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Abstract—In this paper, we focus on price bidding strategies of multiple users competition for resource usage in cloud computing. We

consider the problem from a game theoretic perspective and formulate it into a non-cooperative game among the multiple cloud users,

in which each cloud user is informed with incomplete information of other users. For each user, we design a utility function which

combines the net profit with time efficiency and try to maximize its value. We design a mechanism for the multiple users to evaluate

their utilities and decide whether to use the cloud service. Furthermore, we propose a framework for each cloud user to compute an

appropriate bidding price. At the beginning, by relaxing the condition that the allocated number of servers can be fractional, we prove

the existence of Nash equilibrium solution set for the formulated game. Then, we propose an iterative algorithm (IA), which is designed

to compute a Nash equilibrium solution. The convergency of the proposed algorithm is also analyzed and we find that it converges to a

Nash equilibrium if several conditions are satisfied. Finally, we revise the obtained solution and propose a near-equilibrium price bidding

algorithm (NPBA) to characterize the whole process of our proposed framework. The experimental results show that the obtained

near-equilibrium solution is close to the equilibrium one.

Index Terms—Cloud computing, nash equilibrium, non-cooperative game theory, price bidding strategy
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1 INTRODUCTION

1.1 Motivation

CLOUD computing has recently emerged as a new para-
digm for a cloud provider to host and deliver comput-

ing resources or services to enterprises and consumers [1].
Usually, the provided services mainly refer to Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastruc-
ture as a Service (IaaS), which are all made available to the
general public in a pay-as-you-go manner [3], [4]. In most
systems, the service provider provides the architecture for
multiple users to bid for resource usage [5], [6]. When mak-
ing bids for resource usage in cloud, multiple users and the
cloud provider need to reach an agreement on the service
level and the costs to use the provided resources during the
reserved time slots, which could lead to a competition for
the usage of limited resources [7]. Therefore, it is important
for a user to configure an appropriate bidding price for
resource usage during his/her reserved time slots without
complete information of those other users, such that his/her
utility is maximized.

For a cloud provider, the income (i.e., the revenue) is the
charge from users for resource usage [8], [9]. When provid-
ing computing resources to multiple cloud users, a suitable
resource allocation model referring to bidding prices should
be significantly taken into account. The reason lies in that an
appropriate resource allocation model referring to bidding
prices is not just for the profit of a cloud provider, but for
the appeals to more cloud users in the market to use cloud
service. Specifically, if the per resource usage bidding price
is too high, even though the allocated computing resource is
enough, a user may refuse to use the cloud service due to
the high payment, and choose another cloud provider or
just finish his/her requests locally. On the other hand, if the
per resource usage charge is low while the allocated com-
puting resource is not sufficiently enough, this will lead to
poor service quality (long task response time) and thus dis-
satisfies the cloud users even for potential users in the mar-
ket. Hence, a cloud provider should design an appropriate
resource allocation model considering users0 bidding prices.

A rational user will choose a bidding strategy to use
resources that maximizes his/her own net reward, i.e., the
utility obtained by choosing the cloud service minus the
payment [1]. On the other hand, the utility of a user is not
only determined by the importance of his/her tasks (i.e.,
how much benefit the user can receive by finishing the
tasks), but also closely related to the urgency of the task
(i.e., how quickly it can be finished). The same task, such as
running an online voice recognition algorithm, is able to
generate more utility for a cloud user if it can be completed
within a shorter period of time in the cloud [1]. However,
considering the energy saving and economic reasons, it is
irrational for a cloud provider to provide enough comput-
ing resources to satisfy all requests in a time slot. Therefore,
multiple cloud users have to compete for resource usage.
Since the bidding price and allocated computing resources
of each user are affected by those decisions of other users, it

� K. Li and C. Liu are with the College of Information Science and Engineer-
ing, Hunan University, and National Supercomputing Center in Chang-
sha, Hunan, China, 410082. E-mail: {lkl, liuchubo}@hnu.edu.cn.

� K. Li is with the College of Information Science and Engineering, Hunan
University, and National Supercomputing Center in Changsha, Hunan,
China, 410082 and with the Department of Computer Science, State Univer-
sity of New York, New Paltz, New York 12561. E-mail: lik@newpaltz.edu.

� A. Y. Zomaya is with the School of Information Technologies, University
of Sydney, Sydney, NSW 2006, Australia.
E-mail: albert.zomaya@sydney.edu.au.

Manuscript received 28 July 2015; revised 14 Oct. 2015; accepted 18 Oct.
2015. Date of publication 26 Oct. 2015; date of current version 20 July 2016.
Recommended for acceptance by Z. Du.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPDS.2015.2495120

2168 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 27, NO. 8, AUGUST 2016

1045-9219� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:
mailto:
mailto:


is natural to analyze the behavior of such systems as a stra-
tegic games [10].

1.2 Our Contributions

In this paper, we focus on price bidding strategies of multi-
ple users competition for resource usage in cloud comput-
ing. We consider the problem from a game theoretic
perspective and formulate it into a non-cooperative game
among the multiple cloud users, in which each cloud user is
informed with incomplete information of other users. For
each user, we design a utility function which combines the
net profit with time efficiency and try to maximize its value.
We study the conflicts of the multiple users with interactive
decisions and propose a near-equilibrium price bidding
algorithm (NPBA) to configure appropriate bidding strat-
egy for each of the users. We also perform extensive experi-
ments to verify the effectiveness of our proposed price
bidding algorithm. In summary, the main contributions of
this work can be listed as follows:

� We propose a framework for each cloud user to con-
figure an appropriate bidding price for resource
usage in cloud computing.

� By relaxing the condition that the allocated number
of servers can be fractional, we prove the existence
of Nash equilibrium solution set for the formulated
game and propose an iterative algorithm (IA) to
compute a Nash equilibrium solution.

� The convergency of the proposed IA algorithm is
analyzed and we find that it converges to a Nash
equilibrium if several conditions are satisfied.

� We revise the obtained solution and propose a near-
equilibrium price bidding algorithm to characterize
the whole process of our proposed framework.

The experimental results show that the obtained near-
equilibrium solution is close to the equilibrium one, which
validates the effectiveness of our proposedNPBA algorithm.

The rest of the paper is organized as follows. In Section 2,
we presented the relevant works. Section 3 describes the
models of the system and presents the problem to be solved.
Section 4 formulates the problem into a non-cooperative
game and propose a near-equilibrium price bidding algo-
rithm. Many analyses are also presented in this section. Sec-
tion 5 is developed to verify our theoretical analysis and
show the effectiveness of our proposed algorithm. We con-
clude the paper with future work in Section 6.

2 RELATED WORKS

In many scenarios, a service provider provides the architec-
ture for users to bid for resource usage [6], [11], [12]. One of
the most important aspects that should be taken into
account by the provider is its resource allocation model
referring users bidding prices, which is closely related to its
profit and the appeals to market users.

Many works have been done on resource allocation
scheme referring to bidding prices in the literature [6], [11],
[12], [13], [14], [15]. In [11], Samimi et al. focused on resource
allocation in cloud that considers the benefits for both the
users and providers. To address the problem, they proposed
a new resource allocationmodel called combinatorial double
auction resource allocation (CDARA), which allocates the

resources according to bidding prices. In [6], Zaman and
Grosu argued that combinatorial auction-based resource
allocation mechanisms are especially efficient over the fixed-
price mechanisms. They formulated resource allocation
problem in clouds as a combinatorial auction problem and
proposed two solving mechanisms, which are extensions of
two existing combinatorial auction mechanisms. In [12], the
authors also presented a resource allocation model using
combinatorial auction mechanisms. Similar studies and
models can be found in [13], [14], [15], [16]. However, all of
thesemodels only try to improve the profits of the cloud pro-
viders or cloud users. They failed to configure optimal bid-
ding prices for multiple users or show how their bidding
strategies closer to the optimal ones.

