
Research Article
A Framework to Test Resistency of Detection Algorithms for
Stepping-Stone Intrusion on Time-Jittering Manipulation

Lixin Wang ,1 Jianhua Yang,1 Michael Workman,1 and Peng-Jun Wan2

1TSYS School of Computer Science, Columbus State University, Columbus GA, USA
2Department of Computer Science, Illinois Institute of Technology, Chicago IL, USA

Correspondence should be addressed to Lixin Wang; wang_lixin@columbusstate.edu

Received 25 June 2021; Accepted 27 July 2021; Published 10 August 2021

Academic Editor: Zhuojun Duan

Copyright © 2021 Lixin Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hackers on the Internet usually send attacking packets using compromised hosts, called stepping-stones, in order to avoid being
detected and caught. With stepping-stone attacks, an intruder remotely logins these stepping-stones using programs like SSH or
telnet, uses a chain of Internet hosts as relay machines, and then sends the attacking packets. A great number of detection
approaches have been developed for stepping-stone intrusion (SSI) in the literature. Many of these existing detection methods
worked effectively only when session manipulation by intruders is not present. When the session is manipulated by attackers,
there are few known effective detection methods for SSI. It is important to know whether a detection algorithm for SSI is
resistant on session manipulation by attackers. For session manipulation with chaff perturbation, software tools such as Scapy
can be used to inject meaningless packets into a data stream. However, to the best of our knowledge, there are no existing
effective tools or efficient algorithms to produce time-jittered network traffic that can be used to test whether an SSI detection
method is resistant on intruders’ time-jittering manipulation. In this paper, we propose a framework to test resistency of
detection algorithms for SSI on time-jittering manipulation. Our proposed framework can be used to test whether an existing or
new SSI detection method is resistant on session manipulation by intruders with time-jittering.

1. Introduction

Hackers on the Internet usually send attacking packets using
compromised hosts, called stepping-stones, in order to avoid
being detected and caught. With stepping-stone attacks, an
intruder remotely logins these stepping-stones using pro-
grams like SSH or telnet, uses a chain of Internet hosts as
relay machines, and then sends the attacking packets. To
launch a stepping-stone attack, the intruder enters the attack-
ing commands on his/her local machine which are relayed
through the stepping-stone machines until the attacking
packets arrive at the final target machine. It is well-known
that every such TCP session between a server and a client is
independent of one another even if they are relayed sessions.
Such a nature of the TCP protocol makes it much more chal-
lenging to know the attacker’s geographical location while
accessing a remote machine via multiple relayed TCP ses-
sions. The final target machine can only see the TCP packets
from the last hub of the connection chain. Therefore, a target

machine can hardly learn any information regarding the
origin of the intrusion.

To launch a stepping-stone attack, the intruder could use
a remote login program (SSH, telnet, or rlogin) and create a
connection chain as shown in Figure 1. In this figure, Host
0 is the intruder’s machine, Host N is the final target host,
and Host 1, Host 2,⋯, andHostN − 1 are the stepping-
stone machines. With stepping-stone intrusion detection
(SSID), the detection program can be installed at any of the
stepping-stones. The stepping-stone host with the detection
program installed is called a detecting sensor. In Figure 1,
we assume that Host i is the (detecting) sensor. The purpose
of SSID is to know if the detecting sensor Host i is employed
as a stepping-stone machine. Two important concepts
related to a detecting sensor of a connection chain are the
incoming and outgoing connections. The connection from
Host i − 1 to Host i is called an incoming connection to Host
i, and the connection from Host i to Host i + 1 is called an
outgoing connection fromHost i. If the detecting sensor Host

Hindawi
Wireless Communications and Mobile Computing
Volume 2021, Article ID 1807509, 8 pages
https://doi.org/10.1155/2021/1807509

https://orcid.org/0000-0003-4965-5510
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/1807509

i is employed as a stepping-stone machine, then, there exists
at least one matched pair between all of its incoming connec-
tions and all of its outgoing connections.

1.1. Definitions of Send/Echo Packets. The definitions of Send
and Echo packets will be illustrated using Figure 1. Assuming
that Host i is the detecting sensor. First, let us look at its
incoming connection. Send packets are those TCP packets
with the flag bit TCP.Flag.PSH set to TRUE that are sent
fromHost i − 1 to Host i; Echo packets are those TCP packets
with the flag bit TCP.Flag.PSH set to TRUE that are sent
fromHost back to Host i − 1. Now, let us look at the outgoing
connection. Send packets of the outgoing connection from
Host i are those TCP packets with the flag bit TCP.Flag.PSH
set to TRUE that are sent from Host i to Host i + 1; Echo
packets are those TCP packets with the flag bit TCP.Flag.PSH
set to TRUE that are sent from Host i + 1 back to Host i.

