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Abstract. The use of flexible hydrological model structures

for hypothesis testing requires an objective and diagnostic

method to identify whether a rainfall-runoff model structure

is suitable for a certain catchment. To determine if a model

structure is realistic, i.e. if it captures the relevant runoff

processes, both performance and consistency are important.

We define performance as the ability of a model structure

to mimic a specific part of the hydrological behaviour in a

specific catchment. This can be assessed based on evalua-

tion criteria, such as the goodness of fit of specific hydro-

logical signatures obtained from hydrological data. Consis-

tency is defined as the ability of a model structure to ade-

quately reproduce several hydrological signatures simulta-

neously while using the same set of parameter values. In

this paper we describe and demonstrate a new evaluation

Framework for Assessing the Realism of Model structures

(FARM). The evaluation framework tests for both perfor-

mance and consistency using a principal component analysis

on a range of evaluation criteria, all emphasizing different

hydrological behaviour. The utility of this evaluation frame-

work is demonstrated in a case study of two small headwater

catchments (Maimai, New Zealand, and Wollefsbach, Lux-

embourg). Eight different hydrological signatures and eleven

model structures have been used for this study. The results

suggest that some model structures may reveal the same de-

gree of performance for selected evaluation criteria while

showing differences in consistency. The results also show

that some model structures have a higher performance and

consistency than others. The principal component analysis in

combination with several hydrological signatures is shown to

be useful to visualise the performance and consistency of a

model structure for the study catchments. With this frame-

work performance and consistency are evaluated to identify

which model structure suits a catchment better compared to

other model structures. Until now the framework has only

been based on a qualitative analysis and not yet on a quanti-

tative analysis.

1 Introduction

One of the main purposes of scientific hydrology is to de-

velop better predictive models of rainfall-runoff processes.

To improve these models it is crucial to have a good un-

derstanding of the hydrological behaviour of catchments and

to be able to explain the variability in catchment response

and the factors influencing it (Kirchner, 2006; Fenicia et al.,

2008b; Hrachowitz et al., 2013b). Each hydrological model

concept can be seen as a hypothesis of catchment behaviour

(Savenije, 2009), and it is therefore a suitable tool to gain

more knowledge about catchment processes. However, for

models to be a suitable tool, it is very important that the

“right” model is selected for a certain catchment. Due to

differences between catchments (cf. Beven, 2000), different

models can be “right” for different catchments (cf. McMillan

et al., 2011).

Clark et al. (2011) argue that the use of multiple hypothe-

ses (models) can help to develop a better understanding of
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the catchment behaviour. Typically, every model (structure)

consists of several components, representing different runoff

processes. Fenicia et al. (2011) describe the SUPERFLEX

framework, similar to the FUSE framework (Clark et al.,

2008), which can be used to configure such different model

structures. With these frameworks it is possible to conve-

niently compare different model structures and their under-

lying hypotheses and hence use them as a learning tool to

improve our understanding of the behaviour of individual

catchments (Dunn et al., 2008; Hrachowitz et al., 2013b).

When different (flexible) model structures are used for hy-

pothesis testing, the understanding of catchment behaviour

can be increased by investigating whether a model is able to

represent the dominant processes in the catchment (Fenicia

et al., 2008a). When this is the case, it may be said that the

hypothesis that a model structure “suits a catchment” cannot

be rejected. To test if dominant processes are represented by a

given model structure, it is important to have a sound method

to evaluate which model structure suits better for a certain

catchment and to understand the reasons behind it (Kirchner,

2006; Andréassian et al., 2009).

It is increasingly acknowledged that model evaluation

based on single objective optimisation, often performed with

standard least squares optimisation, is insufficient to appro-

priately identify dominant processes. The use of a multi-

objective optimisation offers more insight into the processes

underlying the observed catchment response (e.g. Gupta

et al., 1998; Seibert, 2000; Wagener et al., 2003; Schaefli

and Gupta, 2007; Winsemius et al., 2009; Hrachowitz

et al., 2013a). The use of specific characteristics of the hy-

drograph, hereafter referred to as hydrological signatures

(Jothityangkoon et al., 2001), for the (multi-objective) eval-

uation of the performance of hydrological models can give

even more information about the hydrological behaviour of

the modelled catchments (Hrachowitz et al., 2013b). The

use of such hydrological signatures can therefore strengthen

the link between the models and the underlying hydrologi-

cal processes (e.g. Gupta et al., 2008; Yilmaz et al., 2008;

Hingray et al., 2010; Wagener and Montanari, 2011). Us-

ing hydrological signatures for model evaluation has some

advantages and disadvantages in relation to traditional hy-

drograph fitting. The main disadvantage is that a signature

represents a certain aspect of the catchment response at the

expense of others. It is therefore necessary to consider multi-

ple signatures to fully characterise the system behaviour. The

main advantage, however, is that signatures are better inter-

pretable in terms of underlying processes than aggregate per-

formance measures, as they are constructed to reflect specific

aspects of the system behaviour.

In this paper a framework is proposed to evaluate the suit-

ability of model structures for a given catchment (FARM –

Framework for Assessing the Realism of Model structures).

The realism, or suitability, is defined as a function of both

performance and consistency of different model structures.

In this study, performance is defined as the ability of a model

structure to reproduce several signatures, expressed as evalu-

ation criteria; consistency is defined as the ability of a model

structure to reproduce different signatures with the same set

of parameters. Thus, here consistency implies satisfying dif-

ferent evaluation criteria simultaneously and does not explic-

itly relate to consistency in time or space. However, higher

performance and better consistency result in higher confi-

dence that a model represents the dominant processes of a

given catchment, thereby to a certain level implying consis-

tency in time and space. The novelty of this study is that in

addition to performance also consistency based on different

evaluation criteria is taken into account to identify the most

suitable model structure for a given catchment.

A principal component analysis (PCA) is a common statis-

tical tool to decrease the dimensions of a problem. In hydrol-

ogy it has been used for example in tracer studies to inves-

tigate the correlation between tracer response patterns (e.g.

Brown et al., 1999; Worrall et al., 2006; Hrachowitz et al.,

2011). In principle, a PCA can also be used to investigate the

correlation between different evaluation criteria. Therefore,

the objectives of this study are to test (1) whether an eval-

uation framework using a PCA together with hydrological

signatures can help to determine the performance and consis-

tency of model structures for a certain catchment and (2) if

this framework can be used to identify whether certain model

structures suit a catchment better than other model structures.

In the following section the evaluation framework will be de-

scribed, followed by an application of the framework in a

case study (see Sects. 3, 4 and 5).

2 Description of the framework

FARM (Framework to Assess the Realism of Model struc-

tures) makes use of three main elements: model structures,

hydrological signatures and the principal component analy-

sis (PCA). Figure 1 describes how these elements interact in

the general framework. The PCA is the general part of this

framework; therefore, it will be described first. The model

structures and hydrological signatures depend on the specific

study this framework will be used for. Therefore, they are

mainly described in the methodology part of the application.

