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1. Introduction 

I t  is the purpose of this paper to derive and solve a mathematical  model for the  

following physical problem. Suppose that  in a homogeneous compressible porous medium 

one incompressible fluid is displacing another. The problem is to describe the motion of 

the fluids, in particular, the motion of the interface between the fluids, if the initial velocity 

distribution, or equivalently, the initial pressure distribution, of the fluids is given, together 

with appropriate boundary data. 

We assume the flow to be in the horizontal x-direction, say, and neglect gravitational 

effects. We further assume the two fluids are immiscible so that  for each time t there is a 

well defined interface between the fluids whose location is given by x =~(t). To the left of 

~(t) we denote the velocity of the fluid by u(x,  t) and its pressure by p(x ,  t), and to the right 

we denote velocity and pressure by v(x, t) and q(x, t) respectively. The pressures and velo- 

cities are related by Darcy's  law: 

u(x,  t) = - a2p(x,  t)/~x, v(x, t) = - b~q(x, t)/~x, (1.1) 

where a and b are positive quantities which depend on the physical properties of the fluid 

in question and of the porous medium and which we take to be constant. Since the fluids 

are incompressible, their densities are constant and the continuity equations take the form 

{ ~cp/~t + ~u /~x  = 0 x < ~)(t), (1.2) 

~ q ~ / ~ t + ~ v / ~ x = O  x >  ~(t), 

(1) S uppo r t ed  in  p a r t  by  N S F - G P - 5 9 6 5  a n d  N S F - G P - 7 8 4 8 .  
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where ~ represents the porosity of the medium (see Scheidegger [21] for a precise definition), 

which in our case is a function of pressure alone. Following Scheidegger [21], p. 105, or the 

original work of SSelkaSev [19], [20], we assume that  q is a slowly increasing function of 

the pressure, and that,  for small variations in pressure, the derivative of ~ (with respect to 

pressure) may  be taken to be a positive constant. This, together with (1.1) and (1.2), implies 

[ ~p ~ p  

~q ~2q 
~ = ~ h ~  x> ~(t), 

(1.3) 

where a and fl are again positive constants. Since the fluids are assumed to be flowing in 

contact we must  have 
u(~o(t), t) = v(Q(t), t), (1.4) 

and further, since the velocity of the interface is both D~/~t and u(~(t), t) we must  have 

d ~ -  u(Q, t) (1.5) 

Finally, we assume, with Muskat [13], that  the pressure is continuous across the interface 

so that  
p(~(t), t) = q(Q(t), t). (1.6) 

These last three equations describe the interface conditions which we treat.  

This interface problem was originally formulated by  Muskat [I3] in three dimensions. 

Our formulation coincides with his, except for the simplifications arising from the one 

dimensionality of our simpler situation, and except tha t  Muskat assumes tha t  the terms 

ap/~t and ~q/~t are negligible in (I.3) so tha t  each of these equations reduces, in his case, to 

Laplace's equation. He then formulates the problem entirely in terms of the pressures. His 

problem (Muskat's model) has apparent ly remained unsolved except for a few special cases, 

where the shape of the interface was predetermined by symmetry  considerations. (See 

Scheidegger [21].) 

Our approach is to rephrase the problem entirely in terms of the velocities, eliminating 

p and q and to solve the resulting mathematical  model. In  fact, by  (1.1) and (1.3) u and v 

satisfy the differential equations 

{ ~ u ~ =  u t x < Q(t), (1 b7~ 
flv~= vt x>~(t). 

Next we assume p(~(t), t) and q(Q(t), t) are differentiable functions of t and tha t  p and q 
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sat isfy (1.3) on the  interface x =~(t), bo th  assumpt ions  being justified b y  the  solut ion we 

obtain.  Then  f rom (1.6) we have  

d 
d p(e(t), t) = ~t  q(e(t), t), 

and by  (1.1) and  (1.5) we compute  

d _ 1 u~(e, t) + 1 
d-t p(@' t) = Px (~, t) @' + Pt (~, t) = a ~ (~' t) = - -a u~ (Q' t) - a- ux (@' t). 

Making a similar calculation on q and equat ing  the results leads to 

K u  2 (~(t), t) + ~u~ (Q(t), t) = 2v~ (e(t), t), 

where K =  (a - I -  b-i) ,  ~ = a /a ,  and ~ = f i / b .  

(1.8) 

On the other  hand,  if we have  functions u(x,  t), v(x, t), @(t) satisfying (1.7), (1.4), (1.5) 

and  (1.8), we can find functions p(x, t), q(x, t), ~(t) satisfying (1.3), (1.1), (1.4), (1.5) and  (1.6). 

I n  fact ,  define U(x, t) to be a-lu(x, t) for  x<~(t), t>O  and to be b-lv(x,  t) for x ~ ( t ) ,  t > 0 .  

Le t t ing  x 0 <Q(t) be fixed, define (I)(x, t) = ~0 U(~, t) d~ +q0(t). Then  if qv(t) ~- a"  a -1 f~ (~/~X) 

u(xo, ~)d~, one m a y  readi ly  ver i fy  t h a t  qb(x, t) is continuous for  - c ~  < x <  oo. Le t t ing  

p(x ,  t) - O(x,  t), x <~ ~(t), t > O, q(x, t) ---- CP(x, t), x ~> ~(t), t > 0, one can now show t h a t  these func- 

t ions sat isfy (1.3), (1.1), (1.4), (1.5) and  (1.6). 

I n  m a n y  applicat ions (1.8) can be simplified to 

~u~(~(t),t) = ~v~(~(t), t). 

There  is reason to expect  a u 2 (or v:) t e rm  in a more precise formula t ion  of Darcy ' s  law, 

which implici t ly assumes small  velocities. Hence  neglecting the  u 2 t e rm  in (1.8) would be 

consistent  with the  use of Darcy ' s  law in the  form (1.1). I n  the  p rob lem which m o t i v a t e d  

this invest igation,  the  d isplacement  of oil b y  water ,  the  velocities encountered are small,  

being of the  order  of a few cent imeters  per  day.  

We can (and do) t r ea t  a non-l inear  t e rm  in this free bounda ry  condit ion of g rea te r  

complex i ty  t han  the  K u  2 t e rm  which arises f rom the physical  problem,  and  it  seems to be  

of some mathemat i ca l  interest  to consider such a generalization. 

We are now in a posit ion to formula te  our first  problem: 

PROBLEM I. Given positive constants o~, fl, ~, ~ and  A ,  and three/unct ions:  / de/ ined on 

{ - 0 r  <x~<0}, g on { O < ~ x < ~ } ,  and H on Rn|  A) we seek three /unc t ions  u, v, and  e 

such that 

1 8 " -  692906 Acta  mathamatica. 122. Imprim4 ]e 18 Juin 1969. 
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( I1 )  o(t) is defined and continuous/or 0 <~t<A, with 0(0) =0. 

(I2) u(x,t) is defined and cont inuous/or  x <.~(t), O <~t < A ,  with ux(x, t) cont inuous/or  

x<~o(t), 0 < t < A ,  with uxx(x, t) and ut(x, t) continuous for x<0(t), 0 < t < A  and satisfying 

~u=(x, t)=ut(x, t), u(x, 0)=l(z).  

(I3) v(x, t) is defined and cont inuous/or  x >~Q(t), 0~<t<A, with vx(x, t) cont inuous/or  

x~>e(t), 0 < t < A ,  with vxx(x, t) and vt(x, t) continuous /or x>q(t) ,  0 < t < A ,  and satisfying 

~v~x(x, t)=vt(z, t), v(x, O)=g(x). 

