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A Free Boundary Problem
for Quasi-Linear Elliptic Equations (*).

HANS WILHELM ALT - LUIS A. CAFFARELLI - AVNER FRIEDMAN

0. - Introduction.

Consider the problem of minimizing the functional

in the class of functions u satisfying u on a part S of Here D

is a domain in Rn and F(t) is a convex function of t for t &#x3E; 0, .F’(0) = 0,
F’(0) &#x3E; 0. The special case F(t) = t was studied by Alt and Caffarelli [1]
who proved Lipschitz continuity and nondegeneracy of a minimum u.

They also studied the free boundary .I’ = 8(u &#x3E; Q and proved the

analyticity of h if n = 2; further, if E rand F satisfies the « flat-

ness condition » at x°, then 1~’ is ana,lytic in a neighborhood of x°.
The results of [1] were used by Alt, Caffarelli and Friedman [2-4] in their

study of jet flows of inviscid, irrotational and incompressible fluid.
In this paper we shall extend all the results of [1] to the functional (0.1).

In particular we establish Lipschitz continuity and nondegeneracy of a

minimum, and analyticity of the free boundary (if n ~ 3, the flatness condi-
tion is assumed, as before).

The results of this paper extend with obvious changes to the more general

(*) This work is partially supported by Deutsche Forschungsgemeinschaft,
SFB 72 and by National Science Foundation Grants 7406375 A01 and MCS 791 5171.

Pervenuto alla Redazione il 29 Settembre 1982 ed in forma definitiva il 2 Mag-
gio 1983.
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functional

where &#x3E; 0, 1 E 
In a future publication we shall apply the results of this paper to the

study of jets and cavities of compressible fluids.

1. - The minimization problem; basic properties.

Let F(t) be a function in satisfying:

Let SZ be a domain in Rn , not necessarily bounded. For any Â &#x3E; 0, consider
the functional

over the class of admissible functions

where 8 is a given subset of 8Q and u° is a given function. We assume that
locally 8Q is a Lipschitz graph, that S is measurable with Hn-1(S) &#x3E; 0, 1
and that

From (1.1) we find that f(p) is convex; moreover, y

consequently

for some small constant &#x3E; 0, where
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Consider the problem: find u such that

This means that we have to deal with the differential operator

THEOREM 1.1. I f J(uO)  oo then there exists a solution to problem (1.4).

PROOF. The proof is the same as in [1], Theorem 1.3. Let be a

minimizing sequence. Then, by (1.3),

It follows that are bounded in L2(Q r1 BR) for any large .R.

Therefore there is a u E IT such that, for a subsequence,

The pointwise convergence implies

and since f is convex we have (see, for instance [6; pp. 232-3])

thus

DEFINITION 1.2. u is called a local minimum of J if, for some 0,
J(u) c J(v) for any v E K with
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LEMMA 1.3. If u is a local minimum then u is Y-subsolution, that is,

PROOF. For any e &#x3E; 0,

since by convexity

Now take 8 - 0.

LEMMA 1.4. If w is a local in B,, that is, we HI,2 (B,,) and

and if w &#x3E; u on aBR, then w ~ u in Bn. If w = u on aBn then w is uniquely
determined.

PROOF. Taking C = (u - ?,t~)+ in (1.5), (1.7) and comparing, we get, using
the convexity (1.2) of f:

hence u - w c 0. If WI is another solution of (1.7) then the above proof
gives WI- w  0. Similarly w - WI 0, so that w = wl :

LEMMA 1.5. I f u is a local minimum then 
°
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PROOF. Setting M = sup u°, we have, for small 8 &#x3E; 0,
S)

Taking 8 2013~ 0 we get

by (1.3), which yields a  M a.e. in S2.
Similarly, to prove that u&#x3E; 0 we begin with (8 positive and small)

Taking 8 -~ 0 we get

from which we deduce that u &#x3E; 0.

In § 2 it will be shown that, for any local minimum u, the set lu &#x3E; 0}
is open. Let us use this fact already in the next statements of this section.
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LEMMA 1.6. If u is a local minimum then it is !l’-solution in ~~ &#x3E; 01.
The proof is the same as that of Lemma 1.3, taking C any function in

Co (~~ &#x3E; 01) -

LEMMA 1.7. If G is an open set, u E H’2(G) and Yu - 0 i1~ G, then U E 
for any 0  lX  1.

PROOF. We can take G to be a ball. The equation dlu = 0 has the form

Applying 8~ and setting Wk == akwwe get, formally,

where

is uniformly elliptic matrix. Thus the Nash-de Giorgi estimate should give
a C" estimate on êBu for some a E ( o, 1 ) .