Game theory is a field of applied mathematics that
describes and analyzes scenarios with interactive decisions
[17], [18], [19]. It is a formal study of conflicts and coopera-
tion among multiple competitive users [20] and a powerful
tool for the design and control of multiagent systems [21].
There has been growing interest in adopting cooperative and
non-cooperative game theoretic approaches to modeling
many problems [22], [23], [24], [25]. In [25], Mohsenian-Rad
et al. used game theory to solve an energy consumption
scheduling problem. In their work, they proved the existence
of the unique Nash equilibrium solution and then proposed
an algorithm to obtain it. They also analyzed the convergence
of their proposed algorithm. Even though the formats for
using game theory in our work, i.e., proving Nash equilib-
rium solution existence, proposing an algorithm, and analyz-
ing the convergence of the proposed algorithm, are similar to
[25], the formulated problem and the analysis process are
entirely different. In [26], the authors used cooperative and
non-cooperative game theory to analyze load balancing for
distributed systems. Different from their proposed non-
cooperative algorithm,we solve our problem in a distributed
iterative way. In our previous work [27], we used non-
cooperative game theory to address the scheduling for sim-
ple linear deteriorating jobs. Formoreworks on game theory,
the reader is referred to [26], [28], [29], [30], [31].

3 SYSTEM MODEL AND PROBLEM FORMULATION

To begin with, we present our system model in the context
of a service cloud provider with multiple cloud users, and
establish some important results. In this paper, we are con-
cerned with a market with a service cloud provider and n
cloud users, who are competing for using the computing
resources provided by the cloud provider. We denote the
set of users as N ¼ 1; . . . ; nf g. Each cloud user wants to bid
for using some servers for several future time slots. The
arrival requests from cloud user i (i 2 N ) is assumed to fol-
low a Poisson process. The cloud provider consists of multi-
ple zones. In each zone, there are many homogeneous
servers. In this paper, we focus on the price bidding for
resource usage in a same zone and assume that the number
of homogeneous servers in the zone is m. The cloud pro-
vider tries to allocate cloud user i (i 2 N ) with mi servers
without violating the constraint

P
i2N mi � m. The allocated

mi servers for cloud user i (i 2 N ) are modeled by an M/
M/m queue, only serving the requests from user i for ti
future time slots.
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We summarize all the notations used in this section in
the notation table (see Section 1 of the supplementary
material, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPDS.2015.2495120).

3.1 Bidding Strategy Model

As mentioned above, the n cloud users compete for using
the m servers by bidding different strategies. Specifically,
each cloud user responds by bidding with a per server
usage price pi (i.e., the payment to use one server in a time
slot) and the number of time slots ti to use cloud service.
Hence, the bid of cloud user i (i 2 N ) is an ordered pair
bi ¼ pi; tih i.

We assume that cloud user i (i 2 N ) bids a price pi 2 Pi,
where Pi ¼ ½p; �pi�, with �pi denoting user i0s maximal possi-

ble bidding price. p is a conservative bidding price, which is

determined by the cloud provider. If p is greater than �pi,

then Pi is empty and the cloud user i (i 2 N ) refuses to use
cloud service. As mentioned above, each cloud user i
(i 2 N ) bids for using some servers for ti future time slots.
In our work, we assume that the reserved time slots ti is a
constant once determined by the cloud user i. We define
user i0s (i 2 N ) request profile over the ti future time slots
as follow:

��
ti
i ¼ �1

i ; . . . ; �
ti
i

� �T
; (1)

where �t
i (t 2 T i) with T i ¼ f1; . . . ; tig, is the arrival rate of

requests from cloud user i in the tth time slot. The arrival of
the requests in different time slots of are assumed to follow
a Poisson process.

3.2 Server Allocation Model

We consider a server allocation model motivated by [32],
[33], where the allocated number of servers is propor-
tional fairness. That is to say, the allocated share of serv-
ers is the ratio between the cloud user0s product value of
his/her bidding price with reserved time slots and the
summation of all product values from all cloud users.
Then, each cloud user i (i 2 N ) is allocated a portion of
servers as

mi bi; bb�ið Þ ¼ pitiP
j2N pjtj

�m
$ %

; (2)

where bb�i ¼ b1; . . . ; bi�1; biþ1; . . . ; bnð Þ denotes the vector of
all users0 bidding profile except that of user i, and xb c
denotes the greatest integer less than or equal to x. We
design a server allocation model as Eq. (2) for two consid-
erations. On one hand, if the reserved time slots to use
cloud service ti is large, the cloud provider can charge less
for one server in a unit of time to appeal more cloud users,
i.e., the bidding price pi can be smaller. In addition, for the
cloud user i (i 2 N ), he/she may be allocated more serv-
ers, which can improve his/her service time utility. On
the other hand, if the bidding price pi is large, this means
that the cloud user i (i 2 N ) wants to pay more for per
server usage in a unit of time to allocate more servers,
which can also improve his/her service time utility. This

is also beneficial to the cloud provider due to the higher
charge for each server. Therefore, we design a server
allocation model as Eq. (2), which is proportional to the
product of pi and ti.

3.3 Cloud Service Model

As mentioned in the beginning, the allocated mi servers for
cloud user i (i 2 N ) are modeled as an M/M/m queue,
only serving the requests from cloud user i for ti future time
slots. The processing capacity of each server for requests
from cloud user i (i 2 N ) is presented by its service rate mi.
The requests from cloud user i (i 2 N ) in tth (t 2 T i) time
slot are assumed to follow a Poisson process with average
arrival rate �t

i.
Let pt

ik be the probability that there are k service requests
(waiting or being processed) in the tth time slot and

rti ¼ �t
i

�
mimið Þ be the corresponding service utilization in

the M/M/m queuing system. With reference to [8],
we obtain

pt
ik ¼

1
k! mir

t
i

� �k
pt
i0; k < mi;

m
mi
i

rt
ið Þ

k

mi!
pt
i0; k � mi;

8<
: (3)

where

pt
i0 ¼

Xmi�1

l¼0

1

l!
mir

t
i

� �l þ 1

mi!
�
mir

t
i

� �mi

1� rti

( )�1
: (4)

The average number of service requests (in waiting or in
execution) in tth time slot is

�Nt
i ¼

X1
k¼0

kpt
ik ¼

pt
imi

1� rti
¼ mir

t
i þ

rti
1� rti

Pt
i; (5)

where Pt
i represents the probability that the incoming

requests from cloud user i (i 2 N ) need to wait in queue in
the tth time slot.

Applying Little0s result, we get the average response time
in the tth time slot as

�Tt
i ¼

�N
t
i

�t
i

¼ 1

�t
i

mir
t
i þ

rti
1� rti

Pt
i

� �
: (6)

In this work, we assume that the allocated servers for
each cloud user will likely keep busy, because if no so, a
user can bid lower price to obtain less servers such
that the computing resources can be fully utilized. For
analytical tractability, Pt

i is assumed to be 1. Therefore,
we have

�Tt
i ¼

�Nt
i

�t
i

¼ 1

�t
i

mir
t
i þ

rti
1� rti

� �
¼ 1

mi

þ 1

mimi � �t
i

: (7)

Note that the request arrival rate from a user should
never exceed the total processing capacity of the allocated
servers. In our work, we assume that the remaining process-
ing capacity for serving user i (i 2 N ) is at least smi, where
s is a relative small positive constant. That is, if
�t
i > ðmi � sÞmi, cloud user i (i 2 N ) should reduce his/
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her request arrival rate to ðmi � sÞmi. Otherwise, server
crash would be occurred. Hence, we have

�Tt
i ¼

1

mi

þ 1

mimi � xt
i

; (8)

where xt
i is the minimum value of �t

i and mi � sð Þmi, i.e.,

xt
i ¼ min �t

i; mi � sð Þmi

	 

.

