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Abstract

This paper presents a family of beam higher-orders finite elements based on a hierarchical one-dimensional

unified formulation for a free vibration analysis of three-dimensional sandwich structures. The element stiff-

ness and mass matrices are derived in a nucleal form that corresponds to a generic term in the displacement

field approximation over the cross-section. This fundamental nucleus does not depend upon the approximation

order nor the number of nodes per element that are free parameters of the formulation. Higher-order beam

theories are, then, obtained straightforwardly. Timoshenko’s classical beam theory is obtained as a special

case. Short and slender beams are investigated. Simply supported, cantilevered and clamped-clamped boundary

conditions are considered. Several natural frequencies as well as the corresponding modes are investigated.

Results are validated in terms of accuracy and computational costs towards three-dimensional finite element

solutions. The proposed hierarchical models, upon an appropriate choice of approximation order, yield accu-

rate results with a reduced computational cost.

Keywords: Free vibration analysis; Sandwich beam structures; Unified formulation; Finite element method.
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1 Introduction

Sandwich beams are composed by a thick soft core and two thin stiff face sheets. They are widely used

in several engineering sectors such as aeronautics and astronautics due to their high specific strength- and

stiffness-to-weight ratios. Sandwich structures analysis and design was first discussed by Allen [1]. Many in-

vestigations were, then, devoted to static and dynamic analyses of these structures and various representative

theories were proposed: classical laminate theory, first-order shear deformation theory and high-order theories

as well as zig-zag based models. Some reviews of the theories for modelling sandwich structures can be found

in Carrera [2] and Hu et al. [3].

Ahmed [4] used finite element displacement method to investigate the free vibration characteristics of curved

sandwich beams under clamped-clamped boundary conditions. Goyal [5] studied the free vibrations of sand-

wich beams having a central mass. Shu [6] solved the free vibrations of sandwich beams with single and

double delaminations analytically. Frostig and Baruch [7] presented a free vibration analysis of sandwich

beams under simply supported boundary conditions based on a higher-order beam theory for the skins and

a two-dimensional elasticity solution for the core. By applying the discrete Green function, a free vibration

analysis of a three-layer sandwich beam with an elastic or viscoelatic core and arbitrary boundary conditions

was presented by Sakiyama et al. [8]. Furthermore, a related work about continuous sandwich beams with

elastic or viscoelastic cores was presented in [9]. Kameswara Rao et al. [10] used a fully third-order model of

laminated composite and sandwich beams based on a higher-order mixed theory. Daya et al. [11] developed a

new numerical method for an exact solution of non-linear eigenvalue problems that can be applied to determine

the natural frequencies and the loss factors of viscoelastic damped sandwich structures. Banerjee [12] analysed

the free vibration of three-layered symmetric sandwich beams using the Wittrick–Williams algorithm. By us-

ing the same method, Banerjee et al. [13] developed a dynamic stiffness theory of a three-layered sandwich

beams. Kapuria et al. [14] presented a third-order zig-zag theory for the static, free and forced vibration

analysis of sandwich beams. Bhangale and Ganesan [15] studied the buckling and vibration behaviour of a

functionally graded material sandwich beam having constrained viscoelastic layer in thermal environment by

using the finite element method. An assessment of higher-order and zig-zag displacement-based theories for

the stability and free vibration of sandwich beams was proposed by Wu and Chen [16]. The element free

Galerkin method and Galerkin formulation for two-dimensional elasticity problem were considered for the

free vibration analysis of sandwich beams with a core made of a functionally graded material by Amirani et

al. [17]. Arvin et al. [18] developed a model to study the free and forced vibration of composite sandwich

viscoelastic-core beam based on a modified Mead-Markus theory. Vidal and Polit [19] presented a family of

sinus models for the analysis of laminated beams in the framework of a free vibration analysis. Damanpack

and Khalili [20] examined the high-order free vibration of three-layered symmetric sandwich beams using a

dynamic stiffness method. An analytical solution for free vibration analysis of lattice sandwich beams was

carried out by Lou et al. [21]. The lattice sandwich beam was transformed to an equivalent homogeneous

three-layered sandwich beam. The natural frequencies of composite sandwich beams with lattice truss core

were investigated by combining the classical Euler-Bernoulli beam theory and Timoshenko beam theory by

Xu et al. [22]. Yang et al. [23] studied the free vibrations of functionally graded sandwich beams by a mesh-

free boundary-domain integral equation method. Qu et al. [24] presented a three-dimensional free vibration
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analysis of composite structures with parallelepiped shapes including beams, plates and solids. He et al. [25]

investigated the free vibrations and buckling of composite beams by modifying Reddy’s higher-order beam

theory. Jin et al. [26] proposed a theoretical model using Reddy’s higher-order shear deformation theory to

analyse the vibration and damping of sandwich beams with a viscoelastic core. A free vibration analysis of

asymmetric sandwich beams resting on a variable Pasternak foundation was carried out through Hamilton’s

principle and generalised Galerkin’s method by Pradhan et al. [28]. A higher-order theory was developed to

study the free vibrations of a debonded curved sandwich beam by Sadeghpour et al. [29]. Tossapanon and

Wattanasakulpong [30] analysed the free vibrations of functionally graded sandwich beams resting on Winkler

and shear layer springs based on Timoshenko’s beam theory.

This paper presents a free vibration analysis of sandwich beams by several higher-order beam one-dimensional

finite elements derived through a Unified Formulation (UF). This formulation has been previously applied for

plates and shells (see Carrera [31], Carrera and Giunta [32] and Giunta et al. [33]) and lately extended to

beams, see Carrera et al. [34, 35] and Giunta et al [36, 37, 38]. The hierarchical beam elements were extended

to sandwich structures accounting for a layer-wise description of the displacement field by He et al. [39].

A study on three-dimensional nano-beams accounting for surface free energy effect were carried out in

Giunta et al. [42]. The free vibration analysis of laminate composite beams was discussed in Giunta et

al. [40]. A free vibration and a stability analysis of sandwich beams via Navier-type closed form solution

was presented in Giunta et al. [41]. The present work is an extension of these previous works by using a

finite element solution to investigate the free vibrations under different boundary conditions and to test the

accuracy of the proposed models within the framework of a weak form solution. The elements stiffness and

mass matrices are obtained via the Principle of Virtual Displacements (PVD). Through a concise notation

for the displacement field, these matrices can be rewritten in a ‘nucleal’ form that does not depend upon the

approximation order nor the number of nodes per element. Non-classical deformations, such as transverse

shear and cross-section in- and out-of-plane warping, can have a significant influence on the response of beams,

see Bishop et al. [43]. By using this formulation, classical theories can be easily enhanced in order to account

for transverse shear, cross-section in- and out-of-plane warping and rotatory inertia. Classical Timoshenko’s

(TBT) model is obtained as a special case.

Results of these models are validated through comparison with three-dimensional finite element method

solutions obtained via Ansys. Numerical results show that, upon a suitable choice of the expansion order for

the displacement-based beam theory, accurate results can be obtained with reduced computational costs.

2 Preliminaries

A beam, see Fig. 1, is a structure whose axial extension (l) is higher than any other dimension orthogonal

to it. The cross-section (Ω) is obtained by intersecting the beam with planes that are orthogonal to its axis.

Equations are written in a Cartesian reference system: y- and z-axis are two orthogonal directions laying on

Ω. The x coordinate is coincident with the beam axis. It is bounded such that 0 ≤ x ≤ l. The cross-section

is considered to be constant along x. The displacement field is:

uT (x, y, z) =
{

ux (x, y, z) uy (x, y, z) uz (x, y, z)
}

(1)
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in which ux, uy and uz are the displacement components along x-, y- and z-axis, respectively. The transposi-

tion operator is represented by superscript ‘T ’. Stress, σ, and strain, ε, vectors are arranged into vectors σn,

εn on the cross-section:

σ
T
n =

{

σxx σxy σxz

}

ε
T
n =

{

εxx εxy εxz
}

(2)

and σp, εp on planes orthogonal to Ω:

σ
T
p =

{

σyy σzz σyz

}

ε
T
p =

{

εyy εzz εyz
}

(3)

Under the hypothesis of linear analysis, the following strain-displacement geometrical relations hold:

ε
T
n =

{

ux,x ux,y + uy,x ux,z + uz,x

}

ε
T
p =

{

uy,y uz,z uy,z + uz,y

} (4)

Subscripts ‘x’, ‘y’ and ‘z’, when preceded by comma, stand for derivation versus the corresponding spatial

coordinate. A compact vectorial notation can be adopted for Eqs. (4):

εn = Dnpu+Dnxu

εp = Dpu
(5)

where Dnp, Dnx and Dp are the following differential matrix operators:

Dnp =













0 0 0

∂

∂y
0 0

∂

∂z
0 0













Dnx = I
∂

∂x
Dp =

















0
∂

∂y
0

0 0
∂

∂z

0
∂

∂z

∂

∂y

















(6)

and I is the unit matrix.

