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Abstract

By formulating Helmholtz’s ideas about perception, in terms of modern-day theories, one arrives at a model of perceptual inference
and learning that can explain a remarkable range of neurobiological facts: using constructs from statistical physics, the problems of infer-
ring the causes of sensory input and learning the causal structure of their generation can be resolved using exactly the same principles.
Furthermore, inference and learning can proceed in a biologically plausible fashion. The ensuing scheme rests on Empirical Bayes and
hierarchical models of how sensory input is caused. The use of hierarchical models enables the brain to construct prior expectations in a
dynamic and context-sensitive fashion. This scheme provides a principled way to understand many aspects of cortical organisation and
responses.

In this paper, we show these perceptual processes are just one aspect of emergent behaviours of systems that conform to a free energy
principle. The free energy considered here measures the difference between the probability distribution of environmental quantities that
act on the system and an arbitrary distribution encoded by its configuration. The system can minimise free energy by changing its con-
figuration to affect the way it samples the environment or change the distribution it encodes. These changes correspond to action and
perception respectively and lead to an adaptive exchange with the environment that is characteristic of biological systems. This treatment
assumes that the system’s state and structure encode an implicit and probabilistic model of the environment. We will look at the models
entailed by the brain and how minimisation of its free energy can explain its dynamics and structure.
� 2006 Published by Elsevier Ltd.
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1. Introduction

Our capacity to construct conceptual and mathematical
models is central to scientific explanations of the world
around us. Neuroscience is unique because it entails models
of this model making procedure itself. There is something
quite remarkable about the fact that our inferences about
the world, both perceptual and scientific, can be applied
to the very process of making those inferences: Many peo-
ple now regard the brain as an inference machine that con-
forms to the same principles that govern the interrogation
of scientific data (MacKay, 1956; Neisser, 1967; Ballard
et al., 1983; Mumford, 1992; Kawato et al., 1993; Rao
and Ballard, 1998; Dayan et al., 1995; Friston, 2003;

Körding and Wolpert, 2004; Kersten et al., 2004; Friston,
2005). In everyday life, these rules are applied to informa-
tion obtained by sampling the world with our senses. Over
the past years, we have pursued this perspective in a Bayes-
ian framework to suggest that the brain employs hierarchi-
cal or empirical Bayes to infer the causes of its sensations
(Friston, 2005). The hierarchical aspect is important
because it allows the brain to learn its own priors and,
implicitly, the intrinsic causal structure generating sensory
data. This model of brain function can explain a wide
range of anatomical and physiological aspects of brain sys-
tems; for example, the hierarchical deployment of cortical
areas, recurrent architectures using forward and backward
connections and functional asymmetries in these connec-
tions (Angelucci et al., 2002a; Friston, 2003). In terms of
synaptic physiology, it predicts associative plasticity and,
for dynamic models, spike-timing-dependent plasticity. In
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terms of electrophysiology it accounts for classical and
extra-classical receptive field effects and long-latency or
endogenous components of evoked cortical responses
(Rao and Ballard, 1998; Friston, 2005). It predicts the
attenuation of responses encoding prediction error with
perceptual learning and explains many phenomena like
repetition suppression, mismatch negativity and the P300
in electroencephalography. In psychophysical terms, it
accounts for the behavioural correlates of these physiolog-
ical phenomena, e.g., priming, and global precedence (see
Friston, 2005 for an overview).

It is fairly easy to show that both perceptual inference
and learning rest on a minimisation of free energy (Friston,
2003) or suppression of prediction error (Rao and Ballard,
1998). The notion of free energy derives from statistical
physics and is used widely in machine learning to convert
difficult integration problems, inherent in inference, into
easier optimisation problems. This optimisation or free
energy minimisation can, in principle, be implemented
using relatively simple neuronal infrastructures.

The purpose of this paper is to suggest that inference is
just one emergent aspect of free energy minimisation and
that a free energy principle for the brain can explain the
intimate relationship between perception and action. Fur-
thermore, the processes entailed by the free energy princi-
ple cover not just inference about the current state of the
world but a dynamic encoding of context that bears the
hallmarks of attention and related mechanisms.

The free energy principle states that systems change to
decrease their free energy. The concept of free-energy arises
in many contexts, especially physics and statistics. In ther-
modynamics, free energy is a measure of the amount of
work that can be extracted from a system, and is useful
in engineering applications. It is the difference between
the energy and the entropy of a system. Free-energy also
plays a central role in statistics, where, borrowing from sta-
tistical thermodynamics; approximate inference by varia-
tional free energy minimization (also known as
variational Bayes, or ensemble learning) has maximum
likelihood and maximum a posteriori methods as special
cases. It is this sort of free energy, which is a measure of
statistical probability distributions; we apply to the
exchange of biological systems with the world. The impli-
cation is that these systems make implicit inferences about
their surroundings. Previous treatments of free energy in
inference (e.g., predictive coding) have been framed as
explanations or mechanistic descriptions. In this work,
we try to go a step further by suggesting that free energy
minimisation is mandatory in biological systems and there-
fore has a more fundamental status. We try to do this by
presenting a series of heuristics that draw from theoretical
biology and statistical thermodynamics.

2. Overview

This paper has three sections. In the first (Sections 3–7),
we lay out the theory behind the free energy principle,

starting from a selectionist standpoint and ending with
the implications of the free energy principle in neurobio-
logical and cognitive terms. The second section (Sections
8–10) addresses the implementation of free energy minimi-
sation in hierarchical neuronal architectures and provides a
simple simulation of sensory evoked responses. This illus-
trates some of the key behaviours of brain-like systems that
self-organise in accord with the free energy principle. A key
phenomenon; namely, suppression of prediction error by
top-down predictions from higher cortical areas, is exam-
ined in the third section. In this final section (Section 11),
we focus on one example of how neurobiological studies
are being used to address the free energy principle. In this
example, we use functional magnetic resonance imaging
(fMRI) of human subjects to examine visually evoked
responses to predictable and unpredictable stimuli.

3. Theory

In this section, we develop a series of heuristics that lead
to a variational free energy principle for biological systems
and, in particular, the brain. We start with evolutionary or
selectionist considerations that transform difficult ques-
tions about how biological systems operate into simpler
questions about the constraints on their behaviour. These
constraints lead us to the important notion of an ensemble
density that is encoded by the state of the system. This den-
sity is used to construct a free energy for any system that is
in exchange with its environment. We then consider the
implications of minimising this free energy with regard to
quantities that determine the systems (i.e., brains) state
and, critically, its action upon the environment. We will
see that this minimisation leads naturally to perceptual
inference about the world, encoding of perceptual context
(i.e., attention), perceptual learning about the causal struc-
ture of the environment and, finally, a principled exchange
with, or sampling of, that environment.

Under the free energy principle (i.e., the brain changes
to minimise its free energy), the free energy becomes a
Lyapunov function for the brain. A Lyapunov function is
a scalar function of a systems state that decreases with
time; it is also referred to colloquially as a Harmony func-
tion in the neural network literature (Prince and Smolen-
sky, 1997). There are many examples of related energy
functionals in the time-dependent partial differential equa-
tions literature (e.g., Kloucek, 1998). Usually, one tries to
infer the Lyapunov function given a systems structure
and behaviour. In what follows we address the converse
problem; given the Lyapunov function, what would sys-
tems that minimise free energy look like?

4. The nature of biological systems

Biological systems are thermodynamically open, in the
sense that they exchange energy and entropy with the envi-
ronment. Furthermore, they operate far-from-equilibrium
and are dissipative, showing self-organising behaviour
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(Ashby, 1947; Nicolis and Prigogine, 1977; Haken, 1983;
Kauffman, 1993). However, biological systems are more
than simply dissipative self-organising systems. They can
negotiate a changing or non-stationary environment in a
way that allows them to endure over substantial periods
of time. This endurance means that they avoid phase tran-
sitions that would otherwise change their physical structure
(interesting exceptions are phase-transitions in develop-
mental trajectories; e.g., in metamorphic insects). A key
aspect of biological systems is that they act upon the envi-
ronment to change their position within it, or relation to it,
in a way that precludes extremes of temperature, pressure
and other external fields. By sampling or navigating the
environment selectively they restrict their exchange with
it within bounds that preserve their physical integrity and
allow them to last longer. A fanciful example is provided
in Fig. 1: Here, we have taken a paradigm example of a
non-biological self-organising system, namely a snowflake
and endowed it with wings that enable it to act on the envi-
ronment. A normal snowflake will fall and encounter a
phase-boundary, at which the environments temperature
will cause it to melt. Conversely, snowflakes that can main-
tain their altitude, and regulate their temperature, survive
indefinitely with a qualitatively recognisable form. The
key difference between the normal and adaptive snowflake
is the ability to change their relationship with the environ-

ment and maintain thermodynamic homeostasis. Similar
mechanisms can be envisaged easily in an evolutionary set-
ting, wherein systems that avoid phase-transitions will be
selected above those that cannot (cf., the selection of che-
motaxis in single-cell organisms or the phototropic behav-
iour of plants). By considering the nature of biological
systems in terms of selective pressure one can replace diffi-
cult questions about how biological systems emerge with
questions about what behaviours they must exhibit to exist.
In other words, selection explains how biological systems
arise; the only outstanding issue is what characterises they
must possess. The snowflake example suggests biological
systems act upon the environment to preclude phase-tran-
sitions. It is therefore sufficient to define a principle that
ensures this sort of exchange with the environment. We will
see that free energy minimisation in one such principle.

