Supporting Information

A Free Phosphaborene Stable at Room Temperature

Jiancheng Li, Zhihao Lu, Liu Leo Liu*

Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055 (China)

Table of Contents

I.	Experimental Section	.S2
II.	NMR Spectra of new compounds	.S9
III	X-ray crystallographic data	.S34
IV	Computational details	S36
v.	References	.S46

I. Experimental Section

All manipulations were carried out in a nitrogen-filled glovebox or under an atmosphere of dry nitrogen using standard Schlenk techniques, unless otherwise stated. Toluene, nhexane and tetrahydrofuran (THF) were purified by LiAlH₄ and stored over molecular sieves. C₆D₆ was dried by sodium/potassium alloy. NMR spectra were acquired on a Bruker Avance 400 (¹H: 400 MHz, ¹³C: 101 MHz) or 600 (¹H: 600 MHz, ¹³C: 151 MHz) NMR spectrometer at 298 K. ¹H, ¹³C{¹H} spectra were referenced to internal C₆H₆. Data are presented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t =triplet, q = quartet, sept=septet, m = multiplet and/or multiple resonances), coupling constant in hertz (Hz), integration, attribution. High resolution mass spectrometry (HRMS) was performed with a Thermo Fisher Scientific Q-Exactive MS System. Crystal data were collected on a Bruker D8 VENTURE diffractometer with graphite monochromated Cu Ka ($\lambda = 1.54178$). Data reduction, scaling and absorption corrections were performed using SAINT (Bruker, V8.38A, 2013). The structure was solved with the XT structure solution program using the Intrinsic Phasing solution method and by using Olex2 as the graphical interface. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. Data were corrected for absorption effects using the empirical multi-scan method (SADABS). The model was refined with the ShelXL program using Least Squares minimization. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in structure factor calculations. All hydrogen atoms were assigned to idealized geometric positions. Commercial reagents were purchased from Energy Chemical, J&K, or TCI Chemical Co. and used as received. NHB-Br,^[S1] NaPH₂,^[S2] and NHC=NSiMes^[S3] were prepared according to the procedure described in the literature.

Scheme S1-1. Synthesis of 1 and 2.

1) Synthesis of 1 To the solid mixture of NHB-Br (2.25g, 4.8 mmol) and NaPH₂ (269 mg, 4.8 mmol) at -50 °C pre-cooled THF (20 mL) was added under stirring. The reaction solution was then allowed to warm to room temperature and stirred for further 8 hours. The volatiles were removed through evaporation under vacuum. Then the residues were extracted with *n*-hexane (20 mL), after filtration through a pad of celite, the volatiles were removed to give a colorless solid 1 (1.85 g, 91%). ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 1.28$ (d, ³*J*_{HH} = 6.9 Hz, 12 H, CH*Me*₂), 1.35 (d, ³*J*_{HH} = 6.9 Hz, 12 H, CH*Me*₂), 1.29 (d, ¹*J*_{PH} = 202.6 Hz, 2 H, PH₂), 3.51 (s, 4 H, NCH₂CH₂N),

3.53 (sept, ${}^{3}J_{\text{HH}} = 6.9$ Hz, 4 H, *CH*Me₂), 7.13-7.21 (m, 6 H, Ar-*H*). ${}^{13}\text{C}\{{}^{1}\text{H}\}$ NMR (150.9 MHz, C₆D₆, 298 K, ppm): $\delta = 25.0$, 25.0, 25.2, (CH*Me*₂), 28.7 (CHMe₂), 53.9 (NCH₂CH₂N), 124.3 (Ar-C), 127.5 (Ar-C), 139.6 (Ar-C), 147.7 (Ar-C). ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR (243 MHz, 298 K, C₆D₆, ppm): $\delta = -246.8$ (t, ${}^{1}J_{\text{PH}} = 202.6$ Hz, *P*H₂). ${}^{11}\text{B}\{{}^{1}\text{H}\}$ NMR (192.6 MHz, 298 K, C₆D₆, ppm): $\delta = 35.1$ (br). HRMS(m/z): [M+H]⁺ calcd. for C₂₆H₄₁N₂BP: 423.30938, found: 423.30949.

2) Synthesis of 2 To a solid mixture of 1 (1.85 g, 4.4 mmol) and benzyl potassium (Bnk) (568.9 mg, 4.4 mmol) at -30 °C pre-cooled THF (20 mL) was added under stirring. The red suspension was then allowed to warm to room temperature and stirred for further one hour to give an orange-red clear solution. Then it was cooled to -30 °C again, and to which slightly excess chlorotrimethylsilane (Me₃SiCl) (0.64 mL, 5 mmol) was dropwise added via syringe. The reaction solution was then allowed to warm to room temperature and stirred for further 3 hours. The volatiles were removed through evaporation under vacuum and the residues were then extracted with *n*-hexane (20 mL). After filtration through a pad of celite, the clear colorless solution was cooled to -50 °C and to which tert-butyllithium (tBuLi) (1.6 M in n-hexane, 2.7 mL, 4.4 mmol) was added drop-by-drop. The reaction solution was then allowed to warm to room temperature and stirred for further 8 hours, resulting in a white suspension. The precipitate was collected by filtration, washed with cold *n*-hexane (5 mL) and dried under vacuum to give 2 as white solid (1.47 g, 67%). ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = -0.07$ (br, 9 H, SiMe₃), 1.25 (d, ³J_{HH} = 6.9 Hz, 12 H, CHMe₂), 1.50 (d, ³J_{HH} = 6.9 Hz, 12 H, CHMe₂), 3.61 (s, 4 H, NCH₂CH₂N), 3.71 (sept, ${}^{3}J_{HH}$ = 6.9 Hz, 4 H, CHMe₂), 7.17-7.23 (m, 6 H, Ar-H). ¹³C{¹H} NMR (150.9 MHz, C₆D₆, 298 K, ppm): δ = 6.7 (SiMe₃), 24.8, 26.3, (CHMe₂), 28.7 (CHMe₂), 53.7 (NCH₂CH₂N), 124.8 (Ar-C), 126.7 (Ar-*C*), 143.6 (Ar-*C*), 148.5 (Ar-*C*). ³¹P{¹H} NMR (243 MHz, 298 K, C₆D₆, ppm): $\delta = -286.4$. ¹¹B{¹H} NMR (192.6 MHz, 298 K, C₆D₆, ppm): $\delta = 38.3$ (br). HRMS(m/z): [M-Li]⁻ calcd. for C₂₉H₄₇N₂BPSi: 493.33447, found: 493.33469.

Scheme S1-2. Synthesis of 3

Synthesis of 3 To a colorless solution of NHC=NSiMe₃ (952 mg, 2 mmol) in toluene (20 mL) at -30 °C boron tribromide (1.0 M in methylene chloride, 2 ml, 2mmol) was added under stirring. The reaction solution was allowed to warm to room temperature and stirred for further 8 hours. After filtration through a pad of celite, the volatiles were removed through evaporation under vacuum. The residues were then washed with *n*-hexane (2 mL) and dried under vacuum to give a colorless solid **3** (974 mg, 85%). ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 1.09$ (d, ³*J*_{HH} = 6.9 Hz, 12 H, CH*Me*₂), 1.44

(d, ${}^{3}J_{HH} = 6.9$ Hz, 12 H, CH*Me*₂), 2.99 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 4 H, C*H*Me₂), 6.01 (s, 2 H, *H*C=C*H*), 7.06-7.19 (m, 6 H, Ar-*H*). ${}^{13}C\{{}^{1}H\}$ NMR (150.9 MHz, C₆D₆, 298 K, ppm): $\delta = 23.6, 25.0, (CHMe_{2}), 29.2 (CHMe_{2}), 116.2 (HC=CH), 124.5 (Ar-C), 130.7 (Ar-C), 131.7 (Ar-C), 147.2 (Ar-C). <math>{}^{11}B\{{}^{1}H\}$ NMR (192.6 MHz, 298 K, C₆D₆, ppm): $\delta = 12.7$ (br). HRMS(m/z): [M+H]⁺ calcd. for C₂₇H₃₇N₃B⁷⁹Br₂: 572.1442, found: 572.1419; C₂₇H₃₇N₃B⁷⁹Br⁸¹Br: 574.1421, found: 574.1401; C₂₇H₃₇N₃B⁸¹Br₂: 576.1401, found: 576.1379.

