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We propose a medical image segmentation approach based on the Active Shape Model theory. We apply this method for cervical
vertebra detection. The main advantage of this approach is the application of a statistical model created after a training stage. Thus,
the knowledge and interaction of the domain expert intervene in this approach. Our application allows the use of two different
models, that is, a global one (with several vertebrae) and a local one (with a single vertebra). Two modes of segmentation are
also proposed: manual and semiautomatic. For the manual mode, only two points are selected by the user on a given image. The
first point needs to be close to the lower anterior corner of the last vertebra and the second near the upper anterior corner of the
first vertebra. These two points are required to initialize the segmentation process. We propose to use the Harris corner detector
combined with three successive filters to carry out the semiautomatic process. The results obtained on a large set of X-ray images
are very promising.

1. Introduction

In some circumstances, it is not easy for humans to distin-
guish objects in X-ray images from their background. Devel-
oping algorithms and methods for obtaining a proper object
extraction is one of the most important research topics in the
image processing field. Computer-based image segmentation
facilitates the domain expert work and can automate tasks
dealing with interpretation of medical images.

In this paper, we focus on vertebra segmentation applied
to X-ray images. This operation is generally the first step to be
performed before any disease diagnosis or vertebral mobility
analysis. Therefore, this segmentation process is an essential
and critical task. Indeed, the segmentation should be effective
enough in order to analyze the mobility of the spinal column
and accurately estimate the movement of each vertebra.

The goal of the segmentation process is to exploit only
the useful information for image interpretation. A wide
variety of techniques and approaches have been proposed
in the literature. We can cite active contours (or snake)
which present a powerful method for edge extraction of
objects having arbitrary shapes [1–3]. This approach has
been investigated and applied in various ways in [4–6].

Another widely used approach is the level set-based methods
which is a variation of the active contours approaches, [7].

These two methods have recently been used as new
paradigms for a large number of segmentation methods due
to their flexibility to deform the shape that must be detected.
Nevertheless, such methods have an inherent limitation that
makes them nonsuitable for many medical segmentation
tasks where an a priori knowledge about the shape to be
segmented is required, and also when an initialization too
close to the shape to be segmented is needed.

In related works on medical images analysis, Luo [8]
introduced an automated medical image segmentation algo-
rithm used to locate volumetric objects such as brain tumors
in Magnetic Resonance Imaging (MRI) images. In his work,
the author proposed an algorithm which deals with MRI
slices as a three-dimensional (3D) object. All the processes of
segmentation are done in a 3D space. Firstly, it removes noisy
voxels with 3D nonlinear anisotropic filtering. Secondly, it
uses a novel deformable surface model to segment an object
from the MRI. A dynamic gradient vector flow was used to
form the surface model. Experiments have been done on
segmenting tumors from real MRI data of the human head.
This algorithm reports accurate 3D tumor segmentation.
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Figure 1: The steps of the ASM framework.
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Figure 2: Vertebra marking.

Figure 3: An example of alignment.

Other segmentation methods are the template-matching
approaches. These methods are used to identify simple
geometric shapes like ellipses or parabolas in an image.
They match a predefined template to the location of some
extracted features such as image gradient, boundary points,
or grey level value. These techniques are specific to the
structure of segmentation. They can be easily implemented
and can give effective results when an appropriate model
is chosen [9, 10]. Other methods based on the Hough
Transform algorithm were applied to vertebrae detection
field in [11, 12]. The model-based segmentation approaches,
such as those employing Active Shape Models (ASMs), use
a statistical shape models (SSMs), to identify specified forms
in an image. They were introduced by Cootes et al. in [13]
and have been proven in recent years to be very useful for

Figure 4: Reduction of the window search.

Canny edge detection

Harris corner detection

Filtering of corners outside the vertebra contour

Filtering of false corners

Search for the sequence of 2N left corners

Figure 5: Procedure to detect corners of each vertebra.

medical image segmentation. We propose to use this method
for vertebra segmentation in X-ray images.