In order to derive the C" estimate rigorously, we approximate u on aG
by smooth functions ùm (in the Z2 trace norm). By [6; Theorem 14.8] there
exists a unique solution um of

with um C 02+tX(G). The formal argument given above can be applied to Um.
It gives

as well as

where _K is any compact subset of G ( C is independent of m). Since um and

the minimizer of
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coincide by Lemma 1.4, it follows that for some constants C, 0

Thus, for a subsequence, y

It follows, again by Lemma 1.4, that u = u and thus u E Then

the coefficients are Holder continuous so that by elliptic estimates wi,
is of class 

DEFINITION 1.8. We define functions by

so that

THEOREM 1.9. If u is a local minimum therc

f or any 77 .Rn), where v is the outward normal.

The proof of this very weak formulation of the free boundary condition
is similar to the proof of Theorem 2.5 in [1].

2. - Regularity and nondegeneracy.

We set

Since we shall use this notation mostly when either A is a ball B,(x’)
= {h - ~°)  rl andu = Ln or A is a sphere aBr(xO) and fl = H,-’, we often
omit in the notation the measure dy.
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LEMMA 2.1. Any local minimum u is in for any 0  a  1.

PROOF. Let Br and let v be the solution of

its existence follows by minimization. Then

since v &#x3E; 0 in Br, by the maximum principle. By convexity (1.2),

Integrating this relation and using ( 2.1 ) we find, after com-

paring with (2.2), that

We can now use the method of Morrey [11; Th. 5.3.6] in order to deduce
the assertion of the lemma.

In the sequel we denote positive constants depending only on fl and qt
by C or c.

Set

By Lemma 2.1, .E+ is open and Eo is closed in S~.
Set

LEMMA 2.2. Suppose x,, d(xo) C 2 dist (xo, Then

where C is a constant depending only on fl, n.
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PROOF. We assume that

and derive an upper bound on M. By scaling i.e., by considering

we may assume that d(xo) = 1. Since -Vu = 0 in B1(xo), by Harnack’s in-

equality [6; p. 189] and (2.4) we have

Let y be a point in aB1(xo) n Eo. We define a function v by (2.1) with Br
replaced by Then v&#x3E;u in B1(y) and (cf. (2.3))

Recalling (2.5) we have

and then, by Harnack’s inequality [6; p. 189],

We take for simplicity y = 0 and introduce the function

We compute

Hence

Thus
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and, by (2.7),

Since £fv  !ew, the proof of the maximum principle gives

Recalling (2.7) we then have,

Take two disjoint balls B*(yi) (i = 1, 2) in Let $ vary on 8Bi(y)
and denote by Zi() the largest segment with endpoints , i(), going froin $
into yi, such that and u(q;(1)) - 0 (r~i(~) = 8 if u($) &#x3E; 0).
Denote by Si the union of all the segments Zi(~), and let S = S

As in [1; Lemma 1.3] we get, using (2.9),

so that

where (2.6) was used. Since S D {u = 01 r1 131(y), we deduce that M2  C£2

and the assertion of the lemma follows.

THEOREM 2.3. u E moreover, for any domain D cc S~ containing
a free boundary point the Lipschitz coefficients of u in D is estimated by C~,

where C depends on n, fl, D and Q only.

PROOF. Suppose d(x)  -1 dist (x, By Lemma 2.2 applied to

we have

By elliptic estimates (e.g. Lemma 1.7) we then get
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that is, c Thus, for any domain D cc D, is bounded in
D r1 where.N is a small neighborhood of the free boundary. Since

further u c C",’- in E+, it follows that u E 

To prove the second part of the theorem, consider any domains

D containing free boundary points. We shall prove that

for all x E D r1 E+ with C depending only on n, fl, D, D’ and Q.
Let ro = 3 dist (D’, x E D’. We argue as in [l ; Theorem 4.3]. Since

D’ is connected and not contained in E+, we find a sequence of points
x,,, ..., xk in D’ (k depending only on D’ and S~) with

such that xo = x, BrJxi) is contained in .E+ for j = 0, ..., k - 1, and such
that is not contained in E+. By Lemma 2.2,

Since u is a !e-solution in each ( j===0y...K2013l we have, by
Harnack’s inequality [6; p. 189],

Inductively we then obtain

Now let x E D rl E . If d(x) &#x3E; r1 ~ 2 dist (D, then

by the uniform estimate on u in D’. On the other hand, if d(x)  rl then

by Lemma 2.2. This completes the proof of the theorem.
As a consequence of Theorem 2.1 we shall prove:

For an y domain there exists a constant C (depending
only on n, P, D and Q) such that for any absolute (local) mircimum u and for
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any (small) ball .Br c D

PROOF. If Br contains a free boundary point then in B,, by
the proof of Theorem 2.3, with C depending on n, fl, D and SZ only. Since
vanishes at some point of Br we conclude that

which contradicts (2.11) if C in (2.11) is large enough.
We next state a nondegeneracy lemma.