Scheme S1-3. Synthesis of 4

Synthesis of 4 To a solution of 2 (500 mg, 1 mmol) in toluene (5 mL) at -50 °C a precooled (-50 °C) solution of 3 (573 mg, 1 mmol) was added with stirring. The reaction solution was then allowed to warm to room temperature and stirred for further two hours. After filtration through a pad of celite, the volatiles were removed through evaporation under vacuum. The residues were then washed with *n*-hexane (2 mL) and dried under vacuum to give a colorless solid 4 (809 mg, 82%). ¹H NMR (400 MHz, C_6D_6 , 298 K, ppm): $\delta = -0.07$ (d, ${}^{3}J_{PH} = 5.5$ Hz, 9 H, SiMe₃), 1.05 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12 H, CHMe₂), 1.26 (d, ³J_{HH} = 6.8 Hz, 12 H, CHMe₂), 1.33 (d, ³J_{HH} = 6.8 Hz, 12 H, CHMe₂), 1.34 (d, ${}^{3}J_{HH} = 6.5$ Hz, 12 H, CHMe₂), 3.10 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 4 H, CHMe₂), 3.59 (s, 4 H, NCH₂CH₂N), 3.74 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 4 H, CHMe₂), 6.00 (s, 2 H, HC=CH), 7.05-7.23 (m, 12 H, Ar-H). ¹³C{¹H} NMR (150.9 MHz, C₆D₆, 298 K, ppm): $\delta = 3.3$ (d, ²J_{PC} = 13.0 Hz, SiMe₃), 23.2, 24.3, 25.9, 27.5, (CHMe₂), 28.7 (CHMe₂), 28.8 (CHMe₂), 54.7 (NCH2CH2N), 116.3 (HC=CH), 124.1 (Ar-C), 124.3 (Ar-C), 126.3 (Ar-C), 128.3 (Ar-C), 130.1 (Ar-C), 133.4 (Ar-C), 142.2 (Ar-C), 130.1 (Ar-C), 147.0 (Ar-C), 147.4 (NH*C*=N). ${}^{31}P{}^{1}H{}$ NMR (243 MHz, 298 K, C₆D₆, ppm): $\delta = -193.7$. ${}^{11}B{}^{1}H{}$ NMR (192.6 MHz, 298 K, C₆D₆, ppm): $\delta = 34.4$ (br, NHB), 31.0 (br, PSiMe₃BBr). HRMS(m/z): [M+H]⁺ calcd. for C₅₆H₈₄N₅B₂⁷⁹BrPSi: 986.5598, found: 986.5621; C₅₆H₈₄N₅B₂⁸¹BrPSi: 988.5577, found: 988.5602. X-ray quality single-crystals of **4** were obtained by recrystallization from its saturated solution in *n*-hexane at -35 °C.

Scheme S1-4. Synthesis of 5

Synthesis of 5 A solution of 4 (49.3 mg, 0.05 mmol) in C₆D₆ (0.5 mL) was heated at 65 °C for 4 hours. The reaction solution was then allowed to cool to room temperature. After filtration through a pad of celite, the volatiles were removed through evaporation under vacuum. The residues were then washed with cold *n*-hexane (0.2 mL) and dried under vacuum to give a colorless solid 5 (36.7 mg, 88%). ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 1.02$ (d, ${}^{3}J_{HH} = 6.8$ Hz, 12 H, CHMe₂), 1.31 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12 H, $CHMe_2$), 1.34 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12 H, $CHMe_2$), 1.44 (d, ${}^{3}J_{HH} = 6.8$ Hz, 12 H, $CHMe_2$), 2.59 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 4 H, CHMe₂), 3.53 (s, 4 H, NCH₂CH₂N), 3.64 (sept, ${}^{3}J_{HH} =$ 6.8 Hz, 4 H, CHMe₂), 5.70 (s, 2 H, HC=CH), 6.85-7.16 (m, 12 H, Ar-H). ¹³C{¹H} NMR $(150.9 \text{ MHz}, C_6D_6, 298 \text{ K}, \text{ppm}): \delta = 23.9, 24.2, 25.3, (CHMe_2), 28.6 (CHMe_2), 29.1$ (CHMe₂), 53.8 (NCH₂CH₂N), 116.1 (HC=CH), 126.2 (Ar-C), 128.3 (Ar-C), 130.9 (Ar-*C*), 131.8 (Ar-*C*), 141.5 (Ar-*C*), 142.3 (Ar-*C*), 147.0 (Ar-*C*), 148.0 (NH*C*=N). ³¹P{¹H} NMR (243 MHz, 298 K, C₆D₆, ppm): δ = -291.9. ¹¹B{¹H} NMR (192.6 MHz, 298 K, C_6D_6 , ppm): $\delta = 38.6$ (br, NHB), 53.0 (br, P=B). HRMS(m/z): $[M+H]^+$ calcd. for C₅₃H₇₅N₅B₂P: 834.5941, found: 834.5928. X-ray quality single-crystals of 5 were obtained by recrystallization from its saturated toluene solution layered with *n*-hexane at -35 °C.

Scheme S1-5. Reactivity of 5 towards aldehyde.

Synthesis of 6 To a solution of 5 (41.7 mg, 0.05 mmol) in toluene (1 mL) at -50 $^{\circ}$ C a pre-cooled (-50 $^{\circ}$ C) solution of *p*-methyl benzaldehyde (6 mg, 0.05 mmol) was added in toluene (1 mL) with stirring. The reaction solution was then allowed to warm to room s5

temperature and stirred for further 12 hours. After filtration through a pad of celite, the volatiles were removed through evaporation under vacuum. The residues were then washed with *n*-hexane (0.2 mL) and dried under vacuum to give a colorless solid 6(42.9 mg, 90%). ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 0.91$ (d, ³J_{HH} = 6.9 Hz, 6 H, CHMe₂), 1.08 (d, ${}^{3}J_{HH} = 6.9$ Hz, 6 H, CHMe₂), 1.12 (d, ${}^{3}J_{HH} = 6.6$ Hz, 6 H, CHMe₂), 1.12 (d, ${}^{3}J_{\text{HH}} = 6.6 \text{ Hz}, 6 \text{ H}, \text{CH}Me_{2}$), 1.23 (d, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 6 \text{ H}, \text{CH}Me_{2}$), 1.25 (d, ${}^{3}J_{\text{HH}}$ = 6.9 Hz, 6 H, CHMe₂), 1.27 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6 H, CHMe₂), 1.37 (d, ${}^{3}J_{HH}$ = 6.8 Hz, 6 H, CHMe₂), 2.20 (s, 3 H, Ar-Me), 2.96 (sept, ${}^{3}J_{HH} = 6.8$ Hz, 2 H, CHMe₂), 3.01 (sept, ${}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 2 \text{ H}, CHMe_{2}), 3.40 \text{ (m, 2 H, NCH}_{2}CH_{2}N), 3.47 \text{ (sept, } {}^{3}J_{\text{HH}} = 6.9 \text{ Hz}, 2$ H, CHMe₂), 3.56 (m, 2 H, NCH₂CH₂N), 3.66 (sept, ${}^{3}J_{HH} = 6.9$ Hz, 4 H, CHMe₂), 4.84 (d, ${}^{2}J_{PH} = 3.1$ Hz, 1 H, PCHO), 5.85 (s, 2 H, HC=CH), 6.17 (d, ${}^{3}J_{HH} = 7.7$ Hz, 2 H, MeC₆*H*₄CHO), 6.83 (d, ${}^{3}J_{HH}$ = 7.7 Hz, 2 H, MeC₆*H*₄CHO), 7.04-7.26 (m, 12 H, Ar-*H*). $^{13}C{^{1}H}$ NMR (150.9 MHz, C₆D₆, 298 K, ppm): $\delta = 21.9, 24.1, 24.3, 24.6, 24.6, 24.8,$ 25.3, 25.4, 25.6, (CHMe2), 27.2 (Ar-Me), 29.1 (CHMe2), 29.3 (CHMe2), 29.4 (CHMe2), 29.5 (CHMe₂), 55.2 (NCH₂CH₂N), 68.9 (d, ¹J_{PC}=6.3 Hz), 115.7 (HC=CH), 124.7 (Ar-C), 124.9 (Ar-C), 125.0 (Ar-C), 125.3 (Ar-C), 127.3 (Ar-C), 128.9 (Ar-C), 129.0 (Ar-C), 129.1 (Ar-C), 130.2 (Ar-C), 134.5 (Ar-C), 16.2 (Ar-C), 141.8 (Ar-C), 148.1 (Ar-C), 148.1 (Ar-C), 148.3 (Ar-C), 148.5 (NHC=N). ³¹P{¹H} NMR (243 MHz, 298 K, C₆D₆, ppm): $\delta = -89.6$. ¹¹B{¹H} NMR (192.6 MHz, 298 K, C₆D₆, ppm): $\delta = 33.9$ (br, NH*B*), P=B not observed. HRMS(m/z): $[M+H]^+$ calcd. for C₆₁H₈₃ON₅B₂P: 954.6516, found: 954.6529. X-ray quality single-crystals of 6 were obtained by recrystallization from its saturated solution in toluene at -35 °C.