3.4 Architecture Model

In this section, we model the architecture of our proposed
framework to price bids for resource usage in cloud comput-
ing. The multiple users can make appropriate bidding deci-
sions through the information exchangemodule. As shown in
Fig. 1, each cloud user i (i 2 N ) is equipped with a utility
function (ui), the request arrival rate over reserved time slots

(��ti
i ), and the bidding configuration (bi), i.e., the payment strat-

egy for one server in a unit of time and the reserved time slots.
Let XN be the aggregated payment from all cloud users for
using a server, then we have XN ¼

Pn
i¼1 piti. Denote

mm ¼ mið Þi2N as the server allocation vector, bb ¼ bið Þi2N as the

corresponding bids, and uu ¼ uið Þi2N as the utility functions of

all cloud users. The cloud provider consists of m homoge-
neous servers and communicates some information (e.g., con-
servative bidding price p, current aggregated payment from

all cloud users for using a server XN ) with multiple users
through the information exchange module. When multiple
users try to make price bidding strategies for resource usage
in the cloud provider, theyfirst get information from the infor-
mation exchange module, then configure proper bidding
strategies (bb) such that their own utilities (uu) are maximized.
After this, they send the updated strategies to the cloud pro-
vider. The procedure is terminated when the set of remaining
cloud users, who prefer to use the cloud service, and their cor-
responding bidding strategies are kept fixed.

3.5 Problem Formulation

Now, let us consider user i0s (i 2 N ) utility in time slot t
(t 2 T i). A rational cloud user will seek a bidding strategy
to maximize his/her expected net reward by finishing the
requests, i.e., the benefit obtained by choosing the cloud ser-
vice minus his/her payment. Since all cloud users are
charged based on their bidding prices and allocated number

of servers, we denote the cloud user i0s payment in time

slot t by Pt
i bi; bb�ið Þ, where Pt

i bi; bb�ið Þ ¼ pimi bi; bb�ið Þ with
bb�i ¼ b1; . . . ; bi�1; biþ1; . . . ; bnð Þ denoting the vector of all
users0 bidding profile except that of user i. Denote
PT bi; bb�ið Þ as the aggregated payment from all cloud users,
i.e., the revenue of the cloud provider. Then, we have

PT bi; bb�ið Þ ¼
Xn
i¼1

Xti
t¼1

Pt
i bi; bb�ið Þ ¼

Xn
i¼1

pimi bi; bb�ið Þtið Þ: (9)

On the other hand, since a user will be more satisfied with
much faster service, we also take the average response time
into account. FromEq. (8), we know that the average response
time of user i (i 2 N ) is impacted by mi and xt

i, where

xt
i ¼ min �t

i; mi � sð Þmi

	 

. The former is varied by (bi; bb�i),

and the latter is determined by �t
i and mi. Hence, we denote

the average response time of user i as �Tt
i bi; bb�i; �

t
i

� �
. More for-

mally, the utility of user i (i 2 N ) in time slot t is defined as

ut
i bi; bb�i; �

t
i

� �
¼ rix

t
i � diP

t
i bi; bb�ið Þ � wi

�Tt
i bi; bb�i; �

t
i

� �
; (10)

where xt
i is the minimum value of �t

i and mi bi; bb�ið Þ � sð Þmi,

i.e., xt
i ¼ min �t

i; mi bi; bb�ið Þ � sð Þmi

	 

with s denoting a rela-

tive small positive constant, ri (ri > 0) is the benefit factor
(the reward obtained by finishing one task request) of user
i, di (di > 0) is the payment cost factor, and wi (wi > 0) is
the waiting cost factor, which reflects its urgency. If a user i
(i 2 N ) is more concerned with service time utility, then the
associated waiting factor wi might be larger. Otherwise, wi

might be smaller, which implies that the user i is more con-
cerned with profit.

Since the reserved server usage time ti is a constant and

known to cloud user i (i 2 N ), we use ut
i pi; bb�i; �

t
i

� �
instead

of ut
i bi; bb�i; �

t
i

� �
. For further simplicity, we use Pt

i and �Tt
i to

denote Pt
i bi; bb�ið Þ and Tt

i bi; bb�i; �
t
i

� �
, respectively. Following

the adopted bidding model, the total utility obtained by
user i (i 2 N ) over all ti time slots can thus be given by

ui pi; bb�i; ��
ti
i

� �
¼
Xti
t¼1

ut
i pi; bb�i; �

t
i

� �
¼
Xti
t¼1

rix
t
i � Pt

i � wi
�Tt
i

� �
:

(11)

Fig. 1. Architecture model.
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In our work, we assume that each user i (i 2 N ) has a reser-
vation value vi. That is to say, cloud user i will prefer to use

the cloud service if uiðpi; bb�i; ��ti
i Þ � vi and refuse to use the

cloud service otherwise.
We consider the scenario where all users are selfish. Spe-

cifically, each cloud user tries to maximize his/her total util-
ity over the ti future time slots, i.e., each cloud user i (i 2 N )
tries to find a solution to the following optimization prob-
lem (OPTi):

maximize ui pi; bb�i; ��
ti
i

� �
; pi 2 Pi: (12)

Remark 1. In finding the solution to (OPTi), the bidding
strategies of all other users are kept fixed. In addition,
the number of reserved time slots once determined by a
user is constant. So the variable in (OPTi) is the bidding
price of cloud user i, i.e., pi.

4 GAME FORMULATION AND ANALYSES

In this section, we formulated the considered scenario
into a non-cooperative game among the multiple cloud
users. By relaxing the condition that the allocated number
of servers for each user can be fractional, we analyze the
existence of a Nash equilibrium solution set for the for-
mulated game. We also propose an iterative algorithm to
compute a Nash equilibrium and then analyze its conver-
gence. Finally, we revise the obtained Nash equilibrium
solution and propose an algorithm to characterize the
whole process of the framework.

4.1 Game Formulation

Game theory studies the problems in which players try to
maximize their utilities or minimize their disutilities. As
described in [5], a non-cooperative game consists of a set of
players, a set of strategies, and preferences over the set of
strategies. In this paper, each cloud user is regarded as a
player, i.e., the set of players is the n cloud users. The strat-
egy set of player i (i 2 N ) is the price bidding set of user i,
i.e., Pi. Then the joint strategy set of all players is given by
P ¼ P1 � � � � � Pn.

As mentioned before, all users are considered to be self-
ish and each user i (i 2 N ) tries to maximize his/her own
utility or minimize his/her disutility while ignoring those
of the others. Denote

ct
i pi; bb�i; �

t
i

� �
¼ diP

t
i þ wiT

t
i � rixit: (13)

In view of (11), we can observe that user i0s optimization
problem (OPTi) is equivalent to

minimize fi pi; bb�i; ��
ti
i

� �
¼
Xti
t¼1

ct
i pi; bb�i; �

t
i

� �
;

s.t. pi; pp�ið Þ 2 P:
(14)

The above formulated game can be formally defined by the
tuple G ¼ P; ffh i, where ff ¼ f1; . . . ; fnð Þ. The aim of cloud
user i (i 2 N ), given the other players0 bidding strategies
bb�i, is to choose a bidding price pi 2 Pi such that his/her

disutility function fi pi; bb�i; ��
ti
i

� �
is minimized.

