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Abstract. This paper deals with a reaction-diffusion system modeling a free boundary
problem of the predator-prey type with prey-taxis over a one-dimensional habitat. The free
boundary represents the spreading front of the predator species. The global existence and
uniqueness of classical solutions to this system are established by the contraction mapping
principle. With an eye on the biological interpretations, numerical simulations are provided
which give a real insight into the behavior of the free boundary and the stability of the
solutions.
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1. Introduction

The mathematical modeling of the two-species predator-prey ecological system

has received increasing attention during the past few decades. Investigation of the

spatial and temporal behavior of the predator and prey in an ecological system is an

important issue in population ecology.

Various types of mathematical models have been proposed to study predator-prey

systems [18], [11], [17]. These studies provide a theoretical framework for understand-

ing the complex spatio-temporal dynamics observed in real ecological systems. Such

models are mathematically interesting and rigorous mathematical analysis of these

models, such as global existence, uniqueness and stability of solutions has drawn

increasing attention, [9], [12], [13], [22], [24]. For instance, global stability of a class

of predator-prey systems is shown in [9] by constructing Liapunov functions and the
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influence of color noise on the pattern formation in a predator-prey model has been

investigated in [12], [13].

In this paper we investigate a system of reaction-diffusion equations describing

a type of predator-prey model with prey-taxis and a free boundary. Let Σ be

a bounded domain in R
N with smooth boundary ∂Σ and T > 0 be a fixed time.

Consider the following equations for predator-prey model with prey-taxis:

(1.1) ut − d1∆u+∇ · (uχ(u)∇v) = −au+ bg(v)u, x ∈ Σ× (0, T ), t > 0,

vt − d2∆v = k(v)− g(v)u, x ∈ Σ× (0, T ), t > 0,

where u = u(x, t) and v = v(x, t) denote the population densities of the predator and

prey, respectively, at position x and time t. Parameters d1, d2 > 0 are the diffusion

rates of the predator and prey, respectively, and a > 0 is the natural exponential

decay of the predator population. The function g(v) = b1v/(1+b2v) with b1, b2 > 0 is

the predation rate, where 1/b2 is the time spent by the predator to catch the prey, and

b2/b1 is the manipulation time which is a saturation effect for large densities of the

prey. Moreover, b is the conversion rate from the prey to the predator. The growth

rate of the prey is governed by k(v) = rv(1 − (v/K)), the Pearl-Verhulst equation,

where r > 0 is the natural growth of the prey, and K is the carrying capacity. The

predators are attracted by the preys and χ denotes their prey-tactic sensitivity.

Taxis is achieved when the individuals change their pattern of movement or kinesis

in response to a stimulus. Indeed, the purposes of the taxis range from movement

toward food and avoidance of noxious substances to large-scale aggregations for sur-

vival [20]. Prey-taxis is thus defined as the movement of predators controlled by

prey density. Actually, the prey-taxis mechanism in the model means a direct move-

ment of the predator u in response to a variation of the prey v, and we assume that

χ(u) ∈ C1,1([0,∞)) and moreover,

(1.2) χ(u) = 0 for u > um and

χ′(u) is Lipschitz continuous, i.e.

|χ′(u1)− χ′(u2)| 6 L|u1 − u2| ∀u1, u2 ∈ [0,∞),

where um and L are two positive constants. Here the assumption χ(u) = 0 for

u > um says that there is a threshold value um for the accumulation of u over which

the prey tactic cross-diffusion χ(u) vanishes [1]. This is motivated by the “volume-

filling” mechanism [21], [8]. For the sake of simplicity, we use notation η(u) = uχ(u)

hereafter. For initial values, throughout this paper we also assume that

(1.3) 0 6 u0(x), 0 6 v0(x) 6 K, u0(x), v0(x) ∈ C2+α[0, h0),

where α and h0 are some constants such that 0 < α < 1 and h0 > 0.
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Equation (1.1) has been proposed in [1] and it has been analyzed mathematically

in [1], [23], [27], [14] for fixed habitat domain Σ. The existence of a classical and

a weak solution for this system has been proved in a fixed domain [1], [23].

In many realistic modeling situations, both the prey and the predator have a ten-

dency to emigrate from the boundary to obtain their new habitat and to improve

the living environment. Then it is more reasonable to consider the domain Σ with

a moving free boundary. We may consider that the free boundary is caused only by

the predator and the spreading front expands at a speed proportional to the preda-

tor’s population gradient on the boundary. To be more specific, let us investigate

the one-dimensional case and we assume that the prey and the predator species mi-

grate in the habitat Σt = (0, h(t)). Indeed, the species can only invade further into

the new environment from the right boundary and we suppose that h′(t) = −βux,

where β is a positive constant. The reader can refer to [3], [5] for further infor-

mation about the ecological background and the derivation of the free boundary

conditions.

