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Human activities have caused a near-ubiquitous and evo-

lutionarily-unprecedented increase in environmental

sound levels and artificial night lighting. These stimuli

reorganize communities by interfering with species-

specific perception of time-cues, habitat features, and

auditory and visual signals. Rapid evolutionary changes

could occur in response to light and noise, given their

magnitude, geographical extent, and degree to which

they represent unprecedented environmental conditions.

We present a framework for investigating anthropogenic

light and noise as agents of selection, and as drivers of

other evolutionary processes, to influence a range of

behavioral and physiological traits such as phenological

characters and sensory and signaling systems. In this

context, opportunities abound for understanding con-

temporary and rapid evolution in response to human-

caused environmental change.

Global changes in distribution of anthropogenic light

and sound

Worldwide human population growth dramatically influ-

ences organisms through urbanization, industrialization,

and transportation infrastructure [1]. The environmental

disruption associated with the exponential increase in

human populations has led to extinction, altered commu-

nity structure, and degraded ecosystem function [1]. Pollu-

tion is among the key aspects of human-induced rapid

environmental change. Anthropogenic noise and artificial

light are sensory pollutants that have increased over re-

cent decades, and they pose a global environmental chal-

lenge to terrestrial [2] and aquatic environments [3]. In

2001 approximately 40% of the world population lived in

areas that never experienced sub-moonlight illuminance

[4]. Baseline night light levels are increased by skyglow,

artificial light scattered by the atmosphere back towards

the ground. The overcast night sky radiance in urban areas

Review

Glossary

Background extinction rates: pre-human rates of extinction outside of

recognized mass extinction events.

Background speciation rates: pre-human rates of speciation outside of the

recovery period following mass extinction events.

Behavioral flexibility: immediate adjustments of behavior and physiology in

response to environmental conditions.

Developmental plasticity: a change in developmental trajectory and pheno-

typic outcome of a single genotype in response to a different environmental

condition.

Heritability: the proportion of phenotypic variance attributable to genetic

variance.

Macroevolution: the study of patterns and processes of evolution that occur at

or above the level of species.

Microevolution: change in allele frequencies in a population over time.

Reaction norm: depiction of the range of phenotypes expressed by a single

genotype across different environments.

Zeitgeber: any external cue that entrains the biological rhythms of an organism

to environmental cycles.
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has been found to be as much as four orders of magnitude

larger than in natural settings (Figure 1) [5]. Similarly,

increased noise levels affect a sizable proportion of the

human population. In Europe, for instance, 65% of the

population is exposed to ambient sound levels exceeding

55 dB(A) [6], roughly equivalent to constant rainfall. Of the

land in the contiguous USA, 88% is estimated to experience

elevated sound levels from anthropogenic noise (Figure 1)

[7]. These effects are not limited to terrestrial environ-

ments; ocean noise levels are estimated to have increased

by 12 decibels (an �16-fold increase in sound intensity) in

the past few decades from commercial shipping alone [8],

while an estimated 22% of the global coastline is exposed to

artificial light [3], and many offshore coral reefs are chron-

ically exposed to artificial lighting from cities, fishing

boats, and hydrocarbon extraction [9].

The changes in light at night and noise levels are

occurring on a global scale similar to well-recognized eco-

logical and evolutionary forces such as land-cover and

climate changes. In parallel with research involving cli-

mate change [10], much of our understanding of organis-

mal response to noise and light is restricted to short-term

behavioral reactions. Organismal responses might be as-

sociated with tolerance to these stimuli in terms of habitat

use [11,12], or include shifts to quieter and darker areas

[13,14]. Although organisms have responded to land-cover
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Figure 1. Increasing anthropogenic night lighting and sound levels represent a global phenomenon that constitutes environmental changes unprecedented in the history of

life on Earth. (A) Europe at night. Areas colored blue are emitting an intensity of light upwards that is comparable to moonlight, pink areas are brighter than moonlight, and

white areas are many times brighter than moonlight. (B) Light is extremely heterogeneous at both landscape and local (few meters) spatial scales. (C) Estimated sound

levels (L50 SPL dB(A) re 20 mPa) created by human activities that exceed background levels created by natural sources [7]. (D) Temporal heterogeneity in anthropogenic

sounds as a 24 h spectrogram, which illustrates acoustic energy across the frequency spectrum for 24 h, with each row representing 2 h. Lighter colors reflect higher sound

levels. Brighter colors prominent in the fourth row (i.e., beginning at 06.00 h) through the final row display anthropogenic sounds from road traffic and aircraft in Grand