Scheme S1-6. Reactivity of 5 towards ketone.

Synthesis of 7 To a solution of 5 (41.7 mg, 0.05 mmol) in toluene (1 mL) at -50 °C a pre-cooled (-50 °C) solution of *p*-fluoroacetophenone (6.9 mg, 0.05 mmol) was added in toluene (1 mL) with stirring. The reaction solution was then allowed to warm to room temperature and stirred for further four days. After filtration through a pad of celite, the solution was concentrated to 0.3 mL and kept in a refrigerator at -35 °C overnight to obtain colorless crystals of 7 which were collected by filtration and dried under vacuum. (32.9 mg, 68%). ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 0.71$ (d, ¹*J*_{PH} = 212.3 Hz, 1 H, P*H*), 1.01 (d, ³*J*_{HH} = 6.8 Hz, 12 H, CH*Me*₂), 1.04 (d, ³*J*_{HH} = 6.8 Hz, 24 H, CH*Me*₂), 1.17 (d, ³*J*_{HH} = 6.8 Hz, 12 H, CH*Me*₂), 3.01 (sept, ³*J*_{HH} = 6.8 Hz, 4 H, C*H*Me₂), 3.58 (s, 4 H, NCH₂C*H*₂N), 3.67 (sept, ³*J*_{HH} = 6.8 Hz, 4 H, C*H*Me₂), 4.77 (s, 1 H, C=C*H*₂), 4.81

(s, 1 H, C=C*H*₂), 5.97 (s, 2 H, *H*C=C*H*), 6.82-7.60 (m, 16 H, Ar-*H* and C₆*H*₄). ¹³C {¹H} NMR (150.9 MHz, C₆D₆, 298 K, ppm): δ = 23.0, 24.6, 25.9, 25.9, 28.2, 28.6, (CH*Me*₂ and CHMe₂), 54.4 (NCH₂CH₂N), 94.8 (C=CH₂), 114.7 (d, ³*J*_{PC} = 21.0 Hz), 115.8 (H*C*=CH), 124.1 (Ar-C), 124.2 (Ar-C), 126.6 (Ar-C), 127.6 (Ar-C), 129.8 (Ar-C), 133.4 (Ar-C), 141.4 (Ar-C), 147.4 (Ar-C), 148.1 (NH*C*=N), 155.1, 162.9 (d, ¹*J*_{FC} = 244.9 Hz, Ar-C-F). ³¹P {¹H} NMR (243 MHz, 298 K, C₆D₆, ppm): δ = -233.4 (d, ¹*J*_{PH} = 212.3 Hz). ¹⁹F {¹H} NMR (564.7 MHz, 298 K, C₆D₆, ppm): δ = -115.5. ¹¹B {¹H} NMR (192.6 MHz, 298 K, C₆D₆, ppm): δ = 37.1 (br, NH*B*), 27.5 (br, P-*B*-O). HRMS(m/z): [M+H]⁺ calcd. for C₆₁H₈₂ON₅B₂FP: 972.6422, found: 972.6416.

Scheme S1-7. Reactivity of 5 towards carbon disulfide.

Synthesis of 8 and 9 To a solution of 5 (41.7 mg, 0.05 mmol) in toluene (1 mL) at room temperature excess carbon disulfide (10 µL) was added. The reaction solution was stood without disturbance for overnight. After filtration through a pad of celite, the volatiles were removed through evaporation under vacuum. The residues were then extracted with *n*-hexane and then the solution was concentrated to 0.5 mL and kept in a refrigerator at -35 °C overnight to obtain colorless crystals of 8 (16.2 mg, 73%) which were collected by filtration and dried under vacuum. The filtrate was further concentrated to 0.2 mL and kept in a refrigerator at -35 °C overnight toobtain another small amounts of colorless crystals of 8. The mother solution was vacuumed to give orange residues which was further extracted with *n*-pentane (0.5 mL), and the resulting solution was concentrated to 0.1 mL and kept in a refrigerator at -35 °C 2 days to obtained light yellow crystals of 9 (17.8 mg, 66%). For 8: ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 1.15$ (d, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 12 H, CHMe₂), 1.34 (d, ${}^{3}J_{\text{HH}} = 6.6$ Hz, 12 H, CHMe₂), 3.03 (sept, ${}^{3}J_{HH} = 6.6$ Hz, 4 H, CHMe₂), 5.91 (s, 2 H, HC=CH), 7.07-7.24 (m, 6 H, Ar-H). ${}^{13}C{}^{1}H{}$ NMR (150.9 MHz, C₆D₆, 298 K, ppm): $\delta = 23.9, 24.5, (CHMe_2),$ 29.1 (CHMe2), 114.8 (HC=CH), 124.1 (Ar-C), 129.9 (Ar-C), 133.1 (Ar-C), 143.3 (Ar-*C*), 147.7 (NH*C*=N). ¹¹B{¹H} NMR (192.6 MHz, 298 K, C₆D₆, ppm): δ = 34.9 (br, =NBS). HRMS(m/z): $[M+H]^+$ calcd. for C₅₄H₇₃N₆B₂S₂: 891.5519, found: 891.5520.; For 9: ¹H NMR (600 MHz, C₆D₆, 298 K, ppm): $\delta = 1.19$ (d, ³J_{HH} = 7.0 Hz, 12 H, CHMe₂), 1.21 (d, ${}^{3}J_{HH} = 7.0$ Hz, 12 H, CHMe₂), 3.41 (sept, ${}^{3}J_{HH} = 7.0$ Hz, 4 H, CHMe₂), 3.47 (s, 4 H, NCH₂CH₂N), 7.06-7.19 (m, 6 H, Ar-H). ¹³C {¹H} NMR (150.9 MHz, C₆D₆, 298 K, ppm): $\delta = 24.1, 25.7, (CHMe_2), 28.7 (CHMe_2), 53.7 (NCH_2CH_2N), 124.8 (Ar-$ C), 128.3 (Ar-C), 128.4 (Ar-C), 138.8 (Ar-C), 147.4 (Ar-C), 224.1 (d, ²J_{PC}=4.8 Hz, *C*=S). ³¹P{¹H} NMR (243 MHz, 298 K, C₆D₆, ppm): δ = 309.9. ¹¹B{¹H} NMR (192.6

MHz, 298 K, C₆D₆, ppm): δ = 28.0 (br). HRMS(m/z): [M+H]⁺ calcd. for C₂₈H₃₉N₂BPS₃: 541.2101, found: 541.2098.

Figure S2-2. ${}^{13}C{}^{1}H$ NMR Spectrum of 1 (150.9 MHz, C₆D₆, 298 K).

Figure S2-4. ³¹P NMR Spectrum of 1 (243 MHz, C₆D₆, 298 K).

-35.2

Figure S2-5b. ¹¹B{¹H} NMR Spectrum of 1 (baseline corrected) (192.6 MHz, C₆D₆, 298 K).

S12

Figure S2-9a. ${}^{11}B{}^{1}H$ NMR Spectrum of 2 (192.6 MHz, C₆D₆, 298 K).

Figure S2-10. ¹H NMR Spectrum of 3 (600 MHz, C₆D₆, 298 K).