4.1. The ensemble density

To develop these arguments formally, we need to define
some quantities that describe the environment, the system
and their interactions. Let # parameterise environmental
forces or fields that act upon the system and k be quantities
that describe the systems physical state. We will unpack
these quantities later. At the moment, we will simply note
that they can be very high dimensional and time-varying.

Fig. 1. Schematic highlighting the difference between dissipative, self-organising systems like snowflakes and adaptive systems that can change their

relationship to the environment. By occupying a particular environmental niche, biological systems can restrict themselves to a domain of parameter space

that is far from phase-boundaries. The phase-boundary depicted here is a temperature phase-boundary that would cause the snowflake to melt (i.e., induce

a phase-transition). In this fanciful example, we have assumed that snowflakes have been given the ability to fly and maintain their altitude (and

temperature) and avoid being turned into raindrops.

72 K. Friston et al. / Journal of Physiology - Paris 100 (2006) 70–87



To link these two quantities, we will invoke an arbitrary
function q(#;k), which we will refer to as an ensemble den-
sity. This is some arbitrary density function on the environ-
ments parameters that is specified or encoded by the
systems parameters. For example, k could be the mean
and variance of a Gaussian distribution on the environ-
ments temperature, #. The reason q(#;k) is called an
ensemble density is that it can be regarded as the probabil-
ity density that a specific environmental state # would be
selected from an infinite ensemble of environments given
the systems state k. Notice that q(#;k) is not a conditional
density because k is treated as fixed and known (as opposed
to a random variable).

Invoking the ensemble density links the state of the sys-
tem to the environment and allows us to interpret the sys-
tem as a probabilistic model of the environment. The
ensemble density plays a central role in the free energy for-
mulation described below. Before describing this formula-
tion, we need to consider two other sets of variables that
describe, respectively, the effect of the environment on
the system and the effect of the system on the environment.
We will denote these as ~y and a, respectively.1 ~y can be
thought of as system states that are acted upon by the envi-
ronment; for example the state of sensory receptors. This
means that ~y can be regarded as sensory input. The action
variables a represent the force exerted by effectors that act
on the environment to change sensory samples. We will
represent this dependency by making the sensory samples
~yðaÞ a functional of action. Sometimes, this dependency
can be quite simple: For example, the activity of stretch
receptors in muscle spindles is affected directly by muscular
forces causing that spindle to contract. In other cases, the
dependency can be more complicated: For example, the
oculomotor system, controlling eye position, can influence
the activity of every photoreceptor in the retina. Fig. 2
shows a schematic of these variables and how they relate
to each other. With these quantities in place we can now
formulate an expression for the systems free energy.

5. The free energy principle

The free energy is a scalar function of the ensemble den-
sity and the current sensory input. It comprises two terms2

F ¼ �

Z

qð#Þ ln
pð~y; #Þ

qð#Þ
d#

¼ � ln pð~y; #Þh iq þ ln qð#Þh iq ð1Þ

The first is the energy of this system expected under the
ensemble density. The energy is simply the surprise or
information about the joint occurrence of the sensory input
and its causes #. The second term is the negative entropy of

the ensemble density. Note that the free energy is defined
by two densities; the ensemble density q(#;k) and some-
thing we will call the generative density pð~y; #Þ, from which
one can generate sensory samples and their causes. The
generative density factorises into a likelihood and prior
density pð~yj#Þpð#Þ, which specify a generative model. This
means the free energy induces a generative model for any
system and an ensemble density over the causes or param-
eters of that model. The functional form of these densities
is needed to evaluate the free energy. We will consider func-
tional forms that may be employed by the brain in the next
section. At the moment, we will just note that these func-
tional forms enable the free energy to be defined as a func-
tion F ð~y; kÞ of the systems sensory input and state.

The free energy principle states that all the quantities
that can change; i.e., that are owned by the system, will
change to minimise free energy. These quantities are the
system parameters k and the action parameters a. This
principle, as we will see below, is sufficient to account for
adaptive exchange with the environment which precludes
phase-transitions. We will show this by considering the
implications of minimising the free energy with respect to
k and a, respectively.

5.1. Perception: optimising k

It is fairly easy to show that optimizing the systems
parameters with respect to free energy renders the ensemble
density the posterior or conditional density of the environ-
mental causes, given the sensory data. This can be seen by
rearranging Eq. (1) to show the dependence of the free
energy on k3

F ¼ � ln pð~yÞ þ Dðqð#; kÞkpð#j~yÞÞ ð2Þ

Only the second term is a function of k; this is a Kullback–
Leibler cross-entropy or divergence term that measures the
difference between the ensemble density and the condi-
tional density of the causes. Because this measure is always
positive, minimising the free energy corresponds to making
the ensemble density the same as the conditional density. In
other words, the ensemble density encoded by the systems
state becomes an approximation to the posterior probabil-
ity of the causes of its sensory input. This means the system
implicitly infers or represents the causes of its sensory sam-
ples. Clearly, this approximation depends upon the physi-
cal structure of the system and the implicit form of the
ensemble density; and how closely this matches the causal
structure of the environment. Again, invoking selectionist
arguments; those systems that match their internal struc-
ture to the external causal structure of the environment
in which they are immersed will be able to minimise their
free energy more effectively.

1 Tilde denotes variables in generalised coordinates that cover high-

order motion; i.e., ~y ¼ y; y0; y00; . . . This is important when considering the

free energy of dynamic systems and enables a to affect ~y through its high-

order temporal derivatives.
2 hÆiq means the expectation under the density q.

3 We have used the definition of Kullback–Leibler or relative entropy

here DðqkpÞ ¼
R

q ln q

p
d#.
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5.2. Action: optimising a

Changing the configuration of the system to move or re-
sample the environment by minimising the free energy with
respect to the action variables enforces a sampling of the
environment that is consistent with the ensemble density.
This can be seen with a second rearrangement of Eq. (1)
that shows how the free energy depends upon a

F ¼ � ln pð~yðaÞj#Þh iq þ Dðqð#Þkpð#ÞÞ ð3Þ

In this instance, only the first term is a function of action.
Minimising this term corresponds to maximising the log
probability of the sensory input, expected under the ensem-
ble density. In other words, the system will reconfigure it-
self to sample sensory inputs that are the most likely
under the ensemble density. However, as we have just seen,
the ensemble density approximates the conditional distri-
bution of the causes given sensory inputs. The inherent cir-
cularity obliges the system to fulfil its own expectations. In
other words, the system will expose itself selectively to
causes in the environment that it expects to encounter.
However, these expectations are limited to the repertoire
of physical states the system can occupy, which specify
the ensemble density. Therefore, systems with a low free
energy can only sample parts of the environment they
can encode with their repertoire of physical states. Because
the free energy is low, the inferred causes approximate the
real environmental conditions. This means the systems
physical state must be sustainable under these environmen-

tal forces, because each system is its own existence proof.
In short, low free energy systems will look like they are
responding adaptively to changes in the external or internal
milieu, to maintain a homeostatic exchange with the
environment.

Systems which fail to minimise free energy will have sub-
optimal structures for representing the ensemble density or
inappropriate effectors for sampling the environment.
These systems will not restrict themselves to specific
domains of their milieu and will ultimately experience a
phase transition.

In summary, the free energy principle can be motivated,
quite simply, by noting that any system that does not min-
imise its free energy cannot respond to environmental
changes and cannot have the attribute ‘biological’. It fol-
lows that minimisation of free energy may be a necessary,
if not sufficient, biological characteristic. The mechanism
that causes biological systems to minimise their free energy
can be ascribed to selective pressure; operating at somatic
(i.e., the life time of the organism) or evolutionary time-
scales (Edelman, 1993). Before turning to minimisation of
free energy in the brain, we now need to unpack the quan-
tities describing the biological system and relate their
dynamics to processes in neuroscience.