The constitutive equations are:
σp = Cppεp +Cpnεn

σn = Cnpεp +Cnnεn
(7)

The matrices Cpp, Cpn, Cnp and Cnn in Eqs. (7) are:

Cpp =





C22 C23 0
C23 C33 0
0 0 C44



 Cpn = CT
np =





C12 0 0
C13 0 0
0 0 0



 Cnn =





C11 0 0
0 C66 0
0 0 C55





(8)

Coefficients Cij as function of the Young’s modulus and Poisson ratios are not here presented for the sake of

brevity. They can be found in Reddy [44].

3 Displacement Field Approximation

The displacement field is a priori assumed over the cross-section in the following manner:

u (x, y, z) = Fτ (y, z)uτ (x) with τ = 1, 2, . . . , Nu (9)

According to Einstein’s notation, subscript τ implicitly represents a summation. Fτ (y, z) is a generic expan-

sion function over the cross-section and Nu is the number of accounted terms.

This kinematic formulation allows to account for several beam theories since the choice of the expansion func-

tions Fτ (y, z) and order Nu is arbitrary. In this study, Mac Laurin’s polynomials are used as approximating
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functions Fτ . Nu and Fτ as functions of the order of the theory N are obtained through Pascal’s triangle as

shown in Table 1.

The explicit form of a generic N -order displacement field reads:

ux = ux1 + ux2y + ux3z + · · ·+ u
x
(N2+N+2)

2

yN + · · ·+ u
x

(N+1)(N+2)
2

zN

uy = uy1 + uy2y + uy3z + · · ·+ u
y
(N2+N+2)

2

yN + · · ·+ u
y

(N+1)(N+2)
2

zN

uz = uz1 + uz2y + uz3z + · · ·+ u
z
(N2+N+2)

2

yN + · · ·+ u
z

(N+1)(N+2)
2

zN
(10)

As far as the displacements variation along the beam axis is concerned, a one-dimensional finite element

approximation is used:

u (x, y, z) = Fτ (y, z)Ni (x)qτi with τ = 1, 2, . . . , Nu and i = 1, 2, . . . , Ne
n (11)

Ni (x) is a C0 shape function, Ne
n the number of nodes per element and qτi the nodal displacement unknown

vector. Linear, quadratic and cubic elements based on Lagrangian shape functions are considered. They are

referred to as “B2”, “B3” and “B4”, respectively. The corresponding shape functions are not presented. They

can be found in Bathe [45].

Timoshenko’s beam theory:
ux = ux1 + ux2y + ux3z
uy = uy1

uz = uz1

(12)

is derived from the first-order approximation model. In TBT, no shear correction coefficient is considered,

since it depends upon several parameters, such as geometry of the cross-section (see, for instance, Cowper [46]

and Murty [47]). Higher-order models yield a more detailed description of the shear mechanics (no shear

correction coefficient is required), of the in- and out-of-section deformations, of the coupling of the spatial

directions due to Poisson’s effect and of the torsional mechanics than classical models do. TBT model accounts

for constant shear stress and strain components. Regarding classical models, the material stiffness coefficients

should be corrected in order to contrast a phenomenon known in literature as Poisson’s locking (see Giunta

et al. [40]). A reduced material stiffness coefficient is obtained by imposing σyy and σzz equals to zero in

Hooke’s law. Consequently, an algebraic linear system in εyy and εzz is obtained. By substituting its solution

into σxx Hooke’s equation, the reduced stiffness coefficient Q11 is obtained:

Q11 = C11 + C12
C12C33 − C13C23

C2
23 − C22C33

+ C13
C22C13 − C12C23

C2
23 − C22C33

(13)

4 Principle of Virtual Displacements

The stiffness and the mass matrices are obtained via the Principle of Virtual Displacements, see Reddy [48]:

δLi + δLρ = 0 (14)

δ symbolises a virtual variation, Li stands for the strain energy and Lρ for the inertial work.

4.1 Virtual variation of the strain energy

Coherently with the grouping of the stress and strain components in Eqs. (2) and (3), the virtual variation of

the strain energy can be considered as the sum of two contributes:

δLi =

∫

le

∫

Ω

(

δǫTnσn + δǫTp σp

)

dΩdx (15)
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where le is the length of an element. By replacing the geometrical relations, Eqs. (5), the material constitutive

equations, Eqs. (7), and the unified hierarchical approximation of the displacements in Eq. (9), Eq. (15)

becomes:

δLi = δqT
τi

∫

le

∫

Ω

{

(DnxNi)
T
Fτ [Cnp (DpFs)Nj +Cnn (DnpFs)Nj +CnnFs (DnxNj)]

+ (DnpFτ )
T
Ni [Cnp (DpFs)Nj +Cnn (DnpFs)Nj +CnnFs (DnxNj)]

+ (DpFτ )
T Ni [Cpp (DpFs)Nj +Cpn (DnpFs)Nj +CpnFs (DnxNj)]

}

dΩ dx qsj

This latter can be written in the following compact vector form:

δLi = δqT
τiK

τsijqsj . (16)

The components of the stiffness matrix fundamental nucleus Kτsij ∈ R
3×3 are:

Kτsij
xx = Ii,xj,xJ

11
τs + Ii,xjJ

16
τs,y

+ Iij,xJ
16
τ,ys

+ Iij

(

J55
τ,zs,z

+ J66
τ,ys,y

)

Kτsij
xy = Iij,xJ

12
τ,ys

+ Ii,xj,xJ
16
τs + Iij

(

J26
τ,ys,y

+ J45
τ,zs,z

)

+ Ii,xjJ
66
τs,y

Kτsij
xz = Iij,xJ

13
τ,zs

+ Iij

(

J36
τ,zs,y

+ J45
τ,ys,z

)

+ Ii,xjJ
55
τs,z

Kτsij
yx = Ii,xjJ

12
τs,y

+ Ii,xj,xJ
16
τs + Iij

(

J26
τ,ys,y

+ J45
τ,zs,z

)

+ Iij,xJ
66
τ,ys

Kτsij
yy = Iij

(

J22
τ,ys,y

+ J44
τ,zs,z

)

+ Iij,xJ
26
τ,ys

+ Ii,xjJ
26
τs,y

+ Ii,xj,xJ
66
τs

Kτsij
yz = Iij

(

J23
τ,zs,y

+ J44
τ,ys,z

)

+ Iij,xJ
36
τ,zs

+ Ii,xjJ
45
τs,z

Kτsij
zx = Ii,xjJ

13
τs,z

+ Iij

(

J36
τ,ys,z

+ J45
τ,zs,y

)

+ Iij,xJ
55
τ,zs

Kτsij
zy = Iij

(

J23
τ,ys,z

+ J44
τ,zs,y

)

+ Ii,xjJ
36
τs,z

+ Iij,xJ
45
τ,zs

Kτsij
zz = Iij

(

J33
τ,zs,z

+ J44
τ,ys,y

)

+ Iij,xJ
45
τ,ys

+ Ii,xjJ
45
τs,y

+ Ii,xj,xJ
55
τs

(17)

The generic term Jgh
τ(,φ)s(,ξ)

is a cross-section moment and it stands for:

Jgh
τ(,φ)s(,ξ)

=

∫

Ω

CghFτ(,φ)
Fs(,ξ) dΩ (18)

It is a weighted sum (in the continuum) of each elemental cross-section area where the weight functions account

for the spatial distribution of the geometry and material. Ii(,x)j(,x)
is an integral over the axial coordinate of

the shape functions or their derivatives:

Ii(,x)j(,x)
=

∫

le

Ni(,x)
Nj(,x)

dx (19)

These integrals are evaluated numerically through Gauss’ quadrature method. In order to correct the shear

locking, a selective integration technique is used. Two, three and four quadrature points are used for the full

integration for B2, B3 and B4 elements, respectively. One point less is used for the under-integrated term Iij

in Kτsij
xx that is related to shear deformations γxy and γxz.