Teton National Park in late September of 2013. (A) Image and Data processing by the National Oceanic and Atmospheric Administration (NOAA) National Geophysical Data

Center, (B) courtesy Freie Universität Berlin, and (C) modified from Mennitt et al. [7]. Both (C) and (D) are courtesy of the US National Parks Natural Sounds and Night Skies

Division. Abbreviations: dB(A), A-weighted decibels; L50, median SPL; re, reference pressure; SPL, sound pressure level.
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changes and climatic variability throughout history [10],

the levels of night lighting and noise now experienced are

unprecedented in the evolutionary record. The rapid rise of

these novel stimuli could decrease the likelihood that

organisms possess the genetic variance to adapt to the

altered environmental conditions.

Exposure to anthropogenic noise and artificial light can

negatively affect the primary sensory modalities by which

most animals interact with their environment. Visual and

auditory systems mediate essential behaviors including

foraging, predator avoidance, territory defense, and mat-

ing decisions [15]. When anthropogenic noise and light

disrupt sensory systems we expect a cascade of effects

on behaviors and associated life history traits. Light, for

example, plays a key role in modulating the circadian

rhythms of both invertebrates and vertebrates, and influ-

ences longer-term phenological responses [16]. Elevated

light at night can reduce fitness through immunosuppres-

sion [17] and alter reproductive physiology [18]. In terms of

sound stimuli, masking of acoustic cues is a mechanism by

which noise affects animals [11]. This has been studied in

the context of songbird communication [12], but masking

can also influence perceived risk owing to impaired acous-

tic surveillance [19]. Other factors, such as distraction of an

animal’s finite attention [17], have the potential to alter a

variety of behaviors and traits.

Mounting evidence suggests that noise and night lighting

have strong ecological consequences [2,20], but we know

little about how these stimuli can drive evolutionary

responses. We argue here that evolutionary responses to

these stimuli are highly likely and propose a framework to

guide future research (Figure 2), particularly as current

studies rarely distinguish between behavioral flexibility

(see Glossary), developmental plasticity, or heritable genet-

ic responses. We describe how observed and hypothesized

responses to these stimuli by individuals and populations

are linked through various mechanisms to evolutionary

outcomes. Specifically, we use a reaction-norm approach

to show how researchers can investigate light- and sound-

derived evolutionary responses. We then discuss how known
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Figure 2. Framework for evaluating how anthropogenic night lighting and sound can influence behavioral, developmental, and evolutionary outcomes. (A) Anthropogenic

light at night and sound share many features relevant to animal sensory systems. Listed are only a few candidate features of noise and light important to investigating the

potential strength of these stimuli as agents of ecological and evolutionary change, whether alone or combined given that these stimuli often co-vary in many

environments. See Francis and Barber [11] for a review of some of these features. Because these stimuli can co-occur in many environments, we propose that human

alterations of light and sound can act synergistically on wildlife. (B) Effects of anthropogenic sound and night at light are known or hypothesized to affect many levels of

biological organization, which could result in evolutionary change via different pathways, such as selection, drift, or epigenetic inheritance. Table 1 provides a more

comprehensive list of known and hypothesized ecological and evolutionary outcomes due to noise and light. (C) Influences of anthropogenic sound and light at different

levels of biological organization can result in short-term behavioral flexibility, developmental plasticity, and microevolutionary responses via different evolutionary forces

(see Potential Microevolutionary Responses section) and induce responses by individuals and populations over different spatial scales. Importantly, shorter-term

phenotypic responses could lead to genetic (evolutionary) change through processes of genetic assimilation and accommodation, which could make evolved responses

occur faster or, alternatively, could weaken selection if all genotypes experience high fitness as a result of sound- or light-induced behavioral and developmental shifts.
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behavioral and developmental responses could contribute to

evolutionary change.

Status of research on anthropogenic light and sound in

ecology

Night lighting and noise are highly correlated in many

landscapes (e.g., [21]). It is crucial to understand whether

the selective pressures these stimuli exert are additive,

synergistic (Figure 2), or if they mitigate one another. Few

studies have examined the influence of each simultaneous-

ly (e.g., [21]). In one study, flashing lights combined with

boat motor noise suppressed antipredator behavior in

hermit crabs (Coenobita clypeatus) more than noise alone

[22]. Future research should quantify both light and sound

simultaneously in the same population. Existing research

has largely focused on these stimuli in isolation, and we

therefore briefly summarize the research status of each

separately.