(I4) u(~(t), t) =v(~(t), t), 0 ~<t <A.  

(I5) H(u(1 ~, u(n ) .....  u(,~, t) + 7ux(~(t), t) = ,~Vx(~(t), t), 0 <~ t < A where u(1 ) =u(~ff), t), 

U(1+1)=I~ u(j)(T)d'g, ]=1 ,  2 ..... n - 1 .  

(I6) Q'(t) = u(0(t ), t), O<~t<A. 

The problem is represented schematically in the diagram below: 

~ = ~t 

H + Tux= 2vx 

u(x,o)=/(x) 

t t = A  

~ x= e(t) 

flvxx = v t 

0 v(x,0)=g(x) x 

We shall give a solution to this problem under sufficient smoothness and growth con- 

ditions on [, g, and H, together with certain compatibility restrictions. Specifically we 

assume the following: 

(A1) [ is twice continuously differentiable on { - oo < x  ~<0}, and g is twice continuously 

differentiable on {O~<x< ~ }. 

(A2) For some M > 0  

]/(x) I, If(x)l ,  Ifu(x)l are all bounded by  M exp [zn/4~4] 

It(x) I , Ig'(z)], ]g"(x)] are all bounded by  M exp [xn/4~A]. 
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(A3) H is continuously differentiable on Rn| A) and its partial derivatives satisfy 

a uniform Lipschitz condition on each compact subset of Rn| [0, A). 

(A4) /(0) =g(O) and H(/(0), 0, 0, 0 ..... 0) +~/'(0) =2g'(O). 

Under these conditions we shall show that  Problem I has a solution, and that,  within 

the class of functions subject to certain standard exponential growth conditions at  infinity 

related to (A2), the solution is unique. 

As a by-product of this investigation we obtain an existence and uniqueness theorem 

for the case where ~(t) is given and we drop the condition ~' =u. This we formulate as our 

second problem. 

PROBLEM II.  Given ~, fl, ~, 2, and A as be~ore, and given/our/unct ions: / ,  g, and H as 

be/ore and ~ defined on [0, A), we seek two/unctions u and v satis/yinq 

(II1) u(x, t) is defined and continuous /or x<.-.~(t), O<~t <A ,  with u~(x, t) continuous 

/or x~<~(t), 0 < t < A ,  with u~x(x, t) and ut(x, t) continuous/or x<~(t), 0 < t < A  and satis/ying 

~u~x(x, t)=ut(x, t), u(x, o)=t(x). 

(II2) v(x, t) is defined and continuous/or x >~q(t), o <<.t < A ,  with vx(x, t) continuous/or 

x >~q(t), 0 < t < A ,  with vxx(x, t) and vt(x, t) continuous /or x>e(t) ,  0 < t < A  and satisfying 

flvxx(x, t)=v~(x, t), v(x, o)=g(x). 

(II3) u(q(t), t) =v(e(t), t), 0 < t  <A.  

(II4) H(u(I~, u ~ ,  ..., u(n), t)+ru~(e(t), t)=2v~(e(t ), t), o <t < A  where u(1)=u(~(t), t), 

u(j+x ~ = ~ u(j)(v)dv, ]=1 ,  2 ..... n - 1 .  

We solve this problem under (A 1)- (A4)and 

(A5) Q(t) is twice continuously differentiable on {0 < t < A } with r = 0. 

Work on problems similar to Problem I I  for the heat equation and more general 

parabolic equations has been done by  several authors beginning apparently with D a t e r  

[1], [2]. (See also ~itara~u [26] and his bibliography.) However, this work seems to be 

limited to the cases where ff is constant and H-~ 0. 

The free boundary problem (Problem I) we consider differs in many aspects from 

the Stefan type problems which have been considered by  many previous authors. In  

particular, Cannon and Hill [3], Douglas [4], Friedman [5], Kamenomostskaya [8], Kolodner 

[9], Kyner  [10], Li-Shang [11], [12], 01einik [14], Quilghini [15], [16], Sestini [22] and 

others have contributed to that  problem in recent years. A recent book by  Rubin~tein [18] 

surveys that  problem to the year 1967.( 1 ) We are indebted to these writers only for the spirit 

(1) Added in, proo]. Two papers by Friedman, The Stefan problem in several space variables and 
One dimensional Stefan problems with non-monotone free boundary, appearing in Trans. Amer. 
Math. Soe. (133) 1968, should be added to this list. 
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of our approach in this paper. In  fact, of this previous work we use only a refinement 

due to Friedman [5] of Holmgren's  early analysis of thermal potentials. (For a discussion 

of Holmgren's  work see Goursat [7].) 

We remark tha t  the techniques used for solving problems I and I I  may  also be used 

to solve problems on finite x-intervals similar to I and I I .  Rather  than  giving growth 

conditions on the solutions at infinity, however, it is necessary to give the values of the 

functions or their derivatives, or a linear combination of them at  the endpoints of the 

intervals in question. The reduction of these problems to equivalent integral equations pro- 

ceeds in much the same manner as in our case, the only difference being that  appropriate 

Green's or Neumann functions must  be used in place of the fundamental  solution which 

we use. 

We use two standard notations for partial derivatives. Thus/G(x, t)/G~(x, t) and kt(x, t) 

mean, as usual the first partial of k with respect to x, the second partial of k with respect 

to x, and the first partial of k with respect to t. Also we use Ic1(x-~(t), ~ t -  ~) ,  k11(x-~(t), 

~t -~T) ,  and IQ(x-Q(t), ~ t -  ~T). Here, again as usual, these mean partials with respect to 

the arguments.  Thus the subscript 1 means the first partial with respect to the first argu- 

ment,  etc. Finally, in the way of notation, if I is any  interval (open, closed, half-open) 

on the real line, the differentiability classes Ck(1), /~ ~> 0 an integer, are introduced in the 

standard way. 

2. The Poisson inte~al  and Dirichlet problems 

The two problems we formulated in the introduction, or at  least our solutions of 

them, turn primarily on smoothness properties of the solutions of certain Dirichlet problems, 

which in turn depend primarily on the properties of the Poisson integral 

V ~(x,t)~- k(x-~,at)w(~)d~ (2.1) 
- r 1 6 2  

and of the double layer thermal potential 

/o (2.2) 

where k(x, t) -= (4~) - t  exp (-x2/4t)  (2.3) 

is the fundamental  solution of the heat equation. 

In  this section we are concerned with a description of the properties of these integrals, 

and of the Dirichlet problems mentioned above, which we will find useful in the later 
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sections. The basic information we are interested in is tha t  if the boundary  and  the Dirichlet 

da ta  are sufficiently smooth,  then  the solution to the Dirichlet problem is smooth up to 

and  on the boundary ,  and  the differential equat ion continues to be satisfied on the boundary .  

This result, along with certain concomitant  estimates, lies at  the hear t  of our solutions. 

Rela ted  resu l t s - - the  Schauder estimates on the b o u n d a r y - - h a v e  been known for 

some time for bo th  elliptic and parabolic equations. (See e.g. Fr iedman [5] Chapter  4 for 

references.) However,  results of the form we use seem not  to be in print,  and  so we outline 

in this section the main results t ha t  we need. 

For  future reference we list here the  following s tandard  estimate. For  any  integer 

n >~ 0, and  any  real h > 1 and ~ > 0 

I~__, k(x,~t) <~ Mt-nJ2k(x, ~ht), (2.4) 
I vx'" 

where M is a constant  depending only on n, h, and  ~. This follows by  observing tha t  if 

c and C are positive constants  then  z c exp ( - Cz) is bounded for z >/0 by  a constant  depend- 

ing only on c and C. 