The framework consists of the following steps (Fig. 1):

1. selection of a catchment and gathering of hydrological

process knowledge;

2. definition of hydrological signatures;

3. definition of evaluation criteria to assess the models’

ability to reproduce the hydrological signatures;

4. selection of a set of plausible model structures for hy-

pothesis testing;

5. derivation of a posterior parameter distribution for the

selected model structures and catchments (calibration);
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Fig. 1. Schematic overview of FARM to compare the performance

and consistency of model structures with respect to hydrological

signatures.

6. random sampling of N parameter sets from the derived

posterior parameter distribution and calculation of the

evaluation criteria for the modelled hydrographs;

7. principal component analysis for each combination of

catchment and model structure; and

8. assessment of relative performance and consistency for

each combination of catchment and model structure.

2.1 Definitions

Performance and consistency are important definitions in this

paper; therefore, they are explained below.

Performance of a model structure for a certain catchment

is determined by its ability to reproduce a certain hydrolog-

ical behaviour or signature. This can be measured with the

maximum value for an evaluation criterion (belonging to the

best parameter set), which describes this hydrological signa-

ture, and by the range of values covered by the evaluation

criterion (belonging to all the parameter sets from the pos-

terior distribution). Here, to assess the relative performance

of a model structure three indicative performance categories

are defined: high, medium and low. A model structure is as-

sumed to perform better when more evaluation criteria are in

the highest performance category.

Consistency of a model structure for a certain catchment is

determined by the number of evaluation criteria, describing

different hydrological signatures that have their best perfor-

mance for a specific parameter set. The consistency of model

structures can vary gradually between fully consistent and

fully inconsistent. It is important to have insight into the con-

sistency of model structures for two reasons: first, a high con-

sistency means that the model is capable of reproducing sev-

eral hydrological signatures with the same parameter set, im-

plying a better representation of real world processes (i.e. the

model can reproduce different, ideally contrasting, aspects of

the hydrograph). Second, a highly consistent model is thus

expected to behave comparably in the calibration and valida-

tion period (Kirchner, 2006; Fenicia et al., 2007) and would

therefore have a reduced predictive uncertainty.

The consistency and performance of a model structure can

be determined independently, but are both important for the

evaluation of the model structures (Wagener et al., 2003).

Only a model with high performance and high consistency

may be considered a suitable hypothesis for a certain catch-

ment and, therefore, points towards a high degree of real-

ism. In reality all signatures occur simultaneously. Hence, a

model that is able to reproduce all selected signatures to a

high degree with the same parameter set has a higher degree

of realism than a model structure that is not able to do that.

However, it is possible that, for a certain model structure, the

degree of performance is different from the degree of con-

sistency. The consequences for different combinations of the

degree of consistency and performance are shown in Fig. 2.

For an inconsistently good model structure, signatures are

reproduced well, but not with the same parameter set. For a

consistently poor model structure, signatures are not repre-

sented correctly, although the model is consistent. So, a high

degree of consistency only gives extra value in the evaluation

process when it is combined with a high performance.

2.2 Principal component analysis (PCA)

A principal component analysis (PCA) is a statistical tool

which can be used to reduce the dimensions of a multivariate

problem. For a PCA the eigenvectors of a covariance matrix

are determined. For many data sets most of the variance is

described in the direction of a limited number of eigenval-

ues. By transforming the original axes towards the eigenval-

ues (principal components (PCs)), the original variable can

be expressed in terms of the PCs (the variables have a certain

loading on the PCs). More detailed descriptions on the prin-

ciples of a PCA can be found in literature about multivariate

analysis (e.g. Krzanowski, 2000; Härdle and Simar, 2003).

In Appendix A an example can be found explaining the use

of PCA for FARM. Note that here the vectors of the loadings

are referred to as “vectors” thereafter.
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Fig. 2. Consequences for model structures for different combina-

tions of performance and consistency, under the condition that the

uncertainty of the input data is limited. The use of signatures for the

evaluation of performance and consistency limits the influence of

input uncertainty.

2.2.1 Input for PCAs

For FARM PCAs are used to explore the correlation structure

between different evaluation criteria. A PCA is performed for

each model structure in each catchment for N parameter sets.

Here N is the number of parameter sets needed to reach con-

vergence (see Sect. 4.4.1). The parameter sets are randomly

sampled from a derived posterior parameter distribution. For

these N samples all the evaluation criteria for the selected

signatures are calculated (see Fig. 1); these values form the

input to the PCA. Note that the model calibration strategy

remains the choice of the modeller.

For a PCA it is assumed that the input data are generated

from a normal distribution (Johnson and Wichern, 1998).

Normality is especially important for the marginal distri-

butions. Multivariate normality is of less importance if the

PCA is used for dimension reduction, and thus as a mere

descriptive tool as is the case with FARM (Jolliffe, 1986).

If the marginals are not normally distributed, the values for

the evaluation criteria have to be transformed to a normal

distribution. This transformation could for example be done

with a normal quantile transformation (Weerts et al., 2011;

Montanari and Brath, 2004).

2.2.2 Interpretation of PCAs

The PCA represents two model characteristics: the perfor-

mance and the consistency. The three indicative performance

categories (see Sect. 4.1) are presented by the thickness of

the vectors in the PCA diagram (see for example the results

of the Maimai in Fig. 8). Note that, for each study, specific

values for the categories should be defined.

The degree of consistency is presented by the configura-

tion of the vectors in the PCA. When a model structure is able

to simulate different signatures well with the same set of pa-

rameter values, the corresponding evaluation criteria should

be directly correlated. In other words, a better performance

on one evaluation criterion also means a better performance

on another evaluation criterion, leading to a high consistency.

For the PCA this results in the vectors, representing the eval-

uation criteria, pointing in the same direction. When evalua-

tion criteria are inversely correlated, it means that a param-

eter set with a better performance for one criterion leads to

a worse performance for another. It is assumed that the sig-

natures used for FARM are constructed to reflect different

aspects of the hydrograph and, therefore, are not correlated

by construction. The diagram which is the result of the PCA

can be characterised by five general types of configurations

(Fig. 3):

1. All evaluation criteria are completely and directly cor-

related (“line-shaped” diagram) (Fig. 3a). When this is

the case, the model is fully consistent, which would be

the case for a hypothetical “perfect” model.

2. All evaluation criteria have their highest loading in the

same direction on one principal component and thus

are all directly correlated to a certain degree (Fig. 3b).

When this is the case, the model is consistent.

3. The evaluation criteria are all located in one quadrant

of the diagram and are all partly directly correlated

(Fig. 3c). An increase in performance for one criterion

does not result in a decrease in performance for another

criterion. Therefore, this configuration has a medium

degree of consistency.

4. The evaluation criteria have their longest distance in

the same direction on one of the two principal compo-

nents and are therefore all either directly correlated or

uncorrelated (“L-shaped” diagram) (Fig. 3d). This con-

figuration has a medium degree of consistency as well,

as there are two sets of evaluation criteria. The criteria

within the different sets are highly and directly corre-

lated, but the sets themselves are uncorrelated.

