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A FREE-BOUNDARY PROBLEM FOR THE HEAT EQUATION
ARISING IN FLAME PROPAGATION

LUIS A. CAFFARELLI AND JUAN L. VAZQUEZ

Abstract. We introduce a new free-boundary problem for the heat equation,
of interest in combustion theory. It is obtained in the description of laminar
flames as an asymptotic limit for high activation energy. The problem asks for
the determination of a domain in space-time, flcR"x(0, T), and a function
u(x, t) > 0 defined in il, such that ut = Au in ii , u takes certain initial
conditions, u(x, 0) = Hn(jc) for x E ClQ = dCln {t = 0} , and two conditions
are satisfied on the free boundary r = 9i2n {t > 0} : « = 0 and uv = — 1,
where u„ denotes the derivative of u along the spatial exterior normal to
T. We approximate this problem by means of a certain regularization on the
boundary and prove the existence of a weak solution under suitable assumptions
on the initial data.

Introduction

In this paper we consider a new free-boundary problem for the heat equation.
In classical terms it is formulated as follows: given a continuous and nonneg-
ative initial function uq defined in R" , whose positivity set is an open subset
Qo. the problem consists in finding a domain Q c Qt = R" x (0, T) for some
T > 0, and a smooth function u in Q, such that the following conditions are
met. Firstly, the heat equation is satisfied in Q:

(0.1) ut = Au   in Q.
Secondly, the parabolic boundary dpCl of Q, i.e., the boundary of Q in R" x
[0, T), consists of two pieces, namely the initial boundary Qo (the closure
of Qo in R" ) and the lateral boundary T = <9Q n Qt . The solution u is
continuously differentiable up to T, also called the free boundary, where the
following conditions hold:

(0.2) u = 0   and     |Vw| = c ,
where c > 0 is a constant and Vm denotes the gradient of u. Without loss
of generality we will make in the sequel the assumption that c = 1. We may
also write the gradient condition in the form uv — -1, where u„ denotes
the derivative of u with respect to the outward spatial normal u to T. The
lateral boundary starts from the initial position T0 = <9Qo, where in this case
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412 L. A. CAFFARELLI AND J. L. VAZQUEZ

d denotes boundary in R" . Finally, we supplement (0.1) and (0.2) with initial
conditions

(0.3) u(x, 0) = Uo(x)   for x £ Qo.

Let us call this problem (P). It appears in combustion theory in the analysis of
the propagation of curved flames. It is derived in the framework of the theory of
equidiffusional premixed flames analysed in the relevant limit of high activation
energy, as developed for instance in Buckmaster and Ludford [BuL]. In this
application u has the meaning of minus temperature, precisely u = X(TC - T),
where Tc is the flame temperature and A is a normalization factor. The very
way the problem is derived as a simplified asymptotic model suggests viewing
(P) as the limit of approximating problems (Pe), e > 0, consisting of the
semilinear equation

(E£) = (0.4) ut = Au - pe(u) ,

where jiE : R —> R is C°°-smooth, nonnegative and bounded, with pe(s) = 0
for 5 < 0 and support in a small neighbourhood of s = 0. We take initial
conditions

(0.5) ue(x, 0) = u0e(x) ,

where the Uoe axe C°°-smooth and nonnegative approximations of Uo ■ In
order to approximate (P), the regularization term fie(u) has to satisfy certain
conditions which will be discussed below. Observe that the term f}e(u) acts
as an absorption term in equation (0.4). Since T — Tc - (u/X), it is in fact a
reaction term for the temperature. In the flame model such a term represents
the effect of the exothermic chemical reaction.

An important question in the application is the convergence of solutions to
travelling waves, which leads to the study of a stationary free-boundary prob-
lem. This question has been discussed for equations like (0.4) in a series of
recent papers by Berestycki and coauthors, cf. [BL], [BLN], [BLL], [BCN]. On
the other hand, a similar evolution problem appears in the study of detonation
waves as proposed in Stewart [S] and Stewart and Ludford [SL]. It leads to
Burger's equation ut = uxx + uux , under lateral conditions like (0.2). The sta-
bility of travelling waves for this one-dimensional problem has been studied by
Brauner, Lunardi, and Schmidt-Laine in [BLS]. These papers contain extensive
references to related combustion literature. Other works on this problem will
be commented on at the end of the introduction.

Let us go back to the solution of (P) by means of the regularization method.
Problem (Pe) admits a unique classical solution ue £ Cco(Q), Q = R" x
(0, oo), which is positive everywhere in Q. The Maximum Principle holds.
We want (P£) to approximate (P) as e —> 0 in a weak sense. A natural weak
formulation for problem (P) asks for a domain Q with Lipschitz continuous
lateral boundary T and a function u £ C(Q U Y) such that:

(i) for every test function <p £ C^(R" x [0, T))

(0.6) // u ((pt + A<fi) dx dt + /   uo4>dx= I <f>dl. cos a,
J J si Jiio Jr

(ii) u vanishes on T, andLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(iii) the free boundary Y starts from To = 9Qo , i.e., the section Yt at time
t converges to To as t —> 0 in some sense.

In (0.6) dY. is the area element on F and a is the angle formed by the
exterior normal v(x, t) at a point (jc, t) £ Y and the hyperplane t = constant,
so that dS = dY cos a is the lateral projection of the element dY.

In order for (P£) to approximate problem (P) we need to impose some con-
ditions both on the initial data uq£ and on the absorption functions /?£. One
of the difficulties we face consists in finding a solution with a free boundary
T which starts from the initial boundary To. Now, if for example we take
compactly supported initial data uq , functions /?£ with support in the interval
[0, e], and approximations uq£ to the data such that «o£ > e, it clearly follows
that the absorption term has no effect and we obtain just positive solutions of
the heat equation in Q with no free boundary.

Such a difficulty has already been studied in the stationary case by Beresty-
cki, Caffarelli, and Nirenberg [BCN], which find convenient conditions on the
absorption functions. Roughly speaking, fi£(s) has to be concentrated in a
right neighbourhood of s = 0 and its mass M = J fiE(s) ds has to be directly
related to the value uv = — 1 that we seek to obtain in the limit on the free
boundary. The precise assumptions will be the following. We define the family
/?£ in terms of a single function /? by

(0.7) A« = MJ)-
This is very convenient in order to use scaling arguments. We will assume that
the function /?: R —► R satisfies the following assumptions:

(i) p is positive in the interval I = {0 < s < 1} and 0 otherwise,
(ii) it is a C°° function in [0, oo),
(iii) it is increasing for 0 < s < 1/2, decreasing for 1/2 < s < 1 ,
(iv) the integral of /?, J B(s)ds, equals 1/2.

See also (4.1).
As we have said, obtaining a solution with the correct free boundary depends

also on the way the initial data are approximated. As already pointed out in
[BCN] in the elliptic case, we need to have approximations on which the whole
force of Pe acts. The simplest way is asking not only that the u0e uniformly
approximate wo but also that their supports converge to Qo in the usual metric
for subsets of R" , but see Section 8.

We begin the study of the existence of weak solutions with the existence
of self-similar solutions of the form u(x, t) = (T - t)xl2f(x/(T - t)xl2). We
construct for every T > 0 one such solution with compact support, which solves
(P) in the classical sense and vanishes identically at time T. We also prove
that such a solution is the unique limit of the solutions of suitable approximate
problems (P£). Moreover, a stability result is established. It is interesting to
remark that on the free boundary

T={(x,t):0<t<T,  \x\2 = R2(T - t)}
we have not only the boundary condition uv(= ur) = -1 but also a dynamic
equation for the movement of the free boundary. Formally, this equation is de-
rived by differentiating along a normal spatial direction the equation u(x, t) = 0
which holds at the free boundary. If the free boundary moves along such a di-
rection with velocity   V we get Vw • V + ut = 0, from which, thanks to theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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boundary condition, it follows that

(0.8) Y=u,n = Aun
(where n = n(x, t) £ R" denotes the exterior spatial normal vector to the free
boundary, and ut and Au are understood as limits approaching the boundary
from the region {u > 0}). Such an equation is satisfied by the self-similar so-
lutions. The study is completed in Section 2 with a similar analysis of existence
of travelling waves and solutions with holes.

We then proceed with the study of (P) for general data. We assume through-
out that Mo is bounded, nonnegative, and Lipschitz continuous. In Section 3
we obtain integral a priori bounds of classical type. Section 4 establishes the
important gradient bound by means of a technique of Bernstein type. Section 5
shows how to obtain the same bound for t > 0 without assuming that it holds
at t = 0. Section 6 derives continuity in t. With these results we may pass to
the limit e —> 0 and obtain in Section 7 a continuous and nonnegative function
u which satisfies the heat equation wherever it is positive.

The study of the boundary behaviour of the limit function is more delicate
and is taken up in the remaining sections. We have chosen to consider a natural
situation for the application in mind in which the solution has ut < 0 and thus
shrinking support; in other words, the flame advances. A precise formulation
of the convenient hypotheses is given in Section 8. Such an assumption very
much simplifes the boundary analysis since it implies, to begin with, that the
free boundary is a Lipschitz continuous surface. Section 9 begins the analysis
of the boundary measure, while Section 10 discusses the behaviour at regular
points of the free boundary. We obtain in particular the dynamic equation
(0.8) with derivatives taken along nontangential interior directions. Finally, in
Section 11 the proof of existence of a weak solution is completed. The main
result we obtain can be stated as follows.