Which Send packet is matched with which Echo packet?
Let us answer this question by using an example on the
command line. If an attacker enters the command “ps” on a
command line in a terminal, the command could be sent to
the target machine with one or two TCP packets. For simplic-
ity, we assume that the command “ps” is delivered to the
target host with two different TCP packets, one for “p” and
the other one for “s.” When the attacker types “p” on the
command line, its packet is delivered to the target host. After
this Send packet is echoed, an Echo packet is sent back to the
attacker’s machine, and then the letter “p” is visible on the
screen of the attacker’s host. The Send packet associated with
the command “p” and its Echo packet are referred to as a
matched pair, or sometimes called a relayed pair. Based on
the TCP protocol design, an Echo packet may echo more
than one Send packets. Similarly, a Send packet may be
echoed by more than one Echo packets.

1.2. The Distribution of Packets’ RTTs for a Connection
Chain. In a TCP connection, a packet RTT is the sum of four
delays including queuing delay, transmission delay, process-
ing delay, and propagation delay. For connection chain-
based SSI detection, packet RTTs can be used to estimate a
connection chain length. The network traffic can be repre-
sented by the RTTs calculated from the matched pairs of a
Send packet and an Echo packet. In the work [1] by Yang
et al., the authors proved that a connection chain length is
the same as the number of clusters that are generated by
employing the RTTs calculated from the connection chain.

The work [2] by Paxson and Floyd discovered that the
packet RTTs calculated from a connection chain follow the
Poisson distribution. This important discovery can be
employed to match TCP packets as well as calculate a con-

nection chain length. Figure 2 shows that the packet RTTs
obtained from a connection chain follow the Poisson distri-
bution. In this figure, the RTTs were obtained from the
TCP packets collected from a connection chain whose length
is four. Based on this experiment in a connection chain with
four connections, most RTT values are very close to the aver-
age μ which is 138,500 (microsecond) of all the RTT values.
Clearly, at least 95% of the RTTs are larger than 137,000
(microsecond) as well as less than 141,000 (microsecond).

If a random variable X obeys the Poisson distribution, its
mean and standard deviation are represented by μ and σ,
respectively. It is well-known that

∣X − μ∣ ≤ 2σ: ð1Þ

According to the above inequality, the majority values of
the random variable X should be around its mean value μ.
The absolute value of the difference between X and μ is at
most 2σ. Therefore, the packet RTT values calculated from
captured network traffic from a TCP connection chain follow
the Poisson distribution. That is, most values of the packet
RTTs calculated from a connection chain of fixed length
must be close to its mean value which is inside a circle
centered at X of radius 2σ.

1.3. Session Manipulation by Intruders Using Chaff-
Perturbation or Time-Jittering. A great number of detection
approaches for SSI have been developed in the literature
[2–12]. However, malicious attackers never stop developing
new session manipulation approaches to evade detection.
The two most popular such techniques used by attackers
are time-jittering and chaff perturbation. Time-jittering is
a method that an attacker’s host does not transmit packets
immediately. Instead, every packet will be hold for a
random period of time, and then it will be released. The
timestamp of each packet will be jittered. Therefore, if the
network traffic is manipulated by intruders using the time-
jittering technique, the timestamp of every packet is modi-
fied. As a result, all the existing approaches for time-based
SSID do not work anymore.

Chaff perturbation is a session manipulation approach
with which attackers can create some meaningless packets
and then insert them into a normal network traffic. Due to
the injection of these meaningless packets into a normal
network traffic, the total number of packets is changed, so
are the time gaps between the normal packets. Therefore, if
the network traffic is manipulated by intruders using chaff
perturbation technique, the total number of packets and
the time gaps of packets are all modified. As a result, those
existing approaches (SSID) that are based on the amount

Host
0

Host
i – 1

Host
i

Host

OutgoingIncoming

Upstream Downstream

i + 1
Host
N

Figure 1: A sample connection chain.

2 Wireless Communications and Mobile Computing

of network traffic or time gaps of packets do not work
anymore. Therefore, it is very important to know whether
an existing or new SSID method is resistant to intruders’
session manipulation.