5. The evaluation criteria show a “star-shaped” diagram

and some evaluation criteria are uncorrelated, while oth-

ers are inversely correlated (Fig. 3e). In this case the

model is inconsistent.

The configurations in Fig. 3 are basic configurations. In

case of deviations from these basic configurations, three mea-

sures are important for interpretation of the PCA diagrams;

these three are listed below. These measures can in princi-

ple be objectively determined, but in this study they are only

determined visually.

– Spreading on PC1 or PC2 (x- or y-axis): PC1 always

represents a larger part of the explained variance in the

data, so a spread or inversely correlated evaluation crite-

ria on PC1 determine the consistency to a larger extent

than inversely correlated evaluation criteria on PC2.
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Fig. 3. Illustration of possible configurations for the PCA diagram: each vector represents an evaluation criterion (analysis is done per model

structure). The axes are formed by the first two principal components (PCs). (a) represents a fully consistent model structure, (e) a fully

inconsistent model structure.

– Length of the vectors: the longer a vector is, the higher

the loadings, and thus the more influence the vector

has on the total analysis. An inversely correlated vector

which is relatively small influences the consistency less

than an inversely correlated vector which is relatively

long.

– Inversely correlated thick vectors: a thick vector means

that there is a parameter set for which the signature can

be modelled well; a thin vector indicates poorer model

performance. So, inversely correlated thick vectors in-

dicate that inconsistency is the main problem, while in-

versely correlated thin vectors indicate that performance

is still the main problem.

Note that a PCA only shows the relative similarities and

differences within the data used for the PCA; therefore, the

absolute values on PC1 and PC2 and the individual direction

of the vectors are of no importance. When interpreting a PCA

diagram, only the relative directions of the vectors and the

relative length differences of the vectors are important.

2.3 Hydrological signatures

The performance and consistency of the model structures are

evaluated with evaluation criteria based on hydrological sig-

natures. These signatures can be derived from the observed

hydrograph, for example the flow duration curve or the au-

tocorrelation coefficient. However, these signatures can in

principle also be derived from other data sources, for exam-

ple groundwater levels, tracer data or satellite data. Note that

the “more independent” the selected signatures are (i.e. re-

flecting contrasting parts of the hydrograph), the higher the

significance of their PCA interpretation.

Most signatures are represented by one value for the ob-

served and one value for each modelled hydrograph. A pos-

sibility to formulate the evaluation criterion (F ) is shown in

Eq. (1). Only the value for the signature of the modelled hy-

drograph changes per parameter set; the value for the ob-

served hydrograph is the same for each parameter set. By

dividing the modelled value by the observed value, the rela-

tive deviation of the modelled from the observed value can

be obtained. The absolute value and “1 −” the ratio are re-

quired to obtain the same result (F ) for the same deviation of

the modelled value above or below the observed value.

F =

∣

∣

∣

∣

1 −
S(Qmod)

S(Qobs)

∣

∣

∣

∣

, (1)

with S(Qmod) the value of the hydrological signature for the

modelled hydrograph and S(Qobs) the value of the hydrolog-

ical signature for the observed hydrograph.

With this formulation of the evaluation criterion, the lower

the value for the evaluation criterion is, the better the perfor-

mance. For the PCA it is convenient to link a better perfor-

mance to a higher value for the evaluation criterion. So, the

formulation in Eq. (2) could be used for the PCA.

FPCA = 1 − F (2)

3 Study areas

Two small headwater catchments have been selected for

this case study: the Maimai M8 catchment in New Zealand

(0.038 km2) and the Wollefsbach catchment in Luxembourg

(4.6 km2). The catchments have been selected because of

their small size and their data availability. Another advan-

tage of these two catchments is their previous use in other

research projects (e.g. McGlynn et al., 2002; Fenicia et al.,

2008a; Kavetski and Fenicia, 2011). These previously ob-

tained results can be used to check the new results for plausi-

bility. Figure 4 shows the discharge, precipitation and poten-

tial evaporation for both catchments.

3.1 Maimai

The Maimai M8 catchment is located in the northern part of

New Zealand’s South Island (Fig. 5). It is small (0.038 km2),

but one of the most researched catchments worldwide

(McGlynn et al., 2002). The Maimai has short, steep slopes

and shallow soils, where saturation seldom decreases be-

low 90 %. The subsoil is poorly permeable and the yearly

deep percolation rate is approximately 100 mm yr−1. The

whole catchment is forested with a mixture of deciduous

trees, which leads to an interception of about 26 % of the

rainfall. The yearly rainfall and discharge are approximately

2600 mm yr−1 and 1550 mm yr−1, respectively. More infor-

mation about this catchment and previous research is de-

scribed in a review by McGlynn et al. (2002). Due to the
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Fig. 4. Discharge, precipitation and potential evaporation data for

Maimai and Wollefsbach catchments (discharge = bottom blue line,

precipitation = top blue bars, potential evaporation = top red line).

Note that the potential evaporation is presented in mm day−1 and

the discharge and precipitation in mm h−1. The discharge scale for

both catchments differs: the discharge in the Wollefsbach is much

lower.

climate, the physical properties of the catchment and, as a

result of this, the fact that the catchment is most of the time

saturated, the rainfall-runoff processes are relatively easy to

model. The wet climate with little seasonality leads to a

system with a limited number of hydrological regimes. The

steep slopes together with the shallow, saturated soils and

the impermeable subsurface lead to a quick response of the

catchment (Vaché and McDonnell, 2006). For the Maimai

catchment hourly data of discharge, precipitation and poten-

tial evaporation from 1 January 1985 till 31 December 1987

were used. The rainfall was measured with a recording rain

gauge, which is located inside the catchment. The poten-

tial evaporation was estimated as described by Rowe et al.

(1994). The first year of the data was used as a warm-up pe-

riod; the last two years were used for calibration.

3.2 Wollefsbach

The Wollefsbach is located in the Attert catchment in Lux-

embourg (Fig. 6). The Wollefsbach is a small headwa-

ter catchment, like the Maimai; however, the catchment

area is about 100 times larger (4.6 km2). The Wollefsbach

has shallow top soils, with a low permeable clay layer

in the subsoil; therefore, the deep percolation is minimal

(Kavetski and Fenicia, 2011). The land use in the catchment

consists mainly of grassland and cropland. The discharge in

the Wollefsbach is characterised by a quick response dur-

ing the winter period and almost no discharge in the sum-

mer period (see also Fig. 4). For the Wollefsbach catchment

hourly data of discharge, precipitation and potential evap-

oration from 1 September 2004 till 30 August 2007 were

used. The rainfall was measured with two tipping buckets,

which are located inside the catchment, and the rainfall mea-

surements were aggregated based on Thiessen polygons. The

Fig. 5. Catchment area of the Maimai study area in New Zealand:

the M8 catchment is one of the side branches of the main creek.

Left: red dot indicates the location in New Zealand, right: topo-

graphic map of the Maimai study area with indicated the catch-

ment boundary of the M8 catchment (source: http://www.topomap.

co.nz/).

potential evaporation was estimated with the Penman equa-

tion (Penman, 1948). The first year of the data was used as a

warm-up period, the following two years for calibration.

