hybrid factor ordering, and DDA allows a
more general definition of density, and these are not repre-
sented in our first experiments with the framework. Our in-
terest is to explore the impact of each of the decisions made
in instantiating the framework to a specific algorithm. In
doing so, we consider not only main effects of the individual
decisions made, but also interactions among these decisions.

Results are reported on several data sets that were chosen
to encompass a variety of situations. These include small,
medium, and large inputs for both covering array and mixed-
level covering arrays for t = 2. Scenarios are also included
for mixed-level covering arrays that have larger variations
in numbers of factors and levels. Given that t = 2 for all
experiments run, we refer to the input by the level values
only (e.g. CA(2, 35) which has 5 factors each with three
levels is written as input 35).

3.1 Layer Four – Level selection
When selecting a level, it is reasonable to choose one that

offers the largest increase in covered pairs. Uncovered pairs
selects values for levels that offer the largest increase of
newly covered pairs in relation to fixed factors. Alterna-
tively density examines the a chosen level with respect to
both fixed and free factors. We examine three options for
level selection: uncovered pairs, density, and random. Does
level selection make a significant contribution towards the

Table 3: Sizes using three different level selection
rules

Random Uncovered Density
Pairs

Bst/Avg/Wst Bst/Avg/Wst Bst/Avg/Wst
(size) (size) (size)

64 55/131.58/269 43/115.41/205 39/43.47/49
1019181 136/328.1/596 97/2088.2/9163 90/95.74/108
716151

41312111

82726252 113/248.01/485 74/509.78/1861 68/73.7/85
665534 92/180.9/399 57/125.66/369 55/60/69

array size? Results are generated using over 5,000 instanti-
ations of the framework. We use:
Layer 1 (Repetitions) - 1, 10
Layer 2 (Candidates) - 1, 5, 10
Layer 3 (Factor ordering selection) - random, uncov-
ered pairs, and density
Layer 3 Tie-breaking(to two levels)- take first, most pairs
left, and random
Layer 4 (Level selection) - uncovered pairs, density, and
random
Layer 4 Tie-breaking(to two levels) - take first, take least
frequent, least recently used, most pairs left, take last, and
random

A standard ANOVA analysis is a well known statistical
technique for measuring whether or not a significant relation
exists among variables [24]. Each combination of framework
settings described above was one test that was measured
by the response variable of the size of the covering array
generated. All of these combinations of framework settings
and responses were used as input to the ANOVA test. The
output of the ANOVA was then the contribution of each
layer and their interactions towards size.

The ANOVA results of this experiment indicate that level
selection is the main contributor to the array size produced;
however a large percentage of the variance could not be ac-
counted for. For instance, in covering arrays constructed
using the input 64, level selection contributed 20.29% to-
wards accuracy, and 54.74% could not be attributed to any
layer or interaction between layers. A larger input, 340, pro-
duced similar results. Level selection contributed 26.42%
towards accuracy, while 33.37% was unaccounted for.

Mixed level covering arrays show the same behavior. Us-
ing the input 101918171615141312111, level selection made
the largest contribution of 45.93%; however, 23.58% could
not be accounted for. Using input 82726252, level selec-
tion contributed 48.27% and 21.57% was unaccounted for.
In each example tested for mixed level covering arrays, the
other layers contributed less than 1% towards accuracy.

Level selection overshadows all other framework layers,
and a large amount of contribution cannot be attributed to
any layer or interaction of layers. This is not surprising,
since the three level selection rules exhibit quite different
behaviors. We examine each in turn.

Results are given in Table 3. Best, average, and worst
sizes are reported for each. Random level selection yields
very poor results, occasionally producing rows that cover no
new pairs. For instance, for input 665534, there is an enor-
mous difference between the best size of 92 encountered and
the worst size of 399. The primary influence on size is the

09630

09630…

0963011

2983110

697529

5116518

6108507

5106426

596415

6117404

6118323

6107312

696301

Newly
covered
pairs

Row
No.