Active Shape Model (ASM) [14] is described by the
statistical shape model of objects. This method is used to
extract shapes from images. The algorithm deforms an initial
shape repeatedly in order to fit a variant of the statistical
shape model also named Point Distribution Model (PDM),
to an object in a new image. Shapes are constrained by the
Point Distribution Model. Main variation modes are used
to compute the variation of the mean shape. A subarea of
possible forms for the object is created. The average shape is
then selected and used to initialize the search of an object in
a new image.

This method is commonly used for MRI image segmen-
tation in the brain area or for cardiac images. However,
the quality of the segmentation is highly dependent on
the initialization phase. A good initialization is required to
accelerate and help the morphing phase to obtain effective
results. The ASM relies on the fact that the search is based
on an a priori knowledge of the target object. This is an
important behavior of this technique as it allows the user to
choose the images and to carefully place the “landmarks” for
the creation of a model. The domain expert knowledge can
be used in such tasks.
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(a) Original edge (b) Corner detection (427 corners)

(c) Filtering corners outside verte-
bra contours (196 corners)

(d) Applying angle filter (59 cor-
ners)

Figure 6: Illustration of the effect of filtering out corners neighboring a contour (b) and the filtering of false corners (c).

In this context, Rueda et al. [15] propose an Active-
Shape-Model-based method which is guided by the strategy
of equalization of the variance contained in a training set for
selecting landmarks. In their work, the chosen landmarks are
positioned around each contour in such a manner to equally
distribute the total variance existing in the training set.

Another variation of the ASM method is Active Appear-
ance Model (AAM) which is largely described in the scientific
literature [16]. However, the ASM method provides better
and faster results [14]. Moreover, the method depends on
a few parameters. It is not the case of the other deformable
model-based methods like snakes. But ASM, as snakes meth-
ods, is sensitive to the accuracy of the initialization phase.
Thus, it is highly important to improve this phase. ASM was
tested and approved in several medical applications: knees,
volumes of brain, thoracic cage, and even faces [14, 17].

Several publications [18–22] propose different methods
to extract vertebra contours from X-ray images, like polar
signature, template matching, active contours, and Discrete
Dynamic Contour Model or Harris Detector.

In this paper, we propose to use an Active Shape Model
segmentation approach in order to extract vertebra contours.
In addition, we focus on improving the initialization phase of
this method. Therefore, we propose a semiautomatic method
allowing to ideally place the mean shape on the vertebrae to
be segmented. We achieve this task by using the Harris corner
detector followed by a series of filters aiming to detect the two
anterior corners of each vertebra on the X-ray image.

The structure of the paper is presented as follows: in
Section 2 we present an overview of the different steps
related to the segmentation method proposed. Those steps
are as follows: learning, model design, initialization, and
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Figure 8: Parameters used for the vertebra corners detection.

segmentation. In Section 3, we present the experimental
results, including the study of the influence of a set of
parameters on the segmentation results, such as the number
of sample images, the number of landmarks per vertebra,
the profile structure, and the type of model used for
the segmentation. Finally, we give a general conclusion in
Section 4.

2. Method Overview

In this paper we propose a segmentation approach based
on Active Shape Model in order to identify vertebra edges.
This method allows to model vertebrae whose appearance
and location in the spinal column differ depending on the
patient.

The statistical nature of the method involves the use of
sample shapes that can be adopted by the object model. The
sample must be as representative as possible to improve the

quality of the model. In fact, the ASM algorithm defines a
set of forms that well characterize the shape to be identified.
This set of shapes that contains the different variations of
the mean shape depends on the sample. Therefore, if the
created model is not realistic enough, it could accept some
shapes that are not really corresponding to the desired shape
or conversely reject the shapes that are good. This aspect is
the first difficulty of the ASM-segmentation-based method.
It is important to know or to estimate as precisely as possible
the actual distribution of the shapes to model.