4 Methodology

In this section the specifics of FARM are described for this

case study.

4.1 PCA

Here, the model posterior parameter distributions were deter-

mined with Bayesian inference, using a heteroscedastic error

model based on the weighted least squares (WLS) scheme

(Thyer et al., 2009) and non-informative prior parameter dis-

tributions. A total of 1000 random samples were drawn from

the posterior distributions, and all evaluation criteria were

calculated for each random sample. The evaluation criteria

distributions were then transformed to normal distributions

with a normal quantile transformation (Weerts et al., 2011;

Montanari and Brath, 2004). The transformed criteria were

subsequently used as input for the PCAs.

The three indicative performance categories for this case

study are defined as follows:

– High (continuous and very bold vectors), when the max-

imum value for the evaluation criterion is higher than

0.8 and 90 % of the values for the evaluation criterion

are higher than 0.65.

– Medium (dashed and bold vectors), when is the max-

imum value for the evaluation criterion is higher than

0.4 and 90 % of the values for the evaluation criterion

are higher than 0.3.

– Low (dotted and thin vectors), for all other cases.

Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013 www.hydrol-earth-syst-sci.net/17/1893/2013/
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Fig. 6. Catchment area of the Wollefsbach catchment in Luxem-

bourg. Left: red dot indicates the location in Luxembourg, right:

topographic map of the Wollefsbach catchment with indicated the

catchment boundary of the Wollefsbach catchment (source: http:

//eau.geoportail.lu/).

4.2 Hydrological signatures

The signatures used for this case study are described in the

following. All the signatures are calculated for the total mod-

elled period, and in addition some are also calculated for spe-

cific periods. These periods are the periods in which the low

flows (May–September) or high flows (November–April) oc-

cur in the Wollefsbach. In the Maimai the seasonality is min-

imal; therefore, there are no clear periods of high and low

flow. However, the same signatures and periods are used for

both catchments: May until September as low flow period

and November until April as high flow period. Most of the

signatures are expressed as evaluation criterion as defined

in Eq. (1), except for the flow duration curve, as this sig-

nature (the flow duration curve itself) is not represented by

one value. The equations and a sketch of each signature are

shown in Table 1. Below the applied signatures are described

in detail.

4.2.1 Autocorrelation (AC)

The autocorrelation is a measure for the smoothness of a hy-

drograph: a high autocorrelation means a small difference

between two consecutive points. For this signature the cor-

relation coefficient of the autocorrelation with a lag of 1 day

for a hydrograph is calculated (Winsemius et al., 2009). A

lag of 1 day means that within a hydrograph a data point is

compared with the data point 1 day earlier. For the total flow

period this signature is used to represent the timing of the

peaks.

Low flow period (AClow)

The low flow period is taken into account to investigate

whether this signature can be used to evaluate a quick re-

sponse of the catchment on rain events in the summer period.

In the Maimai catchment there is no clear low flow period,

so it is expected that for the Maimai the evaluation criterion

for the low flow period is strongly correlated with the one for

the total flow period.

4.2.2 Rising limb density (RLD)

Like the autocorrelation, this signature is an indication of the

smoothness of the hydrograph, but the RLD is averaged over

the total period and is completely independent of the flow

volume (Shamir et al., 2005). This signature is calculated

by dividing the number of peaks by the total time the hy-

drograph is rising. Therefore, the RLD is the inverse of the

mean time to peak. Together with RLD also DLD (declining

limb density) has been used before for supporting the cali-

bration process (Shamir et al., 2005; Yadav et al., 2007) and

for catchment classification (Sawicz et al., 2011).

4.2.3 Peak distribution (peaks)

This signature shows whether the peak discharges are of

equal height; therefore, only the peak discharges are taken

into account. A peak discharge is the discharge at a time step

of which both the previous and the following time step have a

lower discharge. From these peak discharges a flow duration

curve is constructed and the average slope between the 10th

and 50th percentile is taken as the measure for this signa-

ture. By taking the 10th and 50th percentile, only the higher

peaks (but not the extremes) are taken into account, which

are considered the most interesting for this analysis (Sawicz

et al., 2011). For the total flow period, this signature is a mea-

sure for the differences in peak heights. Due to measurement

errors and heterogeneity, the input rainfall for the modelled

and observed discharge can be different, resulting in different

peak heights. By using the slope of the flow duration curve,

only the relative peak heights of the modelled and observed

hydrograph are compared.

Low flow period (peaksLow)

The peak distribution during the low flow period is again

taken into account to investigate whether this signature can

identify the peaks in the discharge during the low flow pe-

riod. For this reason the uses of the 10th and 50th percentile

are interesting, as identifying the small bumps is not useful

for this analysis. In the Maimai catchment there is no clear

low flow period, so it is expected that for the Maimai the eval-

uation criterion for the low flow period is strongly correlated

with the one for the total flow period.

4.2.4 Flow duration curve (FDC)

For this signature a flow duration curve is constructed from

all the discharge data. The Nash–Sutcliffe efficiency (Nash

and Sutcliffe, 1970) between the observed and modelled flow

duration curve is taken as the evaluation criterion. Flow du-

ration curves are frequently used hydrological signatures to

evaluate the overall behaviour of a catchment. Depending on

www.hydrol-earth-syst-sci.net/17/1893/2013/ Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013
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Table 1. Explanation of the different hydrological signatures used for this study. The formula for FDC directly gives the evaluation criterion.

The formulas for AC, RLD and peaks only give the signature; the evaluation criterion can be derived with Eq. (1) (Qi is the discharge at

time step i, Q the average discharge, XFDC,i the value of the flow duration curve of the modelled discharge with i probability of exceedance,

YFDC,i the value of the flow duration curve of the observed discharge with i probability of exceedance, and YFDC the average observed

discharge).

Signature Formula Sketch

Autocorrelation AC =

∑
(

Qi−Q
)(

Qi+24−Q
)

∑
(

Qi−Q
)2

1 day (24h)

Rising limb density RLD =
Tr

Npeaks

Tr Tr Tr

Peak distribution peaks =
Q10−Q50

0.9–0.5

Q10 Q50

Flow duration curve FDC =

∑

(XFDC,i−YFDC,i)
2

∑
(

YFDC,i−YFDC

)2 Time [T]

D
is

c
h
a
rg

e
 [
L
/T

]

Probability of exceedance

D
is

c
h
a
rg

e
 [
L
/T

]

Observed (Y)

Modelled (X)

the study, different parts of the FDC were previously investi-

gated (Yadav et al., 2007; Yilmaz et al., 2008; Blazkova and

Beven, 2009; Westerberg et al., 2011). The FDC for the total

flow period represents the overall behaviour of a catchment.

By taking the Nash–Sutcliffe efficiency of the flow duration

curve, instead of the Nash–Sutcliffe efficiency of the flows,

the magnitudes of flow are taken into account, without focus-

ing on timing problems and missed or unrepresented rainfall

events due to heterogeneity of rainfall.