Uncovered

pairs remaining

after Row 9:

(1,8) (3,9) (4,8)

11852

10741

9630

Input Covering Array

0f 1f 2f 3f
0f 1f 2f 3f

Figure 2: Partial generation of input 34.

random selections made, and these introduce a substantial
‘unexplained’ variance in the statistical results. Although
every covering array produced is finite, sizes on average are
too large, and even in the best case sizes are not competitive.

A problem also arises with level selection based on un-
covered pairs. To demonstrate this, consider the input in
Figure 2 and the following instantiation of the framework:
Layer 1 (Repetitions) - 1
Layer 2 (Candidates) - 1
Layer 3 (Factor ordering selection) - number of levels
Layer 3 Tie-breaking - lexicographically first
Layer 4 (Level selection) - uncovered pairs
Layer 4 Tie-breaking - lexicographically first

Figure 2 shows a pathological example of undesirable be-
havior. All factors have exactly three levels so the algorithm
orders the factors lexicographically: f0, f1, f2, f3. Factors
are fixed one at a time by selecting the level that adds the
largest number of newly covered pairs in relation to fixed fac-
tors. The generation of the first 10 rows is straightforward.
When generating the 11th row (shown in Figure 2), there is
one pair left to be covered, (4,8). The algorithm begins by
selecting a level value for f0 that covers the most new pairs.
Factor f0 is not involved in any remaining uncovered pairs,
so there is a tie among all levels. The lexicographically first
is 0. Next, factor f1 is assigned a level value by choosing
the one with the largest increase in newly covered pairs in
relation to fixed factor, f0. Since (f0, f1) have no uncovered
pairs remaining, tie-breaking selects the level value 3. The
level for f2 is chosen to maximize the number of newly cov-
ered pairs in relation to fixed factors f0 and f1. However,
f2 is not involved in any uncovered pairs with f0 at 0 or
f1 at 3. Tie-breaking selects the level value 6. Finally, f3

also cannot be selected to cover new pairs in relation to the
fixed factors. Tie-breaking selects the level value 9. The
row constructed covers no new pairs! Every subsequent row
makes the same decisions.

Indeed, methods that use level-based factor ordering and
choose these values only in relation to fixed factors may

Table 4: Standard ANOVA results of the top three
layers of the framework

Input % Contribution of Layers to-
wards Size (Layer 1/ 2/ 3)

101918171615141312111 .85/ .47/ 73.18
82726252 1.06/ 1.07/ 70.86
665534 1.16/ .84/ 69.43
34 5.7/ .092/ 10.72
64 4.8/ .89/ 2.47
340 10.47/ .05/ 28.84

encounter this problem. Alternatively, if level selection had
looked ahead to the free factors, or if the first factor had
been chosen to be in at least one uncovered pair, we would
not encounter the same problem. The level for f1 could
have been selected instead to consider that selecting the level
value 4 would have allowed the future factor, f2, to be fixed
to a value covering a new pair.

Problems with level selection based on uncovered pairs
occur with both deterministic and random implementations.
Since only the i fixed factors are included in the calculations
for level selection, it is possible to prevent the coverage of
pairs involving free factors. This can result in overly large
covering arrays as shown in Table 3, or in infinite loops as
in Figure 2.

Based on the data in Table 3, density based level selec-
tion is the best choice overall. The ANOVA results reported
earlier indicate that level selection is dominant, when these
three choices are permitted. However, the results for the
three separately establish that they exhibit very different
characteristics in terms of array size. Moreover, random
level selection, and the incompatibility between factor and
uncovered pairs level selection methods, account for the un-
explained variance discussed earlier. For this reason, in or-
der to proceed we henceforth do level selection using den-
sity. This is emphatically not to say that the other level
selection rules cannot produce competitive results; our ex-
periments are constrained to speak only about the specific
rules implemented, and many other rules are possible. A
more thorough analysis is underway to draw more definitive
conclusions about level selection methods.