Theorem. Assume that uo is a nonnegative, Lipschitz continuous, and bounded
function in R" satisfying moreover the precise conditions stated in assumptions
(HI) and (H2), Section 8. Then there exists a weak solution of problem (P). If
uo has compact support then the solution vanishes in finite time.

We have chosen to consider the simplest equation corresponding to this kind
of problem. Our results admit of course natural extensions to equations of the
form

(0.9) "' = EM^)^,
or equations with lower-order terms. We then replace the boundary condition
by
(0.10) ^aijdiUdjU=l   onY.

Moreover, typical flame problems are considered in cylindrical spatial domains
of the form S = Rx D, where D is a bounded domain in R"-1 with smooth
boundary. On the fixed boundary of the 'tube' S we impose Neumann data
uv = 0. We refer to [BCN] for more details about the elliptic case.

We do not discuss here the question of uniqueness but for the case of the
special solutions constructed in Section 1 (such a result is then used in SectionLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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6). The question of uniqueness in the general framework seems to be a dif-
ficult one. There are however results in one space dimension for the Burger's
problem ut = uxx + uux mentioned above. An existence and uniqueness theory
is developed in [HH] for a class of nonnegative solutions which converge to
travelling waves. The method is based on a modification of the equation into
a mixed elliptic-parabolic problem. It applies also to the heat equation case. A
two-phase problem is treated in [BHS] by means of a regularization of the jump
at the interface, say u = 0, of the form H(u)x, where H is the Heaviside
function. However, these approaches, which adapt well to the one-dimensional
situation, do not seem to apply for higher space dimensions.

1. A SPECIAL SELF-SIMILAR SOLUTION

We construct in this section a particular family of classical solutions of our
problem, which will be important in understanding what we expect from the
general theory in the best of cases and in providing us with a useful tool in
comparison arguments. We will show the existence and uniqueness of such
solutions as well as their stability.

1.1.   Existence.   We are looking for a solution in the self-similar form

(1.1) U(x,t) = (T-t)af(xl(T-tY).
Plugging this form into equation (0.1) and boundary conditions (0.2), we see
that necessarily a = p = 1/2, while / = /(£), £ = x(T - t)~xl2, solves

(1.2) A/=-i/+^-V/   where/>0,

with boundary conditions / = 0 and fv = -1. Assuming also that / is
radially symmetric, i.e., / = f(r) with r — \x\(T - t)~xl2 > 0, we get for /
the following problem.

(E) To find a number R > 0 and a Cl function f(r), defined for 0 < r < R
and such that

(1.3a) /'' + |^l_^|/' + ^/ = o   forO<r<R,

(1.3b) /'(0) = 0   and    f(r)>0   forO<r<R,
(1.3c) f(R) = 0   and    f'(R) = -l.
(The superscript ' denotes derivative with respect to r.) Then we have

Proposition 1.1. There exists a unique solution of problem (E).
Proof. We will use a shooting argument. We solve equation (1.3a) with initial
data

(1.4) /(0)=1,    /'(OHO.
Clearly a solution exists and is positive in a certain interval (0, r0). Let us
show that this interval can be continued until / has a zero, which we will
denote by R. In fact, it follows from (1.3a) that f"(r) « -l/2n for r « 0.
This means that / will be decreasing for r « 0. Next, we observe that /' will

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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be negative as long as / > 0. (Hint: Argue by contradiction at the first point
where /' = 0.) Moreover, in the interval 0 < r < R we have

(1.5) {rn-lf(r))' = \rn-x{rf'(r)-f}.

Therefore, the quantity rn~xf'(r) is decreasing in r if 0 < r < R. Let us
prove next that R is finite. Otherwise, / would be defined and positive for
all r > 0. Now, for r2 > 2(n - 1) we would have, from equation (1.3a),
f"(r) < -jf(r) < 0. Hence / would be concave and decreasing. Hence, it
must have a finite zero.

Finally, we observe that the monotonicity of r"~lf'(r) implies that f'(R) <
0. Let us put c = -f'(R) > 0. Since equation (1.3.a) is linear, if we want to
achieve the boundary condition f'(R) — -1 we only need to multiply / by
1/c, i.e., pick /(0) = \/c as shooting height. This also shows uniqueness and
completes the proof.     D
Remarks. Here are some of the properties of the self-similar solution just con-
structed, that we will denote in the sequel for convenience as U(x, t; T).

(1) In one spatial dimension / is given by integration of the formula

(1.6) f"(r) = ~e$
with /(0) = a , f'(0) = 0, and a properly chosen. Note that f"(r) < -a/2.

(2) U has initial values U(x,0) = Tlf(x/Tt), so that sup(U(x,0)) =
aFi. The solution is C°°-smooth in the support

(1.7) U={(x,t): 0<t< T,     \x\<R(T-t)±}
for 0 < t < T. Therefore, U is a classical solution of (P) in Qt . However, at
the extinction point, x = 0, t = T, the free boundary

(1.8) \x\ = R(T-t)i
becomes horizontal and the regularity in t is of Holder type Ci , namely U
decays as t —> T as 0((T -tp).

(3) It can be easily checked by differentiation of (1.3a) that /' cannot have a
minimum at a point where / > 0. Therefore, \f'(r)\ < 1 and \VU(x, t)\ < 1
in the support of the solution. At the extinction point the spatial gradient is not
defined; the nontangential limit of \VU\ is zero, while the limit along the free
surface is of course 1.
1.2. Limits, uniqueness, and stability. One of the aims of this work is to
prove that the problems (P £) do approximate the (weak) solution of problem
(P). We are going to prove next that this is true for the present initial data. More
precisely we will show that in the limit we always get the classical solution U
just described.
Proposition 1.2. The self-similar solution U = U(x, t; T) is the unique limit of
the approximation process (P£) corresponding to initial data U(x, 0; T), and
this happens for any admissible functions pe, and any uq£ which approximate
uo uniformly and such that supp(«o£) —► supp(wo) uniformly.
Proof. The proof relies on the construction of suitable super- and subsolutions
for the problems (P £) which in the limit e —► 0 force the approximate solutions
uE   to converge to U.
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Step 1. First, we observe that a rescaling of the form

(1.9) Ux(x,t) = u(j,^j ,    X>0,

gives a new solution of the heat equation in the domain

Q.x = {(x, t):0<t<X2T, \x\<R(X2T-t)x'2} ,

satisfying the boundary condition

Z-v
We have

U\x, t; T) = jU(x, t; X2T) = j(X2T - t)x'2 f (^^ t)l/2) ■

The extinction time for Ux is therefore Tx — X2 T. We see that for 0 <
X < 1 the initial data decrease (though the sup-norm is conserved), the domain
contracts in x and t and the flux through the boundary increases. We have all
the ingredients of a subsolution. On the other hand, for X > 1 the above effects
are reversed and we obtain a candidate supersolution. In order to substantiate
such claims we prove next that small perturbations of these functions are in
fact super- and subsolutions for the approximate problems. Notice that the
Maximum Principle applies to equation (E£).

Step 2. Let us deal with the subsolution. We start with a rescaled function
U(x, t) = Ux(x, t; T) with a fixed X < 1, X « 1. It has the self-similar form
(1.1) with extinction time Tx = X2 T < T and profile

M) = \no > m.
We will construct a subsolution «£ of (P £) as a small perturbation of U. It
will have the same form

(1.11) ue(x, t) = (Tx - t)ife(x/(T, - t)l>).

In order to compare ue with the actual approximation u£ we have to check the
subsolution property both on the equation and the initial data. The condition
of subsolution of (E e) means that we have to ask that

(1.12) ^ + |^l_^|^ + ^/e>(r;l_0iMr>l_0i/e).

In view of this we decide to consider a time interval 0 < t < hTx with h > 0
small, and construct / as a solution of the equation

(i-i3) /" + {^~}/' + ^/ = /zr/y£(r//),

where the new absorption function ye and the constant p = pe > 0 axe to be
determined. Comparison of (1.12) and (1.13) suggests that (1.12) is satisfied if
we take

(1-14) p>\,License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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and ye is chosen so as to satisfy the following condition: for every 5 > 0 and
(1 -h)h < 6 < 1 we have
(1.15) 7e(s)>Pe(0s).
Copying from (0.7) we can obtain all the y£ 's from a single y by putting
ye(s) — e~xy(e~x s) . We can easily construct a y satisfying (1.15). It will be
supported in the interval [0, /] with / = 1/(1 - h)i and will have an integral

(1.16) M^Jy(s)ds>^,
which can be made close to 1/2 by taking h small. We will also need y(s) >as
for some small a and all 0 < s < 1/2 for technical reasons.