4.2 Virtual variation of the inertial work

The virtual variation of the inertial work is:

δLρ =

∫

l

∫

Ω

ρδuü dΩ dx (20)
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where ρ is the material density and double dots stand for second derivative versus time. Accounting for

Eq. (9), Eq. (20) becomes:

δLρ = δqT
τi

∫

le

NiNjdx

∫

Ω

ρFτFsdΩ q̈sj (21)

and its compact vectorial form is:

δLρ = δqT
τi M

τs q̈sj (22)

The components of the inertial matrix Mτs are:

M
τsij
lm = δlmIijJ

ρ
τs with l,m = x, y, z (23)

in which δlm is Kronecker’s delta and Jτs is the following integral:

Jρ
τs =

∫

Ω

ρFτFs dΩ (24)

4.3 Eigenvalue Problem

The final eigenvalue problem is rewritten in terms of the global stiffness (K) and mass (M) matrices:

Mq̈+Kq = 0 (25)

where, q is the global vector for the nodal unknowns:

q = qeiωt (26)

t stands for the time, ω represents the angular frequency, q is the global unknown vector and i is the imaginary

unit. The final eigenvalue problem, then, reads:

(K− ω2M)q = 0 (27)

5 Numerical Results and Discussion

The free vibration of sandwich beams, as shown in Fig. 2, under simply supported, cantilever, and clamped-

clamped boundary conditions are studied. The cross section sides a and b are both equal to 0.02 m (the

cross-section is square) and the face sheets thickness hf is 0.003 m. A length-to-thickness ratio l/a as high

as 100 (slender beams) and as low as 10 (short beams) is considered. Material properties for the face sheets

are: Ef = 200 GPa, νf = 0.30 and ρf = 7800 kg/m3. For the core, they are: Ec = 0.66 GPa, νc = 0.27 and

ρc = 60 kg/m3.

Results are compared with three-dimensional finite element solutions obtained via the commercial code Ansys.

The quadratic solid element ‘SOLID 186’ is used. In order to verify the convergence of the reference solution,

an accuracy up to four significant digit for all the considered results is sought, different meshes are considered

for both slender and short beams. For slender beams, the refined mesh is 70 × 40 × (5, 30), whereas the

coarse one is 50 × 10 × (2, 6). As far as short beams are concerned, the refined mesh is 40 × 40 × (5, 30),

whereas the coarse one is 10× 10× (2, 6). The first two numbers represent the number of elements along the

beam axis (Nex) and width (Ney), respectively, whereas the numbers between brackets stand for elements

number along the thickness of the face sheets and the core. Nez is the total number of elements along the
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thickness. The same number of elements along the height and width is used (Nez = Ney = n). The generic

three-dimensional FEM solution is named as ‘FEM 3Dn’.

As far as the computational cost are concerned, the degrees of freedom (DOF) for the three-dimensional finite

element model using ‘SOLID 186’ as a function of Nex and n are:

DOF3D = 3
[

2Nex
(

2n2 + 3n+ 1
)

+ 3n2 + 4n+ 1
]

(28)

For a fixed approximation order N, the total DOFs of the proposed solutions are:

DOFUF =
3(N + 1)(N + 2)

2
Nn (29)

Nn stands for the total nodes number along the beam axis for the proposed elements. Some considerations

about computational cost can be addressed here based on the two equations above. For the highest considered

expansion order (N = 19), the degrees of freedom for a cross-section are 630 and DOFUF is 321′930 for slender

beams (511 nodes along the beam axis) and 189′630 for short beams (301 nodes). For slender beams, DOF3D

is 1′409′703 for 70× 40× (5, 30). For short beams, DOF3D is 811′923 for 40× 40× (5, 30).

The natural frequencies are put into the following dimensionless form:

ω =
l2

a

√

ρf
Ef

ω (30)

Mode comparison has been done by visualisation within the Ansys post-processing environment. The proposed

solution has been exported to Ansys by imposing at each node the displacement components computed by

the proposed models trough Ansys parametric design language command DNSOL. For the sake of brevity, no

figure comparing the modal shapes have been presented. They can be found in Giunta et al. [41].

5.1 Simply supported beams

Simply supported beams are first investigated. In order to present a convergence analysis versus the total

node number, results provided by the finite elements method are assessed towards an exact Navier-type

analytical solution (see Giunta et al. [41]). The first vibration mode for a short beam (bending on plane xz)

is considered. This boundary condition type is obtained by posing equal to zero uy and uz at x/l = 0 and

1 and ux at x/l = 0.5. The latter condition is used to remove the rigid body motion along the beam axis

and since the first three mode with a half wave number equal to one are considered It also allows to obtain a

positive definite stiffness matrix that can be factorised by means of Cholesky’s method in the solution of the

generalised eigenvalue problem. It should be noticed that for the most general case (valid for any number of

half waves along the axis), the condition ux0 at x/l = 0.5 should be removed. The natural frequencies relative

error versus the dimensionless distance between two consecutive nodes δii+1/l is evaluated for linear elements

as presented in Fig. 3. δii+1/l varies from 0.5 (number of nodes equals to 3) to 0.0000192 (Nn = 1′903).

Results have been obtained by N = 5. Solutions for different expansion orders N , length-to-width ratio

values and number of nodes per element are very similar and they are not presented for the sake of brevity.

The results that follow have been obtained using 301 and 511 nodes for short and slender beams, respectively.

In order to avoid the shear-locking phenomenon, a selective integration technique was adopted. Fig. 4 shows

the comparison between selective and full integration strategies. The variation of the ratio ωFEM/ωNAV

computed for the bending mode in the plane xy via B2 element versus l/a is presented. The selective
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integration is free of locking and it is effective regardless the beam theory order N . The frequency computed

by full integration is higher than the reference Navier solution since shear locking results in a higher bending

stiffness. Similar results can be obtained for the bending mode in the plane xz. Both full and selective

integration yield accurate frequencies for the torsional mode because torsional stiffness is not affected by the

shear-locking.

Table 2 shows the first three frequencies with a half wave for slender beams. In all the tables, the frequencies

are arranged according to the order of apparition in the Ansys model. The relative difference between the

results provided by theories with orderN ≥ 15 and three-dimensional reference solution is about 4% (torsional

mode), at worst. Results for short beams (l/a = 10) are presented in Table 3. It should be noted that the first

two bending frequencies swapped the order of apparition when compared to slender beams. The first mode

is bending with one half-wave in the plane xz, the second one corresponds to bending with one half-wave

in the plane xy and the last one is torsion. The percentage error between the reference FEM 3D40 model

and N = 19 model is 3.8% for the first mode and 2.1% for the third mode. The second mode is accurately

predicted. The accuracy in predicting the frequency of flexural mode on plane xy is higher than that for

flexural mode in the plane xz. This is due to the fact that in the latter bending mode occurs on a plane where

material properties change discretely along the thickness direction (for a fixed value of the through-the-width

coordinate) whereas in the former, for a fixed value of the through-the-thickness coordinate, they are constant,

see Giunta et al. [41].