Motivated by the above explanations, we study the following system with moving

free boundary denoted by x = h(t):

(1.4) ut − d1uxx + (uχ(u)vx)x = −au+ bg(v)u, 0 < x < h(t), t > 0,

vt − d2vxx = k(v)− g(v)u, 0 < x < h(t), t > 0,

u(h(t), t) = 0, v(h(t), t) = 0, t > 0,

h′(t) = −βux(h(t), t), h(0) = h0 > 0, x = h(t),

ux(0, t) = vx(0, t) = 0, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), 0 < x < h0.

Free boundary problems described by partial differential equations which have

a different feature, namely, that geometric information is an inherent part of the

solution. Typically, the solution of a free boundary problem consists of one or more

functions and a set (the so called free boundary) on which certain conditions on the

unknown functions are prescribed [16]. Obviously, the mathematical literature of

free boundary problems is vast. We refer to book [6] for a review of basic analytical

tools and for further reference, for numerical simulation see [2].

Although predator-prey models with free boundary have been studied, such equa-

tions does not contain the pray-taxis mechanism [15], [19], [28], [25], [26]. To the best

of our knowledge, reaction-diffusion systems modeling predator-prey with prey-taxis

and a free boundary have never been considered before. These types of models are

complicated and challenging because of nonlinear term η(u) for prey-taxis and the

free boundary.
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The main contribution of this paper is the establishment of the existence and

uniqueness of a classical solution to (1.4). Applying the contraction mapping theo-

rem, we prove a local existence result. Moreover, we establish that the local solution

is unique. Then it is shown that such solution can be extended to all t > 0 as

a unique global solution. At last, we provide some numerical results implemented

for the simulation of prey-predators interactions.

2. Local existence and uniqueness

In this section, we prove a local existence result invoking the contraction mapping

theorem. Then we show that the local solution is unique.

To this end, we provide an important lemma which will be needed for the main

result. Consider the following problem:

(2.1) ut +A1(x, t)uxx +A2(x, t)ux

+A3(x, t)(η(u)vx)x = A4(x, t)u, 0 < x < ̺, t > 0,

ux(0, t) = 0, u(̺, t) = 0, t > 0,

u(x, 0) = u0(x), 0 6 x 6 ̺,

where Ai, i = 1, . . . , 4, are functions depending on x and t and ̺ is a positive

constant. We establish that there is a unique solution to equation (2.1).

Hereafter, the generic constant M0 denotes a constant which is independent of T .

Lemma 2.1. Let ST = (0, ̺) × [0, T ), v(x, t) ∈ C2+α,1+α/2(ST ), Ai(x, t) ∈

Cα,α/2(ST ) for i = 1, . . . , 4, and

(2.2) ‖v‖C2+α,1+α/2(ST ) 6 M0, ‖Ai‖Cα,α/2(ST ) 6 M0.

Then under assumptions (1.2) and (1.3), there exists a unique non-negative solution

u(x, t) ∈ C2+α,1+α/2(ST ) of the nonlinear problem (2.1) for small T > 0, which

depends on ‖u0(x)‖C2+α(0,̺).

P r o o f. We show that there is a solution by a fixed-point argument. At first,

we introduce the set

XB0 = {u ∈ C1+α,α/2(ST ) ; u(y, 0) = u0(y), ‖u‖C1+α,α/2(ST ) 6 B0},

where B0 = ‖u0(x)‖C2+α + 1.
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Next, we define the map F as follows. For u ∈ XB0 define the corresponding map

F (u) = ū, where ū satisfies the equations

(2.3)
∂ū

∂t
+A1(x, t)ūxx +A2(x, t)ūx −A4(x, t)ū

= −A3(x, t)η(u)vxx −A3(x, t)η
′(u)vxux, 0 < x < ̺, t > 0,

ūx(0, t) = 0, ū(̺, t) = 0, t > 0,

ū(x, 0) = u0(x), 0 6 x 6 ̺.

By (1.2), (2.2), and the fact that u is in XB0 , we observe

(2.4) −A3(x, t)η(u)vxx −A3(x, t)η
′(u)vxux ∈ Cα,α/2.

Applying (1.3), (2.2), and (2.4) and then in view of the parabolic Schauder theory

(see [10]), one can infer that there exits a unique solution ū to (2.3) and

(2.5) ‖ū‖C2+α,1+α/2(ST ) 6 ‖ū(x, 0)‖C2+α(0,̺) +M1(B0) 6 B0 +M1(B0) = M2(B0),

whereM1 andM2 are some constants which depend only on B0. Such ū(x, t) satisfies

(2.6) ‖ū(x, t) − ū(x, 0)‖C1+α,α/2(ST ) 6 M0 max{Tα/2, T 1−α/2}‖ū‖C2+α,1+α/2(ST ).

To see estimate (2.6) we refer to [23]. Using (2.5) and (2.6), it is concluded that if T

is sufficiently small, then we have

(2.7) ‖ū(x, t)‖C1+α,α/2(ST )

6 ‖ū(x, 0)‖C1+α,α/2(ST ) +M0max{Tα/2, T 1−α/2}‖ū‖C2+α,1+α/2(ST )

6 ‖ū(x, 0)‖C1+α,α/2(ST ) +M0max{Tα/2, T 1−α/2}M2(B0)

6 ‖u0(x)‖C2+α(0,̺) + 1 = B0,

and so ū ∈ XB0 and it means that F is a map from XB0 to XB0 .