Anthropogenic sound as a potential selection pressure

Noise can alter physiology, behavior (communication, for-

aging, vigilance), and population-level metrics such as

abundance and density [11]; limited work suggests com-

munity-level effects [23]. Most studies have been con-

ducted over short time-periods, and underlying

mechanisms are rarely elucidated. Francis and Barber

[11] proposed a framework for understanding and predict-

ing behavioral responses and the likely fitness conse-

quences in terms of both acute and chronic noise

exposure. Despite these steps towards an understanding

of the ecological outcomes of noise, it is unclear to what

extent the documented outcomes represent evolutionary

changes. Similar to current challenges in understanding

tolerance to climate change [10], a central question is

whether coping mechanisms among populations that per-

sist in noisy environments reflect behavioral flexibility,

developmental plasticity, or microevolutionary responses.

Some recent evidence points to short-term behavioral

responses [24], but it is unclear whether these might be

linked to microevolutionary responses that simply have

not received attention (see below).

Anthropogenic light as a potential selection pressure

The crucial role light plays in the regulation of physiology

[25] and species interactions [26] has been well studied, but

the widespread effects of artificial light received limited

research attention until the past decade, starting with

Longcore and Rich [27,28]. Until then, most research

had focused on documenting large-scale mortality events

resulting from the attraction and disorientation of animals

(e.g., turtles and birds) by artificial lighting [28]. Research

in the past decade, however, has involved numerous bio-

logical responses [3,20], including the effects of light on

physiology [17], reproduction [29], foraging [30], movement

[31], communication [32], and community ecology [33]. In

addition to the range of biological responses, studies are

now beginning to consider effects from specific light spectra

[34]. As with noise pollution, evolutionary implications are

largely understudied. One intriguing exception is a study

of nocturnal orb-web spiders, which demonstrated

that webs were preferentially built in areas that were

artificially lit and, importantly, that the behavior had a

heritable basis [35].

From proximate to ultimate effects of anthropogenic

light and sound

Organisms respond to anthropogenic light and noise, in a

proximate sense, by way of two mechanisms. One mecha-

nism involves immediate adjustments to behavior and

physiology, which we define as behavioral flexibility. The

other mechanism operates through alterations of develop-

mental processes and gene expression that are influenced

by local environmental conditions as the organism devel-

ops its phenotype; this is developmental plasticity. Both

forms of variation can be visualized as a reaction norm

(Figure 3A) which illustrates how phenotypic expression

varies across a range of environments. Specifically, devel-

opmental plasticity is indicated by the slope of a single

reaction norm, and indicates whether a particular geno-

type varies its ontogenetic production of a phenotype

across an environmental gradient. Behavioral flexibility

can be visualized as error bars around a particular geno-

type (Figure 3A). In other words, a genotype (e.g., an

individual organism) can vary its behavior within a partic-

ular level of the environment, but it can also change its

behavior if it experiences a shift in the environment.

Behaviorally-flexible and developmentally-plastic phe-

notypes resulting from noise and light have largely been

viewed as proximate responses to novel conditions [32,36];

however, environmentally induced phenotypes can become

fixed through genetic accommodation and assimilation [37],

thus these responses could represent an initial step towards

heritable change (Figure 2C). Nevertheless, behavioral flex-

ibility could also weaken selection. If the majority of geno-

types adjust behavior in an adaptive direction there will

generally be a decrease in the strength of selection, because

many genotypes will experience relatively enhanced fitness.

Considerable evidence has amassed for behaviorally-flexi-

ble responses to alterations of the light and sound environ-

ment (reviewed above). Studies should now take the next

step to understand to what degree these changes are linked,

and potentially drive, heritable change.

Adaptive developmental plasticity can increase the

strength of selection [38] because genotypes capable of

producing the higher fitness phenotypes will be selected

for more strongly than those unable to shift ontogeny in

this adaptive direction. Even if most genotypes shift in an

adaptive direction, mechanisms of genetic accommodation

could lead to positive selection [39]. There are few pub-

lished studies involving developmentally-plastic responses

to noise and light relative to evidence for immediate be-

havioral responses. Recent experiments using mice found

early-life exposure to light at night can elevate anxiety

behavior in adulthood [40]. This is not surprising given the

extent to which photoperiod can impact on the develop-

ment of mice as a function of altered circadian molecular

rhythms during both the perinatal [41] and postnatal

phases [42]. In birds, incubation under a long photoperiod

results in smaller hatching size, a fitness-related trait

[43]. In terms of alteration of the acoustic environment,

loud sounds can alter the developmental trajectories of

marine invertebrates [44], insects [36], and rodents [45].
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Anthropogenic light and sound could also have heritable

effects on developmental trajectories via epigenetic effects

(Figure 2C). Short-term changes in photoperiod can influ-

ence gene expression profiles as well as DNA methylation,

which might also be reversed by changes in light regimes

[46]. To our knowledge, researchers have yet to report

possible epigenetic influences of noise.