Having fixed level selection to be density based, are there
dominant layers within the greedy framework? To address
this, several data sets were run through the framework us-
ing over 5,000 variations of settings each. These settings
include:
Layer 1 (Repetitions) - 1, 10
Layer 2 (Candidates) - 1, 5, 10
Layer 3 (Factor ordering selection) - levels, random,
uncovered pairs, density
Layer 3 Tie-breaking (to two levels)- take first, most pairs
left, and random
Layer 4 (Level selection) - density
Layer 4 Tie-breaking (to two levels) - take first, take least
frequent, least recently used, most pairs left, take last, and
random

In this experiment, a variety of rules were used for the
top three layers of the framework while the level selection
setting was set only to density. Using these settings, a stan-
dard ANOVA analysis identified the contribution of the top

Table 5: Standard ANOVA results - Percent contributions of feature sets towards size using density based
level selection

10191817161 82726252 665534 34 64 340

5141312111

Repetitions - 1.0645 1.157 5.698 4.797 10.466
Candidates - 1.0656 - - - -
Factor ordering selection 73.176 70.8598 69.431 10.723 2.472 28.836
Tie-breaking (TB)

Factor ordering selection Primary tie-break (TB1) - - - 2.16 - 1.288
Factor ordering selection Secondary tie-break (TB2) - - - - - -
Level selection Primary tie-break (TB1) 4.526 1.0975 4.148 33.646 21.267 3.433
Level selection Secondary tie-break (TB2) - - - - - -

Interactions between layers
Repetitions and Candidates - 1.4686 - - 1.956 -
Candidates and Factor ordering selection 1.827 2.2132 1.061 1.45 - -
Factor ordering selection and its TB1 - - - 3.435 1.29 2.866
Factor ordering selection and Level selection TB1 3.535 2.1676 6.285 3.157 18.161 3.604

Lack Of Fit 13.649 17.7303 14.41 35.786 44.196 44.774
*Values that contribute <1% are not reported

three framework layers towards array size. Based on a vari-
ety of input sets, the order of layers with highest dominance
to least is typically: Layer 3 – Factor ordering; Layer 1 –
Repetitions; Layer 2 – Candidates. See Table 4. A more de-
tailed ANOVA analysis is given in Table 5. The percentage
of each feature’s contributions towards size is shown, along
with the lack of fit. All contributions smaller than 1% are
suppressed in the table.

The first three columns in Table 5 show the results for
three mixed level covering arrays. The dominant feature in
each of these is factor ordering. For instance, for 82726252,
approximately 70% of contributions towards size are ac-
counted for by the factor ordering rules. The last three
columns show the results for three fixed level covering ar-
rays. In these cases, first level tie-break(TB1) is much more
important; factor ordering and repetitions remain signifi-
cant. Tie-breaking has no significant impact beyond the
first level; this justifies, after the fact, our decision in the
framework specification to limit variations in tie-breaking
to two levels. Other test cases may, of course, show that
second level tie-breaking can be significant.

Table 5 shows that in 5 out of 6 cases, factor ordering
is the most influential selection. The next most significant
feature is first level tie-break. Third is the interaction of
these. Finally, repetitions is the fourth most significant.

3.2 Layer three – Factor ordering
According to these results, factor ordering is one of the

most important decisions to make. In Table 5, factor order-
ing contributed up to 73% towards size. How much variation
is found among factor ordering rules? In this experiment,
we select the following:
Layer 1 (Repetitions) - 1
Layer 2 (Candidates) - 1
Layer 3 (Factor ordering selection) - levels, number of
uncovered pairs, density, and random
Layer 3 Tie-breaking(to two levels) - take first, most pairs
left, random
Layer 4 (Level selection) - density

Layer 4 Tie-breaking (to two levels) - take first, least
frequent, least recently used, most pairs left, least recently
used, random, and take last

The best, average, and worst results are partitioned by
factor ordering methods in Table 6. For instance, the first
column shows the best, average, and worst cases encoun-
tered for all of the settings in the experiment that ordered
factors based on their number of levels. The first three
columns that include factor ordering based on levels, den-
sity, and uncovered pairs attain similar results. Only ran-
dom factor ordering, shown in the last column of the table,
is less viable here. Random ordering produces the worst re-
sults in half of the examples. The other factor ordering rules
sometimes outperform each other.

