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1. Introduction

1.1 Cellular automata

Cellular Automata are regular uniform networks of locally-connected finite-state machines
invented by von Neumann (1966) to describe dynamic properties of finite state logic machines.
Following the introduction of Conway’s Game of Life (Umeo et al., 2008), Wolfram (1986;
1994) applied Boolean algebra to describe the behaviour of Cellular Automata (CA) as a series
of dynamic images. His approach used a binary counting sequence to code different rules of
behaviour based upon the functions generating the next iteration in the game. Wolfram (2002)
identified four classes of transformations within the rules of CA, proclaiming their discovery
as "A New Kind of Science", the title of the book. The typical analysis of behaviour in this area
of research would begin by choosing a CA operation; by recursively applying the operation to
different initial conditions, emergent patterns are identified, creating interesting visuals that
are identifiable by behavioural type (Ilachinski, 2001).
After sixty years of research, Cellular Automata are now ubiquitous with non-trivial
behaviour; they have been incorporated into mathematical computational models as
well as models of natural systems. Cutting edge research using CA include: digital
physics and modeling of spatially extended non-linear systems; complex systems, dynamic
systems, massive-parallel computing, parallel implementations, language acceptance, and
computability; reversibility of computation, system biology, modeling for real phenomena,
natural computing, graph-theoretic analysis and logic; chaos and undecidability (Adamatzky,
2008; Schiff, 2007; Wuensche & Lesser, 1992).
Today’s scientists rely on computation models as analytical tools for studying reality; using
the computational framework provided by packages such as Mathematica and MATLAB
to build recursive models that are iterated countless times before emergent behaviour is
observed (Wolfram, 2002). Wolfram (1985) and other researchers have systematically applied
logical equations to CA in order to systemise such complex dynamics into a science of
complexity. Wolfram (1985) summarised twenty questions enquiring into the determination
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of mathematical properties for CA such as: entropy and Lyapunov exponents, geometric
analogue, statistical behaviour, scaling, language complexity, universality and undecidability,
irreducibility, & high-level descriptions. All of the questions are excellent from computational
viewpoints, but they have not focused on the foundational aspects of the framework. An
additional question remains to be answered: What is the governing relationship between the
Cellular Automata framework and that of the Classical Logic framework?

1.2 Western and eastern logic traditions

Begining with Aristotle (384-322 B.C.), the foundations of western logic have played a key
role in the development of today’s global society (Kline, 1972). The modern theory of logic
systems comprise of a series of outstanding individuals and their contributions to the theory
of logic: G. Leibniz and the introduction of the Binary Number System (1646-1716) [Leibniz
(1976); Leibniz et al. (1989)]; G. Boole and the development of Boolean Logic (1854) [Boole
(1850/1940/1958)]; G. Cantor and Set Theory (1879); G. Frege and Conceptual Logic (1879)
[Dawson (2005); Demopoulos (1995)]; B. Russell and Russell’s Paradox (1910) [Russell (1942)];
J. Lukasiewicz and Multiple-Valued Logic (1920); D. Hilbert and Foundations of Geometric
Logic (1923 [Hilbert (1899)], K. Gödel and his Incomplete Theorem (1931) [Dawson (2005)],
A. Turing and the Turing Machine (1936) [Turing (1936)]; C. Shannon and Switching Theory
(1937) [Shannon et al. (1993)]; H. Reichenbach and Probability Logic(1949) [Reichenbach
(1949)]; as well as L. Zadeh and Fuzzy Logic (1965) [Zadeh (1965)]. Development of such
theorems and mathematical frameworks have enabled western culture to understand the
operation of our world as a set of implementable rules. Logic and the development of rules
for the expression of logic have provided a language that enabled the construction of today’s
scientific societies.
In contrast to the binary on-off nature of western logic, oriental culture have been influenced
by spiritual traditions of balance and harmony. The theme of balance can be summarized
in the I-Ching or ‘The Book of Changes’, one of the most influential books of classic oriental
literature (Chu & Sherrill, 1977; Cooper, 1981; Govinda, 1981; Hook, 1975; Shchutshii, 1979;
Whincup, 1986; Wilhelmi, 1979; Wilhemi, 1979). The concept of Yin and Yang forces and the
subtle interplay of the two opposing forces yield combinations and permutations of change.
Orient philosophy believed that ‘the only constant phenomena is change’ and such a world
view emphasised the dynamic nature of a system; rather than focusing in the individual states
of a system (on, off), prominence was instead placed on operations that yield change (on
to off, off to on). The structure of thought introduced by the I-Ching allowed change to be
systematically documented and analysed. Complex interactions, cyclic behaviour and the
interplay of nature at all levels of oriental culture – sociology, literature, medicine, astrology
and religion – were able to be described using the tools of dynamic logic provided by the
I-Ching; the framework remains a complete philosophy as well as a universal language and
has remained unchanged over the past two thousand years (Needham & Wang, 1954-1988).
Leibniz in as early as 1690 realized that the balanced yin-yang structure proposed by Shao
Yong (1050) was equivalent to the binary number system (Hook, 1975; Needham & Wang,
1954-1988). However the western scientific community have mostly disregarded the I-Ching;
due mainly to cultural and language barriers as well as local superstitions that cloud the
essence of the framework. In its ancient form of allegories and metaphors, the I-Ching is
unable to satisfy the logician’s requirement for completeness, consistence and other such
properties. The challenge then is to be able present this philosophy for modern times, in
the language of mathematics. Stripped of its colorful language, what insights does this
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ancient system contain? What are the essential differences between modern binary logic and
the I-Ching’s dynamic binary structures? The unification of these two schools of thought
would bring greater understanding of the world we live in (Whincup, 1986). As the modern
formulation of Cellular Automata generates complexity through binary logic whilst the
I-Ching analyses complexity though binary logic, the modern language of the I-Ching can
be found in the creation of a structural definition of CA.