Once the model is determined, it can be used to detect
other similar shapes in new images. To this end, the mean
shape model is extracted and placed in an area of interest.
The shape is then iteratively warped until it fits at best the
real edge of the object.

The ASM method [13] is composed of 4 steps (Figure 1).

(1) Learning. it consists of the placement of landmarks on
the images in order to describe the vertebrae. The specialist
knowledge can be included in this step.

(2) Model Design. all the marked shapes have to be aligned
before the creation of the model. It could be useful for the
specialist to build a model corresponding to a particular
pathology. For instance, if he wishes to detect vertebra
arthritis, the vertebrae of the sample is presented as a shade
whiter than normal and shows an abnormal bone growths.
Once the model is created, these same patterns can be found
in an X-Ray with this disease.

(3) Initialization. placing the mean shape model on the area
of interest. This step can be manual or semiautomatic.

(4) Segmentation. each point of the mean shape evolves in
order to fit the vertebra edge.

2.1. Learning. The goal of the learning phase is to build
an image sample which will be the basis for the model
creation. An annotated training set is used to build this
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Figure 9: Illustration of the construction of the sequence S⋆.

model [13]. The training set comes from hand annotation
or semiautomatic segmentation of a set of training images,
followed by manual or automatic landmarking methods to
describe the surface. By analyzing shape variations over the
training set, the model containing these variations can be
built. Therefore, each vertebra must be described by land-
marks. These particular points have to be identifiable in any
shape. It is also necessary to specify the number of landmarks
per vertebra to be considered during the annotation phase.

It is a common practice to choose as landmarks the cor-
ners of the vertebra and a reasonable number of equidistant
points between the corners. Figure 2 shows an example of
vertebra marking. Points 1, 5, 9, and 13 identify the corners
while others are scattered along the edges.

The shape of an object is represented by a set of n
points located on its surface. It is represented by a vector
xi, defined as the juxtaposition of the coordinates of each
point of reference. The variable n represents the number of
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Figure 10: Normal of the contours at each point of the profile.

landmarks. Naturally, a greater n improves the quality of the
results but increases also the computing time:

xi =
(

xi1, yi1; xi2, yi2; . . . ; xik, yik; . . . ; xin, yin
)T
. (1)

This marking phase is time-consuming as the specialist
has to put the landmarks manually on the images. He can
then determine the location of strategic points that will be
used in the model. Furthermore, automated tools such as
polygonal approximation can be considered to achieve this
goal. However, a purely automatic marking requires noiseless
images or a preidentified contour.

In addition, one can imagine semiautomatic systems
where the user could correct the annotation.

2.2. Model Design. The annotated shapes are generally
positioned at various locations and orientations on vertebra
edges. For this reason, it is necessary to align all these shapes
in order to make a correct statistical treatment [13].

There are several alignment techniques, but the gen-
eralized Procrustes analysis is the most commonly used
[14]. In this method, we first consider the alignment of
two shapes. This induces the minimization of a weighted
sum of distances between equivalent reference points of two
forms. To this aim, each of them can undergo a rotation, a
translation, and a scaling. The applied algorithm is explained
as follow is:

(1) align each shape of the sample on the first one;

(2) repeat until convergence:

(a) compute the mean shape,

(b) adjust the mean shape:

(i) to a size, an orientation and an origin by
default,

(ii) to the first shape,

(c) align each shape on the mean shape.

The purpose of the iterative process is to reduce the
dependency of the model to the first shape. Concerning the
adjustment of the mean shape at the second step, we have
chosen to align it to the first shape. An example of vertebra
alignment is given at Figure 3.

The mean shape is characterized by the arithmetic mean
of coordinates describing each element of the sample after
the alignment. We have

x =
1

f

f
∑

i=1

xi, (2)

with f being the number of shapes used in the training set.
The mean shape constitutes the basis of the vertebra

edge detection process. A set of possible models are derived
from this mean shape by moving the points through specific
directions corresponding to the eigenvectors of the sample
variance-covariance matrix, (pi).