A central, but relatively unexplored, question is wheth-

er the observed variation in a trait responsive to noise or

light is best explained by behavioral flexibility or develop-

mental plasticity. If developmental plasticity best explains

the variation observed in nature, then it increases oppor-

tunities for populations to respond in evolutionary ways.

To assess this evolutionary potential, information about

the heritability of focal response traits must be collected in

the field as the environment is changing (Box 1). Under-

standing the heritability of traits, and the intensity and

direction of selection as they occur in the field, would allow

prediction of evolutionary outcomes for populations as well

as understanding of current levels of adaptation. Such

research must address the complexities of selecting appro-

priate measurement techniques, equipment, measurement

precision, and units for characterization of light and sound

environments (Box 2).

Potential microevolutionary responses

Adaptive responses to anthropogenic light and sound re-

quire (i) a heritable response in the population (e.g., mating

calls), (ii) a mechanism that alters gene frequencies from

one generation to the next (e.g., female preference for a

specific call frequency), and (iii) evidence that changes in

the light and or sound regime are causal agents driving

the relationship the between heritable response and the

change in gene frequency in the population (e.g., a novel

sound changes female preference, which in turn drives

changes in call structure). We briefly review additional

conditions for evolutionary change with respect to the four

most commonly recognized forces of evolution: selection,

gene flow, drift, and mutation. These four mechanisms can

operate concurrently on the same population in environ-

ments influenced by light and noise.

Sensory stimuli as drivers of selection

Artificial light and noise can influence survival [28] and

reproduction [32,47] in several animal taxa. Numerous

traits are associated with or depend upon the sensory
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Figure 3. (A) Example reaction norms of phenotypic responses to anthropogenic sound and light. Each line represents the phenotype expressed by a different genotype in

the population, across an environmental gradient. The slope of the response represents the developmental plasticity of a genotype. The error bars on each reaction norm

represent behavioral flexibility because an individual can alter their phenotype through behavioral mechanisms independently of developmental plasticity. The distance

between the lines at any given level of stimulus represents heritable variation, as these are differences in phenotypic expression among the genotypes in the population. (B)

Behavioral and developmental responses to anthropogenic sound and light could influence patterns of divergence (modified from Lema [74]). The black line denotes mean

phenotypic trait value; grey lines reflect the range of trait variation under natural light and sound regimes. Anthropogenic sound or light could generate rapid phenotypic

divergence by triggering behavioral or developmental responses well outside the range of variation in environments without these stimuli (dashed horizontal line). Rapid

phenotypic change via developmental or behavioral mechanisms can occur when a population colonizes an environment characterized by novel light and sound regimes,

or if these stimuli are rapidly introduced to an existing population. These novel phenotypes (blue line, mean trait value; light blue, range of expression) might then become

canalized in the new environment (e.g., genetic assimilation).

Box 1. How to measure heritability in the field

To estimate heritability in wild populations we need to disentangle

the observed variation in a trait between genetic and environmental

components. In addition, within the genetic variance it is often useful

to directly estimate the narrow-sense heritability, which tells us how

much of variance is due to additive genetic effects (of multiple loci

influencing a complex quantitative trait), and is estimated by com-

paring relatives with each other. In particular, we advocate animal

model approaches to estimating heritability [75]. In such a technique,

information about the genetic relatedness of individuals in popula-

tions is collected to construct pedigrees that are then analyzed using

generalized linear model approaches that partition phenotypic var-

iance among possible genetic explanations. One of the advantages of

this approach over others is that some statistical models can use

incomplete pedigrees that include fairly distant relationships, mak-

ing the methods relatively amenable to estimating heritability from

field population datasets [75]. Many of the traits we propose could

evolve in relation to altered anthropogenic light and sound are close

to Gaussian-distributed (Table 1), therefore it appears that maximum

likelihood approaches to estimating heritability through animal mod-

els could be most appropriate in many cases [76].
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systems of the animal; thus evolutionary responses to

