
A Framework to Model Metadata for Knowledge

Management Tools

Daniel Lüdtke, Sinan Mece, Meenakshi Deshmukh, Michael Bock, Andreas Schreiber, Andreas Gerndt

Simulation and Software Technology

German Aerospace Center (DLR)

Berlin, Köln, Braunschweig; Germany

{daniel.luedtke, sinan.mece, meenakshi.deshmukh, m.bock, andreas.schreiber, andreas.gerndt}@dlr.de

Full Paper — In recent years many kinds of knowledge

management tools are being developed. Most of them have in

common that they provide an interface to acquire artifacts

along with a certain set of metadata. In this paper, a new

framework is presented to model metadata for knowledge

management tools and to generate metadata-related program

code from this model for different components of the target

tool. These components include graphical user interfaces for

desktop applications, data base schemes, and metadata-related

web client code. Finally, two applications from the knowledge

management domain are presented, where this framework is

successfully integrated to reduce development time

substantially.

Keywords-metadata; code generation; domain-specific

language

I. INTRODUCTION

Knowledge has long been a key asset for organizations
[1]. This insight led to the active and major research field of
knowledge management (KM). The main task of KM is to
support the creation, assimilation and dissemination, and
finally the application of knowledge [2].

In projects where multidisciplinary teams are working
together on complex tasks, the transfer of tacit and explicit
knowledge is important to the success of a project. In
particular, in domains like aerospace, where large-scale
projects are common, an effective and efficient knowledge
transfer can help to reduce costs, risks, and enhance product
quality at once. Additionally, KM is a critical factor to retain
knowledge in an organization when staff is leaving [3].

Along with the research on knowledge management,
many KM tools are being developed to aid and support KM
tasks such as lessons-learned systems, especially in the
aerospace domain [4].

No matter which KM process a tool addresses, they
usually have in common that they provide an interface to
acquire artifacts that contain knowledge in a certain way.
These artifacts can be of arbitrary types like documents,
spreadsheets, databases, simulation models etc. Along with
these artifacts, typically a certain set of metadata, like
authors, categories, or a context must be specified as well.

Especially for random data that do not contain a structure for
easy extraction of important metadata, the user must be
asked to provide the necessary information manually.

It is crucial that KM tools should provide a smart user
interface. This can help to improve user acceptance as well
as to increase the effectiveness for solving KM tasks
regardless of their complexity [5]. Declining user acceptance
can be caused by long questionnaires of required metadata
that the user has to provide. The interface should be simple
and only present the currently required metadata fields.
However, such tools yield generally better results if a large
set of metadata is available. Hence, a smart user interface is
desirable which adapts to the type of artifact and the
information a user has already provided. For example, if a
spreadsheet is added to the KM tool, no additional
information should be inquired about unrelated aspects like
bibliographic information of a journal paper. Building such
smart user interfaces conventionally requires complex
program logic. Moreover, metadata should be generic and
adaptable to future changes independent of program logic.

In this paper, we present the new framework Language
for Metadata Based Applications (LAMBDA) to model
metadata for knowledge management tools. It provides a
modeling language and code generators for several
components of the KM tool. This approach has the advantage
that a single point of information—the metadata model—is
present from which each part of metadata-related software
components can be changed automatically. Thus, consistency
is ensured throughout the complete tool chain.

The next section introduces the framework. Section III
presents two KM tools where the LAMBDA framework is
currently used. Finally, Section IV concludes the paper and
gives an outlook to future development.

II. FRAMEWORK DESCRIPTION

In this section, the framework is introduced by looking at
the class of knowledge management applications where
LAMBDA can improve the productivity of development.
Furthermore, the metadata description language is defined
and it is shown how program code can be automatically
generated.

A. Classes of Applications

The framework is intended to be used by developers of
KM tools. It shall ease the process of ensuring a consistent
data model over the whole set of components that constitutes
a KM tool. LAMBDA was designed with the following
components of a KM tool in mind:

• Desktop client with a graphical user interface (GUI)
to add new or edit existing artifacts with their
associated metadata; the metadata is collected by a
wizard (see screenshot in Fig. 1) or can be edited
with specialized editor components

• Server to store metadata and KM artifacts with
indexing capabilities

• Web frontend to search in metadata (possibly also in
KM artifacts) and retrieve items

LAMBDA is especially suitable for KM tools if a
complex set of metadata is stored along with the actual
artifacts. LAMBDA provides a single point of reference for
the metadata model and all parts of the application that are
depending on the metadata model are generated even if they
are realized with different technologies. This makes it easy to
create and change sophisticated metadata models during the
development process by ensuring consistency throughout the
whole toolset. A change to the metadata model does not
require manual changes of program code at different
locations and components.