The model (see (3)) is defined by the mean shape x, the
matrix P of the most significant eigenvectors pi, and a vector
of weight factors b. We can write

x = x + Pb, (3)

with P = (p1, p2, . . . , pt) and b = (b1, b2, . . . , bt)
T .

This model is used to decide if an object from an image
can be considered as acceptable. As the coordinates of the
landmarks of an object are known and as the eigenvectors
are unit vectors (pTi p = 1), it is possible to determine the
vector b by

b = PT(x − x). (4)

The values of the factors bi allow to detect if an object
is convenient to the model. These values can vary in the
following manner [13]:

−3
√

λi ≤ bi ≤ 3
√

λi, (5)

with λi being the eigenvalues corresponding to the eigenvec-
tors pi.

2.3. Initialization. The search initialization consists of plac-
ing the mean shape previously computed on the image as
close as possible to the real object. This operation can be
done manually or in a semiautomatic way. In a manual
initialization, the user is prompted to select the left side of
each vertebra by clicking on the left superior and inferior
corners. The mean shape is positioned according to this
information.

The semiautomatic initialization does not require more
than two clicks to limit the search window, including the left
edge of the N vertebrae to identify. For this purpose, the user
is asked to select the superior left corner of the first vertebra
and the inferior left of the last one. Figure 4 illustrates the
type of image that we obtain by applying this image area
limitation.

In this paper, we propose a set of steps in order to place
the mean shape on the vertebrae, in a semiautomatic way.
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(a) 4 landmarks (b) 8 landmarks

(c) 12 landmarks (d) 20 landmarks

Figure 11: Influence of the number of landmarks.

Figure 5 shows how to detect the superior and inferior left
corners of each vertebra.

The Canny filter [23] allows detecting edges in an image
by taking advantage of the information given by the intensity
gradient. The Harris corner detector is a popular interest
point detector proposed by Harris and Stephens [24]. the
most advantageous aspect of these detectors is their strong
invariance under rotation, scale, illumination variation, and
image noise.

However, the Harris detector produces a high number of
corners as shown in Figure 6(b). It is important to reduce
this number in order to apply the downstream methods.
For such process, we will include two filters: the filtering of
neighboring corners outside contour and the angle filtering.

Filtering the corners outside the vertebra contour is based
on the search for neighboring points. During this process,
some points belonging to the Canny edge can be filtered. This

occurs when a Harris corner is isolated (e.g., in the case of the
extremity of a contour) or when the edge is too small.

When Harris corner is used, if finding good neighbors
from a distance equal to an estimated height of a vertebra is
not possible, then, the point is eliminated. The effect of this
filtering is shown in Figure 6(c). For this example, 231 points
on the 427 Harris corners have been deleted.

The step of angle filtering of false corners aims to elim-
inate the Harris corners belonging to an angle that are not
similar to vertebra angles. The main idea is to compute for
each assumed corner the angle formed by straight lines link-
ing its neighbors (Figure 7). We consider a point as a corner if
the angle is between 10◦ and 160◦. This limitation may seem
large, but takes into account some special cases: the vertebrae
with a tip corner or a rounded one.

The distance between the corner and its neighboring
points plays an important role. Indeed, if the neighbors are
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too close to the corner, the angle may be too straight and lead
to a reject of the real corner. On the other hand, neighbors
too far from corner may lead to the acceptance of too many
false corners.

Figure 6(d) shows the effectiveness of this filter. It can
eliminate 75% of the points and clean out the vertebrae of
false corners.

2.4. Localization of the Vertebra Corners. The Harris corner
detector provides a large set of points of interest. The pre-
vious filters reduce the number of elements on this set. The
goal of this section is to determine exactly the 2N anterior
corners of the N vertebrae among all the candidates.

To this end, we propose an algorithm based on the idea
that looking for this sequence of 2N corners is equivalent to
searching for the shortest path between the upper corner of
the first vertebra and the lower corner of the last vertebra,
composed by 2N points.