1.3 Logic and dynamic systems

In the field of mathematical logic, construction of theoretical frameworks focus upon three
spatial hierarchies: variables, states and function spaces (Bonnet, 1989; Sikorski, 1960).
Boolean algebra and switching theory exploit such properties, using the combinatorial
invariance of the framework for implementing new theories and applications (Lee, 1978;
Vingron, 2004). Logical operations are restricted to two types of canonical forms namely, the
product-of-sums and the sum-of-products approaches. Any complex logic function can be
rewritten as these two canonical forms. This is done for reasons of consistency, simplicity and
symmetry of structure; as such the use of a truth table enables analysis and the transformation
into the canonical representations (Bonnet, 1989).
In the analysis of dynamic systems, it is essential to identify transformation spaces with
functional invariance (Dunn, 1988; Paterson, 1992). The Ising model is arguably the simplest
binary system that undergoes a nontrivial phase transition (Ilachinski, 2001). In modern
physics, this type of model uses a structure linked to phase space representation of a dynamic
systems (Griffeath & Moor, 2003). The phase space plays an essential role to describe key
properties of any dynamic system, however under classical logic, phase characteristics are
difficult to construct. A mechanism for linking low level representations such as variables
and states with higher level group properties such as symmetric conditions currently does not
exist. This is more a limitation of the language and the operations allowed by the language.
Classical logic is based on static combinatorial structures. Permutations, which are intrinsic
to phase space, cannot be expressed under such a framework of classical combinatorial
logic (Ilachinski, 2001). Cellular Automata frameworks however, are fully dynamic and has
been used to describe phase space (Griffeath & Moor, 2003). Inspired by the traditional
I-Ching hierarchical structures, new conditions, operations and relationships have been
proposed on top of the Classical Logic framework to encorporate the dynamic nature of CA.
The additional constructs provide support for CA using framework that is logically consistent
and complete (Zheng & Zheng, 2010).
The Zheng & Zheng (2010) proposal builds upon earlier studies of logic systems from
a structural viewpoint. Kunii & Takai (1989) applied a n-cell structure for analysis,
classification and generation of visual objects using topology and homotopy tools in computer
graphics (Kunii, Hioki & Shinagawa, 1993; Kunii & Kunii, 1999; Kunii & Shinagawa,
1992; Kunii & Takahashi, 1993; Kunii, Tsuchida, Arai, Matsuda, Shirahama & Miura,
1993). Zheng & Maeder (1992) proposed a balanced classification on binary images for
conjugate classification and transformation of binary images on regular plan lattices in 1990s
to visualise different configurations (Zheng, 1994; 1996; Zheng & Leung, 1996; Zheng &
Maeder, 1993). All such work used partial constructs of the Zheng & Zheng (2010) framework.
The proposed framework supports classical logic, vector permutation and complementary
operations. The new construction requires five spatial hierarchies containing 22n

× 2n!
functional configurations for any n variables. This structure is much larger than classical
logic, having three spatial hierarchies supporting 22n

functions for n variables. Newly defined
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symmetric properties play an important role in predictions and classifications of possible
recursive results. Using such properties, global behaviour can be identified and classified.
A disadvantages of the new framework lies in its extreme complexity. It is possible to use
parallel computers to do analysis of the configurations contained by n = 3 (the space already
includes more than 107 configurations). It is impossible using today’s technology to process
the n = 5 space due to the extreme growth of structural complexity (232 × 32! configurations).
This chapter describes the variant logic framework proposed by Zheng & Zheng
(2010), identifying variant and invariant characteristics of logic under permutations and
complementary operations from CA. This allows the definition of a variant space to be
introduced into logic. Using an extended truth-valued table, vector permutations and
complementary operations can be applied to form a giant structure with equivalent properties
in a spatial hierarchy. The framework supports additional operations whithout changing the
logic function space. A proposed 2D matrix representation provides additional support to
visualise globally symmetric patterns from permutations of generated using the proposed
extensions.

2. Truth table in boolean logic

The truth-table plays a vital role in traditional logic construction; It provides a static structure,
using Yes|No (1|0) to indicate possible conditions from variables, states to any function.
The proposed framework includes traditional logic function space and the truth-table
representation of the space.

2.1 Basic definitions

X = XN−1XN−2...Xj...X1X0, Y = YN−1YN−2...Yj...Y1Y0

Xj, Yj ∈ B2 = {0, 1}, 0 � j < N

f : X → Y; Y = f (X); X, Y ∈ BN
2 = {0, 1}N

(1)

An example of a transform: the sequence X = 0001110100, N = 10 is an input for a function
operation f , the output is a sequence of the same length Y = 1101011001; X, Y ∈ B10

2 .
Definition 2.1 Let [...Xj...] be a n bit structure as a kernel form:

[...Xj...] = xn−1xn−2...xi...x1x0 = x

0 � i < n, 0 ≤ j < N, x ∈ Bn
2

(2)

where Xj = xi is a corresponding position.