Going back to the construction of / , we impose initial data at r = 0 equal
to /, namely

(1-17) /e(0) = X    and   ^°) = 0-

It is clear that as long as T^2fe > I e the functions / and / coincide. We
need to select the constant p = pE in such a way that the function / ends up
nicely at the level / = 0. In this respect we have the following precise result.
Lemma 1.3. Let fE be the solution of (1.13) with initial data (1.17). There
exists one value of the constant p, say po(e), such that for p < p0(e) the
solution crosses the (f = 0)-axis at some point Ri > R, while for p = po(e) it
is positive and goes to zero as r —> 00. Moreover, as e —» 0 we have, with the
above notations,

(1-18) Po(e) -» p.* = jj^j2

(po will depend in fact on e, X, and M). We can estimate R < R\ < R + Ce
if P < Po,   A ~ Mo ■
Proof, (i) We take e small enough and start the construction of / from the
initial values (1.17). As long as T^2fE > le the solution / coincides with
/; hence it is monotonically decreasing. There is a point re at which the level
cs — Tx~ll2le is attained, and clearly there fE(re) « -l/X. The point r£ is thus
estimated in first approximation as r£ « R - T~xl2le .

From this point on and as long as / takes values in the interval (0, c£), the
effect of the second member of equation (1.13) will tend to make the derivative
/ less negative. We can calculate this effect by multiplying (1.13) by /' and
integrating from r£. We thus obtain for r > re

(1.19a) \(f£\r))2 - \(fE\r£))2 = p{G£(T,l/2fe(r)) -M} + Ie,

where G(s) = f0s y(s) ds and

(1.19b) Is = £^- Izl J {fe)2dr + ̂ {rf{re) _ f2(r)} t
which will be of the order of r - r£ for small e . We conclude that as long as
r - R — 0(e) we have but for terms of the order of e

(1.20) (fe(r))2 « (1 -2M^j +2pGe(T{/2f£(r)).
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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We now fix a value of p less than p*, say p < p* - a. Then for e small
enough we conclude form (1.20) that the function fe gets from the level cE at
rE to the level / = 0 at some point Ri — R\(p, e) with an always negative
slope, and

(fe\Rl))2*2M(p*-p).
From this and the value of fE(rE) we get the estimate

Ri-rt< elT-x'2(\ - (p/p*))-1'2 + o(e) < el(p*/aT)x'2.

(ii) On the other hand, given a > 0, if p > p* + a and e small enough,
then the solution / has a positive minimum at a point near R after which it
turns up until it leaves the region (0, cE). In justifying this assertion we need
the zero-order term of (1.13), namely \f' - pT]j2y£(T\'2f), to be nonpositive,
which holds if we impose the condition y(s) > as for some a > 0 and s « 0.

(iii) In order to obtain the value po(e) we first observe that among the solu-
tions described in (i) there is a natural order, i.e., / increases as p increases.
Therefore, we take po to be the supremum of the values of p for which we
obtain a solution / which crosses the range of values (0, c£) in the way de-
scribed in (i). We clearly have p*-a < po < p*+a if e is small. By standard
arguments in ODE theory we conclude that the limit solution, i.e., the supre-
mum of the previous family, has to be decreasing for r > rE, positive, and has
to tend to 0 as r —y oo . This proves (1.18).     D

It follows that the right choice of p in the construction (1.11), (1.13) will be

(1.21) P<Po(e).

In view of (1.18) and the observation after (1.16), the two conditions on pe,
(1.14) and (1.21), can be clearly met if h is small enough, h < h(X), and e is
small. Notice that h does not depend on T.

We must also check the initial data. It can happen that uE(x, 0) is smaller
than Uoe(x), for instance if the approximation «oe is taken to be larger than
Uo . Otherwise we have to replace formula (1.11) by

(1.22) uE(x, t) = (Tk- t - d)xl2f£(x/(Tk- t - d)xl2) ,

for some small 8 > 0 related to e . This minor modification does not alter the
fact that ue is a subsolution for equation (E£). In this way we arrive at the
conclusion that small perturbations of U are subsolutions for all the problems
(P£). It follows that in the limit e —> 0 of the actual solutions uE we get

(1.23) Ux(x, t) < liminfu£(jc, t)
e—>0

for every x £Rn and every 0 < t < h T.
Step 3. The proof proceeds by running again the same method. Observe that

U(x, h Tx) is the same kind of initial data as U(x, 0) since

(1.24) U(x,hTx) = Ux(x,hTk; T) = Ux(x,0; T(l - h)).

Therefore, the step of approximation can be repeated up to a second time ti =
hTx+hTx(\-h) (taking care of inserting an extra 6 to fit the initial conditions).
And the process continues with subsequent steps. We conclude that we can reachLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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with estimate (1.23) up to any time less that Tx. We can now let X -> 1 and
obtain that in 0 < t < T

(1.25) U(x,t)<liminfuE(x,t).£—»o
Step 4.  A similar construction applies from above with X > 1, X -> 1  to

show that

(1.26) U(x, t) >limsupu£(x, t)
£ — 0

holds for t > 0. Now we have to use the solution for po(e) to construct a
supersolution.     □

An immediate and very useful consequence of the above result is the possi-
bility of using comparison arguments involving the self-similar solutions.

Corollary 1.4. The Maximum Principle applies to a pair of limit solutions when-
ever one of them is U(x, t; T).

The proof consists simply in recalling that the Maximum Principle is true for
the approximate problems, and using Proposition 1.2.

We end the study with two interesting consequences of these facts.

Proposition 1.5. The solutions U(x, t; T) are stable in our topology.
Proof. Take one of these solutions, say for a given T > 0. Given 8 > 0,
any data uq whose distance from U(x, 0; T) is less than d can be squeezed
between U(x, t; T + x) and U(x, t; T - x) for some small x > 0 depending
on 5.     D

Theorem 1.6. Let Uo £ C'(R") be a nonnegative function with compact sup-
port and let u be obtained as the limit of the approximate problems (P£) with
suitable uqe ■ Then for every t > 0 the function u(-, t) has compact support.
Moreover, the supports are localized in a fixed ball of R" and the solution van-
ishes identically in a finite time.
Proof. We bound our data from above by a suitable radially-symmetric U(x , 0)
given by (1.1) and apply the Maximum Principle (which, being valid for every
e > 0 , holds in the limit).     □

2. Other special solutions
2.1.   Travelling waves.  We consider now solutions of Problem (P) of the form

(2.1) u(x, t) = f(x{ - ct) ,
where x = (x\, ... , xn) and c is a constant, the speed of the travelling wave.
Let us fix the initial boundary at n0 = {x : X\ = 0}. Then for c - 0 we get the
two stationary profiles f(£) = max-f^ , 0} and />(C) = max{-Xi, 0} . For
c > 0 there is exactly one advancing travelling wave with initial boundary n0 .
By advancing we mean that the domain expands. It is defined in the domain
{(x, t) : x\ < ct} by the formula

(2.2) fca($) = l{e-ci-l}License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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with £ = jci - ct. There is also a receding wave (i.e., with shrinking domain)
with the same boundary, defined in {(x, t) : X\ > ct} by

(2.3) fcr(c:)=l-{l-e-ci}.

Symmetry in x\ produces solutions of the form u(x, t) = f(x\ +ct) moving
with speed c > 0 in the direction of the negative xj-axis. Translations in x or
t and rotations in x produce a whole set of travelling waves having as initial
boundary any desired hyperplane n £ R" and moving with speed c in the
direction of the normal to n. These families are completed by the stationary
solutions

(2.4) u(x, t) = f(x),     with f(x) = [x{]+    or f(x) = [-xx]+ ,

corresponding to the limit c —> 0.
It is interesting to remark that advancing travelling waves have convex pro-

files. Moreover,

(2.5) ./?(£) *^c|{|    as    «J--oo.

On the other hand, receding waves are concave and bounded and

(2.6) fcr(Z)^l   as   £^oo,

while the stationary solutions are piecewise linear.
The methods of Section 1 can be used to show the uniqueness and stability

of these solutions.

2.2. Stationary solutions with a hole. Assume that n > 1. We have to find a
number R > 0 and a function u(x) defined for x > R such that

(2.7) A« = 0   for   \x\>R,     u(R) = 0,     uv(R) =-I.

In two space dimensions, n — 2, such a solution takes the form

(2.8) u(r) = Rlog(r/R),    r=\x\.

Suppose now that we fix at r = 1 the value of the solution, say u(l) = A.
Then, R is determined by the equation

(2.9) A = -RlogR.

This equation does not admit a solution if A > A* = l/e, it has a unique
solution R - l/e if A = A*, and it has two solutions if 0 < A < A*, corre-
sponding to a big hole and a small hole. Moreover, the radius of the small hole
decreases to 0 as ^4 —► 0 while the radius of the large hole goes to 1. The small
holes show that we can have stationary solutions as close to 0 as we like in a
certain region having holes of small radius.

A similar situation happens in n > 3 . Now the solution with hole of radius
R > 0 takes the form

R"-x r    1            1   1
(2-10) u(r) = ^—\-^-A.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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Observe that the solution is now bounded in its domain {|x| > R} . This is the
famous Zel'dovich flame (with n - 3, cf. [ZBLM]), which is unstable.

3. Integral estimates. Finite propagation
In this section we present some estimates for the solutions of Problem (P)

obtained from the approximate problems (P£). Here and in the sequel we
assume that the initial data uo axe bounded, and that they are approximated
uniformly by smooth functions uqe ■ We have

(i) To begin with, it is clear that solutions of the heat equation ut = Au
in Qt with the same initial data are supersolutions for our problem. Thus,
whenever uo, Uo£ £ LP(W), 1 < p < oo, we get estimates of the form

(3.1) u£(x, t) < C\\u0£\\P rn'2p,

where || • \\p denotes the //-norm in R" . Since C does not depend on e the
same decay rate is valid in the limit e —► 0.