In this kind of problem, the first idea—the simplest
one—is to consider all the possible sequences between the
upper anterior corner of the first vertebra and the lower
anterior corner of the last one. To do so, we describe a
procedure dedicated to the build of those sequences based
on an initialization conducted by an operator. Let l1 be the
upper anterior corner of the first vertebra and l2N the lower
anterior corner of the last vertebra. The user is given the task
to mark out these two particular points. The first step of the
algorithm consists in generating a first sequence S1 composed
of the point l1. Next, all the points allowing to construct
sequences of 2N points are considered. Nevertheless, such
a method can turn out to be very time-consuming given
the number of points previously detected. For this reason,
an “intelligent” recursive function has been developed. Let
RecursiveFunction (Si) be this function, where Si is a sequence
composed of i vertebra corners. RecursiveFunction (Si) is
based on parameters about the cervical column. Let α be the
height of a vertebra, β the size of an intervertebral space, and
d the distance between the upper anterior corner of the first
vertebra and the lower anterior corner of the last vertebra.

ASM contour

Theoretical contour

: point-to-line distance

Figure 13: Point-to-line distance between 2 contours.

These considerations are presented in Figure 8. Actually, we
can approximate the relation between d and the parameters
α and β by

d ≈ Nα + (N − 1)β, (6)

where N is the total number of vertebrae.
Furthermore, practice gives us an empiric relation

between α and β.

α = 4β. (7)

We can therefore deduce

α =
4

5N − 1
d. (8)

Once all the parameters are determined, RecursiveFunc-
tion (Si) uses them in order to establish the list of the future
points in the sequence. To explain the role of Recursive-
Function (Si) more precisely, let us consider a sequence Si
composed of i corners. The first step of the recursive function
is to determine the type of the last point li in the sequence:
upper or lower. Next, a set of acceptable points are considered
based on the distance between them and the current point
li. If the point li is an upper one, the conditions to meet
are given at (9). The criteria for a lower point are presented
at (10). In both of these relations, the intervals represented
by the variables δα and δβ have to be fixed experimentally.
Furthermore, the notation dist(li, l) stands for the Euclidean
distance between li and l:

α− δα < dist(li, l) < α + δα, (9)

β − δβ < dist(li, l) < β + δβ. (10)

Every acceptable point is then added to the sequence Si.
A recursive call to RecursiveFunction (Si) is made with the
resulting sequence Si+1. For a matter of optimization, an
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(a) −100% (b) 0% (c) 100%

Figure 14: Effects of variations along the principal directions of a column mode.

(a) −100% (b) 0% (c) 100%

Figure 15: Effects of variations along the principal directions of a vertebra model.

additional constraint has to be reached: the acceptable points
must have a y-coordinate lower than the one of the point li.

Finally, the function stops when the number of points
in the sequence is equal to 2N − 1. The point l2N defined
by the user is therefore added to the sequence. The latter
is memorized in a set of sequences. Let V be this set. The
function could also be stopped if there are no additional
points respecting one of the conditions (9) and (10).

Once all the recursive calls are terminated, the function
provided as a result a set V of sequences composed of 2N
corners. For each sequence, the distance of the path between
the upper corner of the first vertebra and the lower corner
of the last vertebra is computed. The minimum of all these
distances is extracted and defines the sequence of 2N corners
retained for the initialization of the segmentation.

The global algorithm is given at Algorithm 1, and the
recursive function is detailed at Algorithm 2.

In order to clarify the algorithm, we propose at Figure 9
an illustration of how the algorithm builds the optimal se-
quence S⋆ composed by the 2N vertebra corners. Figure 9(a)

illustrates the upper corner detection based on the parameter
α while Figure 9(b) shows the lower corner detection based
on the parameter β. The final sequence S⋆ is presented at
Figure 9(c).

2.5. Segmentation. The previous steps allowed to determine
the anterior corners position of every vertebra in the image.
This way, it provides relevant information about the vertebra
position, orientation, and height. Therefore, it becomes
possible to precisely place the mean shape at every detected
vertebra position in order to initialize the segmentation
procedure.

