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1. Introduction

It is the purpose of this paper to derive and solve a mathematical model for the
following physical problem. Suppose that in a homogeneous compressible porous medium
one incompressible fluid is displacing another. The problem is to describe the motion of
the fluids, in particular, the motion of the interface between the fluids, if the initial velocity
distribution, or equivalently, the initial pressure distribution, of the fluids is given, together
with appropriate boundary data.

We assume the flow to be in the horizontal z-direction, say, and neglect gravitational
effects. We further assume the two fluids are immiscible so that for each time ¢ there is a
well defined interface between the fluids whose location is given by z=g(t). To the left of
o(t) we denote the velocity of the fluid by u(z, t) and its pressure by p(, t), and to the right
we denote velocity and pressure by v(z, ¢) and g(, t) respectively. The pressures and velo-

cities are related by Darcy’s law:
u(x, t) = — adp(x, t)/0x, v(x, t)= —bog(x, t)/ox, (1.1)

where a and b are positive quantities which depend on the physical properties of the fluid
in question and of the porous medium and which we take to be constant. Since the fluids

are incompressible, their densities are constant and the continuity equations take the form

{a<p/at+au/ax=0 x < plt), (1.2)

op/ot+ov fox=0 x> p(t),

(*) Supported in part by NSF-GP-5965 and NSF-GP-7848.
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where @ represents the porosity of the medium (see Scheidegger [21] for a precise definition),
which in our case is a function of pressure alone. Following Scheidegger [21], p. 105, or the
original work of Séelkadev [19], [20], we assume that ¢ is a slowly increasing function of
the pressure, and that, for small variations in pressure, the derivative of @ (with respect to

pressure) may be taken to be a positive constant. This, together with (1.1) and (1.2), implies

0 o
é_t?:“_an z<el)
(1.3)
aq &q
ot Pap =7

where « and § are again positive constants. Since the fluids are assumed to be flowing in

contact we must have .
u(o(t), t) = v(o(®), 1), (1.4)

and further, since the velocity of the interface is both dp/ot and u(g(t), t) we must have

do

=€~ u(o, t 1.5
dt u(g, 1) (1.5)
Finally, we assume, with Muskat [13], that the pressure is continuous across the interface

so that
plo(), t) = gq(o(t), 1) (1.6)

These last three equations describe the interface conditions which we treat.

This interface problem was originally formulated by Muskat [13] in three dimensions.
Our formulation coincides with his, except for the simplifications arising from the one
dimensionality of our simpler situation, and except that Muskat assumes that the terms
dp/ot and dg/ot are negligible in (1.3) so that each of these equations reduces, in his case, to
Laplace’s equation. He then formulates the problem entirely in terms of the pressures. His
problem (Muskat’s model) has apparently remained unsolved except for a few special cases,
where the shape of the interface was predetermined by symmetry considerations. (See
Scheidegger [211].)

Our approach is to rephrase the problem entirely in terms of the velocities, eliminating
p and ¢ and to solve the resulting mathematical model. In fact, by (1.1) and (1.3) » and v
satisfy the differential equations

AUy = Uy Z<Q(t), (17)
ﬂvu: Uy (E>Q(t).

Next we assume p(o(t), t) and g{o(t), t) are differentiable functions of ¢ and that p and ¢
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satisfy (1.3) on the interface x=p(t), both assumptions being justified by the solution we
obtain. Then from (1.6) we have

a d
7, 2(e).9=7 alet), ©),

and by (1.1) and (1.5) we compute

d _ ’ __1.. __1 . _«
dtp(e,t)—px(@t)e +p(e.t)= 5 ¥ @)t ap.{e.t)= au(e,t} auz(e,t)-

Making a similar calculation on ¢ and equating the results leads to

Ku? (o(t), 1) + yuz (o(t), ) = Av, (0(8), £), (1.8)
where K= (a™*—b""), y=a/a, and 1=p4/b.

On the other hand, if we have functions u(z, t), v(z, t), o(t) satisfying (1.7), (1.4), (1.5)
and (1.8), we can find functions p(z, t), g(x, t), o(t) satisfying (1.3), (1.1), (1.4), (1.5) and (1.6).
In fact, define U, t) to be alu(z, t) for x<g(f), >0 and to be b~v(z, t) for x >p(t), £>0.
Letting x,<g(t) be fixed, define ®(x, t) = {7, U(£, t) d& +¢(t). Then if p(t)=a-a™' [§(5/0x)
u(xy, T)d7, one may readily verify that ®(z,?) is continuous for —oo <x<<co. Letting
plx, 8)=0(x, 1), x < o(t), £ > 0, gz, 1) =D(x, 1), £ > o(t), £ >0, one can now show that these func-
tions satisfy (1.3), (1.1), (1.4), (1.5) and (1.6).

In many applications (1.8) can be simplified to

yus(o(t)t) = Avilot), £).

There is reason to expect a u? (or v?) term in a more precise formulation of Darcy’s law,
which implicitly assumes small velocities. Hence neglecting the w2 term in (1.8) would be
consistent with the use of Darcy’s law in the form (1.1). In the problem which motivated
this investigation, the displacement of oil by water, the velocities encountered are small,
being of the order of a few centimeters per day.

We can (and do) treat a non-linear term in this free boundary condition of greater
complexity than the Ku? term which arises from the physical problem, and it seems to be
of some mathematical interest to consider such a generalization.

We are now in a position to formulate our first problem:

ProBLEM 1. Given positive constants e, f,y, A and A, and three functions: f defined on
{—co<z<0}, g on {0<2<00}, and H on R"®[0, A) we seek three funciions u, v, and
such that
18* — 692906 Acta mathematica. 122, Tmprimé le 18 Juin 1969,
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“(I1) o(t) is defined and continuous for 0 <t <A, with g(0)=0.

(I2) u(x,t) is defined and continuous for x<p(t), 0 <t <A, with u,(x,t) continuous for
2<p(t), 0<t<A, with u,(z,t) and u,z, t) continuous for x<p(t), 0<t<A and satisfying
o, (7, 1) =uylz, £), u(z, 0) =f(z).

(I3) v(x,t) is defined and continuous for x>p(t), 0 <t <A, with v,(x, ) continuous for
xzo(t), 0<t<A, with v, (x,t) and v,(x,t) continuous for x>p(t), 0<t<A, and satisfying
Bv.o(a, 1) =v(x, 1), o(x, 0) =g(a).

(14) u(o(t), t) =v(o(t), ), 0<t<A.

(I5) H(ugy, Uggys oo Ugnys B) +puLlo(t), 1) = vlo(t), 1), O0<t<A where ugy=u(o(t),t),
uy =6 u(@dr, =1,2, ..., n-1.

(I6) o'(2) =ulp(t), t), 0<t<A.

The problem is represented schematically in the diagram below:

t t=A
x=o(t)
OUzy = Uy ﬂvz:c =7
g =u=v
H+yu,= v,
u(z, 0) = f(x) 0 v(2,0) =g() z

We shall give a solution to this problem under sufficient smoothness and growth con-
ditions on f, g, and H, together with certain compatibility restrictions. Specifically we
assume the following:

(A1) fis twice continuously differentiable on { — co <2 <0}, and ¢ is twice continuously
differentiable on {0 <z <co}.

