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SUMMARY 

The computational demand of the soil-structure interaction (SSI) analysis for the design and assessment of structures, 

as well as for the evaluation of their life-cycle cost and risk exposure has led the civil engineering community to the 

development of a variety of methods towards the model order reduction of the coupled soil-structure dynamic system 

in earthquake regions. Different approaches have been proposed in the past as computationally efficient alternatives to 

the conventional FEM simulation of the complete soil-structure domain, such as the nonlinear lumped spring, the mac-

roelement method and the substructure partition method. Yet no approach was capable of capturing simultaneously the 

frequency-dependent dynamic properties along with the nonlinear behavior of the condensed segment of the overall 

soil-structure system under strong earthquake ground motion, thus generating an imbalance between the modeling 

refinement achieved for the soil and the structure. To this end, a dual frequency- and intensity-dependent expansion of 

the Lumped Parameter Modeling method is proposed in the current paper, materialized through a multi-objective algo-

rithm, capable of closely approximating the behavior of the nonlinear dynamic system of the condensed segment. This 

is essentially the extension of an established methodology, also developed by the authors, in the inelastic domain. The 

efficiency of the proposed methodology is validated for the case of a bridge foundation system, wherein the seismic 

response is comparatively assessed for both the proposed method and the detailed finite element model. The above 

expansion is deemed a computationally efficient and reliable method for simultaneously considering the frequency and 

amplitude dependence of soil-foundation systems in the framework of nonlinear seismic analysis of SSI systems.    

 

Keywords: soil-structure interaction, macroelement, model order reduction, Lumped Parameter Model 

 

 

 

1. INTRODUCTION 

 

As has been observed in multiple occasions in the past [1], the supporting soil can play an essential role on 

the behavior of a superstructure during strong earthquake ground shaking. The soil–structure interaction effect 

under such a hazard can lead to unexpected structural behavior, which cannot be easily predicted in advance. As 

a result, a realistic representation of the semi-infinite soil domain during the simulation of the soil-structure in-

teracting system is considered an essential prerequisite for an accurate dynamic analysis and seismic perfor-

mance prediction.  

Numerous approaches have been established in the past addressing the modelling of the soil-structure inter-

action from several different perspectives. The truncated soil domain finite element method is an example of a 

direct approach for the simulation of the aforementioned effect, where a detailed behavior of the soil-foundation 

system, including material and geometrical complexity, can be obtained. The truncated Finite element method 

has been implemented in multiple occasions for the seismic analysis of a soil-bridge system [2–4]. However, 

such an approach can be computationally demanding for the analysis of complex structures to such an extent, 

that it is almost prohibitive, particularly in the framework of probabilistic assessment that requires a large num-

ber of model realizations and analyses.  

In the light of the above limitations, the most common approach is to sacrifice the modeling refinement in 

terms of subsoil domain size and the subsequent analysis accuracy by reducing the order of the system. Primary 

focus is then made on refined models that are tailored to capture seismic damage at specific structural and foun-

dation components. Particularly for bridge structures, geometric nonlinearities that may arise from gap (i.e., joint) 

closure, abutment ratcheting and stopper activation during strong ground motion are also taken into considera-

tion as they instantaneously affect the boundary conditions. Such a task can be accomplished through a partition 
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approach of the overall dynamic system in segments, where the domain of the soil and foundation is significantly 

condensed on its internal degrees of freedom (DOF) or completely replaced by a simplified representation, while 

the superstructure is left unaltered. Numerous implementations on the substructure modeling approach have been 

proposed in the past, among which the macroelement method stands out as an effective tool capable of coping 

with complex constitutive laws and geometrical nonlinearities. 

The latter macroelement approach is a concept initially introduced by Montrasio et al [5], and further devel-

oped by a number of different research groups [6–11], that has successfully provided with an accurate, yet com-

putationally efficient, representation of both the elastic and inelastic cyclic behavior of the soil-foundation 

domain. The main challenge with this approach is that, although it emulates with great detail the different mech-

anisms triggered during a quasi-static excited simulation, quite commonly oversimplifies or even completely 

neglects the dynamic traits of the foundation soil domain through the use of complementary Kelvin –Voigt com-

ponents. As these components are only accurate at a specific target (i.e., commonly the predominant) frequency 

of seismic excitation, their use can lead to significant error on their seismic response, as illustrated in [12] for the 

case of bridges resting of various soil profiles. 

 A successful attempt to incorporate the frequency dependence in macroelements has been recently made by 

Chai et al [13]. However, as the proposed method is mainly focused on the frequency dependent traits of the 

system in the elastic domain, oscillations in higher intensity and high-frequency regions are represented by un-

explored dynamic properties, thus suggesting potential misrepresentation of the soil foundation domain under the 

aforementioned circumstances.  

To address the above limitations, a frequency-dependent macroelement method with emulated dynamic 

properties across various levels of increasing seismic intensity is proposed in the current study. The viscoelastic 

dynamic properties of the soil foundation domain along a broad frequency spectrum are successfully emulated in 

the time domain through the use of the Lumped Parameter Modeling method [14–17] based on the method’s 
documented success in the elastic range, to preserve the original system’s accuracy, stability and passivity.  