The ASM search treats every landmark defining the
starting shape. For each of these points the neighborhood
texture is analyzed in a specific direction. This analysis is
made by considering landmarks along the normal of the
contour at the considered point (see Figure 10). A profile g is
then defined as a vector containing the gradient of intensity
for each point in the normal. A landmark on the current
shape is moved along the direction perpendicular to the
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(a) Example 1: Initialization (b) Example 1: Segmentation

(c) Example 2: Initialization (d) Example 2: Segmentation

Figure 16: Results of segmentation using the vertebra model.

contour, to the position where the profile is the closest to the
mean shape ones according to the Mahalanobis distance [13].
This distance D is mathematically defined in

D =
(

g − g
)T
S−1
g

(

g − g
)

. (11)

In relation (11), the Mahalanobis distance gives a rep-
resentation of the difference between a given profile g and
the profile g associated to the mean shape. Sg is a covariance
matrix of the profiles related to the current landmark in the
training set. In order to build g, we need to define some
landmarks along the normal at the considered point. On each
of these landmarks, the grey level (between 0 and 255) is
evaluated. The gradient is obtained by subtracting the grey
level for the point i with the grey level for the point i − 1 on
the normal. Each value is finally normalized by the sum of
each grey level in the profile.

All these considerations are detailed at Algorithm 3. In
this algorithm, one can see that a convergence condition
is used. Here, we propose to stop the search when all the
landmarks of the shape remain stable, that is, do not change
anymore. Nevertheless, it appears that this condition is too

strict. Therefore, we compute the number of equivalent
points that have a different position between the current
and the previous shape. If we consider the iteration i, the
search is stopped if the number of equivalent points with
a different position between iteration i and iteration i − 1
is 10% the number of equivalent points with a different
position between iteration i−1 and iteration i−2. In order to
avoid infinite search loop, a maximum number of iterations
can be defined. Generally, the convergence is reached after
50 to 250 iterations. To give an order of magnitude, the
execution time for 50 iterations is about 15 seconds, based
on our experimentations.

3. Results

Various parameters can significantly influence the results. In
the following section, we propose investigating the influence
of each of the following parameters:

(i) the number of landmarks per vertebra,

(ii) the profile structure,
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Input:
(i) l1: the upper anterior corner of the first vertebra
(ii) l2N : the lower anterior corner of the last vertebra
(iii) L: the set of all the detected points

Data:
(i) Si: a sequence of i points
(ii) V : a set of sequences composed by 2N points

Result:
(i) S⋆: the sequence of 2N points minimizing the path between l1 and l2N

begin
S0 = ∅;
S1 = S0 ∪ l1;
V = ∅;
RecursiveFunction (S1);
min = distance between l1 and l2N in V(1);
indexMin = 1
for i = 2 → size(V) do

dist = distance between l1 and l2N in V(i);
if dist ≤ min then
min = d;
indexMin = i;

S⋆ = V(indexMin);

Algorithm 1: Determine the sequence of the vertebra corners.

Input:
(i) Si: a sequence of i points

Data:
(i) L: the set of all the detected points
(ii) li: the last point in the sequence Si
(iii) V : a set of sequences composed by 2N points
(iv) α: the height of a vertebra
(v) β: the size of an intervertebral space

begin
if i = 2N − 1 then

Add l2N to Si;
Add Si to V ;
return;

else
if li is an upper corner then

foreach l in L do
if α− δα < dist(li, l) < α + δα then

Remove l from L;
Si+1 = Si ∪ l;
RecursiveFunction(Si+1);

else
foreach l in L do

if β − δβ < dist(li, l) < β + δβ then
Remove l from L;
Si+1 = Si ∪ l;
RecursiveFunction(Si+1);

Algorithm 2: RecursiveFunction (Si).

(iii) the number of images used to build the sample,

(iv) the mean shape model.