(ii)  More precisely, if «o G LX(W) we get

(3.2) / ue(x, t)dx + / / pE(uE) dxdt — / uoE(x) dx.

We thus obtain a uniform control of P£(u£) in Lx(Qt) . A local version of
this estimate can be obtained as follows: Let £ be a spatial cutoff function
C(x)eC0°°(R"). Then

/ uE(x, t) C(x) dx +       p£(uE) C(x) dx dt

(3.3) J ff=     uoE(x)C(x)dx +       uE(x, t)A£(x)dxdt ,

and the last integral is controlled since uE is uniformly bounded.
(iii) Multiplication of equation (0.4) by uE and integration by parts gives an

L2-estimate of the spatial gradient VuE, which is uniform in e, when uq £
L2(R").

(3.4) - Iu2E(t)dx+ Jl\VuE\2dxdt+ fj pE(uE)uEdxdt = - / u\Edx.

We can also get a local version, where   |Vm£| is controlled in   L,20C(Q):

l-fu2E(t)C2dx + Uf\VuE\2t:2 dxdt + IJ pE(uE)uEC2 dxdt

<±ju2eZ2dx + 2JJu2\VQ2dxdt.
(iv)  On the other hand, if we multiply by duE/dt we arrive at

J J (in) dxdt + \j\Vu*\ldx +j ^u^dx
(3-6) j

= 2 / |Vw0£|2^+ / &e(u0E)dx ,

where 3§E is a primitive of pe, &E(s) = JQspE(x)dx . Passing to the limit
e -y 0 the function £%E(s) becomes M times the Heaviside function, MH(s),License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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so that

(3.7) l&E(uE)dx^MXn(supp(u(t)))

(by Xk(E) we denote the Lebesgue measure of a measurable set E c Rfc).
Assuming that Vwo is in L2(R") we get from (3.6) a uniform bound for the
measure of the support of the solution of (0.1) obtained in the limit.

(v) Observe finally that, due to the effect of the boundary condition, we
have for a classical solution the following law for the evolution of the mass
J u(x, t)dx :

(3.8) -j- \    u(x,t)dx = -Xn-l(T(t)),at Jci(t)
where Y(t) is the section of Y at time t. This law also holds for the weak
solutions of Theorem 1.6. The result is easily derived from (3.2) and the con-
vergence results of Sections 8-11.

4. First gradient estimate
Given a continuous and bounded initial function uo >0 with bounded gra-

dient V«o we construct for every e > 0 solutions uE of the approximate
problems (P £) which have bounded spatial gradient in QT with a bound inde-
pendent of e.

We assume that pE(s) = e~xP(e~xs), with p as explained in the Introduc-
tion, though for convenience in the calculations we take as support the interval
[0,2], which is easily translated to [0, 1]. We also assume that P satisfies

(4.1a) there exists M > 0 such that p(s), -p'(s) < M ,
(4.1b) p'(s) >p(s)   for   0<s< I.

This second condition is only a small additional restriction which we introduce
because it simplifies the already lengthy calculations. We prove the following
result.

Theorem 4.1. There exist approximations Uqe of the data uq such that

(4.2) sup|Vw£| < Kma\{l, sup|Vwo|} ,
Q

where K > I is a constant independent of e.
Remark. The constant 1 in the second member of (4.2) accounts for the bound-
ary condition uv = — 1.

Proof. Step 1. We take some initial data uqe > 0 with bounded gradient (e.g.,
by mollification) and solve (P£). The solution uE is positive in Q. We define
the rescaled functions

(4.3) UE(x, t) = -uE(ex, e2t).

The UE satisfy one and the same equation

(4.4) Ut=AU-p(U),License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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corresponding to problem (P £) with e = 1 . They take on initial conditions
Ue(x, 0) - e~xuo-(ex). Note that the gradients are preserved, i.e.,

VU-(x, t) = VuE(ex,e2t).

It is clear that we may replace uE by U- and uq by U(x, 0) in (4.2). Therefore,
we will work with rescaled solutions which satisfy one and the same equation.
We will use a Bernstein technique. We introduce the change of variables (we
drop the subscript e in U and v for convenience)

(4.5) U = cp(v)

for some increasing and C2 function <f> : [0, oo) -» [0, oo). After the change
of variable equation (4.4) becomes

(4.6) v, = Av + ^77-T^ -    Vf,  s    >4>'(v) x      4>'(v)

where vx = Vv denotes the spatial gradient of v and the dot • will be used
to denote scalar product in R". Then

where the subscript i denotes partial differentiation with respect to x,. We
now consider the quantity w = v2 = J], vf • It satisfies

(4.7) wt = Aw + 2^-vx -wx + 2 (^jw2 + 2{^f- - P'(U)}w - 2S ,

where S = \Zijvlj >0.
Step 2. Next we will make a special selection of 4> and prove that if the

maximum value of w in QT is larger than a certain precise constant k2 (which
depends on p and 4>), then it is necessarily attained at t = 0.

The following additional properties of </> will be used: let V\ and v- be the
points determined by <p(vi) = 1 and (t>(vi) = 2. There exist positive constants
a and b such that in I\ — {0 < v < vx}  0 is given by

(4.8a) 4>(v) = ev-l,

while in h = {v\ <v < v-}

(4.8b) (4>"/4>')' < -a ,
and for h = {v > v-} we have

(4.8c) <t>'(v) = b.

These conditions restrict the possible values of V\ , v2, a and b. Thus,
<j)(v\) = 1 implies that V\ - log2. Observe also that with this construction
4> is a convex function, so that 4>' is bounded below by <f>'(0) = 1 and above by
4>'(V2) = b . We will explain below the construction of a 0 with these properties.

Going back to our argument about maxima of w , let us assume that the
maximum of w in a strip QT = R" x [0, T] is attained at a certain point
(xo, t) with t > 0 and is larger than k2 = 2M/a. To arrive at a contradiction
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we argue as follows. At this point of interior maximum we necessarily have
w; > 0, wt>0, wx = 0, and Aw < 0. It follows from (4.7) that

,,„ £s(0w + {ffi^.W)}ao.
Let us analyze the quantity E to conclude that it is indeed negative at such
a point unless w < k2. We do separate analyses in the regions A — {(x, t) :
0 < U(x, t) < 1}, B = {(x, t) : 1 < U(x, t) < 2}, and C = {(x, 0 : 2 <
U(x, t) < oo} corresponding respectively to I\ , I~, and I-.
• Region A. In this region we have 0 < v < Vi and <fi(v) = ev - 1 so that
E reduces to p(U)/(U + 1) - P'(U) which is negative by assumption (4.1b).
Hence, no maximum can take place in this region.
• Region B.  Since we have (</)"/</>')' < -a and P, -/?' < M we get

(4.10) E<-aw + 2M,
which is negative if w > 2M/a . We also have to check that no problem arises
at the endpoints v = v^ and v = v2; we are safe because </> is C2. Hence, w
is bounded above by k2 = 2M/a in this region.
• Region C. Here P = 0 so that vt = Av and the gradient cannot attain an
interior maximum.

Step 3. Assume now that the initial data have the gradient bound |Vwo| < L.
Since by assumption the function </>' is bounded below away from 0, by suitably
smoothing uqe it is not difficult to construct approximations u0e £ C°°(R")
with UoE > 0 and Uqe —> 0 as |x| —> oo and such that

(4.11) \Vv0E\<cL

for some c > sup{|(^_1)'(ij)|} . By our result above we have

(4.12) \Vv-(x, t)\2< max ic2L2, — j .

Using the fact that 0' is bounded from above by b, we conclude that

(4.13) |Vw£(x, 01 = VC/£ (-, 4)   <bmax{cL,k},     k2 = — ,

which ends the proof.
Step 4. Construction of <f>. We want to determine <j> in h = [V\,v-]. C2

continuity at v = Vi implies that <p(vx) = 1, 4>'(vx) = (f>"(vi) = 2. Putting
(</>"/(j>')' = -a(v) with a(v) > a , we have in I2

6"(v) r(4.14) ^J. = i-A(v),    A(v) = j^a(s)ds.

The interval h continues until 4> reaches the value 2. Then, C1-continuity
of (j> determines b. On the other hand, agreement of the second derivative
implies that

(4.15) A(v2)= /    a(s)ds= 1 ,

which forces (t>2 - V\)a to be smaller than 1. Since, in view of formula (4.12)
we want a to be as large as possible, we start at V\ with a(v) — a = 2. AsLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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long as this holds and v — V\ < 1/2 we have in view of (4.14) 4>"(v) > 0.
Hence <f>'(v) > 4>'(v\) = 2 so that <f>(v) = 2 can be reached in this interval,
thus obtaining v2 < V\ + 1/2. However, the agreement of the second derivative
at vi, condition (4.14), implies a modification <j>: this can be done in a small
interval near v2 by taking a(v) there to be as large as needed (this of course
slightly decreases the value of v2).

Remark. Observe that with this construction c = sup{((f>~x)'(v)} appearing in
formula (4.12) is just 1/0'(O) = 1. On the other hand, integration of (</>"/<!>')' «
-2 in [i»i, v{\ gives

(4.16) b = tf>'(v2) « exp(v2 - (v2 - vi)2) < 2je.