Along these lines, more specific objectives of the present study are: (a) to extend the method proposed by 

the authors for considering the frequency-dependence of soil-structure interaction in the context of seismic anal-

ysis of SSI systems in the time domain by further developing the required extraction technique, capable of se-

lecting representative properties of the dynamic soil-structure system over different intensity levels; and (b) to 

verify numerically, the proposed procedure by means of a single DOF bridge model subjected to earthquake 

loading. The model formulation as well as the verification examples are reported in the following. 

 

2. INELASTIC SSI SYSTEM ORDER REDUCTION 

 

An essential step towards the expansion of the macroelement method to inelastic frequency dependent sys-

tems is the derivation of representative dynamic properties of the system in different levels of excitation intensity. 

The concept of the frequency domain generated impedance function has been proven to efficiently emulate the 

behaviour of a viscous-elastic system for a selected interface region. However the concept of the impedance 

function cannot be directly applied in inelastic dynamic systems. A dynamic trait extraction approach for inelas-

tic dynamic systems is presented in the following paragraphs, implementing the linearization and dynamic con-

densation of the soil –foundation segment of the overall SSI system. 

 

2.1 System Linearization on a selected Variables State 

 

The mathematical representation of the superstructure – foundation – semi-infinite soil domain system 

can be illustrated in the classic ODE (Ordinary Differential Equation) formulation of equation (1) after the ap-

propriate geometrical discretization of the original PDE equation system. 

 

  Fαu,fuCuM  
 

 

    0uαH ,                                                                              (1) 

 

The variables M and C denote the mass and damping coefficient matrices of the system, f(u,α) denotes 

the nonlinear force to displacement relation vector while F is the external loading vector applied to the respective 

DOFs. Vector u denotes the displacement of the system DOFs, vector α represents the internal variables defining 

the inelastic behavior of f(u,α) while H(α,u) are the functions governing the evolution of the internal variable 

vector α. As previously discussed, only the soil foundation segment is targeted by the order reduction approach, 

while the superstructure segment is left intact. As a result, the overall system is partitioned into individual seg-

ments according to the substructure partition method illustrated in Figure 1.  
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Figure 1. SSI system partition through substructure method 
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The overall system’s partitions are notated with the subscript ss, i soil, and corresponding to the super-

structure segment, the interface and the soil-domain - foundation segment DOFs, respectively. The dynamic sys-

tem of equation (1) is expanded according to the selected segmentation as illustrated in equation (2). In the 

aforementioned equation, subscripts denote the segment where the DOF is located, while the superscripts used 

only on the interface DOF terms denote the segment from which the contributing restoring force term is originat-

ing. Through the expansion of the system of equations to its segmented form, the equation terms corresponding 

to the soil foundation segment are now designated, concerning both the interface and soil foundation DOFs.  

The order reduction process of the soil foundation segment is initiated through the selection of a num-

ber of  “o” representative variable states of the soil foundation segment displacements uo=[ui,o,usoil,o]
T
  and inter-

nal plastic variables αo. For sufficiently small trajectories around each selected variable state so =[uo, αo]
T
 a 

linearized version of the inelastic soil foundation segment is considered an accurate representation of the seg-

ment. Thus, for each preselected variable state so, it is possible to perform a linearization process to the targeted 

inelastic dynamic system through the use of a 1
st
 order Taylor expansion of the multivariable function, and pro-

ceed with the appropriate dynamic traits extraction in the frequency domain. The 1
st
 order Taylor expansion no-

tation is illustrated in equation (3) for the approximation of the vector valued function f(x) around a given vector 

xo. The symbol x corresponds to the gradient of a vector valued function with respect to the variable vector x, 

while M and N is the length of the vector valued function f and vector x respectively. 

 

 oxoo xfxxxfxf  )()()(
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The linearization process of the soil-foundation segment is depicted in equation (4). The nonlinear re-

storing force terms of the condensed segment, soil
if  and soilf , are replaced with their representative 1

st
 order Tay-

lor expansion at a selected variable state so =[uo, αo]
T
 where uo=[ui,o,usoil,o]

T 
and αo=αsoil,o. 
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The variable state and segment-specific linearized dynamic system can now be expanded into equations 

(5-7), where the terms corresponding to internal soil-foundation segment DOFs are transformed in the frequency 

domain as follows: 
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The notations F  and 
1-F  denote the Fourier and the inverse Fourier transformation, respectively. 

Through the implementation of the designated transformations, Equations 6 and 7 can take the form of Equations 

8 and 9 respectively. Sk,l represents the current variable state impedance notation –Mk,lω2
+Ck,lωi+ ),( ookl

αufu  , 

Function δ(ω) corresponds to the Dirac delta function, notation ,while )( jj uU F . 
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The dynamic system of equations (4) can now be significantly reduced in size through the elimination 

of the soil foundation segment internal DOFs usoil: 
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The extracted, reduced, complex matrices RF(uo,αo) and Sreduced(uo,αo)  are capable of emulating the lo-

cal dynamic behavior traits of the foundation-soil condensed segment in regard to small trajectories of the seg-

ment DOFs near the variable state so =[uo, αo]
T
. 

 

2.1 Truncated states selection of condensed system 

 

Due to the infinite number of different values of the soil-foundation segment variable states so =[uo,αo]
T
, 

it is numerically impossible to retrieve the condensed complex matrix pairs RF and Sreduced for each possible dis-

placement and plasticity variables combination of the soil foundation internal DOFs. As a result, a selection of 

representative variable states in connection to the behavior of the interface DOFs is essential. 