For chaff perturbation, software tools such as Scapy have
been developed to inject meaningless packets into data
streams. These software tools can be used to test whether a
SSID algorithm is effective in resisting intruders’ session
manipulation with chaff perturbation. Scapy is a software
for packet manipulation in computer networks. Its first ver-
sion was implemented in Python. It can create or decode
packets and then send them to the Internet. It can also capture
the packets and match an Echo packet with its corresponding
Send packet. Moreover, scanning, tracerouting, attacks, and
network probing and discovery can all be done using Scapy.

However, to the best of our knowledge, there are no exist-
ing software tools or effective algorithms to test resistency of
SSID algorithms on session manipulation with time-jittering.
In this paper, we propose a framework to test resistency of
detection approaches for SSI on time-jittering manipulation.
Our proposed framework can be used to test whether an
existing or new SSID method is resistant on session manipu-
lation by intruders with time-jittering. The output file gener-
ated by our proposed algorithm satisfies the following
properties: (1) it remains a valid list of captured TCP
packets as for each Send packet with jittered timestamp,
and its timestamp is still less than that of every following
Echo packet; (2) only the timestamps of a given percentage
of the Send packets will be jittered; (3) those Send packets
whose timestamps will be jittered are randomly selected;
and (4) for every Send packet whose timestamp will be jit-
tered, the increment of its timestamp is a random and
independent value.

Table 1 lists all the notations used in this paper to help
readers for easy referencing.

The remaining of this paper is organized as follows. In
Section 2, we give literature review on many existing and
significant SSID methods. In Section 3, we present a frame-
work to test resistency of detection algorithms for SSI on
time-jittering manipulation by intruders. This paper will be
summarized in Section 4, and the funding information of this
research work will be provided in Acknowledgments.

2. Literature Review on SSID

Network security experts and researchers have proposed
many SSID approaches since Staniford-Chen and Heberlein
published their seminar work in SSID in 1995 [7]. In this
section, we will conduct a literature review on SSID methods
since 1995. There are two different types of SSID
approaches: host-based SSID and network-based SSID. A
host-based SSID approach is to detect stepping-stone intru-
sion by comparing all the outgoing connections with all the
incoming connections of a single host (that is, the detecting
sensor) to see if there exists a matched pair in these two
connections. A network-based SSID is to estimate the length
of the connection chain (the number of connections in the
connection chain).

Let us begin with reviews on host-based SSID. Staniford-
Chen and Heberlein [7] proposed a content-thumbprint
method to find a matched pair on a single machine by com-
paring all the outgoing connections with all the incoming
connections of the host. As law content of packets is used
for the comparison, this content-thumbprint method does
not work if the network traffic is encrypted. In order to over-
come the problem of this content-thumbprint method,
Zhang and Paxson [12] proposed a time-thumbprint method
for SSID. As the timestamps of packets are usually not
encrypted, this time-thumbprint method could work effec-
tively if the network traffic is encrypted. If intruders send
encrypted attacking packets to launch attacks by using SSH,
for example, it makes the detection process of SSID much
more challenging. Furthermore, if intruders use session
manipulation techniques such as chaff perturbation and/or
time-jittering to evade detection, it will make the SSID pro-
cess even more challenging.

There are quite a few SSID methods have been proposed
for network traffic with session manipulation by attackers
using chaff perturbation and/or time-jittering to evade detec-
tion. He and Tong [9] proposed the packet counting approach
aimed at addressing such challenges caused by intruders’
session manipulation. The authors of [9] assumed that
network traffic is encrypted, and the session is manipulated
by intruders using the time-jittering and chaff perturbation
techniques. Furthermore, an attacker can inject chaff packets
into an attacking stream. This paper developed two detection
algorithms for SSID that deal with the time-jittering and chaff
perturbation manipulation. Donoho et al. [4] employed a
gateway router as the detecting sensor and proposed detection
algorithms for SSID. This paper considered that a stepping-
stone host maybe a single machine on the Internet or a whole
network associated with the gateway router.

As we mentioned earlier, Zhang and Paxson [12] pro-
posed detection algorithms for SSID that work for encrypted
network traffic. However, those approached proposed in [12]
have problems when the session is manipulated by attackers
using time-jittering and chaff perturbation. The detection
algorithms for SSID developed in [12] depend on accurate
timestamps of network packets; otherwise, these SSID
approaches do not work effectively, even if packets’ time-
stamps are slightly jittering. Yoda and Etoh [13] proposed a
better approach to address this issue. This method for SSID

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
140000 145000 150000 155000 160000

–0.05
RTT value (𝜇sec)

Pr
ob

ab
ili

ty

135000 165000

Figure 2: The distribution of packets’ RTTs for a connection chain.