LEMMA 2.5. any p &#x3E; 1 and f or any 0  x  1 there exists a con-

stant c. such that for any global (local) minimum and for any (small) ball Br c Q

PROOF. Take for simplicity r = 1; otherwise we work with a scaled
function. Set

By the L°° estimate of

Consider the function

By (2.8), 2v  0 in is small enough; that is, v is a super-
solution. We choose Ci such that

Then min (u, v) is an admissible function and therefore
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which gives

or

where we have used the fact that v is a supersolution. Since also

we find that

On the other hand we can estimate the last integral by (cf. [1])

Taking sufficiently small we then obtain

that is u = 0 in Bx .

REMARK 2.6. Lemma 2.5 remains true if Br is not contained in SZ provided
u = 0 in Br n Lemma 2.4 also remains true if Br is not contained in Q
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provided Bxr = 0 on B, n 3Dy and Br n 8Q is smooth, that is any
point of can be connected with the center of Br by a tube with
thickness of order Er and length of order r). Then the statement (2.11) is

replaced by:

which implies

for any given 8 &#x3E; 0, x  1; Theorem 2.3 is also valid in Br n Q.

COROLLARY 2.7..F’or any domain D cc Q there exist positive constants c, C
such that if Br (x) is a ball in D n (u &#x3E; 01 touching &#x3E; 0~ , then

THEOREM 2.8. For any D cc Q there exists a constant c, 0  c  1, such
that for any absolute (local) minimum u and for any (small) ball Br c D with
center in the free boundary,

c depends on D, but not on A.

PROOF. By Lemma 2.5 there exists y E Br with u(y) &#x3E; Using Lip-
schitz continuity we get

if n is small enough. Hence

which implies, by Lemma 2.4, that u &#x3E; 0 in This gives the lower
estimate in (2.14).

Next, let v be as in (2.1). Then, by (2.3),

where Poincare’s inequality was used. If y E Bxr (m small) then, by Harnack’s
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inequality and Lemma 2.5,

By Lipschitz continuity of u we also have

Therefore

if x is small enough. Substituting this into the right-hand side of (2.15)
we find that

and the upper estimate in (2.14) follows.

REMARK 2.9. Theorem 2.8 implies that 0}) = 0.

3. - The measure ll = !l’u and the function q.

In Theorem 1.9 we proved that the free boundary condition

is satisfied in a very weak sense. Since P(0)=0 and (by (1.2)) ~’ ~ e &#x3E; 0
there is a unique value 1* &#x3E; 0 with

Hence the free boundary condition can be written as

or

if
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We shall prove (3.3) in the sense that

where, of course, we need the fact that the free boundary &#x3E; 0} is (n - 1 )-
dimensional. This we will show first.

By Lemma 1.2,

where 11 is a positive Radon measure supported on the free boundary

In the sequel we shall not indicate the explicit dependence of constants
upon A.

THEOREM 3.1. For any D cc Q there exist positive constants c, C such

that f or any ball Br c D with center in the free boundary

PROOF. Then

Approximating IBr from below by suitable test functions ~ we get, using the
Lipschitz continuity u, that for almost all r,

To establish the left-hand side of (3.4) we may normalize by taking r =1.
Set 

-

This is a linear selfadjoint uniformly elliptic operator. Denote its Green’s

function in Bi with pole x by Gx. By [6; p. 184], if
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then

Representing v in terms of Green’s function we deduce that (3.5) for all f
means

Now let Then ~Gx = 0 in B, and, by (3.6), Gx is bounded in
1-(B,). Hence, by elliptic estimates [6; p. 184]

and by the symmetry of Green’s function

Similarly

where C is a constant depending on 6 but not on D1, D2.
Now let ?,v be the solution of

By nondegeneracy, for any 0  x  1 there exists a point y E Bx with
u(y) &#x3E; cx. By Lipschitz continuity,

with e(m) sufficiently small; hence also dA = 0 in BcCx)(y). Since

we can write

where we have used (3.7) 
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By the maximum principle w ~ u; therefore, by nondegeneracy (for p &#x3E; 1)

Using Harnack’s inequality [6; p. 184], if p C n/(n - 2 ), we get

Also, since u vanishes at the center of B1, by Lipschitz continuity,

Choosing x small enough we get

and recalling (3.8) we obtain

The next theorem follows easily from Theorem 3.1, precisely as in [1].