(A2) For some M >0
|f@)], |f' ()], |/"(x)| are all bounded by M exp [#?/4ad]
lg(@)], |9'@®)}], |¢"(x)| are all bounded by M exp [+2/48A].
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(A3) H is continuously differentiable on R*®[0, A) and its partial derivatives satisfy
a uniform Lipschitz condition on each compact subset of R*®[0, 4).
(A4) (0)=g(0) and H(f(0), 0, 0, O, ..., 0) +-yf(0)=2g'(0).

Under these conditions we shall show that Problem I has a solution, and that, within
the class of functions subject to certain standard exponential growth conditions at infinity
related to (A2), the solution is unique.

As a by-product of this investigation we obtain an existence and uniqueness theorem
for the case where g(f) is given and we drop the condition ¢’ =%. This we formulate as our
second problem.

ProBrEM IL Given a, B, y, A, and A as before, and given four functions: f, ¢, and H as
before and o defined on [0, A), we seek two functions w and v satisfying

(IT1) u(z, t) @s defined and continuous for x<pg(t), 0<t<d, with u,(z,t) confinuous
for x<p(t), 0 <t <A, with u(x, t) and u(z, t) continuous for x <p(t), 0 <t <4 and saiisfying
athoo(, 1) = u,(3, 1), u(z, 0) =f(@).

(I12) v(x, t) is defined and continuous for x=g(t), 0 <t <A, with vz, t) continuous for
xZ0(t), 0<t<A, with v,(z,t) and v,(x,t) continuous for x>p(t), 0<t<A and satisfying
Brael®, 1) =04l 1), v(, 0)=g(a).

(IL3) u(p(t), t) =v(p(t), t), Ot <A.

(114) H(uq), ia)s s Uiny, 1) +%A0(2), 1) =A0,(0(t), 8), O<t<A where uyy=ule(t), ?),
U =6 up(®)dr, §=1,2, .., n—1.

We solve this problem under (A1)-(A4) and

(AB) o(t) is twice continuously differentiable on {0 <f< A} with g(0)=0.

Work on problems similar to Problem II for the heat equation and more general
parabolic equations has been done by several authors beginning apparently with Dacev
[1], [2]. (See also Zitarau [26] and his bibliography.) However, this work seems to be
limited to the cases where g is constant and H=0.

The free boundary problem (Problem I) we consider differs in many aspects from
the Stefan type problems which have been considered by many previous authors. In
particular, Cannon and Hill {3), Douglas [4], Friedman [5), Kamenomostskaya [8)], Kolodner
{9}, Kyner [10], Li-Shang [11], [12], Oleinik [14], Quilghini [15], [16], Sestini [22] and
others have contributed to that problem in recent years. A recent book by Rubinitein [18]
surveys that problem to the year 1967.(1) We are indebted to these writers only for the spirit

(1) Added in proof. Two papers by Friedman, The Stefan problem in several space variables and
One dimensional Stefan problems with non-monotone free boundary, appearing in Trans. Amer.
Math. Soc. (133) 1968, should be added to this list.
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of our approach in this paper. In fact, of this previous work we use only a refinement
due to Friedman [5] of Holmgren’s early analysis of thermal potentials. (For a discussion
of Holmgren’s work see Goursat [7].)

We remark that the techniques used for solving problems I and IT may also be used
to solve problems on finite z-intervals similar to I and II. Rather than giving growth
conditions on the solutions at infinity, however, it is necessary to give the values of the
functions or their derivatives, or a linear combination of them at the endpoints of the
intervals in question. The reduction of these problems to equivalent integral equations pro-
ceeds in much the same manner as in our case, the only difference being that appropriate
Green’s or Neumann functions must be used in place of the fundamental solution which
we use.

We use two standard notations for partial derivatives. Thus k,(x, ) k. (, t) and k,(z, ?)
mean, as usual the first partial of k¥ with respect to z, the second partial of & with respect
to x, and the first partial of & with respect to t. Also we use k,(x —po(t), of — 1), kyy(x —0(¢),
ot —oet), and ky(x —p(t), of —at). Here, again as usual, these mean partials with respect to
the arguments. Thus the subseript 1 means the first partial with respect to the first argu-
ment, etc. Finally, in the way of notation, if [ is any interval (open, closed, half-open)
on the real line, the differentiability classes C*(I), k>0 an integer, are introduced in the

standard way.

2. The Poisson integral and Dirichlet problems

The two problems we formulated in the introduction, or at least our solutions of
them, turn primarily on smoothness properties of the solutions of certain Dirichlet problems,

which in turn depend primarily on the properties of the Poisson integral

W(x, t)y= foo kx— & ab) w(&)dé (2.1)

and of the double layer thermal potential

t

Plog x, 8)=2 ocf ky(x— o(1), ot — a7) p(7) d, (2.2)

0
where k(x, ¢) = (4out)* exp (—a2/4t) (2.3)

is the fundamental solution of the heat equation.
In this section we are concerned with a desecription of the properties of these integrals,

and of the Dirichlet problems mentioned above, which we will find useful in the later
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sections. The basic information we are interested in is that if the boundary and the Dirichlet
data are sufficiently smooth, then the solution to the Dirichlet problem is smooth up to
and on the boundary, and the differential equation continues to be satisfied on the boundary.
This result, along with certain concomitant estimates, lies at the heart of our solutions.
Related results—the Schauder estimates on the boundary—have been known for
some time for both elliptic and parabolic equations. {See e.g. Friedman [5] Chapter 4 for
references.) However, results of the form we use seem not to be in print, and so we outline
in this section the main results that we need.
For future reference we list here the following standard estimate. For any integer
n=0, and any real 2>1 and >0
K

k(z, ot)

pwe < Mt ™2k(x, oaht), (2.4)

where M is a constant depending only on », A, and «. This follows by observing that if
c and C are positive constants then z° exp (—C?) is bounded for z>0 by a constant depend-
ing only on ¢ and C.

If w is locally integrable on the real line and if there is a constant 4 >0 for which
w(x) exp (—a%/4ad) is bounded, then the Poisson integral @, given by (2.1) is a solution
of the heat equation a,,=®, for 0<t<A4, and all real z. Further, @z, t)—=w(x,) as
(z, t)— (24, 0+) at each point z, where w is continuous, and uniformly on any closed
bounded interval on which w is continuous. These are standard elementary facts.

We are interested in the behavior of @(x, t) on a curve x =g(¢) where
o(t) = Bt+o(t) ast—0+, (2.5)

with B constant, and we suppose

w(x) =Ay+ 4,2+ A22 +0(2?) asz—0 (2.6)
If w(x)=0 for >0, then
W(e(t), t)= Ay/2— (Ao B+ 2ad,) 8t /Vama + (A, B+ 2ad;)t/2+ o(f) 2.7

as t—>0+, and if w(x) =0 for x <0, then the sign on the # term in (2.7) is changed. Adding
these results gives

Dlo(t), t) = Ay+ (4, B+20d,)t +o(t) ast—0-+. (2.8)

If in (2.6) the 22 and o(2?) terms are replaced by o(x), then the ¢ and o(t) terms in (2.7)
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and (2.8) are replaced by o{t?) and if w(zx) >4, as x—>2z,, then (2.7) and (2.8) reduce to
w(g(t),t)—>A,/2 and w(o(t), t)—>A, respectively. If w is smooth enough, and if its deriva-
tives satisfy the same exponential estimate, these formulas can be seen by integrating by
parts, and this is really all that is needed for the later sections of this paper. The general
cage can be established by computing (2.1) for the special case w(z)=Ay,+ 4,2+ 4,22,
and then estimating the difference between (2.1) and the results of this special case

Suppose further that ¢ is continuously differentiable on the closed interval [0, 1']
for some positive T <A4. Then @(p(t), t) is continuously differentiable on [0, T']. Clearly
the only point in question is at ¢ =0. But (2.8) ensures the existence of the derivative at 0,
and one easily shows its continuity at that point, based on the limits just established.