Yj = f ([...Xj...]) = f (xn−1xn−2...xi...x1x0) = f (x) (3)

In Boolean logic, n variables in a kernel form correspond to a full truth table with 2n × 22n

entries. The I-th meta-state 0 ≤ I < 2n has n bit number to occupy the I-th column position,
the J-th function T(J) has the J-th row with 2n bits 0 ≤ J < 22n

, the function value of the I-th
entry is determined by T(J)I . The full table can be represented as follows:
From this type of tables, it is feasible to establish accessing method to look up corresponding
table values.
Method 2.1: Process Method of Truth Table:
Input: x : n variables in a {0, 1} sequence, J: selected function number
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0 ≤ I < 2n S2n−1 ... SI ... S1 S0

In−1...Ii...I0 1...1...1 ... In−1...Ii...I0 ... 0...0...1 0...0...0

0 ≤ J < 22n
J2n−1 ... JI ... J1 J0

T(0) 0 ... 0 ... 0 0
T(1) 0 ... 0 ... 0 1
T(2) 0 ... 0 ... 1 0

... ...
T(J) J2n−1 ... JI ... J1 J0

... ...

T(22n
− 2) 1 ... 1 ... 1 0

T(22n
− 1) 1 ... 1 ... 1 1

Table 1. Truth Tables of n-variables

Process: Using the input sequence x, the meta-state number I is to select the I-th column of
function T(J)
Output: Return T(J)I ’s value (1 for true and 0 for false) as output.

3. Cellular automata representations

3.1 Basic representation

Cellular Automata - CA uses a recursive mechanism to represent a given function with a
time direction. Dynamic properties of CA can be supported in further expansions. In a one
dimensional form of CA, a N length binary sequence is

X = XN−1XN−2...Xj...X1X0, 0 � j < N, Xj ∈ {0, 1} = B2

For a given function f , the output sequence is defined: f : X → Y, Y = f (X),

Y = YN−1YN−2...Yj...Y1Y0, 0 � j < N, Yj ∈ B2

It is feasible to use a moving window with a fixed length n to separate X into a local kernel in
length n. The kernel can be presented as

[...Xj...] = xn−1...xi...x0, xi ∈ B2

For a given function f
y = f (xn−1...xi...x0)

It is necessary to assign a certain position i in the kernel for special care to associated with
j position of both sequences. All above relations are exactly same as traditional Boolean
equation with n variables.
It is possible to distinguish current time and next time sequences, following equations relevant
to cellular automata can be identified:

y = f (xn−1...xi...x0) = f ([...Xj...]) = Yj

or Xj = Xt−1
j , Yj = Xt

j i.e.

f : Xt−1
j → Xt

j , Xt−1
j , Xt

j ∈ B2 (4)
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3.2 Four variation forms

Time direction is a significant property to distinguish a Cellular Automata logic function from

a traditional logic function. Considering f : Xt−1
j → Xt

j for any function of boolean logic

system to analyze their variation properties, it is normal to have following proposition.

Proposition 3.1 For any f : Xt−1
j → Xt

j transformation, four forms of transforming classes are

identified: TA: 0 → 0, TB: 0 → 1, TC: 1 → 0, TD: 1 → 1.
Proof: Xj, Yj are 0-1 variables, only four classes listed are possible. �
Definition 3.1 Four Transforming forms are corresponding to following sets: TA:
Invariant-valued class for 0 value, TB: Variant-valued class for 0 value, TC:Variant-valued
class for 1 value, TD: Invariant-valued class for 1 value. Under such definition, following
proposition can be established.
Proposition 3.2 Using four classes of transformation, four variant operations are defined.

Type Xj → Yj Truth Variant Invariant False

TA 0 0 0 0 1 1

TB 0 1 1 1 0 0

TC 1 0 0 1 0 1

TD 1 1 1 0 1 0

Proof: Truth (False) values are determined by Yj(Ȳj) and Variant(Invariant) values are
determined by {TB, TC} for 1(0) and {TA, TD} for 0(1) respectively.�

4. Permutation invariants

From an accessing viewpoint, many invariant properties can be observed from table
operation.
Proposition 4.1 Under sequential mapping in sequential order of Method 2.1, there is T(J) =
J.
Proof: The relevant output entries of T(J) are mapped to the binary number J having 2n bits:

T(J) = T(S2n−1(J2n−1))...T(SI(JI))...T(S0(J0))

= T(J)2n−1...T(J)I ...T(J)0 = J ∈ B2n

2

T(J)I = T(SI(JI)) = JI ∈ B2; 0 ≤ I < 2n, 0 ≤ J < 22n

(5)

�

It is possible to apply permutation operation on the table to generate a transformed table
following a certain rule.
Definition 4.1 For any n binary logic variables, let Ω(N) be a symmetric group with
N elements and P be a permutation operator, P ∈ Ω(2n), then for any J, ∃K, J, K ∈
B2n

2 , P(T(J)) = K, 0 ≤ J, K < 22n
, the following permutation can be represented in Truth

Table form:
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P : J → K

P(T(J)) = P(T(S2n−1(J2n−1)))...P(T(SI(JI)))...P(T(S0(J0)))

= P(T(J)2n−1)...P(T(J)I)...P(T(J)0)

= K2n−1...KI ...K0 = K ∈ B2n

2

P(T(J)I) = P(T(SI(JI))) = T(SP(I)(JP(I)))

= T(J)P(I) = JP(I) = KI ∈ B2

0 ≤ I < 2n, 0 ≤ J, K < 22n
, P ∈ Ω(2n)

(6)

Proposition 4.2 The Truth Table under permutation operation on 2n meta states can generate
2n! sequences for 22n

length of integers.
Proof: For any P ∈ Ω(2n), 2n are independent, it is composed of Ω(2n) elements. �
For the one-variable condition (ie. n = 1) there are only two possible arrangements. The
initial sequence is represented as S = S1S0 = 10, and a permutation operation generates the
output P(S) = S0S1 = 01. The following shows two groups of results:

Mate-state S 1 0 P(S) 0 1

Function J P(J)
0 0 0 0 0 0 0
x̄ 1 0 1 2 1 0
x 2 1 0 1 0 1
1 3 1 1 3 1 1

For any permutation operation, the function T(J) = P(T(J)) is always invariant. The
inequality J �= K = P(J) holds in general.