5.3. The mean-field approximation

Hitherto, we have treated the quantities describing the
environment together. Clearly, these quantities are enor-

Fig. 2. Schematic detailing the quantities that define the free energy. These quantities refer to the internal configuration of the brain and quantities that

determine how a system is influenced by the environment. This influence is encoded by the variables ~yðaÞ that could correspond to sensory input or any

other changes in the system state due to external environmental forces or fields. The parameters a correspond to physical states of the system that change

the way the external forces act upon it or, more simply, change the way the environment is sampled. A simple example of these would be the state of ocular

motor systems controlling the direction of eye gaze. pð~yðaÞ; #Þ is the joint probability of sensory input and its causes, #. q(#;k) is called an ensemble density

and is encoded by the systems parameters, k. These parameters (e.g., mean or expectation) change to minimise free energy, F and, in so doing, make the

ensemble density an approximate conditional density on the causes of sensory input.
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mous in number and variety. A key difference among them
is the timescales over which they change. We will use this
distinction to partition the parameters into three sets
# = #u,#c,#h that change quickly, slowly and very slowly;
and factorise the ensemble density

qð#Þ ¼
Y

i

qð#i; kiÞ ¼ qð#u; kuÞqð#c; kcÞqð#h; khÞ ð4Þ

This also induces a partitioning of the systems parameters
into k = ku,kc,kh that encode time-varying partitions of the
ensemble density. The first set ku, are system quantities that
change rapidly. These could correspond to neuronal activ-
ity or electromagnetic states of the brain and change with a
timescale of milliseconds. The causes #u they encode, corre-
spond to rapidly changing environmental states, for exam-
ple, changes in the environment caused by structural
instabilities or other organisms.

The second set kc change more slowly, over a time scale
of seconds. These could correspond to the kinetics of molec-
ular signalling in neurons; for example calcium-dependent
mechanisms underlying short-term changes in synaptic effi-
cacy and classical neural modulatory effects. The equivalent
partition of causes in the environment may be contextual in
nature, such as the level of radiant illumination or the influ-
ence of slowly varying external fields that set the context for
more rapid fluctuations in its state.

Finally, kh represent system quantities that change
slowly; for example long-term changes in synaptic connec-
tions during experience-dependent plasticity, or the deploy-
ment of axons that change on a neurodevelopmental
timescale. The homologous quantities in the environment
are invariances in the causal architecture. These could cor-
respond to physical laws and other structural regularities
that shape our interaction with the world.

The factorization in Eq. (4) is, in statistical physics,
known as a mean-field approximation. Clearly our approxi-
mation with three partitions is a little arbitrary, but it helps
organise the functional correlates of their respective optimi-
sation in the nervous system. Other timescales would be nec-
essary for other systems like plants. The mean-field
approximation greatly finesses the minimisation of free
energy when considering particular schemes. These schemes
usually employ variational techniques. Variational
approaches were introduced by Feynman (1972), in the con-
text of quantum mechanics using the path integral formula-
tion. They have been adoptedwidely by themachine learning
community (e.g., Hinton and von Cramp, 1993; MacKay,
1995). Established statistical methods like expectation max-
imisation and restricted maximum likelihood (Dempster
et al., 1977;Harville, 1977) can be formulated in terms of free
energy (Neal and Hinton, 1998; Friston et al., in press).

6. Optimising variational modes

We now revisit optimisation of the systems parameters
that underlie perception in more detail, using the mean-
field approximation. Because variational techniques pre-

dominate under this approximation, the free energy in
Eq. (1) is also known as the variational free energy and
ki are called variational parameters. The mean-field factori-
sation means that the mean-field approximation cannot
cover the effect of random fluctuations in one partition,
on the fluctuations in another. However, this is not a severe
limitation because these effects are modelled through mean-
field effects (i.e., through the means or dispersions of ran-
dom fluctuations). This approximation is particularly easy
to motivate in the present framework because random fluc-
tuations at fast timescales are unlikely to have a direct
effect at slower timescales.

Using variational calculus it is simple to show (see Fris-
ton et al., in press) that, under the mean-field approxima-
tion above, the ensemble density has the following form:

qð#iÞ / expðIð#iÞÞ

Ið#iÞ ¼ ln pð~y; #Þh iqni
ð5Þ

where I(#i) is simply the log-probability of #i and the data
expected under the ensemble density of the other parti-
tions, qni. We will call this the variational energy. From
Eq. (5) it is evident that the mode of the ensemble density
maximises the variational energy. The mode is an impor-
tant variational parameter. For example, if we assume
q(#i) is Gaussian, then it is parameterised by two varia-
tional parameters ki = li,Ri encoding the mode and covari-
ance, respectively. This is known as the Laplace
approximation and will be used later. In what follows, we
will focus on minimising the free energy by optimizing li;
noting that there may be other variational parameters
describing higher moments of the ensemble density, for
each partition. Fortunately, under the Laplace approxima-
tion, the only other variational parameter we require is the
covariance. This has a simple form, which is an analytic
function of the mode and therefore does not need to be rep-
resented explicitly (see Friston et al., in press and Appendix
A). We now look at the optimisation of the variational
modes li and the neurobiological and cognitive processes
this optimisation entails:

6.1. Perceptual inference: optimising lu

Minimising the free energy with respect to neuronal
states lu means maximising I(#u)

lu ¼ max Ið#uÞ

Ið#uÞ ¼ ln pð~yj#Þ þ ln pð#Þh iqcqh ¼ ln pð#j~yÞh iqcqh þ ln pð~yÞ

ð6Þ

This means that the free energy principle is served when the
variational mode of the states (i.e., neuronal activity)
changes to maximize its log-posterior, expected under the
ensemble density of causes that change more slowly. This
can be achieved, without knowing the true posterior, by
maximising the expected log-likelihood and prior that spec-
ify a probabilistic generative model (second line of Eq. (6)).
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As mentioned above, this optimisation requires the func-
tional form of the generative model. In the next section,
we will look at hierarchical forms that are commensurate
with the structure of the brain. For now, it is sufficient to
note that the free energy principle means that brain states
will come to encode the most likely state of the environ-
ment that is causing sensory input.

6.2. Generalised coordinates

Because states are time-varying quantities, it is impor-
tant to consider what their ensemble density covers. This
can cover not just the states at one moment in time but
their higher-order motion. In other words, a particular
state of the environment and its probabilistic encoding in
the brain can embody dynamics by representing the trajec-
tories of states in generalised coordinates. Generalised
coordinates are a common device in physics and normally
cover position and momentum. In the present context, a
generalised state includes the current state, and its general-
ised motion #u = u,u 0,u00, . . . with corresponding varia-
tional modes lu; l

0
u; l

00
u; . . . It is fairly simple to show

(Friston, in preparation) that the extremisation in Eq. (6)
can be achieved with a rapid gradient descent, while cou-
pling higher to lower-order motion via mean-field terms

_lu ¼ joIð#uÞ=ouþ l0
u

_l0
u ¼ joIð#uÞ=ou

0 þ l00
u

_l00
u ¼ joIð#uÞ=ou

00 þ l000
u

_l000
u ¼ � � �

ð7Þ

Here _lu mean the rate of change of lu and j is some suit-
able rate constant. The simulations in the next section use
this descent scheme, which can be implemented using rela-
tively simple neural networks. Note, when the conditional
mode has found the maximum of I(#u), its gradient is zero
and the motion of the mode becomes the mode of the mo-
tion; i.e., _lu ¼ l0

u. However, it is perfectly possible, in gen-
eralised coordinates, for these quantities to differ, unless
there are special constraints. At the level of perception,
psychophysical phenomena, like the motion after-effect,
suggest the brain uses generalised coordinates; for example,
on stopping, after a period of looking at the scenery from a
moving train, the world is perceived as moving but without
changing its position. The impression that visual objects
change their position in accord with their motion is some-
thing that our brains have learned about the causal struc-
ture of the world. It is also something that can be
unlearned, temporarily (e.g., perceptual after-effects). We
now turn to how these causal regularities are learned.