Next, we show that F is contractive. To this end, consider u1, u2 in XB0 and set

F (u1) = ū1 and F (u2) = ū2 and s̄ = ū1 − ū2. Then s̄ satisfies the equation

s̄t +A1(x, t)s̄xx +A2(x, t)s̄x −A4(x, t)s̄ = A3(x, t)f,

where

(2.8) f = −η(u1)vxx − η′(u1)vxu1x + η(u2)vxx + η′(u2)vxu2x.
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Now, we rewrite (2.8) in the following form:

f = −(η(u1)− η(u2))vxx − (η′(u1)u1x − η′(u2)u2x)vx

= −(η(u1)− η(u2))vxx − (η′(u1)− η′(u2))u2xvx − η′(u1)(u1 − u2)xvx.

Then by a similar argument as in the proof of Lemma 2.1 of [23], it can be shown

that

‖ū1 − ū2‖C1+α,α/2(ST ) 6 M0T
α/2‖u1 − u2‖C1+α,α/2(ST ).

This shows that for a small T , the map F is contractive mapping on XB0 . By the

contraction mapping theorem, F has a unique fixed point u, which is the unique

solution of (2.1). Invoking the parabolic Schauder estimates, we have a regularity

assertion for u that it belongs to C2+α,1+α/2(ST ). �

We return now to system (1.4) and prove the local existence and uniqueness of

solutions to this system.

Theorem 2.2. Let QT = (0, h(t)) × [0, T ). Under assumptions (1.2) and (1.3),

system (1.4) admits a unique solution

U = (u, v, h) ∈ C2+α,1+α/2(QT )× C2+α,1+α/2(QT )× C1+α/2[0, T )

for some small T > 0 which only depends on ‖u(·, 0)‖C2+α(0,h0), ‖v(·, 0)‖C2+α(0,h0),

h0 and hd = h′(0).

P r o o f. In order to deal with the free boundary, we employ the idea which has

been used to prove the main result of [4]. The idea is that we first make a change of

variable to straighten the free boundary.

Let ζ(y) be a function in C∞(R) satisfying

ζ(y) = 1 if |y − h0| <
h0

4
, ζ(y) = 0 if |y − h0| > h0, |ζ′(y)| <

2

h0
.

We introduce a transformation that will straighten the free boundary. It is

(2.9) (x, t) → (y, t), where x = y + ζ(y)(h(t) − h0), 0 6 y < ∞.

Notice that as long as

|h(t)− h0| <
h0

4
,

transformation (2.10) is a diffeomorphism from [0,∞) onto [0,∞), since ∂x/∂y >

1/2, and

0 6 x 6 h(t) ⇐⇒ 0 6 y 6 h0, x = h(t) ⇐⇒ y = h0.
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It is easy to see that

∂y

∂x
=

1

1 + ζ′(y)(h(t) − h0)
=

√

A(h(t), y),(2.10)

∂2y

∂x2
=

−ζ′′(y)(h(t) − h0)

[1 + ζ′(y)(h(t) − h0)]3
= B(h(t), y),

−
1

h′(t)

∂y

∂t
=

ζ(y)

1 + ζ′(y)(h(t) − h0)
= C(h(t), y).

In this setting we define

p(y, t) = u(x, t), q(y, t) = v(x, t),

and problem (1.4) becomes

(2.11) pt − d1Apyy − (d1B + h′(t)C)py + (Aqyy +Bpy)η(p)

+Aη′(p)qypy = −ap+ bg(q)p, 0 < y < h0, t > 0,

qt − d2Aqyy − (d2B + h′(t)C)qy = k(q)− g(q)p, 0 < y < h0, t > 0,

p(h0, t) = q(h0, t) = 0, t > 0,

h′(t) = −βpy(h0, t), h(0) = h0, t > 0,

py(0, t) = qy(0, t) = 0, t > 0,

p(y, 0) = u0(y), q(y, 0) = v0(y), 0 6 y 6 h0.

Hereafter, we use system (2.11) in the rest of the proof.

We shall prove the local existence by a fixed-point argument again. We introduce

X1T = {p ∈ Cα,α/2(QT ) ; p(y, 0) = u0(y), ‖p‖Cα,α/2(QT ) 6 B1},

X2T = {q ∈ Cα,α/2(QT ) ; q(y, 0) = v0(y), ‖q‖Cα,α/2(QT ) 6 B2},

X3T = {h ∈ C1+α/2([0, T ]) ; h(0) = h0, h
′(0) = hd, ‖h′‖Cα/2([0,T ]) 6 B3},

where

hd = −βu′

0(h0), B1 = ‖u0‖C2+α(0,h0)+1, B2 = ‖v0‖C2+α(0,h0)+1, B3 = |hd|+1,

and T such that

(2.12) 0 < T <
h0

4B3
.