5. Organisational space

Building upon the three spaces (variables, states, and functions), an additional space of
organisation is composed of permutation operations provided by permutation invariance
properties defined in the previous section.

5.1 Complementary operation

Definition 5.1 (Complementary Operator) For any binary (0-1) variable y ∈ B2, let the relevant
index δ ∈ B2 be a complementary operator:

yδ =

{

ȳ δ = 0

y δ = 1
(7)

Definition 5.2 (Complementary Function Operation) For any n variable function of 2n meta
function vectors S = S2n−1...SI ...S0 Let ∆ = δ2n−1...δI ...δ0, 0 ≤ I < 2n, δI ∈ B2, ∆ ∈ B2n

2 .
For this type of complementary operations on function,
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∆ is :

∆ : T(J) → K; J, K ∈ B2n

2 , 0 ≤ J, K < 22n

S∆ = S
δ2n−1

2n−1...SδI
I ...Sδ0

0 , SI ∈ Bn
2

T(J)∆ = T(S
δ2n−1

2n−1(J2n−1))...T(S
δI
I (JI))...T(S

δ0
0 (J0))

= T(J)
δ2n−1

2n−1...T(J)δI
I ...T(J)δ0

0

= K2n−1...KI ...K0 = K ∈ B2n

2

T(J)δI
I = T(SδI

I (JI)) = JδI
I = KI ∈ B2

0 ≤ I < 2n, 0 ≤ J, K < 22n
, δI ∈ ∆

(8)

5.2 Invariant logic functions under permutation and complementary

Definition 5.3 (Permutation and Complementary Operations) For any of the n variables
expressed as 2n meta vectors, Complementary Operations ∆ ∈ B2n

2 and Permutation
Operations P ∈ Ω(2n) are expressed as:

(P, ∆) : T(J) → K; J, K ∈ B2n

2 , P ∈ Ω(2n), ∆ ∈ B2n

2

P(T(J)∆) = P(T(S
δ2n−1

2n−1(J2n−1)))...P(T(S
δI
I (JI)))...P(T(S

δ0
0 (J0)))

= P(T(J)
δ2n−1

2n−1)...P(T(J)δI
I )...P(T(J)δ0

0 )

= K2n−1...KI ...K0 = K ∈ B2n

2

P(T(J)δI
I ) = P(T(SδI

I (JI))) = J
δP(I)

P(I)
= KI ∈ B2

0 ≤ I < 2n, 0 ≤ J, K < 22n
, P ∈ Ω(2n), δI ∈ ∆

(9)

Counting Order 7 6 5 4 3 2 1 0
S 111 110 101 100 011 010 001 000 Binary counting
0 0 0 0 0 0 0 0 0 a full 0 vector
∆ 1 1 0 0 1 1 0 0 a ∆- vector

¬∆ 0 0 1 1 0 0 1 1 a not ∆- vector
1 1 1 1 1 1 1 1 1 a full 1 vector

T(178) 1 0 1 1 0 0 1 0 initial value
T(178)1 1 0 1 1 0 0 1 0 T(178) Truth

T(178)¬∆ 0 1 1 1 1 1 1 0 T(178) ∆-Variant
T(178)0 0 1 0 0 1 1 0 1 T(178) False

T(178)∆ 1 0 0 0 0 0 0 1 T(178) ∆-Invariant

Method 5.1: Permutation and Complementary Methods Table P(T∆):
Input: x: n variables in a binary {0, 1} sequence, J: is the selected function number, P ∈ Ω(2n)
and ∆ ∈ B2n

2 are Permutation and Complementary operators
Process: Input sequence x is established, the P(I)-th column is selected using the meta-state
number I. This represents the I-th column of the function P(T(J)∆)

Output: If δP(I) = 1, return the value of T(J)
δP(I)

P(I)
(1 for true and 0 for false); if δP(I) = 0, return

¬T(J)
δP(I)

P(I)
.
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5.3 Logic functional spaces

Theorem 5.1 (Logic Function Invariants under Permutation & Complementary Operations)
For any logic function, the output of Method 5.1 provides an equivalent output as the original
Truth Table under all conditions.
Proof: A J-th row on the permutation and complementary table of P(T∆) for any I ∈ Bn

2 , J ∈

B2n

2 is constructed by

P(T(J)∆

I ) = T(J)
δP(I)

P(I)
=

{

¬T(J)I δP(I) = 0

T(J)I δP(I) = 1
(10)

After using Method 5.1, the results are shown:

P(T(J)∆

I ) =

{

¬¬T(J)I = T(J)I δP(I) = 0

T(J)I δP(I) = 1
(11)

�

Theorem 5.2 (Permutation Group for Meta Function Vector) For 2n meta function vectors, a
total of permutation numbers is 2n!.
Theorem 5.3 (Permutation & Complementary Structure) Under permutation and
complementary operations, a total of 2n!22n

permutations can be generated to form a
logic functional space for the n variables.