-38.3

Figure S2-12a. ¹¹B{¹H} NMR Spectrum of 3 (192.6 MHz, C₆D₆, 298 K).

S16

Figure S2-15. ${}^{31}P{}^{1}H$ NMR Spectrum of 4 (243 MHz, C₆D₆, 298 K).

Figure S2-16a. ¹¹B $\{^{1}H\}$ NMR Spectrum of **4** (192.6 MHz, *n*-hexane, 298 K) (* marks signals attributed to the N-heteroboryl of **5** generated from spontaneous ClSiMe₃-elimination of **4** during the data collection).

Figure S2-16b. ¹¹B{¹H} NMR Spectrum of **4** (baseline corrected) (192.6 MHz, *n*-hexane, 298 K) (* marks signals attributed to the N-heteroboryl of **5** generated from spontaneous ClSiMe₃-elimination of **4** during the data collection).

S19

Figure S2-20a. $^{11}B\{^{1}H\}$ NMR Spectrum of 5 (192.6 MHz, C₆D₆, 298 K).

Figure S2-20c. Overlay ¹¹B{¹H} NMR Spectra of **5** (C₆D₆, in blue-green) and blank sample (pure C₆D₆, in red) (baseline corrected) (192.6 MHz, 298 K).

--89.6

-33.9

Figure S2-25. ¹H NMR Spectrum of 7 (600 MHz, C₆D₆, 298 K).

Figure S2-27. ³¹P{¹H} NMR Spectrum of 7 (243 MHz, C₆D₆, 298 K).

-37.1 -27.7

Figure S2-30b. ¹¹B{¹H} NMR Spectrum of 7 (baseline corrected) (192.6 MHz, C₆D₆, 298 K).

S28

-34.9

Figure S2-35. $^{13}\rm{C}\{^{1}\rm{H}\}$ NMR Spectrum of 9 (150.9 MHz, C₆D₆, 298 K).

S31

Figure S2-37b. ¹¹B $\{^{1}H\}$ NMR Spectrum of 9 (baseline corrected) (192.6 MHz, C₆D₆, 298 K).

Figure S2-38. Monitoring ³¹P NMR spectrum of the spontaneous transformation of **4** to **5** at room temperature. The conversion was determined by the relative integral area.

Figure S2-39. UV-Vis spectrum of 5 in toluene (10^{-5} mol/L) .

	4	5	6
Empirical formula	C56H83B2BrN5PSi	$C_{53}H_{74}B_2N_5P$	C ₆₂ H ₈₂ BN ₅ OP
formula weight	986.86	833.76	955.10
crystal system	Monoclinic	Triclinic	Monoclinic
space group	P 1 21/n 1	P-1	P 1 21/c 1
a/Å	11.3609(4)	11.6492(4)	18.0357(6)
<i>b</i> /Å	29.6600(12)	12.9718(4)	16.6539(6)
c/Å	17.1112(6)	18.7856(7)	18.7110(6)
α/deg	90	94.196(2)	90
β/deg	100.873(2)	94.871(2)	90.877(2)
γ/deg	90	115.345(2)	90
$V/Å^3$	5662.4(4)	2537.23(16)	5619.5(3)
Ζ	4	2	4
$\rho_{\rm calcd}/{\rm g\cdot cm^{-3}}$	1.158	1.091	1.129
μ/mm^{-1}	1.744	0.760	0.763
F(000)	2112.0	904.0	2068
crystal size/mm ³	0.26 x 0.18 x 0.15	0.25 x 0.18 x 0.15	0.24 x 0.18 x 0.15
θ range/deg	2.980 - 68.403	2.378 - 72.078	2.450 - 68.465
index ranges	-13<=h<=13	-14<=h<=14	-21<=h<=20
5	-28<=k<=35	-15<=k<=15	-16<=k<=19
	-18<=l<=20	-23<=l<=23	-21<=l<=22
collected data	53573	41106	70495
unique data	10358	9695	10292
1	$R_{\rm int} = 0.0622$	$R_{\rm int} = 0.0325$	$R_{\rm int} = 0.\ 1100$
completeness to θ	99.8 %	98.2 %	99.9 %
data/restraints/parameters	10364 / 0 / 614	9695 / 14 / 560	10292/0/ 648
GOF on F^2	1.046	1.085	1.055
final R indices $[I > 2 (I)]$	$R_1 = 0.0364$	$R_1 = 0.0408$	$R_1 = 0.0688$
R indices (all data)	$WK_2 = 0.0780$ $R_1 = 0.0465$	WK2 = 0.1013 $R_1 = 0.0449$	$WK_2 = 0.1599$ $R_1 = 0.0928$
r mulices (all uala)	$wR_2 = 0.0819$	$wR_2 = 0.1041$	$wR_2 = 0.1724$
Largest diff peak/hole (e·Å-3)	0.345 / -0.402	0.435 / -0.495	0.470/ -0.464

III.X-ray crystallographic data

7	0	
/	δ	9
$C_{67}H_{95}B_2FN_5OP_2$	$C_{45}H_{72}B_2N_6S_2$	$C_{28}H_{38}BN_2PS_3$
1058.06	890.91	540.56
Orthorhombic	Triclinic	Monoclinic
P2(1)2(1)2(1)	P-1	P 1 21/c 1
12.9560(6)	10.3831(5)	26.3039(11)
21.9701(9)	10.7408(5)	11.7737(5)
22.1424(10)	24.9975(11)	20.0625(9)
90	84.124(3)	90
90	85.546(3)	108.695(2)
90	72.073(3)	90
6302.7(5)	2635.4(2)	5885.4(4)
4	2	8
1.115	1.123	1.220
0.744	1.211	1.945
2296	960	2304
0.11 x 0.10 x 0.09	0.20 x 0.20 x 0.10	0.23 x 0.15 x 0.06
2.833 - 69.080	3.559 - 68.375	1.542 - 53.960
-15<=h<=15	-11<=h<=11	-31<=h<=31
-26<=k<=26	-12<=k<=12	-14<=k<=13
-26<=l<=26	-30<=l<=30	-24<=1<=24
104625	56539	62894
11717	9364	10769
$R_{\rm int} = 0.1174$	$R_{\rm int} = 0.0853$	$R_{\rm int} = 0.0762$
100 %	97.2 %	99.9 %
11717 / 198 / 712	9364 / 0 / 593	10769 / 0 / 647
1.050	1.038	1.042
$R_1 = 0.0721$	$R_1 = 0.0549$	$R_1 = 0.0422$
wR2 = 0.1891 $P_{1} = 0.0878$	wR2 = 0.1270 $P_{1} = 0.0725$	wR2 = 0.0887 $P_1 = 0.0655$
$n_1 = 0.0878$ $wR_2 = 0.2046$	$wR_2 = 0.1352$	$m_1 = 0.0035$ $w_{R_2} = 0.0968$
0.610 / -0.465	0.673 / -0.437	0.260 / -0.351
	$C_{67}H_{95}B_{2}FN_{5}OP_{2}$ 1058.06 Orthorhombic $P2(1)2(1)2(1)$ $12.9560(6)$ $21.9701(9)$ $22.1424(10)$ 90 90 90 90 6302.7(5) 4 1.115 0.744 2296 0.11 x 0.10 x 0.09 2.833 - 69.080 -15<=h<=15 -26<=k<=26 -26<=l<=26 104625 11717 $R_{int} = 0.1174$ 100 % 11717 / 198 / 712 1.050 $R_{1} = 0.0721$ wR2 = 0.1891 $R_{1} = 0.0878$ wR2 = 0.2046 0.610 / -0.465 $T_{i} = 0.724 = 0.0721$	$C_{67}H_{95}B_2FN_5OP_2$ $C_{45}H_{72}B_2N_6S_2$ 1058.06890.91OrthorhombicTriclinic $P2(I)2(I)2(I)$ $P-I$ 12.9560(6)10.3831(5)21.9701(9)10.7408(5)22.1424(10)24.9975(11)9084.124(3)9085.546(3)9072.073(3)6302.7(5)2635.4(2)421.1151.1230.7441.21122969600.11 x 0.10 x 0.090.20 x 0.20 x 0.102.833 - 69.0803.559 - 68.375-15<=h<=15