5.2 Cantilever beams

Frequencies and modes for slender cantilevered beams are presented in Tables 4 to 6. The first nine modes are

considered. They are: bending in the plane xy with one, two, four, five, six half-waves, bending mode in the

plane xz with one, two, four, five half-waves. A good agreement with the reference three-dimensional FEM

solution can be observed for N = 18 where the highest relative difference is 2.8% (torsional mode). Except

for flexural modes in the plane xy, TBT as well as low order models (N ≤ 5) do not accurately predict the

frequencies. The frequencies of short beams are presented in Tables 7 to 9. The first nine modes are: bending

in the plane xy with one, two half-waves, bending in the plane xz with one, two, four, five, six half-waves

and torsion. TBT cannot predict torsional modes due to the limit of theory hypothesis, but the results of

bending modes related with xy are accurate. Higher-order theories match the reference three-dimensional

finite element solution. The error for N equal to 17 is 4.7%, at worst, for the bending mode in plane xz with

four half-waves. Several modes like bending mode in the plane xy (Mode 2 and 6) can be accurately predicted

by higher-order models with N ≥ 7 where the error is lower than 0.02%. Higher-order modes calls for a very

rich displacement field. Refined models should be, therefore, used.

5.3 Clamped-clamped beams

The frequencies for l/a = 100 under clamped-clamped boundary condition are presented in Tables 10 to 12.

The first nine modes are: bending with one, two, three and four half-waves in the plane xy, bending mode

with one, two, three, four and five half-waves in the plane xz and torsion. The relative difference between

results provided by a theory with N as low as 16 and the reference solution is lower than 3.1% (bending mode

in the plane xz with four half-waves). It is interesting to note that the TBT model can accurately predict

10



the results related to flexural modes in the plane xy being the relative difference lower than 0.01%. Tables 13

to 15 present the dimensionless frequencies in the case of short beams. The modes for this case are: bending

with in the plane xz with one, two, three, four, five and six half-waves, bending mode in the plane xy with one

and two half-waves and two torsional modes. The relative difference between the results provided by theories

with N > 16 and the three-dimensional reference solution is about 5.0% (bending in the plane xz with one

half wave), at worst. As already observed, TBT and low-order theories (N ≤ 5) are only able to accurately

predict the bending mode in the plane xy. Higher-order models (N ≥ 6) are required to predict the torsional

frequencies.

6 Conclusions

Several higher-order one-dimensional beam finite elements have been presented. They have been derived

through a Unified Formulation that allows to obtain the stiffness and mass matrices in a compact form.

Timoshenko’s beam model has been obtained as a special case. A free vibration analysis of sandwich beams has

been addressed. Simply supported, cantilever and clamped-clamped sandwich beams have been investigated

with different length-to-width ratio values. By comparing the results with three-dimensional finite elements

solution obtained through the commercial code Ansys, it can be concluded that higher-order theory yield

reasonably accurate results (being the maximal error as high as about 5% in the worst case) with a reduced

computation cost (up to four times) compared to the reference solutions. Considering the difference in

accuracy for some higher-order modes, further improvements in the models can be obtained by accounting

for a layer-wise approach or by using a C0 continuous over the cross-section (“zig-zag” function) within the

equivalent single layer approach.
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Figures

Figure 1: Beam structure and reference system.
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Figure 2: Sandwich beam geometry.
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Tables

N Nu Fτ

0 1 F1 = 1
1 3 F2 = y F3 = z
2 6 F4 = y2 F5 = yz F6 = z2

3 10 F7 = y3 F8 = y2z F9 = yz2 F10 = z3

. . . . . . . . .

N (N+1)(N+2)
2 F (N2+N+2)

2

= yN F (N2+N+4)
2

= yN−1z . . . FN(N+3)
2

= yzN−1 F (N+1)(N+2)
2

= zN

Table 1: Mac Laurin’s polynomials terms via Pascal’s triangle.
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Mode 11 Mode 22 Mode 33

ω ω ω × 10−1

FEM 3D30 2.8344 4.1027 3.8975
FEM 3D10 2.8344 4.1027 3.8981

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 2.8345 2.8345 2.8345 4.1119 4.1119 4.1119 4.0064 4.0064 4.0064
N = 17 2.8345 2.8345 2.8345 4.1119 4.1119 4.1119 4.0070 4.0070 4.0070
N = 16 2.8345 2.8345 2.8345 4.1119 4.1119 4.1119 4.0070 4.0070 4.0070
N = 15 2.8345 2.8345 2.8345 4.1119 4.1119 4.1119 4.0529 4.0529 4.0529
N = 14 2.8345 2.8345 2.8345 4.1151 4.1151 4.1151 4.0530 4.0530 4.0530
N = 13 2.8345 2.8345 2.8345 4.1151 4.1151 4.1151 4.0555 4.0555 4.0555
N = 12 2.8345 2.8345 2.8345 4.1152 4.1152 4.1152 4.0555 4.0555 4.0555
N = 11 2.8345 2.8345 2.8345 4.1152 4.1152 4.1152 4.1523 4.1523 4.1523
N = 10 2.8345 2.8345 2.8345 4.1209 4.1209 4.1209 4.1523 4.1523 4.1523
N = 9 2.8345 2.8345 2.8345 4.1209 4.1209 4.1209 4.2153 4.2153 4.2153
N = 8 2.8345 2.8345 2.8345 4.1236 4.1236 4.1236 4.2153 4.2153 4.2153
N = 7 2.8345 2.8345 2.8345 4.1236 4.1236 4.1236 4.4285 4.4285 4.4285
N = 6 2.8345 2.8345 2.8345 4.1324 4.1324 4.1324 4.4286 4.4286 4.4286
N = 5 2.8346 2.8345 2.8345 4.1324 4.1324 4.1324 5.7207 5.7193 5.7294
N = 4 2.8346 2.8345 2.8345 4.1726 4.1726 4.1726 5.7208 5.7194 5.7295
N = 3 2.8346 2.8345 2.8345 4.1726 4.1726 4.1726 5.7229 5.7216 5.7321
N = 2 2.8346 2.8346 2.8346 4.1815 4.1815 4.1815 5.7277 5.7264 5.7363
TBT 2.8346 2.8345 2.7944 4.1815 4.1814 4.0562 −4 − −

1: Bending mode in the plane xy with one half wave.
2: Bending mode in the plane xz with one half wave.
3: Torsional mode.
4: Mode not provided by the theory.

Table 2: Dimensionless natural frequencies of slender simply supported beams (l/a = 100), modes 1 to 3.
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Mode 11 Mode 22 Mode 33

ω ω ω
FEM 3D40 1.9146 2.7897 4.4808
FEM 3D10 1.9146 2.7898 4.4814

B2,B3,B4 B2 B3, B4 B2 B3 B4
N = 19 1.9878 2.7901 2.7900 4.5750 4.5750 4.5750
N = 18 2.0060 2.7901 2.7900 4.5756 4.5756 4.5756
N = 17 2.0061 2.7901 2.7900 4.5762 4.5761 4.5761
N = 16 2.0064 2.7901 2.7900 4.5763 4.5763 4.5763
N = 15 2.0065 2.7901 2.7901 4.6150 4.6150 4.6150
N = 14 2.0414 2.7901 2.7901 4.6160 4.6160 4.6160
N = 13 2.0414 2.7901 2.7901 4.6182 4.6182 4.6182
N = 12 2.0429 2.7901 2.7901 4.6184 4.6184 4.6184
N = 11 2.0431 2.7901 2.7901 4.7003 4.7003 4.7003
N = 10 2.1117 2.7901 2.7901 4.7026 4.7026 4.7026
N = 9 2.1118 2.7901 2.7901 4.7563 4.7562 4.7562
N = 8 2.1465 2.7901 2.7901 4.7581 4.7581 4.7581
N = 7 2.1471 2.7901 2.7901 4.9403 4.9403 4.9403
N = 6 2.2754 2.7901 2.7901 4.9444 4.9443 4.9443
N = 5 2.2766 2.7901 2.7901 6.0712 6.0811 6.0824
N = 4 2.7901 3.4360 3.4360 7.4988 7.4987 7.4987
N = 3 2.7902 3.4368 3.4367 11.142 11.164 11.166
N = 2 2.7954 4.0568 4.0567 15.889 15.921 15.924
TBT 2.7944 4.0562 4.0562 −4 − −

1: Bending mode in the plane xz with one half wave.
2: Bending mode in the plane xy with one half wave.
3: Torsional mode.
4: Mode not provided by the theory.