THEOREM 3.2 (Representation theorem). Let u be ac local minimum. Then :

(1) Hn-1 (D n a{u &#x3E; 0~ )  oo for every D cc.Q.

(2) There is a Borel measure qu such that

that is, for every I

(3) For any D cc S2 there exist positive constants c, C such that for
every ball c D with x E &#x3E; 0~ ,
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From (1) it follows [5; 4.5.11] that the set A = (u &#x3E; 0) has a finite

perimenter locally in S~, that is, flu = - is a Borel measure. We de-

note by 8A the reduced boundary of A, z.e., the set of points for

which the normal v.(x) of A at x exists and Ivu(x) = 1; see [5] [7].
We shall deal with blow up sequences

Since for a subsequence,

We also have:

The proof of (3.11) follows from (3.9) and the nondegeneracy. The same
arguments show that if xm E &#x3E; 01 then X, E &#x3E; 0}.

To prove (3.12) let x E &#x3E; 01 r1 .~. Then there exists a sequence

ym E 8(um &#x3E; 01 such that y~ - x. By nondegeneracy (Lemma 2.5 with p = 2)

Hence

Since uo is clearly also in 00,1, the proof of Theorem 2.8 applies to uo.

Consequently

Combining this fact with (3.11), the assertion (3.12) follows.
By elliptic estimates

uniformly in compact subsets of (uo &#x3E; 0)
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and

Thus in order to prove (3.13) it remains to show that

In the set IUO = 01 a.a. points xo have density 1; denote the set of such
points by S. We claim that if xo c S then

Indeed, if &#x3E; yr for some y E Br(xo), y &#x3E; 0 and a sequence r -7 0, then

(by the Lipschitz continuity of uo)

for some small c &#x3E; 0. This means that ~uo &#x3E; 01 has positive density at xo,
contradicting mo E S.

From (3.16) we deduce that, for any 8 &#x3E; 0,

provided m is large enough, say r). By nondegeneracy it then fol-
lows that u,,,= 0 in Br/2(XO) and, consequently, uo= 0 in a, neighborhood
of xo . Thus the set S is open. Furthermore, the above argument shows that
= uo in any compact subset of ~’, if m is large enough. This completes

the proof of (3.15).
In order to identify the function qu in Theorem 3.2, we need the following

two important statements about the minimum.

LEMMA 3.3. I f u(xm) = 0, xo E Q, then any blow up limit uo with

respect to Bem(xm) is absolute minimum for J in any ball.

PROOF. Let

and suppose that (3.9), (3.10) hold. Then also (3.11)-(3.13) are satisfied.
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Set D = BR(O) and take any v, v - uo E Hol-,2 (D), 17 E C;’(D), 01]1. Let

Since vm = um on aD,

Since Vum - Vuo a.e.,

Similarly

Noting also that

we obtain from (3.17)

where = 22f Choosing a sequence of r’s with "(’1’])O, the as-
D

sertion follows.

Next we prove an estimate for at the free boundary from above

(see [1; Remark 6.4]), which will also be used in Section 4, where we prove
the corresponding Holder estimate.

LEMMA 3.4. Let u be a local minimum and let 2* be defined by (3.1). If
xo E {u &#x3E; 0} then

PROOF. Denote the left-hand side of (3.18) by y. Then there exists

a sequence zk such that

Denote by Yk the nearest point to zk on 01 and set Qk = IZk - Ykl.
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Consider a blow up sequence about with limit such that

Then uo is Y-subsolution in Rn and £fuo = 0 in ~uo &#x3E; 0}. By Lemma 3.3
the blow-up limit uo is an absolute minimum, hence B1( - is contained

in 0} by (3.12). Moreover = 0 and

which implies that y &#x3E; 0.

Choose a unit vector e such that

and consider the function We have (see the proof of Lemma 1.7)

where £fo is a uniformly divergence-form elliptic operator. Also

Applying the maximum principle we conclude from (3.19) that

Since u,(O) = 0 and u, &#x3E; 0 in Bl(- en), the constant c is equal to zero and
e = en. Thus

By continuation the same argument shows that

whenever
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We next claim that

Indeed, suppose this is not true, and define

By Lipschitz continuity of u, uo is uniformly Lipschitz continuous and thus
s  oo. Suppose s &#x3E; 0 and let

Consider a blow up sequence with respect to Bhk(yk, 0) with limit Arguing
as before we conclude that

for all

But we also have (by (3.20))

Thus, uoo is a minimum (Lemma 3.3), and any point (x’, 0) is a free boundary
point. It follows that the set 01 has density zero at any point
(x’, 0), a contradiction to Theorem 2.8.