 ${}^{a}R_{1} = \sum (||F_{o}| - |F_{c}||) / \sum |F_{o}|, wR_{2} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})]^{1/2}, \text{GOF} = [\sum w(F_{o}^{2} - F_{c}^{2})^{2} / (N_{o} - N_{p})]^{1/2}.$

IV. Computational details

Geometry optimizations were carried out with the Gaussian 16 package^{S4} with the M06-2X functional.^{S5} The def2-SVP basis set was used for all the atoms. Frequency calculations at the same level of theory were performed to identify the number of imaginary frequencies (zero for local minimum) and provide the Gibbs free energies. All the energies reported in the paper correspond to the reference state of 1 mol/L, 298K. Natural bond orbital (NBO) and natural resonance theory (NRT) calculations were carried out using NBO 7.0 program^{S6} at the M06-2X/def2-SVP level of theory. These NRT calculations were done for a model of 5 in which Dipp groups were replaced by hydrogen atoms, but at the geometry corresponding to 5. Optimized structures were visualized by the CYLview,^{S7} Chemcraft^{S8} or IBOview program.^{S9} EDA-NOCV and ELF calculations were carried out using Amsterdam Modeling Suite (ADF/2019.304)^{S10} at the BP86/TZP level of theory. Intrinsic bond orbitals (IBOs) were carried out using ORCA program at the M06-2X/def2-SVP level of theory.^{S9}

Figure S4-1. Depiction of selected IBOs of 5. (a) $P-B(1) \sigma$ -bonding orbital. (b) $N-B(2) \sigma$ -bonding orbital.

Figure S4-2. Frontier molecular orbitals of 5.

Figure S4-3. Four predominant resonance structures (weight > 7.0%) and their weights for the simplified model of **5** (Dipp groups were replaced with H).

Figure S4-4. ELF plot of 5 in the P(1)–B(2)–N(1) plane.

Figure S4-5. Selected NBOs of 5 for the second-order perturbation theory analysis. Energies are given in kcal/mol.

łł	nartree	eV	kcal/mol	kJ/mol	
Pauli Repulsion Kinetic (Delta T^0): Delta V^Pauli Coulomb: Delta V^Pauli LDA-XC: Delta V^Pauli GGA-Exchange: Delta V^Pauli GGA-Correlation	2.4248350509 -1.2911421 -0.4331464 0.08464 : -0.03464	982034 187406291 90493037 411534622 466387566	65.9831 -35.1338 -11.7865 208 2.303 501 -0.931	1521.61 -810.20 -271.80 32 53.11 19 -21.49	6366.40 -3389.89 -1137.23 222.23 -89.91
Total Pauli Repulsion: (Total Pauli Repulsion = Delta E^Pauli in BB paper)	0.750940887	788314	20.4341	471.22	1971.60
Steric Interaction Pauli Repulsion (Delta E^Pauli) Electrostatic Interaction: (Electrostatic Interaction = Delta V_elstat in the BB paper)	: 0.750940 -0.391164927	088778831 7472801	4 20.434 ⁻ -10.6441	1 471.22 -245.46	1971.60 -1027.00
Total Steric Interaction: (Total Steric Interaction = Delta E^0 in the BB paper)	0.359775960	315513	9.7900	225.76	944.59
Orbital Interactions A: -0.499	995271932120	6 -13.0	6056 -31	3.75 -1312	2.74
Total Orbital Interactions:	-0.49999527	1932127	-13.6056	-313.75	-1312.74
Alternative Decomposition Orb. Kinetic: -2.22 Coulomb: 1. XC: 0.192	Int. 62650575467 533497027922 77275769249	18 -60 2097 4 5.2	0.5798 -13 41.7286 2456 120	397.00 -58 962.28 4 9.97 506.1	45.06 026.20 12
Total Orbital Interactions:	-0.49999527	1932127	-13.6056	-313.75	-1312.74
Residu (E=Steric+OrbInt+Res):	0.00000	000676163	.000	0.00	0.00
Total Bonding Energy:	-0.14021924	14000222	-3.8156	-87.99	-368.15

Figure S4-6. EDA-NOCV results of 5 ([NHB-P:](singlet) + [NHC=NB:](singlet)).

	hartr	ee	eV	kcal/mol	kJ/mol		
Pauli Repulsion Kinetic (Delta T^0): Delta V^Pauli Coulomb Delta V^Pauli LDA-XC: Delta V^Pauli GGA-Excl Delta V^Pauli GGA-Cor	1.29 -0 nange: relation:	990422518 0.6886114 .32111122 0.07822 -0.03235	83337 1555097 1214903 5528640 4721909	35.3722 9 -18.7 -8.73 964 2 607 -0	815.70 '381 -4. 79 -20' 2.1286).8804	0 3 32.11 1.50 49.09 -20.30	412.90 -1807.95 -843.08 205.38 -84.95
Total Pauli Repulsion: (Total Pauli Repulsion = Delta E^Pauli in BB pap	0.3 er)	360523951	148811	9.1445	5 210.8	8	882.31
Steric Interaction Pauli Repulsion (Delta E Electrostatic Interaction (Electrostatic Interaction Delta V_elstat in the BB	^Pauli): : -0.2 = paper)	0.3360523 298823934	3951488 447951	11 9.1 -6.255	445 2 [.] 4 -144.	10.88 25	882.31 -603.56
Total Steric Interaction: (Total Steric Interaction Delta E^0 in the BB pap	0.1 = er)	061700017	700859	2.8890	66.62	2 2	78.75
Orbital Interactions A:	-0.3125581	87183628	-8.	5051	-196.13	-820.62	<u>!</u>
Total Orbital Interaction	s: -0.	312558187	7183629	-8.505	51 -196	.13	-820.62
Alternative Decomposition Kinetic: Coulomb: XC:	on Orb.Int. -1.090626 0.6295 0.1484798	586632222 588860293 318845416	29 -2 185 5 4.0	9.6775 17.1320 0403	-684.38 395.07 93.17	-2863 165 389.83	.44 2.99
Total Orbital Interaction	s: -0.	312558187	7183629	-8.505	51 -196	.13	-820.62
Residu (E=Steric+OrbIn	t+Res):	-0.00000	1034824	439 0	0.0000	0.00	0.00
Total Bonding Energy:	-0.	206389220	0307209	-5.61	61 -129	9.51	-541.87

Figure S4-7. EDA-NOCV results of 5 ([NHB-P](triplet) + [NHC=NB](triplet)).

	5	
Energy Term	[NHB -P:](S) + [NHC=NB:](S)	[NHB -P:](T)+ [NHC=NB:](T)
ΔE_{int} (kcal/mol)	-87.99	-129.51
ΔE_{Pauli} (kcal/mol)	471.22	210.88
$\Delta E_{elstat}^{[a]}$ (kcal/mol)	-245.46(43.9%)	-144.25 (42.4%)
$\Delta E_{orb}^{[a]}$ (kcal/mol)	-313.75 (56.1%)	-196.13 (57.6%)

 Table S4-1. Results of EDA analysis of compound 5 using different electronic states as interacting fragments.

^[a]The values in parentheses are the percentage contributions to the total attractive interactions $(\Delta E_{elstat} + \Delta E_{orb})$.