Table 3: Dimensionless natural frequencies of short simply supported beams (l/a = 10), modes 1 to 3.
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Mode 11 Mode 22 Mode 33

ω ω ω
FEM 3D30 1.0100 1.4770 6.3267
FEM 3D10 1.0101 1.4771 6.3269

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 1.0102 1.0102 1.0101 1.4788 1.4787 1.4787 6.3281 6.3277 6.3274
N = 17 1.0102 1.0102 1.0101 1.4788 1.4787 1.4787 6.3281 6.3277 6.3274
N = 16 1.0102 1.0102 1.0101 1.4788 1.4787 1.4787 6.3281 6.3277 6.3274
N = 15 1.0102 1.0102 1.0101 1.4788 1.4787 1.4787 6.3282 6.3277 6.3274
N = 14 1.0102 1.0102 1.0101 1.4794 1.4793 1.4792 6.3282 6.3277 6.3274
N = 13 1.0102 1.0102 1.0101 1.4794 1.4793 1.4792 6.3282 6.3277 6.3274
N = 12 1.0102 1.0102 1.0101 1.4794 1.4793 1.4792 6.3282 6.3277 6.3274
N = 11 1.0102 1.0102 1.0101 1.4794 1.4793 1.4792 6.3282 6.3277 6.3274
N = 10 1.0102 1.0102 1.0101 1.4804 1.4803 1.4802 6.3282 6.3277 6.3274
N = 9 1.0102 1.0102 1.0101 1.4804 1.4803 1.4802 6.3282 6.3277 6.3274
N = 8 1.0102 1.0102 1.0101 1.4808 1.4807 1.4807 6.3282 6.3277 6.3274
N = 7 1.0102 1.0102 1.0101 1.4808 1.4807 1.4807 6.3282 6.3277 6.3275
N = 6 1.0103 1.0102 1.0101 1.4823 1.4822 1.4822 6.3282 6.3278 6.3275
N = 5 1.0103 1.0102 1.0102 1.4823 1.4822 1.4822 6.3285 6.3281 6.3278
N = 4 1.0103 1.0102 1.0102 1.4891 1.4890 1.4890 6.3286 6.3281 6.3278
N = 3 1.0105 1.0104 1.0104 1.4892 1.4891 1.4890 6.3298 6.3293 6.3292
N = 2 1.0107 1.0106 1.0106 1.4907 1.4906 1.4905 6.3311 6.3307 6.3306
TBT 1.0098 1.0098 1.0098 1.4898 1.4898 1.4898 6.3259 6.3259 6.3259

1: Bending mode in the plane xy with one half wave.
2: Bending mode in the plane xz with one half wave.
3: Bending mode in the plane xy with two half waves.

Table 4: Dimensionless natural frequencies of slender cantilever beams (l/a = 100), modes 1 to 3.
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Mode 41 Mode 52 Mode 63

ω ω × 10−1 ω × 10−1

FEM 3D30 8.7981 1.7702 1.9817
FEM 3D10 8.7987 1.7702 1.9820

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 8.8575 8.8569 8.8566 1.7706 1.7704 1.7704 2.0363 2.0363 2.0362
N = 17 8.8575 8.8569 8.8566 1.7706 1.7704 1.7704 2.0366 2.0366 2.0365
N = 16 8.8577 8.8571 8.8567 1.7706 1.7704 1.7704 2.0367 2.0366 2.0366
N = 15 8.8577 8.8571 8.8568 1.7706 1.7704 1.7704 2.0596 2.0595 2.0595
N = 14 8.8779 8.8773 8.8770 1.7706 1.7704 1.7704 2.0596 2.0595 2.0595
N = 13 8.8779 8.8773 8.8770 1.7706 1.7704 1.7704 2.0609 2.0608 2.0608
N = 12 8.8787 8.8781 8.8778 1.7706 1.7704 1.7704 2.0609 2.0608 2.0608
N = 11 8.8788 8.8782 8.8778 1.7706 1.7704 1.7704 2.1092 2.1091 2.1091
N = 10 8.9158 8.9152 8.9149 1.7706 1.7704 1.7704 2.1093 2.1092 2.1092
N = 9 8.9158 8.9152 8.9149 1.7706 1.7704 1.7704 2.1407 2.1406 2.1406
N = 8 8.9333 8.9327 8.9324 1.7706 1.7704 1.7704 2.1408 2.1407 2.1407
N = 7 8.9334 8.9328 8.9325 1.7706 1.7705 1.7704 2.2472 2.2471 2.2471
N = 6 8.9918 8.9912 8.9908 1.7706 1.7705 1.7704 2.2473 2.2473 2.2472
N = 5 8.9919 8.9913 8.9910 1.7707 1.7705 1.7705 3.6405 3.6404 3.6404
N = 4 9.2691 9.2684 9.2681 1.7707 1.7706 1.7705 3.6422 3.6422 3.6421
N = 3 9.2693 9.2686 9.2683 1.7711 1.7709 1.7709 9.0319 9.0319 9.0319
N = 2 9.3336 9.3330 9.3326 1.7716 1.7714 1.7714 9.0335 9.0335 9.0335
TBT 9.3281 9.3281 9.3281 1.7701 1.7701 1.7701 −4 − −

1: Bending mode in the plane xz with two half waves.
2: Bending mode in the plane xy with four half waves.
3: Torsional mode.
4: Mode not provided by the theory.

Table 5: Dimensionless natural frequencies of slender cantilever beams (l/a = 100), modes 4 to 6.
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Mode 71 Mode 82 Mode 93

ω × 10−1 ω × 10−1 ω × 10−1

FEM 3D30 2.2940 3.4651 4.1172
FEM 3D10 2.2942 3.4652 4.1177

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 2.3252 2.3250 2.3250 3.4660 3.4656 3.4654 4.2032 4.2028 4.2027
N = 17 2.3252 2.3250 2.3250 3.4660 3.4656 3.4654 4.2032 4.2028 4.2027
N = 16 2.3253 2.3251 2.3251 3.4660 3.4656 3.4654 4.2035 4.2031 4.2030
N = 15 2.3253 2.3252 2.3251 3.4660 3.4656 3.4654 4.2035 4.2031 4.2030
N = 14 2.3363 2.3361 2.3360 3.4660 3.4656 3.4654 4.2343 4.2339 4.2338
N = 13 2.3363 2.3361 2.3360 3.4660 3.4656 3.4654 4.2343 4.2340 4.2338
N = 12 2.3367 2.3366 2.3365 3.4660 3.4656 3.4654 4.2356 4.2352 4.2351
N = 11 2.3368 2.3366 2.3365 3.4660 3.4656 3.4654 4.2357 4.2353 4.2351
N = 10 2.3570 2.3569 2.3568 3.4660 3.4656 3.4654 4.2935 4.2931 4.2929
N = 9 2.3571 2.3569 2.3568 3.4660 3.4656 3.4654 4.2935 4.2931 4.2930
N = 8 2.3668 2.3666 2.3665 3.4660 3.4656 3.4654 4.3215 4.3211 4.3209
N = 7 2.3668 2.3666 2.3666 3.4660 3.4656 3.4655 4.3216 4.3212 4.3211
N = 6 2.3997 2.3995 2.3994 3.4661 3.4656 3.4655 4.4180 4.4176 4.4175
N = 5 2.3998 2.3996 2.3995 3.4662 3.4658 3.4656 4.4183 4.4179 4.4177
N = 4 2.5676 2.5674 2.5673 3.4662 3.4658 3.4657 4.9553 4.9547 4.9546
N = 3 2.5677 2.5675 2.5674 3.4669 3.4665 3.4664 4.9555 4.9549 4.9548
N = 2 2.6097 2.6095 2.6094 3.4684 3.4680 3.4679 5.1033 5.1027 5.1025
TBT 2.6082 2.6081 2.6081 3.4654 3.4652 3.4652 5.1003 5.1000 5.1000

1: Bending mode in the plane xz with four half waves.
2: Bending mode in the plane xy with five half waves.
3: Bending mode in the plane xz with five half waves.

Table 6: Dimensionless natural frequencies of slender cantilever beams (l/a = 100), modes 7 to 9.
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Mode 11 Mode 22 Mode 33

ω × 10 ω ω
FEM 3D40 9.0895 1.0039 2.3750
FEM 3D10 9.0981 1.0042 2.3761

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 19 9.3582 9.3573 9.3563 1.0042 1.0040 1.0040 2.4294 2.4292 2.4291
N = 18 9.4245 9.4237 9.4233 1.0042 1.0040 1.0040 2.4299 2.4298 2.4297
N = 17 9.4248 9.4240 9.4236 1.0042 1.0040 1.0040 2.4303 2.4301 2.4300
N = 16 9.4259 9.4252 9.4248 1.0042 1.0040 1.0040 2.4304 2.4302 2.4302
N = 15 9.4263 9.4255 9.4251 1.0042 1.0040 1.0040 2.4520 2.4518 2.4517
N = 14 9.5514 9.5506 9.5502 1.0042 1.0040 1.0040 2.4531 2.4529 2.4528
N = 13 9.5517 9.5509 9.5505 1.0042 1.0040 1.0040 2.4543 2.4541 2.4540
N = 12 9.5569 9.5561 9.5557 1.0042 1.0041 1.0040 2.4546 2.4544 2.4544
N = 11 9.5578 9.5570 9.5566 1.0042 1.0041 1.0040 2.5000 2.4998 2.4998
N = 10 9.7999 9.7991 9.7987 1.0042 1.0041 1.0040 2.5024 2.5022 2.5021
N = 9 9.8003 9.7995 9.7991 1.0042 1.0041 1.0041 2.5319 2.5317 2.5317
N = 8 9.9212 9.9203 9.9199 1.0042 1.0041 1.0041 2.5342 2.5340 2.5340
N = 7 9.9241 9.9233 9.9229 1.0043 1.0042 1.0041 2.6337 2.6335 2.6334
N = 6 10.358 10.358 10.357 1.0043 1.0042 1.0042 2.6376 2.6374 2.6373
N = 5 10.364 10.363 10.363 1.0048 1.0047 1.0046 3.9326 3.9324 3.9323
N = 4 13.510 13.508 13.508 1.0049 1.0048 1.0047 3.9587 3.9586 3.9585
N = 3 13.518 13.517 13.517 1.0076 1.0076 1.0076 9.0619 9.0618 9.0618
N = 2 14.742 14.741 14.740 1.0099 1.0099 1.0099 9.0855 9.0854 9.0854
TBT 14.681 14.681 14.681 1.0030 1.0029 1.0030 −4 − −

1: Bending mode in the plane xz with one half wave.
2: Bending mode in the plane xy with one half wave.
3: Torsional mode with two half waves.
4: Mode not provided by the theory.

Table 7: Dimensionless natural frequencies of short cantilever beams (l/a = 10), modes 1 to 3.
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Mode 41 Mode 52 Mode 63

ω ω ω
FEM 3D40 3.0472 5.9161 6.0220
FEM 3D10 3.0520 5.9278 6.0244

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 19 3.1540 3.1535 3.1531 6.1402 6.1389 6.1383 6.0236 6.0226 6.0223
N = 18 3.1805 3.1802 3.1801 6.1951 6.1940 6.1937 6.0237 6.0226 6.0223
N = 17 3.1809 3.1806 3.1804 6.1967 6.1955 6.1952 6.0237 6.0226 6.0223
N = 16 3.1814 3.1810 3.1809 6.1977 6.1965 6.1963 6.0237 6.0226 6.0223
N = 15 3.1818 3.1815 3.1814 6.1997 6.1985 6.1982 6.0237 6.0227 6.0224
N = 14 3.2328 3.2324 3.2323 6.3059 6.3047 6.3045 6.0237 6.0227 6.0224
N = 13 3.2332 3.2328 3.2327 6.3075 6.3064 6.3061 6.0238 6.0227 6.0224
N = 12 3.2353 3.2349 3.2348 6.3119 6.3108 6.3105 6.0238 6.0228 6.0225
N = 11 3.2365 3.2362 3.2360 6.3173 6.3161 6.3158 6.0240 6.0229 6.0226
N = 10 3.3382 3.3378 3.3377 6.5324 6.5312 6.5309 6.0240 6.0230 6.0227
N = 9 3.3387 3.3384 3.3382 6.5348 6.5336 6.5333 6.0241 6.0231 6.0228
N = 8 3.3909 3.3906 3.3904 6.6456 6.6445 6.6442 6.0242 6.0232 6.0229
N = 7 3.3948 3.3945 3.3944 6.6626 6.6614 6.6611 6.0245 6.0235 6.0232
N = 6 3.5921 3.5917 3.5916 7.0940 7.0927 7.0924 6.0247 6.0238 6.0235
N = 5 3.5991 3.5987 3.5986 7.1216 7.1203 7.1200 6.0273 6.0263 6.0261
N = 4 5.9410 5.9405 5.9403 12.757 12.755 12.755 6.0279 6.0270 6.0267
N = 3 5.9571 5.9568 5.9568 12.818 12.817 12.817 6.0431 6.0425 6.0425
N = 2 8.5214 8.5202 8.5200 21.540 21.536 21.536 6.0828 6.0821 6.0821
TBT 8.4916 8.4912 8.4912 21.479 21.477 21.477 6.0436 6.0433 6.0433

1: Bending mode in the plane xz with two half waves.
2: Bending mode in the plane xz with four half waves
3: Bending mode in the plane xy with two half waves.

Table 8: Dimensionless natural frequencies of short cantilever beams (l/a = 10), modes 4 to 6.
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Mode 71 Mode 82 Mode 93

ω ω ω × 10−1

FEM 3D40 7.9914 9.0466 1.2804
FEM 3D10 7.9957 9.0789 1.2896

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 19 8.1367 8.1356 8.1353 9.3597 9.3565 9.3554 1.3198 1.3191 1.3187
N = 18 8.1400 8.1390 8.1387 9.4345 9.4316 9.4311 1.3288 1.3282 1.3281
N = 17 8.1408 8.1398 8.1395 9.4382 9.4353 9.4348 1.3295 1.3289 1.3288
N = 16 8.1419 8.1408 8.1405 9.4397 9.4368 9.4363 1.3297 1.3291 1.3290
N = 15 8.1961 8.1951 8.1948 9.4444 9.4415 9.4410 1.3306 1.3299 1.3299
N = 14 8.2024 8.2014 8.2011 9.5902 9.5873 9.5868 1.3485 1.3478 1.3477
N = 13 8.2056 8.2045 8.2042 9.5941 9.5912 9.5907 1.3492 1.3485 1.3485
N = 12 8.2073 8.2062 8.2060 9.6001 9.5972 9.5967 1.3499 1.3493 1.3492
N = 11 8.3221 8.3211 8.3208 9.6127 9.6098 9.6093 1.3522 1.3516 1.3515
N = 10 8.3366 8.3356 8.3353 9.9123 9.9093 9.9088 1.3895 1.3889 1.3888
N = 9 8.4116 8.4106 8.4103 9.9179 9.9150 9.9145 1.3906 1.3899 1.3898
N = 8 8.4260 8.4250 8.4247 10.073 10.070 10.069 1.4098 1.4092 1.4091
N = 7 8.6805 8.6794 8.6791 10.113 10.110 10.110 1.4174 1.4168 1.4167
N = 6 8.7062 8.7051 8.7048 10.732 10.729 10.728 1.4965 1.4958 1.4958
N = 5 12.189 12.188 12.188 10.798 10.795 10.794 1.5090 1.5082 1.5081
N = 4 12.382 12.381 12.381 19.625 19.621 19.620 2.6733 2.6725 2.6724
N = 3 27.009 27.008 27.008 19.774 19.771 19.771 2.7036 2.7028 2.7028
N = 2 27.281 27.280 27.280 37.603 37.592 37.592 5.5467 5.5445 5.5445
TBT −4 − − 37.520 37.513 37.513 5.5374 5.5357 5.5357

1: Torsional mode with three half waves.
2: Bending mode in the plane xz with five half waves.
3: Bending mode in the plane xz with six half waves.
4: Mode not provided by the theory

Table 9: Dimensionless natural frequencies of short cantilever beams (l/a = 10), modes 7 to 9.
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Mode 11 Mode 22 Mode 33