An effective yet computationally non-burdening truncation on the possible variable state combinations 

can be accomplished using the static pattern of deformation of the condensed segment. The tangent stiffness ma-

trices soilsoil
soil
i

soil
i soilisoili

ffff uuuu  ,,,  and residual force vectors 
soil

soil
i ff ,

 
corresponding to a specific inter-

face DOF variable state are calculated from the condensed segment static equation system under the externally 

imposed displacement values of a combination of interface DOFs displacements ui,o.  In more detail, the static 

version of the soil foundation segment illustrated in equation (11) can be solved for a known interface displace-

ment combination ui,o, leading to the internal DOF variables usoil,o and αsoil,o. Ro is the unknown force vector of 

the interface DOFs and Hsoil is the internal variable evolution function of the soil segment DOFs. Subsequently, 

the remaining variables of the state so=[ui,o, usoil,o, αsoil,o]
T
 are now known and the calculation of the RF and Sre-

duced pair corresponding to the so state is possible. The static pattern assumption is only approximating the inelas-

tic force to displacement vector of the subsoil internal DOFs. The validity of the proposed simplification is 

further studied in the implementation examples presented in the following sections. 
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Through the aforementioned assumption, an RF and Sreduced matrix pair can now be coupled with a spe-

cific interface DOF displacement combination ui,o. Further truncation is accomplished through the integration of 

repetitive (i.e., unloading and pre-yielding) or asymptotic behaviors (e.g asymptotically linear post-yielding be-

havior) of the dynamic properties of the soil-foundation segment along with a definition of an expected operating 

range of interface DOF displacements within which the dynamic system is expected to behave.  

 

 

 

3. PROPOSED MODEL ASSEMBLY 

 

Since the inelastic dynamic behavior of the condensed soil foundation segment can now be extracted in 

the form of a preselected number of (reduced) complex matrix pairs RF and Sreduced, it is possible to develop a 

modified LP model assembly capable of emulating such behavior. The predefined Type 3 LP design, proposed 

by Saitoh [18], is selected as the basis of the newly developed inelastic LP model. The resulting LP model for 

the scenario of a single interface DOF is illustrated in Figure 2. 

As shown, the LP model consists of one inelastic base component Sbase capable of emulating the quasi-

static properties of the condensed soil-foundation segment, while additional complementary components are 

accordingly calibrated to match the intensity-dependent dynamic traits of the soil-foundation system. The idea 

here is that the base component can be taken as a standard elastoplastic or hypoplastic macroelement according 

to the literature, depending on the specific foundation. In regard to the complementary components aiming to 

capture the dynamic behavior, conventional solutions are not capable of providing a sufficient accuracy. This is 

due to the fact that elastic equation terms of conventional components provide very limited capabilities of differ-

ent impedance function emulation for different strain levels of the macrolement base component. To this end, 

inelastic components scomp,i are integrated in the LP model as presented in the following paragraphs. The compo-

nent scomp,i is externally controlled, as its current stiffness is governed by the displacement and internal plastic 

variables of the macroelement base component and not the relative displacement of the respective nodes the 

component connects. On the other hand, components ci,up, ci,down and mi follow the conventional definition of 

dashpot and mass components respectively. 

 

Page 9 of 26

http://mc.manuscriptcentral.com/eqe

Earthquake Engineering and Structural Dynamics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60



For Peer Review

6 

 

 
Figure 2. Physical representation of the proposed Lumped Parameter Model 

 

 

3.1 Derivation of externally controlled inelastic components 

  

The scomp,i components of the proposed LP assembly follow the multi-linear inelastic constitutive law il-

lustrated in equation (12). The aforementioned components current stiffness is associated with the internal plas-

ticity variables αbase and interface DOF displacement ubase of the selected base component macroelement. 
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The variable Vector αbase corresponds to the base component Sbase internal variables at the current state 

of the system, ci are constant value vectors controlling the regions for which αbase and ubase correspond to differ-

ent spring stiffness ki, while ucomp is the relative displacement between the two nodes defining the component 

scomp. 

The selection of an externally controlled component lies within the nature of the extracted dynamic 

traits, as it provides with a different stiffness value and thus dynamic properties of the overall LP model for eve-

ry different interface DOF combination ubase. As presented in the previous sections, each extracted pair of RF 

and Sreduced has been affiliated with a specific combination of interface DOF displacements. As a result, the cali-

bration process can be significantly more efficient in comparison to the use of conventional multi-linear inelastic 

springs. The components are numerically implemented to the LP assembly through the explicit Runge-Kutta 

iterative method. 

 

 

3.2 LP model Impedance Functions 

 

Through the definition of the base and complementary components of the assembly, it is now possible 

to generate the matrix expression of the proposed LP model in regard to a single DOF interface, as illustrated in 

equation (13).  
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  The variable vector u corresponds to the displacement of the LP model’s DOFs, MLP represents the 

mass matrix of the LP model, CLP represents the damping matrix of the LP model, while fLP denotes the nonline-

ar force to displacement relation vector.  