We have thus proved that g = 0 and, consequently, uo(x’, xn) = o(xn)
if Xn t 0. Hence, for any e &#x3E; 0,

for any xo = ( yo , ho ), r = ho, with ho small enough. It follows, by non-

degeneracy, y that uo = 0 in some strip which contradicts the

assumption that (3.21) was not satisfied.
Having proved (3.20), (3.21) we can now apply Theorem 1.9 to deduce

that, on the free boundary ~xn = 01, coincides with Â*, i.e., y = x*.
In the next statement we use the following notation (see [5; 3.1.21]).
For any set E and xo E .E we define the (topological) tangent plane of E
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at zo by

THEOREM.3.5 (Identification of q.) - Let Xo &#x3E; 0} and suppose that

Then Tan ( a ~u &#x3E; 0}, xo) = {x; = 01. If, in addition,

then, qu(xo) = Q and, as x ---&#x3E; 0,

where A*, Q are defined as in (3.1 ) and (3.2).

PROOF. Take for simplicity = en . Let um be a blow up sequence
with respect to balls BQm(xo), with blow up limit Then converges
in to (by (3.12 )) and to since,

if vu(xo) is the normal to {u &#x3E; 01 at zo. It follows that uo = 0 in 

and uo &#x3E; 0 a.e. in  0~ .
In order to show that 0 in  0), we proceed as in [1; p. 121]

to deduce that

for any 0}. We then conclude that for any’ E 

where (3.13) was used. Thus uo is a solution of = 0 and it is there-

fore smooth in ~xn  01 (Lemma 1.7). The maximum principle now implies
that in 0}’
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Now let

where eC(-B ?y&#x3E;0 (B,. is an (n - l)-dimensional ball with radius r).
Proceeding as in [1; p. 121] and using also (3.13), we get

Notice that, unlike in (3.23), the test functions here are not supported just
in  0~ . From (3.24) we deduce the boundary conditions

in the sense that

Since = 0 ill  0}, by boundary regularity for elliptic equations
(see proof of Lemma 1.7) it follows that uo satisfies (3.25) in the classical sense.

Since furthermore uo is an absolute minimum (Lemma 3.3) we deduce
from Theorem 1.9 that

We have to show that uo is a half plane solution with slope A*. To prove
this we use Lemma 3.4, which tells us that

and 2uo = 0 in (uo  0} y where

Therefore, the function
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is nonnegative in 01 and gv = 0. Hence, if v is positive at some point
in ~xn  0} y it must be positive everywhere in  0} y by the maximum
principle, and, further,

that is, 1*, which contradicts (3.26). Consequently v = 0 in

{xn  01, that is,

Since finally the blow up sequence was arbitrary whereas the limit is

unique, the assertion (3.22) follows.
Since the conclusion of Theorem 3.5 holds for H,-’ a.a. ro E &#x3E; ol

we obtain:

THEOREM 3.6. For a.a. x in ~}

REMARK 3.7. From the positive density property (Theorem 2.8 and
[5; 4.5.6 (3)] it follows that &#x3E; &#x3E; 0)) = 0. Hence

on

4. - Estimates on 

For the regularity theory of the free boundary we need the following
strengthened version of Lemma 3.4.

THEOR.EM 4.1..Let u be a local minimum. For any DccS2 there exist

positive constants C, a C 1 depending only on fl, A and D such that, for any
ball Br(x) c D which intersects the free boundary,

PROOF. We have

where the uniformly positive and bounded matrix aii is defined as in (1.9).
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Therefore, by [6; pp. 270-271], the function v = satisfies

where y is some positive constant. For any 8 &#x3E; 0, the function

is fl-subsolution in {u &#x3E; 01 and, by Lemma 3.4, it vanishes in a neighborhood
of the free boundary. We extend IIE by 0 into {u = 01 and set

for any r, where the origin is taken to be a free boundary point. Then
- UE is A- super solution in the entire ball Br and

By [6; p.193] with 1 p  n/(n - 2),

since crn by the positive density property (Theorem 2.8). Taking
e - 0 we get

or

Thus

from which we deduce that  Cs’ for some C &#x3E; 0, 0  a  1, and (4.1)
follows.