ω ω ω × 10−1

FEM 3D30 6.4244 8.6868 1.7693
FEM 3D10 6.4248 8.6877 1.7694

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 6.4272 6.4263 6.4257 8.7721 8.7710 8.7704 1.7701 1.7699 1.7697
N = 17 6.4272 6.4263 6.4257 8.7721 8.7710 8.7704 1.7701 1.7699 1.7697
N = 16 6.4272 6.4263 6.4257 8.7723 8.7713 8.7706 1.7701 1.7699 1.7697
N = 15 6.4272 6.4263 6.4257 8.7723 8.7713 8.7707 1.7701 1.7699 1.7697
N = 14 6.4272 6.4263 6.4257 8.8014 8.8003 8.7996 1.7701 1.7699 1.7697
N = 13 6.4272 6.4263 6.4257 8.8014 8.8003 8.7997 1.7702 1.7699 1.7697
N = 12 6.4272 6.4263 6.4257 8.8025 8.8015 8.8008 1.7702 1.7699 1.7697
N = 11 6.4272 6.4263 6.4257 8.8026 8.8015 8.8009 1.7702 1.7699 1.7697
N = 10 6.4273 6.4263 6.4257 8.8559 8.8548 8.8542 1.7702 1.7699 1.7697
N = 9 6.4273 6.4263 6.4257 8.8559 8.8548 8.8542 1.7702 1.7699 1.7697
N = 8 6.4273 6.4263 6.4258 8.8813 8.8802 8.8795 1.7702 1.7699 1.7697
N = 7 6.4273 6.4264 6.4258 8.8814 8.8803 8.8797 1.7702 1.7699 1.7697
N = 6 6.4274 6.4264 6.4259 8.9663 8.9652 8.9646 1.7702 1.7699 1.7697
N = 5 6.4279 6.4270 6.4265 8.9665 8.9654 8.9648 1.7703 1.7701 1.7699
N = 4 6.4280 6.4271 6.4266 9.3809 9.3797 9.3791 1.7704 1.7701 1.7699
N = 3 6.4304 6.4296 6.4293 9.3814 9.3802 9.3795 1.7710 1.7708 1.7707
N = 2 6.4330 6.4322 6.4319 9.4806 9.4793 9.4786 1.7719 1.7717 1.7716
TBT 6.4226 6.4225 6.4225 9.4695 9.4694 9.4694 1.7691 1.7690 1.7690

1: Bending mode in the plane xy with one half wave.
2: Bending mode in the plane xz with one half wave.
3: Bending mode in the plane xy with two half waves.

Table 10: Dimensionless natural frequencies of slender clamped-clamped beams (l/a = 100), modes 1 to 3.
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Mode 41 Mode 52 Mode 63

ω × 10−1 ω × 10−1 ω × 10−1

FEM 3D30 2.1932 3.4645 3.9161
FEM 3D10 2.1936 3.4647 3.9171

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 2.2323 2.2320 2.2319 3.4662 3.4655 3.4652 4.0132 4.0127 4.0125
N = 17 2.2323 2.2320 2.2319 3.4662 3.4655 3.4652 4.0132 4.0127 4.0125
N = 16 2.2324 2.2321 2.2320 3.4662 3.4655 3.4652 4.0136 4.0130 4.0128
N = 15 2.2324 2.2321 2.2320 3.4662 3.4655 3.4652 4.0136 4.0131 4.0128
N = 14 2.2462 2.2459 2.2457 3.4662 3.4655 3.4652 4.0485 4.0480 4.0478
N = 13 2.2462 2.2459 2.2458 3.4662 3.4655 3.4652 4.0486 4.0480 4.0478
N = 12 2.2467 2.2465 2.2463 3.4662 3.4655 3.4652 4.0500 4.0495 4.0492
N = 11 2.2468 2.2465 2.2463 3.4662 3.4655 3.4652 4.0501 4.0495 4.0493
N = 10 2.2724 2.2721 2.2719 3.4662 3.4655 3.4652 4.1160 4.1155 4.1152
N = 9 2.2724 2.2721 2.2720 3.4662 3.4655 3.4652 4.1160 4.1155 4.1152
N = 8 2.2847 2.2844 2.2843 3.4662 3.4655 3.4652 4.1482 4.1476 4.1474
N = 7 2.2848 2.2845 2.2843 3.4662 3.4655 3.4652 4.1484 4.1478 4.1476
N = 6 2.3268 2.3265 2.3264 3.4662 3.4656 3.4653 4.2600 4.2594 4.2592
N = 5 2.3270 2.3267 2.3265 3.4665 3.4659 3.4656 4.2604 4.2598 4.2596
N = 4 2.5503 2.5499 2.5498 3.4666 3.4659 3.4656 4.9124 4.9116 4.9112
N = 3 2.5505 2.5501 2.5499 3.4679 3.4673 3.4671 4.9128 4.9119 4.9117
N = 2 2.6090 2.6086 2.6084 3.4701 3.4696 3.4694 5.1031 5.1021 5.1018
TBT 2.6059 2.6058 2.6058 3.4645 3.4643 3.4643 5.0971 5.0968 5.0968

4: Bending mode in the plane xz with two half waves.
5: Bending mode in the plane xy with three half waves.
6: Bending mode in the plane xz with three half waves.

Table 11: Dimensionless natural frequencies of slender clamped-clamped beams (l/a = 100), modes 4 to 6.
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Mode 71 Mode 82 Mode 93

ω × 10−1 ω × 10−1 ω × 10−1

FEM 3D30 4.0417 5.7183 5.8871
FEM 3D10 4.0426 5.7187 5.8887

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 18 4.1511 4.1509 4.1507 5.7213 5.7199 5.7194 6.0674 6.0665 6.0662
N = 17 4.1517 4.1515 4.1514 5.7213 5.7199 5.7194 6.0674 6.0666 6.0662
N = 16 4.1518 4.1516 4.1514 5.7213 5.7199 5.7194 6.0680 6.0672 6.0668
N = 15 4.1973 4.1971 4.1969 5.7213 5.7199 5.7194 6.0681 6.0672 6.0669
N = 14 4.1975 4.1973 4.1971 5.7213 5.7199 5.7194 6.1340 6.1332 6.1328
N = 13 4.2001 4.1998 4.1997 5.7213 5.7199 5.7194 6.1341 6.1332 6.1329
N = 12 4.2001 4.1999 4.1997 5.7213 5.7199 5.7194 6.1368 6.1359 6.1356
N = 11 4.2961 4.2959 4.2957 5.7213 5.7199 5.7194 6.1370 6.1361 6.1358
N = 10 4.2965 4.2963 4.2961 5.7213 5.7200 5.7194 6.2628 6.2619 6.2615
N = 9 4.3590 4.3588 4.3586 5.7213 5.7200 5.7195 6.2629 6.2620 6.2616
N = 8 4.3594 4.3592 4.3590 5.7213 5.7200 5.7195 6.3248 6.3239 6.3235
N = 7 4.5709 4.5707 4.5705 5.7214 5.7200 5.7195 6.3253 6.3244 6.3240
N = 6 4.5717 4.5714 4.5713 5.7214 5.7201 5.7196 6.5440 6.5430 6.5426
N = 5 7.3411 7.3408 7.3405 5.7219 5.7206 5.7201 6.5449 6.5439 6.5436
N = 4 7.3484 7.3481 7.3479 5.7220 5.7207 5.7202 7.9500 7.9484 7.9479
N = 3 18.072 18.072 18.072 5.7241 5.7229 5.7226 7.9508 7.9492 7.9488
N = 2 18.078 18.078 18.078 5.7289 5.7277 5.7274 8.4115 8.4096 8.4090
TBT −4 − − 5.7195 5.7189 5.7189 8.4016 8.4008 8.4008

1: Torsional mode.
2: Bending mode in the plane xy with four half waves.
3: Bending mode in the plane xz with four half waves.
4: Mode not provided by the theory.