6.3. Perceptual context and attention: optimising lc

If we call the causes that change on an intermediate
timescale, #c contextual, then optimizing lc corresponds
to encoding the probabilistic contingencies in which the
fast dynamics of the states evolve. This optimization can

proceed as above; however, we can assume that the context
changes sufficiently slowly that we can make the approxi-
mation l0

c ¼ 0. This gives the simple gradient ascent

_lc ¼ joIð#cÞ=o#c

Ið#cÞ ¼ ln pð~y; #Þh iquqh
ð8Þ

Note that the expectation is over the generalised coordinates
of the states and, implicitly, an extended period of time over
which the state trajectory evolves.4Wewill see below that the
conditional mode lc encoding context might correspond to
the strength of lateral or horizontal interactions between
neurons in the brain. These lateral interactions control the
relative effects of top-down and bottom-up influences on
the expected states and therefore control the balance be-
tween empirical priors and sensory information, in making
perceptual inferences. This suggests that attention could be
thought of in terms of optimizing contextual parameters of
this sort. It is important to note that, in Eq. (8), the dynamics
of lc are determined by the expectation under the ensemble
density of the perceptual states. This means that it is possible
for the system to adjust its internal representation of proba-
bilistic contingencies in a way that is sensitive to the states
and their history. A simple example of this, in psychology,
would be the Posner paradigm, where a perceptual state;
namely an orienting cue, directs visual attention to a partic-
ular part of visual space in which a target cue will be pre-
sented. In terms of the current formulation, this would
correspond to a state-dependent change in the variational
parameters encoding context that bias perceptual inference
towards the cued part of the sensorium (we will model this
in subsequent communication).

The key point here is that the mean-field approximation
allows for inferences about rapidly changing perceptual
states and more slowly changing context to influence each
other through mean-field effects (i.e., the expectations in
Eqs. (6) and (8)). This can proceed without explicitly repre-
senting the joint distribution in an ensemble density over
state and context explicitly (cf., Rao, 2005). Another
important interaction between variational parameters
relates to the encoding of uncertainly. Under the Laplace
assumption this is encoded by the conditional covariances.
Critically the conditional covariance of one ensemble is a
function of the conditional mode of the others (see Eq.
(A.2) in Appendix A). In the present context, the influence
of context on perceptual inference can be cast in terms of
encoding uncertainty. We will look at neuronal implemen-
tations of this in the next section.

6.4. Perceptual learning: optimising lh

Optimizing the variational mode encoding #h corre-
sponds to inferring and learning structural regularities in

4 In the simulations below, we take the expectation over peristimulus

time.
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the causal architecture of the environment. As above, this
learning can be implemented as a gradient ascent on
I(#h), which represents an expectation under the ensemble
density encoding the generalised states and context

_lh ¼ joIð#hÞ=o#h

Ið#hÞ ¼ ln pð~y; #Þh iquqc
ð9Þ

In the brain, this descent can be formulated as changes in
connections that are a function of pre-synaptic prediction
and post-synaptic prediction error (see Friston, 2003,
2005). The ensuing learning rule conforms to simple asso-
ciative plasticity or, in dynamic models, plasticity that
looks like spike-timing-dependent plasticity. In the sense
that optimizing the variational parameters that correspond
to connection strengths in the brain encodes causal struc-
ture in the environment; this instance of free energy mini-
misation corresponds to learning. The implicit change in
the brains connectivity endows it with a memory of past
interactions with the environment that affects the free en-
ergy dynamics underlying perception and attention. This
is through the mean-field effects in Eqs. (6) and (8). Put
simply, sustained exposure to environmental inputs causes
the internal structure of the brain to recapitulate the causal
structure of those inputs. In turn, this enables efficient per-
ceptual inference. This formulation provides a transparent
account of perceptual learning and categorization, which
enables the system to remember associations and contin-
gencies among causal states and context. The extension
of these ideas into episodic memory remains an outstand-
ing challenge.

7. Model optimisation

Hitherto, we have only considered the quantitative opti-
misation of variational parameters given a particular sys-
tem and its implicit generative model. Exactly the same
free energy principle can be applied to optimise the model
itself. Different models can come from populations of sys-
tems or from qualitative changes in one system over time.
A model here corresponds to a particular configuration
that can be enumerated with the same set of variational
parameters. Removing a part of the system or adding,
for example, another set of connections, changes the model
and the variational parameters in a qualitative or categor-
ical fashion.

Model optimisation involves maximising the marginal
likelihood of the model itself. In statistics and machine
learning this is equivalent to Bayesian model selection,
where the free energy can be used to approximate the mar-
ginal likelihood, pð~yjmiÞ or evidence for a particular model
mi. This approximation can be motivated easily using Eq.
(2): If the system has minimised its free energy and the
divergence term is near zero, then the free energy
approaches the negative log-evidence for that model.
Therefore, the model with the smallest free energy has
the highest marginal likelihood.

An evolutionary perceptive on this considers the log-evi-
dence as a lower-bound on free energy,5 which is defined
for any systems exchange with the environment ~yðaÞ and
is independent of the systems parameters k. An adaptive
system will keep this exchange within bounds that ensure
its physical integrity. All this requires is the selection of
an appropriate model that renders the log-evidence con-
cave within these bounds and processes that minimise its
free energy (see Fig. 2). Selecting models with the lowest
free energy will select models that are best able to model
their environmental niche and therefore remain within it.
Notice that this hierarchical selection rests upon interplay
between optimising the parameters of a particular model
(to minimise the free energy) and optimising the model
per se (using the minimised free energy). Optimisation at
both levels is prescribed by the free energy principle. In
the theory of genetic algorithms, this is called hierarchical
coevolution (e.g., Maniadakis and Trahanias, 2006). A
similar relationship is found in Bayesian inference, where
model selection is based on a free energy approximation
to the model evidence that is furnished by optimising the
parameters of each model to minimise free energy. In short,
free energy may be a useful surrogate for adaptive fitness in
an evolutionary setting and the marginal likelihood in
model selection. We introduce model selection because it
is linked to value learning (Fig. 3).

7.1. Value-learning: optimising mi

Value-learning here denotes the ability of a system to
learn valuable or adaptive responses. It refers to re-enforce-
ment or emotional learning in the psychological literature
and is closely related to dynamic programming (e.g., tem-
poral difference models) in the engineering and neurosci-
ence literature (e.g., Montague et al., 1995; Suri and
Schultz, 2001). In an early formulation of value-learning
(Friston et al., 1994) we introduced the distinction between
innate and acquired value. Innate value is an attribute of
stimuli or sensory input that releases genetically or epige-
netically specified responses that confer fitness. Acquired
value is an attribute of stimuli that comes to evoke behav-
iours, which ultimately disclose stimuli or cues with innate
value. Acquired value is therefore learnt during neurode-
velopment and exposure to the environment.

The free energy principle explains adaptive behaviour
without invoking notions of acquired value or re-enforce-
ment: From the point of view of the organism, it is simply
sampling the environment so that its sensory input con-
forms to its expectations. From its perspective, the envi-
ronment is a stable and accommodating place. However,
for someone observing this system, it will appear to
respond adaptively to environmental changes and avoid
adverse conditions. In other words, it will seem as if certain

5 In machine learning, one usually regards the free energy as an upper

bound on the log-evidence.
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stimulus-response links are selectively re-enforced to ensure
the homeostasis of its internal milieu. However, this rein-
forcement emerges spontaneously in the larger context of
action and perception under the free energy principle. A
simple example might be an insect that ‘prefers’ the dark;
imagine an insect that has evolved to expect the world is
dark. It will therefore move into shadows to ensure it
always samples a dark environment. From the point of
view of an observer, this adaptive behaviour may be
[mis]construed as light-avoiding behaviour that has been
reinforced by the value of ‘shadows’.

The above arguments suggest biological systems sample
their environment to fulfil expectations that are generated
by the model implicit in their structure. The likelihood part
of its model is learnt on exposure to the environment.
However, its priors may be inherited. It is these priors that
correspond to innate value and are part of the model mi

per se. Value-learning is often framed in terms of maximis-
ing expected reward or value. However, this is not neces-
sary in the free energy formulation; all that is required is
that the organism maximises its expectations. Selection will
ensure these expectations are valuable; through selective
pressure on innately valuable priors. Anthropomorphi-
cally, we may not interact with the world to maximise
our reward but simply to ensure it behaves as we think it
should. Only phenotypes with good models and a priori,
models of a good world will survive. Those who have
bad models or model, a priori, a bad world will become
extinct.

In summary, within an organism’s lifetime its parame-
ters minimise free energy, given the model implicit in its
phenotype. At a supraordinate level, the models themselves
may be selected, enabling the population to explore model
space and find optimal models. This exploration depends
upon the heritability of key model components, which
include priors about the environmental niche, in which
the organism can operate.