We now look briefly at two auxilliary Dirichlet problems. For this purpose we need
the following mild sharpening of a lemma of Friedman [5] which is itself a sharpening
of a classical result of Holmgren (see Goursat [7], sec. 544). We state the lemma without
proof, for the uniformities we seek are apparent from a reading of Friedman'’s proof.

LEMMA 2A. Let p be continuous on [0, T'], and let o satisfy a uniform Lipschitz condition
there. Then

t
Iim (o x, )= Fp(t)+ 2 ocf k, (Ao, aAb) yp(t) dx,

T-»0(£)+0 0

where ¢ is defined by (2.2), At=t—7, A,0=0(t)—o(r) and where, for each £>0, 0<e<T,
the limit is achieved uniformly in (e, T, and if w(0) =0, the limit is achieved uniformly in
{o, 1.

We now formulate the Dirichlet problems. They are formulated under heavier hypo-
theses than is necessary for their solutions, but these additional restrictions enable us to
discuss the smoothness questions we need to consider. Thus for the rest of this section we
assume that y and » are continuously differentiable and p is twice continuously differentiable
on {0<t<A4}, that f and g are twice continuously differentiable on {—oco <2z<0} and
{0<x< oo} respectively, and that they and their first two derivatives are bounded by
M exp (x%/4xA) and M exp (x2/48A4) respectively, i.e., f and g satisfy (A2) of the introduc-
tion. We further assume u(0)=£(0) and »(0) =g(0).

ProBrLEM D;: Find a function u(z,t) continuous in {— oo <x<g(t), 0<t<A} with
Uy, Uy CONEIRUOUS TN { — oo <x<p(t), 0<t <A} satisfying ou,, =u, there, with u(z; 0} =f(z),
w(o(t), 1) =p(t).

ProBLEM Dy: Find a funciion v(x,t) continuous in {p(t)<z<co, 0<t<A} with
Uy, Uy cOnbtnuous in {p(t) <z < oo, 0<t<A} satisfying fu,, =u,, there, with v(x, 0) =g(x),
v(o(t), t) =»(t).
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These two problems are of course equivalent, but both are formulated for reasons of
symmetry in their later application to Problem I and Problem II.

These Dirichlet problems have been studied for a very long time (see e.g. Gevrey [6])
and their solutions known under a variety of hypotheses on g, f, g,  and . Solutions satisfy
the following bounds: Given any T <A there are constants m>0 and a>0 such that
|u(z, £)| <me™, |v(x,t)| <me®, 0<i<T, and are unique among the class of functions
satisfying such bounds. (See Widder [24], [25] where these uniqueness arguments are given,
and Tychonoff [13].)

Solutions can be constructed as follows. Let F(z) be given by f(x) for <0 and by
O+ (0)x+f(0)a2/2 for x>0, and G{z) by g(z) for >0 and by ¢(0)-+g'(0)+g"(0)2>/2
for £<0. Then F and G are twice continuously differentiable on the reals. By increasing,
if necessary, the value of M we observe that F(z), F'(x), and F“(x) are bounded by
M exp (x?/4ad) and Q(x), &' (z), and G"(x) are bounded by M exp (z%/4fA4).

We define U and V by

Ux,t)= J‘w k(x— &, ot) F(§)dé, Ul(z,0)=F(x),

w0 (2.9)
Vix, t)= f_ kx— &, Bt) Q&) dE, Viz, 0)=0C(x),
and seek solutions to Dy, and Dy, respectively, by
{ uz, t) = Uz, t)+1fi(oe; 2, 1) (2.10)
vl 8) = Viz, ) + 7(f; 2. ),

where p and y are to be determined and ¢ and y are defined by (2.2). Assuming y and y
to be continuous we apply Lemma 2A to get

v=9—K,y; x=0+Ky, (2.11)
where @(f) =u(t) - Uo(t), ) with clearly ¢(0)=0, p(t)=»(t) — V(o(¢),?) with (0)=0, and
where the integral operator K, is defined by

K h(t)=2a f tk,(A,g, alb) k() dr. (2.12)
0

As before and in the sequel A,p =p(t) —o(t), At=¢—7.
These integral equations are solvable by iteration. The solution is based on the follow-
ing easily established estimate.
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LemMma 2B. Suppose (1) h€C[0, T] with h(0)=0 and |[h()| <N#*, N>0, p>0;
(2) 0 €CY[0, T with 0(0) =0 and |o'(t)| <N, N >0. Then | K h(t)| < NB+T'(p +1)/T(p +3/2),
0<t<T, where B is a constant depending only on N and a.

The solution of the equations (2.11) are then

1/)=n§0(~1)"K;‘<p; x=n§0K§C, (2.13)

respectively, where of course K, represents K, iterated n times. These series converge uni-
formly on [0, T'] for each positive 7’<<A. The solutions of Dy, and Dy are then given'by
(2.10}, using 3 and y as determined by (2.13).

Our primary interest being in the smoothness of these solutions, we now turn to such
matters. Suppose a positive 7' < 4 is given, and §=T7T—A4 >0. If 4’ and »" are bounded by
N, and ¢’ and g” are bounded by N on {0 <¢<T}, then one easily verifies, with the aid of
the remark on the differentiability of @(o(¢), ¢), that both ¢ and { are continuously dif-
ferentiable and that there is a constant N, depending only on M, 4, T, N, N and § (and

also o and B of course) for which
@) <N, | <F; 0<t<T. (2.14)

Parenthetically, we remark that in such estimate we will generally suppress the
dependence on o« and f, and, later, on y and 1. We treat J as an independent parameter
since we will later be performing translations which will change 4 and 7' but will leave
¢ unchanged.

The differentiability of v and y depends upon our ability to differentiate the integral
operators in (2.13). This is covered by the following

Lemwma 2C. Suppose (1) h€CH0, T] with h(0)=0 and |k ()| <N¥, ¥>0, p>0;
(2) g€C?0, T] with 0(0)=0 and |o'()| <N, [o"(t)| <N, N>0. Then K,h(t) is continuously
differentiable for 0 <t < T and there is a constant B= B(T), such that

3 K0 ‘ <NBE*+ M)PHT(p+1)/T(p+].
To establish this we observe that |A(f)| <Nt, |o(t)| <N¢, and |A,o| <NAt. Then

A
(At)t At

K hit)= (47m)‘*ft {1 —exp (— (A,0)*/4aAt]} dx
0

G k) [, Al 3 [FP(T) dX
+(47‘[a) i . '(—AW [@ (t)—“A—t:I d‘t’ (47‘[(1/) i'Q (t)fo (At)% .
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Clearly the only difficulty is with the last term. We write the integral in that term as
¢
f it —1)de
0
and observe that, since A(0) =0, its derivative is

¢, ‘h'(r)‘dr
T — ) dr=
fo (t—=)d J;) (At -

The differentiability then established, one can differentiate the last expression for
K, A{t), differentiating under the integral signs of the first two integrals. The resulting
expression can then be estimated, somewhat tediously to be sure, to obtain the stated
estimate. The inequality (2.4) and |e™*—e | <|a—b| for a>0, b>0 are useful in these

caleulations.