Metadata in LAMBDA is structured in profiles and
attributes. A KM tool has a set of profiles and each profile
encapsulates a set of attributes. An attribute represents a data
field, which could be, for example, a name of a knowledge
artifact, the name of the author, links to websites, or an
internal hash value that is not shown to the user. Profiles
group a small set of related attributes together.

Additionally, LAMBDA supports dynamic behavior of
metadata entry wizards and editors. It is possible to hide
profiles from the user or deactivate (“grey out”) attributes
dependent on inputs, which users have already provided at
other attributes. These features are necessary to create smart
metadata entry dialogues, which ask only the question that
are relevant for the given context.

For example in the tool SimMoLib (see Section III.A),
users need to provide information of their simulation model.
Depending on the selected simulation platform in the first
profile (first page in the wizard), only the specific profiles for
the simulation platform in question are presented. This
prevents long lists of metadata fields where just a small set is
relevant for the user in a given context.

Incorporating LAMBDA in the development process
allows the tailoring of a general-purpose KM tool to a
specific domain. For instance, the same tool can adapted to
model and analyze air transportation data as well as ground

traffic data or even to set up the database for a lessons
learned system. This can be accomplished without the need
of substantially changing the program code, besides the
name and some artwork. One has probably just to provide a
new metadata model for a given application.

B. Overview of the LAMBDA Framework

The presented framework LAMBDA consists of several
components that can be integrated completely or just some
selected ones in a target KM tool. The core of LAMBDA
consists of the metadata modeling language to define the
metadata fields—grouped into profiles—and dependencies
between fields.

The metadata modeling language is a domain specific
language (DSL). A DSL is “a computing programming
language of limited expressiveness focused on a particular
domain” [6]. The advantage of DSLs compared to other
general-purpose description languages, like XML, is simply
readability by humans, support of minimum features and
focusing only on the specific domain at hand.

LAMBDA’s DSL module can be integrated in the
common open source integrated development environment
(IDE) Eclipse or used as a standalone product along with
other development environments like Visual Studio. From
the metadata model, program code for several components of
the target product can be generated.

Currently, LAMBDA supports generation of:

• Wizards and editors for the Eclipse Rich Client
Platform (RCP),

• Java-based code for storing and retrieving the
metadata in a JSON [7] representation,

• HTML and JavaScript code for the web interfaces
and index servers.

Nevertheless, LAMBDA can be easily extended to
generate other modules as well.

C. Defining the Metadata Model

To implement LAMBDA’s DSL part, the widespread
open source framework for DSL development Xtext [8] is
used. Xtext is fully integrated in Eclipse. A DSL is described
in Xtext by using an EBNF (Extended Backus-Nauer Form)
style grammar. From this, a parser for the DSL with an
internal representation and a code editor is generated. The
generated DSL editor supports syntax highlighting, code
folding, content assist, and inline error markers. The editor
can be used as part of the Eclipse IDE for integration in the
development process of the target KM tool. Additional
checks, which could not be derived from the grammar itself,
can be added by providing simple Java extensions to the
Xtext project. The same approach is used to extend the
content assist feature or code formatting capabilities.

The LAMBDA metadata description language was
specifically designed to define complex metadata models
with a human readable syntax. A metadata description
consists of a preamble where data types (e.g. strings, dates,
email addresses etc.) and display types are defined. The
preamble is somehow similar to type declarations in a
common programming language like C. Display types refer
to common GUI elements like text boxes, text areas,
dropdown menus etc. It has to be defined which GUI
element is suitable for a given data type. For instance, a date
picker widget is not appropriate to enter an email address.

After the preamble the profile definition is given. Each
profile represents a single page in the wizard of the target
application with a number of entry fields, the so-called
attributes. Additional parameters can be provided in the DSL
to define, for instance, human-friendly names that will be
displayed or help texts for a more extensive description what
an entry field means. A keyword is available to indicate that
an entry field is mandatory for the user to provide input. In
addition, special keywords are available to influence the
appearance of attributes in the web interface: One can select
whether an attribute should appear on the search result page
or just in a detailed overview page. Fig. 1 depicts the
mapping of some of the DSL features to their counterparts in
the generated GUI elements.

A special syntax in the DSL is available to support
dynamic behavior of the metadata entry wizards. It is
possible to hide complete profiles from the user depending
on the input the user has given. Additionally, single fields

can be deactivated depending on inputs in other fields. With
this, intelligent wizards for metadata gathering can easily be
modeled that only ask the user the questions that are
necessary depending on the information that the user has
already given.