Low flow period (FDClow)

When only using the total flow period, the low flows are not

specifically taken into account. This signature for the low

flow period represents the overall behaviour of a catchment

during the low flow period. In the Maimai catchment there is

no clear low flow period, so it is expected that the result for

the low flow period is similar to the result of the total period.

High flow period (FDChigh)

When only using the total flow period, also the high flows

are not specifically taken into account. This signature for the

high flow period represents the overall behaviour of a catch-

ment during the high flow period. As in the Maimai catch-

ment, there is no clear high flow period either; it is expected

that the result for the high flow period is similar to the result

of the total and low flow period.

4.2.5 Reference evaluation criteria

In addition to the evaluation criteria based on a hydrologi-

cal signature, also two reference evaluation criteria are used:

Nash–Sutcliffe efficiency (ENS) and the Nash–Sutcliffe ef-

ficiency of the log of the flows (ElogNS). These evaluation

criteria are used because they (especially the Nash–Sutcliffe

efficiency) are commonly used for the evaluation of hydro-

logical models and are therefore suitable to use as a bench-

mark for this study.

Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013 www.hydrol-earth-syst-sci.net/17/1893/2013/
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4.3 Model structures

For this study nine flexible model structures are tested,

and their performance and consistency are compared with

2 (fixed) benchmark models: GR4H (an hourly version of

GR4J, Perrin et al., 2003) and a modified version of the HBV

model (Lindström et al., 1997). The main adaptation on the

HBV model is that river routing is not included (D. Kavetski,

personal communication, 2012), because it is not considered

as a crucial process due to the small size of the catchments.

These benchmark models are mainly selected because they

are widely used for hydrological modelling.

4.3.1 Configuration flexible model structures

The nine flexible model structures have been configured with

the SUPERFLEX framework (Fenicia et al., 2011). Model

structures built with the SUPERFLEX framework consist of

reservoir elements, lag function elements and junction ele-

ments. The created model structures (M1 to M9; see also

Fig. 7 and Table 2) differ in the number of reservoirs (1 to

5), the number of fluxes (3 to 10) and the number of param-

eters (1 to 9). The selection of the model structures is mainly

based on the model structures used by Kavetski and Fenicia

(2011) and on experiences of previous modelling exercises.

A discussion of processes represented by the model struc-

tures can be found in Kavetski and Fenicia (2011).

4.3.2 Model conditioning

The model conditioning is done with Bayesian inference, as

described by Kavetski and Fenicia (2011). The applied er-

ror model is based on weighted least squares. For the quasi-

Newton parameter optimisation, 20 multi-starts are used.

During the Markov chain Monte Carlo (MCMC) sampling,

5000 parameter sets were generated. The prior and poste-

rior parameter ranges of the drawn samples are shown in Ta-

bles 2–4.

4.4 Plausibility checks

4.4.1 Sensitivity to number of parameter sets

In this case study 1000 parameter sets, randomly drawn from

the posterior distribution, are used to construct the PCA. To

investigate whether this number is sufficient for stable PCA

patterns, the sensitivity to the number of parameter sets was

tested. To test the sensitivity of the PCA, it is important to

know if the PCA is ergodic. When this is the case, there is

a convergence to a stationary measure when enough samples

are taken into account; this convergence is independent of

the initial conditions (Descombes, 2012). To test whether the

PCA is ergodic and to test if 1000 parameter sets are suffi-

cient, a PCA was also performed with 500 and 200 parame-

ter sets. When the differences between the diagrams with 200

and 500 parameter sets are larger than between the diagrams

for 500 and 1000 parameter sets, it is an indication of con-

vergence and ergodicity can be assumed.

4.4.2 Independent test period

In addition to the sensitivity to the number of parameter sets,

the obtained results can also be validated on a independent

test period. It may be expected that a consistent model struc-

ture behaves similarly in the calibration and validation pe-

riod, as it is assumed to capture the dominant processes bet-

ter than an inconsistent model (cf. Seibert, 2000). Therefore,

the model structures are run for an independent test period

with the parameter sets derived during the calibration. For

the Maimai catchment one additional year of data was avail-

able; for the Wollefsbach catchment two additional years of

data were available. Both the performance and consistency

are compared for the calibration and validation period.

5 Results

5.1 Maimai

The PCA results for the Maimai catchment of all model

structures are shown in Fig. 8. The PCA results are based on

the covariance matrix of the evaluation criteria. To illustrate

what the PCA results are based on, the covariance matrix of

model structure M8 in the Maimai is presented in Table 5.

Performance vs. consistency

All the model structures developed with the flexible frame-

work except M8 have a very small range in their maximum

Nash–Sutcliffe efficiency; M3 to M5 even have an equal

maximum Nash–Sutcliffe efficiency. However, the consis-

tency (the configuration of the vectors in the diagrams) dif-

fers between the model structures. M1 and M3 show a com-

paratively high degree of consistency, i.e. a low spread of

the vectors. For M1 the variance explained by PC2 is small

compared to PC1; therefore, the spreading on PC2 has a mi-

nor influence. The evaluation criteria for M3 almost show

an L-shape (see Sects. 2.2.1 and 2.2.2), and only ElogNS is

inversely correlated. Model structures M4 to M7 are much

less consistent. Model structure M8 behaves differently from

model structures M1 to M7: it has a relatively high maxi-

mum Nash–Sutcliffe efficiency and a high performance for

the other evaluation criteria; the diagram for M8 really shows

an L-shaped configuration. Another interesting aspect is the

high performance for most evaluation criteria for the HBV

model, but a relatively low consistency. For the HBV model

some evaluation criteria are inversely correlated on PC1, and

the variance explained by PC2 is relatively high. GR4H has a

high performance for most evaluation criteria, like the HBV

model, but is more consistent than the HBV model, as the

evaluation criteria are mainly inversely correlated on PC2,

thus being of limited importance.

www.hydrol-earth-syst-sci.net/17/1893/2013/ Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013
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M1 M3

M5 M6 M7

M9M8

M2 M4

Fig. 7. Conceptual configurations of the flexible model structures used for this study.

Table 3. Prior and posterior parameter ranges for both catchments for GR4H.

x1 (mm) x2 (mm) x3 (mm) x4 (h)

Prior

1.0 to 2.0 × 103
−1.0 × 102 to 1.0 × 102 1.0 to 5.0 × 102 5.1 × 10−1 to 2.0 × 101

Posterior ranges Maimai

1.2 × 102 to 1.3 × 102
−9.7 × 10−1 to −8.5 × 10−1 1.7 × 101 to 1.9 × 101 6.1 to 6.7

Posterior ranges Wollefsbach

9.2 × 101 to 1.2 × 102
−5.1 × 10−1 to −4.0 × 10−1 5.5 × 101 to 5.9 × 101 1.9 to 2.0

5.2 Wollefsbach

The PCA results for the Wollefsbach catchment of all model

structures are shown in Fig. 9. It can be seen that the re-

sults are less clear than for the Maimai: the consistency of

the model structures is lower, and it is more difficult to iden-

tify if a model structure has a higher degree of consistency

than another.