In a similar manner to the previously presented linearization process of the soil-foundation segment, it 

is possible to derive a linearized model of the LP dynamic system around a preselected state uo
 
=[ubase,o , ucomp,o] 

through the Taylor expansion of the nonlinear restoring force vector fLP. Through the affiliation of the interface 

DOF displacement ubase to a variable state combination of the LP model through the static pattern of deformation, 

it is possible to extract the model’s SLP and RFLP matrix pairs, representing the dynamic behavior of the LP 

model for the ubase state. The impedance and restoring force functions SLP,o and RFLP,o at a preselected variable 

state ο are illustrated in equations (Eq. 14-15). 
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As the dynamic matrix pairs extracted from both the proposed LP model and the targeted soil foundation 

segment are paired with the same variable states of the interface DOF displacements, it is possible to calibrate 

the LP model in order to match the matrix pairs generated by the soil-foundation segment.  

 

4. CALIBRATION PROCESS OF THE PROPOSED MODEL 
 

4.1 Model order reduction through LP model calibration 

 

The model order reduction approach selected for the current study is materialized through the derivation of 

a reduced model capable of approximating the behavior of the targeted complex system. It is possible to formu-

late the model order reduction approach as an optimization problem illustrated in equation (16).  
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The variable M represents the targeting dynamic system ODE formulation, Mr is the reduced order sys-

tem possessing a lower number of state variables in comparison to M and function f specifies the behavioral di-

vergence between the targeted and reduced system. The functions g and h are inequality and equality constraints 

of the optimization problem, imposing attractor behavior and maintaining specific structure properties of the 

system M.  

The optimization problem of eq. (16) can be reformulated on the specific scenario of the SSI system or-

der reduction, through the appropriate derivations of the previously presented objective function and imposed 

constraint terms. In that case, the soil-foundation segment of the overall system is significantly condensed 

through the use of the inelastic LP model presented in the previous section as an adequate replacement. The or-

der reduction problem takes the following multi-objective optimization form as illustrated in equations (eq. 17-

18).   
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where, index o denotes a specific interface DOF variable state ranging from 1 to n, STar,o and SLP,o indi-

cate the impedance functions of the targeted and reduced LP system, respectively, on a given variable state o, 

while RFTar and RFLP indicate the restoring force complex functions of the targeted and reduced LP system, re-

spectively, on a given variables state o. Each objective function fo follows a sum of least squares representation 

between the impedance and restoring force functions. Finally m corresponds to the number of measured frequen-

cy points of the targeted behavior. 

 

4.2 Proposed algorithmic approach for the optimization process 

 

The scalarization of the multi-objective optimization problem illustrated in equation (eq. 17-18) is se-

lected as the most effective approach, as the problem’s high number of objective functions can lead to computa-

tionally burdening solutions when a posteriori methods are introduced. The weighted-sum method, initially 

proposed by Zadeh [19], is a traditional popular method following an a priori preference on the selection of a 

Pareto optimal through appropriate importance related weighting of the objective functions. The initial optimiza-

tion problem takes the following single objective form as illustrated in equation (eq. 19). 
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As the objective function commonly behaves in a nonlinear, non-convex manner, an arbitrary imple-

mentation of a deterministic optimization approach can lead to local minima without expanding the LP model’s 
potential to its full capacity. As a result, the algorithm used for the solution of the optimization problem of Eq. 

(19) consists of the combined efforts of a deterministic search method operating in a local level and a general 

plan operating in a global level. The local search method most efficiently suited for eq. (19) is the interior point 

trust region approach proposed by Coleman and Li [20]. According to this approach, the quadratic trust region 

sub-problem is approximately solved as the minimization of a quadratic problem subjected to an appropriate 

ellipsoidal constraint. The global level general plan is achieved through the multiple execution of the interior 

point trust region method, initiated from different stochastically generated locations xi inside a prediction region 

(Fig. 2).  

The termination criteria for the proposed optimization scheme consists of an iterative evaluation of the 

objective function value for the normalized static stiffness of the LP model, along with a maximum boundary on 

the number of the overall sampling points xi. 
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Figure 2. Multi-start algorithm used for the calibration process 

 

 

5. METHOD VERIFICATION ON A SINGLE DOF INTERFACE SYSTEM 
  

As presented in the previous paragraphs, the proposed procedure can provide a computationally viable 

alternative to the direct FEM approach for the solution of the SSI problem. However, the procedure is founded 

on a number of assumptions, which can render its efficiency questionable. To this end, it is essential to verify the 

proposed procedure through case specific examples where the procedure’s efficiency can be tested under differ-

ent conditions. The verification of the proposed procedure is accomplished through the case study of a single 

interface DOF representation of a strip foundation on homogenous clay soil as illustrated in Figure 3. In addition 

to the proposed inelastic LP model approach (M1), a simplified case of the presented LP assembly with conven-

tional elastic complementary components, solely tuned to the elastic impedance function of the condensed seg-

ment (M2) is also implemented for reasons of efficiency comparison. 

 

 

 
 

Figure 3.: Shallow foundation over uniform soil profile example (plane strain conditions) 

 

 

As a targeted behavior is essential to the case study, a finite element model of the soil foundation seg-

ment has been constructed. The soil foundation system is simulated as a plane strain model of a rigid strip foun-

dation over a uniform clay profile. The strip foundation is considered to be in full contact with the supporting 

soil domain. An elastoplastic constitutive law is implemented for the representation of the soil according to an 
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associative plasticity flow with isotropic hardening and a Von-Mises yielding criterion. The soil constitutive law 

properties are summarized in Table I. The overall FEM model includes a 100m x 50m truncated region of the 

semi-infinite soil domain, where absorbing boundaries are introduced at the side of the model according to [21], 

and a rigid bedrock is assumed at a depth of 50m. 