Definition 4.1 (Nash equilibrium). A Nash equilibrium of
the formulated game G ¼ P; ffh i defined above is a price bid-
ding profile pp	 such that for every player i (i 2 N ):

p	i 2 argmin
pi2Pi

fi pi; bb�i; ��
ti
i

� �
; pp	 2 P: (15)

At the Nash equilibrium, each player cannot further
decrease its disutility by choosing a different price bidding
strategy while the strategies of other players are fixed. The
equilibrium strategy profile can be foundwhen each player0s
strategy is the best response to the strategies of other players.

4.2 Nash Equilibrium Existence Analysis

In this section, we analyze the existence of Nash equilibrium
for the formulated game G ¼ P; ffh i by relaxing one condi-
tion that the allocated number of servers for each user can
be fractional. Before addressing the equilibrium existence
analysis, we show two properties presented in Theorem 4.1
and Theorem 4.2, which are helpful to prove the existence
of Nash equilibrium for the formulated game.

Theorem 4.1. Given a fixed bb�i and assuming that

ri � wi

�
s2m2

i

� �
(i 2 N ), then each of the functions

ct
i pi; bb�i; �

t
i

� �
(ti 2 T i) is convex in pi 2 Pi.

Proof. Obviously, ct
i pi; bb�i; �

t
i

� �
(t 2 T i) is a real continuous

function defined on Pi. The proof of this theorem follows
if we can show that 8pð1Þ; pð2Þ 2 Pi,

ct
i upð1Þ þ 1� uð Þpð2Þ; bb�i; �t

i

� �
� uct

i pð1Þ; bb�i; �
t
i

� �
þ 1� uð Þct

i pð2Þ; bb�i; �
t
i

� �
;

where 0 < u < 1.
Notice that, ct

i pi; bb�i; �
t
i

� �
is a piecewise function and

the breakpoint satisfies mi � sð Þmi ¼ �t
i. Then, we obtain

the breakpoint as

pti ¼
miXXNnfig

m�mið Þti
¼

�t
i þ smi

� �
XNnfig

m� sð Þmi � �t
i

� �
ti
;

where XNnfig denotes the aggregated payment from all
cloud users in N except of user i, i.e., XNnfig ¼P

j2N ;j6¼i piti. Next, we discuss the convexity of the func-

tion ct
i pi; bb�i; �

t
i

� �
.

Since

ct
i pi; bb�i; �

t
i

� �
¼ diP

t
i þ wi

�Tt
i � rix

t
i;

where xt
i ¼ min mi � sð Þmi; �

t
i

	 

, we have

@ct
i

@pi
pi; bb�i; �

t
i

� �
¼ di

@Pt
i

@pi
þ wi

@ �Tt
i

@pi
� ri

@xt
i

@pi
:

On the other hand, since
@ �Tt

i
@pi
¼ 0 for pi 2 p; pti

h �
and

@xt
i

@pi
¼ 0 for pi 2 pti; �pi

� �
, we obtain

@

@pi
’t
i pi; bb�i; �

t
i

� �
¼

di
@Pt

i
@pi
� ri

@xt
i

@pi
; pi < pti;

di
@Pt

i
@pi
þ wi

@ �Tt
i

@pi
; pi > pti:

8<
:
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Namely,

@

@pi
’t
i pi; bb�i; �

t
i

� �

¼
di

mpitiXNnfig
X2
N

þmi

� �
� mrimitiXNnfig

X2
N

; pi < pti;

di
mpitiXNnfig

X2
N

þmi

� �
� mwimitiXNnfig

mimi��tið Þ2X2
N
; pi > pti;

8>><
>>:

where

XN ¼ XNnfig þ piti ¼
X

j2N pjtj:

We can further obtain

@2

@p2i
ct

i pi; bb�i; �
t
i

� �

¼

2mtiXNnfig
X2N

rimi�pið Þti
XN

þ 1
� �

; pi < pti;

2mtiXNnfig
X2N

1� piti
XN

� �
þ2mwimit

2
i
XNnfig

mimi��tið Þ2X3
N

miXNnfig
mimi��tið ÞXN þ 1

� �
; pi > pti:

8>>>>>><
>>>>>>:

Obviously,

@2

@p2i
ct

i pi; bb�i; �
t
i

� �
> 0;

for all pi 2 ½p; ptiÞ and pi 2 ðpti; �pi�. Therefore, 8pð1Þ; pð2Þ 2
½p; ptiÞ or 8pð1Þ; pð2Þ 2 ðpti; �pi�,

ct
i upð1Þ þ 1� uð Þpð2Þ; bb�i; �t

i

� �
� uct

i pð1Þ; bb�i; �
t
i

� �
þ 1� uð Þct

i pð2Þ; bb�i; �
t
i

� �
;

where 0 < u < 1.
Next, we focus on the situation where pð1Þ 2 ½p; ptiÞ and

pð2Þ 2 ðpti; �pi�. Since ct
i pi; bbi; �

t
i

� �
is convex on ½p; ptiÞ and

pti; �pi
� �

, respectively. We only need to prove that the

value of ct
i pti; bbi; �

t
i

� �
is less than that of in the linear func-

tion value connected by the point in p 1ð Þ and the point in

p 2ð Þ, i.e.,

ct
i pti; bbi; �

t
i

� �
� utic

t
i pð1Þ; bbi; �

t
i

� �
þ 1� uti
� �

ct
i pð2Þ; bbi; �

t
i

� �
;

where uti ¼
pð2Þ�pti
pð2Þ�pð1Þ

. We proceed as follows (see Fig. (2)).

Define a function gti pi; bbi; �
t
i

� �
on pi 2 Pi, where

gti pi; bbi; �
t
i

� �
¼ dipimi þ

wi s þ 1ð Þ
smi

� ri mi � sð Þmi:

We have

ct
i pi; bbi; �

t
i

� �
¼ gti pi; bbi; �

t
i

� �
;

for all p � pi � pti. If ri � wi

�
s2m2

i

� �
, then

@

@pi
gti pi; bbi; �

t
i

� �

¼ di
mpitiXNnfig

X2
N

þmi

 !
�
mrimitiXNnfig

X2
N

� di
mpitiXNnfig

X2
N

þmi

 !
�

mwimitiXNnfig

mimi � �t
i

� �2X2
N

¼ @

@pi
ct

i pi; bbi; �
t
i

� �
;

for all pti < pi � �pi. We have

ct
i pi; bbi; �

t
i

� �
� gti pi; bbi; �

t
i

� �
;

for all pti < pi � �pi.
On the other hand, according to the earlier derivation,

we know that

@2

@p2i
gti pi; bbi; �

t
i

� �
> 0;

for all pi 2 Pi. That is, g
t
i pi; bbi; �

t
i

� �
is a convex function on

Pi, and we obtain

ct
i pti; bbi; �

t
i

� �
� utig

t
i pð1Þ; bbi; �

t
i

� �
þ 1� uti
� �

gti pð2Þ; bbi; �
t
i

� �
¼ utic

t
i pð1Þ; bbi; �

t
i

� �
þ 1� uti
� �

gti pð2Þ; bbi; �
t
i

� �
� utic

t
i pð1Þ; bbi; �

t
i

� �
þ 1� uti
� �

ct
i pð2Þ; bbi; �

t
i

� �
:

Thus, we have ct
i pi; bb�i; �

t
i

� �
is convex on pi 2 Pi. This

completes the proof and the result follows. tu

Theorem 4.2. If both functions K1 xð Þ and K2 xð Þ are convex in
x 2 X , then the function K3 xð Þ ¼ K1 xð Þ þ K2 xð Þ is also con-
vex in x 2 X .

Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. tu

Theorem 4.3. There exists a Nash equilibrium solution set for the
formulated game G ¼ P; ffh i, given that the condition

ri � wi

�
s2m2

i

� �
(i 2 N ) holds.

Fig. 2. An illustration.
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Proof. A complete proof of the theorem is given in the sup-
plementary material, available online. tu

4.3 Nash Equilibrium Computation

Once we have established that the Nash equilibrium of the
formulated game G ¼ P; ffh i exists, we are interested in
obtaining a suitable algorithm to compute one of these equi-
libriums with minimum information exchange between the
multiple users and the cloud providers.

Note that we can further rewrite the optimization prob-
lem (14) as follows:

minimize fi pi;XN ; ��
ti
i

� �
¼
Xti
t¼1

ct
i pi;XN ; �

t
i

� �
;

s.t. pi; pp�ið Þ 2 P;
(16)

where XN denotes the aggregated payments for each server
from all cloud users, i.e., XN ¼

P
j2N pjtj. From (16), we can

observe that the calculation of the disutility function of each
individual user only requires the knowledge of the aggre-
gated payments for a server from all cloud users (XN ) rather
than that the specific individual bidding strategy profile
(bb�i), which can bring about two advantages. On the one
hand, it can reduce communication traffic between users
and the cloud provider. On the other hand, it can also keep
privacy for each individual user to certain extent, which is
seriously considered by many cloud users.

Since all users are considered to be selfish and try to min-
imize their own disutility while ignoring those of the others.
It is natural to consider an iterative algorithm where, at
every iteration k, each individual user i (i 2 N ) updates
his/her price bidding strategy to minimize his/her own dis-

utility function fiðpi;XN ; ��ti
i Þ. The idea is formalized in

Algorithm 1.

Algorithm 1. I terative Algorithm (IA)
Input: S, ��S , �.
Output: ppS .
1: //Initialize pi for each user i 2 S
2: for (each cloud user i 2 S) do
3: set p

ð0Þ
i  b.

4: end for
5: Set k 0.
6: //Find equilibrium bidding prices

7: while ( pp
kð Þ
S � pp

k�1ð Þ
S

��� ��� > �) do

8: for (each cloud user i 2 S) do
9: Receive X kð Þ

S from the cloud provider and compute

p
kþ1ð Þ
i as follows (By Algorithm 2):

10:

p
kþ1ð Þ
i  argmin

pi2Pi
fi pi;X

ðkÞ
S ; ��

ti
i

� �
:

11: Send the updated price bidding strategy to the cloud
provider.

12: end for
13: Set k kþ 1.
14: end while
15: return pp

ðkÞ
S .

Given S, ��S , and �, where S is the set of cloud users who
want to use the cloud service, ��S is the request vector of all

cloud users in S, i.e., ��S ¼ f��ti
i gi2S , and � is a relative small

constant. The iterative algorithm finds optimal bidding pri-
ces for all cloud users in S. At the beginning of the itera-
tions, the bidding price of each cloud user is set as the
conservative bidding price (p). We use a variable k to index

each of the iterations, which is initialized as zero. At the
beginning of the iteration k, each of the cloud users i (i 2 N )

receives the value XðkÞS from the cloud provider and com-

putes his/her optimal bidding price such that his/her own

disutility function fiðpi;XðkÞS ; ��
ti
i Þ (i 2 S) is minimized. Then,

each of the cloud users in S updates their price bidding
strategy and sends the updated value to the cloud
provider. The algorithm terminates when the price bidding
strategies of all cloud users in S are kept unchanged, i.e.,

kppðkÞS � pp
ðk�1Þ
S k � �.

In subsequent analyses, we show that the above algo-
rithm always converges to a Nash equilibrium if one condi-
tion is satisfied for each cloud user. If so, we have an
algorithmic tool to compute a Nash equilibrium solution.
Before addressing the convergency problem, we first pres-
ent a property presented in Theorem 4.4, which is helpful to
derive the convergence result.

Theorem 4.4. If ri > maxf2di�pi
mi

; wi

s2m2
i

g (i 2 N ), then the optimal
bidding price p	i (p	i 2 Pi) of cloud user i (i 2 N ) is a non-
decreasing function with respect to XNnfig, where

XNnfig ¼
P

j2N pjtj � piti.

Proof. According to the results in Theorem 4.1, we know
that for each cloud user i (i 2 N ), given a fixed bb�i, there

are ti breakpoints for the function fiðpi; bb�i; ��ti
i Þ. We

denote Bi as the set of the ti breakpoints, then we have

Bi ¼ pti
	 


t2T i
, where

pti ¼
miXNnfig
m�mið Þti

¼
�t
i þ smi

� �
XNnfig

m� sð Þmi � �t
i

� �
ti
:

Combining the above ti breakpoints with two end points,
i.e., p and �pi, we obtain a new set Bi [ fp; �pig. Reorder
the elements in Bi [ fp; �pig such that p

ð0Þ
i � p

ð1Þ
i �

� � � � p
ðtiÞ
i � p

ðtiþ1Þ
i , where p

ð0Þ
i ¼ p and p

ðtiþ1Þ
i ¼ �pi. Then,

we obtain a new ordered set B0i. We discuss the claimed
theorem by distinguishing three cases according to
the first derivative results of the disutility function

fiðpi; bb�i; ��ti
i Þ on pi 2 PinBi.

Case 1: @
@�pi

fiðpi; bb�i; ��ti
i Þ < 0. According to the results

in Theorem 4.2, we know that the second derivative

of fiðpi; bb�i; ��ti
i Þ on pi 2 PinBi is positive, i.e., @2

@p2
i

fiðpi; bb�i; ��ti
i Þ > 0 for all pi 2 PinBi. In addition, if

ri � wi

�
s2m2

i

� �
, the left partial derivative is less than

that of the right partial derivative in each of the

breakpoints in Bi. Therefore, if @
@�pi

fiðpi; bb�i; ��ti
i Þ < 0,

then @
@pi

fiðpi; bb�i; ��ti
i Þ < 0 for all pi 2 PinBi. Namely,

fiðpi; bb�i; ��ti
i Þ is a decreasing function on pi 2 PinBi.

Hence, the optimal bidding price of cloud user i is
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p	i ¼ �pi. That is to say, the bidding price of cloud user i

increases with respect to X�i.

Case 2: @
@p fiðpi; bb�i; ��

ti
i Þ > 0. Similar to Case 1, accord-

ing to the results in Theorem 4.2, we know that
@2

@p2
i

fiðpi; bb�i; ��ti
i Þ > 0 for all pi 2 PinBi. Hence, if

@
@p fiðpi; bb�i; ��

ti
i Þ > 0, fiðpi; bb�i; ��ti

i Þ is an increasing func-

tion for all pi 2 PinBi. Therefore, under this situation, the
optimal bidding price of cloud user i is p	i ¼ p, i.e., the

optimal bidding price is always the conservative bidding

price, which is the initialized value.

Case 3: @
@p fiðpi; bb�i; ��

ti
i Þ < 0 and @

@�pi
fiðpi; bb�i; ��ti

i Þ > 0.

Under this situation, it means that there exists an optimal

bidding price p	i 2 PinB
0
i such that

@

@pi
fi p	i ; bb�i; ��

ti
i

� �
¼
Xti
t¼1

@

@pi
ct

i p	i ; bb�i; �
ti
i

� �

¼
Xti
t¼1

@Pt
i

@pi
þ wi

@ �Tt
i

@pi
� r

@xt
i

@pi

� �
¼ 0:

(17)

Otherwise, the optimal bidding price for cloud user i

(i 2 N ) is in B0i. If above equation holds, then there exists

an integer t
0
(0 � t

0 � ti), such that the optimal bidding

price p	i is in ðp
ðt0 Þ
i ; p

ðt0 þ1Þ
i Þ 
 PinBi

0
.