In this section, we have developed a free energy principle
for the evolution of an organism’s state and structure and
have touched upon minimisation of free energy at the pop-
ulation level, through hierarchical selection. Minimising
free energy corresponds to optimising the organism’s con-
figuration, which parameterises an ensemble density on
the causes of sensory input and optimising the model itself
in somatic or evolutionary time. Factorization of the
ensemble density to cover quantities that change with dif-
ferent timescales provides an ontology of processes that
map nicely onto perceptual inference, attention and learn-
ing. Clearly, we have only touched upon these issues in a
somewhat superficial way; each deserves a full treatment.
In this paper, we will focus on perceptual inference. In
the next section, we consider how the brain might instanti-
ate the free energy principle with a special focus on the like-
lihood models entailed by its structure.

8. Generative models in the brain

In this section, we will look at how the rather abstract
principles of the previous section might be applied to the
brain. We have already introduced the idea that a biologi-
cal structure encodes a model of the environment in which
it is immersed. We now look at the form of these models
implied by the structure of the brain and try to understand
how evoked responses and associative plasticity emerge
naturally as a minimisation of free energy. In the current
formulation, every attribute or quantity describing the
brain parameterises an ensemble density on environmental
causes. To evaluate the free energy of this density we need
to specify the functional form of the ensemble and genera-
tive densities. We will assume a Gaussian form for the
ensemble densities (i.e., the Laplace approximation), which
is parameterised by its mode or expectation and covari-
ance. The generative density is specified by its likelihood
and priors. Together these constitute a generative model.
If this model is specified properly, we should be able to pre-
dict, using the free energy principle, how the brain behaves
in different contexts. In a series of previous papers (e.g.,
Friston and Price, 2001; Friston, 2005) we have described
the form of hierarchical generative models that might be
employed by the brain. In this section, we will cover briefly
the main points again.

8.1. Hierarchical dynamic models in the brain

A key architectural principle of the brain is its hierarchi-
cal organisation (Zeki and Shipp, 1988; Felleman and Van

Fig. 3. A schematic showing how the free energy of a system could change

over time as a function of changes in its exchange with the environment.

This free energy is bounded below by the log-evidence or marginal

likelihood of the model used to specify the free energy. In this illustration

we have, somewhat artificially, broken down the action-perception

dynamics into two steps: First, the model responds to change its sensory

input; a! a* and then it adjusts its variational parameters k! k* to infer

the new input. Both these changes undo the increase in free energy caused

by an change in sensory input ~y ! ~y�. The upper grey line shows the log-

evidence of a suboptimal model as a function of input. Input could be the

state of chemo-receptors and action could correspond to movement along

the concentration gradients of chemical attractants.
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Essen, 1991; Mesulam, 1998; Hochstein and Ahissar, 2002)
This organisation has been studied most thoroughly in the
visual system, where cortical areas can be regarded as
forming a hierarchy; with lower areas being closer to pri-
mary sensory input and higher areas adopting a multi-
modal or associational role. The notion of a hierarchy
rests upon the distinction between forward and backward
connections (Rockland and Pandya, 1979; Murphy and
Sillito, 1987; Felleman and Van Essen, 1991; Sherman
and Guillery, 1998; Angelucci et al., 2002a). The distinction
between forward and backward connections is based on the
specificity of the cortical layers that are the predominant
sources and origins of extrinsic connections in the brain.
Forward connections arise largely in superficial pyramidal
cells, in supra-granular layers and terminate in spiny stel-
late cells of layer four or the granular layer of a higher cor-
tical area (Felleman and Van Essen, 1991; DeFelipe et al.,
2002). Conversely, backward connections arise largely
from deep pyramidal cells in infra-granular layers and tar-
get cells in the infra and supra granular layers of lower cor-
tical areas. Intrinsic connections are both intra and inter
laminar and mediate lateral interactions between neurons
that are a few millimetres away. Due to convergence and
divergence of extrinsic forward and backward connections,
receptive fields of higher areas are generally larger than
lower areas (Zeki and Shipp, 1988). There is a key
functional distinction between forward and backward con-
nections that renders backward connections more modula-
tory or non-linear in their effects on neuronal responses
(e.g., Sherman and Guillery, 1998). This is consistent with
the deployment of voltage sensitive and non-linear NMDA
receptors in the supra-granular layers that are targeted by
backward connections. Typically, the synaptic dynamics
of backward connections have slower time constants. This
has led to the notion that forward connections are driving
and illicit an obligatory response in higher levels, whereas
backward connections have both driving and modulatory
effects and operate over greater spatial and temporal scales.

The hierarchical structure of the brain speaks to hierar-
chical models of sensory input. For example

y ¼ gðxð1Þ; vð1ÞÞ þ zð1Þ

_xð1Þ ¼ f ðxð1Þ; vð1ÞÞ þ wð1Þ

..

.

vði�1Þ ¼ gðxðiÞ; vðiÞÞ þ zðiÞ

_xðiÞ ¼ f ðxðiÞ; vðiÞÞ þ wðiÞ

..

.

ð10Þ

In this model sensory states y are caused by a non-linear
function of states, g(x(1),v(1)) plus a random effect z(1).
The dynamic states x(1) have memory and evolve according
to equations of motion prescribed by the non-linear func-
tion f(x(1),v(1)). These dynamics are subject to random fluc-
tuations w(1) and perturbations from higher levels that are
generated in exactly the same way. In other words, the in-

put to any level is the output of the level above. This means
casual states v(i) link hierarchical levels and dynamic states
x(i) generate dynamics that are intrinsic to each level. The
random fluctuations can be assumed to be Gaussian with
a covariance encoded by the hyper-parameters #ðiÞ

c . The
functions at each level are parameterised by #

ðiÞ
h . This form

of hierarchical dynamical model is extremely generic and
subsumes most models found in statistics and machine
learning as special cases.

This model specifies the functional form of the genera-
tive density in generalised coordinates of motion (see
Appendix B) and induces an ensemble density on the gen-
eralised states #ðiÞ

u ¼ ~xðiÞ;~vðiÞ. If we assume neuronal activity
is the variational mode ~lðiÞ

u ¼ ~lðiÞ
v ; ~lðiÞ

x of these states and the
variational mode of the model parameters #ðiÞ

c and #
ðiÞ
h cor-

responds to synaptic efficacy or connection strengths; we
can write down the variational energy as a function of these
modes using Eq. (5); with y ¼ lð0Þ

v

Ið~luÞ ¼ �
1

2

X

i

~eðiÞTPðiÞ~eðiÞ

~eðiÞ ¼
~eðiÞv

~eðiÞx

" #

¼
~lði�1Þ
v � ~g ~lðiÞ

u ; l
ðiÞ
h

� �

~l0ðiÞ
x � ~f ~lðiÞ

u ; l
ðiÞ
h

� �

2

6

4

3

7

5
ð11Þ

PðlðiÞ
c Þ ¼

PðiÞ
z

PðiÞ
w

" #

Here ~eðiÞ is a generalised prediction error for the states at
the ith level. The generalised predictions of the casual states
and motion of the dynamic states are ~gðiÞ and ~f ðiÞ, respec-
tively (see Appendix B). Here, ~l0ðiÞ ¼ l0ðiÞ

x ; l00ðiÞ
x ; l000ðiÞ

x ; . . . rep-
resents the motion of ~lðiÞ

x . PðlðiÞ
c Þ are the precisions of the

random fluctuations that control their amplitude and
smoothness. For simplicity, we have omitted terms that de-
pend on the conditional covariance of the parameters; this
is the same approximation used by expectation maximisa-
tion (Dempster et al., 1977).

8.2. The dynamics and architecture of perceptual inference

As mentioned above, we will focus on the optimization
of the ensemble density covering the states, implicit in per-
ception or perceptual inference. From Eq. (7) we obtain an
expression that describes the dynamics of neuronal activity
under the free energy principle

_~lðiÞ
u ¼ hð~eðiÞ;~eðiþ1ÞÞ

¼ ~l0ðiÞ
u � j

o~eðiÞT

o~l
ðiÞ
u

PðiÞ~eðiÞ � j
o~eðiþ1ÞT

o~l
ðiÞ
u

Pðiþ1Þ~eðiþ1Þ ð12Þ

These dynamics describe how neuronal states self-organise
when the brain is exposed to sensory input. The form of
Eq. (12) is quite revealing; it is principally a function of pre-
diction error, namely the mismatch between the expected
state of the world, at any level, and that predicted on the
basis of the expected state in the level above. Critically,
inference only requires the prediction error from the lower
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level ~eðiÞ and the level in question ~eðiþ1Þ. This drives condi-
tional expectations ~lðiÞ

u to provide a better prediction, con-
veyed by backward connections, to explain away the
prediction error. This is the essence of the recurrent
dynamics that self-organise to suppress free energy or pre-
diction error; i.e., recognition dynamics.