REMARK 4.2. If, in Theorem 4.1, Br(x) c B,(x) c D then

Indeed, this follows by applying Theorem 4.1 to = + .Rx’).
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THEOREM 4.3. Let n = 2 and assume that u is any local mircim2cm and that
D cc D. Then for any small ball Br c D with center in the free boundary,

PROOF. For any ~eC~(~), ~&#x3E;0, c&#x3E;0, the function

is admissible, so that J(v), or

We have

On the set ~~ &#x3E; el) we hence

.-

On the set we have v = 0 and thus

Next
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Combining these facts we find that

In the last integral the integrand vanishes on the set {u = 0}. Since also

v - u = 0 on 8(u &#x3E; 0} and V . f(Vu) = 0 on ~u &#x3E; 01, this integral vanishes.
(for a rigorous proof approximate v - u by - min (u - 6, for 6 &#x3E; 0.)
We thus obtain from (4.5) and (3.1), (1.10),

This is true for any n ~ 2.
Now we specialize to n = 2, and take Br c Be c B,, with center zo in the

free boundary. Cr in Br. Choosing e = Cr and

we get

Using Remark 4.2 and the estimate (c, C positive) we find that

Choosing .R = e = rB with s &#x3E; 1, (2 + Lx/2) s &#x3E; 2, we get (4.4).

COROLLARY 4.4. Let n = 2 and let u be a local minimum. Then every blow

2~p limit of u at Xo E &#x3E; 01 n Q is a half plane solution with slope ~,* in some
neighborhood of the origin.

PROOF. - From Theorems 4.1, 4.3 we see that, for any blow up limit uo ,
with respect to balls B em (xo),

Now let us use the fact that V = is an A-subsolution (see (4.2)), y
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which implies (if y is large enough in (4.2)) that

for some small positive constant c. Since v = ,‘2 we conclude that Uo is

linear in each connected component of fu, &#x3E; 0} therefore

for some unit vector vo and some numbers qk &#x3E; 0, 0 00, k = 0, 1. Since

the origin is a free boundary point, we may assume that so = 0.
Since (uo = 01 has positive density at the origin (by Lemma 3.3 and

Theorem 2.8) W e must have 0. By Theorem 1.9 W e also have qo = 1*.

5. - Flat free boundary points.

DEFINITION 5.1. Let 0  0’+, 9 a- I and r &#x3E; 0. We say that u belongs
to class 0’_; T) in if u is a local minimum in with

0}, and

If the origin is replaced by xo and the direction of flatness en is replaced by
3J unit vector v, then we say that u belongs to the class F(a+, a_; r) in Bg(xo)
in direction v.

THEOREM 5.1. There exists a positive constant C = C(n) such that, for any
0, if u EF(a, 1; a) in Be then a) in *

Thus flatness from above implies flatness from below.
In proving the theorem we shall need:

LEMMA 5.2. I f B is a ball in ju = 01 touching a~~c &#x3E; 01 at xo, then

PROOF. Denote the left-hand side by 1 and let I U(Yk) &#x3E; 0,
dk = dist (Yk, B),



31

By nondegeneracy l&#x3E; 0. Consider a blow up sequence u,, with respect to
where xk is a point on 2B with Ykl = dk .

For a subsequence,

We claim that

Indeed, we have

where

is a uniformly elliptic operator. Thus

and by construction + when x - e.  0, and + = 0

for x = - e. The maximum principle yields that (5.5) holds f or x near - e,
and then by analytic continuation, y the same argument shows that (5.5)
holds if x ~ e C 0. If then uo (x) = 0 by construction, so that again
(5.5) holds.

Since ~o is an absolute minimum by Lemma 3.3, we deduce from (5.5)
and Theorem 1.9 that 1 = A*.

PROOF oF THEOREM 5.1. By homogeneity we may assume that e = 1,
~,* = 1. Let

and choose s ~ 0 maximal such that

where x = (x’, xn). Thus there exists a point

Also, since 0 E 8(u &#x3E; 0}.
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We will prove an estimate for ~c(~) from below for 

~n  - 2 . For that consider the solution v of

where B(~) = B.~(~) and x is a large positive constant to be chosen later.
Such a function exists by minimization, and by elliptic estimates up to the
boundary (see proof of Lemma 1.7) v is smooth in DBB(~) (possibly not
at the corners).

We claim that

provided x is a sufficiently large constant. Indeed, otherwise we have 
on aB(~); also u  v on aD by (5.3) (with T = 0-). Therefore u cv on a (DBB(~)).
Then by the maximum principle (Lemma 1.4) on It fol-

lows from Lemma 5.2 that

On the other hand we have an estimate

with constants C, c independent of x and (1. Before we show this, let us
finish the proof of the theorem. Choosing % large enough we see that (5.8)
contradicts (5.7), consequently (5.6) is true.