According to the derivations in Theorem 4.1, we know
that the first derivative of ct

i pi; bb�i; �
t
i

� �
is

@

@pi
ct

i pi; bb�i; �
t
i

� �

¼
di

mpitiXNnfig
X2
N

þmi

� �
� mrimitiXNnfig

X2
N

; pi < pti;

di
mpitiXNnfig

X2
N

þmi

� �
� mwimitiXNnfig

mimi��tið Þ2X2
N
; pi > pti;

8>><
>>:

That is,

@

@pi
ct

i pi; bb�i; �
t
i

� �

¼

mti
X2
N

dipi piti þ 2XNnfig
� �

� riuiXNnfig
� �

; pi < pti;

mti
X2
N

dipi piti þ 2XNnfig
� �

� wiuiXNnfig

mimi��tið Þ2
� �

; pi > pti:

8><
>:

Therefore, the Eq. (17) is equivalent to the following
equation:

h p	i
� �

¼
Xti
t¼1

’t
i p	i ; bb�i; �

t
i

� �
¼ 0;

where

’t
i p	i ; bb�i; �

t
i

� �

¼
dip
	
i p	i ti þ 2XNnfig
� �

� riuiXNnfig; p	i < pti;

dip
	
i p	i ti þ 2XNnfig
� �

� wiuiXNnfig

mimi��tið Þ2
; p	i > pti:

8<
:

After some algebraic manipulation, we can write the
first derivative result of ’t

i p	i ; bb�i; �
t
i

� �
on p	i as

@

@p	i
’t
i p	i ; bb�i; �

t
i

� �

¼
2di p	i ti þ XNnfig
� �

; p	i < pti;

2di p	i ti þ XNnfig
� �

þ
2witim

2
i
X2
Nnfig

mimi��tið Þ3X2N
; p	i > pti;

8><
>:

and the first derivative result of the function

’t
i p	i ; bb�i; �

t
i

� �
on XNnfig as

@

@XNnfig
’t
i p	i ; bb�i; �

t
i

� �

¼

2dip
	
i � riui; p	i < pti;

2dip
	
i � riui � wimi

mimi��tið Þ2

� 2mwim
2
i
p	
i
tiXNnfig

mimi��tið Þ3X2
N

; p	i > pti:

8>>><
>>>:

Obviously, we have

@

@p	i
’t
i p	i ; bb�i; �

t
i

� �
> 0;

for all p	i 2 PinB
0
i. If ri > 2di�pi

�
mi, then

@

@XNnfig
’t
i p	i ; bb�i; �

t
i

� �
< 0:

Therefore, if ri > maxf2di�pi
mi

; wi

s2m2
i

g, the function h b	i
� �

decreases with the increase of XNnfig. If XNnfig increases,
to maintain the equality h b	i

� �
¼ 0, b	i must increase.

Hence, b	i increases with the increase of XNnfig. This com-

pletes the proof and the result follows. tu

Theorem 4.5. Algorithm IA converges to a Nash equilibrium,

given that the condition ri > maxf2di�pi
mi

; wi

s2m2
i

g (i 2 N ) holds.

Proof.We are now ready to show that the proposed IA algo-
rithm always converges to a Nash equilibrium solution,

given that ri > f2di�pi
mi

; wi

s2m2
i

g (i 2 N ) holds. Let p
kð Þ
i be the

optimal bidding price of cloud user i (i 2 N ) at the kth
iteration. We shall prove above claim by induction that

p
kð Þ
i is non-decreasing in k. In addition, since p	i is bounded

by �pi, this establishes the result that p
kð Þ
i always converges.

By Algorithm 1, we know that the bidding price of
each cloud user is initialized as the conservative bidding
price, i.e., p

ð0Þ
i is set as p for each of the cloud users i

(i 2 N ). Therefore, after the first iteration, we obtain the

results p
1ð Þ
i � p

0ð Þ
i for all i 2 N . This establishes our induc-

tion basis.
Assuming that the result is true in the kth iteration,

i.e., p
kð Þ
i � p

k�1ð Þ
i for all i 2 N . Then, we need to show that

in the (kþ 1)th iteration, p
kþ1ð Þ
i � p

kð Þ
i is satisfied for all

i 2 N . We proceed as follows.
By Theorem 4.4, we know that if ri > 2di�pi

�
mi, the

optimal bidding price p	i of cloud user i (i 2 N ) increases
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with the increase of XNnfig, where XNnfig ¼
P

j2N ;j 6¼i pjtj.

In addition, we can deduce that

X kð Þ
Nnfig ¼

X
j2N ;j 6¼i

p
kð Þ
j tj

�
X

j2N ;j 6¼i
p

k�1ð Þ
j tj ¼ X k�1ð Þ

N nfig:

Therefore, the optimal bidding price of cloud user i

(i 2 N ) in the kþ 1ð Þth iteration p
kþ1ð Þ
i , which is a func-

tion of X kð Þ
Nnfig, satisfies p

kþ1ð Þ
i � p

kð Þ
i for all i 2 N . Thus,

the result follows. tu

Algorithm 2. Calculate pi(X, ��
ti
i , �)

Input: X, ��ti
i , �.

Output: p	i .
1: Set t

0  0.
2: //Find p	i in PinB

0
i

3: while (t
0 � ti) do

4: Set ub p
ðt0 þ1Þ
i � �, and lb p

ðt0 Þ
i þ �.

5: if ( @
@pi

fi lb;X; ��ti
i

� �
> 0 or @

@pi
fi ub;X; ��ti

i

� �
< 0)

then
6: Set t

0  t
0 þ 1; continue.

7: end if
8: while (ub� lb > �) do
9: Setmid ubþ lbð Þ=2, and pi  mid.
10: if ( @

@pi
fi pi;X; ��

ti
i

� �
< 0) then

11: Set lb mid.
12: else
13: Set ub mid.
14: end if
15: end while
16: Set pi  ubþ lbð Þ=2; break.
17: end while
18: //Otherwise, find p	i in B

0
i

19: if (t
0 ¼ ti þ 1) then

20: Setmin þ1.
21: for (each break point p

ðt0 Þ
i 2 B0i) do

22: if (fi
�
p
ðt0 Þ
i ;X; ��ti

i

�
< min) then

23: Setmin fi
�
p
ðt0 Þ
i ;X; ��ti

i

�
, and pi  p

ðt0 Þ
i .

24: end if
25: end for
26: end if
27: return pi.