6. Different coding schemes: One and two dimensional representations

The initial step to construct a series of logic functionals. Permutation and complementary
differences can be shown in the proposed invariant function structures. Different coding
schemes under different symmetric restrictions are established. Four schemes are described,
in which one of them is in 1-Dimensional representation and other three schemes are
2-Dimensional representations. For binary sequences in sequential counting order, the scheme
is known as the SL (Shao Yong & Leibniz) coding scheme .

6.1 G coding

The General Code (G) is used to map permutation & complementary operations. For any state
in the G coding-scheme having 2n bits,

G : (J, ∆, P) → K; J, K ∈ B2n

2 ; ∆ ∈ B2n

2 , P ∈ Ω. (12)

6.2 W coding

From the G coding-scheme, their bit numbers are separated into two equal parts in the same
bits to form a 2D representation. This mapping mechanism can represent a function space as
a W coding scheme.

W : (J, ∆, P) → K = 〈J1|J0〉

J, K ∈ B2n

2 ; J1, J0 ∈ B2n−1

2 ; S1, S0 ∈ S, ∆ ∈ B2n

2 , P ∈ Ω

(13)

Under this representation, a given logic functional for the function space is illustrated as a
fixed matrix.
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{W(J)}22n

J=0 =

〈0|0〉 ... 〈0|J0〉 ... 〈0|22n−1
− 1〉

... ... ...

〈J1|0〉 ... 〈J1|J0〉 ... 〈J1|22n−1
− 1〉

... ... ...

〈22n−1
− 1|0〉 ... 〈22n−1

− 1|J0〉 ... 〈22n−1
− 1|22n−1

− 1〉

(14)

0 ≤ J0, J1
< 22n−1

; 0 ≤ J < 22n

In the one-variable condition, there are eight cases in their logic functional spaces as follows:

f J11, T W J10, IV W J01, V W J00, F W

0 0 〈0|0〉 1 〈0|1〉 2 〈1|0〉 3 〈1|1〉
x̄ 1 〈0|1〉 0 〈0|0〉 3 〈1|1〉 2 〈1|0〉
x 2 〈1|0〉 3 〈1|1〉 0 〈0|0〉 1 〈0|1〉
1 3 〈1|1〉 2 〈1|0〉 1 〈0|1〉 0 〈0|0〉
f P(J)11, T W P(J)10, IV W P(J)01, V W P(J)00, F W

0 0 〈0|0〉 1 〈0|1〉 2 〈1|0〉 3 〈1|1〉
x̄ 2 〈1|0〉 3 〈1|1〉 0 〈0|0〉 1 〈0|1〉
x 1 〈0|1〉 0 〈0|0〉 3 〈1|1〉 2 〈1|0〉
1 3 〈1|1〉 2 〈1|0〉 1 〈0|1〉 0 〈0|0〉

For better visualisation and expression of multiple complementary results, the 1-Dimensional
G coding-scheme can be converted into a 2-Dimensional W coding-scheme as an extending
matrix. It is convenient to extend different ∆ variant matrices into a composed matrix. Four

typical ∆ variant values: {∆} = {11, 10, 01, 00} =
11 10

01 00
corresponding to {Truth, Invariant,

Variant, False} matrices respectively. A 2x2 matrix is composed of four block matrices in the

order: {∆} =
11 10

01 00
.

W{∆} = P(10){∆} =

Truth Invariant
0 x̄ x̄ 0
x 1 1 x

x 1 1 x
0 x̄ x̄ 0

Variant False

PW{∆} = P(01){∆} =

Truth Invariant
0 x x 0
x̄ 1 1 x̄

x̄ 1 1 x̄
0 x x 0

Variant False

On each 2x2 matrix, a pair of functions can be identified as follows:

0 ∩ 1 = 1 ∩ 0 = x ∩ x̄ = x̄ ∩ x = 0 (15)

0 ∪ 1 = 1 ∪ 0 = x ∪ x̄ = x̄ ∪ x = 1 (16)
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(a) P(10){∆} composed image matrix (b) P(01){∆} composed image matrix

(c) P(10){∆} composed number matrix (d) P(01){∆} composed number matrix

Fig. 1. One variable variant logic matrices: P = {10, 01}, {∆} = {11, 10, 01, 00};
(a-b)2x2 base blocks (c-d)2x2 vector blocks

This makes following matrix equations:

(

0 x̄
x 1

)

∩

(

1 x
x̄ 0

)

= ... =

(

x 1
0 x̄

)

∩

(

x̄ 0
1 x

)

=

(

0 0
0 0

)

(17)

(

0 x̄
x 1

)

∪

(

1 x
x̄ 0

)

= ... =

(

x 1
0 x̄

)

∪

(

x̄ 0
1 x

)

=

(

1 1
1 1

)

(18)
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However this type of complementary properties cannot be directly observed on W{∆} and

PW{∆} matrices under logic operations.

W{∆} ∩ PW{∆} =

⎛

⎜

⎜

⎝

0 x̄ x̄ 0
x 1 1 x

x 1 1 x
0 x̄ x̄ 0

⎞

⎟

⎟

⎠

⋂

⎛

⎜

⎜

⎝

0 x x 0
x̄ 1 1 x̄

x̄ 1 1 x̄
0 x x 0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 0 0 0
0 1 1 0

0 1 1 0
0 0 0 0

⎞

⎟

⎟

⎠

(19)

W{∆} ∪ PW{∆} =

⎛

⎜

⎜

⎝

0 x̄ x̄ 0
x 1 1 x

x 1 1 x
0 x̄ x̄ 0

⎞

⎟

⎟

⎠

⋃

⎛

⎜

⎜

⎝

0 x x 0
x̄ 1 1 x̄

x̄ 1 1 x̄
0 x x 0

⎞

⎟

⎟

⎠

=

⎛

⎜

⎜

⎝

0 1 1 0
1 1 1 1

1 1 1 1
0 1 1 0

⎞

⎟

⎟

⎠

(20)

All 8 configurations of one variable conditions for variant logic can be exhaustively listed in
two matrices. A total of 8 functional configurations in two groups can be seen in Fig. 1. There
are 16 blocks in a comprised matrix in which thin lines separate different recursive images as
blocks and each block under a function recursively, thick lines separate four 2x2 blocks and
each 2x2 blocks under a set of ∆ complementary operations. Four ∆ operations apply to four
2x2 blocks respectively and each ∆ complementary operation applied to a matrix contained
2x2 block functions. It is convenient to replace corresponding function symbols to recursive

images respectively. Fig. 1(a) shows the W{∆} = P(10){∆} matrix; its four sub-blocks use

{ f0 = 0, f1 = x̄, f2 = x, f3 = 1} for its four operations; in Fig. 1(b) shows the PW{
∆} =

P(01){∆} matrix; its four sub-blocks use {0, x, x̄, 1} functions on each 2x2 block for its four
operations: {∆} = {11, 10, 01, 00} respectively to generate truth, variant, invariant and false

∆ operations. The four outer corners and inner corners of P(10){∆} and P(01){∆} composed
matrix in Fig. 1 (a) and (b) are one function as four white and four black blocks, {∆} operations
provide both horizontal and vertical reflection effects on two matrices.

From an operational viewpoint, under the same {∆} operator, P(01){∆} and P(10){∆} have
similar visual effects of rotation 90 degrees each other that can be clearly observed via
selected sample images. These structure provide visual mechanism to present all possible
configurations of the one variable functional space without repeat exhaustively.

6.3 F coding

Using 2D representation, symmetric condition can be added to arrange meta states into
specific order. For each pair of states in W, if they satisfy following condition, then a refined
code: F coding scheme is determined.

J1 the I-th meta state ⇌ J0 the I-th meta state
� F coding scheme �

X ∈ S1 ⇋ X̄ ∈ S0

6.3.1 Pairs of conjugate functions

one special corresponding relationship can be identified as a pair of conjugate functions.
For a given function f , its conjugate function f̃ is determined by undertaken following
transformation:

{0 ↔ 1;∩ ↔ ∪} (21)
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all other variables keep invariant, do not transformed into their complementary variables. e.g.
f = x ∩ ȳ and f̃ = x ∪ ȳ; f = 0 and f̃ = 1 are two typical pairs of conjugate functions.
Under F coding scheme, it is natural to have pairs of conjugate functions distributed
on diagonal directions. Such special arrangements are much easier to be observed with
complementary symmetric properties via pairs of recursive images.

6.4 C coding

In addition to a pair of states in complementary relationship, further structure is introduced
onto F code. When the pair of states in F have the same values in their i-th position, they form
a C coding scheme.

S1 the I-th ⇌ S0 the I-th F coding scheme
� C coding scheme � + Four corners∈ {0, x̄, x, 1}

∀xi ∈ S1, xi = 1(0) ⇋ ∀xi ∈ S0, xi = 0(1) + General conjugate

The C coding scheme, have the strongest symmetric conditions available. Only a relatively
small number among the three invariant groups can be identified within this scheme. Under
this coding scheme, four corner positions of a matrix are composed of four functions of one
variable matrix respectively.

7. Two-variable cases

There are a total of 384 = 24 × 16 configurations in functional spaces of two variable
configurations. Similar exhaustive mechanism of one variable condition, different
configurations of functionals can be illustrated by combining them into a comprised
matrix on which satisfy complementary relationships on block matrix condition. Complete
arrangements can be assigned as 24 matrices each matrix for a permutation to contain
16 complementary operations to be arranged as 4x4 blocks and each block is linked to a
given function. Small sized blocks such as 2x2 are also selected to show special visual
configurations. Each block must have complementary relationship with its opposite block
on diagonal directions.
In convenient illustration, six groups of examples are selected. Four figures 2-5 contain a
logic functional represents 16 logic functions as 4x4 images separated by thin lines. Four
functionals are arranged as 2x2 block matrices separated by thick lines in Truth/False,
Invariant/Variant properties. Relevant 2x2 block matrices of complementary operations
correspond to:

{∆} =
Truth= 1111 Invariant = 1100

Variant = 0011 False = 0000

Each matrix contains 16 entries of function images as a 4x4 (22 × 22) configuration. Each

image entry denotes a transformed number and its function number in the form:
〈J1|J0〉

J

where K = 〈J1|J0〉 is a transformed number and J is the function number. In all four figures,
(a)2x2 base block matrices to represent function images and (b)2x2 vector blocks to represent
relevant coding schemes respectively.
To show a complete matrix on a functional configuration, two permutation groups of Figures
6-7 are selected. Each figure contain a total of 256 images arranged as 16x16 matrices to
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represent 16 block matrices for corresponding complementary operations. Each block matrix
has 4x4 images. The 4x4 block matrices contain following {∆} values respectively:

{∆} =

1111 1110 1101 1100

1011 1010 1001 1000

0111 0110 0101 0100

0011 0010 0001 0000

Each image entry has a corresponding transformed number and its function number
respectively.
In Figure 2, the counting order of meta-states has been arranged as W coding (SL code): P =

(3210), {∆} =
1111 1100

0011 0000
. In this group, only functions 6 & 9 and 0 & 15 can be visualised

in complementary symmetric condition in two diagonal directions. Visual symmetric effects
of other pairs cannot be easily observed. However under four {∆} operations generate a
composed matrix that has clear horizontal and vertical reflect symmetries. It is directly to use
equation to check their complementary properties:

⎛

⎜

⎜

⎝

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

⎞

⎟

⎟

⎠

∆=1111

⋂

⎛

⎜

⎜

⎝

15 14 13 12
11 10 9 8
7 6 5 4
3 2 1 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

3 2 1 0
7 6 5 4
11 10 9 8
15 14 13 12

⎞

⎟

⎟

⎠

∆=1100

⋂

⎛

⎜

⎜

⎝

12 13 14 15
8 9 10 11
4 5 6 7
0 1 2 3

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

⎞

⎟

⎟

⎠

=
(

... f0 = 0...
)

(22)

⎛

⎜

⎜

⎝

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

⎞

⎟

⎟

⎠

∆=1111

⋃

⎛

⎜

⎜

⎝

15 14 13 12
11 10 9 8
7 6 5 4
3 2 1 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

3 2 1 0
7 6 5 4
11 10 9 8
15 14 13 12

⎞

⎟

⎟

⎠

∆=1100

⋃

⎛

⎜

⎜

⎝

12 13 14 15
8 8 10 11
4 5 6 7
0 1 2 3

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111

⎞

⎟

⎟

⎠

=
(

... f15 = 1...
)

(23)
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In Figure 3, variation the configurations among W coding: P = (2301), {∆} =
1111 1100

0011 0000

⎛

⎜

⎜

⎝

0 2 1 3
8 10 9 11
4 6 5 7
12 14 13 15

⎞

⎟

⎟

⎠

∆=1111

⋂

⎛

⎜

⎜

⎝

15 13 14 12
7 5 6 4
11 9 10 8
3 1 2 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

3 1 2 0
11 9 10 8
7 5 6 4
15 13 14 12

⎞

⎟

⎟

⎠

∆=1100

⋂

⎛

⎜

⎜

⎝

12 14 13 15
4 6 5 7
8 10 9 11
0 2 1 3

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

⎞

⎟

⎟

⎠

=
(

... f0 = 0...
)

(24)

⎛

⎜

⎜

⎝

0 2 1 3
8 10 9 11
4 6 5 7
12 14 13 15

⎞

⎟

⎟

⎠

∆=1111

⋃

⎛

⎜

⎜

⎝

15 13 14 12
7 5 6 4
11 9 10 8
3 1 2 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

3 1 2 0
11 9 10 8
7 5 6 4
15 13 14 12

⎞

⎟

⎟

⎠

∆=1100

⋃

⎛

⎜

⎜

⎝

12 14 13 15
4 6 5 7
8 10 9 11
0 2 1 3

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111

⎞

⎟

⎟

⎠

=
(

... f15 = 1...
)

(25)

This group contains visual symmetric effects in each block similar to Figure 2. Due to different
permutation applied, detailed arrangements of each block are significantly different. The
composed matrix under {∆} operations also has horizontal and vertical reflect symmetries.
In Figure 4, the F coding-scheme is selected: under this configuration, P = (2310), {∆} =
1111 1100

0011 0000
.
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⎛

⎜

⎜

⎝

0 1 2 3
8 9 10 11
4 5 6 7
12 13 14 15

⎞

⎟

⎟

⎠

∆=1111

⋂

⎛

⎜

⎜

⎝

15 14 13 12
7 6 5 4
11 10 9 8
3 2 1 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

3 2 1 0
11 10 9 8
7 6 5 4
15 14 13 12

⎞

⎟

⎟

⎠

∆=1100

⋂

⎛

⎜

⎜

⎝

12 13 14 15
4 5 6 7
8 9 10 11
0 1 2 3

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000
0000 0000 0000 0000

⎞

⎟

⎟

⎠

=
(

... f0 = 0...
)

(26)

⎛

⎜

⎜

⎝

0 1 2 3
8 9 10 11
4 5 6 7
12 13 14 15

⎞

⎟

⎟

⎠

∆=1111

⋃

⎛

⎜

⎜

⎝

15 14 13 12
7 6 5 4
11 10 9 8
3 2 1 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

3 2 1 0
11 10 9 8
7 6 5 4
15 14 13 12

⎞

⎟

⎟

⎠

∆=1100

⋃

⎛

⎜

⎜

⎝

12 13 14 15
4 5 6 7
8 9 10 11
0 1 2 3

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111

⎞

⎟

⎟

⎠

=
(

... f15 = 1...
)

(27)

There are six pairs (0:15, 1:7, 2:11, 4:13, 6:9, 8:14) of complementary functions that can be
visually identified in pair conjugate symmetric conditions for each complementary block. The
group has four block matrices in which containing the same pairs of configurations. There are
horizontal and vertical symmetries too.

In Figure 5, C coding has represented: P = (0231), {∆} =
1111 1100

0011 0000
. Checking four blocks

under ∪ operations:
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⎛

⎜

⎜

⎝

0 4 1 5
2 6 3 7
8 12 9 13
10 14 11 15

⎞

⎟

⎟

⎠

∆=1111

⋃

⎛

⎜

⎜

⎝

15 11 14 10
13 9 12 8
7 3 6 2
5 1 4 0

⎞

⎟

⎟

⎠

∆=0000

=

⎛

⎜

⎜

⎝

5 1 4 0
7 3 6 2
13 9 12 8
15 11 14 10

⎞

⎟

⎟

⎠

∆=1100

⋃

⎛

⎜

⎜

⎝

10 14 11 15
8 12 9 13
2 6 3 7
0 4 1 5

⎞

⎟

⎟

⎠

∆=0011

=

⎛

⎜

⎜

⎝

1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111
1111 1111 1111 1111

⎞

⎟

⎟

⎠

=
(

... f15 = 1...
)

(28)

In addition to six pairs similar to F coding, four corners of the 4x4 image matrix are fixed by
the 4 functions (0, 5, 10, 15) in four block matrices. Four functions of each block are { f0 =
0, f5 = x̄, f10 = x, f15 = 1}. In addition, pairs of horizontal reflection results can be observed
via {∆} = {1111, 1100} operations and pairs of vertical reflection results can be observed via
{∆} = {1111, 0011} operations. This property makes this coding scheme be the most regular
structures among all coding schemes.

In Figure 6, W coding is represented as: P = (3210), {∆} =

1111 1110 1101 1100

1011 1010 1001 1000

0111 0110 0101 0100

0011 0010 0001 0000

.

Four corner blocks are 4 block matrices under {1111, 1100, 0011, 0000} operations contain
the same figures in Figure 2. All block matrices have reflection symmetric distributions via
horizontal and vertical reflection symmetry distributions. This extending matrix is showing
further symmetric properties in this construction, through a lot of image block matrices
without clear pairs of local symmetry, a global reflection symmetric matrix can be observed
under the complementary operations.

In Figure 7, W coding has represented: P = (3102), {∆} =

1111 1110 1101 1100

1011 1010 1001 1000

0111 0110 0101 0100

0011 0010 0001 0000

.

From a global viewpoint, this configuration has a global horizontal and vertical reflection
symmetry in vertical and horizontal directions. From a local viewpoint, this configuration
has more local symmetry than Figure 6. Four corners are 4 blocks {1111, 1100, 0011, 0000} are
composed of figures to be typical C coding scheme shown in Figure 5. In addition, four inner
corners of block matrices {1010, 1001, 0110, 0101} contain a F coding structure. Under a local
observation, other 8 block matrices and their relevant functions in each matrix are composed
of images without clear pairs of conjugate symmetric properties.

8. Comparison

It is convenient to list numeric parameters to compare for different coding schemes in
following table.
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Var State Function ExPower SL W code F code C code

n 2n 22n
2n! 1 22n

· 2n! 22n(1+1/2) · 2n−1! 8 · 2n−1!
1 2 4 2 1 8 8 8
2 4 16 24 1 384 128 16
3 8 256 40320 1 10321920 98304 192

4 16 216 16! 1 216 · 16! 224 · 8! 8 · 8!

5 32 232 32! 1 232 · 32! 248 · 16! 8 · 16!

where we use Var: variable number; State: state number; Function: function number;
ExPower: exponent power products; SL: SL coding number; W code: W coding number
under vector operations; F code: F coding number under vector operations; C code: C coding
number under vector operations in the table respectively.

9. Conclusion

The arrangement of binary function space using a hierarchy of four spaces of classifications
can be used to add symmetry and regular structure onto the entire space of binary-functions.
This construction has capacities to support vector permutations and complementary
operations. For ease of visualization, it is convenient to apply 2D matrix-type representation
mechanism that enables symmetric configurations of the system to be analysed via different
coding schemes from a local or global viewpoint. Binary functional spaces provide additional
optimal information to generate large numbers of potential configurations in order to arrange
and organise variant logic spaces. Complementary operations are made further extension
easier and visualising in a larger matrix. Sample matrices are shown their configurations
in different functionals and complementary operations. From these examples, exhaustive
approaches for functional space are illustrated.
From a series of definitions, propositions and theorems, solid foundation of variant logic
framework has been constructed. Under selected sample images and operational matrices,
a set of typical results are illustrated. This construction can be observed from different
viewpoints under symmetric considerations, in addition to detect emerging patterns from
each recursively operations, further global transforming patterns can be identified from
a functional space viewpoint. Under such expanding mechanism, a beautiful nature of
mathematics has appeared. True natural effects are interesting for modern developments.

9.1 Future work

The mechanism can be developed further to establish foundations for logical construction
of applications for computational models and structural optimisation requirements.
Investigation on different coding schemes within the higher levels of organisation will be
described in future work. This new mathematical logic foundation will support further
theoretical descriptions to explore dynamic logics using modern mathematical language.
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(a)

(b)

Fig. 2. W coding (SL code): P = (3210), P(∆) = {1111, 1100, 0011, 0000}; (a)2x2 base blocks
(b)2x2 vector blocks
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(a)

(b)

Fig. 3. W coding: P = (2301), P(∆) = {1111, 1100, 0011, 0000}; (a)2x2 base blocks (b)2x2
vector blocks
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(a)

(b)

Fig. 4. F coding: P = (2310), P(∆) = {1111, 1100, 0011, 0000}; (a)2x2 base blocks (b)2x2 vector
blocks
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(a)

(b)

Fig. 5. C coding: P = (0231), P(∆) = {1111, 1100, 0011, 0000}; (a)2x2 base blocks (b)2x2
vector blocks
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(a)
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(b)

Fig. 6. W coding: P = (3210),
P(∆) =
{1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000};
(a)4x4 base blocks (b)4x4 vector blocks
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(b)

Fig. 7. W coding: P = (3102),
P(∆) =
{1111, 1110, 1101, 1100, 1011, 1010, 1001, 1000, 0111, 0110, 0101, 0100, 0011, 0010, 0001, 0000};
(a)4x4 base blocks (b)4x4 vector blocks
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