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Abstract In previous work (Tracy and Widom in Commun. Math. Phys. 279:815–844,
2008) the authors found integral formulas for probabilities in the asymmetric simple exclu-
sion process (ASEP) on the integer lattice Z. The dynamics are uniquely determined once
the initial state is specified. In this note we restrict our attention to the case of step initial
condition with particles at the positive integers Z

+ and consider the distribution function for
the mth particle from the left. In Tracy and Widom (Commun. Math. Phys. 279:815–844,
2008) an infinite series of multiple integrals was derived for the distribution. In this note
we show that the series can be summed to give a single integral whose integrand involves a
Fredholm determinant. We use this determinant representation to derive (non-rigorously, at
this writing) a scaling limit.

Keywords Asymmetric simple exclusion process · Totally asymmetric simple exclusion
process · Fredholm determinants

1 Introduction

The asymmetric simple exclusion process (ASEP) is a basic interacting particle model for
nonequilibrium phenomena. Since its introduction by Spitzer [10] in 1970, it has become
a popular and much studied model. (See, e.g. [3, 4, 6, 9].) In ASEP on the integer lattice
Z particles move according to two rules: (1) A particle at x waits an exponential time with
parameter one (independently of all other particles), and then it chooses y with probability
p(x, y); (2) If y is vacant at that time it moves to y, while if y is occupied it remains at x

and restarts its clock. The adjective “simple” refers to the fact that allowed jumps are one
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step to the right, p(x, x + 1) = p, or one step to the left, p(x, x − 1) = 1 − p = q . Because
we deal with continuous time, we need not worry about two or more particles attempting
jumps at the same time. The model is called T(totally)ASEP if either p = 1 (particles hop
only to the right) or q = 1 (particles hop only to the left).

The dynamics are uniquely determined once we specify the initial state. We restrict our
attention to the case of step initial condition with particles at the positive integers Z

+. With
this initial condition it makes sense to talk about the position of the mth left-most particle at
time t . We denote this (random) position by xm(t). (So xm(0) = m.)

In a now classic paper, Johansson [2] for the case of TASEP with step initial condition
showed that the distribution of xm(t) is related to the distribution of the largest eigenvalue
in the unitary Laguerre ensemble of random matrix theory. This connection with random
matrix theory leads to an expression for the distribution of xm(t) as a Fredholm determinant.
The importance of the Fredholm determinant representation is that it makes possible an
analysis of the regime of universal fluctuations. (See Johansson’s Corollary 1.7. For further
discussion of this universal regime see [6, 11].)

For the general ASEP model on Z there is, as far as the authors know, no known connec-
tion to random matrix theory and no analysis of the analogous scaling regime as analyzed
by Johansson in the TASEP case. (However for stationary ASEP Balázs and Seppäläinen [1]
and Quastel and Valkó [7] prove that the variance of the current across a characteristic is of
order t2/3 and that the diffusivity has order t1/3.) In recent work [12] we showed (building on
ideas from Bethe Ansatz [8]) that P(xm(t) ≤ x) can be expressed as an infinite series where
the kth order term is a k-dimensional integral.

In this paper we show that when p and q are nonzero this infinite series can be summed
to give a single integral whose integrand involves a Fredholm determinant. We use this
determinant representation to derive a scaling limit for fixed m with x, t → ∞. (It is not an
extension of the scaling limit of Johansson since m is fixed.) It remains conjectural since the
derivation lacks a justification for an interchange of limits, but it is surely true.

2 Determinant Representation

The result is stated in terms of an operator with kernel

K(ξ, ξ ′) = ξxeε(ξ)t

p + qξξ ′ − ξ
,

where

ε(ξ) = pξ−1 + qξ − 1.

If q �= 0 and CR denotes the circle with center zero and radius R then K(ξ, ξ ′) is a smooth
function on CR × CR when R is sufficiently large. Then the operator K on L2(CR) defined
by1

Kf (ξ) =
∫

CR

K(ξ, ξ ′)f (ξ ′)dξ ′

is trace class. With the notations

τ = p/q, (λ; τ)m = (1 − λ)(1 − λτ) · · · (1 − λτm−1),

1All contour integrals are to be given a factor 1/2πi.
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the result is that when p and q are both nonzero,

P(xm(t) ≤ x) =
∫

det(I − λqK)

(λ; τ)m

dλ

λ
, (1)

where the integral is taken over a circle so large that all the singularities of the integrand lie
inside it. Evaluating the integral by residues gives the equivalent formula

P(xm(t) > x) =
m−1∑
i=0

det(I − qτ−iK)∏
j �=i

j≤m−1
(1 − τ j−i )

.