I f  w is locally integrable on the real line and if there is a constant  A > 0  for which 

w(x) exp ( -x~/4~A)  is bounded,  then the Poisson integral @, given by  (2.1) is a solution 

of the heat  equat ion ~xx=@~, for 0 < t < A ,  and all real x. Further ,  ff;(x,t)-+W(Xo) as 

(x, t)-+(Xo, 0 + )  at  each point  x o where w is continuous, and  uniformly on any  closed 

bounded interval  on which w is continuous. These are s tandard  e lementary facts. 

We are interested in the behavior  of @(x, t) on a curve x =0(t) where 

~(t) =Bt+o(t )  as t - + 0 + ,  (2.5) 

with B constant ,  and we suppose 

w(x) = Ao + A l x  + A2x~ +o(x 2) as x - + 0  (2.6) 

I f  w(x)=-O for x > 0 ,  then  

ff~(~(t), t) = Ao/2 - (AoB + 2 ~A1) t�89 + (A1B + 2 ~A~) t /2 + o(t) (2.7) 

as t->0 + ,  and if w(x)--0 for x < 0, then  the sign on the t�89 term in (2.7) is changed. Adding 

these results gives 

~(~(t), t) = Ao+ (A1B + 2 ~ ) t  +o(t ) as t - + 0 + .  (2.8) 

I f  in (2.6) the x 2 and o(x ~) terms are replaced by  o(x), then the t and  o(t) terms in (2.7) 
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and (2.8) are replaced by o(tt) and if w ( x ) ~ A  o as x->x o, then (2.7) and (2.8) reduce to 

w(~(t),t)-+Ao/2 and w(Q(t), t)-+A o respectively. If w is smooth enough, and if its deriva- 

tives satisfy the same exponential estimate, these formulas can be seen by  integrating by  

parts, and this is really all tha t  is needed for the later sections of this paper. The general 

case can be established by computing (2.1) for the special case w ( x ) = A o + A l x + A 2  x2, 

and then estimating the difference between (2.1) and the results of this special case 

Suppose further that  ~ is continuously differentiable on the closed interval [0, T] 

for some positive T < A .  Then ~(~(t), t) is continuously differentiable on [0, T]. Clearly 

the only point in question is at t =0.  But  (2.8) ensures the existence of the derivative at  0, 

and one easily shows its continuity at  that  point, based on the |imlts just established. 

We now look briefly at two auxilliary Diriehlet problems. For this purpose we need 

the following mild sharpening of a lemma of Friedman [5] which is itself a sharpening 

of a classical result of Hohngren (see Goursat [7], see. 544). We state the lemma without 

proof, for the uniformities we seek are apparent from a reading of Friedman's proof. 

LV.MMA 2A. Let v 2 be continuous on [0, T], and let ~ satisfy a uniform Izipschitz condition 

there. Then 

fo lira ~ ( e ; x , t ) =  ~-~o(t)+2e k l (Ato ,  o~At)~(~)dv, 
x - ~ ( t )  • 0 

where ~ is defined by (2.2), A t = t - v ,  AtQ=~(t)-~(v) and where, for each e>0 ,  0 < e < T ,  

the limit is achieved uniformly in [e, T], and if v2(0 ) =0, the limit is achieved uniformly in 

[0, T]. 

We now formulate the Dirichlet problems. They are formulated under heavier hypo- 

theses than is necessary for their solutions, but  these additional restrictions enable us to 

discuss the smoothness questions we need to consider. Thus for the rest of this section we 

assume that  ~u and v are continuously differentiable and Q is twice continuously differentiable 

on {0~<t<A}, that  f and g are twice continuously differentiable on ( - ~ < x ~ < 0 }  and 

(0 ~<x < c~ } respectively, and that  they and their first two derivatives are bounded by  

M exp (x~/4~A) and M exp (x2/4flA) respectively, i.e., f and g satisfy (A2) of the introduc- 

tion. We further assume ~(0)=f(0) and v(0)=g(0). 

PROBLEM D,.: Find  a function u(x, t) continuous in { - r  <x~<~(t), 0,.<t<A} with 

un ,  u~. continuous in { - ~ < x < ~(t), 0 < t < A } satisfyin9 otUll = u2 there, with u(x; O) =/(x) ,  

u(~(t), t)=~(t). 

PROBLEM Da: Find  a /unction v(x , t )  continuous in {~(t)<<.x<~, 0 ~ t < A }  with 

Ull, u~ continuous in {~(t) < x < ~ ,  0 < t < A } satisfyin9 flUll = u2, there, with v(x, O) = g(x), 

v(~(t), t)=v(t). 
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These two problems are of course equivalent, but  both are formulated for reasons of 

symmetry in their later application to Problem I and Problem II. 

These I)iriehlet problems have been studied for a very long time (see e.g. Gevrey [6]) 

and their solutions known under a variety of hypotheses on 0, / ,  g, ju and v. Solutions satisfy 

the following bounds: Given any T < A  there are constants m > 0  and a > 0  such that  

l u(x, t) l <~me ~x', Iv(x, t) l <~me axe, 0 <~t ~ T, and are unique among the class of functions 

satisfying such bounds. (See Widder [24], [25] where these uniqueness arguments are given, 

and Tyehonoff [13].) 

Solutions can be constructed as follows. Let  F(x) be given by  f(x) for x~<0 and by  

](O)+['(O)x+/"(O)x~/2 for x>0 ,  and G(x) by g(x) for x~>0 and by  g(O)+g'(O)+g"(O)xZ/2 

for x < 0. Then F and G are twice continuously differentiable on the reals. By increasing, 

if necessary, the value of M we observe that  F(x), F'(x), and F"(x) are bounded by  

M exp (x2/40~A) and G(x), G'(x), and G"(x) are bounded by  M exp (x2/4flA). 

We define U and V by 

U(x, t) = f?oo k ( x -  ~, at) $'(~) d~, 

V(x, t) = f?r k ( x -  ~, fit) G(~) d~, 

U(x, o) = _~(z), 

V (x, o) = a(~),  

(2.9) 

and seek solutions to Dr. and Da, respectively, by  

{ u(x,  t) = U(x ,  t) + f ( a ;  x,  t) 

v (x ,  t) = V(z ,  t) + ~(fl; z ,  t), 
(2.10) 

where ~p and Z are to be determined and y~ and ~ are defined by  (2.2). Assuming yJ and Z 

to be continuous we apply Lemma 2 A to get 

(2.11) 

where cp(t)=lU(t)-U(q(t),t) with clearly ~0(0)=0, ~v(t)-~(t)-V(o(t),t) with w(O)=O, and 

where the integral operator K a is defined by  

Y, Kah(t)=2a kx(AtQ, aA$)h(lr)d~. (2.12) 

As before and in the sequel AtQ =Q(t)--~(T), At =t--~.  

These integral equations are solvable by  iteration. The solution is based on the follow- 

ing easily established estimate. 
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L]~MMA 2B. Suppose (1) hEC[O, T] with h(0)=0 and Ih(t)l <~Nt ~, N > 0 ,  p>~0; 

(2) e EC~[0, T] with e(0) =0 and le'(t) l ~<N, N > 0 .  Then Ig~h(t) l <~Bt ,+~r(p+l) /r (p+3/2) ,  

0 ~ t <~ T, where B is a constant depending only on ~T and a. 