 
Table I . Properties of the selected soil materials 

Yielding Criterion E(KPa) 
Hardening 

 Param. Ho 

Poisson’s  
Ratio ν 

Yield Stress in Pure shear  

   fy (KPa) 

Von Mises 200000 1000 0.3 200 

 

5.1 LP models calibration process 

 

For the current study and for simplicity purposes, only one DOF is considered at the interface between 

the soil foundation segment and the superstructure, i.e., corresponding to the horizontal displacement of the cen-

troid of the strip foundation.  As a result, a single DOF elastoplastic constitutive law is utilized as the base com-

ponent of the LP model of both the complete method (M1) and the conventional complementary component 

method (M2). The selected constitutive law is described by the following elastoplasticity loading/unloading con-

ditions (eq.20) and yielding equation (eq.21). 

 

    0,0,0  FF                                               (20) 

 

     aGeHFF p                                                            (21)   

      

  
Figure 4.: Efficiency of the simplified and complete LP models under quasi-static excitation  

(a) displacement to pseudo-time, and (b) force to displacement relation   

 

where F denotes the generalized force of the base component and Φ is the yielding criterion of the elas-

toplastic constitutive law. With regard to the terms of the yielding function, H corresponds to the kinematic 

hardening function, G to the isotropic hardening function and ep and a are the isotropic and kinematic hardening 

parameters. A polynomial form is selected for the representation of the hardening function G and H, where the 

polynomial factors are calibrated according to the quasi-static behavior of the FEM model. Results of the base 

component efficiency for quasi-static loading are illustrated in Figure 4. 

For this single interface DOF the system’s dynamic traits are extracted from the FEM model for four 

different variable state combinations in accordance to preselected displacements of the interface DOF (u1,o=0mm, 

u2,o=10mm u3,o=16mm u4,o=29mm, , u5,o=66mm, u6,o=100mm). As observed, an isotropic hardening mechanism 

is mainly controlling the cyclic behavior of the targeted system while a linear force-displacement behavior is 

asymptotically dominating the plastic strain region of the system. Through the exploitation of the aforemen-

tioned observations the four variable states corresponding to u1,o - u4,o interface DOF displacements are sufficient 

data for the representation of the system’s IF and RF matrix pairs at any other given state as illustrated in Figure 

5. Due to the observed isotropic loading surface evolution of the FEM model, the extracted states are matched to 

the isotropic internal plastic threshold values of the statically tuned macroelement through the calculation of the 

plastic threshold values for the given variable state displacement. 
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Figure 5. Variable states truncation through exploitation of repetitive and asymptotic behavior 

 

The condensed segment’s impedance function and restoring force matrix pairs Sreduced and RF are ex-

tracted through the appropriate linearization and dynamic condensation of the system in the frequency domain in 

regard to the preselected interface DOF. The extracted properties are used as a target for the calibration of the 

complementary components of the complete method (M.1), while the simplified method (M.2) is tuned accord-

ing to the elastic impedance function of the targeted system. Both LP models are utilized with a number of 4 

cores. The calibration results are illustrated in Figures 6 and 7 for the interface displacement states u1,o to u6,o.  

 

  
Figure 6. Calibration efficiency of the lumped parameter models for the Impedance Functions 

  
Figure 7. Calibration efficiency of the lumped parameter models for the RF functions 
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As observed in Figure 6 the dynamic stiffness functions of the targeted dynamic system is accurately 

captured by the complete LP method (M.1), while the simplified method (M.2) overestimates the dynamic stiff-

ness values for almost all the frequency range of 0 to 15 Hz. The restoring force functions RF illustrated in Fig-

ure 7 presents some limitations on the emulating capabilities of the RF complex matrix by both methods (M.1 

and M.2). These limitations are imposed by the static pattern based truncation of the selected variable states pre-

sented in the previous paragraphs. The formulation of the proposed LP assembly leads to zero internal displace-

ments on the internal components Scomp for an imposed displacement at the interface DOF of Sbase, thus nullifying 

the Scomp governed terms in xi of equation (eq.15). The aforementioned limitations could possibly be eradicated 

through the use of a modal based generated truncation pattern however such an approach is beyond the scope of 

the current study. 

 

 

5.2 Time domain verification of the proposed model 

 

The time domain verification of the proposed method is an essential step to assess the efficiency of the 

proposed model. As a result, a time history case study is presented in the following paragraphs. The dynamic 

response of the soil-foundation interface DOF under harmonic excitations on a frequency range of 0.5-4Hz (a 

typical range for earthquake engineering applications) is compared between the two LP model reduction meth-

ods and the FEM model. The harmonic excitations are directly applied on the interface DOF of the targeted sys-

tem without the presence and influence of a superstructure, as the existence of the latter could mask the response 

of the SSI system. Two different amplitude levels of the excitations are included in the case study A1=200KN 

and A2=1500KN. For the case of the low intensity level the targeted system behavior is limited within the elastic 

domain (Figures 8-9). On the other hand, for the scenario of the higher intensity, the system significantly sur-

passes its yielding point (Figures 10-11). 