these sensory stimuli will likely carry over to additional

life-history traits. For example, both sound and light sti-

muli alter the configuration of communication systems

[15], which could influence other behavioral (e.g., agonistic

interactions, mate choice, vigilance, foraging efficiency),

morphological (reception and production), and physiologi-

cal traits (e.g., stress hormone, immune function, metabo-

lism). Substantial evidence indicates that anthropogenic

noise and light stimuli elicit phenotypic responses

(Table 1). Two traits with moderate heritability and phe-

notypic change are bird song and circadian rhythms. Bird

song in noisy habitats, for example, can display altered

structure, timing, amplitude, and frequency parameters

[12]. Some components of song production are heritable,

such as vocal processing regions of the brain [48] and beak

morphology [49]. Interpretation of these observations,

however, is complicated by the fact that the syntax and

note structure of bird song is learned in most of the species

studied [50], confounding field estimates of heritability.

Furthermore, several studies demonstrate that some vocal

adjustments in response to noise are likely the result of

immediate behavioral flexibility and not adaptive change

[24]. It is possible that this behavioral flexibility could still

be a leader for evolutionary change (Figure 2C). We posit

that bird song remains a likely trait under selection by

anthropogenic sensory stimuli, and that the use of cross-

fostering experiments in the laboratory paired with field

manipulations could prove a powerful approach to unveil-

ing the strength of noise as a selective agent.

Stronger evidence for adaptive change comes from al-

tered light regimes. Circadian rhythms are likely targets of

selection because they are ubiquitous in almost all organ-

isms and synchronize to the external environment, with

light as the primary Zeitgeber. Although the molecular

basis of circadian clocks is highly conserved across taxa

[16], heritable variation in circadian rhythms is found

within populations [51]. In the great tit (Parus major),

for example, circadian period length can be highly herita-

ble (h2 = 0.86) and, in relatively closely related blue tits

(Cyanistes caeruleus), males that sing early have increased

annual reproductive output by increasing their extra-pair

copulation success [32]. Because both tit species and sev-

eral other songbirds are known to begin singing earlier in

the morning owing to artificial light [32], artificial night

lighting might select for earlier chronotypes in birds. In-

deed, Dominoni et al. [52] demonstrated that European

blackbird (Turdus merula) urban and rural populations

differ in their circadian rhythms and chronotypes, as would

be expected from the influence of artificial light. Neverthe-

less, even in these cases it is difficult to distinguish the

sources of variation: how much is due to heritable change

and how much to plasticity and flexibility? Traits that are

likely under selective pressure from anthropogenic light

and sound should be studied using pedigree and animal

model studies in the field to directly quantify heritable

variation and infer the remaining flexibility and plasticity

(Box 1). Crucial experimental manipulations of sound and

light stimuli are also necessary to unambiguously identify

mechanisms; stimuli that represent relevant changes

that populations experience from various forms of human

development should be used (Box 3).

Sensory stimuli as drivers of gene flow

Although gene flow is often interpreted as a homogenizer of

connected populations, we propose that differential dis-

persal and migration caused by changes in anthropogenic

light and noise could create biased gene flow. This could

result in systematic genetic differences among populations

along light- and sound-level gradients. We know that the

settlement, dispersal, and migration patterns of many

organisms are influenced by sound [53] and light

[27,34]. We are not, however, aware of investigations into

whether these altered patterns of movement, and any

subsequent gene flow, have created genetic population

differentiation. Disentangling genetic differentiation due

to noise or light versus other human-induced environmen-

tal changes represents a promising avenue for research.

It is also possible that anthropogenic sensory stimuli

create movement barriers and reduce gene flow through

Box 2. Measurement of light and sound: challenges and

recommendations

In contrast to scalar variables such as temperature or the concentra-

tion of a chemical substance, the spectral and vectorial nature of both

light and sound makes measurement more challenging, particularly

in field settings. There are also many different units of measurement,

which are likely not familiar to many ecologists and evolutionary

biologists (e.g., illuminance vs spectral radiance). Past studies have

often opted to use a simple, inexpensive metric, but in many cases

wrong instrument choice can lead to incorrect conclusions. As an

example, in many cases it might not be the overall light or sound level

that is important, but rather a signal-to-noise ratio. In vision, for

example, scenes with identical irradiance can have vastly different

levels of contrast and glare.