The solution of the equations (2.11) are then 

~p= ~ ( - 1 ) ~ K : r  Z = ~ K ~ $ ,  
n =0 n=O 

(2.13) 

respectively, where of course K~ represents Ka iterated n times. These series converge uni- 

formly on [0, T] for each positive T < A .  The solutions of Dr. and DR are then given by 

(2.10), using ~p and Z as determined by (2.13). 

Our primary interest being in the smoothness of these solutions, we now turn to such 

matters. Suppose a positive T <A is given, and ($ = T - A  >0. If #'  and v' are bounded by 

N, and ~' and 0 u are bounded by/V on {0 ~< t ~< T}, then one easily verifies, with the aid of 

the remark on the differentiability of ~(~(t), t), that  both ~ and $ are continuously dif- 

ferentiable and that  there is a constant ~ ,  depending only on M, A, T, N , /~  and (~ (and 

also ~ and fl of course) for which 

0 < t < T .  (2.14) 

Parenthetically, we remark that  in such estimate we will generally suppress the 

dependence on ~ and fl, and, later, on ~ and ~t. We treat (~ as an independent parameter 

since we will later be performing translations which will change A and T but will leave 

unchanged. 

The differentiability of y~ and g depends upon our ability to differentiate the integral 

operators in (2.13). This is covered by the following 

L ~ M A  2C. Suppose (1) hECI[0, T] with h(0)=0 and lh'(t)] < ~ t  ~, ~ > 0 ,  p~>0; 

(2) eEC2[0, T] with 0(0)--0 and I~'(t)l <~N, I~"(t)] <N,  N > 0 .  Then Kah(t ) is continuously 

di/ferentiable /or 0 <~ t <~ T and there is a constant B = B(T), such that 

dKah( t )  l ~< NB(_N a + ~)  t ~+1F(p + 1) / r (p  + 3). 

To establish this we observe that  Ih(t)l <<.Nt, le(t) I <Nt, and IA~el <NAt. Then 

. f~ hv Ate { 1 - e x p ( - ( A t 0 ) ~ / 4 a A t ] ) d ~  
Koh(t) = At 

+ (4rra)-�89 ; t  h ( ~  [Q,(t)_ At01 , - '  .... ;th(~)dv 
,o , - - ,  AtJ dr-(47ea) "0 (~)Jo ~ t ~ "  
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Clearly the only difficulty is with the Iast term. We write the integral in that  term as 

o~r-�89 h( t - r )dr  

and observe that,  since h(0)= 0, its derivative is 

fo~- �89 ( - ~  �9 

The differentiability then established, one can differentiate the last expression for 

K~h(t), differentiating under the integral signs of the first two integrals. The resulting 

expression can then be estimated, somewhat tediously to be sure, to obtain the stated 

estimate. The inequality (2.4) and ] e - ~ - e  -~ ~< [a-b] for a~>0, b>~0 are useful in these 

calculations. 

From Lemma 2C, applied successively to the terms of the series in (2.13), it follows 

that  there is a constant B = B(M, A, T, N, .N, ~) such that  

W(t)] <B, ]x'(t)l <.B; O<~t<~T, (2.15) 

from which we have immediately, 

ly~(t)l <~Bt, ]):(t)] <Bt; O<~t<T, (2.16) 

We now consider u and v, given by (2.10). For x<~(t) we have 

fo ul (x, t) = U1 (x, t) + 2 ~  kn ( x -  0(~), e a t )  ~o(r) dr. 

By use of the formula 

~ k(x - Q(r), ~At) = kl (x - ~(r), ~At) e'(v) - ~k 2 (x - ~(t), ~At) (2.17) 

we deduce, since y~(0)= 0, 

u~(x, t )=Ul(x, t ) -2  k~(x-~(t),~At)~'(r)~(r)dr+2 k(x-~(r),~At)~o'(r)d~. 

As x ~ ( t ) -  0, u~(x, t) converges uniformly in {0~< t<~ T}, for each positive T < A, to 

U 1 (0( t ) ,  t) = U 1 (0( t ) ,  t) - 2 kl (At 0, nat )  0' (r) ~v(r) d r  

fo' - 0' if) ~o(t) + 2 k(zXt e, eat) ~' (~) dr, (2. lS )  

and so Ul(X,t) is continuous in {0~<x~<~(t), 0~<t<A}.  
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Similarly v 1 (X, t) is continuous in (~(t) ~< x < c~, 0 < t < A} and 

Vl(~(t), t) = V1 (0(t), t) - 2 kl (At Q, r 0' (r) Z(r) d r  

+ ~' (t)Z(t) + 2 f ]  k(A,o, f ia t)  
Z' (r) dr  (2.19) 

B y  differentiat ing the  above  expression for ul(x, t), making  the  same subst i tu t ion for  

kll as before, we can see t ha t  u11 is continuous in {0 ~<x ~<Q(t), 0 ~<t < A }  except  a t  the  origin, 

and,  in fact ,  if # '(0) =/ '(0)Q'(0) + ~/~(0), i.e. v2'(0 ) =0 ,  then  u u is cont inuous a t  the  origin as 

wel l .  

From this it follows immedia te ly  t ha t  the differential equat ion  ~Ull = u s is satisfied on 

x=~( t ) ,  t > 0 ,  and  even a t  t = 0  provided again t h a t  p ' ( 0 ) = f ( 0 ) ~ ' ( 0 ) + ~ f ( 0 ) .  Fur the r  we 

observe t ha t  p ' ( t)  = ul(e(t), t) Q'(t) + ~Ull(Q(t ), t) for 0 < t < A. This follows b y  differentiat ing 

u(~( t ) -e ,  t) and let t ing e-~0. We also note  t ha t  as t-~0 we have  

U 1 (~(t), $) = ff (0) A- 2(Gr ~ t �89 ~)' (0) q'- o(t  It) 

= I '  (0) + 2(:t~t)- ~ t ~ [/~' (0) - 1'(o) e' (0) - r162 (0)] + o(t ~) 

and vl (~(t), ~) = g' (0) - 2(~z~) ~ t ~ g '  (0) + o(t j) 

= g' (o) - 2 ( ~ )  ~ t~ [ r  (o) - g' (o) e' (o) - ~g" (o)] + o(t~). 

These formulas  follow by  es t imat ing the  te rms  of (2.17) and  (2.18) 

Final ly  we take  note of the  following est imates .  

TH~.OR~M 2D.  Given a positive T < A ,  there are positive constants M ' = M ' ( M ,  A,  

T,  N ,  ~ ,  5) and A '  =5/2 such that u, u x, u~x, v, v~, v~, are all bounded uni/ormly by 

M '  exp [(x -~( t )  )2/4~A '] and M'  exp [(x - ~(t) )2 /4flA'], respectively/or 0 < t <~ T. 

To see t ha t  these es t imates  hold, one can use (2.10) and  the formulas  one gets b y  

differentiat ing (2.10). The  t e rms  arising f rom U {or V) are easily es t imated  in the  s ta ted  

form, and  the integrals arising f rom the double layer  potent ia l  can be shown to be bounded  

b y  the techniques F r i edman  [5] uses in his proof  of our L e m m a  2A. 