Performance vs. consistency

The performance of all model structures is relatively low:

only GR4H and HBV have four thick vectors; M1 to M5 only

have one thick vector. It can be seen that M5 to M7 have a low

consistency, i.e. a high degree of spreading, but their perfor-

mance is better than for M1 to M4. The consistency of HBV

and M8 is higher, and their performance is higher than most

of the other model structures. Although the consistency of

M1 and M2 is also relatively good (the evaluation criteria are

mainly spread on PC2), their performance is poor, so these

model structures are consistently poor.

5.3 Comparison of catchments

The two catchments show large differences in performance

and consistency. Both are much higher for the Maimai than

for the Wollefsbach. The main similarity between the two

catchments is the low consistency for the model structures

with a groundwater reservoir (M6, M7 and M9). The per-

formance and consistency for the model structures in both

catchments are compared in Fig. 10. The classification for

this figure is purely indicative with the purpose of showing

the performance and consistency of model structures rela-

tive to those of other model structures. In this figure it can

be seen that in both catchments M1 and M2 are consis-

tently poor. Another observation is the difference between

www.hydrol-earth-syst-sci.net/17/1893/2013/ Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013
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Fig. 8. Results for PCA for the Maimai catchment. Each figure represents one of the model structures. The figures are based on 1000 parameter

sets. The principal components are dimensionless, because the ratios of specific signatures of the modelled and observed hydrographs are

used to construct the evaluation criteria and these ratios are dimensionless. The total variance explained by these figures is the sum of the

explained variance per PC.
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Fig. 9. Results for PCA for the Wollefsbach catchment. Each figure represents one of the model structures. The figures are based on 1000

parameter sets. The principal components are dimensionless, because the ratios of specific signatures of the modelled and observed hydro-

graphs are used to construct the evaluation criteria and these ratios are dimensionless. The total variance explained by these figures is the

sum of the explained variance per PC.
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Table 4. Prior and posterior parameter ranges for both catchments for HBV.

FC (mm) β (–) PWP∗ (mm) L (mm) k0 (1/h) k1 (1/h) kPerc (1/h) k2 (1/h) Imax (mm)

Prior

1.0–5.0 × 102 1.0–10 1.0–5.0 × 102 5.0 × 10−2–5.0 × 101 1.0 × 10−3–3.0 × 101 1.0 × 10−4–3.0 × 101 1.0 × 10−3–3.0 × 101 1.0 × 10−3–3.0 × 101 1.0 × 10−7–10

Posterior ranges Maimai

9.4 × 101–1.0 × 102 5.8–6.4 5.9 × 101–6.7 × 101 7.0 × 10−1–8.0 × 10−1 3.7 × 10−2–4.0 × 10−2 8.7 × 10−3–1.1 × 10−2 6.7 × 10−3–7.4 × 10−3 1.5 × 10−3–1.7 × 10−3 5.3–5.6

Posterior ranges Wollefsbach

4.5 × 101–5.3 × 101 2.9–3.5 3.4 × 101–4.4 × 101 1.16 × 101–1.22 × 101 1.8 × 10−1–2.1 × 10−1 3.5 × 10−2–3.8 × 10−2 1.4 × 10−2–1.5 × 10−2 2.1 × 10−3–2.7 × 10−3 6.7–7.5

∗ PWP = Perm wilting point [mm m−1] · soil thickness [m].

Table 5. Covariance matrix of the evaluation criteria for M8 in the Maimai catchment. The data are normally transformed, and therefore the

variances within a evaluation criterion are very high. However, a small experiment shows that this does not influence the PCA results a lot.

ENS ElogNS AC AClow RLD peaks peaksLow FDC FDClow FDChigh

ENS 0.989 −0.187 0.026 −0.014 −0.068 −0.039 −0.017 0.014 −0.005 0.053

ElogNS −0.187 0.989 0.225 0.410 −0.030 0.671 0.249 0.549 0.557 0.522

AC 0.026 0.225 0.989 0.921 −0.058 0.127 0.113 0.886 0.900 0.846

AClow −0.014 0.410 0.921 0.989 −0.226 0.281 0.129 0.904 0.919 0.867

RLD −0.068 −0.030 −0.058 −0.226 0.989 −0.146 −0.229 −0.054 −0.062 −0.057

peaks −0.039 0.671 0.127 0.281 −0.146 0.989 0.531 0.433 0.413 0.458

peaksLow −0.017 0.249 0.113 0.129 −0.229 0.531 0.989 0.187 0.188 0.198

FDC 0.014 0.549 0.886 0.904 −0.054 0.433 0.187 0.989 0.985 0.975

FDClow −0.005 0.557 0.900 0.919 −0.062 0.413 0.188 0.985 0.989 0.961

FDChigh 0.053 0.522 0.846 0.867 −0.057 0.458 0.198 0.975 0.961 0.989

the catchments for M8 and M3. Both performance and con-

sistency are much better for the Maimai, most likely because

the catchment is small and homogeneous, and the climate is

very humid/wet.

5.4 Plausibility of results

5.4.1 Sensitivity to number of parameter sets

Figure 11 shows the PCA diagrams for M8 in both catch-

ments for 200, 500 and 1000 parameter sets. In the figure it

can be seen that the difference between selecting 1000 and

500 parameter sets is smaller than the difference between se-

lecting 500 and 200 parameter sets. This sensitivity analysis

is performed for all the model structures, and the results are

compared with a visual inspection. Convergence is present

to a varying degree for all model structures. Model structures

with a higher performance and consistency and the model

structures with less complexity exhibit larger convergence.

However, these are not always the model structures with a

more constrained posterior parameter distribution. In gen-

eral, the convergence for all model structures shows that er-

godicity can be assumed and that the use of 1000 parameter

sets is sufficient to have an indication of consistency of the

evaluated model structures in this study.

5.4.2 Independent test period

In Fig. 12 an example is given to show the differences be-

tween two model structures with a more (M8) and a less

(M7) comparable behaviour between the calibration and val-

idation period for the Maimai catchment. A summary of the

results of both catchments is presented in Tables 6 and 7.

The model structures in these tables are ordered by consis-

tency for the calibration period. For the Maimai it can be seen

that both the performance and consistency changed between

the calibration and validation period. Model structures with a

low consistency in the calibration period have slightly larger

changes for the validation period. For the Wollefsbach it can

be seen that there are mainly changes in consistency between

the calibration and validation period. For most model struc-

tures with a low consistency, the configuration in the valida-

tion period changed much more than for the model structures

with a higher consistency.

6 Discussion

6.1 Applicability

Comparing model structures based on both performance and

consistency has some advantages with respect to a compari-

son based on either performance or consistency. This can es-

pecially be seen for M8, M3, GR4H and HBV in the Maimai

www.hydrol-earth-syst-sci.net/17/1893/2013/ Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013
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Fig. 10. Overview of the performance (columns) and consistency

(rows) of the Maimai (left) and Wollefsbach (right). The middle

row and column indicate a medium consistency and performance.