3Wireless Communications and Mobile Computing

is called a deviation-based approach as the deviations
between an existing intruder stream and all other concurrent
data streams in the network are computed. This method tries
to discover a set of data streams that could match the stream
sent from the intruder. He and Tong [9] proposed a better
way to resist attackers’ session manipulation using chaff per-
turbation. The detection algorithms work effectively when
the network traffic having meaningless packets chaffed into
the data stream. These algorithms for SSID still work if the
number of chaffed packets is proportional to the total num-
ber of packets sent from the attacker’s machine. Yang et al.
[14] used random walks to design a method for SSID to
handle intruders’manipulation using chaff perturbation eva-
sion. In this paper, the difference between the number of
responses and the number of requests is modelled as a ran-
dom walk. Yang and Zhang [15] proposed a better way of
using random walks to design detection algorithms for SSID.
The method used in [15] is referred to as an RTT-based ran-
dom walk approach. The key idea of this paper is to decide if
an outgoing connection and an incoming connection are a
matched pair by applying the number of RTTs in a connec-
tion as well as the idea of random walks. The detection algo-
rithms proposed in [15] work effectively when the network
traffic is manipulated by attackers using time-jittering and/or
chaff perturbation evasion.

Ding et al. [16] took a different approach that detected
SSI at the target victim machine. This paper used and consid-
ered the time delay between the attacker completing typing
an attacking command and the time when the next letter is
entered. Later, Huang et al. [17] improved the detection algo-
rithm for SSID proposed in [16]. The authors in [16, 17]
assumed that cross-over packets must be present in a long
connection chain. Huang et al. [17] discovered that a longer
connection chain should produce more cross-over packets.
Wang and Reeves [18] proposed a watermark-based method
for SSID. This paper assumed that a unique watermark is
injected into the network traffic. The matching between an
incoming connection and an outgoing connection is based
on the injected watermark.

Yang et al. [6] developed a computer program to inject
TCP/IP packets into network traffic. The program developed
in this paper could help network security researchers better
understand how session manipulation works and design
more innovative detection algorithms for SSID that are resis-

tant to time-jittering and/or chaff perturbation manipula-
tions by intruders.

Because stepping-stones may be employed by legal appli-
cations for remote access, host-based SSID approaches could
produce high false positive errors. To avoid the problem
caused by host-based detection methods, network-based
detection approaches were proposed. This type of detection
method for SSID is to calculate the length of a connection
chain. It is well-known that most hosts access a remote server
using at most three stepping-stones. If a host uses more than
three stepping-stones to access a remote server, it is most
likely an intrusion. This is the rationale of all network-
based detection approaches.

Next, we present the literature review on network-based
detection approaches for SSI. The first known detection
algorithm via the network-based approach was presented
in [19] in 2002. The key idea of this paper is to compute
the RTT of a Send packet and then attempt to match this
Send packet with its corresponding acknowledgment
(ACK) packet transmitted from the next adjacent host in
the connection chain. The method proposed in [18] reduced
the false positive error a little bit. However, this method for
SSID produces high false negative error as the ACK packet
from the next adjacent host instead of the actual Echo packet
was used for the matching. The problem with the work pre-
sented in [19] was that the way to set up the connection
chain was not proper.

To overcome the problem caused by the improper con-
nection chain setup in the paper [19], a step-function detec-
tion method was developed to calculate the length of a
connection chain in [20] in 2004. The step-function method
developed in this paper reduced both the false positive and
false negative errors in the case of local area networks
(LANs). The connection chain was properly created in [20]
so that the corresponding Echo packet of a Send packet can
be used for the matching. In this paper, a Send packet was
matched with its corresponding Echo packet, and then the
packet RTTs was calculated using the step-functions. The
drawback of this detection approach presented in [20] is that
this method works effectively only in LANs, but it does not
work well in the context of the Internet. The conservative
and greedy packet matching method for SSI detection
presented in [21] worked effectively in the context of the
Internet, but this detection method can only match very

Table 1: All notations used in this paper.