3. 1[he in tegra l  equat ions  

We assume t h a t  Problems I and  I I  have  solutions, and  t ha t  the  functions u and  v 

sat isfy exponent ia l  bounds of the  following form: for each T < A  there  exist  constants  

m > 0 and  a > 0 such t ha t  



k F R E E  B O U N D A R Y  P R O B L E M  A N D  A N  E X T E N S I O N  OF M U S K A T ' S  M O D E L  2 8 5  

I~(~, t)l <m~~ Iv( ~, t)l < ' ~ ' ;  0<t-<<T. (3.1) 

In both eases we denote the common value of u(p(t), t) and v(~(t), t) by/z: 

#(t) =u(e(t ), t)=v(e(t), t) (3.2) 

and we proceed to derive an integral equation for/z, assuming/~ ECI[0, A). 

The calculations involved in the derivation are the same for both problems. I t  is 

just that  in the one case ~ is a given function and in the other it is determined from/~ by 

the equation 

e(t) = tz(r) dr. (3.3) 

Clearly a knowledge of/z is sufficient to determine the solution, for in either case e is 

known, and then u and v are given by, (2.10) with y) and g being given by (2.13), with 

taken as/~. Furthermore by (2.18) and (2.19) ul(p(t), t) and v1(~(t), t) are known in terms of/t. 

We will then denote 7ul(~(t), t) by s and 2Vl(Q(t ), t) by ~/z(t) so that  

- ~'0' (~) ~,(~) + 2 ~,f~ 2(.zx~o, o~A~) ~; (7) d~, (3.4) 

R~(~) = ;tVi (Off), ~) - 2 2 f ]  21 (A~O, flA~) ~' (r) X(r) and dr  

+ ;to' (~)z(t) + 2). I ~ 2(A~, ~At) Z' (7) dr. 
.)o 

(3.5) 

Let (x, t) be a fixed point in { - c ~  <x<Q, 0 < t < A } ,  and denote lc(x-~, ~At) by k, 

and u(~, 7) by u. We integrate Green's identity 

~ \  ~ u ~  - ~ ( u 2 ) = 0  

over { -R<~<~(~) ,  O<~<~t-~, and let R-+c~ and then e-+0. From the &function pro- 

perty of k, we get 

; f0 u(x, t) = ~ k(x - ~, ~t)/(~) d$ + k ( x -  e(r), ~At)/~(r) e(r) dr 

fl + - k ( z -  e(r), ~At) s d~ + e kx (x - 0(7), eat)/~(r) dr, (3.6) 

where ul(0(r ), r) has been replaced by l:/.~(r)/~. 

19 - 692906 Acta mathemat~,ca. 122. I m p r i m 6  le 18 J u i n  1969. 
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This equation can be differentiated with respect to x. After substituting for the 

resulting kll from the identity (2.17), integrating a couple of integrals by  parts, using 

/(0) =/~(0), and letting x~Q(t)-O we get 

-~Ul(O(t),t)=~, k(o(t)-~,oct)f (~)d~+o~ k~(AtO,~At)s 

fo + 7 k(At 5, ~At) ~t' (3) d3. (3.7) 

A similar calculation on v leads to 

~v~(o(t) , t)=2 k(o( t)-~, f i t )g ' (~)d~-f i  k,(AtO, flAt)R~(3)d3 

fo -- ~ k(AtO, fiat) # '  (3) dr. (3.8) 

Substituting these expression into (I5) or II4) leads, after some rearranging, to 

[~(4 a)- ~ + ~(4 fi)- ~] ( t -  r) i . . . .  

fo ; + ~ k(~(O-~,fiOg'(~)d~- r k(~(t)-~,~)/'(~)d~ 
Oo 

dr 

L ' 
+ 7(4 zte) -�89 [1 - e -(~'O't4"At] ,tt (r) . ( - ~  ar  

+ 2(4 ~fi)-~ [1 - e-C'~'~ ~' (r) (-~ dr, (3.9) 

where P(1)(t) = p(t), Po+x)(t)= .~ Pu)(s)ds, ~ = 1 , . . . ,  n--  1. 

We now form the Riemann-Liouville integral of order �89 of both sides of this last 

equation. (See, for example Riesz [17].) Since p(0)- -a  we get 

:r189 ~ (la(t) - a) (t - v ~)- ~ Hdv ~ 

+-~1 jolt ( t -O)  �89 [2 f?k(o( tg )_~ , f iO)g , (~)d~_f~  

& 
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- - 2  l /~ a �89 (t - v~) �89 [1 - e-(aoq)v* ~ao] ( ~ / z '  (.c) d.c 

- - 2  V~fl ~ 30 (*---~)~ [1 ( ~  dr. 

We examine the first two integrals on the right of this equation in order to write them 

in a more tractable form. We note that, by (2.7), or rather the comments following that  

formula, at v~=0 the bracket in the second integral has the value �89162 

�89 0 ..... 0). We can therefore integrate these two integrals by parts then, and the 

integrated terms cancel. Further integrations by parts with respect ~ leads to 

1 2 ~g' (0) (~ (t - a) ~ e' (a) k(e(a), fl~) da 

e z~g' (o!( * + 2 r/ '  (0)( * ( t -  a)~e'(~)k(e(a), ~a) d~ 
Jo (t-a)~k,(e(#),fl~)d#i ~ J 0  

fl 
4.2 flfo: fo * 

f ,  f o  l f l  d 2a?~ (t-~)~da -= k~(q(a)-~,aO)l'(~)d~- - ~  ( t -a )  ~ Hdv ~ 

o~ ; % f ;  -~fo d, fik~(A.q.~A,)~l~(.c)d, V ~  (t --  kl  (As  q '  aA~q) s d.c - (, _ ~)�89 

fi ~163 4- ~ (t -- a) �89 [1 - e -(aoq)'~*'a~ /z' (r) ( ~  a.c 

4" 2 ~  (t - a) �89 [1 - e-(ao ~)'~*~a~] /z' (.c) ( ~  d'r 

Then our integral equation takes the form 
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In, (3.10) 
~(t) = a + ~,fl�89 + )l- ~ 1 

where the In's are given, in order, by the integrals standing on the right side of the previous 

equation. 

Let  us now denote by C~ [0, A) the class of functions, each of which is continuously 

differentiable on [0, A) and has the value a at t=0 .  Then the right-hand side of (3.9) 

defines a mapping, S, of Cla[0, A) into, certainly, the continuous functions on [0, A) with 

initial value a. We shall show that  in fact S maps C~ [0, A) into C~ [0, A). 

THv.O~V.M 3 A. L e t  

0 <t<A. 

I / # E  C~a [0, A),  then St~ E C~a [0, A) and 

d 2~t~�89 19 
Sp(t) rfl�89 O < . t < A ,  

d-t 

where the J~'s are defined below. 

Proo/. Each In, n = 1 to n = 9, is in the form 

c fl  (t- ~)~(0) d~, 

where C is constant and (I)(v ~) is continuous in [0, A), so that  each of these I~'s is dif- 

ferentiable, with a continuous derivative in [0, A) of the form 

We set Jn~dIn/ /d t ,  n = 1 . . . . .  9 and consider the differentiability of Ilo . . . . .  I13. 