131



Then we set XT := X1T × X2T × X3T , which is a complete metric space with the

metric

d((p1, q1, h1), (p2, q2, h2))

= ‖p1 − p2‖Cα,α/2(QT ) + ‖q1 − q2‖Cα,α/2(QT ) + ‖h′

1 − h′

2‖Cα/2([0,T ]).

First, we observe that due to our choice of T in (2.12) for a given U = (p, q, h) ∈ XT

we have

|h(t)− h0| 6 B3T 6
h0

4
.

Therefore, the transformation (x, t) → (y, t) introduced in (2.10) is well defined.

For a given

(2.13) U = (p, q, h) ∈ XT

we define a corresponding function U = G(U) by U = (p̄, q̄, h̄), where U satisfies the

equations

(2.14) p̄t − d1Ap̄yy − (d1B + h′(t)C −Bη(p))p̄y +A(η(p̄)q̄y)y = (−a+ bg(q))p̄,

p̄(h0, t) = 0, p̄y(0, t) = 0, p̄(y, 0) = u0(y)

for 0 < y < h0, t > 0, and

(2.15) q̄t − d2Aq̄yy − (d2B + h′(t)C)q̄y =
(

r −
r

K
q −

b1p

1 + b2q

)

q̄,

q̄(h0, t) = 0, q̄y(0, t) = 0, q̄(y, 0) = v0(y)

for 0 < y < h0, t > 0 with

(2.16) h̄(t) = h0 −

∫ t

0

βp̄y(h0, τ) dτ, t > 0,

h̄(0) = h0.

It is clear that h̄′(0) = −βu′

0(h0) = h′(0).

From (1.3), (2.13), (2.15), and the parabolic Schauder theory, we have that there

exists a unique solution q̄ to (2.15),

(2.17) ‖q̄‖C2+α,1+α/2(QT ) 6 ‖q̄(x, 0)‖C2+α(0,h0)+M3(B2) 6 B2+M3(B2) = M4(B2),

where M3 and M4 are some constants which depend only on B2. Indeed,

(2.18) ‖q̄‖C2+α,1+α/2(QT ) 6 M4(B2).
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For such function q̄(y, t) we have

(2.19) ‖q̄(y, t)− q̄(0, t)‖Cα,α/2(QT ) 6 M0max{Tα/2, T 1−α/2}‖q̄‖C2+α,1+α/2(QT ).

Using (2.18) and (2.19), we conclude that there is a T1 sufficiently small such that

(2.20) ‖q̄(y, t)‖Cα,α/2(QT ) 6 ‖q̄(0, t)‖C2+α(QT )

+M0max{T
α/2
1 , T

1−α/2
1 }‖q̄‖C2+α,1+α/2(QT )

6 ‖q̄0‖C2+α(QT ) + 1 = B2.

Employing (2.14), (2.13), and Lemma 2.1, a similar proof yields that there exists

a unique solution p̄ of (2.14) such that

(2.21) ‖p̄‖C2+α,1+α/2(QT ) 6 M5(B1),

where M5 is a constants which depends only on B1. It is easily verified that p̄(y, t)

satisfies

(2.22) ‖p̄(y, t)− p̄(0, t)‖Cα,α/2(QT ) 6 M0max{Tα/2, T 1−α/2}‖p̄‖C2+α,1+α/2(QT ).

Applying (2.21) and (2.22), we conclude that there is a T2 sufficiently small such

that

(2.23) ‖p̄(y, t)‖Cα,α/2(QT ) 6 ‖p̄(0, t)‖C2+α(QT )

+M0max{T
α/2
2 , T

1−α/2
2 }‖p̄‖C2+α,1+α/2(QT )

6 ‖p̄0‖C2+α(QT ) + 1 = B1.

Now, we return to the dynamic of h, i.e.

(2.24) h̄′(t) = −βp̄y(h0, t).

Using the norm ‖·‖Cα/2[0,T ], we have

(2.25) ‖h̄′‖Cα/2[0,T ] = β‖p̄y(h0, t)‖Cα/2[0,T ].

Also note that

(2.26) hd =
dh̄(0)

dt
= −βp̄y(h0, 0), p̄y(h0, 0) = −

hd

β
.
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For function p̄y(h0, t) we have

(2.27) ‖p̄y(h0, t)− p̄y(h0, 0)‖Cα/2[0,T ] 6 T ‖p̄y(h0, .)‖C1+α/2[0,T ].

Now, from (2.26) and (2.27), there is a T3 sufficiently small such that

‖p̄y(h0, t)‖Cα/2[0,T ] 6 T3‖p̄y(h0, ·)‖C1+α/2[0,T ] + ‖p̄y(h0, 0)‖C1+α/2[0,T ](2.28)

6
1

β
+

|hd|

β
.

From (2.25) we have

(2.29) ‖h̄′‖Cα/2[0,T ] 6 |hd|+ 1 = B3.

Taking T = min{T1, T2, T3}, we conclude from (2.20), (2.23), and (2.29) that

U ∈ XT .