We omit random factor ordering, and consider further pa-
rameters for covering arrays. The framework settings are as
before, with the omission of random factor ordering. As
shown in Table 7, density appears to be the best choice
among the rules considered. Factor ordering based on levels
had poor performance in these examples when there were
large numbers of factors with few different numbers of lev-
els. In this case, ordering by number of levels is rather ar-
bitrary. Factor ordering based on the numbers of uncovered
pairs works better than ordering based on numbers of levels
in these examples. However, the results are still not compet-
itive with density. Again, we caution the reader that other
factor orderings, in particular hybrid ordering schemes not
treated here, may well be competitive.

3.3 Layer two – Candidates
What contribution can multiple candidates offer? In Ta-

ble 5, candidates contributed from of .05% to 1.07% towards
array size. Hence, while maintaining multiple candidates is
relatively time-consuming, they do not account for a sub-
stantial variance in array size in our experiments. Here we
look at a collection of individual runs to evaluate impacts of
multiple candidates.

Variations in numbers of candidates were studied using
settings of 1, 5, and 10 candidates. The instantiations of

Table 6: Sizes using four factor ordering rules
Factor
Ordering

Levels Density Uncovered
pairs

Random

(size) (size) (size) (size)
34

Best 9 9 9 9
Avg 10.78 11.96 11.36 12.46
Worst 24 27 25 25
Stdev 3.17 3.63 2.78 2.62
64

Best 41 41 42 43
Avg 43.68 43.59 44.03 45.19
Worst 49 48 47 49
Stdev 2.41 1.37 1.62 1.33
104

Best 115 116 115 117
Avg 123.55 119.95 120.19 121.32
Worst 130 125 125 126
Stdev 2.84 1.69 1.88 1.99
10191817161

5141312111

Best 90 90 90 93
Avg 93.42 92.99 93.17 99
Worst 95 97 96 108
Stdev 1.21 1.35 1.27 2.3
82726252

Best 72 69 69 76
Avg 73.75 72.54 72.33 80.13
Worst 77 76 77 85
Stdev 1 1.23 1.37 1.81
665534

Best 57 55 55 58
Avg 61.04 57.42 57.81 61.45
Worst 63 61 61 66
Stdev 1.59 0.9 1.02 1.3
3445

Best 24 23 22 23
Avg 26.95 24.06 24 25.38
Worst 30 26 28 29
Stdev 1.03 0.83 0.72 0.95
313

Best 19 18 18 18
Avg 20.22 19.26 19.66 19.98
Worst 22 21 21 22
Stdev 0.58 0.48 0.55 0.72
340

Best 26 25 25 25
Avg 27.25 26.19 26.42 26.66
Worst 28 28 27 29
Stdev 0.51 0.53 0.55 0.65

Table 7: Sizes using three factor ordering rules on
more diverse data sets
Factor
Order-
ing

Levels Density Uncovered
pairs

Best/Avg/ Best/Avg/ Best/Avg/
Worst Worst Worst
(size) (size) (size)

78220 82/85.09/86 78/78/78 76/78.45/79
510210 48/49.64/50 45/46/47 46/46.64/47
350250 29/29.82/30 27/28/29 28/28.82/29
280 14/14.82/15 13/13.41/12 14/14.18/15
3100 32/32.82/33 31/31.73/32 32/32/32

Table 8: Sizes using multiple candidates
1 Cand 5 Cand 10 Cand
Best/Avg/ Best/Avg/ Best/Avg/
Worst Worst Worst
(size) (size) (size)

34 9/ 10.3/ 15 9/ 10.2/ 13 9/ 10.2/ 15
64 39/ 43.7/ 49 40/ 43.4/ 48 40/ 43.3/ 48
104 112/120.4/130 112/119.2/126 112/119/127
1019181 90/95.23/108 90/94.8/106 90/94.71/103
716151

413121

82726252 69/ 74.11/ 85 68/ 73.52/ 85 68/73.55/85
665534 55/ 59.84/ 66 55/ 59.46/ 64 55/59.36/ 65
3445 23/ 25.24/ 30 23/ 25.22/ 30 22/25.13/ 29
513822 20/ 21.77/ 25 19/ 21.48/ 25 19/21.58/25
513822 17/ 19.52/ 22 17/19.42/ 22 17/19.42/22
340 25/26.62/29 25/26.39/28 25/26.37/29

the framework are:
Layer 1 (Repetitions) - 1, 10
Layer 2 (Candidates) - 1, 5, 10
Layer 3 (Factor ordering selection) - levels, density,
uncovered pairs and random
Layer 3 Tie-breaking (to two levels) - take first, most
pairs left, random
Layer 4 (Level selection) - Density
Layer 4 Tie-breaking (to two levels) - take first, take least
frequent, least recently used, most pairs left, take last, and
random

As shown in Table 8, multiple candidates only offered
slight improvements. However, increased candidates also
did not significantly degrade the worst cases encountered.