Having a simple human-readable domain specific
language and a powerful editor at hand, domain experts
outside of the software developer team can define the
metadata model on their own. The editor provides instant
feedback if the model was correctly defined. Thus, the model
editor ensures that the description provided by the domain
experts can be translated to runnable program code. The
error-prone step of converting a model description from a
spreadsheet or a text document can thus be omitted.

From our experience, even non-programmers do not need
to overcome major obstacles to provide complex metadata
models. If the procedure is integrated in an automated build
process and the target KM tool has an auto-update function,
the modeler can see the results in a couple of minutes or
hours without the need of having the whole development
environment installed. Just the LAMBDA modeling editor
and a development version of the KM tool is sufficient.

D. Code Generation

If a syntactically and semantically correct definition of
the metadata model is saved within the DSL editor, the code
generation is automatically triggered in the background. For
code generation the Xtend framework [9] is used, which is
related to Xtext. Xtend is a statically typed programming

Figure 1. Mapping of metadata model to a metadata entry wizard in a KM tool GUI

language, which can be integrated in Java projects. Besides
nice simplifications compared to the Java language, it has
strong template features to create code generators.

In LAMBDA, Xtend templates are used to generate code
for the different target platforms that are needed. For the GUI
wizards and editors Eclipse-compatible Java code is
generated. For server communications and storage schemas,
Java code that conforms to the JavaBeans conventions is
produced. The web interface parts that are metadata-related
have their own templates that generate JavaScript and HTML
code. All these different code fragments result from the same
metadata description.

LAMBDA’s goal is to provide as many reusable
components for KM tools as possible. The code generators
are not restricted to the Java language as demonstrated with
the JavaScript/HTML generator parts.

III. APPLICATIONS

In the following, we present two KM tools that are
currently developed using the LAMBDA framework.

A. Simulation Model Library

The application of computer-aided simulation and
calculation models in all phases of space systems
development gains more and more importance in recent
years. Creating high-quality models is a time-consuming
task. The complex models represent a wealth of knowledge
that needs to be preserved for future projects. The project
Simulation Model Library (SimMoLib) addresses the issues
concerning the preservation of knowledge that lies within
simulation and calculation models for the space domain [10].
Within the project SimMoLib guidelines and best practices
regarding model development, model documentation,
validation and verification, as well as model reviews to
establish a collection of reusable models are developed. To
efficiently catalogue models, a new software system is
created to support collaborative development, submission,
archiving, reviewing, searching, and utilization of models
across department borders.

SimMoLib consists of a web client for model searching
and downloading and a full featured desktop client for
collaborative model development and management. Fig. 2
depicts a screenshot of the web view for searching models
that is embedded in the desktop client. On the right-hand side
of the figure one can see a wizard to create new models.

Since the different simulation platforms are used by
different disciplines during space system development,
establishing a software-based common model library in this
domain is a challenging task. Especially creating a complex
metadata model with many iterations during development is
time consuming and error-prone. For each supported
simulation tool, another set of metadata is necessary.
Integration of LAMBDA in the development process has
simplified this task tremendously. With the single point of
truth in the form of the metadata model, an agile
development approach could be established. We

experimented with variations of metadata models to find an
optimal solution by having a working version of the
SimMoLib client with up-to-date metadata components. This
approach definitely saves development time and avoids code
duplication.

B. XPS for CFD

XPS for CFD is a second tool where the integration of the
DSL-based metadata framework is currently underway. It is
a knowledge management system for users of computational
fluid dynamics (CFD) that provides specific guidelines, best
practices, rules, standards for individual codes, algorithms,
and deployable workflows [11].

The KM system consists of two independent,
complementary parts. The desktop client captures and
annotates CFD data described above and the web interface
that serves as a search platform for the data captured by the
desktop client. The web interface supports CFD users also by
providing best practices from experts so it also constitutes a
lessons-learned system.

In contrast to SimMoLib, the set of metadata in XPS for
CFD is less comprehensive. However, the metadata model is
relatively complex due to the various data types in the KM
system. Another important requirement in the case of XPS
for CFD is that the customers of this tool want to change the
metadata model easily. This requirement is important
because of the fact that standards and experiences evolve and
thus an updated metadata model needs to be adapted at
specific points in time.

This required flexibility for highly dynamic metadata and
models led to a web framework, which is in use now by
different customers from different domains. Fig. 3 shows a
use case from a project dealing with global air transportation
topics [12]. The underlying web engine differs significantly
from a technical viewpoint to the web client approach of
SimMoLib. However, for both cases, a simple adaptation of
the code generator templates allows a fast evaluation of
different metadata models.

Figure 2. Screenshot of SimMoLib’s internal web view and a

New Model Wizard

We expect a tremendous decrease in time and complexity
by integrating LAMBDA and generating code parts that
depend on the metadata model.