1 ~'t dO fo ~ s A~0 [e_( , ,o~) , /~ , ,o_ 1] d~ 
(Aa)  Aa 

f 
1 t 

----I~oa + Ilo~ + I~0 ~ respectively. 
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In Ilo a and 11o ~ we integrate by parts to get 

1 t _ O)*dOfo C~(r) ~ [(A0)~ ilOa 2~_ �89 ( t ~ ~ A o ~  (e_(aoq),/.~aO_l]}dr ' 

/1o~ 

We handle/lo e differently: 

f: 5: fo Ilo e - 1 s dr O' (0) dO 1 s dr 
4~zr �89 (t - 0) �89 (0 - r) �89 = 4~a  �89 s �89 (1 - s) �89 

Each of these terms is clearly continuously differentiable and we thus get 

1 t a ~ Aa9 [ e - ( % , o ~ / 4 ~ A o  - 1]} dr  
at -~ 11~ = 4 -~  fo(t ~ ) ' ;  c"(r) ~ t(Ao)' 

1 t dO /'~ a 

1 t " - ~ ' ~  f l  r' " "" fls�89 s ~  ~1 Q, 

~Jxo + J n  + Jlz + Jla, respectively. 
Similarly 

1 t ~ Aa ~ [ e-(~~ 
(t ~) '  fl ~(r)~ [(AO)' - 1]} dr 

d i  n _  ~ dO o 

4 ~fi �89 dt Jo 

1 t 

1 f o  , ( l s � 8 9  1 O' 

Jla + J15 + J16 + J17, respectively. 

The two remaining terms can be integrated by parts as they stand, then differen- 

tiated with respect to t to get 

J d i m  - y t dO I "~ , a e_(~o)v~ao] } 

2 t dO ['~ , _e_(Aoq)v~,x~]] 
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This completes the proof of the theorem. 

w e  have seen tha t  any  solution to either Problem I or Problem I I ,  satisfying the 

exponential growth conditions (3.1) leads to a solution g of the integral equation (3.10). 

Conversely, suppose we have a solution ju of the integral equation (3.10). Then, by  

Theorem 3A, it is differentiable (and in the case of Problem I, defines ~ EC~[0, A), ~(0) =0).  

We can operate on (3.10) with the Riemann-Liouville integral of order �89 leading back to 

(3.9). Further,  we can determine ,p and Z from (2.6) (with v =~t) and form the functions u 

and v by  (2.5). These functions will then both equal ~t on x =Q(t), and (3.9) is equivalent to 

H(~uu~(t), ~g2~(t) ..... ~gn~(t), t)+?ul(~(t), t)=]wl(~(t), t). Thus we are able to conclude the 

equivalence of the integral equation (3.10) with the original problems. In  particular, if 

the integral equation has a unique solution, then the original problems have unique solu- 

tions within the class of functions satisyfing exponential bounds of the form (3.1). 

4. Existence and uniqueness 

We note tha t  in the case of Problem I I  equation (3.10) is in a sense nearly l inear-- the  

only non-linearities arising from the 'contribution of the boundary function H. However, in 

the other case it is highly non-linear since then Q is the integral of ft. Because of the relative 

simplicity of the equation for Problem I I  we confine our at tention from here on to Problem 

I,  the modification necessary to adapt  the argument  being readily apparent.  In  particular 

we remark tha t  in the simpler case the strip arguments to which we later resort (Theorem 

4 Q) are unnecessary. 

We note tha t  the estimates established in section 2 are available with p and v identified 

and with N = N .  (Note tha t  in the simpler case ,~, as used in section 2, becomes par t  of the 

data  of the problem). 

I t  will be convenient to introduce the following family of standard norms in the space 

C1[0, A), i.e., the class of functions which are continuously differentiable in the interval 

O<~t<A. Given any positive a < A  and any #ECI[0, A) we define 

II I1o = sup I (t) l + 0 s u p  (t) l. (4.1) 
O<~ t <~ a ~ 

C3early Ilglb is finite for each such a and g, and is nondecrcasing in a for each g. 

Throughout this section we will use B as a generic symbol for positive constants 

which depend on M, A, T, N, J, and of course :r ~,, and 2. 

We will use b as a generic symbol for positive constants which depend only on M,  o~, fl, 

y, and X. We will as before suppress the arguments ~, fl, ?, and ~. 

We are first interested in showing tha t  for N sufficiently large and a sufficiently small 

then # eCl[0, A) and Ilglb<N implies II@II~<N. TO this end we begin with the following 
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LEMMA 4A. Let N > 0  and a positive T > A  be given. I / H ~ < N  then 

sup ] S/z(t) I ~< b + B~, 

where S is de]ined in Theorem 3 A and where b and B are constants as described above. 

Proo/. We take b = l a I = I/(0) 1 ~<M. I t  thus suffices to show that  each In is bounded 

by B~. We give the proof f o r / 6  and I 9, the others being simpler but  similar, though dif- 

fering in technical detail. We merely remark that  I10 and I n may be estimated simply if 

one establishes first that  

Is <B,  I}~p(t)[ ~<B; O<~t<~T, 

which one may do by the methods of this section. 

For I s we find 

where we have estimated k 1 by  (2.4) and g" by (A2) of the introduction. We choose h so that  

A - h T  =~/2 = ( T - A ) / 2 .  Then 

f0 I/el~<B ( t - 0 ) � 8 9  -�89 exp [o~(O)/4fl(A-hO)]d~. 

Since e~(O)/4fl(A-ha) <~N~T~I2flO we conclude 

II.I <~Ba, O<~t<<.a<~T<A. 

For 19 we remark that  dH/dO is bounded by a bound which depends on N and T, and hence 

the estimate follows immediately. 

LEMMA 4B. Let N > 0  and a positive T < A be given. I] II~IIT~<N, then 

sup S t ( t  ) ~ b exp (B~ ~) + B~ �89 

Proo[. Again we do sample calculations. We consider 

_ ~g'(0) (~ (~(0) -a) e~p_ ( - e~(0)/4fl0) 
j~ = ~tg' (0)V~J0ft (t -- 0)~/z(0) k (e(0), riO) d0 - 2 ~fl�89 Jo (t - 0) �89 0 �89 d0 

~g'(O)a ( t exp  ( - es (0 ) /4 /~0)  - 1 ~g' (0) a 

+ 2gfl  �89 Jo ( t - 0 )  t 0 t  dO+ 28 �89 
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We estimate [Jl[<~b+B(~�89 O<~t<~a<.T <A.  

The others are similarly estimated through Js, while J~, JT, and Js  are bounded by  

b exp (N2a~), and J~, J10, Jlx, and Jl~ by  Ba�89 Next  

Jla = Q' (t) ~#(t)//4 ~�89 = ~Q' (t) U1 (e(t), t) 
4at �89 

a�89 ' (t! ( t  kl (At ~), ~At) ~' 0:) ~o('r) d'r 
2 .1o 

~,e '~ (t) ~(t) + ~e'  (t) ~'~ 
4o~ ~ -4~-~ ,]o k(At~' aAt)~v (~) dl:. 

By  applying (2.8), or more properly, the remarks just following tha t  formula, to U x and 

the estimates of section 2 to the other terms we compute I Jla [ ~< b + B(~ �89 0 ~< t ~< (~ ~ T < A. 

The estimates on the remaining J ' s  are similar. 

These lemmas immediately imply the following. 

THEOREM 4C. Let N > 0  and a positive T < A be given. I /II~II~<N, then 

From this estimate we get the following 

THEOREM 4D.  Given a positive T <A,  there is an N1, depending only on M, and a 

. .  depending only on N~, M, A, T, ~ such that I1~11~<~1 impli~ IIS~II~<N~/or 0~<~<~o. 

Proo/. Choose T < A and N 1 ~> 3b where b is the constant appearing in Theorem 4C. 

For any positive a~< T and any  ~uECI[0, A) with H/~II~<N1,/~ can be redefined, if neces- 

sary, in the interval a < t < A  so tha t  ][/~Hr ~<2N1 = N .  Then by  Theorem 5C 

We choose ~0 so small that  e s~' ~< 2 and Ba�89 ~ b. Then for ~ ~< ~o we have 

Clearly a0 depends only on the stated parameters.  