3.4 Layer one – Repetitions
Repetitions can be used in algorithms that have elements

of randomness. The best, average, and worst cases of cov-
ering array sizes encountered by such algorithms can vary
from run to run. In Table 5, repetitions contributed in the
range of .85% to 10.47%. In this experiment, small to large
numbers of repetitions are explored using 164 instantiations
of the greedy framework. The framework settings are:
Layer 1 (Repetitions) - 1, 50, 1,000, 10,000, 20,0000
Layer 2 (Candidates) - 1
Layer 3 (Factor ordering selection) - levels, density,
and random

Table 9: Sizes using multiple repetitions
Input Number

of Reps
Best Avg Worst

(size) (size) (size)
64 1 46 46.333 47

10 42 46.033 50
50 43 46.013 52
100 42 45.94 52
1,000 41 45.92 52
10,000 41 45.895 52
20,000 40 45.9 54

82726252 1 73 75.333 80
10 70 74.967 84
50 71 75.387 85
100 70 75.32 85
1,000 69 75.523 86
10,000 68 75.526 87
20,000 68 75.503 88

665534 1 57 60 62
10 56 60.433 66
50 56 58.333 61
100 56 60.7 67
1,000 56 57.667 60
10,000 55 60.69 69
20,000 55 57 59

Layer 3 Tie-breaking - random
Layer 4 (Level selection) - density
Layer 4 Tie-breaking - random

Table 9 shows that more repetitions usually improve array
size. Increased repetitions produced larger improvements
than increased candidates did. There are at least two pos-
sible reasons why increased candidates are not performing
as well. First, while there may be very many different cov-
ering arrays for the same parameters, there are often not
as many unique candidates for each row. Second, multiple
candidates correspond to a “steeper ascent” in the selection,
making the method even more greedy. However there is no
guarantee that a steepest ascent approach is the most ac-
curate method to generate a covering array (see [8] for a
discussion).

The data indicates that repetitions are often valuable.
However these results may be confounded by factor ordering
methods. We therefore look at the data again, partitioned
by factor ordering rules. Results are averaged across the in-
puts and the difference between one repetition to 50, 1,000,
10,000, and 20,000 repetitions are reported in Table 10. Rep-
etitions improve all three factor-ordering methods; see Ta-
ble 10. Algorithms with random factor ordering benefit the
most from increased repetitions, followed by the ordering
based on levels, and finally by density.

Increased repetitions improve accuracy at the cost of time.
Repeating the algorithm n times will result in an execu-
tion time of approximately n times longer than one repeti-
tion. For instance, consider the data shown in Table 9 for
101918171615141312111. The table shows that on average,
the increase in repetitions improved accuracy. However, the
run time also increased from an average of .1 second for one
repetition to .95 second for ten repetitions, 9.48 seconds for
100 repetitions, and 93.07 seconds for 1,000 repetitions. In

Table 10: Results of increased repetitions (parti-
tioned by factor ordering rules)

50 reps 1000
reps

10000
reps

20000
reps

No. of
rows re-
duced

No. of
rows re-
duced

No. of
rows re-
duced

No. of
rows re-
duced

Levels 2.5 3.67 3.83 4.17
Density 1.83 3.17 3.67 3.5
Random 2.17 4 4.5 4.67

any practical application, a trade-off must be made between
the emphasis on array size and that on the time to generate
the test suites.