 

 

 

 

 
 

Figure 8. Low intensity dynamic response of LP models, displacement to time relationship 

 

As observed in Figures (Figures 8-9) depicting the low intensity / elastic SSI response case, both the 

complete method (M.1) and the simplified approach (M.2) emulate the elastic dynamic behavior of the targeted 

FEM model in an accurate manner. This is anticipated since both models target the elastic dynamic properties 

during the calibration process. 
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Figure 9. Low intensity dynamic response of LP models, Force to displacement relationship 

 

 

 

 

 

 
Figure 10. High intensity dynamic response of LP models, displacement to time relationship 
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For the higher excitation intensity scenario, the subsoil region demonstrates permanent plastic defor-

mation as illustrated in Figures (Figures 10-11). It is observed that within the selected frequency range 0.5-4Hz, 

the post yield behavior of the simplified LP approach (M.2) is less efficient in comparison to the proposed meth-

od (M.1). This can be attributed to the fact that method M.2 exhibits a limited tuning process of the conventional 

complementary components and naturally, it cannot maintain a behavioural accuracy in intensity or frequency 

regions excluded from the calibration process. Additionally, as expected, the observed error is higher for higher 

frequencies where the static components of the reduced methods are less dominant. 

 

 

 

 
 

Figure 11. High intensity dynamic response of LP models, Force-displacement relationship  

 

A second comparison is performed in Fig. 11 on the basis of a force-displacement relationship. It is evident 

that the complete proposed approach is superior to the simplified one and is able to match very closely the target 

FEM response. Additionally it can be observed that the yielding state displacement of the FEM system is lower 

in comparison to the one used in the base component of the complete (M.1) and simplified (M.2) LP method. 

This observation can lead to the conclusion that inelastic properties of the system are rate dependent, and subse-

quently the use of a rate independent statically calibrated macroelement can lead to a decrease in accuracy under 

specific circumstances. 

 

 

6. METHOD VERIFICATION ON A MULTIPLE DOF INTERFACE SYSTEM  
 

Through the verification process presented in the previous section, the efficiency of the proposed method 

and its simplified version has been determined for a single DOF interface system. However the aforementioned 

case study is mainly concentrated on the determination of the proposed method’s efficiency under extreme con-

ditions and the amplitudes A1=200KN and A2=1500KN of the harmonic excitations used for the low and high 

intensity cases of the study are the lower and higher extremes of a possible lateral loading applied on the founda-

tion in question.  In order to portray the behaviour of the proposed method in a more probable loading scenario, a 

case study of a bridge pier SSI problem under both harmonic and earthquake excitations is studied in the follow-
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ing paragraphs. For this case study the three DOFs (ux,uz and θy) at the base of the foundation are selected as the 

interface region of the reduced soil foundation system. 

 

  
 

Figure 12. Bridge Pier SSI plane strain problem 

 

As a targeted behavior is essential to the case study, a finite element model of the soil foundation segment 

has been constructed in a similar manner to the previous paragraph. The soil-foundation system is simulated as a 

plane strain model with a rigid element shallow foundation of 1m width at the out-of-plane direction. The foun-

dation is considered to be in full contact with the supporting soil domain. An elastoplastic constitutive law is 

implemented for the representation of the soil according to an associative plasticity flow with isotropic hardening 

and Von-Mises as the law’s yielding criterion. The soil constitutive law properties are summarized in Table III. 

As previously, the overall FEM model includes a 100m x 50m truncated region of the semi-infinite soil domain, 

where absorbing boundaries are introduced at the side of the model according to [21], while a rigid bedrock is 

simulated at the 50m depth of the model. The pier superstructure is simulated as a beam element directly con-

nected to the foundation interface DOFs, with properties presented in Table II. A gravity load combination of a 

vertical force equal to 800 KN is applied on the top of the superstructure. 

 

Table II. Multiple interface DOF case study: Superstructure Properties 

Pier Height  

h(m) 

Young Modulus  

E(MPa) 

Mass 

M (tn) 

Pier Diameter 

d(m) 

Moment of Inertia  

I (m
4
) 

6 29000 350 1.4 0.188574 

Units are considered per unit length of the strip footing 

 

Table III. Multiple interface DOF case study: Soil Domain Properties 

Yield Stress in Pure shear  

   fy (Kpa) 

Young Modulus  

E(Kpa) 

Poisson ratio  

V 

Linear Isotropic hardening  

factor Ho 

100 169090.9 0.409 20000 

 

6.1 LP model calibration  

 

The calibration process of the proposed LP model is initiated through the selection of an appropriate 

base component. The base component macroelement selected for the specific case study is an elastoplastic con-

stitutive law with associative elliptical yielding function and mixed hardening, as depicted in equations (Eq. 22-

24).  

 
  

d = 1.6m

H=50m

L=6 m

Soil Propeties:

fy=100 KPa

v=0.409

E=169090 KPa

Ho=20000

xm 
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The variable Del corresponds to the elastic stiffness matrix of the macroelement, u is the displacement 

vector of the interface DOFs , F=[V, H , M ] is the force vector of the interface DOFs, Φ is the elastoplastic mac-

roelement yielding criterion, ak,i are the kinematic hardening internal parameters and aiso is the isotropic harden-

ing internal parameter.  The constant parameters Ho,Mo,Vo , Liso and cy,o along with the diagonal Lkin matrix are 

all calibrated through a least square optimization process in order to achieve a successful matching with the qua-

si-static behaviour of the targeted system. The efficiency of the calibrated macroelement is illustrated in Figure 

13 for the vertical DOF under isolated vertical loading and in Figure 14 for the rotational and horizontal dis-

placement DOFs under a vertical load Fo=800KN. The rate of the applied moment is equal to My=Fx*h . 