X A random variable

μ Mean of a random variable

σ Standard derivation

p Percentage of which timestamps of Send packets will be jittered

N Total number of Send packets in the input file

M Largest integer less than or equal to pN

l_packets A list of all the packets in the input file

l_Send A list of all Send packets in the input file

l_random An increasing list of M random numbers in the range 0~N − 1

4 Wireless Communications and Mobile Computing

few TCP packets, and thus, it is not practical in SSID for
computer networks connected with the Internet.

The data mining approach with clustering and partition-
ing proposed in [5] is a very effective connection chain-based
detection approach SSI. In this work, the packet RTTs are
obtained by applying the maximum-minimum distance
(MMD) clustering method, and all the possible packets were
checked during packet matching. The clusters’ number out-
putted by theMMD algorithm gives the length of the connec-
tion chain. Also, the detection method based on MMD
reduced largely the false negative errors as well as the false
positive. A drawback of this detection algorithm for SSI is
that a large number of TCP packets must be captured and
analyzed. Therefore, the detection method based on MMD
presented in [5] is not efficient in terms of processing time.
A SSID method using the k-means clustering approach was
developed in [22] in order to overcome the weakness of the
MMD-based SSID algorithm proposed in [5]. This k
-means-based detection algorithm is very efficient as it did
not require to capture and analyze a large number of TCP
packets. It is well-known that packet RTTs cluster around a
number of levels [5, 20]. In general, the k-means data mining
algorithm has been widely used to put data-set items into
groups of related observations without none of the prior
knowledge regarding their relationships. As long as most of
the RTT outliers are removed from the captured RTTs in
the input file, the k-means-based SSID algorithm proposed
[22] works effectively in LANs.

It is worth mentioning some recent significant results
that are related to network security. Using a combination
of social relationship and nonsensitive attributes, Cai et al.
[23] investigated how social networks are exploited and an
inference attack is launched. With differential privacy, Cai
et al. [24] proposed a mechanism that employed a sampling
approach to generate rough counting results. In theory,
these counting results are verified to satisfy privacy guaran-
tee as well as unbiasedness. An innovative method to
upload data in smart cyber-physical systems was proposed
in [25]. The method proposed in this paper considered pri-
vacy preservation as well as energy conservation. A frame-
work to mimic the behaviors of stepping-stones was
proposed in [3]. The proposed framework in [3] contains
tools for evasion and some other tools that can be used
for evaluating detection rates of existing SSID approaches.
With industrial Internet of Things, a privacy-preserved data
sharing scheme was proposed in [26] where competing
customers can coexist in different stages of the IoT system.
Gamarra et al. [27] developed a model that describes the
propagation of SSI attacks in the IoT systems using a
vulnerability graph whose topology is fixed as well as
switching. The model can be expanded to a more realistic
scenario when the vulnerability graph changes because the
attack is discovered or the intrusion detection system of
the IoT is trigged. Liu et al. [28] proposed an adaptive
intrusion detection approach using the fuzzy rough set
theory and a new pattern learning. Using a greedy
approach, the authors of [28] introduced a Gaussian mix-
ture model clustering method aiming at obtaining the
intrinsic structure of instances of computer networks.

3. A Framework to Test Resistency of SSID
Methods on Time-Jittering Manipulation

In this section, we first propose a framework to test resistency
of detection algorithms for SSI on time-jittering manipula-
tion. Our proposed framework can be used to test whether
an existing or new SSID method is resistant on session
manipulation by intruders with time-jittering. Then, we pres-
ent the properties of the output generated by our proposed
algorithm with jittered timestamps. Finally, the significance
of our proposed framework is discussed.

3.1. An Algorithm to Test Resistency of SSID Methods on
Time-Jittering. The algorithm for testing resistency of SSID
methods on time-jittering manipulation is described in
Algorithm 1.

Next, we explain the above Algorithm 1 for testing resis-
tency of SSID methods on time-jittering manipulation.

Both the input file input.txt and the output file output.txt
contain two columns: one lists packet timestamp and the
other column lists the packet type for each packet. The input
file is obtained from a PCAP file captured in the Internet
environment. The output file contains jittered timestamps
in the first column and the same packet type in the second
column as in the input file, and the only timestamps of a
given percentage of the Send packets will be jittered.

The algorithm begins with copying the content of
input.txt into output.txt. Let p denote the percentage with
which of Send packets’ time stamps will be jittered, N the
total number of Send packets in the file input.txt, and M
the largest integer less than or equal to pN. Clearly, M is
the number of Send packets that will be jittered.