3.1. Number of Landmarks per Vertebra. The number of land-
marks per vertebra (see Figure 11) has a direct influence on

the quality of the segmentation results obtained by the search
process. It is evident that the greater the number, the better
the segmentation result. Nevertheless, it would be necessary
to find a good compromise, in order to obtain a reason-
able computing time for the search phase. In our experi-
ments, 20 landmarks for each vertebra were used.

3.2. Profile Structure. The second parameter influencing the
segmentation results is the structure of the profiles used
for the search process phase. The profile depends on two
other parameters: the number of points by profile and the
distance between these points. We can notice that, in order
to ensure the independence of this distance with respect to
the image size, its length is proportional to the vertebra area.
After various tests, we conclude that a profile of seven points
spaced by a distance equal to 5% of the vertebra size is a good
compromise.

3.3. Number of Images Involved in the Construction of the
Sample. The size of the sample remains the most important
aspect of the ASM method. It is the basis for building the
statistical model of shape and determines the outcome of the
segmentation, the final result in an instance of this model.
The robustness of the method is reached only if the sample is
as representative as possible of the data segmentation.

The specialist knowledge and the practitioner expertise
can play a crucial role in the choice of the images for the
sample.

In order to test this parameter, we used the single model
of vertebra. The ASM search initialization is performed
through the user intervention to mark the left side of the
vertebrae C3 to C7 by clicking on the anterior superior and
inferior corners.
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Input:
(i) X : the current shape
(ii) X : the mean shape

Result:
(i) X⋆: the final shape

begin
foreach landmarks in X do

Compute g;
X = X ;
repeat

foreach landmarks in X do
foreach points along the normal do

Compute g;

Compute D = (g − g)TS−1
g (g − g)

Find g minimizing D;
Update the landmarks position with the new profile;
Determine X best suited to these landmarks;

until Convergence;
X⋆ = X ;

Algorithm 3: ASM segmentation procedure.

Figure 12 gives a statistical presentation of data and
shows the influence of sample size on the average error of
segmentation based on the type of vertebra. We use a sample
size of 25, 50, 75, and 100 images, respectively.

In order to represent the accuracy of the segmentation,
we use a particular measure, that is, the point-to-line dis-
tance. An illustration of this distance is given at Figure 13. In
fact, the vertebra edge is characterized by 20 landmarks, and
a specialist is asked to mark the images of the database. This
way, we create a gold standard (a theoretical contour) for the
computation of the segmentation error. We calculate it by
evaluating the distance between the segmented contour and
the theoretical contour. Actually, the Euclidean distance is
computed between equivalent landmarks on the segmented
contour and the theoretical one. We perform this task on
all the images in our database and report the mean error.
Figure 12 shows that a sample size of 75 images is a good
compromise for each vertebra. This study has allowed us to
estimate the images number that could be involved in the
construction of the sample.

3.4. Model. We propose two models: the column model
and the vertebra model. The first aims to describe all the
vertebrae into a single form and thus contains the coordi-
nates of their landmarks. Figure 14(b) represents the average
shape of a column model. Figures 14(a) and 14(c) show the
shapes obtained by applying different displacements along
the principal directions, within the limits provided by (5).

The main advantage of the column model is that it
changes the whole column during the search process. A
vertebra cannot be rotated independently of others. This
can be useful to determine the curvature of spinal column.
By consequence, this advantage becomes an obstacle for the
detection of a vertebra different from others; hence isolating
anomalies are more difficult.

The vertebra model consists of modeling every vertebra
by only one model. Therefore, it allows to resolve the
shortcomings of the global column model. It is also more
suitable for local search in the image. Nevertheless, it has the
disadvantage of ignoring information that exists between the
vertebra shapes, since each of them can evolve independently.

Figure 15 shows the shapes obtained by applying the
same movements according to the main direction of a
vertebra model.