The location of the model structures in this overview is determined

based on visual inspection. There is only a difference between the

squares: the exact position of a model structure within a square

is arbitrary. The PCA configurations for a high consistency (line-

shaped) are not presented in this figure, as those configurations did

not occur among the results.

catchment. Their performance is more or less equal, but their

consistency is not. Another example is M1 and M2 for the

Wollefsbach. Their performance is poor, while their consis-

tency is relatively good for the hydrological signatures used

for this study. This also shows that consistency on itself does

not give useful information about a model structure. Rather,

for model structures with a high performance, the degree of

consistency gives useful information about the suitability for

a certain catchment.

The results for the Wollefsbach are not as clear as for the

Maimai, but for both catchments it is possible to point out

model structures that better simulate the selected signatures

than other model structures. Sometimes the differences be-

tween PCA diagrams are small; when comparing diagrams

with small differences, it is important to keep in mind the

three measures described in the Sect. 2:

1. spreading on PC1 or PC2;

2. length of the vectors; and

3. inversely correlated thick lines.

A model structure that suits a certain catchment is more

likely to represent the dominant processes that actually occur

in the catchment than model structures that are less suited for

the catchment. Therefore, the model structure is an indica-

tion of dominant processes in a catchment. However, when

the hydrograph does not contain information about certain

processes, these processes will not be taken into account

for the analysis. In that case, auxiliary data sources are re-

quired to reveal these processes (e.g. Vaché and McDon-

nell, 2006; Son and Sivapalan, 2007; Fenicia et al., 2010;

Hrachowitz et al., 2013a; Birkel et al., 2010). When extra

data sources give extra information, it is expected that the

Table 6. Summary of differences between the PCA graphs for the

calibration and the independent test period for the Maimai catch-

ment (EC = evaluation criterion). The model structures are ordered

by consistency in the calibration period. 1, 2 or 3 “EC changed”

in the last column means the configuration of the PCA diagram of

the calibration and validation are equal, but 1, 2 or 3 vectors have

a different direction and/or length. “conf. changed” means that the

relative direction of almost all vectors changed.

Performance Consistency Performance Consistency

originala originalb validationa change

HBV 7 low 7 config. changed

M7 2 low 4 (+2) 3 EC changed

M6 2 low 5 (+3) 2 EC changed

M9 4 low 5 (+1) 2 EC changed

M4 3 low 2 (−1) small differences

M5 3 low 2 (−1) small differences

M1 1 middle 2 (+1) 2 EC changed

M3 6 middle 5 (−1) 1 EC changed

GR4H 8 middle 9 (+1) 1 EC changed

M2 5 middle 5 small differences

M8 8 high 5 (−3) 1 EC changed

a The number of signatures in performance category high (thick vectors) is taken as a

measure. b According to Fig. 10.

evaluation criteria belonging to the extra hydrological signa-

tures are uncorrelated with the evaluation criteria from the

streamflow data.

In addition, poor performance and poor consistency of a

certain model structure can be an indicator for the absence of

certain runoff processes in the catchment. This can be seen

in the Maimai and the Wollefsbach: the consistency and per-

formance of M6, M7 and M9 are relatively low. These are

the only flexible model structures with a groundwater reser-

voir, so possibly a groundwater reservoir is not important or

incorrectly represented for both catchments. This is also in

accordance with the site description of both catchments: both

have shallow soils and (almost) impermeable subsurface lay-

ers. The performance and consistency of M8 in the Maimai

are very good; M8 has a riparian zone reservoir, which prob-

ably fits well with the almost year-round saturated soils of

the Maimai catchment.

The use of a PCA can also help to identify the relation be-

tween the dominant processes and the response behaviour of

the catchment (the hydrograph). For example, from the PCA

diagram of model structure M6 in the Wollefsbach catch-

ment, it can be seen that FDClow has a low performance and

is inversely correlated with FDC and FDChigh, for the cali-

bration period. It can also be seen that peaksLow has a low

performance and is inversely correlated with AClow. So, no

parameter set can be selected with a good performance for

signatures focusing on the high and low flow period, but also

no parameter set can be selected with a good performance for

different signatures focusing on the low flow period. There-

fore, it is likely that the representation of dominant processes
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Fig. 11. Result PCA for M8 in Maimai (top) and Wollefsbach (bottom) for different number of parameter sets:

200(left)/500(middle)/1000(right). The difference between the diagrams with 1000 and 500 parameter sets is smaller than the differ-

ence between the diagrams with 500 and 200 parameter sets. The principal components are dimensionless.

Table 7. Summary of differences between the PCA graphs for the calibration and the independent test period for the Wollefsbach catchment

(EC = evaluation criterion). The model structures are ordered by consistency in the calibration period. 1, 2 or 3 “EC changed” in the last

column means the configuration of the PCA diagram of the calibration and validation are equal, but 1, 2 or 3 vectors have a different

direction and/or length. “conf. changed” means that the relative direction of almost all vectors changed.

Performance Consistency Performance Consistency Performance Consistency

originala originalb validationa change validationa change

M3 3 low 2 (−1) config. changed 3 config. changed

M6 3 low 3 config. changed 3 config. changed

M7 3 low 3 config. changed 3 config. changed

M9 3 low 3 config. changed 2 (−1) config. changed

GR4H 3 low 3 config. changed 2 (−1) config. changed

M5 3 low 3 1 EC changed 3 1 EC changed

M1 2 middle 3 (+1) config. changed 1 (−1) config. changed

M8 2 middle 2 3 EC changed 2 3 EC changed

M4 2 middle 2 2 EC changed 3 (+1) 2 EC changed

HBV 2 middle 2 2 EC changed 1 (−1) 2 EC changed

M2 2 middle 1 (−1) 1 EC changed 2 1 EC changed

a The number of signatures in performance category high (thick vectors) is taken as a measure. b According to Fig. 10.

for the low flow period should be adapted. In this case the

existence of a groundwater reservoir in the model structure

can have a high influence on the modelled discharge in the

low flow period.

It should be noted that FARM is meant to indicate which

model structures have a higher performance and consis-

tency than others. However, data errors can influence the

performance and consistency of a model, and this possible

influence is not explicitly included in FARM (Bárdossy and

Singh, 2008). The influence of these errors will be different

for different signatures. On the other hand, by using signa-

tures, mainly the dynamics of the measured and observed

hydrograph are taken into account. These dynamics are more

likely to represent catchment behaviour and to be less sensi-

tive to small measurement errors than evaluation criteria that

compare each point of the hydrograph individually.
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Fig. 12. PCA diagrams for M7 (left) and M8 (right) for both the

calibration (top) and validation (bottom) period. The principal com-

ponents are dimensionless. M8 shows a higher consistency for the

calibration period and a more consistent behaviour between the cal-

ibration and validation period. Presented results are for the Maimai

catchment.

6.2 Using the framework

The use of PCAs for model evaluation also has limitations.

The main limitation may be the low variance explained by the

first two principal components as obtained in this study. For

most model structures the variance explained is below 80 %.

More reliable diagrams would therefore also incorporate the

third principal component; however, a 3-D graph is more dif-

ficult to visualise and interpret than a 2-D graph. There are

two situations related to a low explained variance, which are

good to keep in mind when interpreting the PCA diagrams.