Table 12: Dimensionless natural frequencies of slender clamped-clamped beams (l/a = 100), modes 7 to 9.
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Mode 11 Mode 22 Mode 33

ω ω ω
FEM 3D30 2.3948 5.0720 6.0534
FEM 3D10 2.4008 5.0896 6.0566

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 19 2.4895 2.4894 2.4888 5.2537 5.2536 5.2521 6.0547 6.0536 6.0533
N = 18 2.5135 2.5133 2.5131 5.2995 5.2988 5.2985 6.0547 6.0536 6.0533
N = 17 2.5138 2.5135 2.5134 5.3004 5.2997 5.2994 6.0547 6.0536 6.0533
N = 16 2.5142 2.5139 2.5138 5.3012 5.3005 5.3003 6.0547 6.0536 6.0533
N = 15 2.5145 2.5143 2.5142 5.3025 5.3018 5.3016 6.0548 6.0538 6.0535
N = 14 2.5608 2.5606 2.5605 5.3911 5.3904 5.3901 6.0549 6.0538 6.0535
N = 13 2.5611 2.5608 2.5607 5.3921 5.3914 5.3912 6.0549 6.0538 6.0535
N = 12 2.5630 2.5628 2.5627 5.3959 5.3952 5.3949 6.0551 6.0540 6.0537
N = 11 2.5639 2.5637 2.5636 5.3992 5.3985 5.3983 6.0553 6.0542 6.0540
N = 10 2.6573 2.6570 2.6569 5.5793 5.5786 5.5784 6.0554 6.0543 6.0541
N = 9 2.6577 2.6575 2.6573 5.5812 5.5805 5.5803 6.0556 6.0546 6.0543
N = 8 2.7062 2.7059 2.7058 5.6752 5.6745 5.6743 6.0558 6.0548 6.0545
N = 7 2.7091 2.7088 2.7087 5.6860 5.6853 5.6851 6.0564 6.0554 6.0552
N = 6 2.8935 2.8932 2.8931 6.0474 6.0466 6.0464 6.0570 6.0560 6.0557
N = 5 2.9001 2.8999 2.8998 6.0716 6.0709 6.0708 6.0620 6.0611 6.0609
N = 4 5.2967 5.2963 5.2962 11.069 11.068 11.068 6.0633 6.0623 6.0621
N = 3 5.3170 5.3168 5.3168 11.143 11.143 11.143 6.0944 6.0939 6.0939
N = 2 8.5296 8.5286 8.5284 20.899 20.896 20.895 6.1571 6.1566 6.1565
TBT 8.4725 8.4724 8.4724 20.791 20.790 20.791 6.0813 6.0812 6.0812

1: Bending mode in the plane xz with one half wave.
2: Bending mode in the plane xz with two half waves.
3: Bending mode in the plane xy with one half wave.

Table 13: Dimensionless natural frequencies of short clamped-clamped beams (l/a = 10), modes 1 to 3.
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Mode 41 Mode 52 Mode 63

ω ω ω
FEM 3D30 6.4648 8.2948 1.2096
FEM 3D10 6.4696 8.3320 1.2200

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 19 6.5358 6.5349 6.5346 8.5614 8.5606 8.5583 1.2432 1.2429 1.2426
N = 18 6.5365 6.5357 6.5354 8.6276 8.6259 8.6254 1.2514 1.2510 1.2510
N = 17 6.5369 6.5361 6.5358 8.6299 8.6282 8.6277 1.2518 1.2515 1.2514
N = 16 6.5372 6.5364 6.5361 8.6312 8.6295 8.6290 1.2520 1.2516 1.2516
N = 15 6.5659 6.5650 6.5648 8.6343 8.6326 8.6322 1.2526 1.2522 1.2521
N = 14 6.5672 6.5664 6.5662 8.7635 8.7619 8.7614 1.2687 1.2683 1.2683
N = 13 6.5690 6.5682 6.5679 8.7660 8.7644 8.7639 1.2692 1.2688 1.2687
N = 12 6.5695 6.5687 6.5685 8.7715 8.7698 8.7694 1.2699 1.2695 1.2694
N = 11 6.6308 6.6300 6.6297 8.7797 8.7780 8.7776 1.2714 1.2710 1.2710
N = 10 6.6339 6.6330 6.6328 9.0459 9.0442 9.0438 1.3051 1.3047 1.3046
N = 9 6.6750 6.6742 6.6739 9.0506 9.0489 9.0485 1.3060 1.3056 1.3055
N = 8 6.6786 6.6778 6.6776 9.1903 9.1886 9.1882 1.3237 1.3234 1.3233
N = 7 6.8164 6.8156 6.8154 9.2167 9.2151 9.2147 1.3288 1.3284 1.3284
N = 6 6.8242 6.8234 6.8233 9.7628 9.7611 9.7606 1.3993 1.3990 1.3989
N = 5 8.8036 8.8029 8.8027 9.8214 9.8198 9.8195 1.4104 1.4101 1.4100
N = 4 8.8923 8.8917 8.8916 17.759 17.757 17.756 2.4710 2.4706 2.4705
N = 3 18.175 18.174 18.174 17.926 17.925 17.925 2.5030 2.5027 2.5027
N = 2 18.293 18.293 18.293 36.374 36.368 36.367 5.3577 5.3566 5.3566
TBT −4 − − 36.234 36.232 36.232 5.3427 5.3422 5.3423

1: Torsional mode with two half waves.
2: Bending mode in the plane xz with three half waves.
3: Bending mode in the plane xz with four half waves.
4: Mode not provided by the theory.

Table 14: Dimensionless natural frequencies of short clamped-clamped beams (l/a = 10), modes 4 to 6.
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Mode 71 Mode 82 Mode 93

ω × 10−1 ω × 10−1 ω × 10−1

FEM 3D30 1.4974 1.5537 1.6575
FEM 3D10 1.4997 1.5559 1.6830

B2 B3 B4 B2 B3 B4 B2 B3 B4
N = 19 1.5105 1.5103 1.5102 1.5540 1.5537 1.5536 1.6970 1.6964 1.6961
N = 18 1.5110 1.5107 1.5107 1.5540 1.5537 1.5536 1.7065 1.7058 1.7057
N = 17 1.5110 1.5108 1.5107 1.5540 1.5537 1.5536 1.7072 1.7064 1.7063
N = 16 1.5112 1.5110 1.5110 1.5540 1.5537 1.5536 1.7074 1.7066 1.7065
N = 15 1.5158 1.5156 1.5156 1.5540 1.5537 1.5536 1.7083 1.7076 1.7075
N = 14 1.5165 1.5163 1.5162 1.5540 1.5537 1.5537 1.7271 1.7263 1.7263
N = 13 1.5168 1.5166 1.5165 1.5540 1.5537 1.5537 1.7278 1.7271 1.7270
N = 12 1.5173 1.5170 1.5170 1.5541 1.5538 1.5537 1.7286 1.7279 1.7278
N = 11 1.5272 1.5270 1.5269 1.5541 1.5538 1.5538 1.7311 1.7304 1.7303
N = 10 1.5284 1.5281 1.5281 1.5542 1.5538 1.5538 1.7709 1.7701 1.7700
N = 9 1.5351 1.5349 1.5349 1.5542 1.5539 1.5538 1.7722 1.7715 1.7714
N = 8 1.5370 1.5368 1.5367 1.5543 1.5540 1.5539 1.7934 1.7927 1.7926
N = 7 1.5598 1.5595 1.5595 1.5544 1.5541 1.5540 1.8016 1.8009 1.8008
N = 6 1.5619 1.5617 1.5617 1.5545 1.5542 1.5542 1.8866 1.8859 1.8858
N = 5 1.8837 1.8835 1.8835 1.5556 1.5554 1.5553 1.9045 1.9038 1.9037
N = 4 1.8973 1.8971 1.8971 1.5561 1.5558 1.5557 3.1959 3.1951 3.1951
N = 3 3.6049 3.6048 3.6048 1.5631 1.5629 1.5629 3.2508 3.2502 3.2502
N = 2 3.6641 3.6640 3.6640 1.5894 1.5892 1.5892 7.1868 7.1849 7.1849
TBT −4 − − 1.5720 1.5719 1.5719 7.1720 7.1711 7.1711

1: Torsional mode with three half waves.
2: Bending mode in the plane xy with two half waves.
3: Bending mode in the plane xz with five half waves.
4: Mode not provided by the theory.

Table 15: Dimensionless natural frequencies of short clamped-clamped beams (l/a = 10), modes 7 to 9.
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