Then, we generate M random numbers in the range
0~N − 1, sort them in an increasing order, and store them
in a list l_random. These random numbers are the indices
of the Send packets in the list l_Send whose timestamps will
be jittered, where l_Send represents the list of all the Send
packets in the file input.txt.

After that, the for loop iterates each Send packet in the list
l_Send. For each Send packet in l_Send, if its index belongs to
the list l_random, then its timestamp will be jittered. The
increment will be a random value between zero and diff,
where diff represents the timestamp difference between this
Send and the first following Echo packet in the list l_packets.
Finally, update this Send’s timestamp in the file output.txt by
adding the increment to its original timestamp.

3.2. Properties of the Output Generated by the Above
Algorithm 1 with Jittered Timestamps. Clearly, the output file
output.txt generated by the above Algorithm 1 satisfies the
following important properties:

(1) It remains a valid list of captured TCP packets as for
each Send packet with jittered timestamp, its time-
stamp is still less than that of every following Echo
packet

(2) Only the timestamps of a given percentage of the
Send packets will be jittered

5Wireless Communications and Mobile Computing

(3) Those Send packets whose timestamps will be jittered
are randomly selected

(4) For every Send packet whose timestamp will be jit-
tered, the increment of its timestamp is a random
and independent value

3.3. Significance of the Proposed Framework. Stepping-stones
have been widely used by hackers to launch their attacks,
especially after the emerging of the Internet. Network secu-
rity researchers have been proposing approaches for SSID
during the last two decades since Staniford-Chen and Heber-
lein published their seminar work [7] in 1995. However,
intruders have also been developing new techniques to evade
our detection. When SSI attacks are launched, intruders tend
to use session manipulation techniques to evade detection.
By far, the most two popular session manipulation tech-
niques used by intruders for evasion are time-jittering and
chaff perturbation. All the known SSID methods to handle
intruders’ time-jittering and/or chaff perturbation for detect-
ing intruder’s evasion either are not feasible to implement or
do not work effectively. Some of such methods can only
detect an intruder’s evasion with very limited capacity.
Therefore, newly proposed SSID methods should be resistant
to intruders’ session manipulation so that they can be used to
protect practical computer networks against SSI attacks.

For chaff perturbation, software tools such as Scapy have
been developed to inject meaningless packets into data
streams. These software tools can be used to test whether a
SSID algorithm is effective in resisting intruders’ session
manipulation with chaff perturbation. Currently, there are
no existing software tools or effective algorithms to test resis-
tency of SSID algorithms on session manipulation with time-
jittering. Our proposed framework in this paper can be used
by network security researchers to test whether their pro-

posed SSID algorithms are resistant on session manipulation
by intruders with time-jittering.

4. Conclusion

In this paper, we developed a framework to test resistency of
detection approaches for SSI on time-jittering manipulation
by intruders. Network security researchers have been propos-
ing approaches for SSID during the last two decades. How-
ever, intruders have also been developing new techniques to
evade our detection. When SSI attacks are launched,
intruders tend to use session manipulation techniques to
evade detection. Therefore, newly proposed SSID methods
should be resistant to intruders’ session manipulation so that
they can be used to protect practical computer networks
against SSI attacks. Currently, there are no existing software
tools or effective algorithms to test resistency of SSID algo-
rithms on session manipulation with time-jittering. Our pro-
posed framework in this paper can be used by network
security researchers to test whether their proposed SSID
algorithms are resistant on session manipulation by intruders
with time-jittering.

As a future research direction, we will develop new effec-
tive methods for SSID that are efficient and resistant to
intruders’ evasion manipulation using time-jittering and/or
chaff perturbation. Our proposed framework can be used to
verify the resistency of the proposed SSID methods on
time-jittering manipulation by intruders.

Data Availability

All data generated or analyzed during this study are included
in this published article.