Critically, the motion of the expected states is a linear
function of the bottom-up prediction error. This is exactly
what is observed physiologically, in the sense that bottom-
up driving inputs elicit obligatory responses in higher levels
that do not depend on other bottom-up inputs. In fact, the
forward connections in Eq. (12) have a simple form6

o~eðiÞT

o~l
ðiÞ
u

PðiÞ �
�I � gðiÞv �I � gðiÞx

�I � f ðiÞ
v D� ðI � f ðiÞ

x Þ

" #

PðiÞ ð13Þ

This comprises block diagonal repeats of the derivatives
gx = og/ox (similarly for the other derivatives). D is an
block matrix with identity matrices in its first diagonal that
ensure the internal consistency of generalised motion. The
connections are modulated by the precisions encoded by
lðiÞ
c . The lateral interactions within each level have an even

simpler form

o~eðiþ1ÞT

o~l
ðiÞ
u

Pðiþ1Þ ¼
Pðiþ1Þ

v 0

0 0

" #

ð14Þ

and reduce to the precisions of the causes at that level. We
will look at the biological substrate of these interactions
below.

The form of Eq. (12) allows us to ascribe the source of
prediction error to superficial pyramidal cells and we can
posit these as encoding prediction error. This is because
the only quantity that is passed forward from one level in
the hierarchy to the next is prediction error and superficial
pyramidal cells are the source of forward afferents in the
brain. This is useful because it is these cells that are primar-
ily responsible for the genesis of electroencephalographic
(EEG) signals that can be measured non-invasively. The
prediction error itself is formed by predictions conveyed
by backward connections and dynamics intrinsic to the
level in question. These influences embody the non-lineari-
ties implicit in ~gðiÞ and ~f ðiÞ; see Eq. (11). Again, this is
entirely consistent with the non-linear or modulatory role
of backward connections that, in this context, model inter-
actions among inferred states to predict lower level infer-
ences. See Fig. 4 for a schematic of the implicit neuronal
architecture.

In short, the dynamics of the conditional modes are dri-
ven by three terms. The first links generalised coordinates

Fig. 4. Schematic detailing the neuronal architectures that encode an ensemble density on the states and parameters of hierarchical models. The upper

panel shows the deployment of neurons within three cortical areas (or macro-columns). Within each area the cells are shown in relation to the laminar

structure of the cortex that includes supra-granular (SG) granular (L4) and infra-granular (IG) layers. The lower panel shows an enlargement of a

particular area and the speculative cells of origin of forward driving connections that convey prediction error from a lower area to a higher area and the

backward connections that carry predictions. These predictions try to explain away input from lower areas by suppressing the mismatch or prediction

error. In this scheme, the source of forward connections is the superficial pyramidal cell population and the source of backward connections is the deep

pyramidal cell population. The differential equations relate to the free energy minimisation scheme detailed in the main text.

6 � is the Kronecker tensor product.
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to ensure the motion of the mode approximates the mode
of the motion. This ensures the representation of causal
dynamics is internally consistent. The second is a bottom-
up effect that depends upon prediction error from the level
below. This can be thought of as a likelihood term. The
third term, corresponding to an empirical prior, is medi-
ated by prediction error at the current level. This is con-
structed using top-down predictions. An important aspect
of hierarchical models is that they can construct their
own empirical priors. In the statistics literature these mod-
els are known as parametric empirical Bayes models (Efron
and Morris, 1973) and rely on the conditional indepen-
dence of random fluctuation at each level (Kass and Stef-
fey, 1989). In summary, the dynamics of perceptual
inference at any level in the brain are moderated by top-
down priors from the level above. This is recapitulated at
all levels, enabling self-organisation through recurrent
interactions to minimise free energy by suppressing predic-
tion error throughout the hierarchy. In this way, higher lev-
els provide guidance to lower levels and ensure an internal
consistency of the inferred causes of sensory input at multi-
ple levels of description.

9. Perceptual attention and learning

The dynamics above describe the optimization of condi-
tional or variational modes describing the most likely cause
of sensory inputs. This is perceptual inference and corre-
sponds to Bayesian inversion of the hierarchical generative
model described in Eq. (10). In this simplified scheme, in
which conditional covariances have been ignored, minimis-
ing the free energy is equivalent to suppressing hierarchical
prediction error. Exactly the same treatment can be applied
to changes in extrinsic and intrinsic connectivity encoding
the conditional modes lc and lh. As above, the changes
in these modes or synaptic efficacies are relatively simple
functions of prediction error and lead to forms that are rec-
ognisable as associative plasticity. Examples of these deri-
vations, for static systems are provided in Friston (2005).
The contextual variables are interesting because of their
role in moderating perceptual inference. Eq. (12) shows
that the influence of prediction error from the level below
and the current level is scaled by the precision matrices
PðlðiÞ

c Þ and Pðlðiþ1Þ
c Þ that are functions of lc. This means

that the relative influence of the bottom-up likelihood term
and top-down prior is controlled by modulatory influences
encoded by lc. This selective modulation of afferents is
exactly the same as gain control mechanisms that have
been invoked for attention (e.g., Treue and Maunsell,
1996; Martinez-Trujillo and Treue, 2004). It is fairly simple
to formulate neuronal architectures in which this gain is
controlled by lateral interactions that are intrinsic to each
cortical level (see Fig. 4).

As noted in the previous section changes in lc are sup-
posed to occur at a timescale that is intermediate between
the fast dynamics of the states and slow associative changes
in extrinsic connections mediating the likelihood model.

One could think of lc as describing the short-term changes
in synaptic efficacy, in lateral or intrinsic connections that
depend upon classical neuromodulatory inputs and other
slower synaptic dynamics (e.g., after-hyperpolarisation
potentials and molecular signalling). The physiological
aspects of these intermediate dynamics provide an interest-
ing substrate for attentional mechanisms in the brain (see
Schroeder et al., 2001 for review) and are not unrelated
to the ideas in Yu and Dayan (2005). These authors posit
a role for acetylcholine (an ascending modulatory neuro-
transmitter) mediating expected uncertainty. Neural modu-
latory neurotransmitters have, characteristically, much
slower time constants, in terms of their synaptic effects,
than glutaminergic neurotransmission that is employed
by forward and backward extrinsic connections.

In conclusion, we have seen how a fairly generic hierar-
chical and dynamical model of environmental inputs can
be transcribed onto neuronal quantities to specify the free
energy and its minimisation. This minimisation corre-
sponds, under some simplifying assumptions, to a suppres-
sion of prediction error at all levels in a cortical hierarchy.
This suppression rests upon a balance between bottom-up
(likelihood) influences and top-down (prior) influences that
are balanced by representations of uncertainty. In turn,
these representations may be mediated by classical neural
modulatory effects or slow post-synaptic cellular processes
that are driven by overall levels of prediction error. Over-
all, this enables Bayesian inversion of a hierarchical model
of sensory input that is context-sensitive and conforms to
the free energy principle. We will next illustrate the sorts
of dynamics and behaviours one might expect to see in
the brain, using a simple simulation.

10. Simulations

10.1. Generative and recognition models

Here, we describe a very simple simulation of a two-
layer neuronal hierarchy to show the key features of its
self-organised dynamics, when presented with a stimulus.
The system is shown in Fig. 5. On the left, is the system
used to generate sensory input and on the right the neuro-
nal architecture used to invert this generation; i.e., to rec-
ognise or disclose the underlying cause. The generative
system used a single input (a Gaussian bump function) that
excites a damped oscillatory transient in two reciprocally
connected dynamic units. The output of these units is then
passed through a linear mapping to four sensory channels.
Note that the form of the neuronal or recognition model is
exactly the same as the generative model: The only differ-
ence is that the causal states are driven by prediction errors
which invoke the need for forward connections (depicted in
red). The inferred causes, with conditional uncertainty
(shown as 95% confidence intervals) concur reasonably
with the real causes. The input pattern is shown as a func-
tion of time and in image format at the top of the figure.
This can be thought of as either a changing visual stimulus,
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impinging on four photo-receptor channels or, perhaps, a
formant over time–frequency in an acoustic setting.

This simulation can be regarded as reproducing sensory
evoked transients and corresponds to Bayesian inversion of
the generative model shown on the left hand side of the fig-
ure. In this context, because we used a dynamical genera-
tive model, the inversion corresponds to an online
deconvolution. If we allow the connection strengths in
the recognition model to minimise free energy, we are also
implicitly estimating the parameters of the corresponding
generative model. In machine learning and signal process-
ing this is known as blind deconvolution. Examples of this
are shown in Fig. 6. Here, we presented the same stimulus
eight times and recorded the prediction error in the input
or lowest level, summed over all peristimulus time. The ini-
tial values of the parameters were the same as in the gener-
ative model (those used in Fig. 5). The upper panels show
the stimulus and predicted input, in image format, for the
first and last trial. It can be seen that both the first and
eighth predictions are almost identical to the real input.
This is because the connection strengths, i.e., conditional
modes of the parameters (in the recognition model), started
with the same values used by the generative model. Despite
this, minimising the free energy of the ensemble density on
the parameters enables the recognition model to encode
this stimulus more efficiently, with a progressive suppres-
sion of prediction error with repeated exposure. This effect
is much more marked if we use a stimulus that the recogni-

Fig. 5. Diagram showing the generative model (left) and corresponding recognition; i.e., neuronal model (right) used in the simulations. Left panel: this is

the generative model using a single cause v(1), two dynamic states x
ð1Þ
1 ; x

ð1Þ
2 and four outputs y1, . . . ,y4. The lines denote the dependencies of the variables on

each other, summarised by the equation on top (in this example both the equations were simple linear mappings). This is effectively a linear convolution

model, mapping one cause to four outputs, which form the inputs to the recognition model (solid arrow). The architecture of the corresponding

recognition model is shown on the right. This has a similar architecture, apart from the inclusion of prediction error units; ~eðiÞu . The combination of forward

(red lines) and backward influences (black lines) enables recurrent dynamics that self-organise (according to the recognition equation; _~lðiÞ
u ¼ hð~eðiÞ;~eðiþ1ÞÞÞ

to suppress and hopefully eliminate prediction error, at which point the inferred causes and real causes should correspond. (For interpretation of the

references in colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Results of repeated presentations to the simulated neural network

shown in the previous figure. Left panels: the four channel sensory data

used to evoke responses and the predictions from these evoked responses

for the first and last of eight trials are shown on top, in image format. The

corresponding prediction error (summed over the entire trial period after

rectification) is shown below. As expected, there is a progressive reduction

in prediction error as the system learns the most efficient causal

architecture underlying the generation of sensory inputs. Right panels:

exactly the same as above but now using an unpredictable or unfamiliar

stimulus that was created using a slightly different generative model. Here,

learning the causal architecture of this new stimulus occurs progressively

over repeated presentations, leading to profound reduction in prediction

error and repetition suppression.
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tion model has not seen before. We produced this stimulus
by adding a small random number to the parameters of the
generative model. At the first presentation, the recognition
model tries to perceive the input in terms of what it already
knows and has experienced. In this case a prolonged ver-
sion of the expected stimulus. This produces a large predic-
tion error. By the eighth presentation, changes in the
parameters enable it to recognise and predict the input
almost exactly, with a profound suppression of prediction
error with each repetition of the input. Note that the sup-
pression of prediction error is more dramatic for the unpre-
dicted stimulus; this is because more is learned during
repeated exposure.

10.2. Repetition suppression

This simple simulation shows a ubiquitous and generic
aspect of free energy minimisation schemes and indeed real
brain responses; namely repetition suppression. This phe-
nomenon describes the reduction or suppression in evoked
responses on repeated presentation of stimuli. This can be
seen in many contexts, ranging from the mismatch negativ-
ity in EEG research (Näätänen, 2003) to fMRI examples of
face processing (see Henson et al., 2000 and Fig. 7).

The phenomenon that we will focus on is the difference
between the prediction errors elicited by the familiar or pre-
dictable stimulus, relative to that elicited by the unpredict-
able stimulus. A strong prediction of the free energy
formulation is that unpredictable or incoherent stimuli will
evoke a much greater prediction error than familiar or
coherent stimuli. Furthermore, this relative suppression
will be mediated by backward connections in the brain that
convey the predictions. In the final section, we present an
empirical test of this hypothesis, using an fMRI study of
visually evoked responses using predictable and unpredict-
able stimuli (Harrison et al., in press).

11. Suppressing free energy in the human brain

There are clearly a vast number of predictions and
experiments that follow from the free energy treatment of
the previous sections. We have reviewed many of these
from the neurophysiological, electrophysiological, psycho-
physical and imaging neuroscience literature in other
papers (e.g., Friston and Price, 2001; Friston, 2003,
2005). In this paper, we focus on a simple but quite enlight-
ening study that was designed to address the role of back-
ward connections in suppressing prediction error, using
predictable and unpredictable visual stimuli.

11.1. Experimental design and methods

At its simplest, this experiment can be conceived on
measuring visually evoked responses to predictable and
unpredictable stimuli, where we hypothesized that the
evoked responses in early (lower) visual areas would be
reduced for predictable, relative to unpredictable stimuli.
The stimuli comprised a sparse grid of visual dots that
moved either in a coherent (predictable) or incoherent
(unpredictable) fashion. However, simply showing reduced
responses to predictable stimuli does not allow us to infer
that this reduction is mediated by backward connections.
To do this we exploit known anatomical characteristics
of connectivity in the visual system to ensure that any effect
of coherent motion is mediated by backward connections.
We did this by using sparse stimuli that excited retinotop-
ically mapped responses beyond the range of horizontal
connections in striate cortex or V1. The classical receptive
field of V1 units is about one degree of visual angle (see
Fig. 8). On the basis of anatomical studies, horizontal con-
nections in V1 cover about two degrees of visual angle
(Angelucci et al., 2002a,b). The separation of the stimuli
we employed was about three degrees. Therefore, any com-
ponent motion of a single dot, that could be predicted by
other dots, can only be ‘seen’ by higher visual areas with
larger receptive fields (i.e., V2 or higher). This means that
differences, due to predictability, in V1 responses must be
mediated by backward connections from V2 or higher.
Incoherent and globally coherent sparse stimuli were pre-
sented to normal human subjects every second or so while
hemodynamic responses were measured using functional

Fig. 7. A summary of the results of an fMRI experiment reported in

Henson et al., 2000. The upper panel shows responses to visually presented

faces for the first presentation (blue) and the second presentation (red).

This is a nice example of repetition suppression as measured using fMRI.

The inserts show voxels that were significantly activated by all faces (red)

and those that showed significant repetition suppression in the fusiform

cortex (blue). (For interpretation of the references in colour in this figure

legend, the reader is referred to the web version of this article.)
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Fig. 8. Schematic showing the extent of the classical receptive field, horizontal connections in V1 and the influence of backward connections from V2 and

V3. The sparse stimulus arrays, used to excite visual responses, are shown as superimposed dots for incoherent or unpredictable motion (upper) and

coherent or predictable motion (lower). The schematic on the right is meant to indicate that coherent motion can only affect V1 responses through

backward influences from V2 that has sufficiently large receptive fields. A neuron receives input directly from the stimulus (forward) and additional

information from backward connections. The extra-classical receptive field (ECRF) comprises a proximal and a distal surround field whose spatial extent

is consistent with the deployment of horizontal and backward connections, respectively (Angelucci et al., 2002a). When using a sparse stimulus, only one

dot can fall within the proximal surround field of a V1 neuron. Abbreviations: V1 = striate cortex, (E)CRF = (extra)-classical receptive field.

Fig. 9. Results of an fMRI study of twelve subjects comparing visually evoked responses to coherent, relative to incoherent stimuli. Significant decreases

are shown on the left in blue and increases on the right in red. The upper panel shows the time course of responses for blocks of incoherent, stationary and

coherent stimuli for V1, V2 and V5. These responses were summarized as the first principal eigenvariate of a local sphere placed upon the maxima of the

statistical parametric maps shown below. The middle bar charts represent the differences in activity or responses as modelled by a canonical hemodynamic

response to coherent relative to incoherent motion. These have arbitrary units. The bars represent 95% confidence intervals. V1; early visual cortex. V5;

motion sensitive extra striate cortex. V2; secondary extrastriate cortex. PCG; posterior cingulate cortex. (For interpretation of the references in colour in

this figure legend, the reader is referred to the web version of this article.)
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magnetic resonance imaging. The data were analysed using
conventional statistical parametric mapping. This involved
modelling evoked responses with a stimulus function
encoding the occurrence of coherent or incoherent stimuli
and convolving these with a hemodynamic response func-
tion to form regressors for a general linear model. Infer-
ences about differential responses between coherent and
incoherent stimuli were assessed using a single-sample t-test
over subjects, on appropriate contrasts from each subject.
The results of this random effects analysis are shown in
Fig. 9.