4. CONCLUSIONS
Algorithms for constructing covering arrays have been de-

veloped to meet practical software testing concerns. How-
ever, none has outperformed each of the others with respect
to accuracy, consistency, efficiency, and extensibility. This
paper introduced a framework for greedy algorithms that
construct covering arrays and mixed-level covering arrays
one row at a time, since these offer attractive methods for
speed and reasonable accuracy. A four layer framework is
introduced and empirically studied. This framework enables
the development of statistical bases for the relative impor-
tance of each decision made in its instantiation as an algo-
rithm.

The several thousand instantiations of this framework of-
fer a variety of methods for software testers. In this frame-
work, we initially saw that level selection is the most dom-
inant layer. However, a closer look indicated that the re-
sults were obfuscated by some poor level selection rules that
produce overly large results (in conjunction with our other
possible selections). Without alternative rules for selecting
other features, random and uncovered pairs level selections
are not competitive. Density based level selection produces
the best and most reliable results and were used in further
studies to focus on the remaining three layers of the frame-
work.

Once we restrict the level selection rule, factor ordering
has the largest impact on size. Other choices are less signifi-
cant. However, using multiple repetitions and multiple can-
didates lead to small improvements. When size is the dom-
inant concern, an algorithm should give priority to multiple
repetitions over multiple candidates. If the time to generate
is the primary concern, then multiple repetitions and candi-
dates should be avoided and good level and factor orderings
are important to focus on.

This is admittedly a preliminary study. Despite many
thousands of instantiations being considered, variants of fac-
tor and level selection techniques not treated here may pro-
duce competitive or better results. In particular, hybrid
rules that make factor or level selections depending upon
the specific factor or level being selected offer promise that
is not explored here. The extension to higher strength has
not been explored here, and is one topic of ongoing work.
Our current work also concerns adding to the factor and
level selection rules, in order to draw conclusions more gen-
erally. The impact of allowing more candidates, or more
repetitions, is under investigation as well. In addition, here

we have reported limited data concerning execution times,
and this is of paramount concern given our stated motiva-
tion for examining greedy methods. Despite the need for
a more comprehensive set of rules to populate our frame-
work, it is important that the framework itself provides not
only a mechanism for describing and developing these many
variants, but also a means to make quantitative statements
about the statistical significance of each decision made.

5. ACKNOWLEDGMENTS
Research is supported by the Consortium for Embedded

and Internetworking Technologies and by ARO grant DAAD
19-1-01-0406.

6. REFERENCES
[1] K. Burr and W. Young. Combinatorial test

techniques: Table-based automation, test generation,
and code coverage. Proceedings of the Intl. Conf. on
Software Testing Analysis and Review, pages 503–513,
October 1998.

[2] J. N. Cawse. Experimental design for combinatorial
and high throughput materials development. GE
Global Research Technical Report, 29(9):769–781,
November 2002.

[3] C. Cheng, A. Dumitrescu, and P. Schroeder.
Generating small combinatorial test suites to cover
input-output relationships. Proceedings of the Third
International Conference on Quality Software (QSIC
’03), pages 76–82, 2003.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton. The AETG system: an approach to testing
based on combinatorial design. IEEE Transactions on
Software Engineering, 23(7):437–44, October 1997.

[5] D. M. Cohen, S. R. Dalal, M.L.Fredman, and
G. Patton. Method and system for automatically
generating efficient test cases for systems having
interacting elements. United States Patent, Number
5,542,043, 1996.

[6] D. M. Cohen, S. R. Dalal, J. Parelius, and G. C.
Patton. The combinatorial design approach to
automatic test generation. IEEE Software,
13(5):82–88, October 1996.

[7] M. B. Cohen. Designing test suites for software
interaction testing. Ph.D. Thesis, The University of
Auckland, Department of Computer Science, 2004.

[8] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and
W. B. Mugridge. Constructing test suites for
interaction testing. Proc. Intl. Conf. on Software
Engineering (ICSE 2003), pages 38–48, 2003.

[9] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling.
Constructing strength three covering arrays with
augmented annealing. Discrete Mathematics, to
appear.

[10] C. J. Colbourn. Combinatorial aspects of covering
arrays. Le Matematiche (Catania), to appear.