Input: a TXT file input.txt with two columns (including packet timestamps and the packet type) obtained from the packets cap-
tured in the Internet environment

Output: a TXT file output.txt with two columns (including packet timestamps and the packet type) and the timestamps of a given
percentage of Send packets have been jittered

copy the file input.txt into the file output.txt
p = percentage; /∗ timestamps of this percentage of Send packets will be jittered ∗/
N = total number of Send packets in the file input.txt;
M = largest integer less than or equal to pN;
/∗ number of Send packets that will be jittered ∗/
l_packets = a list of all the packets in the file input.txt
l_Send = a list of all Send packets in the file input.txt
l_random = an increasing list of M random numbers in the range 0~N-1
/∗ the Send packets in the list l_Send with these indices in l_random will be jittered ∗/
for each Send packet in the list l_Send, do

if its index equals a number in the list l_random
/∗ jitter its timestamp ∗/
diff = timestamp difference between this Send and the first following Echo packet in the list l_packets
incr = a random number in the range 0~diff
increase the timestamp of this Send packet by incr
update this Send’s timestamp in the file output.txt

Algorithm 1: An efficient algorithm for testing resistency of SSID methods on time-jittering.

6 Wireless Communications and Mobile Computing

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work of Drs. Lixin Wang and Jianhua Yang is supported
by the National Security Agency (NSA) NCAE-C research
grant H98230-20-1-0293 with Columbus State University,
Columbus GA, USA.

References

[1] J. Yang, S. H. S. Huang, and M. D. Wan, “A clustering- parti-
tioning algorithm to find TCP packet round-trip time for
intrusion detection,” in 20th International Conference on
Advanced Information Networking and Applications-Volume
1 (AINA’06), vol. 1, Vienna, Austria, 2006.

[2] V. Paxson and S. Floyd, “Wide area traffic: the failure of Pois-
son modeling,” IEEE/ACM Transactions on Networking, vol. 3,
no. 3, pp. 226–244, 1995.

[3] H. Clausen, M. S. Gibson, and D. Aspinall, “Evading stepping-
stone detection with enough chaff,” in International Confer-
ence on Network and System Security, pp. 431–446, Cham,
2020.

[4] D. Donoho, A. Flesia, U. Shankar, V. Paxson, J. Coit, and
S. Staniford, “Multiscale stepping-stone detection: detecting
pairs of jittered interactive streams by exploiting maximum
tolerable delay,” in the 5th International Symposium on Recent
Advances in Intrusion Detection, Lecture Notes in Computer
Science, Berlin, Heidelberg, 2002.

[5] J. Yang and S. S.-H. Huang, “Mining TCP/IP packets to detect
stepping-stone intrusion,” Journal of Computers and Security,
vol. 26, no. 7-8, pp. 479–484, 2007.

[6] J. Yang, L. Wang, A. Lesh, and B. Lockerbie, “Manipulating
network traffic to evade stepping-stone intrusion detection,”
Internet of Things, vol. 3, pp. 34–45, 2018.

[7] S. Staniford-Chen and L. T. Heberlein, “Holding intruders
accountable on the Internet,” in Proceedings 1995 IEEE
Symposium on Security and Privacy, pp. 39–49, Oakland,
CA, 1995.

[8] T. He and L. Tong, “Detecting stepping-stone traffic in chaff:
fundamental limits and robust algorithms,” in 9th Interna-
tional Symposium on Recent Advances in Intrusion Detection
(RAID 2006), Hamburg, Germany, April 2006.

[9] T. He and L. Tong, “Detecting encrypted stepping-stone con-
nections,” IEEE Transaction on Signal Processing, vol. 55,
no. 5, pp. 1612–1623, 2007.

[10] A. Blum, D. Song, and S. Venkataraman, “Detection of interac-
tive stepping-stones: algorithms and confidence bounds,” in
Proceedings of International Symposium on Recent Advance
in Intrusion Detection (RAID), pp. 20–35, Sophia Antipolis,
France, September 2004.

[11] L. Wang and J. Yang, “A research survey in stepping-stone
intrusion detection,” EURASIP Journal on Wireless Communi-
cations and Networking, vol. 2018, Article ID 276, 2018.

[12] Y. Zhang and V. Paxson, “Detecting stepping-stones,” in Proc.
of the 9th USENIX Security Symposium, pp. 67–81, Denver,
CO, August 2000.

[13] K. Yoda and H. Etoh, “Finding connection chain for tracing
intruders,” in Proc. 6th European Symposium on Research in
Computer Security, pp. 31–42, Toulouse, France, September
2000.

[14] J. Yang, B. Lee, and S. S.-H. Huang, “Monitoring network traf-
fic to detect stepping-stone intrusion,” in Proceedings of 22nd
IEEE International Conference on Advanced Information Net-
working and Applications (AINA 2008), pp. 56–61, Okinawa,
Japan, March 2008.