We now want  to head toward a solution of the integral equation by  iteration. The 

work so far in this section has established tha t  an iteration procedure can be defined, at  

least in a sufficiently small interval. We now want  to establish the convergence of such a 

procedure. For this purpose we estimate [[S#l-S/x2]l~ in terms of [[/~l--~t~]]~- 

In  the following we will assume tha t /x  x and ~t~ are given elements of Cla[0, A). Each 
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of these then gives rise to corresponding values of ~, ~, r % and Z, which will be designated 

by ~ ,  ~ ,  etc., respectively. We also find it convenient to use the symbol D for Ilbq -#z[[~" 

I t  follows immediately that  

I~t~(t) - #~ (t) l < Dt, 

l e, (t) - e~ (t) l < Dt ~, 

IA,~ - Atoll ~< brat ,  

O < t < a < T  <A .  (4.2) 

LE~MA 4E. 

Proo/. 

Let 1V > 0 and a positive T < A be given. 1~ II ~ I1~ ~ N, II ~ I1~ ~ ~v then 

I~(t)-q~(t)l<BDt I O<<.t<a<~T<A. 

I r (t) -- r (t)] <~ BDt J 

t q l ( t ) -  ~ ( t ) [  < ]m ( t ) -  ~ ( t ) ]  + I u(e~ ( t ) , t ) -  u(e , ( t ) ,  t)] 

< Dt + f~oo I k(pl (t) - ~, ~t) - k(p~ (t) - ~, ~t) l I F(~)I d~. 

The integral can be estimated by estimating F by (A2), applying the mean value theorem 

to the difference and estimating the resulting k 1 by (2.4), and choosing h (entering through 

(2.4)) appropriately. 

L]~MMA 4F. Let N > 0  and a positive T < A  be given. I] ]I/~I[[T~<N, II/~zl]r~N, then,/or 

O<<.t<a<T<A, 

2 '~l kl (at ex, :,At) - k~ (A t e~, : 'at) I -< BD(A--0- �89 

_< BD(At)-  ~ 
2/~lkdA'el'flAt)-kl(Atez'/?At)]~ ~ �9 

Proo]. We give the proof of the first inequality. The expression on the left of that  

inequality is 

~ ~ ~  - -  
At 2g~�89189 At 2Vzt~.(At)~ 2 Vz~at�89 ~ 21/~�89 ~ 

Dr(At) -�89 NAt 

2 ~ -  �89 2 ~ ~ ( a t )  g 

I [(At01)2 - (At0~)2]I < BD(At)-  �89 
4 ~At 

/ r J ~  

The function ~o is related to ~ through the operator Ka defined by (2.12). For each 

bt in C1[0, A) we have a ~, and hence by (2.12) a Ka, and from distinct/x's there will in 
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general result distinct K~'s. We dinstinguish the Ka arising from/~1 from that  coming from 

/~ by writing Kla for the first and K2~ for the second. 

L ~ A  4G. Let N > 0  and a positive T < A  be given. I /  IJ~lll~<~, I I~ I I~N,  and i/ 

ql and q~ are continuous on [0, T! and satis/y there 

I q~(t) I < cxt'/r(p + 1) 

I ql(t) -q~(t) I < v~t'+l/r(p + 1) 

then there is a constant B =  B( T, N) such that 

I Kl~ql(t) -K2~q~(t) I < B(Cx + C~) Dt,+~/F(p + 3/2). 

[ Klaql(t ) - K~pq2(t) l <<. B(C~ + C~) Dt~+~/F(T + 3/2). 

Proo!. Consider 

f, IK~q~(t) - g2,q,(t)l <~ 2~ Ik1(At01, o~At) ql(T) - ]cl(Ato,, o~At) q2(~)l dv 

fo 
Io + ~ g  Iq2 (T) I Ikl(At01, gAt) -- ]c1 (At02, ~At)l  d r .  

Then, we estimate the first term by 

fo fo ds<~NC'Dt'+' l 4(~:r �89 ~ N CzDvZ'+Xdv NCVDt ~+~ sp+l( l_s)_ �89 

To estimate the second term we use Lemma 4 F. This term is then bounded by 

f~o ~ITp§189 C1BD fO ~3----~'  
r(p+ 1) V~ d;= V~r(p+ 1) ~ ~ 

and the result follows. The same calculations apply to I Klzq~(t) -K~q~(t)  l, with a replaced 

by ft. Then taking as B the larger of those for the two cases gives the result. 

LEMM~, 4H. Let N > 0  and a positive T < A be given. I/I[/JIHT~N, H/~I[r < N, them 

[~v~ (t) - ~v~ (t)[ ~< BDt ] 
[;~(t)~g~(t)[~<BDtl O ~ t < ~ a ~ T < A .  
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Proo[. We observe that  I~(t)l  <.B, and, by Lemma 2B, IK~q~(t)l <~Bt"~//F(1 § n//2). 

By induction, based on Lemma 4 G, we compute 

I K ~  ~ (t) - K ~  ~ (t) l <~ (n + 1 ) B~ + ~Dt ~ + ~ '~ / r (1  + n/2 ) ,  

from which the first conclusion follows. One estimates I;~x(t)-~(t)l similarly. 

L ~ . ~  41. Let ~Y>0 and a positive T <A be given. I l qt(t) and q2(t) are continuously 

di//erentiable in [0, T] and satis/y 

Iqg(t)l < G t , / r ( p  + 1) 

I qi (t) - q~ (t) l ~< GDt' /r(p + ]) I 
where p >/0, then 

O<t<~T, 

I d K~q(t) - d  Ke~q2(t) I < B(C~ + C2) Dt~+�89 ~) 

I~ K.,pq~(t)- d -~ K2aq2(t) l <~ B(C~ + C~.) D t ~ + i / I a ( p - ] -  ]). 

The proof follows the same outline as that  of Lemma 4G. The calculations are long 

but straightforward, so they are omitted. 

L ~ M A  4J. Let N > 0  and a positive T < A  be given. I] lll~lllr<~2g and 111~211T~2r then 

I~p; (t) - ~p~ (t) l <~ BD I 
�9 t J O < t ~ a ~ T < A .  [Z; ( t ) -  Z~( )[<BD 

"t " "t Proo/. One observes first that  [~0e( )[ ~<B and [q~l(t)-q~2( )[ <BD. The boundedness 

of ~ is clear, and in the difference a typical estimate is 

Iull(e~(t), t) - ull(0~(t), t) l << Iku~(O- 2, ~t) l exp (~V4 ~A) de 
- - 0 0  

<~1~1_)t I -~ exp (~2/a~A) d~ <~BDTi V A / ( A - h T )  exp [~2/4a(A -hT)].  
J_~ t ~ 

We choose h > l  so that  A - h T = ~ / 2  and estimate [~(t)l <.IVt4NT. One then iterates 

the application of Lemma 4I  to estimate 

and sums to complete the proof. 
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L:EMMA 4K.  Let N > 0  and a positive T <A ,  be given. 

Is163 I O<~t<~a<.T<A. 
I~/tl (t) - ~p~ (t) l ~< BDt J 

With the previous inequalities established these estimates follow simply from (3.4) 

and (3.5). 

TH:~OR:EY 4L. Let N > 0  and a positive T < A  be g i ven . .X / i l l~ l l~r ,  I I /~I I~N,  then 

ISttl(t)-Stt2(t)l <~BDt, O<~t<~a<~T <A.  