Then we prove that G is contractive on XT . First of all, take

(2.30) (p1, q1, h1), (p2, q2, h2) ∈ XT

and set w = p̄1 − p̄2 and z = q̄1 − q̄2. Then it follows from (2.14) that w solves the

problem which consists of the equation

(2.31)

wt − d1A(h1, y)wyy − (d1A(h1, y)− d1A(h2, y))p̄2yy − d1B(h1, y)wy

− (d1B(h1, y)− d1B(h2, y))p̄2y − (h′

1(t)C(h1, y))wy

− (C(h1, y)− C(h2, y))h
′

1(t)p̄2y − (h′

1(t)− h′

2(t))C(h2, y)p̄2y

+B(h1, y)η(p1)wy + (B(h1, y)−B(h2, y))η(p1)p̄2y + (η(p1)− η(p2))B(h2, y)p̄2y

− (−a+ bg(q1))w − b(g(q1)− g(q2))p̄2

= −A(h1, y)η(p1)zyy − (A(h1, y)−A(h2, y))η(p1)q2yy

− (η(p1)− η(p2))A(h2, y)q2yy −A(h1, y)η
′(p1)q1ywy −A(h1, y)η

′(p1)p2yzy

− (A(h1, y)−A(h2, y))η
′(p1)p2yq2y − (η′(p1)− η′(p2))A(h2, y)p2yq2y ,

and it follows from (2.15) that z solves the problem which consists of the equation

(2.32) zt − d2A(h1, y)zyy − (d2A(h1, y)− d2A(h2, y))q̄2yy − d2B(h1, y)zy

− (d2B(h1, y)− d2B(h2, y))q̄2y − (h′

1(t)C(h1, y))zy

− (C(h1, y)− C(h2, y))h
′

1(t)q̄2y − (h′

1(t)− h′

2(t))C(h2, y)q̄2y

=
(

r −
r

K
v1 −

b1p1
1 + b2q1

)

z −
r

K
(q1 − q2)q̄2

− (p1 − p2)
b1q̄2

1 + b2q1
−
( 1

1 + b2q1
−

1

1 + b2q2

)

b1p2q̄2.

134



From (2.16) we have

(2.33) h̄′

1(t)− h̄′

2(t) = −(βp̄1y (h0, t)− βp̄2y (h0, t)).

Using (2.31), (2.32), and (2.33), by a direct calculation we conclude that

(2.34) wt − d1A(h1, y)wyy − (d1B(h1, y) + h′

1(t)C(h1, y)

− B(h1, y)η(p1))wy − (−a+ bg(q1))w = I1,

zt − d2A(h1, y)zyy − (d2B(h1, y) + h′

1(t)C(h1, y))zy

=
(

r −
r

K
q1 −

b1p1
1 + b2q1

)

z + I2,

h̄′

1(t)− h̄′

2(t) = −(βp̄1y (h0, t)− βp̄2y (h0, t)),

where

I1 = (d1A(h1, y)− d1A(h2, y))p̄2yy + (d1B(h1, y)− d1B(h2, y))p̄2y

+ (C(h1, y)− C(h2, y))h
′

1(t)p̄2y + (h′

1(t)− h′

2(t))C(h2, y)p̄2y

− (B(h1, y)−B(h2, y))η(p1)p̄2y − (η(p1)− η(p2))B(h2, y)p̄2y

+ b(g(q1)− g(q2))p̄2 −A(h1, y)η(p1)zyy − (A(h1, y)−A(h2, y))η(p1)q2yy

− (η(p1)− η(p2))A(h2, y)q2yy −A(h1, y)η
′(p1)q1ywy −A(h1, y)η

′(p1)p2yzy

− (A(h1, y)−A(h2, y))η
′(p1)p2yq2y − (η′(p1)− η′(p2))A(h2, y)p2yq2y

and

I2 = (d2A(h1, y)− d2A(h2, y))q̄2yy + (d2B(h1, y)− d2B(h2, y))q̄2y

+ (C(h1, y)− C(h2, y))h
′

1(t)q̄2y − (h′

1(t)− h′

2(t))C(h2, y)q̄2y

−
r

K
(q1 − q2)q̄2 − (p1 − p2)

b1q̄2
1 + b2q1

−
( 1

1 + b2q1
−

1

1 + b2q2

)

b1p2q̄2.

To simplify the calculations, we can rewrite system (2.34) as

wt − d̄1wyy − f1wy = f2w + I1,(2.35)

w(h0, t) = 0, wy(0, t) = 0, w(y, 0) = 0,

zt − d̄2zyy − g1zy = g2z + I2,(2.36)

z(h0, t) = 0, zy(0, t) = 0, z(y, 0) = 0,

h̄′

1(t)− h̄′

2(t) = −(βp̄1y (h0, t)− βp̄2y (h0, t)),(2.37)

(h̄1 − h̄2)(0) = 0,
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where

d̄1 = d1A(h1, y), d̄2 = d2A(h1, y),

f1 = d1B(h1, y) + h′

1(t)C(h1, y)−B(h1, y)η(p1), f2 = −a+ bg(q1),

g1 = d2B(h1, y) + h′

1(t)C(h1, y), g2 = r −
r

K
q1 −

b1p1
1 + b2q1

.