IV. CONCLUSIONS AND OUTLOOK

The presented framework provides a high degree of
flexibility in the domain of knowledge management tools. It
has a simple approach to provide powerful metadata
capabilities with dynamic and smart behavior while the user
enters data in the final application. LAMBDA offers a single
point of information with its DSL-based metadata
description from which metadata-related program code is
generated for the target application. This allows even non-
programmers to change the metadata model. With the code
generators in place, the consistent change of all relevant
sections in the program code is ensured.

Bringing the concept of domain specific languages in the
knowledge management field has become convenient just for
a couple of years since language frameworks such as Xtext
and Xtend are available. With Xtext, only a simple grammar
has to be developed to get a large toolset with a full-featured
text editor tailored to the defined language.

The output of the code generators of LAMBDA is not
limited to a particular programming language, so the
framework can be integrated in a large variety of KM tools.

LAMBDA is constantly improved and extended to
provide the metadata infrastructure for the presented projects
SimMoLib and XPS for CFD. In the future, we want to
integrate LAMBDA into other applications like the Python-
based tool DataFinder [11].

One major open issue exists: conversion of metadata
models. LAMBDA makes it easy to change the metadata
model during development. Nevertheless, when the software
has been used and data has been entered into the system, this
causes a change of the metadata model for a new release and
old data needs to be converted to the new version of the
metadata. Currently, there is no automatic solution to
generate metadata-converters. This issue must currently be
addressed by manually implementing converters. Future

research will include studies to evaluate if it is possible to
generate those converters also with LAMBDA at least
partially.

ACKNOWLEDGMENT

The authors thank Jens Rühmkorf, Marcel Rehfeld, and
Christian Kerl for their earlier work and ideas, which has
eventually led to the development of LAMBDA.

REFERENCES

[1] J. Liebowitz, “A look at NASA Goddard Space Flight Center's
knowledge management initiatives,” IEEE Software, vol. 19, no. 3,
pp. 40–42, May 2002

[2] T. Kotnour, C. Orr, J. Spaulding, J. Guidi, “Determining the benefit
of knowledge management activities,” IEEE Int. Conf. of Systems,
Man, and Cybernetics, Computational Cybernetics and Simulation,
vol.1, pp.94–99, October 1997

[3] Knowledge Management at NASA, http://www.km.nasa.gov
(accessed 29-May-2012).

[4] Proceedings of the International Workshop on Lessons Learned in
Program/Project Management, ESTEC Noordwijk, March 2012

[5] Yang Xu, A. Bernard, N. Perry, Lian Lian, “Managing knowledge
management tools: a systematic classification and comparison,” Int.
Conf. of Management and Service Science (MASS), pp.1–4, August
2011

[6] M. Fowler, R. J. Parsons, Domain Specific Languages. Addison
Wesley, 2010.

[7] D. Crockford, “JSON: the fat-free alternative to XML,” Proc. of
XML 2006, Boston, USA, December 2006.
http://www.json.org/fatfree.html

[8] S. Efftinge, M. Völter, “oAW xText: A framework for textual DSLs,”
Workshop on Modeling Symposium at Eclipse Summit, 2006.

[9] S. Efftinge, S. Zarnekow, “Extending Java – Xtend: a new language
for Java developers,” PragPub, The Pragmatic Bookshelf, no. 30, pp.
5–11, December 2011.

[10] D. Lüdtke, J. Ardaens, M. Deshmukh, R.P. Lopez, A. Braukhane, I.
Pelivan, S. Theil, A. Gerndt, “Collaborative development and
cataloging of simulation and calculation models for space systems,“
3rd IEEE Track on Collaborative Modeling and Simulation
(CoMetS), Toulouse, France, June 2012, in press.

[11] A. Schreiber, J. Rühmkorf, D. Seider, “Scientific data and knowledge
management in aerospace engineering,” 3rd Int. Conf. of Advanced
Engineering Computing and Applications in Sciences (ADVCOMP
'09), October 2009, pp. 111–116.

[12] MONITOR, Monitoring System of the development of global
aviation. http://www.monitor-project.eu/ (accessed 29-May-2012).

Figure 3. Screenshot of the XPS web client in the context of the

Monitor project

http://www.km.nasa.gov/
http://www.monitor-project.eu/

	I. Introduction
	II. Framework Description
	A. Classes of Applications
	B. Overview of the LAMBDA Framework
	C. Defining the Metadata Model
	D. Code Generation

	III. Applications
	A. Simulation Model Library
	B. XPS for CFD

	IV. Conclusions and Outlook
	Acknowledgment
	References