Next, we focus on the calculation for the optimal bidding
price p	i in problem (16), i.e., calculate

p	i 2 argmin
pi2Pi

fi pi;XN ; ��
ti
i

� �
: (18)

From Theorem 4.5, we know that the optimal bidding price

p	i of cloud user i (i 2 N ) is either in B0i or in PinB
0
i such that

@

@pi
fi p	i ;XN ; ��

ti
i

� �
¼
Xti
t¼1

@

@pi
ct

i p	i ;XN ; �
t
i

� �

¼
Xti
t¼1

di
@Pt

i

@pi
þ wi

@ �Tt
i

@pi
� ri

@xt
i

@pi

� �
¼ 0;

(19)

where B0i is an ordered set for all elements in Bi [ fp; �pig,
and Bi is the set of ti breakpoints of cloud user i (i 2 N ), i.e.,

Bi ¼ pti
	 


t2T i
with

pti ¼
miXNnfig
m�mið Þti

¼
�t
i þ smi

� �
XNnfig

m� sð Þmi � �t
i

� �
ti
: (20)

Assuming that the elements in B0i satisfy p
ð0Þ
i �

p
ð1Þ
i � � � � � p

ðtiþ1Þ
i , where p

ð0Þ
i ¼ p and p

ðtiþ1Þ
i ¼ �pi. If equa-

tion (19) holds, then there exists an integer t
0
(0 � t

0 � ti)

such that the optimal bidding price p	i 2 ðp
ðt0 Þ
i ; p

ðt0 þ1Þ
i Þ


 PinB
0
i. In addition, from the derivations in Theorem 4.5,

we know that

@2

@p2i
fi pi;XN ; ��

ti
i

� �
> 0; (21)

for all pi 2 PinB
0
i. Therefore, we can use a binary search

method to search the optimal bidding price p	i in each of the

sets ðpðt
0 Þ

i ; p
ðt0 þ1Þ
i Þ 
 PinB

0
i (0 � t

0
i � ti), which satisfies (19). If

we cannot find such a bidding price in PinB
0
i, then the opti-

mal bidding price p	i is in B0i. The idea is formalized in
Algorithm 2.

Given X, ��ti
i , and �, where X ¼

P
j2N pjtj, ��

ti
i ¼ �t

i

	 

t2Ti

,
and � is a relatively small constant. Our optimal price bid-
ding configuration algorithm to find p	i is given in Algo-
rithm Calculate pi. The key observation is that the first

derivative of function fiðpi;X; ��ti
i Þ, i.e., @

@pi
fiðpi;X; ��ti

i Þ, is an

increasing function in pi 2 ðpðt
0 Þ

i ; p
ðt0 þ1Þ
i Þ � PinB

0
i (see (21)),

where 0 � t
0 � ti. Therefore, if the optimal bidding price is

in PinB
0
i, then we can find p	i by using the binary search

method in one of the intervals (p
ðt0 Þ
i ; p

ðt0 þ1Þ
i ) (0 � t

0 � ti)

(Steps 3-17). In each of the search intervals ðpðt
0 Þ

i ; p
ðt0 þ1Þ
i Þ, we

set ub as ðpðt
0 þ1Þ

i � �Þ and lb as ðpðt
0 Þ

i þ �Þ (Step 4), where � is
relative small positive constant. If the first derivative of

function fiðpi;X; ��ti
i Þ on lb is positive or the first derivative

on ub is negative, then the optimal bidding price is not in
this interval (Step 5). Once the interval, which contains the
optimal bidding price is decided, we try to find the optimal
bidding price p	i (Steps 8-16). Notice that, the optimal bid-

ding price may in B0i rather than in PinB
0
i (Step 19). Under

this situation, we check each of the breakpoints in B0i and
find the optimal bidding price (Steps 21-25).

By Algorithm 2, we note that the inner while loop (Steps
8-15) is a binary search process, which is very efficient and
requires Qðlog �pmax�p

� Þ to complete, where �pmax is the maxi-
mum upper bidding bound of all users, i.e.,
�pmax ¼ maxi2N �pið Þ. Let tmax ¼ maxi2N tið Þ, then the outer

while loop (Steps 3-17) requires time Q tmaxlog
�pmax�p

�

� �
. On

the other hand, the for loop (Steps 21-25) requires Q tmaxð Þ to
find solution in set B0i. Therefore, the time complexity of

Algorithm 2 is Qðtmaxðlog
�pmax�p

� þ 1ÞÞ.

4.4 A Near-Equilibrium Price Bidding Algorithm

Notice that, the equilibrium bidding prices obtained by IA
algorithm are considered under the condition that the
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allocated number servers can be fractional, i.e., in the com-
putation process, we use

mi ¼
pitiP
j2N pjtj

�m; (22)

instead of

mi ¼
pitiP
j2N pjtj

�m
$ %

: (23)

Therefore, we have to revise the solution and obtain a near-
equilibrium price bidding strategy. Note that, under
Eq. (23), there may exist some remaining servers, which is
at most n. Considering for this, we reallocate the remaining
servers according to the bidding prices. The idea is formal-
ized in our proposed near-equilibrium price bidding algo-
rithm, which characterizes the whole process.

Algorithm 3.N ear-equilibrium Price Bidding
Algorithm (NPBA)
Input: N , P, ��N , �.
Output: ppN .
1: Set Sc  N , Sl  ;, and k 0.
2: while (Sc 6¼ Sl) do
3: Set ppN  00, Sl  Sc, ppSc  IAðSc; ��Sc ; �Þ, and X P

j2N pjtj.

4: for (each cloud user i 2 Sc) do
5: Compute the allocated servers as (23), i.e., calculate:

mi  piti
X �m

 �
.

6: end for
7: SetmR  m�

P
i2Sc mi, and flag true.

8: while (mR 6¼ 0 and flag ¼ true) do
9: Set flag false.
10: for (each cloud user i 2 Sc) do
11: Compute the reallocated servers, i.e., calculate:

mt
i  

piti
X �mR

 �
.

12: if (ui

�
mi þmt

i; pi; ��
ti
i

�
> ui

�
mi; pi; ��

ti
i

�
) then

13: Set mi  mi þmt
i, mR  mR �mt

i, and
flag falsefalse.

14: end if
15: end for
16: end while
17: for (each cloud user i 2 Sc) do
18: if (uiðmi; pi; ��

ti
i Þ < vi) then

19: Set pi  0, and Sc  Sc � if g.
20: end if
21: end for
22: end while
23: return ppN .

At the beginning, the cloud provider sets a proper con-
servative bidding price (p) and puts its value to into public
information exchange module. Each cloud user i (i 2 N )
sends his/her reserved time slots value (ti) to the cloud pro-
vider. We denote the current set of cloud users who want to
use cloud service as Sc and assume that in the beginning, all
cloud users in N want to use cloud service, i.e., set Sc as N
(Step 1). For each current user set Sc, we calculate the opti-
mal bidding prices for all users in Sc by IA algorithm,
under the assumption that the allocated servers can

fractional (Step 3). And then, we calculate their correspond-
ing allocated servers (Steps 4-6). We calculate the remaining
servers and introduce a flag variable. The inner while loop
tries to allocate the remaining servers according to the cal-
culated bidding strategies of the current users in Sc (Steps
8-16). The variable flag is used to flag whether there is a
user in Sc can improve his/her utility by the allocated num-
ber of servers. The while loop terminates until the remain-
ing servers is zero or there is no one such user can improve
his/her utility by reallocating the remaining servers. For
each user in Sc, if his/her utility value is less than the
reserved value, then we assume that he/she refuses to use
cloud service (Steps 17-21). The algorithm terminates when
the users who want to use cloud service are kept unchanged
(Steps 2-22).

5 PERFORMANCE EVALUATION

In this section, we provide some numerical results to vali-
date our theoretical analyses and illustrate the performance
of theNPBA algorithm.

In the following simulation results, we consider the sce-
nario consisting of maximal 200 cloud users. Each time slot
is set as one hour of a day and the maximal time slots of a
user can be 72. As shown in Table 1, the conservative bid-
ding price (p) is varied from 200 to 540 with increment 20.
The number of cloud users (n) is varied from 50 to 200 with
increment 10. The maximal bidding price (�pi) and market
benefit factor (ri) of each cloud user are randomly chosen
from 500 to 800 and 30 to 120, respectively. Each cloud user
i (i 2 N ) chooses a weight value from 0.1 to 2.5 to balance
his/her time utility and profit. We assume that the request
arrival rate (�t

i) in each time slot of each cloud user is
selected randomly and uniformly between 20 and 480. The
processing rate (mi) of a server to the requests from cloud
user i (i 2 N ) is randomly chosen from 60 to 120. For sim-
plicity, the reservation value (vi) and payment cost weight
(di) for each of the cloud users are set as zero and one,
respectively. The number of servers m in the cloud provider
is set as a constant 600, s is set as 0.1, and � is set as 0.01.