From TLemma 2C, applied successively to the terms of the series in (2.13), it follows
that there is a constant B=B(M, A, T, N, N, 8) such that
') <B, |¥®)]|<B;, 0<t<T, (2.15)
from which we have immediately,
[p(t)] <Bt, |x(t)|<Bi; O0<i<T, (2.16)

We now consider % and v, given by (2.10). For x <g(t) we have

t

(0 Uy (0,0)+ 22 | e (o), 2d0) pie)
0

By use of the formula

a% k(@ — o(v), xAt) = ky (x — o(7), xAt) ' (7) — oky (@ — o(t), o A?) (2.17)

we deduce, since y(0) =0,
t t
uy(x, )= U, (x,t) - 2f ky (x— o(t), alAt) @' (T) y(z) dT+ 2f k(x— p(z), 2 Ab) 9’ (1) d7.
0 0
As x—>p(t) — 0, u, (2, t) converges uniformly in {0<t¢< T}, for each positive T < 4, to
[

uy (o), t) = Uy (o(2), t) — 2f k (A0, xAt) o' (7) p(T) dv

1]
t
-0 ) () +2f k(A 0, aAt) y' (T) dr, (2.18)
0

and so %, (7, t) is continuous in {0<2<p(t), 0<t< 43,
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Similarly », (x, t) is continuous in {p(f) <z < o0, 0<t< A} and
¢
(e, = Vel 0 -2 k(A AN ¢ (@ 2w dr
0

+g'(t)l(t)+2ftk(Atg, BAL) X' (z) dv (2.19)
0

By differentiating the above expression for u,(z, t), making the same substitution for
k,, as before, we can see that u,, is continuous in {0 <z <g(f), 0 <t < A} except at the origin,
and, in fact, if 4'(0) =£'(0)0’(0) +af"(0), i.e. y'(0) =0, then u,; is continuous at the origin as
well.

From this it follows immediately that the differential equation cu,, =wu, is satisfied on
x—=p(t), £>0, and even at t=0 provided again that u'(0)=f'(0)¢'(0) + «f"(0). Further we
observe that u'(t) =u,(o(t), t)'(t) + auyy(o(t), ¢) for 0<t < A. This follows by differentiating
u(o(f) —&, t) and letting e—~0. We also note that as {0 we have

u(@(t), ) = (0) + 2(amr) 19" (0) +o(t)
=1 (0) + 2(am) ¥t [ (0) — £ (0) ¢’ (0) — " (0)] + (¢

and v1(e(t), 0) =9’ (0) — 2(am) *¢* X' (0) + o(t?)
~g'(0)— 2(am) £} [¥' (0) ¢’ (0) @' (0) — Bg” ()] + o(¢?).

These formulas follow by estimating the terms of (2.17) and (2.18)

Finally we take note of the following estimates.

THEOREM 2D. Given a positive T <A, there are positive constants M'=M'(M, 4,
T, N, N, 8) and A’ =6/2 such that w, U,, Uy, V, Uy, Vg, ore all bounded uniformly by
M’ exp[(z—o(t))?/4axA’) and M’ exp[(z — 0(2))%/4pA"], respectively for 0<t<T.

To see that these estimates hold, one can use (2.10) and the formulas one gets by
differentiating (2.10). The terms arising from U (or V) are easily estimated in the stated
form, and the integrals arising from the double layer potential can be shown to be bounded

by the techniques Friedman [5] uses in his proof of our Lemma 2A.

3. The integral equations

We assume that Problems I and II have solutions, and that the functions « and »
satisfy exponential bounds of the following form: for each 7'<A there exist constants

m >0 and a >0 such that
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|u(z, t)] <me™™, |v(z,t)| <me*'; 0<t<T. (8.1)
In both cases we denote the common value of u(g(2), t) and v(p(t), t) by u:

w(E) =u(o(t), 1) =v(p(t), 1) (3.2)
and we proceed to derive an integral equation for u, assuming u € C'[0, 4).
The calculations involved in the derivation are the same for both problems. It is

just that in the one case g is a given function and in the other it is determined from u by
the equation

t
o(?) =f u() dr. 3.3)
0

Clearly a knowledge of u is sufficient to determine the solution, for in either case p is
known, and then « and v are given by (2.10) with ¢ and y being given by (2.13), with »
taken as y. Furthermore by (2.18) and (2.19) u,(o(t), t) and v;{p(#), ¢) are known in terms of u.
We will then denote yu,(o(t), £) by Lu(t) and Av,(o(f), £) by Ru(t) so that

t
Lu®)=yU,(o(t), ) — 2Vfo ky (Ao, aAt) o' (7) p(v) dT

t
—ye' ) p)+2y jo k(Ajo, xAt)y' (v) dt, (3.4)
’ t
and Rult) = AV (o(8),§) — 22 f by (Avo, AV ¢ (2) 1(x)
0
13
+ A0 () x(t)+2 Aj kA0, BA X (7)dr. (3.5)
(]

Let (z,t) be a fixed point in {—co <x<p, 0<t<A4}, and denote k(x—&, xAt) by £,
and u(&, ) by u. We integrate Green’s identity
0 ow ok 17
O S P =
* 2k ( 7 ) o =0

over {—R<£<p(r), 0<t<t—¢, and let R—>co and then ¢->0. From the d-function pro-
perty of k, we get

1] £
wlz, )= f Rz — &, of) f(£) dE+ f k(z — o(7), xAA8) u(z) o(7) dT

]
« 13

t
+; J k(x—o(7), aAl) Cu(z) dr + ocf ky(x—o(r), A u(r)dzr,  (3.6)
0 0

where u(o(7), 7) has been replaced by Lu(t)/y.

19 — 692906 Acta mathematica. 122, Imprimé le 18 Juin 1969.
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This equation can be differentiated with respect to z. After substituting for the
resulting k,;, from the identity (2.17), integrating a couple of integrals by parts, using
f(0)=u(0), and letting x—>p(t) —0 we get

1 t t
5 wle®), )= yf k(o(t) — & o) f (£)dE+ af ky (Ao, alAt) Cu(r)dr
o o

t
yf k(A0, xAl) i’ (1) dr. 3.7

A similar calculation on » leads to
1 «° ¢
3% (o(t),8) = lf k(o(t)— &, Btyg' (§)dE —ﬁf k, (A, BAL) Ru(z) dr
) 0
t
—lf k(Ap, BAY) u' (7) dr. (3.8)
0

Substituting these expression into (I5) or 114) leads, after some rearranging, to

U (t)
(t—

Mda) 2 +y@ap)yt)—= = f = — F H{ug) (&), ey (), -+, prmy (8), 1)

1] e -epg trae—y [ kew-taf @
t t
- “fo ky (A0, aAt) Cu(t) dr— ﬂJ‘ ky (Ao, BAY) Ru(t) dr
0