– Consistent configuration with low variance explained:

the higher principal components (PC3 and higher) ex-

plain a smaller amount of variance; this variance can re-

duce the high consistency, but will not make the model

fully inconsistent.

– Inconsistent configuration with low variance explained:

the first two principal components already show incon-

sistency. The variance explained by the higher principal

components is lower, so they are unlikely to change a

diagram from inconsistent to consistent.

The diagrams presented in Figs. 8 and 9 are suitable to

reveal some information about the consistency of a model

structure in a catchment. When the results from the PCA are

evaluated in a more quantitative way, more principal compo-

nents should be taken into account.

In addition to this limitation, also three other aspects in-

fluence the usefulness of the framework. These include the

selection of hydrological signatures, the sometimes different

PCA results for calibration and validation periods and the

application of the framework in larger catchments. First, the

hydrological signatures – selecting different signatures from

different data sources – result in testing different aspects,

which leads to different results. The selection of the signa-

tures is highly subjective and influences the results. For this

framework a good approach would be to start with many sig-

natures for a catchment and test which signatures are directly

correlated. The signatures that are strongly directly corre-

lated with another signature for each model structure can be

omitted.

The second is the different PCA results for the calibra-

tion and validation period for some model structures. In

Sect. 5.4.2 it is shown that generally the model structures

with a higher consistency behave more similarly in the cal-

ibration and validation period. However, this does not hold

for all model structures, and the similarity between the cali-

bration and validation period can be influenced by the length

of the used time series as well. Therefore, before selecting a

model structure which seems to have a very high consistency

and performance, it may be beneficial to test the performance

and consistency on a different time period.

Finally, the scale of the catchment influences the frame-

work: for this study the framework has only been tested for

two small headwater catchments. When applying the frame-

work in larger scale catchments, additional questions will

arise. The main question will be whether the model structures

still function on larger scales. Large catchments are more het-

erogeneous,and the effect of the heterogeneity of the rain-

fall is larger. Therefore, the signal detected in the PCA will

likely be weaker, as the signatures in the hydrograph are a

mixture of different processes in different parts of the catch-

ment. Therefore, it will be more difficult to relate them to

specific dominant runoff processes. For larger scale catch-

ments it may also be required to use auxiliary data sources

and formulate additional signatures and evaluation criteria

from these data sources in order to also take into account

the processes which are not presented by the hydrograph.

7 Conclusions

In this study we present a framework to jointly evaluate the

performance and consistency and thus the realism of differ-

ent model structures. The framework can be used to com-

pare different candidate model structures for a certain catch-

ment. The framework consists of a PCA in combination

with several hydrological signatures. The configuration of

the PCA is a good measure to evaluate the consistency of

model structures, and different line widths for different per-

formance categories in the PCA diagrams are a good addition

to evaluate the performance of a model structure for a certain

catchment as well. The framework is tested on two headwa-

ter catchments, using eleven model structures. Comparison

of the model structures for these catchments showed clear

Hydrol. Earth Syst. Sci., 17, 1893–1912, 2013 www.hydrol-earth-syst-sci.net/17/1893/2013/
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Table A1. Covariance matrix, left: case 1; right: case 2.

Directly correlated ECs Inversely correlated ECs

0.124 0.125 0.070 −0.070

0.125 0.128 −0.070 0.095

Table A2. Eigenvalues and eigenvectors, left: case 1; right: case 2.

Directly correlated ECs Inversely correlated ECs

eigenvalues

0.0004 0.251 0.011 0.154

eigenvectors

−0.714 0.700 −0.768 −0.641

0.700 0.714 −0.641 0.768

differences between the model structures and the catchments.

Therefore, this framework can help to test multiple hypothe-

ses for a certain catchment. The comparison also showed that

a high performance is not always related to a high consis-

tency. Even if some evaluation criteria show a high perfor-

mance, others may show a very low performance. Thus, it is

important to take both aspects into account when evaluating

whether a model structure suits a catchment.

Appendix A

Example PCA

A1 Introduction

This appendix gives a synthetic example of the use of princi-

pal component analysis for FARM. For FARM multiple eval-

uation criteria are used; however, for this example only two

evaluation criteria are used, to be able to visualise the results.

In this example two cases will be discussed:

1. two directly correlated evaluation criteria and

2. two indirectly correlated evaluation criteria.

A2 Basic principles of PCA

The PCA applied for FARM consists of several steps, which

are listed below.

– The original data with values for evaluation criterion

1 (EC1) and evaluation criterion 2 (EC2) (first row of

Fig. A1) are obtained.

– The covariance matrix of the evaluation criteria is cal-

culated (Table A1).
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Fig. A1. Example showing the basic principles of principal compo-

nent analysis and the application of PCA for FARM. left column:

case 1; right column: case 2; first row: original data for EC1 and

EC2; second row: original data with eigenvectors (“eigV”, dotted);

third row: ECs expressed in terms of PC1 and PC2; fourth row: ECs

expressed in terms of PC1.

– Calculation of the eigenvalues and eigenvectors of the

covariance matrix (Table A2) results in as many eigen-

vectors as evaluation criteria. The eigenvectors are or-

thogonal and the eigenvector with the largest eigenvalue

describes the largest amount of variance in the data. The

eigenvectors can be expressed in terms of EC1 and EC2

(second row of Fig. A1).

– Selection of the amount of principal components (PCs)

(the eigenvalues) that are taken into account is done

based on the variance explained by each PC. The ex-

plained variance per PC is the eigenvalue of that PC

divided by the sum of all eigenvalues. In case of two
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evaluation criteria, all PCs can be presented in a 2-D

graph, as there are only 2 PCs.

– Expression of evaluation criteria is in terms of the prin-

cipal components (in this case: PC1 and PC2). There-

fore, the third row in Fig. A1 shows the loadings of both

ECs on PC1 and PC2.

– The relative direction of the vectors can be used to

identify the consistency. In Fig. A1 the relative direc-

tion of the vectors in both cases seems similar. How-

ever, for case 1 the vectors have an opposite loading on

PC2, which represents a very small amount of the vari-

ance. For case 2 the vectors have an opposite loading

on PC1, which describes the largest amount of the vari-

ance. Therefore, case 1 has a much higher consistency

than case 2 (of course, for two ECs this can be easily

deduced from the original data as well).

A3 Reduction of dimensions

In the step-wise approach described above, both PCs are

kept. However, as can be seen in Fig. A1 PC1 describes a

much larger part of the variance than PC2; thus, PC2 can be

disregarded. The result of disregarding PC2 is shown in the

last row of Fig. A1. A reduction of the dimensions leads for

case 1 to two vectors in the same direction, while for case 2

it leads to two vectors with exactly opposite directions. This

is because for case 1 the vectors had an opposite loading on

PC2 and for case 2 an opposite loading on PC1.
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András Bárdossy and an anonymous referee for their constructive

comments to help clarify the use of PCA for FARM.

Edited by: R. Merz

References
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