A careful construction of the functions P and <j> should allow to conclude that
the best constant K in estimate (4.2) is really 1, but this entails complications
that we do not feel we need at this moment.

5. Interior gradient estimate

We want to prove now that the result of the preceding section can be improved
by making the gradient estimate independent of the gradient of the initial data,
thus eliminating the need to assume that the initial data have such regularity.
We will follow the notation and constructions of Section 4. Our assumption on
the initial data is only an L°°-bound,
(5.1) 0<w0<Ar,

and we will add  3e/2 to the approximate initial data  Uqe .   This will imply
later a careful study of what free-boundary condition is satisfied. In order to
avoid such a discussion, which we feel complicates the paper, we will leave the
contents of this section as a remark and will not use the results subsequently.

In order to proceed we also ask that

(5.2) p'(s)>2M + p(s)   for   0 < s < 1.
Though p is only Lipschitz continuous at 5 = 0, no major problem arises with
the solutions. For positive data solutions are positive for all times. We have

Theorem 5.1. There exists a constant K > 0 such that

(5.3) \VuE(x,t)\<Kmax{l,N/Vi}.

K depends only on M and n .
Proof. Step 1. In performing the approximation we assume that the bound Af
is satisfied by the initial functions Uo-, and hence by the solutions uE. Also,
uqe —y 3e/2 as x —> oo . We want to estimate the gradient Vw£ at a point
Xo € R" and time to > 0. By translation we may assume that xo = 0. Let us
show to begin with that we can reduce any to > 0 to the case t0 = 1 by using
the change of variables

1 -
(5.4) u(x, t) = -ru(Xx,X2t)

A

with X = v^o- Observe that the gradient values are preserved, but ||w||oo <
N/X = N/./ro.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A FREE-BOUNDARY PROBLEM FOR THE HEAT EQUATION 427

Step 2. Therefore, using the change of variables (4.3) we are concerned with
the task of uniformly estimating VUE at a point x£ = 0 and time tE = l/e2 .
The solution U- is bounded from above by NE = N/e. As for the bound
from below our approximation satisfies Uo- > 3e/2, hence Uqe > 3/2. Since
UE satisfies equation (4.4) and P < M, we can estimate U- from below as
follows:

(5.5) UE(x,t)>^-Mt,

so that UE(x, t) is uniformly bounded below away from 0 for 0 < t < x <
3/(2M).

We perform again a change of variables U- = 4>(vE) as in (4.5), obtaining for
w — |VC/£|2 equation (4.7). We consider a point of maximum of the quantity

(5.6) z = Cw,    C = C(t) = t/tE = e2t,

in the set De = {(x, t) : x £ R", 0 < t < tE} . Since the solution is not zero, a
maximum of z is positive and attained at some point (x, i) with 0 < i < tE.
At such a point we have w > 0, wx —0, Aw < 0 and zt > 0, i.e.

(5.7) wt>-w(C,/Q = -w/i.
Plugging this into (4.7) we get

and multiplying by C

(5.8) ,.(£)■-+{BpL-rm}( ■.-.*-.
We want to prove that there is a constant K\ such that z < K\ at (x, i).
Assume for the moment that this is so. Then for every x £ R"

(5.9) u;(x, tE) < z(x, te) < z(x, t) < Kx.

If 4>' is bounded above and below, 0 < \/c <</>'< b < oo we obtain as in
Section 4

(5.10) |Vu£(0, 1)| = |VC/£(0, tE)\ <bK,=K ,
which ends the proof.

Step 3. In order to prove that max z <K\ we first have to select a suitable
function 4> - -• will be very similar to the one used in Section 4. If N is not
very large the only essential difference consists in the formula defining 4> for
v > v2, i.e., U > 2, which becomes

(5.11) <t>'(v) = bexp(-e2v2).

Observe that the only values of v which matter are those such that U = (p(v) <
N/e . If N is not very large, this upper bound is obtained for a value of v , say
v- = C/e, by virtue of the following calculation:

(5.12) 4>^-=m) + b£/\-^dv*bj\-r>dr=^.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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This means that, according to formula (5.11), </>' will have in the range {v2 <
v <Vi} a value between

(5.13) cj)'(v3) > bexp(-e2(C/e2)) = bexp(-C)
and b = 4>'(v2). Consequently, </>' = 4>'E is bounded from above and below
away from 0 independently of e in the range of definition of the solution UE.
The assumption of the preceding step is fulfilled.

On the other hand, if N is larger than No we change the definition of </> by
means of a contraction in the v-axis : <f>(v) = <p(Xv), applied to transform the
interval [0, v2] into [0, v2], v2 = v2/X, so that the slope at v2 is b = Xb.
Then we define 4> for v > v2 as

<f)'(v) = b exp(-e2v2).

If we put X = N/Nq we get for the point v- at which <f> = N approximately
the same point as before if e is small. Of course, b has become O(N). In
the sequel we drop the tildes and assume that this change has been made if
necessary.

Step 4. We can finally proceed with the analysis of the quantity F at
the point (x, i) and arrive at the conclusion F < 0 if z(x, i) > K\, thus
contradicting (5.8). We consider separately several regions.
• Region where v > v2. As we said v < v- = 0(l/e). By (5.11) we get
((j)"/(j)')' = -2e2. Besides, P(U) and P'(U) are zero. Hence the expression
for F becomes F = e2(l - 2z), which becomes negative if z > 1/2.
• Region where V\ < v < v2.   With <f> as in Section 4 we get

F < -az + 2M + e2 ,

which is negative if z > K2 — (2M + e2)/a (note that 0 < £ < 1 ). Therefore,
z < K2 in this region, accounting for the effect of the boundary condition
«„ = -1 .
• Region where 0 <v <V\. Here the first term of F disappears and the whole
expression has to be controlled by the term P'(U)C ■ Using assumption (5.2) we
are done. In particular, the term e2 is controlled by P'(U)C because we have
U < 1 so that, thanks to estimate (5.5), i > l/(2M), namely C > e2/(2M).
No maximum happens in this region.

6. Regularity in time

We show here that, as in the classical theory of the heat equation, Lipschitz
continuity in x implies Holder continuity in t with exponent 1/2. We show
in fact that away from the level u = 0 the sequence of approximations of our
problem discussed in Section 4 is uniformly Holder continuous in time with
exponent 1/2 and constant independent of e .

Theorem 6.1. There exists a constant C>0 depending only on n such that for
every x € R" and every t2 > t\ > 0 we have

(6.1) \uE(x, t2)-uE(x, tx)\ < CL(t2-ti)1/2 + Ce.

Here L > 1 is a uniform bound for the spatial gradient of uE.
Proof. One part of the above inequality, even more, namely that  u£(x, t2) -
u£(x, t\)  is bounded above by   CL(t2 - t\)xl2, follows immediately from the
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fact that a solution of (E -) is a subsolution of the heat equation, since it is
a standard fact that Lipschitz continuity in x implies Holder continuity in t
with exponent 1/2 for the latter equation.

Let us now find the estimate from below for uE(x, t2)-uE(x, t\). Fix x and
t\ . It is enough to show that the inequality is true for t2 - t\ > 0 small enough
and when uE is away from the action of the term pe(uE), say, uE(x ,t\) — N >
5e > 0. It follows from the assumption that for y £ R"

(6.2) uE(y, ti) > max{N - L\x - y\, 0}.

We are going to prove that u£ is bounded from below by N/2 in a cylinder
of the form R(a, b) = Bx(a) x (ti ,t\+b) for some small a and b > 0. For
this we recall the self-similar function (1.1), which is a solution of problem (P)
for which the Maximum Principle holds, as proved in Corollary 1.4. We can
choose T so that its support at time t\ will be strictly included in the support
of the second member of (6.2), BX(N/L). We have shown in Section 1 that a
small perturbation of this solution is in fact a subsolution of the approximate
equation (0.4). Therefore, it will lie below uE. It follows that u-(y, t) > N/2
if (y, t) £ R(a, b) if we put a = aoN/(2L) and b = b0(N/L)2 with a0 and
bo constants which depend only on n .

We thus have in R(a, b) a solution of the heat equation taking values in the
interval N/2 < uE < kN for some k > 1 . Holder regularity follows now from
standard theory in R. Moreover, by the rescaling

x      1     fxN   N2 \(6.3) u(x,t) = — u\-j- , -jjt)

we reduce this situation to the case N = L = 1, and obtain a uniform coefficient
C > 0 which depends only on n and the constants a0 and bo. Undoing the
rescaling we see that the actual coefficient takes the form CL.     □

Remark. C'^-regularity in time is optimal at horizontal points of the free
boundary as the explicit solution U(x, t) of Section 1 shows.

7. Passage to the limit e —> 0

We keep the assumption that u0 > 0 is bounded and Lipschitz continuous.
We consider the family of solutions {uE(x, t)}£ to the approximate problems
(P£), with e > 0 and with initial data which suitably approximate «o(x) as
done in previous sections.