[11] C. J. Colbourn, M. B. Cohen, and R. C. Turban. A
deterministic density algorithm for pairwise
interaction coverage. Proc. of the IASTED Intl.
Conference on Software Engineering, pages 242–252,
February 2004.

[12] J. H. Conway and N. J. A. Sloane. Lexicographic

codes: error correcting codes from game theory. IEEE
Trans. Inform. Theory, 32:337–348, 1986.

[13] P. C. Denny and P. B. Gibbons. Case studies and new
results in combinatorial enumeration. J. Combin.
Des., 8:239–260, 2000.

[14] A. Dumitrescu. Efficient algorithms for generation of
combinatorial covering suites. Proc. 14-th Annual Intl.
Symp. Algorithms and Computation (ISAAC ’03),
Lecture Notes in Computer Science, pages 300–308,
2003.

[15] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L.
Mallows, and A. Iannino. Applying design of
experiments to software testing. Proc. Intl. Conf. on
Software Engineering (ICSE ’97), pages 205–215,
October 1997.

[16] R. A. Fisher. The arrangement of field experiments.
Journal of Ministry of Agriculture of Great Britain,
33(9):503–513, November 1926.

[17] P. B. Gibbons, R. A. Mathon, and D. G. Corneil.
Computing techniques for the construction and
analysis of block designs. Utilitas Math., 11:161–192,
1977.

[18] A. Hartman. Software and hardware testing using
combinatorial covering suites. Haifa Workshop on
Interdisciplinary Applications of Graph Theory,
Combinatorics, and Algorithms, June 2002.

[19] A. Hartman and L. Raskin. Problems and algorithms
for covering arrays. Discrete Math., 284:149–156, 2004.

[20] A. Hartman and Z. Yehudai. Greedesigns. Ars
Combin., 29C:69–76, 1990.

[21] N. Kobayashi, T. Tsuchiya, and T. Kikuno. A new
method for constructing pair-wise covering designs for
software testing. Information Processing Letters,
81:85–91, 2002.

[22] D. Kuhn and M. Reilly. An investigation of the
applicability of design of experiments to software
testing. Proc. 27th Annual NASA Goddard/IEEE
Software Engineering Workshop, pages 91–95, October
2002.

[23] D. R. Kuhn, D. R. Wallace, and A. M. Gallo. Software
fault interactions and implications for software
testing. IEEE Trans. Software Engineering,
30(6):418–421, October 2004.

[24] D. Montgomery. Design and Analysis of Experiments
5th edition. John Wiley and Sons, New York NY, 2001.

[25] K. Nurmela. Upper bounds for covering arrays by
tabu search. Discrete Applied Math., 138(9):143–152,
March 2004.

[26] D. Shasha, A. Kouranov, L. Lejay, M. Chou, and
G. Coruzzi. Using combinatorial design to study
regulation by multiple input signals. a tool for
parsimony in the post-genomics era. Plant Physiology,
27:1590–1594, 2001.

[27] K. Tai and L.Yu. A test generation strategy for
pairwise testing. IEEE Transactions on Software
Engineering, 28:109–111, 2002.

[28] Y. Tung and W. Aldiwan. Automating test case
generation for the new generation mission software
system. IEEE Aerospace Conf., pages 431–37, 2000.

[29] M. B. Wells. Elements of Combinatorial Computing.
Pergamon Press, Oxford-New York-Toronto, 1971.

[30] A. W. Williams. Determination of test configurations
for pair-wise interaction coverage. Testing of
communicating systems: Tools and techniques. 13th
International Conference on Testing Communicating
Systems, pages 59–74, October 2000.

[31] A. W. Williams and R. L. Probert. A practical
strategy for testing pair-wise coverage of network
interfaces. Seventh Intl. Symp. on Software Reliability
Engineering, pages 246–254, 1996.

[32] A. W. Williams and R. L. Probert. A measure for
component interaction test coverage. Proc. ACS/IEEE
Intl. Conf. on Computer Systems and Applications,
pages 301–311, October 2001.

[33] C. Yilmaz, M. B. Cohen, and A. Porter. Covering
arrays for efficient fault characterization in complex
configuration spaces. Intl. Symp. on Software Testing
and Analysis, pages 45–54, July 2004.