 

  
Figure 13. Vertical Force to vertical displacement relation of the LP and FEM models under monotonic static 

loading 

 

 
 

Figure 14. a) Moment to rotation and b) Force to displacement relation of the LP and FEM models under quasi 

static loading for the gravity load Fo=800KN 
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As the base component of the macroelement has now been generated it is possible to continue with the 

calibration of the complementary components of the M.1 and M.2 LP models. For the M.2 LP model the elastic 

impedance function is sufficient. For the M.1 method an initial truncation of the state variable combinations of 

the soil foundation segment is accomplished through the assumption of the static pattern of deformation. Addi-

tionally small alterations of the initial settlement of the foundation induced by the gravity force of the deck 

Fz=800 KN are expected. Further elimination of the selected state variables is accomplished through the defini-

tion of the elastic and operational regions of the horizontal and rotational interface DOFs. As a result, nine dif-

ferent interface DOF variable states are selected as illustrated in Table IV within the operational range of 

horizontal displacement -3 to 3 mm and rotation -0.3 to 0.3 mrad. A broader variable states range, up to the as-

ymptotic high strain behavior of the foundation-soil system is a more appropriate approach if an estimation of 

the system’s operational range is not available, as presented in the previous case study. 

  The expected error generated from the static pattern assumption is calculated for the loading scenario 

of the bridge gravity load combined with a harmonic horizontal excitation on the foundation level. The mean 

absolute percentage error (MAPE) of the subsoil DOF displacements for the moment of peak horizontal excita-

tion with frequency fo=4Hz is illustrated in figure 15. The maximum MAPE generated on the tangent stiffness 

matrix terms of each element for the same loading scenario is illustrated in figure 16a. The maximum MAPE of 

the element stiffness matrix terms for harmonic excitations with different frequencies is illustrate in 16b. 

 
Figure 15. MAPE of subsoil DOFs variable state under the static pattern assumption for the a)horizontal ux 

b)and  vertical uy displacements   

   
Figure 16.  a) Distribution of tangent stiffness MAPE produced under the static pattern assumption b) Maximum 

tangent stiffness MAPE for harmonic excitations with different frequency 

 

  According to the illustrated results of figure 15, the displacement state divergence is observed 

to be higher on the left and right boundaries of the soil domain and identical on the fixed bottom boundary. Such 

an error concentration is expected as the Lysmer boundary conditions utilized on the specific case study provide 

with no reaction for the scenario where the static pattern assumption is implemented. However as illustrated in 

figure 16a, the error observed in regions far from the foundation has negligible influence on the calculation of 

the system’s Impedance functions as little to no difference is observed on the tangent stiffness and internal plas-

ticity variables of the subsoil elements within these regions.  On the other hand for the near field region, the error 

is zero on the interface Dofs of the foundation and low for the region underneath the foundation. The displace-
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ment error at the interface DOFs is by definition zero as the targeted displacement values are imposed at inter-

face DOFs during the static pattern assumption. For the remaining DOFs on the near field region, static assump-

tion is observed to be closely approximating the displacement distribution for a realistic excitation frequency. 

The maximum error generated on the tangent stiffness terms among all the subsoil elements for different excita-

tion frequencies is illustrated in figure 16b. 

 

Table IV. Selected Variable States 

  vs.1 vs.2 vs.3 vs.4 vs.5 vs.6 vs.7 vs.8 vs.9 

Fx (KN/m) 0 0 0 ±40 ±40 ±40 ±120 ±120 ±120 

Fz(KN/m) 0 -800 -800 -800 -800 -800 -800 -800 -800 

My(KNm/m) 0 ±150 ±350 0 ±150 ±350 0 ±150 ±350 

 

For each selected variable state of the soil foundation segment, a 3x3 impedance function matrix and 

RF matrix are generated through the proposed procedure described in section 2. The impedance function and RF 

matrix pairs are directly calculated through the extraction of the tangent stiffness  f, mass M and damping C 

matrices of the FEM model and further calculations are performed in the frequency domain as illustrated in 

equation (eq.10). As the proposed approach has low emulating capabilities for the RF matrix, the optimization 

process is concentrated on capturing the impedance function matrices behavior. The non-diagonal coupling 

terms of each impedance function matrix are of negligible significance, thus are not taken into account in the 

current case study. The impedance function results of the calibration of the proposed LP method for the elastic 

variable state vs.1 and the variable state region of vs.2-vs.9 are illustrated in Figures 17-19. Both M.1 and M.2 

LP models are utilized with a number of 4 cores for each interface DOF. 

 

 
Figure 17. a) Real Part and b) Imaginary part of Kx impedance functions for the selected variable states 

 

  
Figure 18. a) Real Part and b) Imaginary part of Kz impedance functions for the selected variable states 
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Figure 19. a) Real Part and b) Imaginary part of Kry impedance functions for the selected variable states 

 

As observed in the aforementioned figures, for the elastic variable state vs.1 both M.1 and M.2 LP 

methods are efficiently emulating the targeted FEM behavior for the three interface DOF impedance functions 

Kx,Kz and Kry. For the remaining variable states located in the plastic strain region, it can be observed that the 

impedance functions generated by the M.1 LP model are accurately representing the extracted FEM impedance 

functions. On the other hand the M.2 model impedance functions tend to diverge from the targeted FEM imped-

ance functions for frequencies higher of 5 Hz on all three interface DOFs. 