Theorem 7.1. Along a sequence the family {uE} converges uniformly on compact
subsets of QT to a continuous function u>0 of the Holder class Cx'xJ2(Qt).
In its positivity set the function u is a solution of the heat equation.
Proof. The functions u£(x, t) form a uniformly bounded family in the space
Cx' [/2(Qt) ■ Therefore, up to selection of a sequence e, —> 0 we can pass to
the limit and obtain a function

(7.1) u(x, t) = lim uE(x, t) ,
£j—>0

and the limit is uniform on compact subsets of Q = R" x [0, oo). It follows
that u is a continuous and nonnegative function in Q, which belongs to theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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same space C1 > X/2(Q). Moreover, on the positivity set
(7.2) Q = {(x,t):u(x,t)>0} ,
which is an open subset of Q, u is a smooth solution of the heat equation.
Indeed, if w(xo, to) — c> 0, then, using the uniform convergence uE —» u and
the equicontinuity of the uE we conclude that for every small e and in a small
neighbourhood of (xo, to) we have uE(x, t) > c/2 > e; hence pE(uE) - 0.
Hence, we have in the limit ut = Au.     □

The convergence can be precised by the following result that we shall need
later.
Lemma 7.2.  V«£ converges to Vu strongly in L20C.
Proof. To make things simpler we will also assume that Uq £ L2(Rn). Then
the convergence takes place in L2. We follow the idea of [BCN] for the elliptic
problem. It is clear that along a subsequence Vw£ converges weakly to Vm .
hence

(7.3) // |Vu|2 dx dt < liminf ff \VuE\2 dx dt.

If we prove the converse inequality for every sequence e, —» 0 the result will
follow. Now, multiplication of equation (E£) by uE and integration in Qt ,
T > 0, gives

//   \VuE\2dxdt = - uEAuEdxdt = -        uE(uEyt +P(u-))dxdt.
JJQT JJQt JJQt

Since uP(u) > 0 we get

ff   |Vtte|2dxdt<-r f u2E(x, 0) dx - x / u2(x ,T)dx,

so that in the limit

lim sup //    \VuE\2 dxdt < ■= / u2(x, 0)dx - -- / w2(x, T)dx.

On the other hand, using the equation ut = Au, which is satisfied by the limit
function u in its positivity set, multiplying the equation ut = Au by the func-
tion us = max{w -3,0} and integrating we get

// |Vm|2 dxdt = \ f(us)2(x ,0)dx-\ f(us)2(x ,T)dx ,
JJ{u>S,t<T} Z J l J

so that in the limit

// \Vu\2dxdt = -\ [u2(x,0)dx--\ Iu2(x, T)dx.
JJ{u>0,t<T} lJ l J

Therefore,

(7.4) lim sup//   \VuE\2dxdt< \Vu\2dxdt,
£-»0     JJQt JJQt

which completes the proof if u0 £ L2 . The general case can be obtained by an
easy modification; cf. the local estimates (3.5).     □

We turn next to the equation globally satisfied by u, which depends on the
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Theorem 7.3. The term pE(uE) converges in the limit to a finite measure p
supported on the free boundary V. For every <f> e Cq°(Q) we have

(7.5) // u(cpt+A(f>)dxdt+Uo(x)<t>(x,0)dx=       cpdp.

Proof. We start from the formula

(7.6) // uE((pt + A(f))dxdt+    uoE(x)cj)(x,0)dx —       pE(uE)(l)dxdt,

and pass to the limit e —► 0 in all terms. The convergence of the first member
follows from Theorem 7.1. As for the second member, we know from the a
priori estimates of Section 3 that the family {PE(uE)}E is bounded in L/oc((2r),
hence weakly convergent to a nonnegative measure p in R" x [0, T], along a
sequence e; —► 0 of course.

It is also clear that such a measure is concentrated on the free boundary T.
On the one hand, it is not supported on {u > 0} because there ut = Au, as
we explained in Theorem 7.1. The fact that p does not charge the interior of
{u = 0} is obtained by passing to the limit in the equation. In fact, if 0 is a
test function supported in the interior of the set {u - 0} , we have

(7.7) / / P-(u-) 4>dxdt= lj u-((f>t + Acf>) dx dt.
Now, the second member tends to 0 as s->0. Finally, we see that p cannot
be supported on the line {7 = 0} by using the uniform continuity of the u-
near t = 0 and formula (7.6). Formula (7.5) is now immediate.     □

8. Solutions with shrinking support
We will end the construction of a weak solution of problem (P) with the

characterization of the boundary measure p. This is a delicate part. It so
happens that the task is much easier when the support recedes, in other words
when the flame advances. Therefore, we shall make suitable assumptions on «o
that will enable us to control ut, more precisely to show that it is nonpositive.

(HI): Qo is an open domain in R" with C2 boundary r0 and «0 is a
C2 -function in Qo which is positive in Qo and vanishes on To. We assume
also that A«o < 0 in Q0 and 0 < a\ < |V«ol < ai < - on To . If the domain is
not bounded we need uniformity at infinity, in the sense that uniform bounds
must exist for the curvature of To and the C2-norm of uq near To .

Under this assumption we have

Lemma 8.1. There exist admissible approximations uE such that dtuE < 0. Con-
sequently, we get in the limit e —> 0 a function u such that ut < 0. It follows
that its positivity sets, Q(t), t > 0, form a nonincreasing family of open sets.
We also have

(8.1) (jQ« = Qo.
t>o

Proof, (i) We construct smooth approximations uE as described in previous
sections and pass to the limit to obtain a 'solution' u . Differentiating in t the
approximate equation (0.4) we find for vE = uE<t the equation

(8.2) veJ=Ave-P'(uE)vE.
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The Maximum Principle applies to this equation. Therefore, if we approximate
Mo in such a way that Awo£ < P-(uo-) we will obtain duoE/dt < 0, hence
duE/dt < 0 in Q. In the limit e -» 0 we will get ut < 0.

(ii. 1) Therefore, everything depends on the approximation of the initial data
«o with smooth, or at least Lipschitz-continuous, functions having the stated
properties. To begin with, we consider for small e > 0 the set

(8.3) SE = {x £ Q0 : 0 < u < e}.

By virtue of our assumptions, if e > 0 is small enough then SE is a tubular
neighbourhood of r0 . Moreover, there is a C2 chart g : To x [0, eo) y-y Qo by
means of which we represent a point x £ SEo in the form x = g(y, z) with
y £ r0 , z £ (0, eo), and such that g(y, 0) = y for y e r0 . Observe that if
x - g(y, z), then we can view y = n(x) as the projection of x on To given
by this parametrization. Besides, the map g can be chosen so that z is the
value of «o > i.e.,

(8.4) g->(x) = (7r(x),«oW)       inSE.
We may also consider the tubular neighbourhood extended to the range —e\
< z < eo, so that it includes a full neighbourhood of To, S(--lt-0) =
^(To x (—ei, eo)), lying on both sides of T0. We will need the conditions
|Vz(x)| < a < 1 and |Az(x)| < C in SE|,eo for some constants a £ (a2, 1)
and C > 0. This can be done if eo is small.

(ii.2) We now perform a one-dimensional construction as follows. We take
a small d > 0, precisely (1 + d)a2 < 1, and solve the problem

f"(s) = (l+d)P(f(s))     forz>0,
1 ' ' /(0) = 1,    /'(0) = -l.
By integration we get the formula

(8.6) (f'(s))2 = 1 - 2(1 + <5){.S?(1) - 3§(f(s))},
where 38 is a primitive of /? as in Section 3. As in the analysis of Lemma
1.3 the fact that |/'(0)|2 < 2(1 + 8) JP(u)du implies that the solution f(s)
is decreasing until it reaches a positive minimum (which goes to 0 as S —> 0)
at a point s\ (5) (that is located at a distance which goes to infinity if S —< 0).
By continuous dependence we may change a bit / and obtain a new function
F(s) which solves
(8.7) F"(s)<(l+S)P(F) + aF'        fors>0,
where a > 0 is a small number, and F will still have the properties just
discussed. Observe that F depends on S , F = Fg(s).

(ii.3) The next step consists in using this profile to modify the function «o
in a neighbourhood of To of the form

SE = {x = g(y, z) : -ce < z < e},

with 0 < e < £o and 0 < ce < £i . The correction is defined as follows:

(8.8) uoe(x) = eFd (l - |) .

For x £ Qo-S* we keep the definition u0e(x) = Uo(x). We want Vu0e(x) = 0
at the outer boundary of the tube S*, where z = -ce, which determines theLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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constant c as c = s\(8) - \. On the outer set U = R" - (Q0 US*) we define
the value of «oe as the constant Uo£(x) = eF(s\(8)), which is 0(eS). This
completes the construction.

Observe that there is C° agreement of the different definitions on both
boundaries of the tube S*, i.e., on T+ where z = e, and on T_ where z =
-ce. The gradient of Mo£ satisfies in S* the formula

(8.9) Vm0£(x) = -F'(l - (z/e)) Vz(x).

Therefore, since z = Mo(x), this gradient is directed on T+ along the normal
to the level line and satisfies, thanks to (8.5),

(8.10) |Vw0£(x)| = |F'(0)Vu0(x)| = |Vm0(x)|.

Therefore, we obtain C1 agreement on T+ . The same happens on T_ since
the gradient vanishes. On the other hand, we have

(8.11) Au0E(x) = I F"(l - (z/e))\dxz\2 -F'(l - (z/e))Axz.

It follows from (8.7) that for e small enough

(8.12) Am0£(x) < 1(1 +S)p(F(l -(z/e)))a2 < pE(u0e(x)).