Cartesian Coordinates:

Compound **5**:

Р	-2.71205000	5.19015400	14.03214300
N	-4.92736000	8.86168300	14.54148100
N	-3.58555700	10.50251100	14.01944800
N	-2.71817800	8.28178700	13.83389900
N	-0.5/566600	5.192/4900	13.91955000
N C	0.32022300 5.42064200	5.30302300	13.03943900
C	-3.42004200	6 64036600	13 20313300
C	-3.65419400	9.13505700	14.10678600
č	-1.40720100	2.11284500	14.31408400
С	-5.84942700	6.74435500	13.74643700
С	0.90270600	7.62604000	14.09529200
С	-2.55160000	11.23956500	13.35664300
C	0.05810800	6.96759900	11.88091300
C	-5.41269/00	7.101/8400	16.15124500
н	1.55102800	6 23935700	15.49850800
C	-1.60257600	11.92816200	14.13268100
č	-1.83263100	1.19288200	13.33010900
С	0.12601700	8.30771500	11.48538000
Н	-0.15813300	8.58218400	10.46646200
С	-2.59169900	11.30654400	11.95569800
C	-4.80037300	11.06032300	14.40619500
H C	-4.95464100	12.13418400	14.39106300
Ч	1 22732500	2 155/1300	13.98/94900
Н	1.22732300	2 93711000	15 04057100
C	-5.62659900	10.04392300	14.73833700
Н	-6.65043500	10.03991600	15.09826700
С	-6.35391800	5.48099900	14.05549700
Н	-6.68164700	4.81965600	13.25420200
C	0.95773700	8.95043900	13.65582400
П	1.3310/100	9./31//800	14.31930100
C	-1 66423700	11 86154500	15.65075400
Ĥ	-2.72994100	11.91361800	15.92731000
С	1.39433900	4.35165400	13.38207600
Н	2.35459000	4.66687400	13.82028600
H	1.54643200	4.24256200	12.29011200
C	0.55733600	9.29307300	12.36591500
С	-0.35128000	5 90051200	12.04390300
Н	-0.44604500	4.94592700	11.41382600
C	-4.79683000	7.91881700	17.27361700
Н	-4.46828400	8.88339800	16.85813800
С	-1.44273100	1.40698700	11.87609200
H	-0.44215300	1.86564700	11.87470100
C	-2.61408400	0.88156500	16.00335400
Г	-2.92039100	5.82606000	16 40777400
Н	-5.92317000	5.44181300	17.42994900
C	2.33721900	8.18596800	16.12478200
Н	3.19045600	8.37613700	15.45757300
Н	2.72132700	7.76988000	17.06736200
H	1.87064100	9.15378100	16.36550100
C	-2.64994500	0.12851800	13.71478100
Г	-2.98888100	-0.39210000	12.90929100
Н	-1.58775300	12.12392000	10.22954300
C	-0.63434200	12.66963100	13.45201300
Н	0.11810900	13.22317800	14.01374400
С	-6.40211300	5.03117700	15.37297400
Н	-6.78553400	4.03290100	15.58831800
C H	-3.67628200	10.60846000	11.15063300
п	-4.4/066600	10.29691300	11.84/18/00
H	0.13830100	13.31004900	11.54554700
Ċ	-5.71475500	7.22626900	12.30895500
Н	-4.76050200	7.77441500	12.24385900
С	-4.32107000	11.54223400	10.12371500
Н	-3.60762100	11.83186200	9.33785800
Н	-4.69977000	12.46027200	10.59557500

Н	-5.16297600	11.03442800	9.63107300
C	-3.04193400	-0.02670100	15.04319000
Н	-3.68210100	-0.86339100	15.32840200
C	-1.12394000	10.52241200	16.16403300
Н	-0.03820800	10.46433000	15.99618400
Н	-1.57586700	9.66684900	15.64250900
Н	-1.30731900	10.41832100	17.24437100
C	-1.70896000	6.18348500	10.22982700
Н	-1.68189800	7.10224800	9.62308700
Н	-2.49065300	6.28808600	10.99690700
Н	-1.99194500	5.35357600	9.56460800
С	-1.31277000	2.91025200	16.74790600
Н	-0.73956200	3.71486300	16.26429300
С	-5.80608600	8.21364800	18.38588100
Н	-6.16141200	7.28324200	18.85394800
Н	-6.68368900	8.75224900	17.99935100
Н	-5.34285600	8.82717900	19.17238500
С	-1.36669000	0.11156200	11.06887700
Н	-2.36412900	-0.32723700	10.91370900
Н	-0.73699400	-0.64075400	11.56586400
Н	-0.94432100	0.31249100	10.07357800
C	0.73290200	5,73307200	9.80398100
н	0 47364500	4 91475200	9 11511800
Н	1.71206700	5.51217100	10.25330100
Н	0.83946400	6 65470400	9 21052000
B	-0.91236700	4 58754100	13 85503200
Č	-0.95516000	13 02642800	16 33757700
н	-1 13881600	12 98796200	17 42047400
Н	-1 30607700	13 99877300	15 96279600
Н	0 13418600	12 97389300	16 19106200
Ĉ	-3.55252400	7.20504600	17.81383500
H	-3.03023900	7.83889100	18.54638200
Н	-2.85659700	6.95446200	16.99859400
Н	-3.82909100	6.26422600	18.31387500
C	0.12295500	7.02964900	16.42260900
H	-0.40969700	7.98284200	16.55783300
Н	0.44684600	6.67608800	17.41423100
Н	-0.58594000	6.30021300	16.00642800
B	-2.55453500	6.95652700	13.89416200
Č	-2.39826400	2.40429100	11.20857200
H	-2.08670800	2.60373000	10.17102200
Н	-2 42972100	3 35794600	11 75604000
Н	-3 42042800	1 99430900	11 18829500
Ĉ	-3.12800100	9.34173100	10.49068900
H	-3.93115600	8,79445500	9.97220900
Н	-2.67415500	8.67685000	11.23859500
Н	-2.35590900	9.59683700	9.74643700
C	-5 62426100	6.07652900	11 30615300
H	-4.85977700	5.34760500	11.61426800
Н	-5 35131300	6 46814000	10 31 520900
Н	-6.58842300	5.55590100	11.19868700
Ĉ	-2.48225500	3.56799000	17.48646500
н	-3.08652900	2 81891600	18 02270600
Н	-3 13166400	4 10852300	16 78154700
Н	-2.10283400	4.28617900	18.23008800
C	-6.84215900	8.19406600	11.92946100
н Н	-7.81681700	7.68492300	11.97995300
н	-6 70155000	8 56065700	10 90083100
Н	-6 87866000	9.06662800	12 59773200
C	-0 37972000	2 19055400	17 72858300
й	0.01144500	2.19033400	18 47857600
Н	0 47233100	1 73106200	17 20657400
н	-0.91433100	1 39017500	18 26373700
	5.71 155100	1.59017500	10.20070700

Compound 5₂ dimer:

Р	0.00323800	-1.31100300	-0.41907400
Ν	-0.62995500	-4.23373100	-1.12599900
Ν	-5.10596800	0.59981200	0.36765300
Ν	0.51632600	-4.09080200	0.92518100
Ν	-4.17559600	0.33813100	2.37099500
Ν	-2.71628000	0.07710900	0.46266600