(When τ = 1 this is modified in the obvious way.) In particular,

P(x1(t) > x) = det(I − qK).

To state the Corollary to Theorem 5.2 of [12], from which (1) will follow, we recall the
definition of the τ -binomial coefficient

[
N

n

]
τ

= (1 − τN)(1 − τN−1) · · · (1 − τN−n+1)

(1 − τ)(1 − τ 2) · · · (1 − τn)
.

The result was that if the initial state is Z
+ and q �= 0 then2

P(xm(t) = x) = (−1)m+1
∑
k≥m

1

k!
[

k − 1
k − m

]
τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
∫
CR

· · ·
∫
CR

∏
i �=j

ξj − ξi

p + qξiξj − ξi

1 − ξ1 · · · ξk∏
i (1 − ξi)(qξi − p)

×
∏

i

(ξ x−1
i eε(ξi )t )dξ1 · · ·dξk,

where in the k-dimensional integral all indices run over {1, . . . , k}.
If we sum this over x from −∞ to x (which we may do since we may take R > 1) we

obtain

P(xm(t) ≤ x) = (−1)m
∑
k≥m

1

k!
[

k − 1
k − m

]
τ

p(k−m)(k−m+1)/2qkm+(k−m)(k+m−1)/2

×
∫
CR

· · ·
∫
CR

∏
i �=j

ξj − ξi

p + qξiξj − ξi

∏
i

1

(1 − ξi)(qξi − p)

×
∏

i

(ξ x
i eε(ξi )t )dξ1 · · ·dξk. (2)

2The coefficients were given in [12] in terms of what we denoted there by
[N

n

]
, which is related to

[N

n

]
τ

by[N

n

] = qn(N−n)
[N

n

]
τ

.
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The observation that will allow us to express this in terms of Fredholm determinants is
the identity

det

(
1

p + qξiξj − ξi

)
1≤i,j≤k

= (−1)k(pq)k(k−1)/2
∏
i �=j

ξj − ξi

p + qξiξj − ξi

∏
i

1

(1 − ξi)(qξi − p)
.

(3)
This can be seen as follows. We may assume τ �= 1 (i.e., q �= 1/2) since both sides are
continuous in q . If we make the substitutions

ξi = ηi + 1

ηi + τ−1
,

then

1

p + qξiξj − ξi

= − 1

p(1 − τ)

(1 + τηi)(1 + τηj )

ηi − τηj

. (4)

Since

det

(
1

ηi − τηj

)

is a Cauchy determinant we can evaluate it, and we find that the determinant of (4) equals

(−1)k τ k(k−1)/2

pk(1 − τ)2k

∏
i

(1 + τηi)
2

ηi

∏
i �=j

ηi − ηj

ηi − τηj

. (5)

We compute

(1 + τηi)
2

ηi

= p(1 − τ)2

(qξi − p)(1 − ξi)
,

ηi − ηj

ηi − τηj

= q
ξj − ξi

p + qξiξj − ξi

,

and find that (5) equals the right side of (3).
From (3) we see that when also p �= 0 (2) may be written

P(xm(t) ≤ x) = (−1)m
∑
k≥m

(−1)k

k!
[

k − 1
k − m

]
τ

pm(m−1)/2−k(m−1)q−m(m−1)/2+km

×
∫
CR

· · ·
∫
CR

det(K(ξi, ξj ))1≤i,j≤kdξ1 · · ·dξk

= (−1)mτm(m−1)/2
∑
k≥m

(−1)k

k!
[

k − 1
k − m

]
τ

(
p

τm

)k

×
∫
CR

· · ·
∫
CR

det(K(ξi, ξj ))1≤i,j≤kdξ1 · · ·dξk. (6)

The last integral is a coefficient in the Fredholm expansion of det(I − λK). In fact

∞∑
k=0

(−λ)k

k!
∫
CR

· · ·
∫
CR

det(K(ξi, ξj ))1≤i,j≤kdξ1 · · ·dξk = det(I − λK). (7)
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From [5, p. 26] we have for |z| small enough

∑
k≥m

[
k − 1

k − m

]
τ

zk = zm
∑
j≥0

[
m + j − 1

j

]
τ

zj = zm

m−1∏
i=0

1

1 − τ iz
=

m∏
j=1

z

1 − τm−j z
.