Challenges

Range. Both light and sound levels vary over many orders of

magnitude, changing on a timescale of seconds to minutes. Sound

level is measured on a logarithmic scale, as is light level in astron-

omy.

Direction of wave propagation. Animal responses usually depend

not only on integrated fluxes but also directional information. Glare

and contrast can be crucial in artificially lit scenes.

Spectral weighting. Human perception does not necessarily match

animal perception, but full spectral measurement is expensive and

difficult.

Short-duration variations. Amplitude and frequency modulation

might need to be measured for sound; flicker could be important for

artificial light.

Location of measurement. Ideally, both noise and light exposure

should be measured directly on the target animal, although this can

be expensive and time-consuming. If not possible, then the measure-

ment should be done as close as possible to the core area of the

animal.

Recommendations

(i) Tradeoffs must be assessed in the planning stage to find a

measurement technique that is appropriate to answer the question

under investigation. Recording spectral information is highly recom-

mended. Tradeoffs are more acceptable in field experiments, where

conditions can be highly variable. Full spectral characterization

should be standard in laboratory studies [77]. (ii) Instruments must

have sufficient range and precision. Measurements at the edge of the

range of an instrument provide insufficient information. (iii) It is likely

unnecessary and unproductive to develop mastery in an outside

discipline. Find collaborators from outside your field to provide

advice and assistance in measurement. As with consulting a statis-

tician, experimental set-up should be discussed with a professional

(e.g., a lighting or acoustical engineer).
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Table 1. Numerous traits are candidates for selection by light at night and anthropogenic noise, and span behavior, morphology,

and physiology, some of which are directly related to phenologya

Trait category Selective pressure Candidate traits Phenotypic change Heritability estimatesb

Communication

and behavior

Acoustical environment

can mask or interfere with

vocal signals, or be timed

to interfere with vocal

signaling

Vocal signal features

(frequency, timing,

amplitude)

Sound level-dependent frequency use,

increased amplitude [12]

Song control nuclei:

HVC volume h2 = 0.38,

RA volume h2 = 0.72) [48]

Signal modality Switch to emphasize visual cues in high

noise [78]

Not reported

Agonistic interactions Males respond differently to urban

songs [12]

Aggression,

h2 = 0.10;

exploratory behavior,

h2 = 0.54 [79]

Mate choice Preference for low-frequency songs

erodes with urban noise [72]; noise

decreases preference for own mate [80]

Not reported

Vigilance Increased vigilance behavior in noise

[81]

Vigilance, h2 = 0.08 [82]

Foraging efficiency Successful foraging bouts decreased,

and foraging time increased near noisy

roads [83]

Proportion of prey

captured in neonates,

h2 = 0.32–0.54 [84]

Learning and cognition Reduced learning after noise exposure

[55]

Learning in bees,

h2 = 0.39–0.54 [85]

Sound production Coupling of amplitude and frequency

such that both increase in urban noise

[86]

Beak length, depth,

and width,

h2 = 0.65–0.90 [49]

Exposure to light at night

around dawn and dusk,

and to low light levels at

night

Rates and timing of

signaling

Increased signaling at times without

high noise [87]

Endogenous circadian

period length,

h2 = 0.86 [51]

Timing of dawn song Advance of dawn song, altered

attractiveness male birds [32]

Not reported

Timing of reproduction Advance of reproductive physiology of

blackbirds [18]

Not reported

Feeding behavior Increase of chick feeding behavior in

great tits [88]

Not reported

Nest site choice Avoidance of light at nest sites by

godwits [89]

Not reported

Reproduction Alteration of mating behavior in moths

[29]

Not reported

Calling and movement

behavior

Reduced advertisement call activity,

less movement activity [90]

Not reported

Emergence time Delayed emergence time [91] Not reported

Daily timing of feeding

behavior

Switch to nocturnal feeding [30] Not reported

Morphology Acoustical environment

can mask or interfere with

vocal signals

Sound reception Individuals respond differently to

attenuated versions of vocal signals [92]

Hearing loss, h2 = 0.36 [93]

Eye size Reduced eye size Eye size, h2
�0.5 [94]

Exposure to light at night Body mass Reduced mass of juveniles [91] Not reported

Physiology Exposure to increased

acoustical noise

Stress hormones Elevated corticosterone levels [95] Corticosterone levels,

h2
�0.27 [96]

Metabolism Increased oxidative damage in noise

[55]

Not reported

Cardiovascular health Increased occurrence of hypertension

and cardiovascular disease in humans

[97]

Not reported

Exposure to low light

levels at night

Stress hormones,

melatonin

Reduced expression of melatonin,

change of pattern of hormone

expression [98]

As above

Timing of reproduction,

moult

Early onset of gonadal growth,

temporal organization of moult [18]

Not reported

Immune system Change of immune response to

challenges: delayed-type

hypersensitivity, induced fever,

bactericide activity in blood [17]

Not reported

Pheromone release Suppression of pheromone release Not reported

aThe sample list identifies candidate traits by category and selective pressure (artificial night lighting and noise) and provides evidence, if available, for observed phenotypic

changes and heritability estimates for each trait.

bAbbreviations: h2, heritability; HVC, avian brain bird-song nucleus (formerly high vocal center); RA, robust nucleus of the arcopallium.
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habitat fragmentation. For example, birds that cannot

communicate effectively in noisy environments might

not traverse this type of matrix. Some mammals tend to

avoid artificially lit environments, which would decrease

connectivity [31]. A reduction in gene flow could accelerate

local adaptation to altered light and sound regimes but

could also lead to a loss of genetic variance in the long term.

Sensory stimuli as drivers of genetic drift

Because we generally predict that increasing anthropogenic

light and sound will fragment populations, we expect that

effective population size could be reduced in some localities,

such as in many bird populations in noisy areas [54]. This

fragmentation could create a population bottleneck where

drift processes can have substantial consequences for popu-

lations, especially in terms of decreased genetic variance.

These ideas have yet to be explored empirically.

Sensory stimuli as drivers of mutation

Environmental stimuli can promote genetic mutations.

Moderate and loud noise can increase oxidative damage

in several body tissues [55], and this could induce muta-

tions in the germline of various taxa [56]. Increased noise

could therefore directly induce germline mutations and

affect gene frequencies over time. Some evidence indicates

that extremely loud sounds [90–120 dB sound pressure

level (SPL)] can lead to gross malformations of sperm in

rats [57]. Few organisms experience such extreme noise

exposure levels in the wild; whether chronic exposure to

less-extreme noise levels has similar effects represents a

gap in our knowledge.

In parallel with the noise literature, there is laboratory

evidence that light exposure, especially in ultraviolet

wavelengths, increases the probability of genetic muta-

tions, including within the germ lines of several taxa

[58]. Thus, the mutagenic potential of anthropogenic ul-

traviolet light, such as that produced by mercury vapor

lamps, represents a further area requiring investigation.

While alterations of mutation rates are likely not large

enough to affect rapid evolutionary change, we would be

remiss to ignore the possible effects of anthropogenic sen-

sory stimuli on direct mutation.

Macroevolutionary patterns

The exploration of macroevolutionary patterns evident

since the onset of industrial production of light and sound

should provide candidate systems for comparative analysis

of population-level and species-level responses.

Recent divergence and phylogenetic trees

A surge of research has predicted biodiversity scenarios for

the near future based on anthropogenic change [59]. This

work has primarily focused on projecting species distribu-

tions in relation to climate change. A similar approach

should be applied to noise and light pollution now that

large-scale, fine-resolution spatial data on these stimuli

are now available [7,60]. One approach could include the

construction of maps estimating background (pre-industri-

alization) diversification and extinction rates for individual

clades known or hypothesized to be influenced by noise and

light. Diversity data could then be used to determine

whether contemporary rates for species in particular sen-

sory environments are different from background rates

[61].

Phylogenies are useful for examining whether selection

is occurring between sister species (or species groups) that

exhibit different sensitivities to light or sound. Studies on

mammals [62] and fish [63] have shown differential selec-

tion on visual transduction network (VTN) genes in species

from habitats with differing amounts of light. Genes asso-

ciated with light can be obtained from visual gene data-

bases, including opsins and other genes in the VTN

[64]. Annotated genomes permit the identification of can-

didate genes and allow for the determination of gene

function.

Differential extinction rates

As celestial signals such as the Milky Way disappear, and

night is replaced by extended twilight, species specialized

for night-time conditions are likely to be extirpated and

species flexible in their behavior with respect to light will

benefit [65]. Direct mortality from night lighting can be

significant at the population level. For example, fatal

attraction to lights has resulted in the extinction of at

least two populations of the endangered giant water bug

Lethocerus deyrolli [66]. In addition, if not offset by rescue

efforts, the attraction of young seabirds to urban lights

could extirpate Cory’s shearwater Calonectris diomedea

from the Azores [67]. Well-known declines of nocturnal

insects, such as moths [68], have been linked to artificial

night lighting, but it is unclear whether this stimuli or

other human-induced environmental changes are most

responsible. Declines among many taxa might be due to

attraction and ‘entrapment’ at lights but, for some taxa,

Box 3. Suitable study systems or potential traits under

selection

Numerous traits are potentially under selective pressure by anthro-

pogenic light and sound (Table 1). The challenge is to demonstrate

actual selection and microevolutionary responses. The relationship

between traits and reproductive fitness is ideally studied experimen-

tally via controlled treatments to light and sound stimuli alone, and in

combination, in an otherwise unchanged environment. A good ap-

proach is the assessment of genetic and phenotypic diversity in a

species with discrete populations in urban and natural areas. This can

be studied directly in an integrated manner by looking at morphol-

ogy, behavior, physiology, and (single-nucleotide) polymorphisms,

and connected selective sweeps. Nevertheless, areas exposed to

novel noise and light regimes, such as urban areas, are often influ-

enced by many other environmental factors. A more powerful design

is to experimentally test individuals from populations in both envir-

onments in a new, controlled setup for differences in responses to

urban stimuli such as light and sound, focusing on candidate genes

linked to traits hypothesized to be under selection or by using

genome-scanning approaches. Indeed, such ‘common garden’ ex-

periments have revealed important information on differences be-

tween urban and wildland populations [99]. It is crucial, however, to

test whether these differences persist in successive generations.

Conducting such studies in the field or laboratory will be challenging,

especially for organisms that have low fecundity and are long-lived.

For these organisms, selection might only occur after considerable

time, or not at all, given that slower life-histories could have lower

evolutionary potential in the face of rapid environmental change

[100]. Nevertheless, numerous taxa with traits likely under selection

by anthropogenic sound and light, and with higher evolutionary

potential, could be studied over shorter timeframes (Table 1).
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declines could also reflect interference with sexual signals

(e.g., moths [29] or fireflies). Indeed, firefly species richness

is lower in areas characterized by 0.2 lux and higher [69].

Noise also has potential to drive local extirpation and

possibly extinction, as evidenced by diversity declines and

avoidance of loud areas [13,14]. Among birds noise sensi-

tivity is non-random; species that experience the most

vocalization interference from noise and those with ani-

mal-based diets are most sensitive [54]. Because range size

is often negatively correlated with extinction risk [70], an

urgent next step will be to identify species with small

ranges that have undergone extensive transformations

in altered sound and light levels. Doing so should prove

fruitful for evaluating the roles of impaired gene flow and

drift in explaining evolutionary responses to these novel

stimuli.

Implications for conservation and biodiversity

The most immediate threat from anthropogenic noise and

light is the loss of species that are unable to adapt to their

altered environment [11]. For example, disturbance from

increased noise and or light might convert some popula-

tions from sources to sinks through an inability to attract

mates or failed mating attempts [24], reduced physical

fitness via elevated stress [71], or a diminished ability to

detect potential predators [11]. The loss of species might

also have a cascading effect on ecosystem function, such as

altered rates and patterns of predation [14], pollination,

and seed dispersal [23]. Despite mounting evidence that

anthropogenic noise and light negatively affect popula-

tions and communities, these stimuli are rarely considered

in conservation planning and restoration efforts.

Much less is known about how anthropogenic noise and

light might influence evolution and the potential implica-

tions for conservation. Behavioral responses to noise and

light exposure could result in the selection of maladaptive

traits and the formation of evolutionary traps [11]. In other

cases, excessive noise and light can interfere with the

acoustic and visual communication used for mate selection,

potentially resulting in the selection of lower quality mates

and reduced individual fitness [72]. It is also important to

note that some species might improve fitness through

adaptation to louder and brighter environments, resulting

in rapid population increases and the emergence of a

highly-abundant pest species [73].

Evolution occurs on a timescale that is at odds with the

immediacy of conservation efforts. Stimuli that alter the

intensity, duration, and cycles of natural sound and light

environments, however, have the potential to drive pro-

found and rapid evolutionary change. Because anthropo-

genic changes to sound and light are so large relative to

natural fluctuations, we propose that human-induced light

and sound might be particularly effective agents of selec-

tion. Understanding how noise and light might drive se-

lection, as we propose, is a priority for a world that is,

unfortunately, increasingly loud and bright.
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