11.2. Results

As predicted, there were profound reductions in visually
evoked responses to predictable, relative to incoherent,
visual stimuli in V1. Interestingly, these decreases were also
seen in V5, bilaterally. The time course of hemodynamic
activity for a single subject is shown in the upper panel
for V1, V2 and V5. This graphic also shows the estimated
responses to control stimuli that did not move. Again, as
predicted, enhanced responses to unpredictable stimuli
was seen at the first level that the receptive fields could
encompass more than one dot. This was in area V2. This
may reflect the activity of deep pyramidal cells encoding
global motion subtended by multiple dots. It is interesting
to note that V5 showed a reduced prediction error, despite
the fact that this area is generally thought to be hierarchi-
cally higher in the visual cortex than V2. However, extra-
geniculate pathways can bypass V1 and V2 and provide
information directly to V5 which, in some circumstances,
may make it behave like a hierarchically low area. This is
consistent with the short-latency responses of V5, in rela-
tion to V1 (see Nowak and Bullier, 1997).

In summary, this fMRI study confirms our predictions
from the theoretical analysis that evoked responses are
smaller for predictable, relative to unpredictable stimuli.
This is consistent with measured responses reflecting, in
large part, prediction error evoked as the sensory cortex
self-organises to infer the causes of its geniculate input.
Furthermore, by careful design of the stimuli to preclude
horizontal interactions among V1 units, we are able to infer
that this suppression of prediction error has to be mediated
by backward connections from higher cortical areas. This
is consistent with the recurrent dynamics entailed by the
hierarchical formulation of generative models in the brain
and the inversion of these models in accord with the free
energy principle.

12. Conclusion

In this paper, we have considered the characteristics of
biological systems, in relation to non-biological self-orga-
nizing and dissipative systems. Biological systems act on
the environment and can sample it selectively to avoid
phase-transitions that will irreversibly alter their structure.
This adaptive exchange can be formalised in terms of free

energy minimisation, in which both the behaviour of the
organism and its internal configuration minimise its free
energy. This free energy is a function of the ensemble den-
sity encoded by the organism’s configuration and the sen-
sory data to which it is exposed. Minimisation of free
energy occurs through action-dependent changes in sen-
sory input and the ensemble density implied by internal
changes. Systems that fail to maintain a low free energy will
encounter phase-transitions as their relationship to the
environment changes. It is therefore necessary, if not suffi-
cient, for biological systems to minimise their free energy.

This free energy is not a thermodynamic free energy but
a free energy formulated in terms of information theoretic
quantities. The free energy principle discussed here is not a
consequence of thermodynamics but arises from popula-
tion dynamics and selection. Put simply, systems with a
low free energy will be selected over systems with a higher
free energy. The free energy rests on a specification of a
generative model, which is entailed by the organism’s struc-
ture. Identifying this model enables one to predict how a
system will change if it conforms to the free energy princi-
ple. For the brain, a plausible model is a hierarchical
dynamic system in which neural activity encodes the condi-
tional modes of environmental states and its connectivity
encodes the causal context in which these states evolve.
Bayesian inversion of this model, to infer the causes of sen-
sory input, is a natural consequence of minimising free
energy or, under simplifying assumptions, the suppression
of prediction error. We concluded with a simple but com-
pelling experiment that showed the relative suppression
of prediction error, in the context of predictable stimuli,
is indeed mediated by backward connections in the brain
as predicted by a free energy descent scheme.

The ideas presented in this paper have a deep history;
starting with the notions of neuronal energy described by
Helmholtz (1860) and covering ideas like analysis by syn-
thesis (Neisser, 1967) and more recent formulations like
Bayesian inversion and predictive coding (e.g., Ballard
et al., 1983; Mumford, 1992; Dayan et al., 1995; Rao and
Ballard, 1998). The specific contribution of this paper is
to provide a general formulation of the free energy princi-
ple to cover both action and perception. Furthermore, this
formulation can be used to connect constructs from
machine learning and statistical physics with selectionist
ideas from theoretical biology.
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Appendix A. The conditional covariances

Under the Laplace approximation, the variational den-
sity assumes a Gaussian form qi = N(li,Ri) with variational
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parameters li and Ri, corresponding to the conditional
mode and covariance of the ith parameter set. The advan-
tage of this approximation is that the conditional covari-
ance can be evaluated very simply: Under the Laplace
approximation the free energy is

F ¼ LðlÞ þ
1

2

X

i

ðU i þ ln jRij þ pi ln 2peÞ

U i ¼ trðRio
2
LðlÞ=o#io#iÞ

Lð#Þ ¼ ln pð~y; #Þ

Ið#iÞ ¼ Lð#i; lniÞ þ
1

2

X

j 6¼i

U j

ðA:1Þ

pi is the number of parameters in the ith set. The condi-
tional covariances obtain as an analytic function of the
modes by differentiating the free energy and solving for
zero

oF =oRi ¼
1

2
o
2
LðlÞ=o#io#i þ

1

2
R�1

i ¼ 0

) R�1
i ¼ �o

2
LðlÞ=o#io#i ðA:2Þ

This solution for the conditional covariances does not de-
pend on the mean-field approximation but only on the La-
place approximation. See Friston et al. (in press) for more
details.

Appendix B. Dynamic models

Here we consider the functional form of the generative
density for hierarchical dynamic models of the sort descried
in Eq. (10). To simplify things, we will deal with a single
level and generalise to multiple levels later

y ¼ gðx; vÞ þ z

_x ¼ f ðx; vÞ þ w
ðA:3Þ

The continuous non-linear functions f(x,v) and g(x,v) of
states are parameterised by #h. Stochastic innovations z(t)
are assumed to be analytic such that the covariance of
~z ¼ z; z0; z00; . . . is well defined in generalised coordinates;
similarly for random fluctuations in the states, ~w. Under lo-
cal linearity assumptions, the generalised motion ~y is given
by

y ¼ gðx; vÞ þ z x0 ¼ f ðx; vÞ þ w

_y ¼ gxx
0 þ gvv

0 þ z0 x00 ¼ fxx
0 þ fvv

0 þ w0

€y ¼ gxx
00 þ gvv

00 þ z00 x000 ¼ fxx
00 þ fvv

00 þ w00

..

. ..
.

ðA:4Þ

This model induces a variational density q(#u, t) on the gen-
eralised causes #u ¼ ~x;~v. The second set of equations pre-
scribes dynamics by coupling low and high-order motion
of x(t), which confers memory on the system. Gaussian
assumptions about the fluctuations furnish the functional
form of the likelihood pð~yj#Þ ¼ Nð~g;P�1

z Þ, where ~g and ~f

comprise the generalised predictions

g ¼ gðx; vÞ f ¼ f ðx; vÞ

g0 ¼ gxx
0 þ gvv

0 f 0 ¼ fxx
0 þ fvv

0

g00 ¼ gxx
00 þ gvv

00 f 00 ¼ fxx
00 þ fvv

00

..

. ..
.

ðA:5Þ

P(#c)z is the precision (i.e., inverse covariance) of ~z that
controls its amplitude and roughness. Similarly, Gaussian
assumptions about fluctuations in the states allow us to ex-
press the prior pð#uÞ ¼ pð~xj~vÞpð~vÞ in terms of predicted mo-
tion, where pð~xj~vÞ ¼ Nð~f ;P�1

w Þ and P(#c)w is the precision
of ~w. We now have now the functional form of the likeli-
hood and priors and implicitly the generative model.

Adding hierarchical levels, with y = v(0) gives Eq. (10)

vði�1Þ ¼ gðxðiÞ; vðiÞÞ þ zðiÞ

_xðiÞ ¼ f ðxðiÞ; vðiÞÞ þ wðiÞ
ðA:6Þ

These induce empirical priors on the states that lend the
generative density a Markov form, through independence
assumptions (Kass and Steffey, 1989) about the random
fluctuations in different levels

pð~y; #Þ ¼ pð~yj#ð1Þ
u Þpð#ð1Þ

u j#ð2Þ
u Þ � � � pð~vðmÞÞ

p #ði�1Þ
u j#ðiÞ

u

� �

¼ p ~xði�1Þj~vði�1Þ
� �

p ~vði�1Þj#ðiÞ
u

� �

p ~xðiÞj~vðiÞ
� �

¼ N ~f ðiÞ;PðiÞ�1
w

� �

p ~vði�1Þj#ðiÞ
u

� �

¼ N ~gðiÞ;PðiÞ�1
z

� �

ðA:7Þ

The prediction ~gð#ðiÞ
u ; #

ðiÞ
h Þ plays the role of a prior expecta-

tion on ~vði�1Þ and its prior precision is estimated empirically
as Pð#ðiÞ

c Þv; hence empirical Bayes (Efron and Morris,
1973); similarly for the hidden states. In short, a hierarchi-
cal form endows a model with the ability to construct its
own priors. This feature is central to many inference and
estimation procedures ranging from mixed-effects analyses
in classical covariance component analysis to automatic
relevance determination. See Friston et al., in press for a
fuller discussion of static models.
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