Table 1 proposes the vertebra recognition rate on 100
images from the online database NHANES II from the
National Library of Medicine (NLM) [25]. It shows a
comparison between the column model and the model of
vertebra using a sample of 75 images. The NHANES II
database is large enough to build separately the test set (100
images) and the training set (75 images) without performing
a cross-validation. Furthermore, the test set is not included in
the training set to avoid any influence. Given the results, our
preference is for the vertebra model. Moreover, according to
our experiments, the comparison between the results from
both models shows that the edges of the vertebrae are well
detected by using the model of a vertebra. More precisely,
we consider that the vertebra model detects well the edges
supported by the success rate (between 92.2% and 98%).

Figure 16 shows the segmentation results for some
images corresponding to the cervical spinal column on the
basis of the parameters presented above. After convergence,
all the vertebrae are well detected. The segmentation results
for the test images show that vertebra edges are detected by
applying the proposed segmentation approach, based on a
vertebra model and using the Active Shape Model approach.

Comparison with other approaches is quite difficult.
The main reason is that the methods proposed in the liter-
ature are applied in different contexts. For instance, the
imagery modality is not always the same or the type of
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Table 1: Success rate of segmentation with a sample of 75 images.

Sucess Rate (%)

Type of Vertebra Column Model Vertebra Model

C3 54.9 92.2

C4 80.4 98

C5 82.4 96.1

C6 76.5 96.1

C7 56.9 98

vertebra is different. In [26], Roberts et al. applied the
AAM segmentation approach on dual X-Ray absorptiometry
images and obtained a mean error equal to 0.88 mm.
They proposed a similar method based on AAM in [27]
but applied on conventional radiographs. The mean error
is equal to 0.64 mm. In our case, as Figure 12 shows,
the segmentation error is about 0.6 mm. Nevertheless, we
study cervical vertebrae while Roberts et al. studied lumbar
vertebrae. In [28], de Bruijne and Nielsen presented a
mean point-to-contour error of 1.4 mm using shape particle
filtering. Finally, Klinder et al. obtained a mean point-to-
surface segmentation error of 1.12 mm with CT images [29].
However, they ran experiments on every type of vertebra
(cervical, lumbar, and thoracic).

4. Conclusion

In this paper we presented a vertebra segmentation method
using an Active Shape Model recognition approach. The
Active Shape Model segmentation method is composed of
two phases: a modeling phase, aiming to create a mean shape
model, and a searching phase. An important challenge on
applying this approach is the impact of the initialization, that
is, the way that the mean shape model is placed on the image
at the beginning of the search stage: the closer the mean shape
is placed to the object, the better the chances of successful
segmentation. In this paper, we solve this problem by using a
semiautomatic segmentation process. Therefore, we suggest
placing the mean shape model on the image by using the
vertebra left corners, which are extracted in a semiautomatic
way. This task was achieved by using the Harris corner
detector and a set of successive filters, and only two points
placed by the user (the superior left corner of the first
vertebra and the inferior left of the last one). This approach
produces an efficient initialization of the ASM search process.
Additionally, we presented two modeling techniques: the
vertebra model which consists in modeling vertebra shapes
with only a single model and the column model which
represents the whole shape of the spinal column.

Another inconvenient principal of the ASM-based seg-
mentation approach is the training stage, for which we
constructed the mean shape model by using, respectively, 50,
75, and 100 sample images. The choice of a sample of 75
images produces comparable results with the sample of 100
images.

In addition, we investigated the influence of various other
significant parameters on the segmentation results. Thus,
we studied the influence of the number of landmarks per

vertebra, the profile structure, and the mean shape model.
We concluded from this study that the best compromise is
to choose 20 landmarks per vertebra and a profile structure
of seven points. We also noticed that the results given by the
vertebra model were more efficient than those given by the
column model.

The various tests that we carried out on a large dataset
prove the effectiveness of the suggested approach. We observe
that the proposed method allows fast and efficient vertebra
contours extraction. Our method can also be adapted to
other components of the spinal column: like dorsal or
lumbar. In our future works we want to investigate a method
aiming to automate the segmentation. We consider also the
use of the segmentation results to analyze the mobility of the
cervical spinal column.
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