Using this and (5.3) we find that for any x E 

if Q is small enough. Thus u&#x3E; 0 in Bi(I) and, consequently, 2u = 0 in .8.~(~).
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Set

Then in (by (5.3)) and

Since

we get by Harnack’s inequality, y

or

We now integrate along vertical lines and, using (5.3), obtain

which implies the asserted flatness from below, Cu; a) in B, I
To complete the proof we have to establish (5.8), where the first term

on the right comes from elliptic estimates and the values of v on aD, and
the second term from the maximum principle due to the values of v on aB(~).
More precisely, we will estimate v from above by a ~-supersolution
V, - I where

and with VI’ V2 defined as follows. First

where

and with positive constants pi, yl depending on or. Then
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hence

if

For 

if yi = 1 + O2 large enough, and (a small)

Since = 0 the maximum principle yields

At the point z we compute

We define v2 depending on ~ by

with constants 712, #2. Here D c D is a domain with smooth boundary
containing

and d2 is a function in satisfying

Then
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if ,u2 is large enough. Then choose Y2 such that

At the point z

Thus the function

is a T- supers ol-ation in with (see (5.10))

and for x E 8B(J) (by (5.9))

Therefore w&#x3E;v on a(DBB(~)) and the maximum principle yields w&#x3E;v in

.DBB(~); in particular,

which is the estimate (5.8) we had to prove.
We shall denote points in .Rn by ( y, h) with y E .Rn-1, and balls in 

by Be , or B~ (y ) .
LEMMA 5.3 (Non-homogeneous E F(f1k’ O"k; Tk) in with

f1k -~ 0, 0. Set, for y E Bi ,

Then, for a subsequence,

Further, I tk + - f, f k - f uniformly, f(O) = 0 and f is continuous.

The proof which is based on Theorem 5.1 is identical with the proof
of [1; Lemma 7.3].
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LEMMA 5.4. f is subharmonic.

PROOF. For simplicity we take (!k = 1, I" = 1. If the assertion is not

true then there is a ball BQ(yo) cc B1 and a harmonic function g in a neigh-
borhood of this ball such that

We proceed as in [1], setting

and letting be a test function which converges (as 6 - 0)
to the characteristic function of Z+(akg) (say, = min f(1/6) dist.
(x, 1I ) ~
We have, by Theorems 3.2 and 3.6,

Taking or -~ 0 (and assuming that Z°(akg) r1 8(ui, &#x3E; 01 has measure

zero; otherwise yve replace g by g + c for some suitable small c), we get

Using the fact that = VUk and (3.3), (5.3), we see that
the integrand on the left-hand side is bounded by Q(I -E- Cr~). Hence

The set

has finite perimeter in the cylinder Z, with
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By the excess area estimate of [1; p. 136]

for k large enough. Substituting this into (5.12) and using (5.11), we get
a contradiction to the relation 7:k = o(a~) which was assumed in Lemma 5.3.

The following lemma will be needed later on in proving further regular-
ity of the function f (y).

LEMMA 5.5. Let w be a f’Unction 

w(y, 0) = g(y) in the sense that w(y, h) as a function of y converges to g
irc Ll as h fi 0,

g is subharmonic and continuous in B 1 I, g(O) = 0,

w(O, h)  ,

w&#x3E;- C.

Then

where 00 is a constant dpending only on C.

Notice that the integrand is nonnegative, since g is subharmonic and

g(o) = 0.

PROOF. Denote by G~~,,h~) the Green function for d in Bg with singularity
at (y’, h’). Then

Here it is assumed that w has Ll boundary values on 8Bg r1 Ih  01 (other-
wise replace B1 by B1-c with a suitable small positive c). The function

is harmonic in y with boundary values 1 on 8Bg m {~~ ; 0}, and 0 on
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8Bg r’1 0 J . Hence

It follows that

Since the Poisson kernel in (5.14) depends only on say,

this estimate can be written as

where the average of g over is nonnegative, since g is subharmonic with
g(O) = 0. One easily computes that

as lh’I ~ 0, where c is a constant depending only on n. Thus we obtain

which implies (5.13).

LEMMA 5.6. There exists a positive constant C such that, for any y E 

Here f is the function appearing in Lemma 5.4. Lemma 5.6 is analogous
to Lemma 7.6 in [1]. Once this lemma is proved we shall be able to proceed
as in [1] to establish regularity of the free boundary.