In view of (2.10) and (2.30), we see

(2.38) ‖f i‖Cα,α/2(QT ) 6 M0, ‖gi‖Cα,α/2(QT ) 6 M0, ‖d̄i‖Cα,α/2(QT ) 6 M0.

We set δ = ‖U1 − U2‖XT . Regarding the definition of I1 and I2, we have

‖I1‖Cα,α/2(QT ) 6 M0δ,(2.39)

‖I2‖Cα,α/2(QT ) 6 M0δ.(2.40)

By (2.35), (2.36), Lp-theory and the Schauder parabolic estimate, we obtain

‖p̄1 − p̄2‖C2+α,1+α/2(QT ) 6 M0‖I1‖Cα,α/2(QT ) 6 M0δ,(2.41)

‖q̄1 − q̄2‖C
2+α,1+α/2(QT ) 6 M0‖I2‖Cα,α/2(QT ) 6 M0δ.(2.42)

From (2.37) we conclude that

(2.43) ‖h̄′

1(t)− h̄′

2(t)‖Cα/2([0,T ]) = β‖p̄1y (h0, t)− p̄2y (h0, t)‖Cα/2([0,T ])

6 M0‖p̄1 − p̄2‖C1+α,α/2(QT ).

Invoking a similar argument as in the achievement of (2.19), we have

‖p̄1 − p̄2‖Cα,α/2(QT )(2.44)

6 M0 max{Tα/2, T 1−α/2}‖p̄1 − p̄2‖C2+α,1+α/2(QT ) 6 M0δ,

‖q̄1 − q̄2‖Cα,α/2(QT )(2.45)

6 M0 max{Tα/2, T 1−α/2}‖q̄1 − q̄2‖C2+α,1+α/2(QT ) 6 M0δ.

Then, applying (2.43), the following estimate is obtained:

‖h̄′

1(t)− h̄′

2(t)‖Cα/2([0,T ])(2.46)

6 M0 max{Tα/2, T 1−α/2}‖p̄1 − p̄2‖C2+α,1+α/2(QT ) 6 M0δ.

Now, (2.44), (2.45), and (2.46) yield

‖U1 − U2‖XT 6 M0 max{Tα/2, T 1−α/2}δ(2.47)

6 M0 max{Tα/2, T 1−α/2}‖U1 − U2‖XT .
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Using estimate (2.47), we conclude that if T is sufficiently small (T depends only

on M0), then G is a contractive map from XT to XT . By the contraction mapping

theorem, G has a unique fixed point U , which is the unique solution of (2.11).

Furthermore, we can raise the regularity of U to C2+α,1+α/2(QT ) employing the

parabolic Schauder estimates. �

3. Global classical solution

In this section we will show that system (1.4) has a global solution. It is observed

from Theorem 2.2 that there exists a unique local solution of system (1.4). To show

that such local solutions can be extended to all t > 0 as the global solution, we

need some prior estimates. In what follows, we introduce some lemmas to obtain the

estimates.

Lemma 3.1. Let e(x, t) ∈ W 2,1
p (QT ) and

‖e(x, t)‖W 2,1
p (QT ) 6 E1,

where E1 is a constant depending on T and p > 5. Then e(x, t) ∈ C1+α,α/2 and

(3.1) ‖e(x, t)‖C1+α,α/2 6 E2,

where E2 is a constant depending on T .

P r o o f. Recall that W 2,1
p (QT ) →֒ C1+γ,(1+γ)/2 for p > 5, γ = 1− 5/p (see [10],

Lemma 3.3, page 80).

If we take γ > α (it is possible when choosing p sufficiently large in the relation

γ = 1− 5/p), then we find that

‖e(x, t)‖C1+α,α/2 = ‖e(x, t)‖C1,0 + ‖e(x, t)‖Cα,0 + ‖e(x, t)‖C0,α/2

+ ‖Dxe(x, t)‖Cα,0 + ‖Dxe(x, t)‖C0,α/2

6 ‖e(x, t)‖C1,0 +M‖e(x, t)‖Cγ,0 + T (1+γ−α)/2‖e(x, t)‖C0,(1+γ)/2

+M‖Dxe(x, t)‖Cγ,0 + T (1+γ−α)/2‖Dxe(x, t)‖C0,(1+γ)/2

6 (M + T (1+γ−α)/2)‖e(x, t)‖C1+γ,(1+γ)/2 .

�
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Lemma 3.2. Let (u, v, h) be a solution of (1.4) for t ∈ [0, T ] and T > 0. Assume

ab2 > bb1. Then
0 < u(x, t) 6 L1,

0 < v(x, t) 6 L2,

0 < h′(t),

where Li, i = 1, 2, are two positive constants independent of T .

P r o o f. Applying the maximum principle [10] and assumption (1.3), it can be

deduced that

0 < v(x, t), 0 < u(x, t).

The proof of the boundedness of v is straightforward and is based on the comparison

principle of ODEs. We refer to the proof of Lemma 3.1 in [23] for the details. Also

the boundedness of u has been established in [7].