[15] J. Yang and Y. Zhang, “RTT-based random walk approach to
detect stepping-stone intrusion,” in IEEE 29th International
Conference on Advanced Information Networking and Applica-
tions, pp. 558–563, Gwangju, Korea (South), 2015.

[16] W. Ding, M. J. Hausknecht, S.-H. S. Huang, and Z. Riggle,
“Detecting stepping-stone intruders with long connection
chains,” in 2009 Fifth International Conference on Information
Assurance and Security, Xi'an, China, August 2009.

[17] S. S. H. Huang, H. Zhang, and M. Phay, “Detecting stepping-
stone intruders by identifying crossover packets in SSH
connections,” in Proceedings of 30th IEEE International Con-
ference on Advanced Information Networking and Applica-
tions, pp. 1043–1050, Crans-Montana, Switzerland, March
2016.

[18] Xinyuan Wang and D. Reeves, “Robust correlation of
encrypted attack traffic through stepping stones by flow water-
marking,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 8, no. 3, pp. 434–449, 2011.

[19] K. H. Yung, “Detecting long connecting chains of interactive
terminal sessions,” in Proc. of International Symposium on
Recent Advance in Intrusion Detection (RAID), pp. 1–16,
Zurich, Switzerland, October 2002.

[20] J. Yang and S.-H. S. Huang, “A real-time algorithm to detect
long connection chains of interactive terminal sessions,” in
Proceedings of 3rd ACM International Conference on Informa-
tion Security (Infosecu’04), pp. 198–203, Shanghai, China,
November 2004.

[21] J. Yang and S. H. S. Huang, “Matching TCP packets and its
application to the detection of long connection chains,” in Pro-
ceedings of 19th IEEE International Conference on Advanced
Information Networking and Applications (AINA 2005),
pp. 1005–1010, Taipei, Taiwan, China, March 2005.

[22] L. Wang, J. Yang, X. Xu, and P. J. Wan, “Mining network
traffic with the -means clustering algorithm for stepping-
stone intrusion detection,” Wireless Communications and
Mobile Computing, vol. 2021, Article ID 6632671, 9 pages,
2021.

[23] Z. Cai, Z. He, X. Guan, and Y. Li, “Collective data-sanitization
for preventing sensitive information inference attacks in social
networks,” IEEE Transactions on Dependable and Secure Com-
puting, vol. 15, no. 4, pp. 577–590, 2016.

[24] Z. Cai and Z. He, “Trading private range counting over big IoT
data,” in 2019 IEEE 39th International Conference on Distrib-
uted Computing Systems (ICDCS), pp. 144–153, Dallas, TX,
USA, 2019.

[25] Z. Cai and Z. Xu, “A private and efficient mechanism for data
uploading in smart cyber-physical systems,” IEEE Transac-
tions on Network Science and Engineering, vol. 7, no. 2,
pp. 766–775, 2018.

[26] X. Zheng and Z. Cai, “Privacy-preserved data sharing
towards multiple parties in industrial IoTs,” IEEE Journal
on Selected Areas in Communications, vol. 38, no. 5,
pp. 968–979, 2020.

7Wireless Communications and Mobile Computing

[27] M. Gamarra, S. Shetty, O. Gonzalez, D. M. Nicol, C. A.
Kamhoua, and L. L. Njilla, “Analysis of stepping-stone
attacks in internet of things using dynamic vulnerability
graphs,” Modeling and Design of Secure Internet of Things,
vol. 12, pp. 273–294, 2020.

[28] J. Liu, W. Zhang, Z. Tang et al., “Adaptive intrusion detection
via GA-GOGMM-based pattern learning with fuzzy rough set-
based attribute selection,” Expert Systems with Applications,
vol. 139, p. 112845, 2020.

8 Wireless Communications and Mobile Computing

	A Framework to Test Resistency of Detection Algorithms for Stepping-Stone Intrusion on Time-Jittering Manipulation
	1. Introduction
	1.1. Definitions of Send/Echo Packets
	1.2. The Distribution of Packets’ RTTs for a Connection Chain
	1.3. Session Manipulation by Intruders Using Chaff-Perturbation or Time-Jittering

	2. Literature Review on SSID
	3. A Framework to Test Resistency of SSID Methods on Time-Jittering Manipulation
	3.1. An Algorithm to Test Resistency of SSID Methods on Time-Jittering
	3.2. Properties of the Output Generated by the Above Algorithm&ebsp;1 with Jittered Timestamps
	3.3. Significance of the Proposed Framework

	4. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments

