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A Free Boundary Problem for the p-Laplacian:

Uniqueness, Convexity, and Successive

Approximation of Solutions ∗

A. Acker & R. Meyer

Abstract

We prove convergence of a trial free boundary method to a classical
solution of a Bernoulli-type free boundary problem for the p-Laplace equa-
tion, 1 < p <∞. In addition, we prove the existence of a classical solution
in N dimensions when p = 2 and, for 1 < p < ∞, results on uniqueness
and starlikeness of the free boundary and continuous dependence on the
fixed boundary and on the free boundary data. Finally, as an application
of the trial free boundary method, we prove (also for 1 < p <∞) that the
free boundary is convex when the fixed boundary is convex.

1 Introduction

We will develop methods for the successive approximation of solutions of the
following free boundary problem originating with a power-law generalization of
various well-known linear flow laws, such as Ohm’s law for electrical current,
Fourier’s law for heat transfer, or Darcy’s law for fluid flow through a porous
medium.

Problem 1.1 Given 1 < p < ∞, a positive function a(x), and a bounded C2-
domain D∗ in RN , N ≥ 2, (with Γ∗ = ∂D∗), we seek a domain D ⊃ Cl(D∗)
such that

|∇U(x)| = a(x)

on Γ = ∂D, where U denotes the p-capacitary potential in Ω := D\Cl(D∗).

In the case where p = 2 and a(x) = constant, the first author [A5] has shown that
the solution of Problem 1.1 can be interpreted in terms of minimization of heat
flow through an annular domain with one fixed boundary component subject to
a volume constraint. In a mathematically similar problem with different physical
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implications, Lacey and Shillor [LS] have shown that Γ can be interpreted as
the equilibrium surface resulting from an electrochemical machining process in
which there is a threshold of current (corresponding to |∇U | = a) below which
etching does not occur.

In each of the above problems, a model based on a linear flow law is fun-
damental to the analysis. For example, for electric current through resistance,
Ohm’s law states that J = −C∇U , where C is the conductivity. The same
relationship, this time called Fourier’s law, applies in the heat flow minimiza-
tion problem, where U now denotes the steady-state temperature and J is the
heat flow. This law leads naturally to harmonic flow potentials in both cases.
Clearly, Ohm’s law and Fourier’s law are approximate, empirical laws in which
the assumption of linearity achieves maximum simplicity of the analysis. From
the perspective of the study of nonlinear flow laws, it is natural to consider
power-law flows as the next approximation. We define a power-law flow to be
one for which the flow vector is given by J = −C|∇U |p−2∇U , where p is a
constant satisfying p > 1. This means that the magnitude of the flow vector is
given by |J | = C|∇U |p−1. Power-law flows have been previously studied in the
context of p-diffusion (see Philip [P]) and deformation plasticity (see Atkinson
and Champion [AtC]). For the case of steady-state power-law flows, the flow
potential is p-harmonic, and the corresponding flow through the annular domain
is given by the p-Dirichlet integral. Thus, one is led to Problem 1.1 from the
perspectives of both heat flow minimization and electrochemical machining.

We show for arbitrary p > 1 that in essentially the starlike case, the solution
is unique, starlike, and continuously dependent on the data. To the authors’
knowledge, the existence question has not been examined to this generality in
the literature; in fact, even for p = 2, there is no existence proof for a classical
solution valid in higher dimensions. Early existence results due to Beurling [B],
Daniljuk [D], and Lavrent’ev [LV] apply only for p = 2 and N = 2. The well-
known existence results of Alt and Caffarelli [AC] are applicable only for p = 2,
and these solutions are not necessarily classical forN ≥ 3. An existence theorem
for classical solutions in the starlike case for p = 2, a(x) = constant, and N ≥ 2
was stated by Lacey and Shillor [LS], but their proof is not valid for N ≥ 3,
because it is actually an argument by reference to Beurling’s methods, which
have never been generalized beyond N = 2. In §3, we validate the claims of
Lacey and Shillor by proving the existence of a classical solution in the starlike
case when p = 2, N ≥ 2, and a(x) is a real analytic function satisfying the same
monotonicity condition required for uniqueness.

For arbitrary 1 < p < ∞, but again in the starlike case, we obtain a global
convergence proof for a particular analytical trial free boundary method for the
successive approximation of the (classical) solution. To the authors’ knowledge,
this is the only approximation procedure available for this problem for which
there is a known proof of convergence. This trial free boundary process consists
of repeated application of a particular monotone operator which preserves star
likeness and even convexity (under appropriate additional assumptions). The
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”operator method” was introduced by the first author [A1] in the case where
p = 2, N = 2, and the domain lies between the graphs of periodic real functions
of a real variable. An important aspect of the present study is the generalization
of the operator properties discussed in [A1] to the situation described in Problem
1.1. It will be seen that the success of this generalization depends on a well-
known homogeneity property of the p-Laplacian which is not shared by other
divergence-form operators (see §2).

As an application of the operator method, we prove that if D∗ is convex,
then the solution of Problem 1.1 is convex under suitable conditions on the
function a(x) (see §5). This result, which adds to a growing literature concerning
the convexity of free boundaries (see [Tp], [CS], [A2], [A3], [A4], [A6], [A7],
[A8], [A9], and [APP]), specifically generalizes [A4], Lemma 2, to arbitrary
dimensions and to a more general class of functions a(x). It is an interesting
fact that a modification of the definition of the operator permits this more
general statement (see Remark 5.2). We remark that there is substantial recent
literature on the closely related problem of the convexity of level surfaces of
solutions of elliptic partial differential equations in convex annular domains (see
[CF], [CS], [KL], and [L1]), of which the work of Lewis [L1] is pertinent to
the present study; in fact, our result follows by combining Lewis’s result with
certain aspects of the operator method.

Remark 1.2 An additional interpretation of our model arises in the study
of fluid flow through porous media. The linear flow law in this case is called
Darcy’s law, stating that J = −C∇U , where J is velocity, and U is pressure.
Consider the case where two reservoirs of fluid (at different constant pressure)
are separated by the homogeneous porous medium occupying the annular region
Ω, through which the fluid flows by virtue of the pressure difference. If we
choose the same power law generalization considered above, the free boundary
in Problem 1.1 can then be interpreted as a surface on which the flow magnitude
is given by a specified function of position (assuming, of course, that the other
boundary has been specified).

2 The p-Laplace Equation

Here, we summarize a few relevant results from the literature. The p-Lapace
equation is the quasilinear (degenerate) partial differential equation:

4pu = div (|∇u|p−2∇u) = 0 (1 < p <∞)

In its weak form, the equation is∫
Ω

|∇u|p−2∇u · ∇η dx = 0 (1)
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for all η ∈ H1,p
0 (Ω). (Here, |∇u|p−2∇u is understood to equal 0 at all points

where ∇u = 0.) If p = 2, the p-Laplace equation is just the Laplace equation.
For the annular domain Ω = D\Cl(D∗), where D and D∗ are bounded domains
in RN with Cl(D∗) ⊂ D, we define the p-capacitary potential in Ω to be the
weak solution of the Dirichlet problem

4pu = 0 in Ω, u = 1 on ∂D∗, u = 0 on ∂D.

Regularity of weak solutions of the p-Laplace equation (p-harmonic functions)
was studied in [DiB], [L2], and [T2]. The best regularity result for general
bounded domains in RN is that if u ∈ H1,p(Ω) is a weak solution of the p-Laplace
equation in Ω, then u ∈ C1,α

loc (Ω), where α = α(p,N) > 0. In [L1], it is seen that
u is real analytic away from zeros of ∇u and that inf{|∇u(x)| : x ∈ Ω} > 0 if Ω
is an annular domain with convex boundaries. Furthermore, it is shown in [LB]
that, when ∂Ω ∈ C1,α, there exists a β such that u ∈ C1,β(Cl(Ω)).

The p-Laplace operator has the following homogeneity property, which is
necessary for the proof of convergence of the trial free boundary method:

4p(λu(x)) = λp−1 4p u(x).

Furthermore, if u(x) satisfies the p-Laplace equation in a bounded domain Ω,
then u(x/λ) satisfies the p-Laplace equation in λΩ = {λx : x ∈ Ω}. Also
essential in the convergence proof is the fact that weak solutions of the p- Laplace
equation satisfy maximum and comparison principles. (See [T1], Lemma 3.1 and
Proposition 2.3.3.)

3 The Free Boundary Problem: Existence and
Uniqueness of Solutions

Throughout the remainder of this paper, we will require the following assump-
tions on the data in Problem 1.1:

Assumption 3.1 The given domain D∗ ⊂ RN is starlike with respect to all
points in the ball Bδ(0).

Assumption 3.2 The function a(x) is continuous and has positive uniform
upper and lower bounds in RN . Moreover, the function ta(x0 + t(x − x0)) is
increasing in t > 0 for any x ∈ RN and x0 ∈ Bδ(0).

Definition 3.3 (Classical Solution) By a classical solution of Problem 1.1,
we mean a domain D ⊂ RN such that the p-capacitary potential U in Ω :=
D\Cl(D∗) is in C2(Ω) ∩ C1(Cl(Ω)) and satisfies the free boundary condition
|∇U(x)| = a(x) for every x ∈ ∂D.
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Theorem 3.4 (Existence) Let a(x) be a C∞-function; then, for p = 2, Prob-
lem 1.1 has a classical solution D, which has a C∞-surface and is starlike with
respect to all points in Bδ(0).

In order to prove Theorem 3.4, we consider the following variational problem.

Problem 3.5 For the function a(x) and domain D∗ of Problem 1.1, we seek a
minimizer of the functional

J(v) :=

∫
RN

(|∇v|2 + a2I{v>0})dx

over the set K = {v ∈ L1
loc(RN ),∇v ∈ L2(RN ), v = 1 on ∂D∗}.

Lemma 3.6 Problem 3.5 has a solution, U , which is Lipschitz continuous and
has compact support on Ω∗ = RN\Cl(D∗) and satisfies 0 ≤ U ≤ 1 in Ω∗ and
4U = 0 in {U > 0}. Furthermore, U satisfies the free boundary condition of
Problem 1.1 in a certain weak sense.

Proof. See [AC], Theorems 1.3 and 3.3, Lemmas 2.8, 2.3, and 2.4, and Theo-
rem 2.5. 2

Lemma 3.7 If D∗ is starlike with respect to all points in Bδ(0), then so is
{U > ε} for all 0 ≤ ε < 1, where U denotes a solution of Problem 3.5.

Proof. For r > 1, let ar(x) = (1/r)a(x/r), Ur(x) = U(x/r), U+
r (x) =

max(U(x), Ur(x)), and U−r (x) = min(U(x), Ur(x)). Define the functional

J(ω; r; v) :=

∫
ω

(|∇v|2 + a2
rI{v>0})dx

over the set K(ω) = {v ∈ L1
loc(ω),∇v ∈ L2(ω)}, and define Ω∗ = RN\Cl(D∗)

and rΩ∗ = {rx : x ∈ Ω∗}. Following the proof of Lemma 3.4 in [A3], we
show that J(rΩ∗; 1;U) = J(rΩ∗; 1;U+

r ) and J(rΩ∗; 1;Ur) = J(rΩ∗; 1;U−r ) and
conclude that U(x) ≤ Ur(x) in rΩ∗. Thus, U is non-increasing with increasing
|x| along radial lines in rΩ∗, and {U > ε} is starlike with respect to the origin.
This proof can be repeated, with the origin replaced by any x0 ∈ Bδ(0), to show
that {U > ε} is starlike with respect to all points in Bδ(0). 2

Lemma 3.8 Let U be a solution of Problem 3.5. Then the free boundary,
∂{U > 0}, does not intersect Γ∗ = ∂D∗, and, therefore, U is continuous on
Cl(Ω).
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Proof. Let a0 be a constant such that a(x) < a0 in RN , and let D∗0 be an
interior tangent ball to Γ∗. Define

J0(v) :=

∫
RN

(|∇v|2 + a2
0I{v>0})dx

over the set K0 = {v ∈ L1
loc(RN ),∇v ∈ L2(RN ), v = 1 on D∗0}. The functional

J0 has a radially symmetric minimizer, U0 (see [Ba], Corollary 2.1), and the free
boundary, ∂ω0 (where ω0 = {U0 > 0}), does not intersect Γ∗0 = ∂D∗0. In RN , we
define U+(x) = max(U(x), U0(x)), U

−(x) = min(U(x), U0(x)), ω = {U > 0},
and ω± = {U± > 0}. Note that, since 0 ≤ U0 ≤ 1, we have U+ = 1 on D∗ so
that U+ is in K. Also, since U+ ≥ U0, we have ω0 ⊂ ω+, and ∂ω+ lies outside
ω0. We claim that J(U+) ≤ J(U), with strict inequality if ω+\ω has positive
measure. In terms of the notation: R =

∫
RN |∇U |2 dx, R0 =

∫
RN |∇U0|2 dx,

R± =
∫
RN |∇U±|2 dx, |ω| =

∫
ω
a2(x) dx, |ω|0 =

∫
ω
a2

0(x) dx, our claim is that
R+ + |ω+\ω| ≤ R, with strict inequality if ω+\ω has positive measure. Toward
the proof, we observe that U0 minimizes J0 over K0, and that U− = 1 in D∗0,
since D∗0 ⊂ D∗. Thus, we have R0 + |ω0|0 ≤ R− + |ω−|0. In view of the fact
that R0 +R = R− +R+ (see [ACF1], §2), we conclude that

R+ + |ω0\ω
−|0 ≤ R. (2)

On the other hand, we have E := ω+\ω = ω0\ω−. Thus, since 0 < a(x) < a0 in
RN , we have

|ω+\ω| ≤ |ω0\ω
−|0, (3)

where the inequality is strict if E has positive measure. Inequalities (2) and
(3) imply our claim. A consequence of our claim is that the set of points inside
ω+ but outside ω must have measure zero in order to avoid contradicting the
minimality of U . Since ω0\ω ⊂ ω+\ω, it follows that the set of points inside ω0

but outside ω has measure zero. Now U and U0 are both continuous in Ω, and
D∗0 is an arbitrary interior tangent ball to Γ∗, so we conclude that ∂ω does not
intersect Γ∗ anywhere. 2

Proof of Theorem 3.4. By Lemma 3.7, {U > 0} is starlike with respect to
all points in Bδ(0); thus, ∂{U > 0} is locally the graph of a Lipschitz continuous
function, where the coordinate system is chosen so that the radial direction is
the coordinate axis of the dependent variable. Also, as shown by Caffarelli in
[C2] (see ”Application” and Lemma A1), U satisfies the free boundary condition
|∇U(x)| = a(x) in a certain weak sense defined in [C2], §1; therefore, it follows
from [C1] that ∂{U > 0} is a C1,α-surface, and, by the results of Kinderlehrer
and Nirenberg in [KN], ∂{U > 0} is a C∞-surface on which the free boundary
condition holds in a classical sense. 2
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Further definitions. In the paragraphs below, we will use the following no-
tation: For E ⊂ RN and λ > 0, λE = {λx : x ∈ E}. For i = 1, 2, let Γi be the
boundary of Di, a bounded, simply connected domain in RN which contains the
origin. In the family of all such surfaces, we will define the metric 4, where

4(Γ1,Γ2) = sup{| lnλ| : λΓ1 ∩ Γ2 6= ∅}.

We say that Γ1 ≤ Γ2 if D1 ⊂ D2, and Γ1 < Γ2 if Cl(D1) ⊂ D2. If Γ is in this
family of surfaces, D(Γ) denotes the interior complement of Γ, and, for surfaces
Γ1 < Γ2 in this family, Ω(Γ1,Γ2) = D(Γ2)\Cl(D(Γ1)).

Theorem 3.9 (Uniqueness, Starlikeness, Continuous Dependence)
(i) If a classical solution of Problem 1.1 exists, for any 1 < p < ∞, then it is
unique, and it is starlike with respect to all points in Bδ(0).

(ii) Suppose Γ∗ and Γ̃∗ are the fixed boundaries in Problem 1.1 with Γ and Γ̃
the corresponding free boundaries; then

Γ∗ ≤ Γ̃∗ implies that Γ ≤ Γ̃, (4)

and
4(Γ, Γ̃) ≤ 4(Γ∗, Γ̃∗). (5)

(iii) Suppose a(x) and ã(x) satisfy Assumption 3.2 and that Γ and Γ̃ are the
corresponding free boundaries; then

ã(x) < a(x) in RN implies that Γ < Γ̃; (6)

Furthermore, the solution Γ depends continuously on a(x) in the following sense:
If a(x) and ã(x) are any functions satisfying Assumption 3.2 and the additional
condition that a(λx) and ã(λx) are nondecreasing in λ > 0 for all x ∈ RN
(including the case where a(x) and ã(x) are identically constant), we have

4(Γ, Γ̃) ≤ sup{| ln(a(x)/ã(x))| : x ∈ RN}, (7)

More generally, we have that

4(Γ, Γ̃) = lnλ ≤ ln(1 +B0δ), (8)

provided that a(x) and ã(x) satisfy only Assumption 3.2, where |a(x)− ã(x)| ≤ δ
in RN and B0 is a uniform constant to be determined.

The proof of our theorem requires a well-known comparison principle due to
Lavrent’ev (see [LV], Theorem 1.1), which is generalized to solutions of the p-
Laplace equation using the weak comparison principle for p-harmonic functions.
(Observe that no special smoothness assumptions are made about the entire
boundary surfaces.)
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Lemma 3.10 (Lavrent’ev Principle) Let Γ∗,Γ, Γ̃∗, and Γ̃ be (N − 1)-di-
mensional hypersurfaces which are boundaries of bounded, simply connected do-
mains in RN with Γ∗ < Γ and Γ̃∗ < Γ̃. Let Ω (resp. Ω̃) be the annular
domain whose boundaries are Γ∗ and Γ (resp. Γ̃∗ and Γ̃), and let U (resp. Ũ)
be the p-capacitary potential in Ω (resp. Ω̃). Let λ ≥ 1 be a value such that
Γ∗ ≤ λΓ̃∗ and Γ ≤ λΓ̃ (where λΓ̃∗ ∩Γ may be nonempty). If λx ∈ Γ∩λΓ̃ (resp.
λx∗ ∈ Γ∗ ∩ λΓ̃∗), and if |∇Ũ(x)| and |∇U(x)| (resp. |∇Ũ(x∗)| and |∇U(x∗)|)
both exist, then

|∇Ũ(x)| ≥ λ|∇U(λx)| (resp. |∇Ũ(x∗)| ≤ λ|∇U(λx∗)|).

Proof. See [M], Lemma 3.3.1. 2

Proof of part (i) of Theorem 3.9. To prove that the free boundary is
unique, we assume that Γ and Γ̃ are solutions to Problem 1.1 with Γ 6= Γ̃.
Let ln(λ0) = 4(Γ, Γ̃), with λ0 > 1; then Γ ≤ λ0Γ̃, Γ̃ ≤ λ0Γ, and one of the
intersections Γ ∩ λ0Γ̃ or λ0Γ ∩ Γ̃ is nonempty. We assume that there is a point
λ0x0 ∈ Γ ∩ λ0Γ̃. Furthermore, Assumption 3.1 implies that Γ∗ ≤ λ0Γ

∗, where
Γ∗ = ∂D∗. Thus, Lemma 3.10 implies that

a(x0) = |∇U(Γ̃;x0)| ≥ λ0|∇U(Γ;λ0x0)| = λ0a(λ0x0), (9)

which contradicts Assumption 3.2. (We reach a similar contradiction with
λ0x0 ∈ λ0Γ ∩ Γ̃.) The same application of Lemma 3.10, with Γ̃ = Γ, proves
that the free boundary is starlike with respect to the origin. This argument
may be repeated, with the origin replaced by any point in Bδ(0), to show that
the free boundary is starlike with respect to all points in Bδ(0).

Proof of part (ii) of Theorem 3.9. Essentially the same argument as that
used to prove the assertions in part (i) proves the assertions in part (ii). Specif-
ically, for the proof of (4), suppose that Γ∗ ≤ Γ̃∗ but that Γ̃ < Γ. Then, for
some λ0 > 1, we have Γ ≤ λ0Γ̃, and there is a point λ0x0 ∈ Γ ∩ λ0Γ̃. By
Assumption 3.1, Γ∗ ≤ Γ̃∗ ≤ λ0Γ̃

∗, and Lemma 3.10 may be applied as be-
fore to obtain (9) and contradict Assumption 3.2. To prove (5), we assume
that 4(Γ, Γ̃) > 4(Γ∗, Γ̃∗). Then, with ln(λ0) = 4(Γ, Γ̃), we have Γ∗ ≤ λ0Γ̃

∗,
Γ ≤ λ0Γ̃, and a point λ0x0 ∈ Γ ∩ λ0Γ̃, and Lemma 3.10 may again be applied
to obtain (9) and a contradiction to Assumption 3.2.

Proof of part (iii) of Theorem 3.9. For the proof of (6), we assume that
ã(x) < a(x) on RN but that the corresponding free boundaries satisfy Γ̃ ≤ Γ.
Then there is a λ0 ≥ 1 and a point λ0x0 such that Γ ≤ λ0Γ̃ and λ0x0 ∈ Γ∩λ0Γ̃.
Since the fixed boundary satisfies Γ∗ ≤ λ0Γ

∗ by Assumption 3.1, Lemma 3.10
may again be applied to obtain the inequality

ã(x0) = |∇U(Γ̃;x0)| ≥ λ0|∇U(Γ;λ0x0)| = λ0a(λ0x0). (10)
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Since λ0a(λ0x0) ≥ a(x0), this contradicts the assumption that ã(x) < a(x)
in RN . Now for the proof of (7), let ln(λ0) = 4(Γ, Γ̃). Assuming that there
is a point λ0x0 ∈ Γ ∩ λ0Γ̃, an application of Lemma 3.10 gives (10), and the
additional assumption on a(x) implies that ã(x0) ≥ λ0a(x0). Similarly, if we
assume that λ0x0 ∈ λ0Γ∩ Γ̃, we obtain a(x0) ≥ λ0ã(x0), and, in either case, we
have

ln(λ0) = 4(Γ, Γ̃) ≤ | ln a(x0)− ln ã(x0)| ≤ sup{| lna(x) − ln ã(x)| : x ∈ RN}.

Finally, to prove (8), let lnλ = 4(Γ, Γ̃), and let x0 ∈ ((1/λ)Γ ∩ Γ̃). Let 0 <
a0 = min{a(x), ã(x) : x ∈ RN}, and let Γ0 solve Problem 1.1 with free boundary
condition |∇U(Γ0;x)| = a0 on Γ0; then, by part (ii) of this theorem, Γ ≤ Γ0, and
Γ̃ ≤ Γ0. Choose R so large that ∂BR(0) > Γ0; then λ ≤ λmax, where ln(λmax) =
4(∂BR,Γ

∗). (Note that R and λmax depend only on a(x), ã(x), and Γ∗.) Choose
r > 1 so that rΓ∗ < Γ and rΓ∗ < Γ̃, and define Γλ,r = ∂((1/λ)D∪rD∗). Observe
that Γλ,r > Γ∗, Γλ,r ≥ (1/λ)Γ, and x0 ∈ Γλ,r. The function V (x) := U(λx) is
the p-capacitary potential in Ω((1/λ)Γ∗, (1/λ)Γ).

|∇V (x)| = λ|∇U(λx)| = λa(λx) ≥ a(x). (11)

Let Uλ,r(x) be the p-capacitary potential in Ω((1/λ)Γ∗,Γλ,r). By Lemma 3.10,

|∇Uλ,r(x)| ≥ |∇V (x)| for all x ∈ Γλ,r ∩ (1/λ)Γ. (12)

It can be shown, by a comparison argument (similar to the proof of Lemma
4.4 below) involving Uλ,r and the p-capacitary potentials in Ω((1/λ)Γ∗, ∂BR)
and Ω((1/λmax)Γ

∗, ∂BR), that there is a positive constant C0, independent of
λ, such that

Uλ,r(x) ≤ 1− C0(λ− 1) for all x ∈ Γ∗. (13)

Since Uλ,r = 0 on Γλ,r, (13) and the weak comparison principle imply that

Uλ,r/(1− C0(λ− 1)) ≤ Ũ in Ω(Γ∗,Γλ,r) and, as in Lemma 3.10,

|∇Ũ | ≥
|∇Uλ,r|

1− C0(λ− 1)
on Γλ,r ∩ Γ̃. (14)

Combining (11), (12), and (14), which all hold at x0, yields

ã(x0) = |∇Ũ(x0)| ≥
|∇V (x0)|

1− C0(λ− 1)
≥

a(x0)

1− C0(λ− 1)
,

and

4(Γ, Γ̃) = lnλ ≤ ln

(
1 +

1

C0

(
1−

a(x0)

ã(x0)

))
.

The assertion follows, where B0 = 1/(a0C0). 2
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4 The Trial Free Boundary Method

Let X be the set of all (N − 1)-dimensional surfaces of the form Γ = ∂D, where
D = D(Γ) denotes a bounded domain in RN which is starlike with respect to
all points in a fixed ball Bδ(0), δ > 0. (Observe that the surfaces in X are not
necessarily C1-surfaces.) The set X is complete with respect to the metric 4
defined in §3. Given Γ∗ ∈ X, let Y = {Γ ∈ X : Γ > Γ∗}. For any Γ in Y, let
Ω(Γ) = D\Cl(D∗) = the annular domain whose boundary is Γ ∪ Γ∗, and let
S(Γ) denote the complement of D. We use the notation U(Γ;x) to denote the
p-capacitary potential in Ω(Γ) (see §2).

We will use a family of operators Tε : Y → Y, ε ∈ (0, 1), defined as the
composition of auxiliary operators φε and ψε. For Γ ∈ Y, we define

φε(Γ) = ∂{x ∈ D(Γ) : U(Γ;x) > ε},

and
ψε(Γ) = {x ∈ S(Γ) :

ε

d(x,Γ)
= a(x)}.

Then
Tε(Γ) = ψε(φε(Γ)).

It will be shown later that Tε : Y → Y and that Tε is a monotone operator in the
sense that Tε(Γ1) ≤ Tε(Γ2) whenever Γ1 ≤ Γ2 in Y. It is also possible to find C2-
surfaces Γ̃1 and Γ̃2, with Γ̃1 < Γ̃2, such that the set Ỹ := {Γ ∈ Y : Γ̃1 ≤ Γ ≤ Γ̃2}
has the property that Tε : Ỹ → Ỹ for all ε ∈ (0, 1). Observe that the surfaces
in Ỹ are not necessarily C2-surfaces; the proof of Theorem 4.1 below requires
only that the inner surface Γ̃1 and the outer surface Γ̃2 be C2-surfaces.

Theorem 4.1 (Convergence of the operator method) In Problem 1.1,
assume that Γ∗ is a C2-surface. Then Tε is a contraction on Ỹ for any ε ∈ (0, 1);
in other words, there exists a value α = α(ε), 0 ≤ α < 1, such that

4(Tε(Γ1), Tε(Γ2)) ≤ α4 (Γ1,Γ2) for all Γ1,Γ2 ∈ Ỹ. (15)

Thus, by the Banach fixed point theorem, Tε has a unique “fixed point” Γ̃ε ∈ Ỹ
which can be obtained by successive approximations in the sense that, for any
Γ ∈ Ỹ, n ∈N,

4(Tnε (Γ), Γ̃ε) ≤
αn

1− α
4 (Tε(Γ),Γ). (16)

Moreover,
4(Γ̃ε, Γ̃)→ 0 as ε→ 0+, (17)

where Γ̃ is a classical solution to Problem 1.1.

Theorem 4.2 (Convexity of the free boundary) If Γ∗ is a convex C2-
surface, and if 1/a(x) is concave in a neighborhood of the annular domain
bounded by Γ̃1 and Γ̃2, then Γ̃ is convex.
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Lemma 4.3 (Properties of the operators) The operator Tε has the follow-
ing properties:
(i) Tε : Y→ Y.
(ii) Tε is a monotone operator.

Proof of (i). It is clear from the definition of φε that φε(Γ) > Γ∗ for every
ε ∈ (0, 1) and Γ ∈ Y; thus, it only remains to be shown that φε(Γ) is starlike
with respect to all points in Bδ(0). This will follow from the fact that U(Γ;x) is
non-increasing with increasing |x−x0| along any radial line in Ω(Γ) originating at
a point x0 ∈ Bδ(0). We first show that U(Γ;x) is nonincreasing with increasing
|x| along radial lines in Ω(Γ) originating at the origin. Observe that, for λ ≥ 1,
V (x) := U(Γ; (1/λ)x) is the p-capacitary potential in λΩ(Γ), the annular domain
whose boundary is λΓ∗ ∪ λΓ. Since U(Γ;x) ≤ V (x) = 1 on λΓ∗ and 0 =
U(Γ;x) ≤ V (x) on Γ, the comparison principle for weak solutions of the p-
Laplace equation implies that U(Γ;x) ≤ V (x) = U(Γ; (1/λ)x) in the intersection
of Ω(Γ) with λΩ(Γ). This proof may be repeated, with the origin replaced by any
point x0 ∈ Bδ(0). To show that the surface ψε(Γ) is starlike with respect to the
origin, let x ∈ S(Γ), let λ > 1, and define f(x) = |x|((ε/d(x,Γ) − a(x)); then,
since λa(λx) > a(x) and d(λx,Γ) > d(λx, λΓ) = λd(x,Γ), we have f(λx) =
λ|x|((ε/d(λx,Γ))−a(λx)) < f(x). Thus, the function f(x) is strictly decreasing
with increasing |x| along radial lines in S(Γ). Again, the same argument can
be repeated, with the origin replaced by any point x0 ∈ Bδ(0), to show that
f(x) := |x−x0|((ε/d(x,Γ)−a(x)) is monotone decreasing with increasing |x−x0|
along all radial lines originating at a point x0 ∈ Bδ(0).

Proof of (ii). We will show that φε and ψε are monotone operators; for
then Γ1 ≤ Γ2 in Y implies that φε(Γ1) ≤ φε(Γ2), and Tε(Γ1) = ψε(φε(Γ1)) ≤
ψε(φε(Γ2)) = Tε(Γ2). Let Γ1 ≤ Γ2 in Y. By the weak comparison principle,
U(Γ1;x) ≤ U(Γ2;x) in Ω(Γ1); thus, {U(Γ1;x) > ε} ⊂ {U(Γ2;x) > ε}, which
means that φε(Γ1) ≤ φε(Γ2). Furthermore, if x ∈ S(Γ2), then d(x,Γ2) ≤ d(x,Γ1)
and |x|((ε/d(x,Γ2))−a(x)) ≥ |x|((ε/d(x,Γ1))−a(x)). Thus, if x ∈ ψε(Γ2), then
|x|((ε/d(x,Γ1))−a(x)) ≤ 0, and, by the monotonicity of f(x) = |x|((ε/d(x,Γ1)−
a(x)), we have x ∈ S(ψε(Γ1)), which implies that ψε(Γ1) ≤ ψε(Γ2). 2

Outline of the proof that the operator is a contraction. For the proof
that Tε is a contraction, ε ∈ (0, 1) is fixed. Choose λ̃ > 1 such that ln(λ̃) =
4(Γ̃1, Γ̃2). Then the operator ψε is non-expanding in the sense that

ψε(λΓ) ≤ λψε(Γ) (18)

for all Γ ∈ Ỹ and 1 ≤ λ ≤ λ̃. For the proof, choose x ∈ ψε(Γ); then λx ∈ S(λΓ),
and by the monotonicity of the function f(x) = |x|((ε/d(x,Γ))−a(x)), it follows
that f(λx) ≤ f(x) = 0. Thus, λx ∈ S(ψε(λΓ)), which implies (18). Due to the
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monotonicity of the operators, it suffices to show that there exists α = α(ε),
with 0 ≤ α < 1, such that

φε(λΓ) ≤ λαφε(Γ) for all Γ ∈ Ỹ and 1 ≤ λ ≤ λ̃. (19)

This result follows immediately from Lemmas 4.4 through 4.7; in Lemmas 4.4
and 4.5, we show that there exists an α such that φε(λΓ) ≤ λαφε(Γ), and
Lemmas 4.6 and 4.7 together show that α = α(ε) and 0 ≤ α < 1. 2

Lemma 4.4 If Γ∗ is a C2-surface, then there exists a constant C > 0 such that

U(λΓ;λx) ≤ (1− C(λ− 1))ε (20)

uniformly for all Γ ∈ Ỹ, x ∈ φε(Γ) and λ ∈ [1, λ̃].

Proof. For any Γ ∈ Ỹ and 1 ≤ λ ≤ λ̃, the weak comparison principle implies
that

U(λΓ;λx) ≤ (max{U(λΓ; y) : y ∈ λΓ∗})U(Γ;x)

in Ω(Γ). This is because both U(λΓ;λx) and (max{U(λΓ; y) : y ∈ λΓ∗})U(Γ;x)
are weak solutions of the p-Laplace equation in Ω(Γ), and, for x ∈ Γ, U(Γ;x) =
U(λΓ;λx) = 0, while, on Γ∗, U(Γ;x) = 1 and U(λΓ;λx) ≤ max{U(λΓ; y) : y ∈
λΓ∗}. Also, since λΓ ≤ λ̃Γ̃2, we have that U(λΓ;x) ≤ U(λ̃Γ̃2;x) in Ω(λΓ) by
the weak comparison principle. Therefore,

U(λΓ;λx) ≤ max{U(λ̃Γ̃2; y) : y ∈ λΓ∗}U(Γ;x) in Ω(Γ), (21)

and the assertion will follow from an estimate of max{U(λ̃Γ̃2; y) : y ∈ λΓ∗}. To
obtain this estimate, we observe that, since the annular domain Ω = Ω(λ̃Γ̃2)
is starlike with respect to all points in Bδ(0), and since ∂Ω is a C2-surface,
it follows from [LB], Theorem 1, and from a proof of Lewis in [L1], §3, that
U(λ̃Γ̃2;x) ∈ C1(Cl(Ω)) and that inf{|∇U(λ̃Γ̃2;x)| : x ∈ Ω} > 0. Under these
conditions, the function v(x) := ∇U(λ̃Γ̃2;x) · x satisfies a uniformly elliptic
partial differential equation in Ω and, therefore, we have that

−∇U(λ̃Γ̃2;x) · x ≥ min{(−∇U(λ̃Γ̃2; y) · y) : y ∈ ∂Ω} = C > 0,

by the maximum principle. Now for any y ∈ λΓ∗, the Mean Value Theorem
implies that

U(λ̃Γ̃2; y)− U(λ̃Γ̃2; (1/λ)y)) = ∇U(λ̃Γ̃2; (1/λ
∗)y) · (y − (1/λ)y),

for some 1 < λ∗ < λ, so that, for any y ∈ λΓ∗,

U(λ̃Γ̃2; y) ≤ U(λ̃Γ̃2; (1/λ)y) +∇U(λ̃Γ̃2; (1/λ
∗)y) · (1/λ∗)y(λ− 1)

≤ 1− C(λ− 1). (22)
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By combining (22) with (21), one sees that

U(λΓ;λx) ≤ (1− C(λ− 1))U(Γ;x) (23)

uniformly for all x ∈ Ω(Γ), Γ ∈ Ỹ, and 1 ≤ λ ≤ λ̃. Since U(Γ;x) = ε on φε(Γ),
(20) holds uniformly for all x ∈ φε(Γ), Γ ∈ Ỹ, and 1 ≤ λ ≤ λ̃. 2

Lemma 4.5 There exists a constant α ∈ (0, 1) such that φε(λΓ) ≤ λαφε(Γ)
uniformly for all Γ ∈ Ỹ and 1 ≤ lambda ≤ λ̃. Specifically, we have

α = 1−
Cε

λ̃R̃M(λΓ)
,

where R̃ = max{|x| : x ∈ Γ̃2}, E(λΓ) denotes the annular domain bounded by
the surfaces φε(λΓ) and λφε(Γ), and M(λΓ) = max{|∇U(λΓ;x)| : x ∈ E(λΓ)}.

Proof. By Lemma 4.4, we have that U(λΓ;λx) ≤ (1− C(λ− 1))ε < ε for all
x in φε(Γ), Γ ∈ Ỹ and 1 ≤ λ ≤ λ̃. Thus, φε(λΓ) < λφε(Γ), and E(λΓ) exists.
Now for any x ∈ φε(λΓ), choose r > 1 such that rx ∈ λφε(Γ). By the Mean
Value Theorem,

|U(λΓ;x)− U(λΓ; rx)| ≤ max{|∇U(λΓ; y) : y ∈ E(λΓ)}|x|(r − 1)

≤ M(λΓ)λ̃R̃(r − 1). (24)

Since U(λΓ;x) = ε, and since rx = λy for some y ∈ φε(Γ), we have U(λΓ; rx) ≤
(1 − C(λ − 1))ε. Therefore, it follows from (24) that ε − (1 − C(λ − 1))ε ≤
M(λΓ)λ̃R̃(r − 1), whence r ≥ 1 + Cε(λ − 1)/(λ̃R̃M(λΓ)). Since this estimate
holds for all x ∈ φε(λΓ), we conclude that

φε(λΓ) ≤
λ

1 + (Cε/(λ̃R̃M(λΓ)))(λ− 1)
φε(Γ) ≤ λαφε(Γ),

where α = 1− Cε/(λ̃R̃M(λΓ)). 2

Lemma 4.6 For any ε ∈ (0, 1), there exists a positive value r0 = r0(ε) such
that d(Γ;φε(Γ)) ≥ r0 uniformly for all Γ ∈ Ỹ.

Proof. For any Γ ∈ Ỹ and x0 ∈ Γ, let

K(x0) = {x ∈ RN : |x0||x− x0|(1− (δ/R̃)2)1/2 ≤ x0 · (x− x0) ≤ |x0|},

and let ω(x0) = Nµ(K(x0))/K(x0), where µ = d(Γ∗, Γ̃1)/2 and Nµ(·) denotes
the µ-neighborhood of a set. Observe that K(x0) is a right circular come with
vertex x0 such thatK(x0) ⊂ S(Γ) and ω(x0)∩Cl(D∗) = ∅. Also observe that the
annular regions ω(x0), x0 ∈ Γ, are all congruent. Define u(x0;x) = 1− v(x0;x),
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where v(x0;x) denotes the p-capacitary potential in ω(x0). Also define γε(x0) =
∂{x ∈ ω(x0) : u(x0;x) > ε}, observing that r0 := d(x0, γε(x0)) > 0 is a positive
value which is independent of x0, due to the congruity of these configurations.
Observe that U(Γ;x) = 0 on Γ ∩ Cl(ω(x0)), where 0 ≤ u(x0;x) ≤ 1, and that
0 ≤ U(Γ;x) ≤ 1 in Cl(Ω(Γ))∩∂(K(x0)∪ω(x0)), where u(x0;x) = 1. Therefore,
U(Γ;x) ≤ u(x0;x) in ω(x0) ∩ Ω(Γ), by the weak comparison principle. Thus,
{x ∈ ω(x0) ∩ Ω(Γ) : U(Γ;x) > ε} ⊂ {x ∈ ω(x0) ∩ Ω(Γ) : u(x0;x) > ε},
whence d(φε(Γ), x0) ≥ d(x0, γε(x0)) = r0. The assertion follows, since the above
argument applies to all Γ ∈ Ỹ and x0 ∈ Γ. 2

Lemma 4.7 There exists a constant M0 such that M(λΓ) ≤M0 uniformly for
all Γ ∈ Ỹ and all λ ∈ [1, λ̃].

Proof. For all Γ ∈ Ỹ, 1 ≤ λ ≤ λ̃, and x ∈ E(λΓ), we have that d(x,Γ∗) ≥
d(φε(λΓ),Γ∗) ≥ d(φε(Γ̃1),Γ

∗) > 0, uniformly for all Γ ∈ Ỹ , 1 ≤ λ ≤ λ̃, and x ∈
E(λΓ), since λΓ ≥ Γ̃1 and, therefore, φε(λΓ) ≥ φε(Γ̃1) > Γ∗. Also, d(x, λΓ) ≥
d(λφε(Γ), λΓ) = λd(φε(Γ),Γ) ≥ d(φε(Γ),Γ) > 0, due to Lemma 4.6. Therefore,
there exists a fixed value χ > 0 such that B3χ(x) ⊂ Ω(λΓ) for all x ∈ E(λΓ),Γ ∈
Ỹ, and 1 ≤ λ ≤ λ̃. By a gradient bound given by Tolksdorf (see [T2], Theorem 1)
and the preceding discussion, there exist constants c > 0 and α > 0, depending
only on χ,N and p, such that

|∇U(λΓ;x)| ≤ cχα−1 for all x ∈ E(λΓ),

so that M(λΓ) ≤M0 = cχα−1 <∞ for all Γ ∈ Ỹ and 1 ≤ λ ≤ λ̃. 2

Convergence of fixed points to the free boundary. For any ε ∈ (0, 1),
we define γ+(ε) = max{lnλ : x ∈ Γ̃, λx ∈ Γ̃ε, λ > 0} and γ−(ε) = max{lnλ :
x ∈ Γ̃ε, λx ∈ Γ̃, λ > 0}. We also define E± = {ε ∈ (0, 1) : γ±(ε) ≥ 0}. Since
4(Γ̃ε, Γ̃) = max{γ+(ε), γ−(ε)}, it suffices to show that lim supε→0+ γ±(ε) = 0.

“+” case. Let ε ∈ E+ and γ+ = γ+(ε); then Γ̃ε ≤ (exp(γ+))Γ̃ and there
is a point x0 = x0(ε) ∈ Γ̃ε ∩ (exp(γ+))Γ̃. Since Tε(Γ̃ε) = Γ̃ε, it follows that
ε/d(φε(Γ̃ε), x) = a(x) for all x ∈ Γ̃ε, and it is possible to choose x1 = x1(ε) ∈
φε(Γ̃ε) so that

d
( x0

eγ+
,
x1

eγ+

)
=

1

eγ+
d(x0, x1) =

ε

(eγ+)a(x0)
≤

ε

a(x0/eγ+)
. (25)

Since Γ̃ is the solution of Problem 1.1,

||∇U(Γ̃;x)| − a(x)| ≤ σ(d(Γ̃, x)) for x ∈ Ω(Γ̃), (26)

where σ(ε) → 0 as ε → 0+. By the weak comparison principle and (23) with
λ = exp(γ+),

ε = U(Γ̃;x1) ≤ U((eγ+)Γ̃;x1) ≤ (1− C(eγ+ − 1))U(Γ̃;x1/e
γ+) (27)
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for every sufficiently small ε ∈ E+. Using the Mean Value Theorem, (25), and
(26), we have, for some z on the line segment joining x0/ exp(γ+) to x1/ exp(γ+),

U
(
Γ̃;

x1

eγ+

)
≤ |∇U(Γ̃; z)|d

( x0

eγ+
,
x1

eγ+

)
≤ (a(x0/e

γ+) + σ(ε))
ε

a(x0/eγ+)
.

Combining this inequality with (27), and using the fact that a(x) has a positive
lower bound, a0, we see that

ε

1− C(eγ+ − 1)
≤ ε(1 + σ(ε)/a0),

or

γ+ ≤ ln

(
1 +

1

C

(
1−

1

1 + σ(ε)/a0

))
.

Thus, lim supε→0+ γ+(ε) = 0.

”–” case. Let ε ∈ E−, so that Γ̃ ≤ (exp(γ−))Γ̃ε, and there is a point x0 =
x0(ε) ∈ Γ̃ ∩ (exp(γ−))Γ̃ε. Since Γ̃ε is a fixed point of the operator Tε, there is a
point x1 = x1(ε) ∈ (exp(γ−))φε(Γ̃ε), such that

1

eγ−
d(x0, x1) = d

( x0

eγ−
,
x1

eγ−

)
=

ε

a(x0/eγ−)
≥

ε

(eγ−)a(x0)
. (28)

Using the Mean Value Theorem,(26) and (28),

U(Γ̃;x1) ≥ (a(x0)− σ(ε))
ε

a(x0)
= ε− σ(ε)

ε

a(x0)
. (29)

Also, as in (27), we have

U(Γ̃;x1) ≤ U((eγ−)Γ̃ε;x1) ≤ (1−C(eγ− − 1))U
(
Γ̃ε;

x1

eγ−

)
= (1−C(eγ− − 1))ε.

Combining this with (29) and using the fact that a(x) has a positive lower
bound, a0, one concludes that ln γ− ≤ ln(1+σ(ε)/(a0C)), from which it follows
that lim supε→0+ γ− = 0. 2

5 Convexity of the Free Boundary

Proof of Theorem 4.2 . We will prove that, if 1/a(x) is concave in a neigh-
borhood of the domain bounded by Γ̃1 and Γ̃2, then for every ε ∈ (0, 1), we have
Tε : YC → YC , where

YC = {Γ ∈ Y : Γ is convex}.

It follows that Γ̃ε is convex for every ε ∈ (0, 1) and, therefore, that Γ̃ is convex.
Lewis proves in [L1], Theorem 1, that, if Ω(Γ) is convex, then, for every ε ∈
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(0, 1), the set {x ∈ Ω(Γ) : U(Γ;x) > ε} is convex; therefore, φε : YC → YC ,
and it only remains for us to show that ψε : YC → YC for all ε ∈ (0, 1). Let
Γ ∈ YC , let x1, x2 ∈ ψε(Γ), and let L = {λx1 + (1− λ)x2 : 0 ≤ λ ≤ 1}. For any
x ∈ RN , define

f(x) =
ε

a(x)d(Γ, x)
;

clearly, f(x1) = f(x2) = 1.We will show that f(x) ≥ 1 for all x ∈ L. For i = 1, 2,
let zi be the point on Γ such that f(xi) = ε/(a(xi)d(Γ, xi)) = ε/(a(xi)d(zi, xi)),
and let l be the line segment joining z1 to z2; then, since Γ is convex, f(x) ≥
ε/(a(x)d(l, x)) =: g(x) for any x ∈ L. Now, as in [A2], §4.3, the function φ(λ) :=
d(l, λx1 + (1− λ)x2) satisfies φ′′(λ) ≥ 0 for all 0 ≤ λ ≤ 1. Therefore, d(l, λx1 +
(1− λ)x2) ≤ λd(l, x1) + (1− λ)d(l, x2) for 0 ≤ λ ≤ 1, whence

g(λx1 + (1− λ)x2) ≥ h(λ) :=
ε

a(λ)(λd(z1, x1) + (1− λ)d(z2, x2))
,

for 0 ≤ λ ≤ 1, where a(λ) = a(λx1 + (1− λ)x2). Clearly, h(0) = h(1) = 1, and
the concavity of 1/a(x) implies that 1/a(λ) is concave in the interval [0, 1]. We
will show, in Lemma 5.1, that the concavity of 1/a(λ) implies that h(λ) ≥ 1 for
all 0 ≤ λ ≤ 1, and, therefore, f(x) ≥ 1 for all x ∈ L. 2

Lemma 5.1 Let h(λ) = 1/(a(λ)(Aλ+B)), where 1/a(λ) is concave and Aλ+
B > 0 for 0 ≤ λ ≤ 1. Then, if h(0) > 0 and h(1) > 0, then h(λ) ≥
min(h(0), h(1)) for any 0 ≤ λ ≤ 1.

Proof. First, assume that 1/a(λ) ∈ C2([0, 1]), and (1/a(λ))′′ < 0 in [0, 1].
Write h(λ) = f(λ)g(λ), where f(λ) = 1/a(λ), and g(λ) = 1/(Aλ + B). By
assumption, f ′′(λ) < 0 in [0, 1]. Suppose that h(λ) attains an absolute minimum
at a point λ0 ∈ (0, 1). Then, at λ0, we have h′ = f ′g + fg′ = 0, and h′′ =
f ′′g + 2f ′g′ + fg′′ ≥ 0. By substituting for f ′(λ0), and using the fact that
f ′′(λ0) < 0, one sees that 0 ≤ h′′ < (f/g)(g′′g − 2(g′)2) at λ0. But a direct
calculation shows that g′′g = 2(g′)2 for all 0 ≤ λ ≤ 1, so that we have a
contradiction in this case.

Now assume only that f(λ) ∈ C2([0, 1]) and that f ′′(λ) = (1/a(λ))′′ ≤
0 in [0, 1]. Let η ∈ C∞(R) be chosen so that η > 0 and η′′ < 0 on [0, 1];
then, for every t > 0, (f + tη)′′ < 0 on [0, 1]. Let Ht(λ) = (f + tη)(λ)g(λ).
Since Ht(0) = (f + tη)(0)g(0) > 0, and Ht(1) = (f + tη)(1)g(1) > 0, the
above argument shows that Ht(λ) ≥ min(Ht(0),Ht(1)), or (f + tη)(λ)g(λ) ≥
min((f + tη)(0)g(0), (f + tη)(1)g(1)) for every 0 ≤ λ ≤ 1. Letting t → 0+, we
see that h(λ) = f(λ)g(λ) ≥ min(f(0)g(0), f(1)g(1)) = min(h(0), h(1)) for every
0 ≤ λ ≤ 1.

Finally, assume only that f(λ) = 1/a(λ) is concave on [0, 1]. Extend f as a
continuous function with compact support in R such that [0, 1] ⊂ support(f).
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Let ρ(λ) ∈ C∞0 (−1, 1) such that ρ(λ) ≥ 0 and
∫∞
−∞ ρ(t)dt = 1. For each n ∈ N,

define

Fn(λ) =

∫ ∞
−∞

nρ(n(t− λ))f(t)dt =

∫ ∞
−∞

nρ(nt)f(t− λ)dt.

Then Fn ∈ C∞, and Fn converges almost everywhere to f on [0, 1]. (See, for
example, [Mo], page 20.) Since f is continuous, Fn converges uniformly on
[0, 1] to f, and, since f is concave on [0, 1], Fn is concave on [0, 1] for every n.
Let hn(λ) = Fn(λ)g(λ). The argument in the previous paragraph shows that
hn(λ) ≥ min(hn(0), hn(1)) for all 0 ≤ λ ≤ 1 and n ∈ N. Since hn(λ) converges
uniformly to h(λ) on [0, 1], we conclude that h(λ) ≥ min(h(0), h(1)) on [0, 1]. 2

Remark 5.2. The operator ψε may be defined in terms of a generalized dis-
tance function as in [A1]. One still obtains convergence of the trial free boundary
method, but the proof that this operator preserves convexity is more difficult
and has only been carried out in R2. (See [A4], Lemma 2.)
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