PROOF. For simplicity we take (2k == 1, A* = 1. For large k the ui, are
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r~) in Therefore it suffices to prove the

lemma f or y = 0.
Set

Since the free boundary of Uk lies in the strip and since

+ Czk, we have and in The flatness assumption
also implies that ?,vk ~ - C in Bi . Thus

LEMMA 5.7. For a subsequence,,

exists everywhere in

the convergence is uniform in compact subsets of Bi , and w satisfies :

where

in the sense that lim w(y, h) = f (y), 9h t 0

Observe that the proof of Lemma 5.5 extends (by affine transformation)
to the linear elliptic operator in (5.18). Hence, once Lemma 5.7 is proved,
Lemma 5.5 can be applied to the function f, so that (5.15) follows.

PROOF oF LEMMA 5.7. The u, satisfy

Writing this equation in non-divergence form, it is clear that
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if h  - ak. From the flatness assumptions on the Uk and Lemma 1.7 we
conclude that, for a subsequence,

in C2 in compact subsets of Recalling (5.17) we conclude that also
in C2 in compact subsets of B~ , and w satisfies (5.18). Clearly (5.21)

is also valid.

Since.

and = 0, we have for 

Thus w(O, h)  0, and (5.19) is proved. It remains to establish (5.20).
We first show that, for any small 6 &#x3E; 0 and any large constant K

(5.24) - f(y) 

By Lemma 5.3 it suffices to prove

From (5.23) we obtain

In order to show (5.25) from below we take any sequence Yk 
- I~ ~ h~ c- 1, and consider u, in BRak(Xk)’ where xk is the free bounda~ry point

and .R any large constant. We know that

if
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where 6, --&#x3E; 0 by Lemma 5.3. It follows from the flatness theorem (Theo-
rem 5.1) that

if

Hence for any h with Ihl  R/2

that is,

which together with (5.26) proves (5.25).
For any 8 &#x3E; 0 choose a C3 function g,, such that

and let ue be the solution of (see (5.18))

with 6 as in (5.24).
By (5.24) and (5.27),

for any large constant (independent of 6, E), provided k is sufficiently
large (depending on s, K).

The function Wk is a bounded function (uniformly with respect to k)
satisfying a uniformly elliptic equation (uniformly also with respect to k)
in B~ n {h- By elliptic estimates (see the proof of Lemma 1.7) we
deduce that
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where C is a constant independent of k, .K. Consequently

if .K is large enough (depending on 6 and 8). Thus 2kwk. Reca,l-

ling (5.29) and applying the maximum principle, we get in

if k is large enough. It follows that 

in B- and, consequently,

Similarly by working with a solution of

we obtain + 2e. Since E is arbitrary. (5.20) follows,.hto

6. - Smoothness of the free boundary.

Using Theorem 5.1 and Lemma 5.6 we can now proceed precisely as
in [1] and establish that f is  better than Lipschitz continuous (Lem-
ma 7.8 of [1]) and that the flatness condition implies better flatness in a
smaller ball (Lemmas 7.9, 7.10). Using also Theorem 4.1 we obtain as in

[1; Theorem 8.1]:

THEOREM 6.1. Suppose u is a local minimum and D cc S2. Then there

exist positive constants a, fl, Go, To, C such that if

with a  e  To or’118 , then

more precisely, a graph in direction v of a Ol,tX function, and, f or any xl , X2
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on this surface,

We refer to (6.1) as the flatness condition.
From the first part of the proof of Theorem 3.5 we see that if

xo E &#x3E; 01 then

oo) in Be(xo) in direction vu(xo)

with (p~ - 0 for e - 0. Hence, applying Theorem 6.1 we obtain:

THEOREM 6.2. Let u be a local minimum. Then &#x3E; 0) 18 a surface
locally in Q, and the remainder of a ~u &#x3E; 01 has .Hn-1 measure zero.

For n = 2, any blow up sequence ’Uk with respect to balls 

(xo E 0}) has a subsequence which is convergent to a linear function
2*-’ max {- 0}y at least in a neighborhood of the origin, by Corollary 4.4.
Using (3.11), (3.12) we see that

in direction v , y

with o~2013~O as k - oo. Hence Theorem 6.1 can be applied. We get:

THEOREM 6.3. = 2 and let u be a local minimum. Then 01
is a curve locally in Q.

Higher regularity follow from [8-10]; in particular, if F(t) is analytic
( C°° ) then

locally analytic (C~);
(6.2) 

for n = 2 , au &#x3E; 01 is locally analytic (C°°) .

REMARK 6.4. All the results of this paper extend with minor changes
to the case where A is a function A(x), bounded, uniformly positive and
Holder continuous. In the definition of flatness we require that

where ,’(x) is defined by (3.1) with A = ,(x). If A and .F’ are in C" then

(for n ~ 3) and (for n = 2) belong to if Å and F

are analytic (C°°) then (6.2) holds.
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Finally, y all the results extend to the functional (0.2) provided F(x, t)
is smooth enough.
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