+y(4 na)‘*ft [1— e~@wiaaaty BT p(2) dr
0 (At)'}

+ A4 =) *f [1— ¢~ (Awri4BAY) (At)l 59)

where p ) (8) = u(t), pg+p (0)= j‘(t)/l(j) (8)ds, j=1,...,n—1.
We now form the Riemann-Liouville integral of order i of both sides of this last

equation. (See, for example Riesz [17].) Since u(0)=a we get

1{y 2 __ 1 _
§[¥+B;](p(t)—a) an (t—9)"tHd9

o 0
e f L [ f k(e(®)— &9 g (E)dé ~ f k(o(8) —&,ad) f (&) d§]

e [t 4P

&
i J e [, o et e
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t g 4
- oa——%ﬁfo F(Bogu xA9) Rutr) e

¢~ (Aoe)/4and) # (%) dr

e (mwf f [1-e (A9)

i f I
il 1 — o~ (Ag0)/4pAD
+2Vn/3*f(t— e 1 (A o

We examine the first two integrals on the right of this equation in order to write them
in a more tractable form. We note that, by (2.7), or rather the comments following that
formula, at =0 the bracket in the second integral has the value i[Ag'(0)—yf'(0)]=
1H(a, 0, ...,0). We can therefore integrate these two integrals by parts then, and the
integrated terms cancel. Further integrations by parts with respect & leads to

2 (U
%(a—iJrﬂé)( g =2 ’f 9)* o' (8) K(e(6), 59) b

’ ¢ 4
+2. 0 (O)f (6= 9k (e9), p0y a9 + 2T f (=) Ok e(9), o820
V_y_t 0 V}; 0

4 t
+%L’l;"—@ (t =) ki (0(9), D) dﬂ+—f t—z‘})* ' dﬁf k(o(®) — &, p3)g" (§)dE
b4 0

“ﬂ 9o f 9)— £, 9)g" (£) dé

2}) t 3.7 0 "
2L [ - ore a0 f_wk(ew)—s,aw (&) dt

21;“_?’ (t— )%cwf ky(0(D) — &, ad) " (&) dé— —= f(t— )*—Hdz?

t g ? td @
Vs o(t—%ﬁ‘fokl(Aw’“M)E" = (t—fé)*f 1(Boe AT Rute)dz

Y o~ Lp0)tdaAd ( )
Sruat (t—a)%f [1—eortsst] gy e

_A o~ ooritprr) () o
+2nﬁ*f(t~ﬁ)*f[ G ey @

Then our integral equation takes the form
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2qtpt B

pO=at i 2 I (3.10)

where the I,’s are given, in order, by the integrals standing on the right side of the previous
equation.

Let us now denote by CL [0, A) the class of functions, each of which is continuously
differentiable on [0, 4) and has the value a at t=0. Then the right-hand side of (3.9)
defines a mapping, S, of C1[0, 4) into, certainly, the continuous functions on [0, 4) with
initial value a. We shall show that in fact S maps C} [0, 4) into O [0, 4).

THEOREM 3 A. Let

2 Py 23 13
Su(t)= ﬂ;‘j i 2 L O<t<d.

If u€ 03[0, A), then Su€ C%[0, A) and
d 2atgt 2
= =—0—— > J, 0<it<Ad,
dt Splt) B+ Aat ngo w0
where the J,’s are defined below.
Proof. Bach I, n=1 to n=29, is in the form

¢ f C— 9 (o) s,
0

where C is constant and ®(9) is continuous in [0, 4), so that each of these I,’s is dif-

ferentiable, with a continuous derivative in [0, 4) of the form

0 t
—f (t—9) D) dd
2Je
We set J,=dI,/dt, n=1, ...,9 and consider the differentiability of I, ..., I,

L [ dd  [®Cu(r) Dso . e
—_ 82) 14aAS __
= 4m*f0 (t—ﬁ)*fo (A9t A9 ¢ 1)de

1 [ dd  (°Lu®) [Aso ] 1 f o' (9)dd f Lutv)
Ry o (E—9)} (Aﬁ)*[ o' dr+ in -t )y @- r)*

=14,+ I 9 T I, respectively.
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In I,y, and I,,, we integrate by parts to get

f(t_ %dﬂf Lu(r) { )%( o~ (Agot14ard _ 1]} dr,

1 [A
Loy = J (t—9 dﬂj Culr) 55 {(Aﬁ)* [ 20 (19)} dr.
We handle I, differently:
0 (19 | o' (v+s(t—1))ds
Iy = f Lu( )d‘rf = I—) % yy; foﬁy(t)dtfo Tt

Each of these terms is clearly continuously differentiable and we thus get

4, _ 1 tﬂ__ ’ 0 [Dog - _agortens }
4t 0= 1 o(t—ﬂ)%fo Lut®) 55 {(Aﬁ)% [e™™ 1y dr

1 1 AGQ ’
+4m%f ﬁ)*f Lutm) aﬂ{(Aﬂ)*[ Q(ﬁ)]}d’

b7 (o s(f— 1,
o | Lo [freer it o o

=J0+ J11+ J1o + J15, respectively.

dl 1 s

1 1 Aﬂ@ ’ Y
L), (t—ﬁ)*f Rl aﬂ{mﬁ)*[ 9“9’]}””

1 4} ” .
4 ﬁ%f Ruteye || SEEE0EN 4025 0 Rty

Similarly

=J4+ Ji5+ I+ S, respectively.

The two remaining terms can be integrated by parts as they stand, then differen-

tiated with respect to ¢ to get

7y J‘t_ﬂfﬂ gy 211 — o~ (AD#/aAS
T3 St Jo 400 0”(’) 20 \(Boy I Jj de

::1 A tﬂ_ ? 4 o 1 — o~ (A4 BAD
and Jw_dt 113 27‘[}9%‘]‘ t_ﬂ)i_‘[o " (T)g&{m [1—e 29 1t d=.
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This completes the proof of the theorem.

We have seen that any solution to either Problem I or Problem II, satisfying the
exponential growth conditions (3.1) leads to a solution u of the integral equation (3.10).

Conversely, suppose we have a solution u of the integral equation (3.10). Then, by
Theorem 3 A, it is differentiable (and in the case of Problem I, defines p € C*[0, A), o(0) =0).
We can operate on (3.10) with the Riemann-Liouville integral of order }, leading back to
(3.9). Further, we can determine y and y from (2.6) (with v=pg) and form the functions »
and » by (2.5). These functions will then both equal g on x =p(t}, and (3.9) is equivalent to
H(uqy(8), pet), .r (1), £) +yuy(o(t), £) =2v,(o(t), t). Thus we are able to conclude the
equivalence of the integral equation (3.10) with the original problems. In particular, if
the integral equation has a unique solution, then the original problems have unique solu-

tions within the class of functions satisyfing exponential bounds of the form (3.1).

4. Existence and uniqueness

We note that in the case of Problem II equation (3.10) is in a sense nearly linear—the
only non-linearities arising from the’contribution of the boundary function H. However, in
the other case it is highly non-linear since then g is the integral of u. Because of the relative
simplicity of the equation for Problem II we confine our attention from here on to Problem
I, the modification necessary to adapt the argument being readily apparent. In particular
we remark that in the simpler case the strip arguments to which we later resort (Theorem
4Q) are unnecessary.

We note that the estimates established in section 2 are available with g and » identified
and with N =N. (Note that in the simpler case N, as used in section 2, becomes part of the
data of the problem).

It will be convenient to introduce the following family of standard norms in the space
C'[0, A), i.e., the class of functions which are continuously differentiable in the interval
0<t<A, Given any positive ¢ <A and any x€C[0, 4) we define

lullo= sup |u(®)|+ sup |4’ (t)]. (4.1)
ogtgo ogtg<o

Clearly ||||o is finite for each such ¢ and y, and is nondecreasing in ¢ for each u.

Throughout this section we will use B as a generic symbol for positive constants
which depend on M, 4, T, N, §, and of course «, §, ¥, and A.

We will use b as a generic symbol for positive constants which depend only on M, «, §,
y, and 4. We will as before suppress the arguments «, 5, v, and A.

We are first interested in showing that for N sufficiently large and o sufficiently small
then 1 €C}[0, 4) and ||u||, <N implies ||Su||, <N. To this end we begin with the following
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LeEMMA 4A. Let N>0 and a positive T > A be given. If ||u|r <N then

sup |Su(t)| <b+ B,
0gigo

where 8 is defined in Theorem 3 A and where b and B are constants as described above.

Proof. We take b=|a| =|f(0)| <M. It thus suffices to show that each I, is bounded
by Bg. We give the proof for Iy and I,, the others being simpler but similar, though dif-
fering in technical detail. We merely remark that I,, and I,; may be estimated simply if
one establishes first that

| Cut)| <B, |Ru@)|<B; O0<i<T,
which one may do by the methods of this section.

For I we find
i -]
1 <8 w=oyo-tas [ ko) - hpo) exp (/apd) e,
0 — 00

where we have estimated k, by (2.4) and ¢" by (A 2) of the introduction. We choose % so that
A—hT =6/2=(T—A)/2. Then

[ 1] < Bft (t—9) 9"t exp [0®(9)/4 B(4A — hD)] di.
0

Since p*(#)/4(A4 — kD) <N3T?/26 we conclude
|Ig| <Bo, 0<t<o<T<A.

For I, we remark that dH[dd is bounded by a bound which depends on N and 7', and hence

the estimate follows immediately.

Lemma 4B. Let N >0 and a positive T <A be given. If ||u|r <N, then

sup
Ogigo

% Sult) | < bexp (Bo?) + Bot.

Proof. Again we do sample calculations. We consider

A9 (0) [*(u(d) — a) exp (— 0*(#)/489) i

’ O t
Ji= M—V(E)f 0 (t— )} u(®) k((®), f9) d9 =

2761), (=)ot
i ©)a [*exp (~g 9)/4p)~1 . 1g'(0)a
" onp f G-opor DT gpr
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We estimate |J,| <b+Bot, 0<t<o<T<A.

The others are similarly estimated through J; while Jg, J;, and Jg are bounded by
b exp (N%0?), and J, J,, J1q, and J,, by Bot. Next
)

, ’ S ’ L t ,
Tio = 0 Cut0/422 =2 D 01, (o), 9 - 72 f (B, M) g (D) (a) dn

2 4 t
ve B yl) ye &), '
- ¢ dr.
g o . (Aso, xAt)y (T) dT
By applying (2.8), or more properly, the remarks just following that formula, to U; and
the estimates of section 2 to the other terms we compute |Jy5| <b+ Bot, 0<t<o<T <A.
The estimates on the remaining J’s are similar.

These lemmas immediately imply the following.

TarorEM 4C. Let N >0 and a positive T <A be given. If ||u|r <N, then
| Sulle <be* + Bot, 0<o<T.

From this estimate we get the following

THEOREM 4D. Given a positive T <A, there is an Ny, depending only on M, and o
oo depending only on Ny, M, A, T, 6 such that ||u||, <N, implies ||Su|, <N, for 0<o<a,.

Proof. Choose T'<A and N,>3b where b is the constant appearing in Theorem 4C.
For any positive ¢ <7 and any u€C3[0, A) with ||u||, <Ny, u can be redefined, if neces-
sary, in the interval 0 <t <4 so that ||u|l; <2N,=N. Then by Theorem 5C

| Sullr < be®* + Bat, 0<o<T.
We choose o, so small that ¢2”’ <2 and Bo*<b. Then for o <o, we have
|Su|ls<2b+b=3b<N,.

Clearly o, depends only on the stated parameters.

We now want to head toward a solution of the integral equation by iteration. The
work so far in this section has established that an iteration procedure can be defined, at
least in a sufficiently small interval. We now want to establish the convergence of such a
procedure. For this purpose we estimate ||Su; —Su,l|, in terms of ||g; —pel|o-

In the following we will assume that u, and u, are given elements of (5[0, 4). Each
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of these then gives rise to corresponding values of g, ¢, £, p, and ¥, which will be designated
by 01, 05, ete., respectively. We also find it convenient to use the symbol D for ||u, — sl o
It follows immediately that

|l/‘1(t)-ﬂ2(t)|<Dt,
|y (8) — 02 ()| < D, 0<t<o<T<A. (4.2)
|At91 - At@zl < DiAt,

LeEmMA 4E. Let N >0 and a positive T < A be given. If || uy|lr <N, || sl < N then

| @y (8) — @a(6)] < BDE

IAUR Cz(i)KBD:} 0<i<o<T<A.

Proof.

Jo1 () — @ )] < s (8) — 1 ()] -+ U oy (8), ) — Ulpa (8), 8)]
<Dt+ f j’ | k(oy (2) — &, at) — k(05 () — &, at)| | F(£)] dE.

The integral can be estimated by estimating F by (A2), applying the mean value theorem
to the difference and estimating the resulting &, by (2.4), and choosing & (entering through
(2.4)) appropriately.

LevMA 4F. Let N >0 and a positive T <A be given. If ||u||r <N, ||us)|lr <N, then, for
o<st<osT<Ad,

BD(AN)?

20| Ky (Aror, xAE) — Ey (A 405, 2AAD)| < —-t/_—)
T

BD(At) ?

2Bk Asor, BAH — ky (Asg ﬂAt)K—(V—_)—.
T

Proof. We give the proof of the first inequality. The expression on the left of that
inequality is

e Ve WA [ I T | et i

At oVmak (At At 2Vaat(An}] 2 Vaad(Ab)? 2 Vrat (At}

Di(At)* NAt |[(As00)? — (As0s)]] BD(A$)-
< <BD(Aty t/Va.
<2V7‘w—§+2 VEa*(At)* 4 oAt <BD(AY™H/Va

The function y is related to @ through the operator K, defined by (2.12). For each
p in CL[0, A) we have a o, and hence by (2.12) a K,, and from distinct u’s there will in
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general result distinet K,’s. We dinstinguish the K, arising from g, from that coming from
s by writing K, for the first and K, for the second.

LeMMA 4G. Let N>0 and a positive T <A be given. If ||u)lr<N, ||pellz <N, and if
g, and ¢, are continuous on [0, T} and satisfy there

l2:(t)| < C#T(p+1)
|1(t) — ga(t) | < Cot"+/T(p+1)
then there is a constant B= B(T, N) such that
| K1091(t) — K2,95(t) | <B(Cy +Cy) D+ T (p +3/2).
[ K10,(8) — K 95(t) | < B(Cy+Cy) DiP+HT(p +3/2).