C	-3 84983400	0 31043600	0 99054700
C C	1 88561600	4 58086200	2 27262700
C	-1.88501000	-4.38080200	-3.27202700
С	-0./0381300	-4.24266300	-2.55827900
С	1.45178800	-4.03446100	2.01941700
С	-3.10236100	-5.25423000	-2.64361600
Н	-3.19488600	-4.90065900	-1.60450300
C	-5 54968400	0.63070700	-0 99460000
C C	4.04235400	1 82007000	2 47526500
C	-4.04233400	-1.83097000	5.47550500
C	-6.09/88900	0.73159300	1.3383/500
Н	-7.12991600	0.88794900	1.06028100
С	3.32393800	-4.37892300	0.36047000
Н	2.54572200	-4.84279400	-0.25667000
С	0 48277800	-4 02743300	-3 31807400
C C	2 68548400	0.46227200	2 46558000
C	-3.08348400	-0.40327300	3.40338900
C	-5.26288900	-0.451/8000	-1.8366/500
С	-6.35849100	1.70678900	-1.45102200
С	2.80097400	-4.39005000	1.77789500
С	-3.21441000	0.18980100	4.61969900
С	-0.89954200	-5,47729400	-0.39513800
н	-0.76101200	-6 35301700	-1 03734100
11	-0.70101200	-0.33301700	-1.03/34100
П	-1.93292500	-5.50322100	-0.008/1800
С	-5.54313900	0.59033800	2.54006200
Н	-5.98803600	0.58480800	3.52831300
С	-0.44533400	-3.58592300	3.62448800
Н	-1.02066300	-3.81558500	2.71917100
C	-3 93141300	-2 53032100	4 67689300
U U	4 22286800	2.55052100	4.07009500
п	-4.23280800	-5.57752100	4./1000900
C	3.62100700	-4./3411500	2.85313700
Н	4.64277400	-5.06277200	2.66496100
С	-1.91375600	-4.39124200	-4.66190800
Н	-2.83398100	-4.59856400	-5.20696600
С	0.09945800	-5 48940200	0 75453600
ч	0.35158700	5 86616100	1 68672100
11	-0.33138700	-5.80010100	1.00072100
П	0.97991400	-0.12451400	0.54360100
С	1.84684200	-4.27820900	4.399/2300
Н	1.47229500	-4.23262500	5.42361700
С	-3.46177900	-1.90723300	5.82858100
Н	-3.38175100	-2.47023700	6.76002300
C	-5 68997100	-0.41276000	-3 16825600
ч	5 43305900	1 24423400	3 82831300
11 C	-3.43303900	-1.24423400	-5.82851500
C	-2.89368900	1.6/991900	4.03/30300
H	-2.38935200	1.91364400	3.68820300
С	0.98136800	-3.97558000	3.34161700
С	-4.41905600	-4.97303900	-3.37908300
Н	-4.56340400	-3.90945800	-3.59739600
Н	-5.26816900	-5.32044700	-2.77429800
ч	4 45733900	5 52537300	4 32010400
	-4.45/55500	-5.52557500	-4.52910400
C III	-0./8301800	2.91080200	-0.01133200
Н	-6.1/234/00	2.93435800	0.30303200
С	-6.45458600	0.64160400	-3.64256100
Н	-6.79380200	0.65906500	-4.67954800
С	-6.80228700	1.67212100	-2.77379300
Н	-7.41913400	2,49209900	-3.14516900
C	3 09258800	0 56013000	5 70224500
U U	-3.09238800	-0.30913900	6 70218400
п	-2.72324300	-0.09834300	0.70218400
С	3.15048900	-4.68553000	4.16180900
Н	3.80213700	-4.96813200	4.99116600
С	1.84380100	-4.31179500	-2.70343500
Н	1.94164500	-3.74044400	-1.77375000
С	0.40071000	-3.81733800	-4.69550100
н	1 30571900	-3 59145600	-5 25966900
C	1.04521400	1 26046700	4 70291500
	-1.04321400	-4.30940/00	4.79201300
Н	-0.80895500	-5.44151800	4./1548/00
Н	-2.13512000	-4.25801700	4.81158700
Н	-0.66911100	-4.00707600	5.76255100
С	-0.80831600	-3.94278600	-5.36779200
Н	-0.87106300	-3.76170900	-6,44207600
С	-4.55781600	-1.69130800	-1.34709200
н	_4 23175600	-1 52908400	-0 32167300
11		1.52700400	0.5210/500

C	4 52976000	2 5 4 2 9 6 4 0 0	2 22420400
C .	-4.32870000	-2.54580400	2.22439400
H	-4.95553500	-1.79030000	1.54/64600
В	0.02944300	-3.29811500	-0.18084000
C	-0 50546900	-2 07060700	3 83053900
	0.00040000	1 7020(500	4.74522200
Н	0.04080200	-1./9206500	4./4552200
Н	-1.53811800	-1.72491200	3.92782300
Н	-0.03834800	-1.54428100	2.98256000
C .	2 24401800	2 21400200	1 51214000
C	-3.34401800	-5.21499800	1.31314000
Н	-2.52446400	-2.50303100	1.32291700
Н	-3.65720400	-3.64218000	0.54854000
ч	2 05708400	4 02582700	2 12766200
11	-2.93708400	-4.03383700	2.13/00200
C	3.46875400	-2.92308800	-0.09274300
Н	2.52252200	-2.37670300	0.00878400
н	3 79097500	-2 85310700	-1 14088800
11	1.10010200	-2.03310700	-1.14000000
Н	4.19819300	-2.38/28/00	0.53156600
С	-2.93396200	-6.78588500	-2.65200400
Н	-2.88049500	-7.13602400	-3.69397400
11	2 80227200	7 26800500	2 17744000
п	-3.80227300	-7.20800300	-2.1//44000
Н	-2.02931000	-7.13646300	-2.14686300
С	-6.57811400	4.24893400	-1.33691300
н	5 57318600	4 3 4 3 4 7 1 0 0	1 76483600
11	-3.37318000	4.34347100	-1./0483000
H	-6.73530900	5.08048600	-0.63438/00
Н	-7.30216700	4.37499100	-2.15507600
C	-1 96766700	2 06057000	5 79202400
e u	2.502(2700	2.00057000	6.75410000
H	-2.50262/00	2.03362000	6.75410800
Н	-1.60039100	3.08585500	5.64721000
Н	-1.09985500	1.39062400	5.86152300
D	1 26542400	0.01447100	0.12971400
Б	-1.30342400	0.01447100	0.128/1400
C	1.90512100	-5.81995600	-2.39952500
Н	1.14987500	-6.12972300	-1.66933900
н	2 89425100	-6 10459100	-2.01062200
11	2.07425100	-0.10+39100	-2.01002200
H	1.72910500	-6.38412300	-3.32831000
С	-4.15653700	2.55322400	4.72881800
н	-4 76819100	2 51101200	3 82035900
11	2 96590200	2 60260000	4 89292100
п 	-3.80380300	5.00509900	4.88282100
Н	-4.77488100	2.24659800	5.58775400
С	-5.64016100	-3.55814100	2.49975200
н	5 27384000	4 42184300	3 07/20/00
11	-3.27384000	-4.42184300	3.07429400
H	-6.03186100	-3.94545800	1.54835600
Н	-6.47157500	-3.10091100	3.05548500
С	4 60750700	-5 17422000	0 13624200
U U	5.47520000	4.71(24(00	0.13621200
Н	5.4/520000	-4./1034000	0.03301200
Н	4.83750100	-5.21132300	-0.93954500
Н	4.51281200	-6.20879100	0.49825900
C	8 26001200	2 82207400	0.22427200
C II	-0.20701200	2.02207400	-0.22427200
H	-8.89056200	2.88185400	-1.13058800
Н	-8.54679400	3.66146600	0.43007700
Н	-8.54105700	1.88783600	0.28393200
C	3 0/1578500	3 08030700	3 58638600
	3.04100000	-5.70757/00	-5.50050000
H	3.04100000	-4.60198800	-4.50081100
Н	3.96618600	-4.23896200	-3.03880900
Н	3.09558500	-2.93334000	-3.87311700
C .	5 57410500	2.92965200	1 20720200
C	-5.5/410500	-2.83803300	-1.29/29300
Н	-6.36333200	-2.60111000	-0.56598900
Н	-5.10076900	-3.78521300	-0.99759900
н	6.06504400	2 0088/300	2 26675700
	-0.00304400	-2.9988-1900	-2.20075700
C	-3.28064500	-1.94438400	-2.144/8800
Н	-3.46596800	-2.23172000	-3.18975900
Н	-2.67895700	-2.73150000	-1.66919600
 U	2 66000000	1 02478500	2 16550000
п	-2.000999900	-1.034/8500	-2.10559900
Р	-0.01667400	1.47287200	0.24739200
Ν	-0.07453000	2.86501000	-2.54535100
N	4 83221100	1 421 77800	-0.45754000
1 Y	T.05221100	1.721//000	-0
IN	0.25142000	4.26824700	-0./2954100
Ν	4.09032600	1.15239300	1.60180400
Ν	2.72788600	0.24591100	-0.17296800
с.	2 75500000	0.2(000000	0.26244500
C .	3./3398600	0.80808200	0.20344500
С	0.22054500	0.75475600	-3.79817800
			2 40265700