To end this construction step we observe that we can obtain convergence to
0 of the Mo£ outside of a set Qo U So,E- f°r anY e* > 0 by making 8 —y 0
as e -* 0 but imposing that ec = e(s\(8) - 1) goes to 0. Moreover, we get
uos/e —y 0 in such a set. This last remark will be used in Section 10 (Lemma
10.4).

(iii) The fact that the family il(t) is nonincreasing is an immediate conse-
quence of the formula ut < 0. In order to show that Q,(t) c Qo for every
t > 0 we only have to remark that for any compact set K c R" we have
Ue(x, t) < uo,E(x) < e if x £ K and d(x, Qo) > ce, where c — c(K). Finally,
in order to prove (8.1) it is enough to show that for every Xo £ Qo there exists
a time t0 = t(x0) > 0 such that

m(x0 , t) > 0   if 0 < t < t0.

Now, this property follows immediately from comparison with a small self-
similar solution of the form (1.1) centered at xo , using Corollary 1.4.     □

Remark. By approximation we can replace the condition 0 < c\ < |Vmo| <c2<
1 by the less restrictive and more natural one, 0 < |Vmo| < 1.

The typical example consists in initial data uo with compact support and
concave shape with suitable boundary slope, just like the self-similar solutions
(1.1). Another interesting form is (for n > 3)

(8.13) m0(x) = A - —--j   for|x|>a,

where a is determined by Uo(a) = 0, hence Aa"~2 - b. The boundary condi-
tion implies that b < a"~l/(n - 2).

In practice we want a bit more, namely we would like to control u, by means
of a directional derivative, say uM . Since both m, and uXl satisfy the linearized
equation (8.1) we get
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Lemma 8.2. Let X £ R and let uo satisfy (HI). If moreover ut + XuXl < 0 at
t = 0, then the same is true for every t>0.

Having some control of the movement of the interface will greatly simplify
the task of describing the boundary behaviour of the solution to (P). In view of
the above properties we will make the following assumption on our data, under
which Lemma 8.2 will hold.

(H2): Besides the assumptions (HI) Uo satisfies A«o + A|V«ol < 0 in its
positivity set for some constant X > 0.

A typical shape would be a function with compact support and strictly neg-
ative Laplacian in regions of big gradient, having also the right border jump
for V«o. There are also interesting shapes with a hole and positive value as
X —y oo.

Corollary 8.3. If (H2) holds for some X £ R, then the solution u is nonincreasing
along lines of the form x(t) = Xo + Xte for every unit vector e.

From Lemma 8.2 and Corollary 8.3 we conclude that

Corollary 8.4. Under assumption (H2) the null set N of the solution u has the
following cone property: for every point Po = (xq , to) £ N the forward cone

(8.14a) K+(P0,X) = {(x,t):\x-xo\<Xt, t > t0}
is contained in N. Likewise, for every P\ = (xi,*i) where u is positive, the
backward cone

(8.14b) K~(Pi,X) = {(x,t):\x-Xo\<Xt, 0 < t < t0}
is contained in P(u). Finally, the interface

T = d{(x, t) : u(x, t) > 0}

is described by a Lipschitz-continuous function t = 8(x), with x £ Qo .

9. Study of the boundary measure
We resume the proof that in the limit of the approximations m£ we obtain

a weak solution of Problem (P). We assume here the hypotheses of Section 7
plus the strict monotonicity condition (H2) of the last section. As said at the
end of Section 7 we only have to concentrate on the behaviour of the boundary
measure. To begin with, let us review the notation. Q = {(x, t) £ Q : u(x, t) >
0} denotes the positivity set of the solution u, T = dQ its lateral boundary,
i.e., the boundary in Q, and Q(t), V(t) the respective sections at time t.
Since T is given by a Lipschitz continuous function t — O(x), x e Qo, for
a.e. point (jc,()er there exists a normal vector v = v(x, t) and a tangent
plane to the surface. We have v - (v\,..., vn, vt), which is proportional
to (-V0, 1). We denote by dl the element of surface area on T, by
a the angle formed by v and the horizontal plane { t = constant}, and by
dS = dl, cos a the lateral projection of the area element, which typically enters
calculations involving integration by parts with respect to the space variable.
Indeed,   cos a - (v2 -\-\-u2)- .

In order to characterize the boundary measure we need some information on
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level lines yec consisting of the points (x, t) £ Q where uE(x, t) = ce. Due
to Corollary 8.3 (and Corollary 8.4), time is given on these lines as a Lipschitz
continuous function of space:
(9.1) t = eec(x),       xeR".
By Sard's Theorem the level line yec is a C°°-surface for almost every c > 0.
We are interested in localizing the level lines y* near the free boundary T.
Lemma 9.1. Let c > 1 and R > 0. For every 3 > 0 there exists eo > 0 such
that 0 < e < eo implies
(9.2) |0ce(x)-6(x)|<<5   for x £ Q0 n BR .
Proof. The estimate from below, 6%(x) > Q(x)-3 , is just a consequence of the
continuity of u and the uniform convergence of the m£ , arguing as in Theorem
7.1.

We prove that the level lines y* for c > 1 cannot be far above 0(x) for e
small by contradiction. Indeed, assume that there exist a sequence e; —► 0 and
points Xj such that

8ecJ(Xj)>e(Xj) + S.

Let tj = 6ec'(xj) . Then, by Lemma 8.4 there exists a cone Kj with vertex at
(Xj, tj) pointing backwards in time, such that uEj > ce; in KjCiQ. But then
Pe^u-j) = 0 and m£; satisfies in Kj the heat equation. Next we observe that
the sequence Xj has a limit point, say x , and the cones Kj converge along the
correspondent sequence to a cone K, whose vertex is located at distance at least
8 over Y. On K the limit solution u satisfies the heat equation. We are going
to see that this is impossible. In fact u is a nonnegative solution of the heat
equation in K which vanishes on the portion K n {t > 6(x)} and is strictly
positive on the complement of this set in K. Since both parts have nonempty
interiors, the contradiction follows from the Strong Maximum Principle.   □

We proceed now to prove that the boundary measure p is controlled by the
area element of T in space-time, dl,.
Lemma 9.2. There exists a constant C such that dp < CdJ..
Proof. Let us take a smooth level line y| with c > 1. Let AE — {ue < ce} . Let
0 be a test function in C0X(Q) with support near a point of the free boundary
T. Then

P-(uE)(f>dxdt = //   pE(uE)(j>dxdt = // (Au- -uEtt)<f>dxdt

= f pL6dSe- [ uep-dS£- f uE<pv?dZe+ ff uE(Act> + <pt)dxdt.
Here the n-dimensional measure dSe denotes the lateral projection of the sur-
face area element on yec, i.e., dSe = dl? cosas. Now, the last three terms tend
to zero uniformly as e -> 0. The first term in the second member is the only
significant contribution. We can bound from above duE/duE by the bound L
for the gradient. We thus obtain in the limit

ff 4>dp<cL f dl.   □
As a consequence of the Radon-Nikodym Theorem we get from this result
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Corollary 9.3. There exists a bounded, nonnegative function p : T —> R such
that
(9.3) dp=-pdl
as measures in Q. Moreover, 0 < p(x, t) < L.

The end of the existence proof consists in showing that the function p equals
cos a almost everywhere on T. We recall that since T is the graph of a
Lipschitz continuous function t = 0(x), almost every point x £ Qo is a
point of differentiability of 0. At this stage we have to investigate more closely
what happens at such points.

10. Boundary behaviour. Analysis of regular points

We perform in this section the local analysis near a nonhorizontal regular
point of the free boundary F, where according to the basic example discussed
in Section 1 we expect the solution to be well behaved. Indeed, we consider a
point Po = (*o, *o) of T where the free boundary is given by a differentiable
surface and let uq be the exterior normal, which we assume is not directed along
the time axis (a nonhorizontal point). After a rotation of coordinates we may
assume the spatial projection of u(P0) = vq points in the X\ direction, i.e.,
vq — (cos a, 0, ... , 0, sin a) with cos a > 0, i.e., 0 < a < n/2. The tangent
plane U = {(x, t) : (x - x0, t - t0) - u0 = 0} has equation

(10.1) x, - Xio = (tg a) (t - t0).

We prove the following result.

Theorem 10.1. Near P0 the solution u is given by the piecewise linear profile

(10.2) u(x, t) = [x{ -xio-(tga)(f-ro)]+ + 0(|x-xo|-i-|f-rol)-
The derivative Du = (Vm, ut) = (uXl , uXl, ... , ut) at Pq, which amounts to
(-1,0,..., -tg a), is taken along all nontangential interior directions. More-
over, we have the free-boundary condition

(10.3) MF0) = -1,
and the dynamic equation

(10.4) x[(to) = ul(P0) = -tga.
Proof. We perform a linear scaling around P0 , i.e. we define

(10.5) ux(x,t) = ju(X(x - xo), X(t - to)) ,

where X < 1, with the idea of passing to the limit X -> 0 (blow-up). After
translation we may assume that Po = (0, 0). If we start with u restricted to
a ball BR = {(x, t) : \x\ < R, \t\ < R}, then ux is defined at least in a box
BR/X. Let Dx = {(x, t) £ BR/X : ux(x, /) > 0}. Because n is a tangent plane
for every R > 0 and e > 0 the boundary of Dx n BR in BR can be confined
in the region

YlE = {(x, t) £ BR : \(x, t) - v0\ < e}
if X is small enough. Thus, in the limit X —> 0 the region Dx converges to the
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balls Br. In order to pass to the limit in ux we first observe that the Vux are
uniformly bounded. Moreover, using the fact that dtux < 0 and integrating we
get a uniform bound for dtux in Lxoc. Therefore, along a sequence Xj —> 0 we
obtain the limit
(10.6) V = limwA.(x, 0

in Lioc and a.e., and V is defined in Rn+X . Necessarily, V(x, t) — 0 in n+,
i.e. for (x, t) • i>o> 0 . Moreover
Lemma 10.2. There exists a function c(t) > 0 such that
(10.7) V(x,t) = c(t)[-Xl- (tga)t]+.
Proof. Observe that the ux satisfy in Dx the equation Xdux/dt = Aux. Now,
we pass to the limit in the expression

jj(XuxtPt + uM)dxdt = 0,

valid for any function </> e C°°(Rn+x) with support in n~ if X is small enough.
We get AXF = 0 in Il~ . Since for fixed / the function V(x, t) is nonnegative
and vanishes on the hyperplane H(t), the section of n at time t, there are only
two options: either it is identically zero or it is positive with linear growth near
the boundary (make a reflection around xi = 0 to obtain a harmonic function
in the whole space which has linear growth, hence it is linear). This is just
(10.7).    □
Lemma 10.3. The spatial gradient of V at Po, i.e., c(t), is precisely 1.
Proof, (i) Again we may take Po = (0, 0). We consider the equation satisfied
by the approximations uE, take a test function f supported near the point
Po, multiply the equation by C dk uE and integrate to obtain (with the notation
Uk = d^u and the convention of dropping the subscript e in m£ ; to avoid
confusion we put lim uE = v)

/ / u,UkCdxdt = / / AuUkCdxdt - / / pe(u) ukC,dxdt.

Let us estimate the different terms when e —► 0. To begin with, we have

- ffp£(u)uktdxdt = - ffdk(&E(u))Cdxdt= 11'&E(u)C,kdxdt.
We claim that as e —► 0 this quantity tends to

//       MCk dx dt ,
JJ{v>0}

where M = J P(s) ds — 1/2 (we use the letter M to make more apparent the
role played by the integral of P ). This claim is not as immediate as it seems,
and indeed it contains the important information that our approximations are
correct. Let us postpone the proof to Lemma 10.4 and proceed. Since Uk
converges strongly in L2(Q) and ut weakly in L2(Q), we have

utukCdxdt -y       vtVkCdxdt = //       vtvk(dxdt
J J J J JJ{v>0}

= //       VuVkCdxdt.
J J{v>0}
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Finally,

AuUkCdxdt = -       Uj Uk Ci dxdt - / / m, Mfc, C dx dt

= -       "i "fc fi dxdt+ ^ / / («/)2 Cfc rfjc ̂  ,

which converges to

// ( ~(t>i)2{*-'U|UkCi) rf*rff.

We are using the summation convention in i. Summing up, we get

M II       Ckdxdt= (viVkCi + vuvk{--z{Vi)2Ck) dxdt
nnsn JJ{v>o] JJ{v>o} \ *■ J
[     ' rr      ( 1 \= JJ        [diiViVkQ-^kKvifC}) dxdt.

(ii) We recall now that v is approximately linear around Po = (0, 0) and
that Uk = 0 for all spatial directions k ^ 1. We use the parabolic scaling given
by

1 i
(10.9a) vx(x, t) = -tv(Xx, X2t) = ux(x, Xt) ,

A

which transforms solutions of the heat equation in Q = {v > 0} into new
solutions in the corresponding domain Qx = {vx > 0} , which tends as X —► 0
to the hyperpane (in space-time) ni = {xi = 0}. Since the vx have linear
growth in x and are nonincreasing in time, we pass to the limit

limvj(x, t) — V
,1-0

to find a nonnegative solution of the heat equation in the domain

£», = {(x,t)£Rn+x:xl<0},

with boundary value 0 on ni and linear growth in x . This means that it is just
the linear function V(x, t) = c(-xi)+ , for some constant c with 0 < c < L.
This we knew from Lemma 10.2. The convergence can be done in compact
subsets K of D, i.e., away from the boundary, to obtain

dkvx^dkV = -3lkc   inK,
dtvx^d,V = 0 inK.

(Here 8ik is Kronecker's delta.) We now observe that we may apply the scaling
to formula (10.8), taking care of inserting £A(x, t) = C(x/A, t/X2) for some
fixed C, to get a formula valid for the vx. Suppose that we can pass to the
limit X —y 0 in all terms. Then we get with k = 1

MJ  CdS = lj (c2Cl-\c2Cl)dxdt = jj  CdS,

where dS = dx2 ■ ■ ■ dxn dt - dl is the area element on ni. This proves that
c(0)2 = 2 M = 1 ,  as we wanted.License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(iii) The last step needs a better justification, since the convergence needed
to pass to the limit in the second member of (10.8) was obtained only in the
interior. A rigorous argument when c > 0 is as follows: we observe that we
can estimate a related integral (with v = vx )

Is = J J       (l^O,)2 0 - 9i{Vi vk C}) dx dt

= JI        f j (Vi'? Uk ~ Vi Vk Vi) £dI"

where 8 is a small positive constant independent of X. This expression can be
passed to the limit to obtain for k = 1

which is what we wanted. We still have to estimate uniformly in X the remain-
der

// (~(Vi)2Ck-ViVkCi-VuVkC) dxdt.
JJ{d>v>0}  \z /

The first and second terms are small for small 8 because the gradient is bounded.
For the third term we use the fact that vt — «,-,- < 0 to estimate

\I-IS\= ff \v,Vk\Cdxdt<L ff (-vt)Cdxdt
JJ{S>v>0} JJ{S>v>0}

< LN / v(x, t\)dx ,
J{S>v>0}n{t=ti}

and this is small. The proof is complete for c > 0.
The fact that c > 0 cannot be zero uses a similar but simpler argument.

The first two terms in the second member of (10.8) disappear because Vvx is
bounded and converges to 0 in the interior of D\, and for the third we again
use the argument of integration in time.

(iv) Finally, the calculation for c(x), with x ^ 0 is done in a similar way
replacing formula (10.9a) by

(10.9b) vx(x, t) = ux(x - (tg a)xei, Xt + x).   □
Lemma 10.4. In the situation of Lemma 10.3 we have in any ball B

(10.10) ^£(m£) - MX{v>o} ,
where #{t,>o} denotes the characteristic function of the positivity set of v in B.
Proof. It is clear that near every point where v > 0 we have uniform conver-
gence of m£(x) to v(x) > c> 0, hence ^£(m£) -» M. This is the obvious part.
The situation in the set S = {v = 0} n B is not at all so simple. First, we know
that in any ball B\ in S we have convergence of PE(ue) to 0 in Lx (cf. (7.7)),
and passing to a subsequence, almost everywhere convergence. Moreover,

// \V^E(uE)\dxdt<L ff pe(ue)dxdt^0,
JJBl JJBi

so that for a.e. t > 0 we have ^£(w£) -> k(t), a constant with respect to
the space variable. Recall that we restrict the argument to the points of a ballLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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contained in S. Since also pE(uE) -» 0 a.e. we have the alternative k(t) = M
or k(t) = 0 in any such ball.

We want to eliminate the first possibility k = M. It is clear from the mono-
tonicity of the m£ that the function k(t) is monotone nonincreasing, so that,
if we have k — M on some nonnegligible set of times, then k(t) must be 1
for all previous times. This argument can be extended by continuation to any
connected component of the interior of S. Now, such connected components
necessarily arrive at t = 0. Here we use the assumption that the initial ap-
proximation is taken in such a way that UoE —► 0 and 38E(uoE) -* 0 a.e. in
the complement of Qo (see proof of Lemma 8.1). We conclude that k = 0 in
S.   D

With these lemmas the proof of Theorem 10.1 is complete.

11. Horizontal points. End of the existence proof
Taking into account the results of Section 10 for nonhorizontal regular points

we go back to Corollary 9.3 and easily conclude that

Lemma 11.1. At a.e. nonhorizontal point we have p = cos a.
Proof. Just use formula (7.5) in a small box around Po and take into account
the behaviour prescribed by Theorem 10.1.     □

The analysis of horizontal points follows.

Lemma 11.2. At horizontal points p = 0 a.e.
Proof. We make a linear rescaling at a point Po £ T where there exists a hor-
izontal tangent plane n. We assume that Po = (0, 0) and then U = {t = 0}
and vo = (0, ... , 0, 1). After making the linear scaling (10.5) we have two
options. Either (i) the functions ux are uniformly bounded in a neighbour-
hood of (0, 0), or (ii) the limit function U(x, t) becomes infinite at least for
t < -3 < 0.

In the first case the spatial gradient, Vm , will tend to 0 as (x, t) —► (0, 0)
along a nontangential cone in n_ = {t < 0} . Then we use again formula (7.5)
to conclude that if Po is also a Lebesgue point for p then p = 0.

If (ii) holds then u, = -oo at P0 , and then the level curves are very close to
n. This allows us to estimate that

II pE(uE)dxdt^0.
This is based on the fact that Pe(uE) » l/e, while the increment At » Au/ut «
e (here A = increment). This completes the proof.     □
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