Proof. Consider

t
IKIa% (t)— Kouqs (t)l <2 af |k1 (Aso1, aAl) ¢, (7) — k1 (A0, xAE) g5 (T)I dr
0
¢
< 2“f k (A0, xAl) |91 (r)—¢s (T)I dr
0

¢
+2 “J; |42 (T)l |k1(At01, aAt) = ky (A0, “At)l dr.

Then, we estimate the first term by

t N G, Dw. _ NCDpt r NO, Dt 1

4 (no)? < PH1(] —g) i ds <
(o) 0(At)*I‘(p+1)T 2atVal(p+1) sl <

]
0 2at D(p+3d)
To estimate the second term we use Lemma 4 F. This term is then bounded by

t +1 -3 t D+
C,7"*' BD(AY) C,BD e 3. _CiBDt
- -yt < AP
o Ilp+1) Vg ¢ Val(p+1) o‘c t=o e F'p+3)

and the result follows. The same calculations apply to | K;zq;(f) — Kp4q.(f) |, with & replaced

by . Then taking as B the larger of those for the two cases gives the result.
LemMa 4H. Let N >0 and a positive T < A be given. If ||, )|z <N, ||usllz <N, then

|1 (8) ~ p. (t)| < BDt

} 0<t<a<T<A.
| %1 (8) — X2 (£)| < BDt
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Proof. We observe that |@,(t)| < B, and, by Lemma 2 B, | Kz, ¢(£)] < Bf"'*/T\(1 + n/2).
By induction, based on Lemma 4 G, we compute

[Kiey () = Ko ()| < (n+ 1) B**1DE "2 /T(1 +n/2),
from which the first conclusion follows. One estimates |x;(t) —x2(f)| similarly.

LeMma 41, Let N >0 and a positive T <A be given. If q,(t) and g,5(t) are continuously
differentiable in [0, T and satisfy

lqz(t)l<01t”/1‘(p+1)} 0<t<T,

lg1(5) — g2 (0] < C, DP*/T(p+1)
where p >0, then

'%me—%K@mﬂ<MQ+%ﬂW”ﬁ@+%

d d
{?l;i Kopqy (t)— 7 K59, (t) ' <B(C,+ () DtMl/P(P'l’ 2).

The proof follows the same outline as that of Lemma 4G. The calculations are long
but straightforward, so they are omitted.

LemMa 4J. Let N>0 and a positive T <A be given. If ||u)lr <N and ||usllz <N, then

lp1(H) — y2(H)| < BD

0t<o<T<A.
1x{<t>—xé(t)l<BD} 7

Proof. One observes first that |@s(f)| <B and |@1(t)—@s(¢)| <BD. The boundedness
of g, is clear, and in the difference a typical estimate is

lUu (o @8- Uy (ea(t), t)l < J_w lkm @& af) I exp (52/4 ad)dé

® k(g — &, aht)

< BD#? f
1¥

exp (£/4 24) de <BDT*VA/(A — hT) exp [g2/4 (A — hT)].

We choose %#>1 so that 4 —AT=4/2 and estimate |g(t)| <Nt<NT. One then iterates

the application of Lemma 41 to estimate

d n d n
IE} Klot(Pl(t) "‘JZ KZ«‘Pz(t) s

and sums to complete the proof.
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Lemma 4K. Let N>0 and a positive T < A, be given.
If lpallz <N, | pallz <N, then

| Sy () — Lo (t)| < BDE

0<i<o<T<A.
| Russ (8) — Ruy ()| < BDt }

With the previous inequalities established these estimates follow simply from (3.4)
and (3.5).

TrEOREM 4L. Let N>0 and a positive T <A be given. Ify]|p|lr <N, ||po|r <N, then
| Sua(t) — Sus(t)| <BDE, 0<t<o<T<A.

We will consider the terms in Sy, and Su, as given in Theorem 3A. The terms I,
occurring there are defined in section 3 and of course depend on p, and y, respectively.
We distinguish these by superscripts. That is, 7% and I2 will be I, computed for u, and u,
respectively. It is clearly sufficient to show | I}, —I%Z| <BDt, n=1, 2, ..., 13.

We compute a few typical examples, the others being similar. We consider
|Ii—1%|<2il—j;—t(°—)'f: (=) 12 () k(@1 (B), BD) — o (9) k(02 (9), $9)| O
<22 0k, ) 9) 1 ) - 1) a5
L 2AH f (t—8) | 122(9)] [y (9), BO) — Kioa (®), )| 0

4
gzsz o 2 g

(47pd)?

2IMN [t(t—9
Va Jo(@mpd)

AMDf (t—9& *ﬁ%d0+AMNf (t— 9t ot l@l(ﬂlﬁgz(ﬁ)l i

02 oxp (- o1 (9)/499) -~ exp (~ 619)/460)] 48

AMN (t_ %’9_”91(19)—92(19”21\70

<BDt+
0 449

dd

<BDt+2 ﬂgf (t—9)*9tdo < BD:t.
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The differences |I3— 13|, |I3—I3| and |1} — If| can be estimated similarly. Of the
next four differences we estimate only | I3 — IF| as typical.

|13 - 13 f(t ﬁ)*f | &1 (01 (D) — &, BY) — Ky (02 (D) — &, B9)| | 9" (£)| dE dO
t 0
<21Vlf_/1ﬂ f (t—9)Ds? f |y (G — &, pO)| €744 dE d9
T 0 -0

<BDf t—9 *mj (@— & W BD) 44 dE 49

(choosing & so that 4 — kT =6/2)
t ——
< BD f (t— )01 V24/6 eV T 49 < BDt,
- 0

The difference |I;—I§| is easily estimated under the condition (A3) of the introduc-
tion, and the other differences are estimated as the preceeding ones, the calculations
differing only in details.

TaEoREM 4M. Let N>0 and a positive T>A be given. If ||py||z <N, [[pre]lz <V

then

%S‘ul(t)—% Su,(t)|<BDt, 0<t<o<T<A.

Proof. For this calculation we must estimate |J}. — J%| where J,, and J3 are the terms
of (d/dt) Su; (t), (d/dt) Sus(f), respectively, where the J,’s are defined in section 4.

The dlfference |J: —J%| can be estimated as in |IL — I3[, n=1, to 9, by replacing
(t—9)* by (¢t —9) ¥ in those previous calculations. We proced on to |J1y—J5|:

1 7 S
730 Tiol < f(t—ﬁ)f

Asos .

1 [t do 0 [Ds01 . _Asonita
<4—m3f o7 f 3ut0)~Eon] | i 2o
1 As0r - _ayeoriane _
47!“%]0 f Lo ”’319 {(Aﬁ% [e70t 1)

9 [As0e - _aerins
619{(&9)’1’[6 & 11t dx

A 2
Lp(v) Py { ( Ai’?)l% [e~Boeidadd _ 1]}
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The first integral can be estimated by replacing | Cu,(t) — Cus(t)| by BDr, and estimating
the differentiated term as in the proof of Theorem 4B. The extra v arising from the dif-
ference | Cu,(7) — Lus(t)| enables one to get the estimate BDt for this integral. In estimating
the second integral one replaces | Cuy(r)| by B and differentiates the terms out. These can
then be broken up to take advantage of the estimates (4.2), and this second integral can
also be estimated by BDt. |Ji;—J3,| is estimated similarly but more simply, using also
|1(t) —us(®)| <D. |J1z—J%]| is still simpler, and |J}s—J%;| has already been essentially
estimated by Theorem 4K since

1 1
s = Ths| < g [ () = e O] 1L 0] 3 57 12 O Lpta () — Lo (8)]-

The differences |J; —JZ|, n=14) to 17 are handled similarly. Finally the differences
| 7% — J3| for n=18 and 19 are easily estimated by these same arguments.