The strong maximum principle yields the inequality ux(h(t), t) < 0 in (0, T ].

Hence, h′(t) = −βux(h(t), t) > 0 in (0, T ]. Hereafter, we have generic constants

M which depend on time T . �

Lemma 3.3. Assume that

(u, v, h) ∈ C2,1(QT )× C2,1(QT )× C1[0, T )

is a solution to system (1.4). Then we have

‖u‖W 2,1
p (QT ) 6 M, ‖v‖W 2,1

p (QT ) 6 M

for any p > 5.

P r o o f. Consider the equation corresponding to v in system (1.4). Then it can

be rewritten as

(3.2) vt − d2vxx −
(

r −
r

K
v −

b1
1 + b2v

u
)

v = 0.

In view of Lemma 3.2, we obtain

(3.3)
∥

∥

∥
r −

r

K
v −

b1
1 + b2v

u
∥

∥

∥

L∞(QT )
6 M.

By (3.2), (3.3), and the parabolic Lp-estimate we have

(3.4) ‖v‖W 2,1
p (QT ) 6 M.
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From (3.4) and Lemma 3.1 we have

(3.5) ‖vx‖L∞(QT ) 6 M.

The equation associated to u in system (1.4) can be rewritten in the following form

(3.6) ut − d1uxx + η′(u)vxux = −η(u)vxx − au+ bg(v).

Then we have

(3.7) ‖η′(u)vx‖L∞(QT ) 6 M, ‖ − η(u)vxx − au+ bg(v)‖Lp(QT ) 6 M.

Using (3.5), (3.6) and (3.7), and the parabolic Lp-estimate, we deduce

(3.8) ‖u‖W 2,1
p (QT ) 6 M.

�

Lemma 3.4. Assume that

(u, v, h) ∈ C2,1(QT )× C2,1(QT )× C1[0, T )

is a solution to system (1.4). Then

‖u‖C2+α,1+α/2(QT ) 6 M, ‖v‖C2+α,1+α/2(QT ) 6 M, ‖h‖C1+α/2 6 M.

P r o o f. By Lemmas 3.1 and 3.3 we see

(3.9) ‖u‖ 6 M, ‖v‖Cα,α/2 6 M.

Using Lemma 3.2, inequality (3.9), and the parabolic Schauder estimate for the

following equation

(3.10) vt − d2vxx = k(v)− g(v)u,

we find that

(3.11) ‖v‖C2+α,1+α/2 6 M.

Furthermore, using Lemma 3.2, (3.9), (3.11), and the parabolic Schauder estimate

for the following equation

(3.12) ut − d1uxx + η′(u)vxux = −η(u)vxx − au+ bg(v),
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we have

(3.13) ‖u‖C2+α,1+α/2 6 M.

In view of (3.13), one can infer from equation

(3.14)
dh(t)

dt
= −βux(h(t), t)

that

(3.15) ‖h‖C1+α/2 6 M.

This completes the proof. �

Now, we are prepared for the main result of this paper.

Theorem 3.5. There exists a unique solution of system (1.4) for all t > 0.

P r o o f. Suppose that [0, T ), T < ∞, is the maximum time interval for the

existence of the solution. Consider 0 < ε < T as an arbitrary constant. We take

U(x, T − ε) as a new initial value. Then we can extend the solution to Q(T−ε)+τ for

small τ > 0 regarding Theorem 2.2. Furthermore, Theorem 2.2 tells that τ depends

only on an upper bound of ‖u(x, T−ε)‖C2+α[0,h(t)], ‖v(x, T −ε)‖C2+α[0,h(t)], h(T −ε),

and h′(T − ε). By the estimate in Lemma 3.4, we find that τ depends on a constant

M(T ). Recall that τ is independent of ε, i.e. τ = τ(T ). If we take ε < τ(T ), then

we get

(T − ε) + τ > T,

which contradicts the assumption that [0, T ) is the maximum time interval for the

existence of the solution. Therefore, the maximum time interval for the existence of

the solution is [0,∞). �

4. Numerical study

In this section we provide some numerical results implemented for the simulation

of prey-predators interactions. With an eye on the biological interpretations, the

numerical simulations give a real insight into the behavior of the free boundary and

the stability of the solutions.

Recall that the habitat is [0, h(t)], t > 0, and we set h(0) = h0 = 1. The zero

flux boundary conditions ux(0, t) = vx(0, t) = 0, t > 0, mean that no individuals
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cross the boundary of the habitat, and the Dirichlet boundary conditions u(h(t), t) =

v(h(t), t) = 0, t > 0, correspond to a completely hostile exterior region.

We use the explicit finite difference method for the numerical solution of the given

biological model (1.4). For the explicit scheme, we set δx = 0.02 being the spatial

step size and δt = (δx)2/3 being the time step size. Few numerical examples are

given to illustrate the spatial and temporal behavior of the interacting species. The

numerical tests are run forward in time finishing at time T = 30000 δt.

E x am p l e 1. In this example we take the following ecological parameters

a = 2, b = 0.5, r = 2, K = 1, b1 = 1, b2 = 1, β = 10, d1 = 1, d2 = 1.5.