 

6.2 Time domain analysis under harmonic excitations 

 

The efficiency of the complete (M.1) and simplified (M.2) LP methods in the time domain is initially meas-

ured through the time history analysis of the case study example under a selection of harmonic excitations in the 

frequency range 1-4Hz. The harmonic excitation with acceleration amplitude ao=0.3g is directly assigned on the 

head of the pier superstructure in the form of a horizontal inertial force, amplified by the superstructure mass. 

The results of the displacement of the foundation are illustrated in Figures 20-21 for the following different ap-

proaches of the target FEM model, the M.2 simplified LP method, the M.1 complete LP method and for reasons 

of comparison a sole static macroelement. 

As observed in the results depicted in Figures 18a and 18b, in the scenario of lower frequency excita-

tions (fe=1Hz and 2Hz), both LP methods M.1 and M.2 are capable of efficiently emulating the dynamic behav-

ior of the targeted system. The behavior of M.1 and M.2 LP methods are observed to be almost identical for the 

lower frequency range as the inelastic impedance functions portray small differences in comparison to the elastic 

impedance functions of the condensed system. In the scenario of a higher frequency excitation (fe=8Hz) the M.1 

LP method is capable of providing a dynamic response with higher matching accuracy in comparison to the M.2 

simplified LP method as illustrated in Figure 18c. Additionally, the static approach of the sole macroelement 

representation is depicted to match efficiently the rotational behavior of the condensed system for lower frequen-

cy scenarios, while a higher error is depicted in comparison to both M.1 and M.2 LP methods on any other re-

sponse scenario. 

Following the aforementioned observations, it is clear that the efficiency of any of the order reduction 

methods integrated in the current case study is highly correlated to the nature of the extracted dynamic properties 

of the targeted system. More specifically, the static macroelement approach can emulate the behavior of a target-

ed dynamic system with an acceptable accuracy only under the scenario of targeted impedance functions with 

close to constant real part behavior and an imaginary part of negligible amplitude. The simplified approach M.2 

can lead to an acceptable accuracy as long as a high resemblance is portrayed between the different variable state 

impedance functions extracted from the targeted dynamic system. 
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Figure 20. Foundation rotational and horizontal displacement response for the a) 1Hz b) 2Hz and c) 8Hz har-

monic excitation 

 

 
Figure 21. Foundation settlement for the a) 1Hz b) 2Hz and c) 8Hz harmonic excitation 

 

 
6.3 Time domain analysis under earthquake excitation 

 

 As a final step, the proposed methods M.1 and M.2 along with the targeted FEM model and the static 

macroelement are all subjected to the acceleration time history recorded in the Earthquake of the Imperial Valley 

at the El Centro Array station rescaled to a PGA=0.1g. The time history responses of the superstructure and the 

foundation interface DOFs are compared for the complete FEM simulation and the proposed inelastic LP method. 

The vertical component of the earthquake motion is neglected. Integration of the equilibrium equation has been 

performed using a Newmark-type integration scheme. The time history results are depicted in Figures 22 and 23. 

From the comparison of the foundation response on the three different approaches, it can be observed that 

both proposed method M.1 and M.2 are adequately emulating the targeted system behavior. The efficiency of the 

M.2 method can be explained by the fact that the higher frequency content of the earthquake excitation is filtered 

out by the superstructure’s transfer function, and as stated in 6.2 the simplified method M.2 has adequate results 
mainly for excitation’s with low predominant frequencies. The static macroelement on the other hand is ob-

served to misrepresent the foundation behavior on both rotation and horizontal displacement. 
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Figure 22.  (a) foundation rotation to moment relation (b) foundation horizontal displacement to force relation 

for the FEM and the reduced model approaches 

Figure 23.  Time history results of the (a) foundation rotation (b)foundation horizontal displacement for the 

FEM and the reduced model approaches 

7. CONCLUSIONS 

 
A new dynamic macroelement method has been developed in the current paper, capable of accurately emu-

lating the inelastic dynamic behaviour of the soil-foundation system. In contrast to methods presented in the ex-

isting literature, which either address the system’s inelasticity through a frequency independent macroelement or 

match the dynamic impedance using a dynamic LP model, the proposed intensity- and frequency-dependent 

lumped parameter model (M.1) copes with the frequency depended properties of the soil-foundation system 

within a breadth of intensities by means of the expansion of the LP model framework to inelastic dynamic sys-

tems.  The procedure is numerically verified in dynamic excitations by comparing a refined FE model, the pro-

posed M.1 method, a simplified version of the M.1 approach (M.2) and a sole macroelement. Even though the 

results are herein limited to simplified soil foundation systems, they demonstrate the efficiency of the proposed 

frequency- and intensity-dependent LP model (M.1) for the purpose of SSI analyses. Additionally, the simplified 

approach M.2 was found to be an accurate enough substitute of the complete method M.1 under the conditions of 

low divergence of the system’s impedance functions along the increase of loading intensity.  Future work is es-

sential to the expansion of the proposed method for the case of more complex soil-foundation systems. 
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