THEOREM 4N. Given N >0 and a positive T <A, if ||p,]|z <N, [[pe(®)||z <N, then
|Seey — Sps||» < Boljpy —pall o» 0<o<T<A.

Proof. From the two previous theorems by estimating ¢ on the right by ¢, and taking

suprema on the left we get

Sup |8y (5) = S (0| < Bo || sy~ pal

d d
and sup | = Spn ()= = Spa (6)| < Bo [} i — paalo-

ogtgo
Adding gives the stated result.

TEEOREM 40. Given a positive T <A, there is 6,>0 depending on M, A, T, d and a
pEC:0, A) for which
ult)=Su(r), 0<t<q
and if v €CG[0, A) with v(t)=Sw(t), 0 <t <o, then u(t)=»t), 0<t<o,

Proof. Choose N, and o, so that, by Theorem 4D, ||u|ls <N, implies |[Sg|y,<N,,
choose u, €CL[0, 4) so that ||gy|l,,<N,. Then form u,=Sy,, and in general u,,,=Su,,
n>1. Then by Theorem 4D ||Su,| s <Ny, n>1. Each u, can be redefined, if necessary, for
0o<t<A so that |u,|lr<N=2N,, and so

Netns1 —tiall o < Bo||ttn —ptnsllo < (BoY* e — ol »
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Now choose ¢, so small that (1) ¢y <0y, (2) Bo <r<1. Then y, converges uniformly to

U=y +n§1(,un+1 — )

and y, converges uniformly to

p = +nzl (Un+1— pin)
for 0<t<o,, and so
p(t)=8u(t) 0<t<o,.

The uniqueness follows, since Bo<1. This immediately leads to the following.

THEOREM 4P. Problem I has a solution (g, u, v) for 0 <t<o,, and only one solution for
which p€C?, and for which u and v satisfy bounds of the form (3.1), and Problem II has a
solution (u, v) for 0 <t <A, and only one solution for which y € C* and for wheih w and v satisfy
bounds of the form (3.1).

We now extend the existence of the solution of Problem I to all positive t < 4.

THEOREM 4Q. Problem I has a solution (g, u, v) for 0<t<A4 and only one solution for
which p €C? and u and v satisfy bounds of the form (3.1).

Proof. Choose T, and T so that 0<7",<T < A. Since 7T, can be chosen arbitrarily
close to A4 it is sufficient to show that the solution exists for 0<t<T,. If ¢, > T, we are
finished. If not we can translate the origin to (¢(s,), 0;) and reset the problem and extend
the solution. The only question is whether we can get a uniform ¢, for all the reset problems.

But this follows easily from Theorem 2D,

References

(1]. Dacev, A., On the cooling of two homogeneous rods of finite length. Doklady Akad. Nauk
SSSR (N.S.), 56 (1947)

[2). —— On the cooling of bars composed of a finite number of homogeneous parts. Doklady
Akad. Nauk SSSR (N.S.), 56 (1947).

[3]. Cannon, J. R., Doueras, Jim JR. & HiLr, C. D., A multi-boundary Stefan problem and
the disappearance of phases. J. Math. Mech., 17 (1967).

[4]. Douaras, J., A uniqueness theorem for the solution of a Stefan problem. Proc. Amer.
Math. Soc., 8 (1957).

[5]. FriepMAN, A., Partial differential equations of parabolic type. Prentice-Hall, Englewood
Cliffs, N.J. (1964).

[6]. GevrEY, M., Sur les équations aux dérivées partielle du type parabolique. J. Math. Pures
Appl., (Sixiéme série) 9 (1913).

[7]. Goursar, E., Cours d’analyse, Tome II11. Gauthier—Villars, Paris (1942).



300

[81.
[93.

[10].
[11].
[12].
[13].
[14].
[15].
[16].
[17].
[18].
[19].
[20].
[21].
[22].
[23].
[24].

[25].
[26].

W. FULKS AND R. B. GUENTHER

KAMENOMOSTSKEAJA, S. L., On the problem of Stefan (in Russian). Mat. Sb., 53 (95), 489-514.

KoLOoDNER, I. I., Free boundary problems for the heat equation with applications to
problems of change of phase. Comm. Pure Appl. Math., 9 (1956).

KyneEr, W. T., An existence and uniqueness theorem for a nonlinear Stefan problem.
J. Math. Mech., 8 (1959).

L1-SEHANG, J., On a two-phase Stefan problem (I) and (II) (in Chinese). Acta Math. Sinica,
13 (1963), 31-646; ibid., 14 (1964), 33-49.

—— Existence and differentiability of the solution of a two-phase Stefan problem for
quasi-linear parabolic equations (in Chinese). Acta Math. Sinica, 15 (1965), 749-764.

Muskar, M., Two fluid systems in porous media. The encroachment of water into an
oil sand. Physics, 5 (1934).

OLEINIK, O. A., On a method of solving general Stefan problems. Doklady Akad. Nauk
SSSRE (N.S.), 135 (1960).

QuiLgHINI, D., Su di un nuovo problema del tipo di Stefan. Ann. Mat. pura appl., (Serie
IV) 62 (1963).

—— Una analisi Fisico-Matematica del processo del cambiamento di fase. Ann. Mat.
pura appl., (Serie IV) 67 (1965).

Riesz, M., L’integrale de Riemann-Liouville et le probléme de Cauchy. Acta Math., 81
(1949).

RUBINSTEIN, L. 1., The Stefan problem (in Russian). Latvian State University Computing
Center, Izdat. “Zvaigzne”, Riga, 1967, 457 pp.

S¢ELkAGEV, V. N., Fundamental equations of motion of compressible fluids through
compressible media. C. R. (Doklady) Acad. Sci URSS (N.S.), 52 (1946).

Analysis of unidimensional motion of a compressible fluid in a compressible porous
medium. C. R. (Doklady) Acad. Sci. URSS (N.S.), 52 (1946).

SCHEIDEGGER, A. E., The physics of flow through porous media. (2nd edition). The Macmillan
Company, New York (1960).

SESTINI, G., Su un problema non lineare del tipo di Stefan. Linces Rend. Sc. fis. mat. e nat.,
35 (1963).

TycuoNOFF, A., Théorémes d’unicité pour ’equation de la chaleur. Rec. Math. (Mat.
Sbornik), 42 (1935).

WipbpER, D. V., Positive temperatures on an infinite rod. Trans. Amer. Math. Soc., 55
(1944).

Positive temperatures on a semi-infinite rod. T'rans. Amer. Math. Soc., 75 (1953).

Zrtarasu, N. V., Schauder estimates and solvability of general boundary value prob-
lems for general parabolic systems with discontinuous coefficients. Doklady Akad. Nauk
SSSE, 169 (1966). Translation as Soviet Math. Doklady 7 (1966).

Received April 29, 1968, in revised form January 29, 1969