The prey-tactic sensitivity χ is considered in the form

χ(u) =

{

α
(

1−
u

um

)

, 0 6 u 6 um,

0, u > um

with α = 2 and um = 2. In this example, we set

u0(x) = 1.5(1− x), v0(x) = x(1− x).

It is obvious that functions χ, u0, and v0 satisfy assumptions (1.2) and (1.3).

In Figures 1 and 2, we can see the spatial and temporal dynamics of the interacting

species and the propagation of the free boundary. In Figures 1, it is observed that

the predator population disperse through the region regarding the effect of the prey-

(a) Population density of the predator. (b) Population density of the predator
(from above) and the free boundary in
white.

Figure 1. Dynamics of the predator population. The white curve depicts the free boundary.
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taxis and the diffusion, and the predator invade further into new environment from

the right boundary. The predator population decreases and at last vanishes when

t = T .

(a) Population density of the prey. (b) Population density of the prey (from
above) and the free boundary in white.

Figure 2. Dynamics of the prey population. The white curve depicts the free boundary.

In view of Figure 2, we see that the preys spread over the area and invade further

into new environment from the right boundary. The populations interact and the

prey population increases until it reaches a steady state.

The white curve in Figures 1(b) and 6(b) shows the behavior of the free boundary.

While u, the population density of the predator, is positive in the area near the free

boundary, the free boundary develops and changes gradually over the time steps.

The free boundary has stopped evolving after u becomes zero in the vicinity of it.

Indeed, two populations interact and grow or decay until the whole region is at

a population’s coexistence steady state. Figure 3 illustrates the steady state profile

of the prey population.

It is worth noting that if r and K are reduced to 0.5 and 1, respectively, then

both populations decay and reach a zero steady state and the free boundary will not

propagate anymore, see Figure 4.

E x am p l e 2. In this example we examine the case when u0 and v0 do not satisfy

assumption (1.3). Let

u0(x) =

{

0.4, 0.4 6 x 6 0.8,

0, otherwise,
v0(x) =

{

0.5, 0.4 6 x 6 0.8,

0, otherwise,

and

a = 2, r = 1, K = 0.5, β = 0.5, d1 = 0.07, d2 = 0.05, um = 0.5, α = 0.02,
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Figure 3. Steady state profile of the prey.

(a) Population density of the predator
(from above) and the free boundary in
white.

(b) Population density of the prey (from
above) and the free boundary in white.

Figure 4. Dynamics of the predator and prey. The white curves depict the free boundaries.

as the ecological parameters. Here we take

g(v) = 0.5(v + sin(v)), χ(u) =







α
(

1−
exp(u)

exp(um)

)

, 0 6 u 6 um,

0, u > um.

Although functions u0 and v0 do not satisfy assumptions (1.3) and χ has a more

complicated nonlinear form, the behavior of the two populations and the free bound-

ary is similar in spirit to the previous example, see Figures 5, 6. Another interesting

result can be observed from Figures 7, where we set β = −0.5. In this case the

habitat becomes smaller and the populations escape from the right boundary inward

the domain. The free boundary evolves until the predator population decreases to
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zero. After that, the prey population continues to increase until it reaches a steady

state.

(a) Population density of the predator. (b) Population density of the predator (from
above) and the free boundary in white.

Figure 5. Dynamics of the predator population. The white curve depicts the free boundary.

(a) Population density of the prey. (b) Population density of the prey (from
above) and the free boundary in white.

Figure 6. Dynamics of the prey population. The white curve depicts the free boundary.

In summary, it seems that the result of Sections 2 and 3 holds under weaker

assumptions on u0 and v0 and they are valid for negative β as well.
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(a) Population density of the predator (from
above) and the free boundary in white.

(b) Population density of the prey (from
above) and the free boundary in white.

Figure 7. Dynamics of the predator and prey population. The white curves depict the free
boundary.

5. Conclusions

In this paper, we have considered reaction-diffusion system (1.4) modeling

a predator-prey problem with prey-taxis and a free boundary over a one-dimensional

habitat. Applying the contraction mapping principle, the global existence and

uniqueness of the classical solutions to this system have been proved under assump-

tions (1.2) and (1.3). In view of some experimental situations, the biological equation

(1.4) including a free boundary is a more realistic model, since both the prey and

the predator have a tendency to emigrate from the boundary to obtain their new

habitat and to improve the living environment.

The spatial and temporal behavior of the interacting species and the evolution of

the free boundary have been investigated numerically. The numerical study implies

that the two populations interact until they reach a steady state. In particular, the

free boundary propagates until the predator population converges to zero due to the

fact that h′(t) = −βux.

It would be interesting if the question of stability of steady states will be addressed

in future studies. In view of the numerical investigations, it seems reasonable to

conjecture that equation (1.4) will not reach a steady state solution when u, the

predator population, is positive in the area near the free boundary and in the steady-

state solution the function u should be zero.

Numerical tests reveal that the results of Sections 2 and 3 hold under milder

assumptions on the data.
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