We will consider the terms in S/z I and S/tz as given in Theorem 3A. The terms In 

occurring there are defined in section 3 and of course depend o n / q  a n d / t  2 respectively. 

We distinguish these by superscripts. That  is, 11 and I~ will be In computed for/z 1 and/~2 

respectively. I t  is clearly sufficient to show I11 -/2~ I <~BDt, n = 1, 2 .. . . .  13. 

We compute a few typical examples, the others being similar. We consider 

lIi  ~ -1121 ~< 2)'[g' (0)Il l  (t - 0 )  �89 ],ul (0)k(Q1 (0), fl0) -~u2(~)k(~2 (0), fl~)[ d0 

22M  ft 
~<--V~ Jo ( t -  0)�89 riO) I#1 (0) -~2(0)]  d0 

+ 2 2M~ t 
- - ~ A  (t - o)~ I~ (o) 11 k(el (o), rio) - k(e~ (o), fl0) I d0 

<~ 2 2M ~ t DO 
~ - ~  .]o ( t -  0) �89 (4~f10) ~ dO 

2 2 M N  ft  ( t -  0)�89 
+ ~ J o  ~ lexp ( -  e~i(o)/4Ba)-exp ( -  e~(o)/4Bo)l ao 

<~ 2MD (t 2 M N  ~.t [Q~ (0) - ~)~ (0) I 
- - ~ - J o  (t - 0) �89 0�89 + ~ - J o  (t - 0) �89 0�89 4flO dO 

+ 2 M N  (t ( t -  0) �89 �89 ]p, (0) - Q~ (0)]2 NO dO 
<~BDt ~ j o  4flO 

+ 2 M N  ~ (t 
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The differences I I~ - I~l , I I~ - I~l and [141 - 1421 can be est imated similarly. Of the 

next  four differences we est imate only II  ~ - I ~ l  as typical.  

I I~ - ~[ < 2 ~ [~ ( t -  o)~fl ~ I kl (el (o) - ~, ~ o )  - k~ ( ~  (o)  - ~, ~o )  l I g ~ (~)[ at ao 
C=Jo 

L <. BD (t - 0)�89 ~ k (g-  $, h'130) e ~'1~ d$ dO 
- o o  

(choosing h so tha t  A - hT = ~/2) 

< BD f :  ( t -  O)~O~ V ~  /~ e ~' ~"~~ dO < BDt. 

The difference 11~-1~1 is easily es t imated under  the condition (A3) of the introduc- 

tion, and  the other  differences are es t imated as the  preceeding ones, the calculations 

differing only in details. 

TI~EOREM 4)1I. Let N > 0  and a positive T > A  be given. If  [[/~x[]r~<N, [[/~2[[T<N 

then 

I d St~(t) < d 
~ tS th ( t ) -~ t  BDt, O<~t<~a<~T<A. 

Pro@ For  this calculation we must  est imate [g~ - J i l  where J~ and gl  are the terms 

of (d/dO St~ (t), (d/dO Sly2 (t), respectively, where the J~'s are defined in section 4. 

The difference [J~ - J~nl can be es t imated as in I I1 - I l l ,  n = 1, to 9, by  replacing 

( t -  0) �89 by  (t - 0) -�89 in those previous calculations. We proced on to IJ]o - J~0[: 

f~ ao ' a f Ao~ Igio- Jl~o] ~< 

-E~,u~(T) 0-~ ~[(-A--~A'O2 [e-(A~176 1]} d~: 

1 (e dO ~AoOI[e_(A,~qD~I4aAO]I] 
< ~ 3o (t--o)' ; :  lct'l (z)- c'm(~)l [~ [(Ao), J I dv 

§ 
o o  [ (AO) ~ 
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The first integral can be estimated by replacing ] s  - l:/~(v) I by BD% and estimating 

the differentiated term as in the proof of Theorem 4B. The extra v arising from the dif- 

ference [ l:/~(v) - l:/~(z) I enables one to get the estimate BDt for this integral. In estimating 

the second integral one replaces [ l:#~(v) ] by  B and differentiates the terms out. These can 

then be broken up to take advantage of the estimates (4.2), and this second integral can 

also be estimated by BDt. [J11--J~111 is estimated similarly but  more simply, using also 

I#~(t) -#~(t) l ~< D. I Jl~-J~l~ I is still simpler, and I g ] ~ - J ~  I has already been essentially 

estimated by Theorem 4 K  since 

+l_L 
I J]~ - dl~Z I < 4 ~  I#1 (t) -/~2 (t) l I ~ 1  (t)l 4 ~* ]~  (t) l Is  (t) - s (t) I. 

The differences i j l _ j ~ l ,  n =  14] to 17 are handled similarly. Finally the differences 

I J ~ -  J"Z~ I for n =  18 and 19 are easily estimated by these same arguments. 

THV.OREM 4N. Given N > 0  and a positive T <A,  i] II~IlI~N, ll~<t)ll~<N, the~ 

Proo[. From the two previous theorems by estimating t on the right by  a, and taking 

suprema on the left we get 

0~<$~<a 

Adding gives the stated result. 

THEOR~.~ 40 .  Given a positive T <A, there i~ ~1>0 depending on M, A, T, ~ and a 

/~eC~[0, A) ]or which 
/~(t) = S/~(t), 0 < t < a ~  

and i / r  EC~[0, A) with v(t) =S~(t), O<<.~<~a 1 then p(t)-=v(t), 0~<t ~<ax 

Proo[. Choose N 1 and (r 0 so that, by Theorem 4D,  [[#[[r 1 implies IIs#ll~.<N1, 

choose ~1~C~[0, A) so that Ilt, lll~.<N1. Then form ~ = S ~ ,  and in general F,,+~=S~,, 

n >~ 1. Then by Theorem 4 D  IISt,,ll~o ~<N1, n >~ 1. Each ~ can be redefined, if neees~ry,  for 

~ o < t < a  so that I I~ , l l~<N-2N1,  and s o  

It~.+1-~.11~ < B~II~.-~.-IlI~ <(B~) ~ iit~_~111 
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Now choose a 1 so small t ha t  (1) 31 ~ a0, (2) Ba  ~< r < 1. Then # ,  converges uniformly to 

and/z~ converges uniformly to  

for O<~t~al, and so 

n=1 

e~ 

~(t) =s~(t) o<t<:1. 

The uniqueness follows, since Ba  < 1. This immediately  leads to the following. 

THEOR],3M 4P.  Problem I has a solution (~, u, v) /or  O <~t <~al, and only one solution for 

which ~EC ~, and for which u and v satisfy bounds of the form (3.1), and Problem I I  has a 

solution (u, v) for 0 <. t < A,  and only one solution for which i~ E C 1 and for whcih u and v satisfy 

bounds of the form (3.1). 

We now extend the existence of the solution of Problem I to  all positive t < A. 

THEOR~.M 4Q. Problem I has a solution (Q, u, v) /or  0~< t<A and only one solution/or 

which ~EC ~ and u and v satisfy bounds of the form (3.1). 

Proof. Choose T 1 and T so tha t  0 < T 1 < T < A .  Since T 1 can be chosen arbitrari ly 

close to A it is sufficient to show tha t  the  solution exists for 0 ~< t ~< T 1. I f  ql > T1 we are 

finished. I f  not  we can translate the origin to  (@(31), al) and  reset the  problem and  extend 

the  solution. The only question is whether  we can get  a uniform al for all the reset problems. 

Bu t  this follows easily f rom Theorem 2 D. 
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