С	0 14321900	4 90037800	0 54301200
C C	1 70758000	0.73919000	-3 51704100
U U	1.20082200	1.24774200	-5.51704100
н ~	1.89083200	1.24//4200	-2.55846600
С	5.19672000	1.37143300	-1.84507900
С	2.51745400	0.88327900	3.46026600
С	5.70509000	2.07983100	0.41231400
Н	6.56495700	2.61982500	0.02954500
C	-2 38925000	4 49677600	0.54515000
U U	2.12(80200	4.0(200200	0.34313000
п ~	-2.12089200	4.00390300	-0.42///900
С	-1.90330800	1.96276400	-3.86650200
С	3.63226600	0.41773300	2.74611300
С	5.21526800	2.56946700	-2.57958700
С	5.76695500	0.19186300	-2.36927100
С	-1.11171600	5.00122000	1.18539800
C	4 39255600	-0.69087600	3 18046100
C C	0.15260100	4 20008700	2 10815000
	0.15500100	4.20098700	-5.10815000
H	-0.60226400	4.46049100	-3.86236600
H	1.12343600	4.25059600	-3.62298000
С	5.25241700	1.91394100	1.66246700
Н	5.63537500	2.28373000	2.60627200
С	2.59887700	5.59263000	0.38652800
Н	2,49974200	4.96317600	-0.50642100
C	2 08466300	0 13236300	4 55730700
е н	1 20569400	0.45870300	5 11/05800
II C	1.20309400	5 (2(02400	2 42959200
	-1.19300000	5.05092400	2.42636200
H ~	-2.16144/00	5.69/88800	2.93231900
С	-0.35892900	-0.25139700	-4.58005900
Н	0.23005900	-1.12648100	-4.85408700
С	0.10878900	5.14293200	-1.89593800
Н	0.90587800	5.90345700	-1.93466500
Н	-0.85476500	5.68642500	-1.83752800
С	1.14422200	6.16507200	2.35427400
Н	2.01903000	6.64712500	2,79777400
C	2 76507400	-1 01400000	4 94975100
U U	2.70507400	1.50072600	5 70845800
II C	2.40083100	-1.39972000	3.79643600
C .	5./4553400	2.551/6600	-3.8/541000
Н	5.75744400	3.4/491/00	-4.45821000
С	5.75986800	-1.01431700	2.59028400
Н	5.78712200	-0.62730700	1.55971900
С	1.27182200	5.52464900	1.11762100
С	2.29558700	-0.66394100	-3.43300800
Н	1.69410200	-1.31333000	-2.77839200
Н	3.32130300	-0.62140300	-3.03620300
н	2 33979900	-1 11966000	-4 43528700
C C	5.00264700	1.01757500	1 48540600
	5.99504700	-1.01/3/300	-1.48340000
н ~	5.13859500	-1.08/84400	-0./98/4000
С	6.23445000	1.38067700	-4.4344/000
Н	6.62651600	1.37975900	-5.45258500
С	6.24286300	0.20929700	-3.68201800
Н	6.66255900	-0.69952200	-4.11285300
С	3.92316600	-1.40405700	4.28513000
Н	4.47296800	-2.27668200	4.63710700
С	-0.07435600	6.20855900	3.02193900
н	-0 15502800	6 70417500	3 99076600
C	-2 79941500	3 05363500	-3 31340100
U U	-2.79941500	2.02005600	2 06476600
п	-2.20433100	3.93903000	-3.004/0000
C	-2.43444800	0.96238600	-4.68419300
Н	-3.46777800	1.03649800	-5.02/39900
С	2.88734400	7.03268200	-0.05458100
Н	2.05958500	7.44789400	-0.64804400
Н	3.80557500	7.08243100	-0.65955100
Н	3.02817900	7.68688900	0.81998000
С	-1.67273100	-0.15319300	-5.02129900
Н	-2,10262000	-0.95319100	-5.62785800
C	4 70353800	3 88347700	-2 02366000
с н	A 20002100	3 77750700	0.02155500
 C	4.37672100	2.12230/00	-0.20133300
	1.95510500	2.232/8000	3.1/933300
п	2.00241500	2.44844800	2.09859000
В	0.03029800	2.89231100	-1.11266200

С	3.75254600	5.03332700	1.21673900
Н	3.86112300	5.56410700	2.17517200
Н	4.70612400	5.13156700	0.67500100
Н	3.59183400	3.96770200	1.43127800
С	0.47366200	2.39213700	3.59246500
Н	-0.12463100	1.53069100	3.26147200
Н	0.04203600	3.29586900	3.13616500
Н	0.39627600	2.49189900	4.68421900
С	-3.04388400	3.39892500	1.38299500
Н	-2.34939900	2.55858500	1.53106400
Н	-3.94807100	3.01352700	0.88354300
Н	-3.34282500	3.78546300	2.37012700
С	2.40430200	1.52581300	-4.63540600
Н	2.20824000	1.04215500	-5.60550600
Н	3.49027900	1.55323600	-4.47498000
Н	2.02879600	2.55741300	-4.69854200
С	6.08607000	-2.32654300	-2.26401800
Н	5.24571200	-2.43906300	-2.96229700
Н	6.07310500	-3.17750100	-1.56727500
Н	7.02332000	-2.38789900	-2.83778500
С	6.08878600	-2.50409900	2.53965500
Н	6.15409300	-2.93833300	3.54882200
Н	7.06790900	-2.65466100	2.06007900
Н	5.33455100	-3.06630900	1.98399900
В	1.34209900	0.08862200	-0.10919600
С	-3.90899900	3.49808900	-4.26379800
Н	-3.50409100	3.78979400	-5.24435300
Н	-4.44468000	4.36302800	-3.84433000
Н	-4.65115600	2.70144400	-4.41886700
С	6.86219700	-0.31887800	3.40647300
Н	6.68434400	0.75376200	3.53946900
Н	7.83993300	-0.44887300	2.91767100
Н	6.91761000	-0.77087300	4.40896500
С	2.77541100	3.28918400	3.93943600
Н	2.74490500	3.07290700	5.01885200
Н	2.37399400	4.29921500	3.77479500
Н	3.82840100	3.28040800	3.62402100
С	-3.36500500	5.64988700	0.29015400
Н	-3.69537500	6.10843500	1.23514600
H	-4.26050300	5.28357400	-0.23278500
Н	-2.90432200	6.43902100	-0.32226600
C	7.27476400	-0.82108900	-0.66063400
H	8.14400000	-0.73846300	-1.33119200
H	7.43440500	-1.68411300	0.00352300
H	7.23547400	0.08459400	-0.03958700
C	-3.35624300	2.48146100	-2.01/06600
H	-3.91881300	1.58415300	-2.27788600
H	-4.01448/00	3.18216800	-1.48398300
н	-2.55190200	2.17123000	-1.53448300
U U	5.78805500	4.96351900	-2.03/81000
п	0.08482/00	4.04438000	-1.48594000
п	5.41212800	5.88/1/000	-1.3/413900
п	0.09/15/00	5.210/0900	-3.00449600
с н	3.45/9/100	4.31084200	-2./9449400
н	3.04/42000	4.33320000 5 30457000	-3.0/040000
н	2 65603000	3 58006600	-2.4/102300
11	2.05005900	5.50090000	-2.01400900

VI. References

[S1] Segawa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2008, 130, 16069–16079.

[S2] Schreiber, R. E.; Goicoechea, J. M. *Angew.Chem., Int.Ed.* 2021, *60*, 3759–3767.
[S3] a) Tamm, M.; Randoll, S.; Herdtweck, E.; Kieigrewe, N.; Kehr, G.; Erker, G.; Rieger, B. *Dalton. Trans.* 2006, *3*, 459-467. b) Liu, B.-C.; Ge, N.; Zhai, Y.-Q.; Zhang, T.; Ding, Y.-S.; Zheng, Y.-Z. *Chem. Commun.* 2019, *55*, 9355-9358.

[S4] Gaussian 16, Revision A.03, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, **2016**.

[S5] Zhao, Y.; Truhlar, D. G.; Theor. Chem. Acc. 2008, 120, 215-241.

[S6] Glendening, E. D; Badenhoop, J. K.; Reed, A. E.; Carpenter, J. E.; Bohmann, J. A.; Morales, C. M.; Karafiloglou, P.; Landis, C. R.; Weinhold, F. NBO 7.0, University of Wisconsin: Madison, WI, **2018**.

[S7] Legault, C. Y. CYLview, 1.0b; Université de Sherbrooke: Sherbrooke, Quebec, Canada, **2009**; www.cylview.org.

[S8] Andrienko, G. A. ChemCraft, http://www.chemcraftprog.com.

[S9] Knizia, G. J. Chem. Theory Comput. 2013, 9, 4834-4843.

[S10] te Velde, G.; Bickelhaupt,F. M.; Baerends, E. J.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.;Ziegler, T.; *J. Comput. Chem.* **2001**, *22*, 931-967. ADF 2019.304, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com