If we set z = pτ−mλ−1 this gives for |λ| large enough

(−1)mτm(m−1)/2
∑
k≥m

[
k − 1

k − m

]
τ

(
p

τm

)k

λ−k =
m∏

j=1

1

1 − λp−1τ j
= 1

(λ/q; τ)m

. (8)

If we multiply (7) and (8), multiply by λ−1, and integrate and we see that (6) is the same
as (1).

Remark Formula (1) holds when p and q are nonzero. When p → 0 we must get the TASEP
determinant for the probability, and the question arises whether this is easy to see. The
answer seems to be that it is not easy, but it can be derived from it with some work.

3 A Scaling Conjecture

Denote by K0 the operator on L2(R) with kernel

K0(z, z
′) = 1√

2π
e−(p2+q2)(z2+z′2)/4+pqzz′

.

(This is the symmetrization of the Mehler kernel.) When p �= q this is trace class. The
conjecture is that if p < q , so there is a drift to the left, we have for each m

lim
t→∞ P(xm(t) ≤ (p − q)t + (q − p)yt1/2) =

∫
det(I − λqK0χ(−y,∞))

(λ; τ)m

dλ

λ
, (9)

where, as before, the integral is taken over a circle so large that all the singularities of the
integrand lie inside it.

We know from (1) that

P(xm(t) ≤ (p − q)t + (q − p)yt1/2) =
∫

det(I − λqK)

(λ; τ)m

dλ

λ
,

where K is as before and

x = (p − q)t + (q − p)yt1/2. (10)

Therefore the conjecture would follow if we can show that

det(I − λK) → det(I − λK0χ(−y,∞)) as t → ∞, uniformly on compact λ-sets. (11)

The Fredholm determinants are entire functions of λ, and the coefficients in their expan-
sions about λ = 0 are universal polynomials in the traces of powers of the operators. By
considering the coefficients successively we can see that if (11) is true then necessarily

(i) trKn → tr(K0χ(−y,∞)))
n as t → ∞ for n = 1,2, . . . .
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If (i) holds then each coefficient in the expansion of det(I − λK) converges to the cor-
responding coefficient in the expansion of det(I − λK0χ(−y,∞)). This is not sufficient to
give (11). It would be sufficient if we also knew that

(ii) det(I − λK) is uniformly bounded for large t on compact λ-sets.

For if this holds one sees from the Cauchy inequalities that the convergence of the series for
det(I − λK) is uniform in t .

We shall show that (i) holds.
First, though, we remark that if the conjecture is true then we expect the right side of (9)

to be a distribution function in y for each m. As y → −∞ the numerator in the integrand
approaches one, and expanding the contour shows that the resulting integral equals zero. But
what about the y → +∞ limit, which should equal one? The right side becomes

1 −
m−1∑
i=0

det(I − qτ−iK0)∏
j �=i

j≤m−1
(1 − τ j−i )

, (12)

where K0 acts on all of R. If this is to equal one when m = 1 then we must have det(I −
qK0) = 0. If this holds and (12) is equal to one when m = 2 then we must also have det(I −
qτ−1K0) = 0. And so on. The conclusion is that det(I − qτ−iK0) should equal zero for all
i ≥ 0, in other words that all τ i/q should be eigenvalues of K0. These are indeed eigenvalues
and the corresponding eigenfunctions are

e−(q2−p2)z2/4Hi

(√
q2 − p2

2
z

)
,

where the Hi are the Hermite polynomials.
Next, we explain where the conjecture came from: there is a kernel with the same Fred-

holm determinant3 as K that converges pointwise to a kernel with the same Fredholm deter-
minant as K0χ(−y,∞).

When p < q we have, when |ξ | and |ξ ′| are large enough,

K(ξ, ξ ′) = (q − p)
ξxeε(ξ)t

(qξ − p)(qξ ′ − p)

∫ ∞

0
e

z(q
1−ξ ′

qξ ′−p
−p

1−ξ
qξ−p

)
dz.

Therefore if we define

A(ξ, z) = (q − p)
ξxeε(ξ)t

qξ − p
e

−pz
1−ξ

qξ−p , B(z, ξ ′) = 1

qξ ′ − p
e

qz
1−ξ ′

qξ ′−p ,

then

K(ξ, ξ ′) =
∫ ∞

0
A(ξ, z)B(z, ξ ′)dz.

The kernel

K1(z, z
′) =

∫
CR

B(z, ξ)A(ξ, z′)dξ = q − p

2πi

∫
CR

ξxeε(ξ)t

(qξ − p)2
e

(qz−pz′) 1−ξ
qξ−p dξ (13)

on R
+ has the same Fredholm determinant as K on CR .