Fig. 3 shows an instance for the bidding prices of six dif-
ferent cloud users versus the number of iterations of the
proposed IA algorithm. Specifically, Fig. 3 presents the bid-
ding price results of six randomly selected cloud users
(users 8, 18, 27, 41, 59, and 96) with a scenario consisting of
100 cloud users. We can observe that the bidding prices of

TABLE 1
System Parameters

System parameters (Fixed)–[Varied range] (increment)

Conservative bidding price ðpÞ (200)–[200, 540] (20)

Number of cloud users ðnÞ (100)–[50, 200] (10)

Maximal bidding price ð�piÞ [500, 800]

Market profit factor ðriÞ [30, 120]

Weight value ðwiÞ [0.1, 2.5]

Request arrival rates ð�t
iÞ [20, 480]

Processing rate of a server ðmiÞ [60, 120]

Reserving time slots ðtiÞ [1, 72]

Reservation value ðviÞ 0

Payment cost weight ðdiÞ 1

Other parameters (�; s;m) (0.01, 0.1, 600)
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all users seem to be non-decreasing with the increase of iter-
ation number and finally reach a relative stable state, which
verifies the validness of Theorem 3.4. That is, the bidding
prices of all cloud users keep unchanged, i.e., reach a Nash
equilibrium solution after several iterations. In addition, it
can also be seen that the developed algorithm converges to
a Nash equilibrium very quickly. Specifically, the bidding
price of each user has already achieved a relatively stable
state after five iteration, which shows the high efficiency of
our developed algorithm.

In Fig. 4, we show the trend of the aggregated payment
from all cloud users (PT ), i.e., the revenue of the cloud pro-
vider, versus the increment of the conservative bidding
price. We compare two kinds of results with the situations
by computing the allocated number of servers for each
cloud user i (i 2 N ) as (22) and (23), respectively. Specifi-
cally, we denote the obtained payment as VT when compute
mi as (22) and PT for (23). Obviously, the former is the opti-
mal value computed from the Nash equilibrium solution
and bigger than that of the latter. However, it cannot be
applied in a real application, because the allocated number
of servers cannot be fractional. We just obtain a near-equi-
librium solution by assuming that the allocated number of

servers can be fractional at first. Even though the obtained
solution is not optimal, we can compare these two kinds of
results and show that how closer our proposed algorithm
can find a near-equilibrium solution to that of the computed
optimal one.

We can observe that the aggregated payment from all
cloud users tends to increase with the increase of conserva-
tive bidding price at first. However, it decreases when con-
servative bidding price exceeds a certain value. The reason
behind lies in that when conservative bidding price
increases, more and more cloud users refuse to use the
cloud service due to the conservative bidding price exceeds
their possible maximal price bidding values or their utilities
are less than their reservation values, i.e., the number of
users who choose cloud service decreases (see Fig. 5). We
can also observe that the differences between the values of
PT and VT are relatively small and make little differences
with the increase of the conservative bidding price. Specifi-
cally, the percent differences between the values of VT and
PT range from 3.99 to 8.41 percent, which reflects that our
NPBA algorithm can find a very well near-optimal solution
while ignoring the increment of conservative bidding price.
To demonstrate this phenomenon, we further investigate
the specific utilities of some users and their corresponding
bidding prices, which are presented in Figs. 6 and 7.

Fig. 3. Convergence process of bidding price.

Fig. 4. Aggregated payment of all users.

Fig. 5. Actual number of cloud users.

Fig. 6. Specific user utility.
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In Figs. 6 and 7, we plot the utility shape and the bidding
prices of some cloud users for the developed NPBA algo-
rithm. Fig. 6 presents the utility shape under the developed
algorithm versus the increment of conservative bidding
price. We randomly select six users (users 1, 19, 35, 58, 87,
and 100). It can be seen that the utility trends of all cloud
users tend to decreases with the increase of conservative
bidding price. However, under every conservative bidding
price, for each user, the differences between the utilities
computed by using mi as (22) (the larger one) and (23) (the
smaller one) for each cloud user are relatively small. There-
fore, the differences between the aggregated payments of
(PT ) and (VT ) are small (see Fig. 4). Fig. 7 exhibits the corre-
sponding bidding prices of the users shown in Fig. 6. We
can observe that some users may refuse to use cloud service
when conservative bidding price exceeds a certain value
(user 2). When users choose to use cloud service, the treads
of their bidding prices tend to be non-decreasing with the
increment of conservative bidding price (user 19, 34, 75, 87,
and 100). This phenomenon also verifies the aggregated
payment trend shown in Fig. 4. Specifically, due to the
increases of users0 bidding prices, the aggregated payment
from all cloud users tend to increase at first. However,
when conservative bidding price exceeds a certain value,

more and more cloud users refuse to use cloud service.
Therefore, the aggregated payment tends to decrease when
conservative bidding price is large enough.

In Fig. 8, we show the impact of number of cloud users
on aggregated payment. Similar to Fig. 4, the differences
between the values of PT and VT are relatively small. Spe-
cifically, the percent differences between the values of VT

and PT range from 3.14 to 12.37 percent. That is, the aggre-
gated payment results for different number of users are
largely unchanged. In Fig. 9, we can observe that with the
increase of number of cloud users, the trend of the differ-
ences between the number of cloud users and the actual
number of cloud users who choose cloud service also
increases. The reason behind lies in that with the increase
of number of cloud users, more and more users refuse to
use cloud service due to their utilities are less than their
conservative values. This also partly verifies the aggre-
gated payment trend shown in Fig. 8, in which the aggre-
gated payments are largely unchanged with the increase of
number cloud users.

6 CONCLUSIONS

With the popularization of cloud computing and its many
advantages such as cost-effectiveness, flexibility, and scal-
ability, more and more applications are moved from local to
cloud. However, most cloud providers do not provide a
mechanism in which the users can configure bidding prices
and decide whether to use the cloud service. To remedy
these deficiencies, we focus on proposing a framework to
obtain an appropriate bidding price for each cloud user.

We consider the problem from a game theoretic perspec-
tive and formulate it into a non-cooperative game among
the multiple cloud users, in which each cloud user is
informed with incomplete information of other users. For
each user, we design a utility function which combines the
net profit with time efficiency and try to maximize its value.
We design a mechanism for the multiple users to evaluate
their utilities and decide whether to use the cloud service.
Furthermore, we propose a framework for each cloud user
to compute an appropriate bidding price. At the beginning,
by relaxing the condition that the allocated number of serv-
ers can be fractional, we prove the existence of Nash

Fig. 7. Specific user bidding price.

Fig. 8. Aggregated payment on number of users.

Fig. 9. (Actural) number of cloud users.
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equilibrium solution set for the formulated game. Then, we
propose an iterative algorithm, which is designed to com-
pute a Nash equilibrium solution. The convergency of the
proposed algorithm is also analyzed and we find that it con-
verges to a Nash equilibrium if several conditions are satis-
fied. Finally, we revise the obtained solution and propose a
near-equilibrium price bidding algorithm to characterize
the whole process of our proposed framework. The experi-
mental results show that the obtained near-equilibrium
solution is close to the equilibrium one.

As part of future directions, we will configure the multi-
ple servers in cloud dynamically and study the relationship
between the cloud provider and multiple users. Another
direction is to study the cloud choice among multiple differ-
ent cloud providers or determine a proper mixed bidding
strategy.
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