3We use the term “Fredholm determinant” to mean the infinite series. In case the kernel is continuous and
trace class on some Hilbert space this is the same as the operator determinant.
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The part of the exponent with the factor t ,

(p − q) log ξ + ε(ξ), (14)

has a critical point at ξ = 1, its second derivative is positive there, and on the line Re ξ = 1
its real part has an absolute maximum there. When x < 0 we may replace CR by this line,
and we make the substitution ξ → 1 + iξ t−1/2. We also make the substitutions

z → (q − p)zt1/2, z′ → (q − p)z′t1/2,

and multiply the kernel by (q − p)t1/2, so the Fredholm determinant is unchanged. We let
t → ∞ and obtain the pointwise limit

K2(z, z
′) = 1√

2π
e−(qz−pz′−(q−p)y)2/2.

Here z, z′ ∈ R
+. We may replace this by the kernel K3(z, z

′)χ(−y,∞)(z
′), where z, z′ ∈ R and

K3(z, z
′) = 1√

2π
e−(qz−pz′)2/2.

The kernel K0(z, z
′) is the symmetrization of K3(z, z

′). In fact

K0(z, z
′) = e(q−p)z2/4K3(z, z

′)e−(q−p)z′2/4,

so they have the same Fredholm determinants. Hence, the conjecture.
Finally, we establish (i). Instead of K we may use the kernel K1 given by (13) because

the traces of the powers are the same. We make the variable change

η = ξ − 1

qξ − p

and find that with x given by (10)

K1(z, z
′) = 1

2πi

∫
γ

e−(qz−pz′)η+f (η)t1/2+g(η)t dη,

where

f (η) = (q − p)y log

(
1 − pη

1 − qη

)
,

g(η) = (p − q) log

(
1 − pη

1 − qη

)
+ (q − p)2 η

(1 − pη)(1 − qη)
,

and γ is a little circle around 1/q described clockwise. (The apparent complication here will
make things simpler later.)

The function g(η) equals (14) after our substitution. The line Re ξ = 1 corresponds to the
circle 
 with diameter (0,1/q). On this contour g has a critical point at η = 0, its second
derivative is positive there, and the real part of g(η) has an absolute maximum there.

We consider first

trK1 = 1

q − p

1

2πi

∫
γ

ef (η)t1/2+g(η)t dη

η
. (15)
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In the neighborhood of η = 0

f (η) = (q − p)2yη + O(η2), g(η) = (q − p)2η2/2 + O(η3).

Since the singularity at 1/p > 1/q is outside γ and 
 we may deform γ to 
 if we replace
the denominator η in (15) by η + 0. We then make the substitution η → iηt−1/2 and find
(recalling that γ , and so 
, is described clockwise) that

lim
t→∞ trK1 = 1

q − p

1

2π

∫ ∞

−∞
e−(q−p)2η2/2+i(q−p)2yη dη

iη + 0

= q − p

2π

∫ ∞

−∞

∫ ∞

0
e−(q−p)2η2/2+i(q−p)2yηe−i(q−p)2zηdzdη

= 1√
2π

∫ ∞

0
e−(q−p)2(z−y)2/2dz

= 1√
2π

∫ ∞

−y

e−(q−p)2z2/2dz = trK3χ(−y,∞) = trK0χ(−y,∞).

Now comes the tricky part. We compute that

trKn
1 = 1

(2πi)n

∫
γ

· · ·
∫

γ

e
∑

j (t1/2f (ηj )+tg(ηj ))∏
j (qηj − pηj+1)

dη1 · · ·dηn,

where we set ηn+1 = η1. Recalling that τ = p/q we may write this as

1

(2πiq)n

∫
γ

· · ·
∫

γ

e
∑

j (t1/2f (ηj )+tg(ηj ))∏
j (ηj − τηj+1)

dη1 · · ·dηn. (16)

We want to deform all contours γ to 
. Suppose we deform the ηj -contour γ , while
perhaps some are still γ and others are already 
. Since τ < 1 the pole at ηj = τηj+1 will
be crossed in the deformation whether ηj+1 is on γ or 
, while the pole at τ−1ηj−1 will not
be crossed. The residue at the crossed pole will give rise to a lower-order integral. In the
deformation of all contours to 
 we will eventually get a sum of integrals over 
 of order
≤ n. But there is the problem that the integrands in these integrals will be singular at zero,
so we cannot blithely deform all contours to 
, even if we keep track of the residues.

What we do is first expand 
 slightly to a circle 
′ with diameter (−α,1/q), where α

is very small and positive. Because 
 is expanded, but just a little, we will still cross poles
at the τηj (for ηj on the contour γ or the entire contour 
′) but not at the τ−1ηj . (If we
had shrunk 
 instead we would cross the pole at τηj only for some ηj ∈ 
′, which would
complicate determining the lower-order integrals.)

Expanding all contours as described we get a sum of integrals over 
′ of order ≤ n,
one for each subset S of {1, . . . , n}, in which the integrands are nonsingular. The integral
corresponding to S is obtained as follows: for each j ∈ S remove the factor ηj − τηj+1 from
the denominator, make the replacement ηj → τηj+1 in the remainder of the integrand, and
multiply by 2πi. The integral is taken with respect to the ηj with j �∈ S. This is the integrand
we get after we take the residues that arise from crossing the poles at the ηj = τηj+1 with
j ∈ S.4

4Although γ is expanded outward we multiply by 2πi rather than −2πi because γ is described clockwise.
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The result may be described equivalently as follows: replace the product

∏
j

(ηj − τηj+1)
−1

with all ηj ∈ γ by
∏
j

[
(ηj − τηj+1)

−1 + 2πiδ(ηj − τηj+1)
]

with all ηj ∈ 
′. It follows that (16) is equal to

1

(2πiq)n

∫

′

· · ·
∫


′
e

∑
j (t1/2f (ηj )+tg(ηj ))

∏
j

[
(ηj − τηj+1)

−1 + 2πiδ(ηj − τηj+1)
]
dη1 · · ·dηn.

Once we have this we can take the t → ∞ limit. Recall that in the above α could have
been any sufficiently small positive number. We take it to be t−1/2, so the left-most point of

′ is −t−1/2, and 
′ is vertical there. On 
′ we make the substitutions ηj → iηj t

−1/2 and
obtain in the t → ∞ limit

1

(2πiq)n

∫ ∞+i

−∞+i

· · ·
∫ ∞+i

−∞+i

∏
j

e
−(q−p)2η2

j
/2+i(q−p)2yηj

×
∏
j

[
(ηj − τηj+1)

−1 + 2πiδ(ηj − τηj+1)
]
dη1 · · ·dηn. (17)

We used here the fact that δ is homogeneous of degree −1.
We now undo what we did before. Suppose we had the integral

1

(2πiq)n

∫ ∞−i

−∞−i

· · ·
∫ ∞−i

−∞−i

∏
j

e
−(q−p)2η2

j
/2+i(q−p)2yηj

∏
j

(ηj − τηj+1)
−1dη1 · · ·dηn, (18)

and wanted to integrate over Imηj = +1 instead over Imηj = −1. If we raised the ηj -
contours successively we would obtain a sum of integrals of lower order over Imηj = 1 that
come from the residues at various poles at ηj = τηj+1. The sum of all integrals that arise is
precisely equal to (17). Thus the limit of trKn is equal to (18).

We now substitute into (18) the integral representations, valid when Imηj = −1,

1

i(ηj − τηj+1)
=

∫ ∞

0
e−i(ηj −τηj+1)zj dzj ,

and integrate first with respect to the ηj . We obtain

1

(2π)n/2

∫ ∞

0
· · ·

∫ ∞

0

n∏
j=1

e−(qzj−1−pzj −(q−p)y)2/2dz1 · · ·dzn,

where z0 = zn. This is equal to

1

(2π)n/2

∫ ∞

−y

· · ·
∫ ∞

−y

n∏
j=1

e−(qzj−1−pzj )2/2dz1 · · ·dzn = tr(K3χ(−y,∞))
n = tr(K0χ(−y,∞))

n.
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Thus (i) is established. What would it take to establish (ii)? It would be enough to
find kernels that have the same Fredholm determinants as K and that have bounded trace
norms on some Hilbert space. We could use the Hilbert-Schmidt norm instead (which is
weaker and easier to compute) since that would give uniform boundedness of the regular-
ized 2-determinant, and since the traces are bounded the determinant would also be. But so
far we have not found any such kernels.
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